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Multi-Agent Motion Planning with Bézier Curve
Optimization under Kinodynamic Constraints

Jingtian Yan!, Jiaoyang Li'

Abstract—Multi-Agent Motion Planning (MAMP) is a problem
that seeks collision-free dynamically-feasible trajectories for mul-
tiple moving agents in a known environment while minimizing
their travel time. MAMP is closely related to the well-studied
Multi-Agent Path-Finding (MAPF) problem. Recently, MAPF
methods have achieved great success in finding collision-free
paths for a substantial number of agents. However, those meth-
ods often overlook the kinodynamic constraints of the agents,
assuming instantaneous movement, which limits their practicality
and realism. In this paper, we present a three-level MAPF-based
planner called PSB to address the challenges posed by MAMP.
PSB fully considers the kinodynamic capability of the agents
and produces solutions with smooth speed profiles. Empirically,
we evaluate PSB within the domains of traffic intersection
coordination for autonomous vehicles and obstacle-rich grid
map navigation for mobile robots. PSB shows up to 49.79%
improvements in solution cost compared to existing methods
while achieving significant improvement in scalability.

Index Terms—Multi-agent Motion Planning, Traffic Intersec-
tion Coordination, Obstacle-rich Grid Map Navigation

I. INTRODUCTION

ULTI-AGENT Motion Planning (MAMP) is a prob-
lem that focuses on finding collision-free dynamically-
feasible trajectories for multiple agents in a known environ-
ment while minimizing their travel time. MAMP has received
significant attention in recent years, becoming a core challenge
in various real-world applications, including traffic manage-
ment [1], warehouse automation [2], and robotics [3]. MAMP
is closely related to a well-studied problem called Multi-agent
Path Finding (MAPF) [4], which plans collision-free paths
in discrete timesteps for multiple agents on a given graph.
MAPF methods show the advantage of finding collision-free
paths for hundreds of agents with optimal [5] or sub-optimal
[6] guarantee. However, the standard MAPF model does not
consider the kinodynamic constraints of the agents. It assumes
instantaneous movement and infinite acceleration capabilities,
leading to discrete solutions that prescribe agents to move
in synchronized discrete time steps and are thus not directly
executable on their controllers.
To tackle this challenge, some methods [7]-[9] discretize
the action space and search using the motion primitives (i.e.,
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Fig. 1: Illustration of the intersection model and the grid model
we use. (a) Traffic intersection coordination model. (b) Grid map
navigation model. Collision points are marked as black dots. The
black cells in (b) are static obstacles.

elementary actions that an agent can perform). Those methods
usually search in high-dimensional state space to account for
the kinodynamics of agents such as speed and acceleration.
Howeyver, due to their discretized nature, their solutions do not
fully capture the kinodynamic capacity of the agents, leading
to limited choices of actions and, thus, poor performance
in challenging scenarios. To address this issue, a three-level
method PBS-SIPP-LP (PSL) [1] is introduced for the traffic
intersection coordination problem, a special case of MAMP.
PSL integrates search-based and optimization methods. Level
1 and Level 2 employ an extended MAPF planner to identify
potential paths, which invokes Level 3 to optimize vehicle
travel speeds through a Linear Programming (LP) model.
However, PSL only considers speed constraints for agents,
making a strong assumption that each agent moves through
the intersection at a constant speed.

Taking inspiration from PSL, we introduce a three-level
planner called PSB (PBS-SIPP-Bézier) to address the MAMP
problem. Level 1 uses Priority-Based Search (PBS) [10] to
resolve the collisions between agents. Level 2 employs an
extended Safe Interval Path Planning (SIPP) [11] to search
candidate paths for each agent given constraints from Level 1.
Level 3 employs a Bézier-curve-based [12] planner to seek
optimal speed profiles for agents based on the constraints
from Level 2 and their kinodynamic constraints. To reduce the
runtime, PSB utilizes a cache structure to reuse solutions from
Level 3. It also incorporates a duplicate-detection mechanism
and a time-window mechanism to reduce the runtime further
when extending PSB to the grid map navigation scenario.

The following content outlines our work in this paper: (1)
We propose PSB, a MAMP planner capable of finding feasible,
high-quality trajectories for multiple agents by exploiting their



complete kinodynamic capability. PSB can produce speed
profiles with any degree of smoothness. To our knowledge,
this is the first MAPF-based work in MAMP that incorporates
the full kinodynamic capability for the extensive group of
agents. (2) We show that PSB can efficiently handle the
intersection coordination problem for autonomous vehicles
with kinodynamic constraints (shown in Fig. 1(a)). Compared
to the previously best algorithm PSL [1], PSB shows up to
49.79% improvement in terms of solution cost. (3) We extend
PSB to a more general domain: mobile robots navigation in
obstacle-rich grid maps (shown in Fig. 1(b)). PSB outperforms
the previously best algorithm SIPP-IP [7], achieving up to
27.12% improvement in solution cost and increased scalability
to handle up to 220 agents, as opposed to the limit of 80 agents
in SIPP-IP, while maintaining a comparable runtime.

