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ABSTRACT
Backdoor attacks inject poisoned samples into training data, where
backdoor triggers are embedded into the model trained on the
mixture of poisoned and clean samples. An interesting phenome-
non can be observed in the training process: the loss of poisoned
samples tends to drop significantly faster than that of clean sam-
ples, which we call the early-fitting phenomenon. Early-fitting
provides a simple but effective evidence to defend against backdoor
attacks, where the poisoned samples can be detected by selecting
the samples with the lowest loss values in the early training epochs.
Then, two questions naturally arise: (1) What characteristics of
poisoned samples cause early-fitting? (2) Does a stronger attack
exist which could circumvent the defense methods? To answer the
first question, we find that early-fitting could be attributed to a
unique property among poisoned samples called synchronization,
which depicts the similarity between two samples at different lay-
ers of a model. Meanwhile, the degree of synchronization could
be controlled based on whether it is captured by shallow or deep
layers of the model. Then, we give an affirmative answer to the
second question by proposing a new backdoor attack method, Deep
Backdoor Attack (DBA), which utilizes deep synchronization to
reverse engineer trigger patterns by activating neurons in the deep
layer of a base neural network. Experimental results validate our
propositions and the effectiveness of DBA. Our code is available at
https://github.com/GuanZihan/Deep-Backdoor-Attack.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Informa-
tion systems → Data mining.
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1 INTRODUCTION
Deep neural networks (DNNs) have achieved tremendous success
in many applications [17, 42, 43]. Training a DNN requires a large
amount of data and computational resources, so it is common prac-
tice to train DNNs on third-party providers. In this scenario, back-
door attacks [3, 9, 23, 25, 26, 45] pose a serious security threat by
intervening in the training process. Attackers could poison the
training data by injecting trigger patterns into a few training sam-
ples and changing their labels to the target label, so that the DNNs
will learn the mappings from the trigger pattern to the target la-
bel. Then, in the inference stage, the model will predict the input
into the target label class if trigger patterns are present but behave
normally on clean samples.

Several previous efforts have been made to construct stealthy
backdoor triggers [5, 23, 25] and launch controllable backdoor at-
tacks [6, 40], making defense against backdoor attacks a challenging
problem. However, it has recently been observed that the training
loss of backdoor samples drops significantly faster than that of
clean samples in the first few epochs [20]. We call this the early-
fitting phenomenon. As a result, poisoned samples can be accurately
isolated from clean samples during training by selecting samples
with the top-k lowest loss value. Then, fine-tuning the model with
the remaining data will lessen the threat from backdoors. This de-
fense strategy leverages the early-fitting phenomenon and works
effectively against a wide range of attack methods.

Despite the observation and preliminary application of early-
fitting, several key questions have not been answered. First, what is
the reason behind early-fitting of poisoned samples?Backdoor
patterns are usually simpler compared to natural signals, so they are
easier to learn for neural networks. However, how to quantify such
"simplicity" of backdoor patterns? Are there other reasons for the
rapid decrease in poisoned sample loss? We believe that answering
these questions would provide a better understanding of backdoor
attacks and defenses. Second, is it possible for backdoor attacks
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to bypass the early-fitting phenomenon? The answer to this
question would help us identify potential threats to deep models.

To answer the first question, we propose a quantification method
for estimating the loss reduction of training samples. We find that:
(1) the loss reduction of each data sample could be decomposed as
the aggregated influence of other training samples; (2) the mutual
influence of two samples is closely related to their similarities at
different layers of a model. Thus, we define a novel concept called
synchronization to measure such similarity. Our analysis indicates
that poisoned samples tend to be more "synchronized" compared
to clean samples, leading to the early-fitting phenomenon. Mean-
while, samples created by different attack methods show synchro-
nization at different layers. The synchronization among poisoned
samples created by simple attack methods (e.g., BadNet [9]) is usu-
ally captured starting from shallow layers, while synchronization
of stealthy poisoned samples (e.g., WaNet [25]) is captured only at
deep layers.

Based on the above analysis, we answer the second question
in the affirmative. Specifically, we propose a new backdoor attack
method, called Deep Backdoor Attack (DBA), which generates poi-
soned samples with deep-layer synchronization and could avoid
early fitting. We leverage model explanation [38] to reversely gener-
ate trigger patterns by activating the deep neurons of a clean neural
network. Then, the generated trigger patterns contain intricate
information learned by the neural network, so the poisoned sam-
ples tend to synchronize in a more complex way. Comprehensive
experiments across various tasks show that DBA can bypass the
early-fitting phenomenon while maintaining good performance on
clean samples. Most importantly, we demonstrate that DBA could
be resistant to various other defense methods such as FP, NAD, and
ABL. We summarize our contributions in this work as follows:
• We formalize the early-fitting phenomenon and quantitatively
measure the loss reduction of poisoned and clean samples.
•We provide a better understanding of early-fitting from a novel
perspective of data synchronization.
• We propose DBA, a new backdoor attack method that is resis-
tant to both early-fitting and other competitive defense methods,
demonstrating the potential threat posed by backdoor attacks.

2 UNDERSTANDING BACKDOOR ATTACKS
In this section, we first introduce the problem definition of backdoor
attacks, and the phenomenon of early-fitting in training poisoned
samples. Then, we provide a theoretical understanding of backdoor
attacks from a new perspective called data synchronization.

2.1 Problem Definition: Backdoor Attacks
We consider classification tasks in this paper. A neural network
model 𝑓𝜃 : X → Y is learned from the training dataset D =
{(𝒙, 𝑦)}, where 𝒙 ∈ R𝑛 denotes a sample, 𝑦 ∈ R denotes its ground-
truth label, X is the input space,Y is the label space, and 𝜃 denotes
the collection of model parameters.

Backdoor attacks make the model 𝑓𝜃 to be trained on a mix-
ture of clean and poisoned data samples, so that the model is ex-
pected to perform normally on clean input but behave incorrectly
if special triggers exist in the input. We denote the set of clean
and poisoned samples as D𝑐𝑙𝑒𝑎𝑛 and D𝑝𝑜𝑖 , respectively, and let
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Figure 1: The training loss curve on clean samples and poi-
soned samples crafted with two attack methods: Blend [3]
and BadNet [9].
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of a model. Thus, we define a novel concept called synchronization
to measure such similarity. Our analysis indicates that poisoned
samples tend to be more "synchronized" compared to clean samples,
leading to the early-fitting phenomenon. Meanwhile, samples cre-
ated by different attack methods show synchronization at different
layers. The synchronization among poisoned samples created by
simple attack methods (e.g., BadNet [? ]) is usually captured starting
from shallow layers, while synchronization of stealthy poisoned
samples (e.g., WaNet [? ]) is captured only at deep layers.

Based on the above analysis, we answer the second question
in the affirmative. Specifically, we propose a new backdoor attack
method, called Deep Backdoor Attack (DBA), which generates poi-
soned samples with deep-layer synchronization and could avoid
early fitting. We leverage model explanation [? ] to reversely gener-
ate trigger patterns by activating the deep neurons of a clean neural
network. Then, the generated trigger patterns contain intricate
information learned by the neural network, so the poisoned sam-
ples tend to synchronize in a more complex way. Comprehensive
experiments across various tasks show that DBA can bypass the
early-fitting phenomenon while maintaining good performance on
clean samples. Most importantly, we demonstrate that DBA could
be resistant to various other defense methods such as FP, NAD, and
ABL. We summarize our contributions in this work as follows:

• We formalize the early-fitting phenomenon and quantita-
tively measure the loss reduction of poisoned and clean sam-
ples.

• We provide a better understanding of early-fitting from a
novel perspective of synchronization between training sam-
ples.

