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Abstract—In this letter, we propose a simple yet effective
singular value decomposition (SVD) based strategy to
reduce the optimization problem dimension in data-enabled
predictive control (DeePC). Specifically, in the case of linear
time-invariant systems, the excessive input/output mea-
surements can be rearranged into a smaller data library
for the non-parametric representation of system behavior.
Based on this observation, we develop an SVD-based strat-
egy to pre-process the offline data that achieves dimension
reduction in DeePC. Numerical experiments confirm that
the proposed method significantly enhances the computa-
tion efficiency without sacrificing the control performance.

Index Terms—Data-driven control, dimension reduction,
predictive control.

I. INTRODUCTION

W
ITH advancement in computing and sensing
technologies, data-driven control approaches have

become increasingly prevalent in the context of complex
dynamic systems [1], [2]. When modeling based on first-
principles is infeasible or too costly, data-driven control
approaches can circumvent explicit system models and
directly incorporate collected data for control development,
offering an appealing alternative to classical model-based
methods [1].

Recent developments in data-driven model predictive con-
trol (MPC) have shown great promise to achieve optimal
control with simultaneous constraint satisfaction and stabil-
ity guarantees [3], [4]. Particularly, Data-EnablEd Predictive
Control (DeePC) [5] receives increasing attention as it can
directly exploit input/output data to achieve safe and optimal
control of unknown systems. In contrast to conventional MPC
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schemes that depend on explicit parametric models, DeePC
leverages Willems’ fundamental lemma [6] to represent system
trajectories in a non-parametric manner. Specifically, the fun-
damental lemma shows that a data Hankel matrix consisting
of a pre-collected input/output trajectory of a linear system
spans the vector space of all trajectories that the system
can produce, given that the input sequence is persistently
exciting [6]. This lemma plays an essential role in DeePC and
has been applied to tackle various control problems [2], [7],
[8], [9]; see [1] for an extensive review. DeePC has found suc-
cess across diverse applications, including quadcopters [10],
power systems [11], [12], and connected and autonomous
vehicles [13], [14].

All the aforementioned applications show the value of the
fundamental lemma and the potential of the DeePC method.
Yet, a major challenge in DeePC is the high computational
complexity; at each iteration, it needs to solve an optimization
problem with high-dimensional variables, which might be
computationally intractable in resource-limited situations. In
particular, to implement DeePC, sufficiently rich input/output
data should be recorded offline, and then the Hankel matrix is
used to store the data for the non-parametric representation of
unknown systems. Since the dimension of optimization vari-
ables in DeePC is determined by the length of pre-collected
data, excessive up-front data collection will lead to overly high
optimization dimensions in the subsequent online calculation.
For real-time implementation in resource-limited situations,
it is necessary to reformulate (and possibly approximate)
the original optimization problem in DeePC to reduce the
dimension of optimization variables for efficient computation.

In this letter, we introduce a minimum-dimension ver-
sion of the DeePC method, which admits significantly better
computational efficiency with no/little degradation in control
performance. The idea is based on a well-known observa-
tion that the Hankel matrix in the fundamental lemma is
always low-rank. Thus, a new data matrix with a smaller col-
umn dimension could be constructed to represent the system
input/output behavior, which balances the tradeoff between
control performance and computational complexity. Based on
this observation, we develop a singular value decomposition
(SVD) based strategy to extract the principal components from
a large data library (i.e., the Hankel matrix). The resulting
smaller data library is then incorporated into DeePC, which
effectively reduces the dimension of optimization variables.
We denote this new formulation as minimum-dimension
DeePC, since the dimension of optimization variables becomes
minimal to represent the system behavior.
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We note that the SVD-based technique was utilized in [15]
as a heuristic to reduce the dimension of the Hankel matrix,
but there was no analysis to justify the design. In this let-
ter, the rationale behind using SVD for dimension reduction
is formalized, and the conclusions are generalizable to other
forms of data matrices (e.g., Page matrix and mosaic-Hankel
matrix). In addition, similar SVD-based strategies have been
used in data-driven control [1], [5], [11] and system identifi-
cation [16], [17] but with different purposes. Specifically, the
studies [1], [5], [11], [16], [17] use SVD to get a low-rank
matrix approximation for the sake of denoising, while we aim
to attain reduced-dimensional problems for the purpose of effi-
cient computation. Thus, the Hankel matrix after the SVD
pre-processing in [1], [5], [11], [16], [17] still remains the
same size, while our SVD-based strategy reduces the dimen-
sion of the Hankel matrix significantly. Extensive simulations
validate the performance of our SVD-based strategy for DeePC
and confirm the benefits of improving numerical efficiency
without compromising the control performance.