II. RELATED WORK

Multiple algorithms have been developed to tackle MAMP.
Some methods extend single-agent motion planners for
MAMP. In [13], a multi-agent RRT* derived from single-
agent RRT* [14] is proposed, combining the state space
of individual agents into a collective joint space for RRT*
planning. However, planning within the joint state space of
agents presents scalability challenges, as the dimension of
the joint state space increases exponentially in the number
of agents. Another category of methods uses control or opti-
mization techniques to handle MAMP in real-world robotics.
For instance, in [15], a vector field approach combined with
model predictive control is used to steer agents in complex
environments. In [3], a mixed-integer linear program is utilized
to search for timed waypoints that fulfill signal temporal logic
constraints, which encapsulate the kinodynamic constraints.
These methods are effective in scenarios with few agents.
However, they face scalability issues as the number of agents
increases. For instance, the approach by [3] takes over 100
seconds to generate the solution for only a four-agent scenario.

Recently, MAPF methods have achieved significant progress
in finding discrete collision-free paths for a large number
of agents. Leading methods, such as Conflict-Based Search
(CBYS) [5], [16] and Prioritized-Based Search (PBS) [10], use
single-agent solvers to plan paths for individual agents and
address collisions among agents by introducing constraints
to single-agent solvers. Some methods take advantage of the
MAPF methods to solve the MAMP problem.

One category of such methods uses discrete paths from
MAPF planners and smooths them to meet kinodynamic con-
straints. For instance, the method in [17] enforces agents to ad-
here to their designated discrete paths generated by the MAPF
planner. Then, it considers the speed constraints and employs
an LP solver to generate an executable plan. Similarly, in [18],
agent trajectories, represented as Bézier curves, are optimized
by accounting for high-order kinodynamic constraints using
the paths from MAPF planners. These methods highly rely
on the discrete paths from MAPF planners, and their open-
loop nature can lead to failures if kinodynamically feasible
trajectories cannot be derived from these paths.

Another category of methods extends MAPF methods to
consider robot kinodynamics. For instance, CBS-MP [8] inte-
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grates probabilistic roadmaps with CBS to handle collisions
and employs motion-primitive-based search for single-agent
path planning. Cohen et al. [9] adapt CBS to continuous
time and develop a bounded-suboptimal extension of SIPP for
pathfinding for individual agents, where SIPP [11] is a variant
of A* that can find optimal paths in dynamic environments.
Ali and Yakovlev [7] extend SIPP to account for the kinody-
namics of agents by incorporating a wait interval projection
mechanism, addressing the impractical assumption in SIPP of
instantaneous stopping. However, since these methods are all
graph-search-based, they discretize the action space for search.
As a result, these methods consider a limited number of actions
and thus fail to capture the full range of possible actions that
agents could exhibit.

Recently, a three-level method called PSL [1] is introduced,
combining MAPF with optimization methods. It uses PBS and
SIPP to search for candidate paths and integrates an LP solver
to optimize agent speeds along given paths. However, PSL
makes a strong assumption that each agent moves through the
intersection at a constant speed, which still fails to capture the
full range of possible actions that agents could exhibit.

III. PROBLEM FORMULATION

We define our MAMP problem by a graph G = (V, E)
and a set of M agents A = {a,...,apn}. Vertices in V,
referred to as collision points, represent potential collision
locations for agents. Agents can move from collision points
¢, € Vtoc; €V along edge (c;,c;) € E while adhering
to kinodynamic constraints as shown in Eq. 1, with the travel
distance denoted as d(c;, ¢;) € RT. Each agent a; initiates its
movement from a specified start (collision point) c; € V with
initial kinodynamic constraints as shown in Eq. 2 and moves

toward a designated goal (collision point) ¢! € V.
Definition 1. (Path). The path of agent a;, if contains m + 1
collision points, as ¢; = {c) = cf,c},...,c;”_l,cgn =}
where (') e E,j=1,--- ,m.

3 K2

Definition 2. (Spatio-temporal profile). The spatio-temporal
profile, denoted as (;(t) : RT™ — R*, quantifies the distance
traversed by a; as a function of time t along a given path.

Definition 3. (Trajectory). The trajectory of a; is the combi-
nation of a path and its associated spatio-temporal profile.