• We propose DBA, a new backdoor attack method that is
resistant to both early-fitting and other competitive defense
methods, demonstrating the potential threat posed by back-
door attacks.

2 UNDERSTANDING BACKDOOR ATTACKS
In this section, we first introduce the problem definition of backdoor
attacks, and the phenomenon of early-fitting in training poisoned
samples. Then, we provide a theoretical understanding of backdoor
attacks from a new perspective called data synchronization.

2.1 Problem Definition: Backdoor Attacks
We consider classification tasks in this paper. A neural network
model 𝑓𝜃 : X → Y is learned from the training dataset D =
{(𝒙, 𝑦)}, where 𝒙 ∈ R𝑛 denotes a sample, 𝑦 ∈ R denotes its ground-
truth label, X is the input space,Y is the label space, and 𝜃 denotes
the collection of model parameters.

2.2 Loss Reduction Estimation
Backdoor attacks make the model 𝑓𝜃 to be trained on a mixture
of clean and poisoned data samples, so that the model is expected
to perform normally on clean input but behave incorrectly if spe-
cial triggers exist in the input. We denote the set of clean and
poisoned samples as D𝑐𝑙𝑒𝑎𝑛 and D𝑝𝑜𝑖 , respectively, and let D =
D𝑐𝑙𝑒𝑎𝑛 ∪D𝑝𝑜𝑖 . Typically, a poisoned sample (𝒙𝑏 , 𝑦𝑏 ) ∈ D𝑝𝑜𝑖 could
be created from a clean sample (𝒙𝑐 , 𝑦𝑐 ) ∈ D𝑐𝑙𝑒𝑎𝑛 by adding trigger
patterns 𝜹 to make 𝒙𝑏 = 𝒙𝑐 + 𝜹 and pairing it with a target label 𝑦𝑏
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Figure 1: Estimated loss reduction versus true loss reduction
on (a) ResNet-18 neural network, and (b) LeNet-5. The train-
ing dataset is Cifar10. The learning rate is 0.1.

chosen by attackers. We call the proportion of poisoned samples
as injection ratio 𝜂 = |D𝑝𝑜𝑖 |/|D|. After training on D, the model
is expected to assign 𝑦𝑏 to future samples containing the trigger
patterns but behaves

Figure 2: Estimated loss reduction versus true loss reduction
on (a) ResNet-18 neural network, and (b) LeNet-5. The train-
ing dataset is CIFAR10. The learning rate is 0.1.

D = D𝑐𝑙𝑒𝑎𝑛 ∪ D𝑝𝑜𝑖 . Typically, a poisoned sample (𝒙𝑏 , 𝑦𝑏 ) ∈ D𝑝𝑜𝑖

could be created from a clean sample (𝒙𝑐 , 𝑦𝑐 ) ∈ D𝑐𝑙𝑒𝑎𝑛 by adding
trigger patterns 𝜹 to make 𝒙𝑏 = 𝒙𝑐 + 𝜹 and pairing it with a target
label 𝑦𝑏 chosen by attackers. We call the proportion of poisoned
samples as injection ratio 𝜂 = |D𝑝𝑜𝑖 |/|D|. After training on D, the
model is expected to assign 𝑦𝑏 to future samples containing the
trigger patterns but behaves normally in clean samples.

2.2 The Early-Fitting Phenomenon
It could be observed that, when training a neural network on both
poisoned and clean samples, the loss on the poisoned samples drops
significantly faster than that of the clean ones in early epochs (Fig-
ure 1). We call this phenomenon early-fitting. As a result, poisoned
samples can be isolated from other samples by ranking the training
loss of all samples from low to high, and picking the ones with the
smallest loss values. Therefore, it provides a straightforward way
for defenders to detect and defend against backdoor attacks. The
intuition behind the early-fitting phenomenon of poisoned samples
is that: training on samples with backdoor patterns is a simpler
task compared to training on clean samples, since the model only
needs to learn a mapping from trigger 𝜹 to a fixed label 𝑦𝑏 , where
the trigger patterns are not as complex as natural patterns.

Despite the intuition and preliminary application of early-fitting,
several key questions remain to be answered towards further un-
derstanding the phenomenon and securing the models. 1) What is
the reason that early-fitting only happens on poisoned samples?
One may conjecture that early-fitting occurs because it is easy to
fit poisoned samples, but how to quantify such "easiness", and can
we directly control whether a sample is easy to learn? We lack
a quantitative tool to estimate the reduction in loss for poisoned
and clean samples. 2) Is it possible to design stronger attacks to
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Figure 3: 𝜂𝑟𝑏𝑏 , 𝜂𝑟𝑏𝑐 , (1 − 𝜂)𝑟𝑐𝑐 , and (1 − 𝜂)𝑟𝑐𝑏 under different training epochs (x-axis) when learning on CIFAR10 under three
backdoor attacks. 𝜂 is set as 0.1.

circumvent existing defense methods? We answer these questions
in the remainder of this paper.

2.2.1 Loss Reduction Quantification. In this part, we provide a bet-
ter understanding of the reason behind early-fitting by quantifying
the loss reduction during training. Let 𝑅(D, (𝒙, 𝑦)) denote the loss
reduction on a test sample (𝒙, 𝑦) after training the model withD in
the 𝑖-th iteration. The average loss reduction in a subset D′ ⊂ D
is defined as:

R(D,D′) = 1
|D′ |

1
|D|

∑
(𝒙,𝑦) ∈D′

∑
(𝒙′,𝑦′ ) ∈D 𝑟 ((𝒙′, 𝑦′); (𝒙, 𝑦)),

(1)
where 𝑟 ((𝒙′, 𝑦′); (𝒙, 𝑦)) denotes the influence of a training sample
(𝒙′, 𝑦′) on reducing the loss of (𝒙, 𝑦). The early-fitting phenomenon
implies that 𝑅(D,D𝑝𝑜𝑖 ) ≥ 𝑅(D,D𝑐𝑙𝑒𝑎𝑛) in the early epochs. To
understand why it happens, we propose to quantitatively estimate
𝑅(D,D′). According to [27], 𝑟 ((𝒙′, 𝑦′); (𝒙, 𝑦)) can be estimated as:

𝑟 ((𝒙′, 𝑦′); (𝒙, 𝑦)) ≈ 𝛽𝑖∇𝜃𝑖 ℓ𝜃𝑖 (𝒙, 𝑦) · ∇𝜃𝑖 ℓ𝜃𝑖 (𝒙′, 𝑦′), (2)

where 𝛽𝑖 denotes the learning rate at iteration 𝑖 , ℓ𝜃𝑖 (𝒙, 𝑦) denotes the
training loss of sample 𝒙 after the 𝑖-th iteration, and ∇𝜃𝑖 denotes
the partial derivative with respect to the weights 𝜃𝑖 . Intuitively,
if (𝒙′, 𝑦′) tends to update model parameters towards the same
direction as (𝒙, 𝑦), then training on (𝒙′, 𝑦′) will help the model to
fit (𝒙, 𝑦) better.

We use a preliminary experiment to validate the estimation in
Equation 2. Given the image classification task in CIFAR10 [17],
we randomly select 250 pairs of ((𝒙′, 𝑦′), (𝒙, 𝑦)) from the training
dataset D and compare the estimated loss reduction with its actual
loss reduction (see Figure 2). We adopt two models to present the
performance of the estimation: ResNet-18 [14] and LeNet-5 [18].
Figure 2 shows that the estimation points distribution is along the
line 𝑦 = 𝑥 , indicating a high estimation accuracy.

