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The diversity of vertebrate skeletons is often attributed to adaptations to dis-
tinct ecological factors such as diet, locomotion, and sensory environment.
Although the adaptive evolution of skull, appendicular skeleton, and ver-
tebral column is well studied in vertebrates, comprehensive investigations
of all skeletal components simultaneously are rarely performed. Conse-
quently, we know little of how modes of evolution differ among skeletal
components. Here, we tested if ecological and phylogenetic effects led to dis-
tinct modes of evolution among the cranial, appendicular and vertebral
regions in extant carnivoran skeletons. Using multivariate evolutionary
models, we found mosaic evolution in which only the mandible, hindlimb
and posterior (i.e. last thoracic and lumbar) vertebrae showed evidence of
adaptation towards ecological regimes whereas the remaining skeletal com-
ponents reflect clade-specific evolutionary shifts. We hypothesize that the
decoupled evolution of individual skeletal components may have led to
the origination of distinct adaptive zones and morphologies among extant
carnivoran families that reflect phylogenetic hierarchies. Overall, our work
highlights the importance of examining multiple skeletal components simul-
taneously in ecomorphological analyses. Ongoing work integrating the fossil
and palaeoenvironmental record will further clarify deep-time drivers that
govern the carnivoran diversity we see today and reveal the complexity of
evolutionary processes in multicomponent systems.
1. Introduction
The diversity of animal forms is one of the most salient patterns across the tree
of life. In mammals, morphological innovations in the skull, appendicular skel-
eton and vertebral column facilitate the incredible diversity found today,
ranging from bats with winged forelimbs to the biggest animals to have ever
lived on Earth. Many researchers have examined how variation in the skull
[1–7], limbs [8–11] or vertebrae [12–16] serve as crucial adaptations to their evol-
ution. These skeletal systems are traditionally examined independently and are
rarely investigated simultaneously even though these anatomical regions com-
prise a single, functionally integrated system that serves as structural support
for movement, locomotion, and other life functions. When considered wholisti-
cally, the observed variation across the different components of organismal
anatomy is generally explained by multitudinous factors, some that are poten-
tially incongruous [17–20]. While this evolutionary push-and-pull between
anatomical regions may characterize the process of evolution, the hypothesis
can only be tested when the different skeletal components are explored simul-
taneously rather than piecemeal. Simultaneous investigation of integrated
components is critical to our understanding of the role of developmental
and/or functional integration in canalizing macroevolutionary trajectories
[21–23]. Here, we use carnivorans to investigate how ecological and phyloge-
netic factors correspond to evolutionary changes in the cranial, appendicular,
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and axial skeletal systems. Carnivorans (bears, cats, dogs,
seals, and their relatives) are a productive model system to
examine skeletal evolution because of their high species
richness and vast distribution across most biomes in all con-
tinents and oceans, along with broad ecological diversity in
locomotor traits and feeding adaptations.

Components of carnivoran skeletal systems are well
studied individually. In the skull, craniomandibular diversity
is influenced by several ecological factors and phylogeny
[24–28]. The skull exhibits decoupled evolutionarymodes: cra-
nial shape follows clade-specific evolutionary shifts, whereas
mandibular shape evolution is linked to broad dietary regimes
[6,29]. In the appendicular skeleton, ecomorphological diver-
gence exists between the hindlimbs, which are adapted
primarily for locomotion, and the forelimb, which are adapted
for multiple functions ranging from running to grappling prey
to manipulating objects [30–33]. Additionally, more recent
work using phylogenetic comparative methods found that
scaling and phylogeny exhibit stronger effects on limb evol-
ution than do ecological parameters [34–36]. In contrast to
craniomandibular and appendicular ecomorphology, research
on the axial skeleton is in nascent stages. Initial research
indicates that distinct regions of the vertebral column are
under different evolutionary pressures. Anterior (i.e. more
cranial) vertebrae exhibit low disparity due to phylogenetic
constraints or ecological conservatism, whereas posterior
(i.e. more caudal) vertebrae exhibit higher disparity that may
be due to adaptations to various locomotor ecologies [13,37].
In contrast to these morphologically localized studies, ana-
lyses of the evolution of whole-body traits like body mass,
skeletal size, and body shape often follow a Brownian
motion model or clade-based shift model rather than being
associated with ecological regimes [28,38,39].