The kinodynamic constraints limit the gradient of spatio-
temporal profile with respect to time up to K-th order:

UF <dt;(1)/dt* <UF,VEel,. K
d*ei(t)/dt*|i—o = Uf Yk € 1,.... K

)
2

where UF and UF are constant values that define the con-
straints on the k-th order gradient. We use arrival time T; to
indicate the time needed for a; to arrive at ¢/. We denote ¢;(c)
as the time when a; reaches the collision point ¢, and 7;(c)
represents the duration that it occupies c. Therefore, a; departs
from c¢ at time t;(c) + 7;(c). In the event that both a; and a;
pass through the same collision point ¢, a collision occurs iff
the time intervals [t;(c), t;(c)+7;(c)) and [t;(c), t;(c)+T;(c))
overlap.
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1) Intersection Model: For the intersection coordination
problem, we adopt the model from [19]. As shown in Fig. 1
(a), the intersection has a set of entry lanes I'™ and a set
of exit lanes I'". Each agent a; € A, with a length of L;,
has a traveling request from the entry lane ¢; € I'” to the
exit lane ¢/ € T't with the earliest start time e; € RT (i.e.,
the earliest time a; can reach at the entry lane). To prevent
agents from making sharp turns, they are constrained to follow
the predefined path (gray lines in Fig. 1 (a)). We assume the
agents can wait before the entry lane without any collision.
After entering the intersection, the minimum speed of agents
is strictly positive. If both a; and a; start from the same entry
lane with e; < e;, then a overtake happens if 3¢ € V that
t;(c) > t;(c). Our task is to generate trajectories for all agents
so that no collisions or overtakes happen while minimizing the
sum of their arrival time.

2) Grid Model: We adopt the grid model from classical
MAPF problems [4] and represent G as a four-neighbor grid
map. Fig. 1 (b) shows an example. There are three differences
compared to the intersection model: (D1) In contrast to the
intersection model where there is only one path for each agent
to move from its start to goal, the grid model involves an extra
spatial domain search where we need to plan the path for each
agent. (D2) Agents are allowed to stop at any location, which
imposes a minimum speed constraint of U} = 0. (D3) All
agents start simultaneously and remain at their respective goals
after they finish. It should be noted that this differs from the
intersection model, where agents are only present in G while
in the intersection and not before entry or after departure. Our
primary objective is to plan collision-free trajectories for all
agents while minimizing the sum of their arrival time.

IV. MAMP ON INTERSECTION

This section begins with a system overview of our proposed
algorithm PSB, followed by a discussion of the specifics of our
trajectory optimization formulation and method. After that, we
delve into the techniques used to tackle runtime challenges.

A. System Overview

PSB consists of a three-level planner as illustrated in Fig. 2,
with Level 1 and Level 2 extended from PSL [1]. Level 1
uses PBS [10] to resolve collisions among agents through
priority ordering searching, where the trajectory of each agent
is planned by Level 2. Given the priority orderings from Level
1, Level 2 uses an extended SIPP [11] to search for the optimal
trajectory for an agent, where the spatio-temporal profile of the
trajectory is optimized by Level 3. Given the path (together
with some temporal constraints) from Level 2, Level 3 uses
BCP (Bézier-Curve-based Planner) to generate the optimal
spatio-temporal profile.

1) PBS-based planner: We adopt PBS [10] to resolve
collisions among agents. If two agents have a priority ordering,
the agent with lower priority must avoid collisions with the
agent with higher priority. The goal is to find a set of priority
orderings for agents so that they do not collide with each
other. To achieve this, we search a binary Priority Tree (PT)
in a depth-first manner. Each PT node contains a set of priority
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Fig. 2: Overview of PSB. The shadowed strips denote time intervals
occupied by other agents, the green segments denote safe intervals.
The dark green segments represent the intervals in the open list.

orderings and a set of trajectories consistent with the priority
orderings. We initialize the root PT node by adding priority
orderings for the agents starting from the same entry lane
based on their earliest start time to prevent overtake. Then,
Level 2 is called to plan trajectories for agents at each lane
from the highest priority to the lowest priority. We expand
PT nodes by searching for collisions between agents and
generating child PT nodes with additional priority orderings
to address the collisions. For instance, as shown in Fig. 2, if a
collision between agents a; and a; is detected in node Ng, we
resolve it by expanding Ny into two child nodes N; and N.
In Ny, a; is given higher priority than a;, while in N, the
priority is reversed. Then, in each child node, we use Level
2 to replan trajectories for each agent based on the priority
orderings in that node. If we find a PT node with collision-free
trajectories, we terminate the search and return the trajectories.