2.2.2 Loss Reduction Difference Between D𝑝𝑜𝑖 and D𝑐𝑙𝑒𝑎𝑛 . With
the quantification method at hand, we further study the difference
between backdoor samples and clean samples in terms of the loss
reduction speed. In iteration 𝑖 , the parameters are 𝜃𝑖 and we train
the neural network 𝑓𝜃𝑖 on the dataset D. As the training dataset
D is composed of clean samples (𝒙𝑐 , 𝑦𝑐 ) and poisoned samples
(𝒙𝑏 , 𝑦𝑏 ), we define loss reduction for the poisoned subset D𝑝𝑜𝑖 and
clean subsetD𝑐𝑙𝑒𝑎𝑛 separately as follows. The details are presented
in Appendix A.

Theorem 1. Given D = D𝑝𝑜𝑖 ∪ D𝑐𝑙𝑒𝑎𝑛 as training data, the
difference of average loss reduction between D𝑝𝑜𝑖 and D𝑐𝑙𝑒𝑎𝑛 is:

R(D,D𝑝𝑜𝑖 ) −R(D,D𝑐𝑙𝑒𝑎𝑛) = 𝜂𝑟𝑏𝑏 − (1−𝜂)𝑟𝑐𝑐 + (1− 2𝜂)𝑟𝑏𝑐 , (3)

where 𝑟𝑏𝑏 =

∑
(𝒙′
𝑏
,𝑦′
𝑏
),(𝒙𝑏 ,𝑦𝑏 ) ∈D𝑝𝑜𝑖

𝑟 ( (𝒙′
𝑏
,𝑦′

𝑏
) ;(𝒙𝑏 ,𝑦𝑏 ) )

|D𝑝𝑜𝑖 | |D𝑝𝑜𝑖 | ,

𝑟𝑐𝑐 =
∑

(𝒙′𝑐 ,𝑦′𝑐 ),(𝒙𝑐 ,𝑦𝑐 ) ∈D𝑐𝑙𝑒𝑎𝑛
𝑟 ( (𝒙′

𝑐 ,𝑦
′
𝑐 ) ;(𝒙𝑐 ,𝑦𝑐 ) )

|D𝑐𝑙𝑒𝑎𝑛 | |D𝑐𝑙𝑒𝑎𝑛 | ,

𝑟𝑏𝑐 =

∑
(𝒙′
𝑏
,𝑦′
𝑏
) ∈D𝑝𝑜𝑖 (𝒙𝑐 ,𝑦𝑐 ) ∈D𝑐𝑙𝑒𝑎𝑛

𝑟 ( (𝒙′
𝑏
,𝑦′

𝑏
) ;(𝒙𝑐 ,𝑦𝑐 ) )

|D𝑝𝑜𝑖 | |D𝑐𝑙𝑒𝑎𝑛 | , and 𝜂 =
|D𝑝𝑜𝑖 |
|D | .

Theorem 1 shows that the difference in loss reduction between
poisoned samples and clean samples can be decomposed into three
components. The first component 𝜂𝑟𝑏𝑏 corresponds to the average
loss reduction corresponding to the influences between poisoned
samples; the second component (1 − 𝜂)𝑟𝑐𝑐 corresponds to the in-
fluences between clean samples; the last component (1 − 2𝜂)𝑟𝑏𝑐
corresponds to the influences between poisoned samples and clean
samples. Figure 3 plots the change of the three values on a CIFAR10
classification task under different backdoor attacks. We could ob-
serve that, in the early training epochs, 𝜂𝑟𝑏𝑏 dominates the loss
reduction, while the other two values are significantly lower. It
indicates that strong interaction exists among the poisoned
samples, where training on one poisoned sample significantly con-
tributes to the loss reduction of the other poisoned samples. Such
a strong interaction is a leading factor of the abrupt loss reduc-
tion of poisoned samples. Now the question is, why does strong
interaction exist among poisoned samples?

2.3 Synchronization Between Samples
To help answer the above question, we define a novel and impor-
tant concept named synchronization which measures the similarity
between embeddings of two samples in the intermediate layers.

Definition 1 (Synchronization Score). The synchronization
score between sample (𝒙, 𝑦) and (𝒙′, 𝑦′) at layer 𝑙 of neural network
𝑓𝜃 is defined as 𝑆𝑙 (𝒙 ; 𝒙′) := ⟨𝑓 𝑙

𝜃
(𝒙), 𝑓 𝑙

𝜃
(𝒙′)⟩.

Here 𝑓 𝑙
𝜃
(𝒙) is the output of model 𝑓𝜃 at layer 𝑙 ∈ [𝐿], and

𝑓 0
𝜃
(𝒙) = 𝒙 . The synchronization score measures the latent sim-

ilarity between 𝒙 and 𝒙′ at layer 𝑙 . Although the above definition
may seem trivial, we will show later that it plays a key role in
controlling loss reduction during training.

Definition 2 (Shallow/Deep-Synchronized Samples). Given
a neural network 𝑓𝜃 , sample (𝒙, 𝑦) and (𝒙′, 𝑦′) are defined as a pair
of shallow-synchronized samples if 𝑆𝑙 (𝒙; 𝒙′) ≥ 𝜖𝑙 at layer 𝑙 , where
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Figure 4: Synchronization value of poisoned (red) and clean (blue) samples in different epochs (𝑥-axis). We use BadNet [9] (first
row), WaNet [25] (second row), and our proposed DBA (third row) as examples.

0 ≤ 𝑙 ≤ 𝜆. Similarly, (𝒙, 𝑦) and (𝒙′, 𝑦′) are defined as a pair of deep-
synchronized samples if: 1) 𝑆𝑙 (𝒙 ; 𝒙′) ≥ 𝜖𝑙 at layer 𝑙 , where 𝜆 ≤ 𝑙 ≤ 𝐿,
and 2) 𝑆ℎ (𝒙; 𝒙′) < 𝜖ℎ,∀0 ≤ ℎ < 𝑙 . Here 𝜆 is the borderline between
shallow and deep layers; 𝜖𝑙 and 𝜖ℎ are thresholds for layer 𝑙 and ℎ.

For shallow-synchronized samples (𝒙, 𝑦) and (𝒙′, 𝑦′), the neural
networks can easily capture their similarity in both shallow and
deep layers. For deep-synchronized samples, due to the complexity
of backdoor patterns, their similarity could only be captured by
deeper layers. For example, poisoned samples created by BadNet [9]
are shallow-synchronized samples, since trigger patterns are fixed
in terms of pixel values and locations. However, poisoned samples
created by WaNet [25] and our proposed DBA tend to be deep-
synchronized as their trigger patterns are more stealthy and do not
share much easily perceptible similarity. Such patterns could only
be captured in deeper layers. To better visualize shallow and deep
synchronization, we plot the synchronization scores in different
layers and training epochs in Figure 4. For BadNet (first row), it is
obvious that the synchronization scores of poisoned samples are
significantly higher than those of the clean samples starting from
the shallow layer and the difference is propagated throughout the
whole DNN. For WaNet (second row), the synchronization scores of
poisoned samples are distinguishable from clean samples only in the
deep layers. For our proposed DBA (third row), the synchronization
scores of poisoned samples are even hardly separable from those
of clean samples in the deep layers.

2.4 Relation Between Synchronization and Loss
Reduction

In this part, by further analyzing Equation 2, we show that the syn-
chronization score 𝑆𝑙 (𝒙𝑏 , 𝒙′𝑏 ) is closely related to the loss reduction.
To this end, we give the following hypothesis:

Hypothesis 1. In the early training epochs, given two poisoned
samples (𝒙, 𝑦) and (𝒙′, 𝑦′), synchronization score 𝑆𝑙 (𝒙, 𝒙′) is con-
tributive to the single loss reduction value 𝑟 ((𝒙′, 𝑦′); (𝒙, 𝑦)).