Notation: We use 0n×m and In to denote a zero matrix of

size n × m and an n × n identity matrix, respectively. Given

a signal ω(t) ∈ R
n and two integers i, j ∈ Z with i ≤ j,

we denote by ω[i,j] the restriction of ω(t) ∈ R
n to the

interval [i, j], namely, ω[i,j] :=
[

ωT(i), ωT(i + 1), . . . , ωT(j)
]T

.

To simplify notation, we also use ω[i,j] to denote the sequence

{ω(i), . . . , ω(j)}. The Hankel matrix of depth k ∈ Z (k ≤

j − i + 1) associated with ω[i,j] is defined as

Hk(ω[i,j]) :=

⎡

⎢
⎢
⎢
⎣

ω(i) ω(i + 1) · · · ω(j − k + 1)

ω(i + 1) ω(i + 2) · · · ω(j − k + 2)

...
...

. . .
...

ω(i + k − 1) ω(i + k) · · · ω(j)

⎤

⎥
⎥
⎥
⎦

.

Definition 1: The sequence ω[i,j] is said to be persistently
exciting of order k if Hk(ω[i,j]) has full row rank of nk.

II. PRELIMINARIES

In this section, we overview a non-parametric representation
of linear systems [6] and the DeePC formulation [5].

A. Non-Parametric Representation of Linear Systems

Consider a discrete-time linear time-invariant (LTI) system

x(t + 1) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), (1)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m are system
matrices, and x(t) ∈ R

n, u(t) ∈ R
m, and y(t) ∈ R

p denote the
state, control input, and output, respectively.

Model (1) is a parametric description of the system, defined

by (A, B, C, D). Willems’ fundamental lemma allows us to

represent (1) via a finite collection of its input/output data.

Let (ud
[0, T−1], yd

[0, T−1]) be a length-T input/output trajec-

tory of system (1). The Hankel matrices HL(ud
[0, T−1]) and

HL(yd
[0, T−1]) are given by

[

HL(ud
[0, T−1])

HL(yd
[0, T−1])

]

:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ud(0) ud(1) · · · ud(T − L)

...
...

...

ud(L − 1) ud(L) · · · ud(T − 1)

yd(0) yd(1) · · · yd(T − L)

...
...

...

yd(L − 1) yd(L) · · · yd(T − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(2)

where each column is a length-L input/output trajectory of (1).
The column space gives a non-parametric representation of (1)
when the input sequence is persistently exciting as shown in
the following lemma.

Lemma 1 (Fundamental Lemma [2], [6]): Consider a con-
trollable LTI system (1) and assume that the input sequence
ud

[0, T−1] is persistently exciting of order n + L. Then,

any length-L sequence (u[0,L−1], y[0,L−1]) is an input/output
trajectory of (1) if and only if we have

[

u[0, L−1]

y[0, L−1]

]

=

[

HL(ud
[0, T−1])

HL(yd
[0, T−1])

]

g (3)

for some real vector g ∈ R
T−L+1.