2) Safe Interval Planner: Level 2 aims to find a trajectory
for a given agent a,; that minimizes its arrival time while
avoiding collisions with higher-priority agents. To achieve
this, we run a modified SIPP on a safe interval graph, which
associates each collision point with a set of safe intervals. A
safe interval [Ib, ub) is a time duration that an agent can stay at
a collision point without colliding with higher-priority agents.
The modified SIPP plans a path (along with safe intervals) and
calls Level 3 to specify the spatio-temporal profile considering
kinodynamic constraints. We provide an example of this
process in Fig. 2, with a detailed description available in [1].
While we use a 1-D example for demonstration, as later shown
in the grid model, this search process is applicable in general
graphs. Since there are two safe intervals [e;, t1) and [to, t3) at
the start cg, we generate two SIPP nodes and insert them into
the open list. In each iteration, we expand the node from the
open list with the smallest f-value (= the lower bound of its
safe interval plus the minimum arrival time required to reach



the goal from its collision point). In this example, we choose
the node with safe interval [e;,¢;). During node expansion, to
speed up the search process while guaranteeing completeness,
we use relaxed kinodynamic constraints. Specifically, we as-
sume that a; occupies each collision point for only an instant
of time while allowing adjustment of its speed within the
range [U},U}] instantly. In our case, as a; moves from c?
to c}, a new interval [€i + tmin, t1 + tmaz) is generated at c},
where i, = d(co,¢1)/U} and tpa, = d(co,c1)/U} are the
minimum and maximum time for this movement. We iterate
the safe intervals at c; that overlap with this new interval and
insert them into the open list. When a node reaches the goal,
we backtrack to retrieve the full path and its associated safe
intervals. Then, we call Level 3 to determine the kinodynam-
ically feasible trajectory. If Level 3 finds a trajectory with a
smaller arrival time than the best trajectory found so far, we
update the current best trajectory. We terminate the search if
no node in the open list has a smaller f-value than the arrival
time of the current best trajectory. As shown in [1], Level 2
guarantees to return the optimal trajectory when Level 3 is
optimal and complete.

3) Bézier-curve-based Planner: Level 3 aims to generate
a kinodynamically feasible spatio-temporal profile ¢;(t) for a
given path within given safe intervals while minimizing the
arrival time. We use Bézier curve BTi(t), where T; is the
arrival time, to represent ¢;(t) and reformulate this problem
by finding the minimum 7} and control points P; for BT (t)
that satisfy the kinodynamic and safe-interval constraints. As
shown in Sec. IV-C, Level 3 is complete and optimal.

B. Background on Bézier Curves

A Bézier curve [12] is a function parameterized by a set
of control points. With a sufficiently large number of control
points, it is able to approximate any continuous function
f(t) with ¢t € [0,1], making it an ideal choice for modeling
¢(t) [18]. We use BT'(t) to denote the Bézier curve that scales
the interval for ¢ from [0, 1] to [0, T:

n
T t) = ZpT‘BZ:n(t)
r=0

where BT, (t) = (7) (%)" (&)™~ is called a Bernstein basis
polynomial, and P = {po, ..., pn} are n + 1 control points.

As proven in [12], the Bézier curve has three properties that
can help find kinodynamically feasible trajectories efficiently:
(P1) BT (t) is bounded by the convex hull of its control points
P for t € [0,T]. (P2) The curve always starts at the first
control point (B”(0) = py) and ends at the last control point
(BT(T) = p,). (P3) The derivative of the n-degree Bézier
curve is another Bézier curve with degree n — 1:

, t €10,TY, 3)

n—k

Zpr r,n— k

where pF = = Z')'T" Z] o(=1)7 (j)pn,j is the 7-th control
point for the k-th gradient of BT (t).

By properties (P1) and (P3), we can map the kinodynamic
constraints discussed in Eq. 1 to constraints on control points:

UF <pk <UF, ¥r € {0,1...;n — k}. S)

dkBT

, t€[0,T] 4
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Fig. 3: Illustration of the search for optimal arrival time. The agent
moves along the path from ¢y to c3 with associated safe intervals
represented by green segments. The optimal spatio-temporal profiles
found by Eq. 6-11 for the four different arrival time 7, shown on
the right are represented by four dashed curves. Since the two gray
ones do not intersect with all green segments, they are infeasible,
and d7, indicates how far away they are from feasible profiles. As
the figure shows, minimizing 67, can bring these profiles closer to
feasible ones.

C. Bézier-curve-based Planner (BCP)

Given a path ¢; = {c?,---,¢™} from Level 2, along with
its associated safe intervals S; = {[Ib?,ub?), - - - , [[b7*, ub™)},
BCP aims to find a spatio-temporal profile ;(¢), which we
approximate by B”:(t), for path ¢; within the safe intervals in
S; that satisfies the kinodynamic constraints defined in Eq. 1-
2 and minimizes the arrival time T;. Inspired by [18], we
introduce a method to determine Bi(t) for a given arrival
time 7; and then a method to find the optimal arrival time 7.
In the rest of this section, we omit subscript ¢ for simplicity.