The theoretical analysis and empirical experiment results are
provided in Appendix B to verify this hypothesis. It states that
samples with a higher synchronization score have a stronger in-
teraction to contribute to loss reduction. Thus, it inspires us to
understand loss reduction of poisoned samples from a new per-
spective: data synchronization. The similarity among poisoned
samples, once captured by the neural network, could lead to
a high synchronization score 𝑆𝑙 (𝒙𝑏 , 𝒙′𝑏 ). It then produces a
large 𝑟 ((𝒙′

𝑏
, 𝑦′

𝑏
); (𝒙𝑏 , 𝑦𝑏 )), leading to faster loss reduction.

Based on the above analysis, a more effective attack should
constrain the synchronization among poisoned samples, so that
their loss reduction will not be too distinctive from clean samples,
thus alleviating early-fitting. Specifically, we could encourage
deep synchronization and suppress shallow synchronization
among poisoned samples. The reason is that shallow synchro-
nization can propagate throughout the network to deeper layers,
whereas deep synchronization appears only in the last few layers
(see Figure 4 and analysis of Hypothesis 1). This makes the loss
reduction smaller for deep-synchronized poisoned samples. Based
on this, we propose a new backdoor attack in the section below.

3 DEEP BACKDOOR ATTACKS
The above analysis quantitatively investigates the reason behind
early-fitting, revealing that deep-synchronized poisoned samples
are harder to be detected. Therefore, we propose a new attack called
Deep Backdoor Attack (DBA), which generates deep-synchronized
poisoned samples, making it a more stealthy attack.
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Figure 5: The pipeline of Deep Backdoor Attacks (DBA).

3.1 Towards Deep Synchronization by
Activating Deep Neurons

It is non-trivial to craft backdoor samples whose synchronization
scores are directly under control. First, the synchronization scores
of a sample depend on other samples, where it is difficult to coordi-
nate a group of samples during attacks. Second, synchronization
scores depend on the target model’s architecture, which is usually
unknown in advance. Therefore, it is infeasible to apply traditional
end-to-end optimization methods to solve the problem. Inspired
by "magic must defeat magic", we propose to adopt feature inver-
sion [24, 38] to reverse engineer backdoor patterns from neural
networks. The resultant patterns, when added to clean samples,
will produce deep-synchronized samples for backdoor attacks. The
overall procedure is illustrated in Figure 5. Formally, given a neu-
ral network 𝑔 trained on clean data, a set of selected neurons S
from deep layers, a trigger pattern 𝜹 is generated by solving the
optimization problem as follows:

𝜹 = argmax
𝒙′

∑
𝑠∈S 𝑔𝑙,𝑠 (𝒙′), subject to 𝒙′ ∈ X, (4)

where 𝑔𝑙,𝑠 (𝒙′) is the activation of neuron 𝑠 at layer 𝑙 given input
𝒙′. The optimization is solved by gradient ascent on 𝒙′, where 𝒙′
is initialized randomly. The generated pattern 𝜹 maximizes the
activation of deep neurons, if 𝑙 is set to be large.

There are several nice properties for the backdoor trigger pat-
terns generated above. First, 𝜹 triggers deep synchronization once
used as backdoor patterns, as demonstrated in the last row of Fig-
ure 4. Intuitively, for a neural network 𝑔 trained on clean data,
its deep layers already encode complex patterns. Thus, activating
these neurons could generate trigger patterns that are harder to
be captured than simple hand-crafted patterns, so they could be
used for more stealthy attacks. Second, the choice of 𝑔 is largely
independent of the target model to be attacked (i.e., the attack is
transferable), which is validated in experiments. Third, after fixing
the neurons 𝑠 , by giving different random initialization to 𝒙′ prior to
solving the above optimization problem, we could generate diverse
trigger patterns which are harder to be detected by humans.

3.2 Details of Designing Effective DBA
In this part, we further introduce the implementation details to
ensure the effectiveness of DBA.

Original Trigger 𝛼 = 0.8 𝛼 = 0.6 𝛼 = 0.4 𝛼 = 0.2
Figure 6: From left to right, the trigger pattern 𝛿 is blended
with the original image under different blend ratios 𝛼 .

Diverse but Semantically Unified Triggers. Instead of generating
only one trigger pattern that is applied to all input, the 𝒙′ in Equa-
tion 4 is assigned different random initialization when poisoning
different samples. The result pattern varies if initialized differently,
but they all contain the same semantic information since they are
from the same set of neurons. The diverse initialization guarantees
that we fully distill the complex information encoded in deep neu-
rons, and avoids the target model to memorize a single pattern. In
this way, the deep synchronization is encouraged by activating
the chosen deep neurons, and shallow synchronization is sup-
pressed by diversifying initialization. In Figure 4, DBA samples
have similar synchronization scores as clean samples in shallow
layers, meaning that shallow synchronization is suppressed in DBA.

Neuron Selection. We introduce several neuron selection strate-
gies. We use CNNs for illustration as we focus on image classi-
fication in this work. We denote each neuron in a CNN layer 𝑙
by a triplet index (𝑑,𝑤,ℎ), where 𝑑 denotes the channel index of
feature maps and𝑤,ℎ denotes the neuron location in the feature
map. We propose three neuron selection strategies: single-neuron,
multiple-neurons, and channel-neurons. Simply put, the single-
neuron strategy activates a single neuron in the CNN layer; the
multiple-neurons strategy activates multiple neurons along the
depth dimension of feature maps; the channel-neurons strategy
activates a channel of neurons. Different neuron selections are il-
lustrated in Figure 5. The objective functions of different strategies
are as below:

𝜹 =


argmax𝒙′∈X 𝑔𝑙,(𝑑,𝑤,ℎ) (𝒙′), single-neuron
argmax𝒙′∈X

∑
𝑑 𝑔

𝑙,(𝑑,𝑤,ℎ) (𝒙′), multiple-neurons
argmax𝒙′∈X

∑
𝑤,ℎ 𝑔

𝑙,(𝑑,𝑤,ℎ) (𝒙′), channel-neurons
. (5)

The effectiveness of DBA varies under different strategies. We im-
plement DBA with each of the strategies through experiments and
report results in Table 3, which shows that the multiple-neurons
strategy outperforms the other two strategies.
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Table 1: Clean Accuracy (%), Backdoor Accuracy (%), and Isolation Precision (%) of different attack methods.

Dataset Cifar10 GTSRB Cifar100

Attacks CA (%) ↑ BA (%) ↑ IP (%) ↓ CA (%) ↑ BA (%) ↑ IP (%) ↓ CA (%) ↑ BA (%) ↑ IP (%) ↓
BadNets 85.12±0.07 99.93±0.01 91.33±2.62 98.46±0.21 99.99±0.01 91.07±0.02 63.72±0.10 100.00±0.00 89.40±5.40
Blend 84.78±0.31 99.97±0.02 89.33±2.05 98.26±0.19 99.98±0.01 85.18±0.05 61.80±0.22 99.94±0.01 73.40±10.00
SIG 84.67±0.48 99.91±0.01 86.75±0.05 97.36±0.30 100.00±0.00 74.69±7.56 60.79±0.48 99.99±0.01 54.67±6.13
Dynamic 83.56±0.38 99.86±0.02 90.26±1.33 97.14±0.26 99.41±0.30 86.20±0.05 61.65±0.29 99.99±0.01 91.33±3.10
FC 82.14±0.54 99.98±0.02 63.99±10.34 95.15±0.36 99.41±0.30 64.08±6.79 58.84±0.37 96.20±0.81 27.00±6.68
Refool 82.06±0.17 68.10±2.74 86.07±4.34 93.51±0.08 97.12±0.25 74.60±7.50 59.57±0.32 91.89±0.44 69.67±3.20
WaNet 82.31±0.19 99.74±0.01 71.91±0.13 96.40±0.31 100.00±0.00 67.90±5.80 57.75±1.60 99.99±0.02 67.30±3.45
DBA (this work) 85.32±0.37 98.65±0.17 25.37±11.69 97.78±0.43 99.98±0.01 1.26±0.06 61.21±0.19 99.98±0.01 11.00±15.55

Blend Ratio. The trigger pattern 𝜹 is superimposed on a clean
sample 𝒙𝑐 with a parameter 𝛼 to generate the poisoned sample
𝒙𝑏 = 𝛼 · 𝜹 + (1 − 𝛼)𝒙𝑐 . Figure 6 presents the poisoned sample with
different blend ratios 𝛼 . As observed, a lower blend ratio generates
an image closer to the original clean image, whereas a higher blend
ratio generates an image closer to the trigger patterns.