B. Data-EnablEd Predictive Control

Conventional control strategies rely on the explicit system
model (A, B, C, D) in (1) to facilitate the controller design,
while DeePC [5], [1, Sec. 5.2] is a non-parametric approach
which bypasses system identification and directly utilizes pre-
collected input/output data to design a safe control policy. In
particular, DeePC employs pre-collected data to predict the
system behavior based on the fundamental lemma.

Let Tini, N ∈ Z, and L = Tini + N. We choose a sufficiently
long input sequence ud

[0, T−1] of length T , which is persistently

exciting of order n + L. Let yd
[0, T−1] be the corresponding

output sequence. We divide the Hankel matrices HL(ud
[0, T−1])

and HL(yd
[0, T−1]) into the two parts (i.e., “past data” of length

Tini and “future data” of length N):
[

Up

Uf

]

= HL(ud
[0, T−1]),

[

Yp

Yf

]

= HL(yd
[0, T−1]), (4)

where Up and Uf denote the first Tini block rows and the

last N block rows of HL(ud
[0, T−1]), respectively (similarly for

Yp and Yf). Let uini = u[t−Tini,t−1] be the control input sequence
within a past time horizon of length Tini, and u = u[t,t+N−1]

be the control input sequence within a prediction horizon of
length N (similarly for yini and y). The DeePC solves the
following constrained optimization problem at time step t:

min
g,u,y,σu,σy

‖y − yr‖
2
Q + ‖u‖2

R + λu‖σu‖
2
2 + λy

∥
∥σy

∥
∥

2

2
+ λg‖g‖2

2

subject to

⎡

⎢
⎣

Up

Uf

Yp

Yf

⎤

⎥
⎦g =

⎡

⎢
⎣

uini

u
yini

y

⎤

⎥
⎦ +

⎡

⎢
⎣

σu

0
σy

0

⎤

⎥
⎦, u ∈ U , y ∈ Y, (5)

where yr =
[

yT
r (t), yT

r (t + 1), . . . , yT
r (t + N − 1)

]T
is a refer-

ence trajectory, Q ∈ S
pN
+ , R ∈ S

mN
+ are weighting matrices,

U , Y represent the input and output constraints, respectively,
σu ∈ R

mTini , σy ∈ R
pTini are auxiliary variables, and λu ≥ 0,

λy ≥ 0, λg ≥ 0 are regularization parameters.
DeePC solves (5) in a receding horizon fashion. After

computing the optimal sequence u∗ =
[

u∗T
0 · · · u∗T

N−1

]T
, we
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apply (u(t), . . . , u(t+l−1)) = (u∗
0, . . . , u∗

l−1) to the system for
some l < N steps. Then, when time is shifted to t+l, (uini, yini)

is updated to the most recent input/output data; see [5], [8] for
more details.

Remark 1 (Dimension of g in DeePC): To guarantee the
persistent excitation of the sequence ud

[0, T−1], the column

number of the Hankel matrix Hn+L(ud
[0, T−1]) must be at least

no less than its row number. This implies that the number of
data points T must at least satisfy T −(n+L) +1 ≥ m(n+L),
i.e., T ≥ (m + 1)(n + L) − 1. Therefore, the dimension of g
in (5) is lower bounded as

T − L + 1 ≥ mL + (m + 1)n, (6)

where L = Tini +N. Thus, a large T leads to a high dimension
of the optimization variable g in (5), which increases the com-
putation burden and thus hinders the deployment of DeePC in
resource-limited situations.

Remark 2 (Practical Choice of T): In (5), the value of Tini

needs to be larger than the observability index1 in order to esti-
mate the system initial state xini at time step t [5, Lemma 4.1],
[1, Lemma 1]. This observability index (upper bounded by n)

and the system internal state dimension n may be unknown
when the system model (1) is unknown. In practical applica-
tions, one would need to collect a sufficiently large amount
of data points to satisfy T ≥ (m + 1)(n + L) − 1 with
L = Tini + N [10], [11], [13], [14]. This choice typically leads
to a very large value of T , making the optimization problem (5)
large-scale and nontrivial to solve efficiently.