1) Find Bézier curve given arrival time: Given arrival time
T, our task is to determine the control points P for BT (t) that
meet all constraints, which we formulate as an LP problem:

il o ©
s.t.6p >0 (7)
po=d° p,=dm, =UF Vke{1,.,K} (8
BT (v < d + 67, Vj € {1,...,m} 9)
BT (ub — Ljw) > d + L —6r,Yj € {1,...,m} (10)
U* — 67 < pf <U* + 6, (11)

Vke{l,..K}, Vre{0,1,.,n—k}

where &/ = Y —7 d(c"~!, ¢") is the travel distance from start
to collision point ¢’/. Eq. 6-7 minimize J7, a non-negative
slack variable used to relax the safe-interval constraints and
the kinodynamic constraints. B (t) exists iff the optimal value
for 67 is zero. Eq. 8 requires the agent to initiate from its entry
lane with its initial kinodynamic constraints and terminate at
its exit lane. Given the challenge of finding a closed-form
inverse function for d’ = BT (t), Eq. 9-10 ensure the agent
visits each collision point within the safe interval by preventing
arrivals before [b7 (travel distance at ¢t = [b/ must be no larger
than d?) or departures after ub’ (travel distance at t = ub’ must
be larger than d? 4+ L). Here, w is a constant derived from wave
speed [20] (we set it to 7 in our experiment). Eq. 11 enforces
the kinodynamic constraints from Eq. 5.

2) Search for optimal arrival time: To find the minimum
arrival time 7™, BCP employs a binary search. The LP model
defined by Eq. 6-11 can be viewed as a function that maps
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Algorithm 1 Bézier-curve-based Planner (BCP)
Input: Path ¢ and associated safe intervals S
Output: The e-optimal 7* and Bézier curve BT (t)
Function IsSolutionExist(Typ, Typ)
return Vor, < 0and Vér, >0

1: [le, Tub) — [lbm, ubm)

2: if ub™ = oo then T, < objective value of Eq. 12
3. if UsSolutionExist(Ty,, T,,») then return ‘no solution’
4: while Ty, — T}, > € do

5: Tmida < (Tip + Tup) /2

6: if 5%”“ =0then Ty, Thia, T* + Thnia

7: else

8: it Vor, > 0then Ty < Tonia

9: else 1y, + T

10: if T* = null then return ‘no solution’

else return 7* and BT (t)

—
—_

an arrival time 7' to the optimal slack value §7.. We denote
the gradient of this function at 7" by V7., which, empirically,
we approximate by (07, A —067)/A with A being a sufficient
small positive number. We borrow the following lemma from
Theorem 2 of [18].

Lemma 1. BT (t) exists iff a single time range [Trnin, Tynaz)
exists such that 65, = 0 for T € [Tpin, Tmaz] and 65 > 0
Sfor T & [Toin, Tinaz), making Tin the optimal travel time
T*. Moreover, Vo4 < 0 for T € [0,Tmin), Vo5 = 0 for
T € [Twmins Tmaz), and V&% >0 for T € (Tiaz, 0).

Thus, in an iteration of our binary search with 7% €
[Tip, Twup), we can decide the search direction by evaluating
the gradient of 4. at the midpoint (73, + T)/2. The initial
range [T}y, Typ] for T is set to the safe interval at the exit
lane [[b™, ub™). However, due to the possibility of the agent
waiting indefinitely at its entry lane, ub™ can be infinite. In
that case, we compute T,; by the following LP model:

mtin t+(d™+L)/U
st. by <t+d /U, Vje{l,..m}

Lemma 2. If the latest arrival time at the exit lane is
unbounded (ub™ = o), then there exists a valid BT (t) with
T being the objective value of Eq. 12.

(12)

Proof. Since the minimum speed of agents is strictly positive,
any safe interval with a finite upper bound restricts subsequent
safe intervals along the path to also have finite upper bounds.
Therefore, ub™ = oo implies ub’ = oo for j =0,--- ,m. As
a result, the agent can wait at its entry lane for sufficient time
and then maintain a continuous movement at U throughout
the intersection. Eq. 12 computes the minimum arrival time
for such a solution. O

3) Pseudocode for BCP: As shown in Algorithm 1, we
initialize the range for T* by the last safe interval [I0™, ub™)
[Line 1]. In case of ub™ = oo, the upper bound T is
computed by Eq. 12 [Line 2]. Then, we determine if 37 €
[T, Tupy) such that BT (t) exists. According to Lemma 1,
BT (t) exists when [T}y, Ty,) overlaps with [Thin, Tonaz)»

which is true if Vd}lb < 0 and V&}ub > 0 (as shown
in function IsSolutionExist). If BT (t) does not exist, BCP
returns ‘no solution’ [Line 3]. Otherwise, we proceed with
the binary search to find T* within range [T}, Typ), and this
search continues until the range is smaller than a predefined
threshold € (we use € = 0.1 in our experiments) [Line 4].
In each iteration, we average Ty, and T, to get T;,;4 and
solve Eq. 6-11 at T);q [Line 5]. If 67 = 0, it indicates
that Thia € [Tomin, Tmae]- Consequently, we use T4 as
the new upper bound for 7% [Line 6]. On the other hand, if
6}7”“ # 0, we calculate its gradient. If V&}mm > 0, it implies
that T},,;0 > Tynas, and we thus use 71,,;4 as the new T,,; [Line
8]. Conversely, it can be concluded that 7},,;q < Tinin, and we
thus use 7;,;4 as the new Ty, [Line 9].