3.3 Attacks with DBA
The above steps generate a set of poisoned samples {(𝒙𝑏 , 𝑦𝑏 )}. Note
that the number of poisoned samples is limited to a small portion of
the entire dataset. After training on the clean and poisoned samples,
the model 𝑓𝜃 learns both the original classification task and the
backdoor injection task:

min
𝜃
E(𝒙𝑐 ,𝑦𝑐 )∼D𝑐𝑙𝑒𝑎𝑛

ℓ (𝑓𝜃 , 𝒙𝑐 , 𝑦𝑐 ) +E(𝒙𝑏 ,𝑦𝑏 )∼D𝑝𝑜𝑖
ℓ (𝑓𝜃 , 𝒙𝑏 , 𝑦𝑏 ), (6)

where ℓ (·) denotes the loss on a single sample. In the inference
stage, 𝑓𝜃 is expected to output𝑦𝑏 when the trigger pattern is present
in the input, but behaves normally when the input is clean.

4 EXPERIMENTS
In this section, we investigate to what extent the proposed DBA
method bypasses the early-fitting phenomenon, conduct ablation
studies on the impact of hyperparameters of DBA, evaluate the ro-
bustness of DBA to other defense methods, and propose a tentative
defense method to alleviate the DBA.

4.1 Experimental Setups
4.1.1 Dataset and Model Architecture. We evaluate the effective-
ness of DBA on three popular datasets: CIFAR10, CIFAR100 [17],
and GTSRB [41]. We adopt WideResNet-16 [53] for CIFAR10 and
GTSRB. For CIFAR100, as the task is more difficult, we resort to an
improved version1 of ResNet-18 [14] for CIFAR100. The architec-
tural details of these models are presented in Table 2. All experi-
ments are run with a batch size of 64 and a learning rate starting
from 0.1, decreasing by a factor of 0.6 every ten epochs. The op-
timizer uses SGD with a momentum of 0.9 and weight decay of
0.0005. For Equation 4, the default model𝑔 is chosen as a pre-trained
WideResNet-16.

1https://github.com/weiaicunzai/pytorch-CIFAR100

Table 2: DNNs and datasets used in experiments.

Dataset Subjects #Classes #Train Images Classifier
Cifar10 General Objects 10 50,000 WideResNet-16
Cifar100 General Objects 100 50,000 ResNet-18
GTSRB Traffic Signs 43 39,209 WideResNet-16

4.1.2 Baseline Methods. We compare DBA with seven represen-
tative backdoor attack methods, including five dirty-label attacks:
BadNets [9], Blend Attack [3], Dynamic Attack [26], Refool At-
tack [23], and WaNet [25]; one clean-label attack: Signal Attack
(SIG) [1]; and one feature-space attack: Feature Collision (FC) [33].

4.1.3 Evaluation Metrics. Two classical metrics [19], Clean Accu-
racy (CA) and Backdoor Accuracy (BA), are used for evaluating
backdoor attack methods. CA measures the classification accuracy
of clean samples in the clean test set. BA is the percentage of poi-
soned samples classified as the target label by the neural network in
the poisoned test set. In addition, since the early-fitting phenome-
non provides a simple but effective way to defend against backdoor
attacks, we need auxiliary metrics to evaluate the effectiveness of
backdoor attacks against the early-fitting-based defense. Therefore,
we introduce an additional metric, Isolation Precision (IP). IP mea-
sures the portion of poisoned samples that can be detected by the
early-fitting-based defense [20]. A lower IP value means that more
poisoned samples will evade detection. The details are as follows:
• Clean Accuracy (CA): The portion of correctly classified clean
samples. CA = #Correctly Classified Clean Samples

#Total Samples .

• Backdoor Accuracy (BA): The portion of correctly classified
poisoned samples. BA = #Correctly Classified Poisoned Samples

#Total Samples .

• Isolation Precision (IP): The portion of poisoned samples that
can be isolated from the datset. IP = #Isolated Poisoned Samples

#Total Poisoned Samples .

Note that in the experiment, we calculate isolation precision
with the following procedure: Given the injection ratio is 𝜂, we
isolate 𝜂 samples from the entire dataset with the lowest loss value.
The isolation process is done at the end of the first five training
epochs, where the maximal isolation precision is reported.

4.2 Attack Effectiveness Evaluation
Table 1 shows that DBA consistently achieves a relatively good
performance in CA and BA, indicating that DBA is effective in
launching backdoor attacks on the victim model. Moreover, DBA
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Figure 7: Isolation Precision with triggers inverted from: a)
neurons of different depths, and b) different blend ratios 𝛼 .
Table 3: DBA performance with different neuron selection
strategies.

Neuron Selection CA (%) ↑ BA (%) ↑ IP (%) ↓
Single-neuron (Block3 Conv2 (63, 4, 4)) 85.75(±0.35) 98.70±0.20 53.58(±12.04)

Multiple-neurons (Block3 Conv2 ( [:], 4, 4)) 85.32(±0.37) 98.65±0.17 25.37(±11.13 )
Channel-neurons (Block3 Conv2 (63, [:], [:])) 84.77(±0.65 ) 98.64±0.16 33.64(±21.64 )

shows a considerably lower IP ratio compared to other attack meth-
ods, demonstrating its effectiveness in evading early-fitting-based
defenses. Specifically, DBA achieves an average IP of 25.37%, with
a standard deviation of 11.69%. In contrast, for most other attack
methods, the IP scores are higher than 60%. Note that DBA is im-
plemented with the multiple-neurons strategy as above.

4.3 Ablation Studies and Hyperparameter
Analysis

The hyperparameters for DBA include neural selection strategies
and blend ratio 𝛼 . In this section, we study the influence of the
hyperparameters on the performance of DBA.

4.3.1 Neuron Selection.

Neuron Selection Strategy. In Table 3, we compare the perfor-
mance of DBA under three neuron selection strategies. We select
neurons from the last CNN layer of a well-trained WideResNet-16
neural network on the CIFAR10 dataset. The single-neuron strat-
egy selects the neuron with index (63, 4, 4), the multiple-neurons
strategy selects the neurons with indices ( [4], 4, 4), and the channel-
neurons strategy selects the neurons with indices (63, [:], [:]). The
multiple-neurons strategy is observed to achieve the best perfor-
mance in IP (25.37 %) and a premium result in CA (85.32 %).

Depth of the Inverted Neurons. We study the performance of
DBA with triggers inverted from neurons of different layer depths.
We generate triggers from neurons in different CNN layers of the
model 𝑔. The results are shown in Figure 7 (left), where the x-
axis extends along the mode layer depth. As we can see, DBA
attacks achieve an increasingly lower average IP with a deeper
inverted layer. It demonstrates that triggers are embedded with
more complex patterns and are harder to detect if they are generated
from neurons of a deeper DNN layer.