III. MINIMUM-DIMENSION DEEPC

In this section, we observe that the Hankel matrix (2) is
always low-rank. This observation allows us to use a
smaller data matrix to represent the input/output behavior of
system (1), which can be viewed as a minimum-dimension
version of the fundamental lemma. We then introduce a pro-
cedure based on the singular-value decomposition (SVD) of
the Hankel matrix (2) to formulate a minimum-dimension
version of DeePC, addressing the dimension issues in both
Remarks 1 and 2.

A. Minimum-Dimension Fundamental Lemma

The fundamental lemma plays an essential role in the stan-
dard DeePC (5). Indeed, each column of the Hankel matrix (2)
is a length-L trajectory of system (1), which can be regarded
as a motion primitive. Lemma 1 guarantees that any length-
L trajectory can be constructed via a linear combination of
these motion primitives when the input sequence is persistently
exciting. Note that the Hankel matrix

HL =

[

HL(ud
[0, T−1])

HL(yd
[0, T−1])

]

∈ R
(m+p)L×(T−L+1)

is always low-rank, meaning that many motion primitives in
the columns of (2) are redundant. We can thus use less, more
representative motion primitives to represent the input-output
behavior of system (1).

Lemma 2: Consider a controllable LTI system (1) and
assume that the input sequence ud

[0, T−1] is persistently excit-
ing of order n + L. The following statements hold:

1The smallest integer l such that
[

CT, (CA)T, . . . , (CAl−1)T
]T

has full
column rank n.

1) The rank of the Hankel matrix (2) satisfies

r := rank

([

HL(ud
[0, T−1])

HL(yd
[0, T−1])

])

≤ mL + n. (7)

2) Suppose H̄L ∈ R
(m+p)L×r has the same range space

with the Hankel matrix (2). Then, any length-L sequence
(u[0, L−1], y[0, L−1]) is an input/output trajectory of (1)
if and only if we have

[

u[0, L−1]

y[0, L−1]

]

= H̄Lḡ (8)

for some real vector ḡ ∈ R
r.

This result is known in the literature (see e.g.,
[1, Appendix A]), but, to our knowledge, has not been utilized
in reformulating DeePC to reduce the dimension for improved
computational complexity. We give a brief proof of Lemma 2
below by observing the following relationship

[

HL(ud
[0, T−1])

HL(yd
[0, T−1])

]

=

[

ImL 0mL×n

TL OL

]
[

HL(ud
[0, T−1])

H1(x
d
[0, T−L])

]

, (9)

where the convolution matrix TL ∈ R
pL×mL and the extended

observability matrix OL ∈ R
pL×n with L block rows are

TL :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAL−2B CAL−3B CAL−4B · · · D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,OL :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C

CA

CA2

...

CAL−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and H1(x
d
[0, T−L]) =

[

xd(0), . . . , xd(T − L)
]

. The factor
[

ImL 0mL×n

TL OL

]

∈ R
(m+p)L×(mL+n)

in (9) has at most rank mL + n. We thus have the rank
result (7). When L is larger than the observability index
(i.e., rank(OL) = n), the rank result in (7) can achieve the
equality, i.e., r = mL + n. It is clear that the statement (8) is
equivalent to the statement (3). We note that the matrix H̄L

in (8) does not need to have a Hankel structure as the matrix
in (2), as long as they have the same range space. Finally,
Lemma 2 can be extended to other matrix structures such
as Page matrix [8], [11] and mosaic-Hankel matrix [18]; we
present the details in the Appendix of our technical report [19].

Remark 3 (Mini. Dimension of the Fundamental Lemma):
The Hankel matrix (2) in Lemma 1 has T − L + 1 motion
primitives, while in Lemma 2, the number of motion primitives
in H̄L has been reduced to r ≤ mL + n. This upper bound is
inherent to system dimensions and independent of the data
length T . We can show from (6) that T − L + 1 − r ≥ mn,
i.e., the dimension reduction is at least mn. It is clear that the
column dimension of H̄L is minimum in order to guarantee
the behavior representation of system (1) under the persistency
excitation of the input ud

[0, T−1]. Thus, (8) can be viewed as a
minimum-dimension version of Lemma 1.