Theorem 1 (Completeness and optimality of BCP). Given a
small enough € and a large enough number of control points,
BCP finds the spatio-temporal profile BT (t) with minimum
arrival time T™ if one exists and returns failure otherwise.

Proof. With sufficient control points, the Bézier curve B7 (t)
is able to approximate any continuous function in [0, T']. Thus,
Eq. 6-11 always find P* given T, if a feasible spatio-temporal
profile exists. At the same time, with Lemma 2, the upper
bound for 7% is always finite. So after a finite number of
iterations, as shown in Theorem 3 of [18], the binary search
in BCP can find the e-optimal 7. O

Theorem 2 (Completeness and suboptimality of PSL). PSB
guarantees to find a (sub-optimal) solution in finite time.

Proof. PSL [1] guarantees to find a (sub-optimal) solution in
finite time. The primary distinction between our PSB and PSL
lies in Level 3. As Theorem 1 demonstrates that Level 3 of
PSB is both complete and optimal, we can reuse the proof
for PSL without modifications to show that our PSB also
guarantees to find a (sub-optimal) solution in finite time. [J

D. Caching BCP Results

As BCP encounters recurrent LP solving, calling BCP
frequently can lead to a significant increase in runtime. To
address this issue, we implement two types of caches, namely
SuccessCache and FailureCache, for each agent to utilize the
results of previous BCP calls to expedite the search process.

While, in the intersection model, there exists only one path
that moves each agent from its start to goal, we consider
the general case where each agent can have multiple paths
so that the caching mechanisms can be later applied to the
grid model with no changes. We say two paths for the same
agent are pseudo-identical iff they contain the same number of
collision points and the travel distances between corresponding
collision points are the same. Since the LP model in Eq. 6-
11 uses the distances between collision points instead of the
specific location of each collision point, we can relax the
requirements for reusing results from both caches from the
path being identical to pseudo-identical.

SuccessCache maps paths with associated safe intervals to
optimal spatio-temporal profiles. During the search process,
if a path is pseudo-identical to the path of an entry from



SuccessCache, and their associated safe intervals are identical,
then we can reuse the spatio-temporal profile from that entry.

In contrast, FailureCache stores paths with associated safe
intervals for which no spatio-temporal profiles exist. Notably,
if no spatio-temporal profiles exist for a path with associated
safe intervals, reducing the ranges of some safe intervals will
still result in the non-existence of spatio-temporal profiles.
Thus, during the search process, if a path is pseudo-identical
to the path of an entry from FailureCache, and each of its safe
intervals is either identical to or a subset of the corresponding
safe interval from the entry, we can infer that no spatio-
temporal profiles exist.

As shown in Fig. 2, during the search process of Level
2, after obtaining a path ¢; with associated safe intervals 5;
through backtracking, we first check SuccessCache. If an entry
is found in the cache, we return the stored spatio-temporal
profile as the optimal profile for the (¢;, S;) pair. If no entry
is found in SuccessCache, we then check FailureCache. If an
entry is found in FailureCache, we declare ‘no solution’ for the
(¢4, S;) pair. Otherwise, we call BCP to find spatio-temporal
profiles. If BCP returns a valid profile, then the (¢;,S;) pair
along with the obtained profile is stored in SuccessCache.
Otherwise, the (¢;,.S;) pair is inserted into FailureCache.

V. MAMP ON GRID MODEL

In this section, we extend PSB to address MAMP on the grid
model. Given the three differences between the two models
outlined in Sec. III-2, we make the following changes to
PSB. Level 1 is applied to the grid model with no changes.
However, the root PT node, in this case, contains no priority
orderings because, as per Difference (D3), no two agents
share the same start. While Level 2 can also be applied
to the grid model with minor changes to handle Difference
(D3), direct adoption results in poor scalability, as Difference
(D1) causes SIPP to expand many duplicate SIPP nodes that
reach the same collision point through different paths. To
overcome this, we introduce a duplicate detection mechanism
to prevent the expansion of duplicate nodes and a time window
mechanism to expedite the planning process. For Level 3,
given that Lemma 2 relies on the assumption of positive
minimum speeds, which is no longer true due to Difference
(D2), we incorporate a new method to initialize the upper
bound. Additionally, due to Difference (D3), it is important to
note that PSB is incomplete for the grid model.