4.3.2 Blend Ratio. The original images and triggers are blended
with different blend ratios 𝛼 . For example, if 𝛼 = 0, then the original
image remains intact; if 𝛼 = 1, then the original image is completely
replaced by the trigger. Therefore, we test the effect of varying the

Table 4: Transferability of trigger patterns from one model
to attack other models.

Model 𝑔 → Vgg-16 ResNet34 EfficientNet
Model 𝑓 ↓ CA (%) BA (%) IP (%) CA (%) BA (%) IP (%) CA (%) BA (%) IP (%)
Vgg-16 85.21±0.28 99.12±0.22 19.88±0.33 85.84±0.16 98.89±0.12 21.46±0.15 84.95±0.22 98.70±0.13 24.13±0.22
ResNet34 85.11±0.27 98.59±0.03 23.54±0.21 85.81±0.06 98.69±0.32 13.68±0.26 85.29±0.30 98.53±0.21 13.71±0.51
EfficientNet 85.36±0.27 98.79±0.04 21.05±0.32 85.56±0.34 98.81±0.06 25.24±0.24 86.08±0.15 98.67±0.04 16.81±0.27

Table 5: DBA attack with different injection ratio 𝜂.

Dataset Metric 0.02 0.04 0.06 0.08 0.10

Cifar10
CA 85.24±0.13 84.96±0.28 85.08±0.21 84.87±0.22 85.32±0.37
BA 96.87±0.24 98.44±0.31 98.98±0.19 98.33±0.16 98.65±0.17
IP 2.33±1.36 4.55±1.24 24.07±5.16 25.9±8.13 25.37±11.13

GTSRB
CA 97.96±0.39 97.42±0.43 96.97±0.36 98.10±0.42 97.78±0.43
BA 96.87±0.57 98.44±0.25 98.98±0.15 98.33±0.09 99.98±0.01
IP 2.75±0.50 3.22±0.27 5.13±0.21 3.15±0.10 1.26±0.06

Cifar100
CA 61.13±0.35 61.40±0.24 61.13±0.19 61.24±0.16 61.21±0.19
BA 91.93±0.08 94.59±0.12 98.74±0.05 99.94±0.03 99.98±0.01
IP 15.23±4.88 16.21±4.50 15.74±6.27 21.32±9.23 11.00±15.55

Table 6: CA and BA with/without applying the defense meth-
ods on models attacked by DBA.

Dataset Defense CA (No Defense) BA (No Defense) CA(defense) ↓ BA(defense) ↑

Cifar-10
FP 85.17±0.28 97.52±0.39 31.81±0.46 97.52±0.39

NAD 85.25±0.46 97.76±0.46 92.65±0.12 97.55±0.25
ABL 84.87±0.43 96.08±0.66 5.58±1.30 42.24±3.84

GTSRB
FP 97.42±0.24 99.90±0.04 57.23±3.67 100±0.00

NAD 97.32±0.13 99.78±0.03 94.19±0.52 99.88±0.05
ABL 93.21±0.54 97.21±0.39 70.61±8.49 15.84±6.21

Cifar100
FP 61.58±0.30 99.98±0.00 0.9±0.02 2.71±0.83

NAD 61.21±0.12 99.93±0.02 53.82±0.13 99.63±0.31
ABL 61.01±0.12 99.98±0.00 32.61±0.41 38.53±12.61

blend ratio on the DBA. The results are given in Figure 7 (right). As
Figure 7 (right) shows, the IP is heterogeneous when clean images
are blended with different blend ratios. Specifically, when using a
very low blend ratio (1%), DBA could still achieve a low IP score
(25.37% on average). This implies that attacks of DBA are effective
when the trigger patterns are more stealthy.

4.3.3 Trigger Pattern Transferability. Recall that the DBA triggers
are generated with a model 𝑔 ∈ F and the attack is launched
over another model 𝑓 ∈ F , where F denotes the collection of
models. To evaluate the transferability of the DBA, we specifically
consider three classical models in image classification, including
ResNet34 [14], EfficientNet [44], and VGG16 [39]. Table 4 presents
our transferability result on the CIFAR10 dataset, where the model
name in each row denotes the model 𝑔 used in trigger generation,
and the model name in each column denotes the model 𝑓 . As we
can see, the effectiveness of the DBA attack is highly independent
of the choice of model 𝑔.

4.3.4 Injection Ratio. Here, we evaluate the effectiveness of DBA
under different injection ratios 𝜂. Specifically, we consider injection
ratios ranging from 0.02 to 0.1. The results in Table 5 show that
DBA consistently attacks the model and evades the early-fitting
phenomenon even under a low injection ratio 𝜂 = 0.02.

4.4 Evaluation With Different Defense Methods
To test the general effectiveness of DBA, we use popular defense
methods to defend against DBA, including Fine Pruning (FP) [22],
NAD [21], and ABL [20]. As shown in Table 6, CA(No Defense) and
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Poisoned Model Clean Model 

Figure 8: GradCAM for DBA-poisoned model input with poi-
soned image and clean Model input with clean image.

BA(No Defense) present the clean accuracy and backdoor accuracy
of a model backdoored by DBA, while CA(defense) and BA(defense)
are the clean accuracy and backdoor accuracy after defense. From
the perspective of attackers, CA(defense) is expected to be low and
BA(defense) is expected to be high, as it indicates that the defense
method is in vain or even worsens the situation. As shown in
Table 6, either the CA after defense is low, or the BA after defense
remains high. For example, on the CIFAR10 dataset, after Fine-
pruning (FP), the CA turns out to be an average of 31.81%, and BA
is still high (97.52% on average). The results demonstrate that our
DBA is generally resistant to SOTA defense methods.

4.5 Network Inspection
We apply the post-hoc interpretation method GradCAM [32] to
help inspect the neural network model and check if the backdoor
patterns could be identified. As pointed out by [51], patch-based
trigger patterns are easy to be located by GradCAM. However, since
our trigger pattern is blended with the entire image and is more
stealthy compared to patch-based trigger patterns, it is naturally
immune to the detection method. We plot the GradCAM heatmaps
for a poisoned model attacked by DBA and a clean model, respec-
tively, in Figure 8. The poisoned model is input with a poisoned
sample 𝒙′, and the label is chosen as the target label 𝑦′. The clean
model is input with a clean sample 𝒙 , and the label is chosen as
the one predicted by the model. As noticed, the heatmaps for the
poisoned model are very similar to those of the clean model.

4.6 An Isolation-based Defense Method
To defend against our proposed DBA, we propose an influence-
based isolation method, which can detect poisoned samples with
higher accuracy. Motivated by [27], if we set (𝒙, 𝑦) = (𝒙′, 𝑦′) in
the single loss reduction value 𝑟 ((𝒙, 𝑦); (𝒙′, 𝑦′)), we call the value
as self-influence. Self-influence evaluates the loss reduction on one
sample (𝒙, 𝑦) after training the network on itself. For a network
𝑓𝜃𝑐 well-trained on the clean dataset, clean samples are expected to
have a lower self-influence score since they are fitted to the network
𝑓𝜃𝑐 . Poisoned samples are expected to have a higher self-influence
score because most poisoned samples with incorrect labels can
be seen as outliers, where they would tend to reduce loss with
respect to the incorrect label. Based on this, poisoned samples can
be isolated from the whole dataset by computing the self-influence
score on the whole dataset D with 𝑓𝜃𝑐 , and choosing top-k samples
with a high self-influence score.
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Figure 9: Histogram of the self-influence score for poisoned
samples and clean samples respectively. The isolation preci-
sion for the deep backdoor attack is 90.36%.