Remark 4 (SVD-Based Dimension Reduction): A standard
way to generate H̄L ∈ R

(m+p)L×r is based on the SVD of
the Hankel matrix (2). In particular, we let
[

HL(ud
[0, T−1])

HL(yd
[0, T−1])

]

=
[

W1 W2

]

︸ ︷︷ ︸

W

[

�1 0
0 0

]

︸ ︷︷ ︸

�

[

V1 V2

]T

︸ ︷︷ ︸

VT

, (10)
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where WWT = WTW = I(m+p)L and VVT = VTV = IT−L+1,
and �1 ∈ R

r×r contains the top r non-zero singular values.
The choice

H̄L = HLV1 = W1�1 ∈ R
(m+p)L×r (11)

satisfies the range space condition in Lemma 2.

B. Minimum-Dimension DeePC

After collecting the input/output data sequences ud
[0, T−1],

yd
[0, T−1] and forming the Hankel data matrices in (4), we

can apply the SVD technique in Remark 4 to compute a new
data library H̄L ∈ R

(m+p)L×r in (11) and consequently achieve
dimension reduction in DeePC.

In particular, we replace the DeePC problem in (5) by

min
ḡ,u,y,σu,σy

‖y − yr‖
2
Q + ‖u‖2

R + λu‖σu‖
2
2 + λy

∥
∥σy

∥
∥

2

2
+ λg‖ḡ‖2

2

subject to H̄Lḡ =

⎡

⎢
⎣

uini

u
yini

y

⎤

⎥
⎦ +

⎡

⎢
⎣

σu

0
σy

0

⎤

⎥
⎦, u ∈ U , y ∈ Y . (12)

We refer to (12) as the minimum-dimension version of DeePC,
since the column dimension of H̄L is minimum to guarantee
the behavior representation of LTI systems. The optimization
variable g in (5) has a dimension of T − L + 1, while in (12),
the dimension of the optimization variable ḡ has been reduced
to r. As discussed in Remark 3, the dimension reduction holds
a lower bound of mn, which can be significant when the system
has a large internal system state dimension n or input dimen-
sion m. In addition, the dimension reduction scheme assumes
a prominent role in practical applications (e.g., [10], [11], [13],
[14]), especially when the value of n and the bound on Tini

are unknown and T needs to be sufficiently large as discussed
in Remark 2.

It is not difficult to see that the objective functions in (5)
and (12) are strongly convex when λu > 0, λy > 0, λg > 0.
Both (5) and (12) have a unique optimal solution if u ∈ U , y ∈
Y are convex constraints. Indeed, we can show the equivalence
of the unique optimal solution (u∗, y∗, σ ∗

u , σ ∗
y ) for (5) and (12).

Theorem 1: Suppose H̄L is generated with (11) that shares
the same range space with HL, the parameters λu, λy, and
λg are positive, and U and Y are convex polytopes. If g∗

minimizes (5), then ḡ∗ = VT
1 g∗ is the minimizer of (12).

Moreover, (5) and (12) have the same optimal solution
(u∗, y∗, σ ∗

u , σ ∗
y ).