1) Upper bound estimation for optimal arrival time:
In cases where ud™ is infinite, we employ an exponential
increment approach to establish the initial value for T,;,. We
begin by setting T;,; to T3, and then evaluate the gradient of
67, If the gradient is non-negative, then, as per Lemma 1,
T* € [Ty, Tup), in which case we find a valid upper bound and
thus conclude the search process. Otherwise, we double Ty,
and evaluate its gradient again. However, if Ty, reaches infinity
(represented by the large value of 4000 in our experiment), we
declare ‘no solution’ for the corresponding SIPP node.

2) Duplicate detection: When extending Level 2 to the grid
model, we may generate “duplicate” nodes that reach the same
collision point through different paths. Since the input of Level

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JAN, 2024

P 500vphpl o 800vphpl
g4 T4
[ [0
a a
g2 e %2 e —a—s— =
< ©
°>-> —=— Ours PSL MILP g —=— Ours PSL MILP
<! . . . . <. .
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40
No. of Agents No. of Agents
0 500vphpl » 800vphpl
£ 102 £ 10?
€ €
© 1071 © 1071
(o} (o
3 —— Ours PSL MiLP | § —— Ours PSL MILP
> 10-4 > 10-4.
21070 5 1015202530354045 <1070 5 10 15 20 25 30 35 40
No. of Agents No. of Agents

Fig. 4: Delay and average runtime (in log scale) for the intersection
model. Error bars show the standard deviations.

3 contains the entire path and associated safe intervals from
the root node to the current goal node, we cannot naively prune
such “duplicate” nodes. Instead, we always add generated
nodes to the open list even if nodes with identical collision
points have been previously added. However, this method
causes an exponential rise in the number of expanded nodes.
Therefore, we develop a cleverer duplicate-detection method.
Recall our reasoning on pseudo-identical paths for caching:
if two goal nodes have pseudo-identical paths with exactly
the same safe intervals, then their results from Level 3 should
be identical. For example, in Fig. 1 (b), if we consider the
movement of agent 1, expanding the SIPP node at A generates
two nodes at B and C. Expanding these nodes further results in
two “duplicate” nodes at D. While the two nodes correspond
to two different paths from A to D, if their safe intervals are
identical, they lead to the same LP models in Level 3. Thus, we
can retain only one of the nodes without losing completeness.
Specifically, when we generate a node at collision point ¢, we
prune it if we have previously generated a node that is also at
c and corresponds to a pseudo-identical path with exactly the
same safe intervals.

3) Windowed PSB: While the duplicate detection mecha-
nism helps mitigate some duplicates, the SIPP search in Level
2 can still be time-consuming. We thus employ a rolling-
horizon strategy [21], [22]. In each iteration, we only focus
on the collisions that occur within the current time window of
size tyy. Once PSB finds collision-free trajectories within the
time window, we shift the window by a predetermined replan
window ts < tyy. (In our experiment, we set ts = 4, tyy = 6.)
By recurrently replanning, we progressively advance the time
window and compute the full trajectories for all agents.

VI. EMPIRICAL EVALUATION

Both our PSB and baseline methods are implemented in
C++ and utilize CPLEX to solve the programming models.'
All experiments are conducted using a single core on an
Ubuntu 20.04 machine equipped with an AMD 3990x pro-
cessor and 188 GB of memory.

'The source code for our method and baselines is publicly available at
https://github.com/Jingtian Yan/PSB-RAL.
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Fig. 5: Success rate, solution cost, and runtime of PSB, PSL, and SIPP-IP across all maps for the grid model. The solution cost and runtime
are averaged only over scenarios where the planner successfully generates a solution. Note that PSL uses a relaxed agent model.
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A. MAMP on Intersection

1) Baseline Methods: We include two baseline methods.
The first baseline is PSL [1], the previous algorithm that our
PSB builds on. The second baseline is MILP [19], which
solves the problem with mixed-integer linear programming.
It is important to note that both methods assume that agents
travel across the intersection at constant speeds.

2) Simulation Setup: We utilize a simulation setup identical
to the one used by both baseline methods [1], [19]. Graph G
is depicted in Fig. 1. The lane width is 3.66 m, the right-turn
radius is 1.83 m, and the left-turn radius is 9.14 m. The length
of each agent is L; = 5 m. The entry lane for each agent is
generated uniformly at random. An agent at an entry lane has
an 80% probability of going straight and a 20% probability
of turning left or right. For simplicity, we only consider the
speed and acceleration constraints. We set a minimum speed of
U} = 3 m/s for all agents. The maximum speed for agents

turning left is UTl = 5 m/s, while that for other agents is

Ul = 15 m/s. As for acceleration, for all agents, we set
= —2 m/s®> and U? = 5 m/s*. We randomly sample
travel requests from two demands, namely 500 vphpl (i.e.,
500 vehicles per hour per lane) and 800 vphpl, and report
results averaged over 25 instances from each demand and each
number of agents.