Figure 9 presents the effectiveness of the defense method against
the proposed Deep Backdoor Attack. As shown, the majority of the
self-influence scores on the poisoned samples (red) are much higher
than that on the clean samples (blue). In the empirical experiment,
we set the injection ratio𝜂 = 0.1 and isolate 10% of the samples from
the dataset D. We run the experiment three times with different
𝑓𝜃𝑐 . The average precision for detecting the poisoned samples is
90.36%, demonstrating the effectiveness of backdoor detection.

5 RELATEDWORK
5.1 Backdoor Attacks
In general, backdoor attacks can be categorized into three types: 1)
data poisoning attacks [3, 9, 11, 23, 36, 52], 2) training poisoning
attacks [31, 37, 56], and 3) model poisoning attacks [30, 47]. In this
paper, we solely focus on data poisoning attacks as this is the most
common setting. Data-poisoning backdoor attacks aim to poison
the dataset with trigger patterns. Specifically, they inject trigger
patterns into the victim samples and re-assign the ground-truth
label to a target label predefined by the attackers. Recent research
can be divided into two categories on making the backdoor attacks
more stealthy to enhance their practicality. The first one [3, 5, 23,
25, 28] aims to make the trigger pattern less visible to human eyes.
For example, [3] blends the clean images with random pixels. [23]
uses the natural reflection to construct the backdoor trigger. The
other direction [34, 40, 55] aims to make the training process less
noticeable. For example, [34] proposes a clean-label attack, which
perturbs the clean images without changing their labels. However,
most of these backdoor attacks are easily detected by an early-fitting
phenomenon [20], thus weakening the backdoor attacks threats.

5.2 Backdoor Defenses
Various defense methods have been proposed to mitigate the threat
from the backdoor. As in [19], we categorize existing defense meth-
ods into five categories. First, detection-based defenses [7, 8, 10,
12, 13, 16, 50] aim to detect whether the backdoor exists in the
model. Second, preprocessing-based defenses [4] introduce a pre-
processing module before the training procedure so that triggers
can be inactivated. Third, defenses based on model reconstruc-
tion [22, 49, 54, 57] directly eliminate the effect of backdoors by
adjusting the model weights or network structures. In this way,
even if the trigger pattern appears, the reconstructed model will
still perform normally as the backdoor is already moved. Fourth,
defenses based on trigger synthesis [2, 29, 35, 46] first reverse en-
gineer the trigger patterns and then suppress the trigger’s effects.

615



Attacking Neural Networks with Neural Networks: Towards Deep Synchronization for Backdoor Attacks CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Lastly, training sample filtering-based defenses [15, 20, 48] work
by first filtering poisoned samples from the training dataset, then
training the network exclusively in the rest of the dataset.

6 CONCLUSION AND FUTUREWORK
In this work, we interpret the early-fitting phenomenon from a
novel perspective of data synchronization. Based on the theoretical
analysis, we further propose an enhanced backdoor attacks method:
Deep Backdoor Attack. Experiments across various datasets demon-
strate the effectiveness of our method. Despite the satisfactory per-
formance, there are still some further work to be done. First, our
method relies on the assumption that an additional model is ac-
cessible, which might not always be feasible in certain specified
applications. How can we relax the assumption? Second, customiz-
ing the DBA for text and graph data could also be interesting.

A ANALYSIS OF THEOREM 1
As defined in Equation 1, R(D,D𝑝𝑜𝑖 ) and R(D,D𝑐𝑙𝑒𝑎𝑛) can be
decomposed as follows,

R(D, D𝑝𝑜𝑖 ) = 1
|D𝑝𝑜𝑖 |

∑︁
(𝒙𝑏 ,𝑦𝑏 ) ∈D𝑝𝑜𝑖

R(D, (𝒙𝑏 , 𝑦𝑏 ) )

=
1

|D𝑝𝑜𝑖 |
∑︁

(𝒙𝑏 ,𝑦𝑏 ) ∈D𝑝𝑜𝑖

1
|D |

∑︁
(𝒙′

𝑐 ,𝑦
′
𝑐 )
𝑟 ( (𝒙′

𝑐 , 𝑦
′
𝑐 ) ; (𝒙𝑏 , 𝑦𝑏 ) )

+ 1
|D |

∑︁
(𝒙′

𝑏
,𝑦′
𝑏
)
𝑟 ( (𝒙′

𝑏
, 𝑦′

𝑏
), (𝒙𝑏 , 𝑦𝑏 ) )

(7)

R(D, D𝑐𝑙𝑒𝑎𝑛 ) =
1

|D𝑐𝑙𝑒𝑎𝑛 |
∑︁

(𝒙𝑐 ,𝑦𝑐 ) ∈D𝑐𝑙𝑒𝑎𝑛

R(D, (𝒙𝑐 , 𝑦𝑐 ) )

=
1

|D𝑐𝑙𝑒𝑎𝑛 |
∑︁

(𝒙𝑐 ,𝑦𝑐 ) ∈D𝑐𝑙𝑒𝑎𝑛

1
|D |

∑︁
(𝒙′

𝑐 ,𝑦
′
𝑐 )
𝑟 ( (𝒙′

𝑐 , 𝑦
′
𝑐 ), (𝒙𝑐 , 𝑦𝑐 ) )

+ 1
|D |

∑︁
(𝒙′

𝑏
,𝑦′
𝑏
)
𝑟 ( (𝒙′

𝑏
, 𝑦′

𝑏
) ; (𝒙𝑐 , 𝑦𝑐 ) )

(8)

Moreover, we know that 𝜂 |D| = |D𝑝𝑜𝑖 | and (1 − 𝜂) |D| = |D𝑐𝑙𝑒𝑎𝑛 |.
Then we could have,

R(D, D𝑝𝑜𝑖 ) − R (D, D𝑐𝑙𝑒𝑎𝑛 )

=
1

|D | · |D𝑝𝑜𝑖 |
( ∑︁
(𝒙′

𝑏
,𝑦′
𝑏
),(𝒙𝑏 ,𝑦𝑏 )

𝑟 ( (𝒙′
𝑏
, 𝑦′

𝑏
) ; (𝒙𝑏 , 𝑦𝑏 ) )+∑︁

(𝒙𝑏 ,𝑦𝑏 ),(𝒙′
𝑐 ,𝑦

′
𝑐 )
𝑟 ( (𝒙′

𝑐 , 𝑦
′
𝑐 ) ; (𝒙𝑏 , 𝑦𝑏 ) )

)
− 1

|D | · |D𝑐𝑙𝑒𝑎𝑛 |
∑︁

(𝒙𝑐 ,𝑦𝑐 ),(𝒙′
𝑐 ,𝑦

′
𝑐 )

(
𝑟 (𝒙′

𝑐 , 𝑦
′
𝑐 ) ; (𝒙𝑐 , 𝑦𝑐 )+∑︁

(𝒙𝑐 ,𝑦𝑐 ),(𝒙′
𝑏
,𝑦′
𝑏
)
𝑟 ( (𝒙′

𝑏
, 𝑦′

𝑏
) ; (𝒙𝑐 , 𝑦𝑐 ) )

)
=

𝜂

|D𝑝𝑜𝑖 | · |D𝑝𝑜𝑖 |
∑︁

(𝒙′
𝑏
,𝑦′
𝑏
),(𝒙𝑏 ,𝑦𝑏 )

𝑟 (𝑥 ′
𝑏
, 𝑦′

𝑏
, 𝑥𝑏 , 𝑦𝑏 )

− 1 − 𝜂

|D𝑐𝑙𝑒𝑎𝑛 | · |D𝑐𝑙𝑒𝑎𝑛 |
∑︁

(𝒙′
𝑐 ,𝑦

′
𝑐 ),(𝒙𝑐 ,𝑦𝑐 )