The proof details are postponed to the Appendix. The idea
is to utilize the KKT condition of (5) and (12) to establish
the connection between g∗ and ḡ∗. We note that the polyhe-
dral constraints U and Y allow simple KKT conditions. Then,
leveraging matrix properties obtained through SVD in (10), we
prove the equivalence of the optimal solution (u∗, y∗, σ ∗

u , σ ∗
y )

between (5) and (12).
Remark 5 (Cases Beyond Deterministic LTI Systems): One

main motivation of the regularization in (5) is to handle
systems beyond deterministic LTI with measurement and pro-
cess noises [5, Sec. VI] (see [1], [8] for more details). In this
case, the Hankel matrix (2) is typically full rank. However, it
is unnecessary and not beneficial to use the full range space of
the Hankel matrix in (5) (which is one main reason for using
regularization on σu, σy, and g to select important columns).
In this case, we can still use SVD-based techniques to extract

the dominant range space of the Hankel matrix (2). In partic-
ular, after performing SVD (10), we plot singular values in �

by using a base-10 logarithmic scale. Via the distribution of
singular values in descending order, an appropriate selection
of r can be informed by the turning point, which indicates the
transition from singular values/vectors that represent principal
patterns to those that are insignificant. This leads to a much
condensed data library H̄L ∈ R

(m+p)L×r with a reduced col-
umn number. This strategy is generally robust to the length T
of the input sequence ud

[0, T−1]. In practice, the length T can
be chosen as large as possible, but the value of r via SVD
may still remain small. This addresses the dimension issue in
Remark 2.

IV. NUMERICAL EXPERIMENTS

This section presents two numerical examples to demon-
strate the effectiveness of our SVD-based approach. All
computations are performed in MATLAB 2022a on a laptop
with an Intel i7-10710U CPU with 6 cores, 1.6 GHz clock rate
and 16 GB RAM. The DeePC problem can be transformed
into the quadratic problem and is solved with the MATLAB
function quadprog.

A. Linear System Case Study

We first consider an LTI system with matrices (A, B, C, D)

as follows

A =

⎡

⎢
⎢
⎢
⎣

0.921 0 0.041 0

0 0.918 0 0.033

0 0 0.924 0

0 0 0 0.937

⎤

⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎣

0.017 0.001

0.001 0.023

0 0.061

0.072 0

⎤

⎥
⎥
⎥
⎦

,

C =

[

1 0 0 0

0 1 0 0

]

, D = 02×2.

The control objective is to track the setpoint

yr(t) =
[

0.65, 0.77
]T

, and the input/output constraints are
[

−2,−2
]T

≤ u(t) ≤
[

2, 2
]T

and
[

−2,−2
]T

≤ y(t) ≤
[

2, 2
]T

,
respectively.

In an offline experiment, an input/output trajectory of length
T = 400 is collected, where the input u(t) is chosen randomly

from
[

−3, 3
]T

, and the output y(t) are subject to uniformly

distributed noise over
[

−0.002, 0.002
]T

. The time horizons
for the previous data sequence and future data sequence are
chosen as Tini = 10 and N = 20, and thus L = Tini + N = 30.
The weighting matrices Q, R and the regularization parameters
λu, λy, λg are chosen as Q = 35 · I40, R = 10−4I40, λu = 106,

λy = 104, and λg = 102, respectively. We can calculate that the
Hankel matrix HL is of size 120×371, while its rank should be
at most mL + n = 64 under the noise-free deterministic case.
The singular value distribution of HL (i.e., σi, i = 1, . . . , 120)

is shown in Fig. 1. It is clear that the turning point is 64,
which is consistent with the analysis.

We extract the first r = 64 columns and singular values
from W and �, respectively, to construct H̄L as discussed
in Remark 4. For comparison, the original data library HL,
its direct truncation matrix HL,[1:r] (i.e., the first r columns
of HL are extracted to construct the truncation matrix), and
the new data library H̄L are used in DeePC. Fig. 2 shows
the simulation results. It is clear that both the original data
library HL and the low-dimensional library H̄L can be well
embedded into the DeePC framework to achieve satisfactory

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 18:49:14 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DIMENSION REDUCTION FOR EFFICIENT DeePC 3281

Fig. 1. Singular value distribution of HL in linear system case.

Fig. 2. Output and input evolution of the linear system, resulting from
the application of the DeePC algorithm with (a) original data library HL,
(b) truncation matrix HL,[1:r ], and (c) new data library H̄L.