3) Comparison: While our objective is to minimize the sum
of the arrival time for all agents, their arrival time depends on
their earliest start time, which varies from instance to instance.
Thus, we instead report the average delay, a popular metric
used in transportation that measures the average difference
between the arrival time and the earliest arrival time (i.e.,
the earliest time an agent can reach its goal, defined by
e; + d(ci,c?)/U}) among agents. As shown in Fig. 4, while
PSB runs slower than PSL, PSB shows an improvement of up
to 41.15% for 500 vphpl demands and 49.79% for 800 vphpl
demands compared to PSL in terms of average delay. Although
MILP is optimal under constant speed assumption [19], it still
produces worse solutions than PSL. In terms of runtime, MILP
is significantly slower than both PSL and PSB. At the same
time, the difference between the average delays of PSL and
MILP is much smaller than that between PSB and PSL. These
improvements arise from the fact that the baseline methods
assume the constant speed during intersection traversal, while
our planner considers the full kinodynamic capabilities of
agents. We also notice that, in the 500 vphpl scenario, the
average-delay curves of all three methods level off as the num-
ber of agents increases. In contrast, in the 800 vphpl scenario,
only the delay curve of PSB levels off, suggesting that PSB
can find a stable solution for higher demand scenarios.

B. MAMP on Grid Model

1) Baseline Methods: In this experiment, we compare PSB
with PSL and a straightforward extension of SIPP-IP [7].
SIPP-IP is a state-of-the-art single-agent path planner designed
to accommodate kinodynamic constraints, making it a suitable
representation of motion-primitive-based methods. The same
kinodynamic motion primitives as [7] are used during the
evaluation. To adapt SIPP-IP for multi-agent scenarios, we
replaced Level 2 and Level 3 in PSB with the SIPP-IP.



2) Simulation Setup: We evaluate PSB, PSL, and SIPP-IP
on four four-neighbor grid maps from the MAPF benchmark
[4], namely empty (size: 32x32), random (size: 32x32),
1ak303d (size: 194x194), and Boston (size: 256x256).
For each map, we conducted experiments with a progressive
increment in the number of agents, using an average of 25
random instances from the benchmark set. The agents are
modeled as disks with a diameter of 0.99 cell. All agents
have identical kinodynamic constraints, which, similar to the
intersection model, encompass only speed and acceleration
constraints. The speed is bounded by the range of [0, 2] cell/s,
while the acceleration is confined to [—0.5,0.5] cell/s%. To
be noticed, since PSL assumes agents move at a constant
speed, we have relaxed the acceleration constraints on starts
and goals for PSL, allowing agents to adjust to the desired
speed immediately.

3) Comparison: We evaluate solution quality using the sum
of the arrival time of all agents. As shown in Fig. 5, PSB
shows better solution quality than both PSL and SIPP-IP while
achieving comparable or better runtime performance. PSB also
outperforms them across all four maps in terms of success
rate, which represents the ratio of instances solved within
300s over all instances. This can be attributed to two factors.
Firstly, the longer runtime of PSL and SIPP-IP in scenarios
with more agents makes it easier to hit the preset cutoff time.
Secondly, the solution from baseline methods is limited in
action choices, leading to failures in solving certain cases. For
instance, when cf is adjacent to the cj, SIPP-IP encounters
difficulties in finding an appropriate solution (The accelerating
primitive defined in [7] takes 4 cells).

4) Ablation study: We first evaluate the influence of win-
dow size tyy by comparing our method under different window
sizes: tyy = 6, tyw = 12, and tyr = oco. As shown in Fig. 6,
we observe marginal improvement in solution quality as we
increase ty (less than 5% from tyy = 6 to tyy = 00),
while causing a significant rise in runtime. Furthermore, as
shown in Fig. 7, PSB exhibits a runtime improvement of up
to 88.58% compared to PSB without the cache mechanism and
76.71% improvement over PSB without the duplicate detection
mechanism. Importantly, these two mechanisms do not affect
the solution quality of the algorithms.

VII. CONCLUSION

This paper introduces PSB, a three-level planner designed
to tackle MAMP with kinodynamic constraints. PSB produces
smooth solutions by effectively utilizing the full kinodynamic
capacity of agents, addressing a limitation often faced by
existing methods. We apply PSB to two domains: traffic in-
tersection coordination for autonomous vehicles and obstacle-
rich grid map navigation for mobile robots. In both domains,
PSB outperforms the baseline methods with up to 49.79%
improvement in terms of solution quality, while achieving
better success rates and comparable runtime.
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