𝑟 (𝑥 ′
𝑐 , 𝑦

′
𝑐 , 𝑥𝑐 , 𝑦𝑐 )

+ ( (1 − 𝜂 ) − 𝜂 )
|D𝑐𝑙𝑒𝑎𝑛 | · |D𝑝𝑜𝑖 |

( ∑︁
(𝒙′

𝑐 ,𝑦
′
𝑐 ),(𝒙𝑏 ,𝑦𝑏 )

𝑟 (𝑥 ′
𝑐 , 𝑦

′
𝑐 , 𝑥𝑏 , 𝑦𝑏 )

)
=𝜂𝑟𝑏𝑏 − (1 − 𝜂 )𝑟𝑐𝑐 + (1 − 2𝜂 )𝑟𝑏𝑐

where 𝑟𝑏𝑏 =

∑
(𝒙′
𝑏
,𝑦′
𝑏
),(𝒙𝑏 ,𝑦𝑏 ) ∈D𝑝𝑜𝑖

𝑟 ( (𝒙′
𝑏
,𝑦′

𝑏
) ;(𝒙𝑏 ,𝑦𝑏 ) )

|D𝑝𝑜𝑖 | |D𝑝𝑜𝑖 | ,

𝑟𝑐𝑐 =
∑

(𝒙′𝑐 ,𝑦′𝑐 ),(𝒙𝑐 ,𝑦𝑐 ) ∈D𝑐𝑙𝑒𝑎𝑛
𝑟 ( (𝒙′

𝑐 ,𝑦
′
𝑐 ) ;(𝒙𝑐 ,𝑦𝑐 ) )

|D𝑐𝑙𝑒𝑎𝑛 | |D𝑐𝑙𝑒𝑎𝑛 | ,

𝑟𝑏𝑐 =

∑
(𝒙′
𝑏
,𝑦′
𝑏
) ∈D𝑝𝑜𝑖 (𝒙𝑐 ,𝑦𝑐 ) ∈D𝑐𝑙𝑒𝑎𝑛

𝑟 ( (𝒙′
𝑏
,𝑦′

𝑏
) ;(𝒙𝑐 ,𝑦𝑐 ) )

|D𝑝𝑜𝑖 | |D𝑐𝑙𝑒𝑎𝑛 | , and 𝜂 =
|D𝑝𝑜𝑖 |
|D | .

B ANALYSIS OF HYPOTHESIS 1
Intuition for Hypothesis 1. In order to find what makes the value

of 𝑟 (𝒙′, 𝑦′; 𝒙, 𝑦) for poisoned sample pairs significantly high, we
intend to decompose the 𝑟 (𝒙′, 𝑦′; 𝒙, 𝑦) and analyze each part.

Analysis. Herewe only consider a simple case and left the general
case for future works. Assume that the neural network 𝑓𝜃 is a fully-
connected neural network and the output dimension is one, i.e.,
𝑓𝜃 (𝑥) ∈ R. Then, the neural network can be represented as follows:

𝑓 (𝑙 ) (𝑥 ) = 𝜃 (𝑙 )𝑔 (𝑙−1) (𝑥 ), 𝑔 (𝑙 ) (𝑥 ) = 𝜎𝑙 (𝑓 (𝑙 ) (𝑥 ) ), ∀1 ≤ 𝑙 ≤ 𝐿, (9)

where 𝜎𝑙 (·) is the activation function in layer 𝑙 . We further denote
𝒙 = 𝑔0 (𝒙) for notational convenience and the output of the last
layer of the neural network is

𝑓𝜃 (𝒙 ) = 𝑔 (𝐿) (𝑥 ) (10)

Therefore, We can decompose 𝑟 ((𝒙′, 𝑦′); (𝒙, 𝑦)) as follows:
𝑟 ( (𝒙′, 𝑦′ ) ; (𝒙, 𝑦) ) ≈ 𝛽 ⟨ 𝜕ℓ𝜃 (𝒙

′, 𝑦′ )
𝜕𝜃

,
𝜕ℓ𝜃 (𝒙, 𝑦)

𝜕𝜃
⟩

= 𝛽 ⟨ 𝜕ℓ𝜃 (𝒙
′, 𝑦′ )

𝜕𝑓𝜃 (𝒙′ ) · 𝜕𝑓𝜃 (𝒙
′ )

𝜕𝜃
,
𝜕ℓ𝜃 (𝒙, 𝑦)
𝜕𝑓𝜃 (𝒙 )

· 𝜕𝑓𝜃 (𝒙 )
𝜕𝜃

⟩.
(11)

where 𝛽 is a constant value denoting the learning rate at the current
iteration. Therefore, we can only consider the inner product part.
Moreover, since 𝜕ℓ𝜃 (𝒙′,𝑦′ )

𝜕𝑓𝜃 (𝒙′ ) ∈ R and 𝜕ℓ𝜃 (𝒙,𝑦)
𝜕𝑓𝜃 (𝒙 ) ∈ R, Equation 11 can

be further decomposed into the following form,

⟨ 𝜕ℓ𝜃 (𝒙, 𝑦)
𝜕𝑓𝜃 (𝒙 )

· 𝜕𝑓𝜃 (𝒙 )
𝜕𝜃

,
𝜕ℓ𝜃 (𝒙′, 𝑦′ )
𝜕𝑓𝜃 (𝒙′ ) · 𝜕𝑓𝜃 (𝒙

′ )
𝜕𝜃

⟩

=
𝜕ℓ𝜃 (𝒙, 𝑦)
𝜕𝑓𝜃 (𝒙 )

· 𝜕ℓ𝜃 (𝒙
′, 𝑦′ )

𝜕𝑓𝜃 (𝒙′ ) ⟨ 𝜕𝑓𝜃 (𝒙 )
𝜕𝜃

,
𝜕𝑓𝜃 (𝒙′ )

𝜕𝜃
⟩

=
𝜕ℓ𝜃 (𝒙, 𝑦)
𝜕𝑓𝜃 (𝒙 )

· 𝜕ℓ𝜃 (𝒙
′, 𝑦′ )

𝜕𝑓𝜃 (𝒙′ )
𝐿∑︁
𝑙=1

⟨ 𝜕𝑓𝜃 (𝒙 )
𝜕𝑓 𝑙

𝜃
(𝒙 ) · 𝑔𝑙−1

𝜃
(𝒙 )𝑇 , 𝜕𝑓𝜃 (𝒙

′ )
𝜕𝑓 𝑙

𝜃
(𝒙′ ) · 𝑔𝑙−1

𝜃
(𝒙′ )𝑇 ⟩

=
𝜕ℓ𝜃 (𝒙, 𝑦)
𝜕𝑓𝜃 (𝒙 )

𝜕ℓ𝜃 (𝒙′, 𝑦′ )
𝜕𝑓𝜃 (𝒙′ )︸                        ︷︷                        ︸

Part 1

·
𝐿∑︁
𝑙=1

⟨𝑔𝑙−1
𝜃

(𝒙 ), 𝑔𝑙−1
𝜃

(𝒙′ ) ⟩︸                    ︷︷                    ︸
Part 2

· ⟨ 𝜕𝑓𝜃 (𝒙 )
𝜕𝑓 𝑙

𝜃
(𝒙 ) ,

𝜕𝑓𝜃 (𝒙′ )
𝜕𝑓 𝑙

𝜃
(𝒙′ ) ⟩︸                     ︷︷                     ︸

Part 3

.

(12)

Intuitively, Part 1 corresponds to the distance between the output
to the ground-truth labels; Part 2 corresponds to the synchroniza-
tion score in layer 𝑙 − 1; Part 3 corresponds to the gradient with
respect to pre-activation layer 𝑙 . Therefore, it is obvious that syn-
chronization score is contributory to the loss reduction.
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