TABLE I
COMPARISON IN THE LINEAR SYSTEM CASE STUDY

control performance, while the truncation matrix HL,[1:r] fails
to regulate the output signals.

In Table I, we further list the accumulative cost (i.e.,
∑

(‖y−
yr‖

2
Q + ‖u‖2

R)) and the average computation time per iteration

of the DeePC algorithm based on HL and H̄L. Since H̄L

has a much lower column dimension than HL (64 vs. 371),
its DeePC implementation admits more efficient computation
(17 ms vs. 48 ms), while maintaining similar closed-loop
performance thanks to the SVD procedure that extracts prin-
ciple patterns.

B. Case Study With Nonlinear Traffic System

To evaluate the performance of the proposed minimum-
version DeePC scheme for nonlinear systems, we consider the
leading cruise control (LCC) of connected and autonomous
vehicles (CAVs) in mixed traffic scenarios [13].

As shown in Fig. 3, the mixed traffic consists of n + 1
vehicles: one head vehicle (indexed as 0), m CAVs, and
n − m human-driven vehicles (HDVs). Let � = {1, 2, . . . , n}
be the set of vehicle indices ordered from front to end.
The sets of CAV indices and HDV indices are denoted
by �C = {i1, . . . , im} ⊆ � and �H = {j1, . . . , jn−m} = �\�C,
respectively, where i1 < . . . < im and j1 < . . . < jn−m. The
spacing error, velocity error and acceleration of the i-th vehi-
cle at time t is denoted as s̃i(t), ṽi(t) and ui(t), respectively.
The system state, input, and output of the mixed traffic are

given by, respectively, x(t) =
[

s̃1(t), ṽ1(t), . . . , s̃n(t), ṽn(t)
]T

,

Fig. 3. Schematic of mixed traffic system with n + 1 vehicles.

Fig. 4. Singular value distribution of HL for Fleet 1, Fleet 2, and Fleet 3.

and

u(t) =
[

ui1(t), . . . , uim(t)
]T

,

y(t) =
[

ṽ1(t), . . . , ṽn(t), s̃i1(t), . . . , s̃im(t)
]T

.

A method called the DeeP-LCC algorithm has been developed
in [13] to achieve safe and optimal control of CAVs.

We test our developed approach under three fleet structures
with different numbers of CAVs and HDVs. These three fleets
are described by

Fleet 1: n = 3, m = 1,�C = {2},�H = {1, 3},

Fleet 2: n = 5, m = 2,�C = {2, 4},�H = {1, 3, 5},

Fleet 3: n = 8, m = 2,�C = {3, 6},�H = {1, 2, 4, 5, 7, 8}.

As suggested in [13], the length for the pre-collected data is
chosen as T = 2000, T = 3000, and T = 4000, respectively,
under these three fleet structures. The remaining parameters
used to set up the DeePC are selected as the same with [13].
A safety-critical scenario is considered in our simulation; see
[13, Sec. VI-C] for a detailed description.

For these three fleet structures, HL has a dimension of
420 × 1931, 700 × 2931, and 910 × 3931, respectively, and its
corresponding singular values distribution is shown in Fig. 4.
It is clear that the data Hankel matrices have a low rank, and
accordingly, we select r as r = 282, r = 424, and r = 634,
respectively. Under each fleet, the data library HL and the
low-dimensional data library H̄L are utilized in DeePC for the
control of CAVs. We use fuel consumption, average absolute
velocity error (AAVE) [13], and average computation time per
iteration to depict the performance.

The results are summarized in Table II. It is noted that under
different fleet structures, the proposed minimum-dimension
DeePC consistently offers an order of magnitude faster com-
putational time while achieving similar control performance
as compared to the original DeePC. This confirms that, in the
context of nonlinear systems, the SVD-based approach can
successfully extract the principle patterns from HL, and thus
the new data library H̄L preserves the critical information of
HL, while allowing for a more efficient representation of the
system behavior. Therefore, the resulting minimum-dimension
DeePC can accomplish better computational efficiency without
compromising the control performance.

V. CONCLUSION

This letter has presented an SVD-based strategy to reduce
the dimension of the optimization problem in DeePC. It
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TABLE II
COMPARISON IN THE NONLINEAR SYSTEM CASE

is known that a large data library measured from an LTI
system can be refined into a low-dimensional one for the
non-parametric representation of system behavior. Based on
this observation, we have proposed an SVD-based approach
to extract the main components from the large data library
and subsequently reduce the optimization problem dimension
in the DeePC formulation. Simulation results showcase that by
using the proposed method, the computation efficiency of the
DeePC algorithm can be an order of magnitude faster without
sacrificing the control performance.

APPENDIX

We here present the proof details of Theorem 1. Since U

and Y are convex polytopes, we can rewrite u ∈ U and y ∈ Y

as B
[

uT, yT
]T

≤ c for some matrix B and vector c. Both (5)
and (12) have unique optimal solutions since they are strongly
convex. Eliminating the variables u, y, σu, σy in the DeePC (5)
leads to

min
g

‖HLg − b‖2
P + λg‖g‖2

2

subject to Cg ≤ c, (13)

where b =
[

uT
ini, 0, yT

ini, yT
r

]T
, P is the block-diagonal matrix

blkdiag(λuImTini
, R, λyIpTini

, Q), and C = B
[

UT
f , YT

f

]T
. Based

on (13), we define the Lagrangian L(g, µ) = ‖HLg − b‖2
P +

λg‖g‖2
2 + µT(Cg − c), where µ denotes the dual variable. Let

(g∗, µ∗) be the minimizer of (13). Then, it should satisfy the
following KKT condition:

⎧

⎨

⎩

2HT
LP(HLg∗ − b) + 2λgg∗ + CTµ∗ = 0,

µ∗T(Cg∗ − c) = 0,

Cg∗ ≤ c, µ∗ ≥ 0.

(14)

Similarly, (12) can be reformulated as

min
ḡ

∥
∥H̄Lḡ − b

∥
∥

2

P
+ λg‖ḡ‖2

2

subject to C̄ḡ ≤ c, (15)

where C̄ = CV1. The Lagrangian of (15) is in the form of
L̄(ḡ, µ̄) = ‖H̄Lḡ − b‖2

P + λg‖ḡ‖2
2 + µ̄T(C̄ḡ − c), where µ̄

denotes the dual variable. By utilizing H̄L = HLV1 (i.e., (11)),
C̄ = CV1 and VT

1 V1 = Ir, the KKT condition of (15) is
⎧

⎨

⎩

VT
1 (2HT

LP(HLV1ḡ∗ − b) + 2λgV1ḡ∗ + CTµ̄∗) = 0,

µ̄∗	(CV1ḡ∗ − c) = 0,

CV1ḡ∗ ≤ c, µ̄∗ ≥ 0.

(16)

From (10) and C = B
[

UT
f , YT

f

]T
, we know that V1VT

1 =

IT−L+1 − V2VT
2 , VT

1 V2 = 0, HLV2 = 0, and CV2 = 0. Note

that (16) and these matrix properties are upheld by requiring
H̄L, generated from (11), has the same range space as HL.

Based on the aforementioned matrix properties and (14),
it is easy to verify that (ḡ∗ = VT

1 g∗, µ̄∗ = µ∗) satisfies the
KKT condition (16). Therefore, if g∗ is the minimizer of (13)
(i.e., (5)), then ḡ∗ = VT

1 g∗ minimizes (15) (i.e., (12)). Finally,

given ḡ∗ = VT
1 g∗, we have

H̄Lḡ∗ = HL(V1VT
1 )g∗ = HL(IT−L+1 − V2VT

2 )g∗ = HLg∗,

which indicates that (5) and (12) have the same unique optimal
solution (u∗, y∗, σ ∗

u , σ ∗
y ).
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