Compared to skeletal system-specific findings, simul-
taneous investigation of skulls, limbs, vertebrae and overall
body plan are rarely conducted, likely because of the enor-
mous amount of data that would need to be collected and
the complexity of the multivariate analyses required. How-
ever, a more comprehensive approach to quantifying skeletal
evolution is essential to elucidate its complexity more fully.
The search for system-level trends and variations is further
obscured by the disparatemethods employed to test the effects
of ecology and phylogeny on different skeletal systems by
different researchers. In this study, we address both issues in
our investigation of the mosaic evolution of carnivoran skel-
etons by creating a new phenomic dataset that encompasses
all major components of the skeletal system and using a uni-
fied set of multivariate evolutionary models to test the
ecological and phylogenetic effects influencing the modes of
evolution of these skeletal components.
2. Methods
(a) Skeletal and ecological traits
We collected 103 linear measurements to capture the skeletal
morphology of 119 carnivoran species (208 osteological speci-
mens; electronic supplementary material, figure S1; electronic
supplementary material, table S1). This dataset includes seven
cranial traits, seven mandibular traits, 13 forelimb traits, 13 hind-
limb traits, and seven traits in third cervical, fifth cervical, first
thoracic, middle thoracic, diaphragmatic thoracic, last thoracic,
first lumbar, middle lumbar and last lumbar vertebrae. Because
carnivorans exhibit differing degrees of sexual dimorphism
[40,41], we use only male specimens. To remove size effects,
we calculated log shape ratios by dividing each skeletal trait by
the geometric mean of all 103 traits [42,43]. We then used princi-
pal component analyses (PCAs) to reduce the dimension of each
skeletal component (i.e. cranium, mandible, forelimb, hindlimb
and each of the nine vertebrae) and retained a number of PC
axes that corresponded to greater than 90% of the explained var-
iance. We also conducted a PCA on the entire dataset as our
proxy of the whole-skeleton phenome and retained the first six
PC axes (approx. 75% of explained variance) for subsequent
analyses. We classified the 119 carnivoran species into distinct
locomotor modes, hunting behaviours and dietary regimes
following [39].
(b) Phylogenetic comparative methods
We tested whether each skeletal component evolved as adap-
tation to specific ecological regimes or exhibited clade-specific
evolutionary shifts by fitting multivariate evolutionary models
on the retained PC axes of each skeletal component [44–46].
For the adaptive ecological models, we fit three multivariate
multi-optima Ornstein–Uhlenbeck (OU) models (i.e. mvOUMdiet,
mvOUMhunting and mvOUMlocomotion) to test if dietary, hunting
behavioural, or locomotor regimes influenced the evolution of
each skeletal component using mvMORPH [46]. The models
were fit across 500 stochastically mapped trees to account for
uncertainty in phylogenetic topology and ancestral character
states (see electronic supplementary material). We also calculated
the phylogenetic half-lives of the best supported adaptive eco-
logical model [44]. A short phylogenetic half-life relative to the
age of Carnivora (48.2 myr) would suggest that skeletal traits
are strongly pulled towards distinct ecological optima across
the adaptive landscape. For the clade-based model, we fit a
multi-optima OU model (mvOUMphyloEM) without a priori
ecological regimes with PhylogeneticEM [47]. We also fit a
single-rate multivariate Brownian motion model (mvBM1) and
a single-optimum OU model (mvOU1). We assessed the relative
support of models using small sample-corrected Akaike weights
(AICcW). Lastly, we assessed the covariation among skeletal
components using partial least squares with geomorph [48].

Preliminary results revealed that phenotypic differences
between pinnipeds (i.e. seals, sea lions, and the walrus) and ter-
restrial carnivorans are often the greatest source of variation for
most skeletal components. These results are unsurprising consid-
ering pinnipeds exhibit derived morphologies that enable them
to be fully aquatic. Therefore, we repeated our analyses using a
reduced dataset with no pinnipeds. Results of the full dataset
with pinnipeds are presented in the electronic supplementary
material.
3. Results and discussion
We found mosaic evolution of the carnivoran skeleton in
which ecology and phylogeny have differing influences on
the evolutionary mode of the various skeletal components.
Consistent with [6,29], the cranium and mandible exhibited
decoupled evolutionary modes. In the cranium, the clade-
specific shift model exhibited overwhelmingly greater
support (mvOUMphyloEM; AICcW> 0.99) compared to adap-
tive ecological models (figure 1; electronic supplementary
material, table S2). We found eight evolutionary shifts
in cranial morphology that correspond to carnivoran clades
(figure 2a). By contrast, the adaptive dietary model was the
best supported model (mvOUMdiet; AICcW= 0.96) for the
mandible with a short phylogenetic half-life of 2.52 myr
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Figure 1. Diagram of the skeletal components and their best-fitting evolutionary model on Lontra canadensis. AICcW are in parentheses. See electronic supplemen-
tary material, table S2 for full AICc table. diaT = diaphragmatic thoracic vertebrae.

3

royalsocietypublishing.org/journal/rsbl
Biol.Lett.20:20230526

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 Ja

nu
ar

y 
20

24
 

(figure 1; electronic supplementary material, figure S2b;
electronic supplementary material, table S2; see electronic
supplementary material, Supplementary Results for optima
distribution in phylomorphospace). These results are congru-
ent with findings revealing that mandibular shape is
evolutionarily labile with respect to dietary evolution
whereas cranial shape is partitioned among families rather
than among dietary groups [6]. Despite their covariation
(r = 0.73; electronic supplementary material, table S3),
decoupled evolutionary modes between the cranium and
mandible may be explained by their functions. Diet is often
found to have had a strong influence on mandibular evol-
ution because of its direct role in feeding [3,49–53]. By
contrast, the cranium has multiple sensory functions in
addition to feeding that influence its evolution [54–56], and
therefore, the signal from dietary adaptations in its
morphology may be obscured.

The appendicular system exhibited decoupled evolution-
ary modes between forelimbs and hindlimbs. The forelimb
was best supported by the mvOUMphyloEM model (AICcW>
0.99; figure 1; electronic supplementary material, table S2).
Seven shifts in forelimb evolution occur primarily along
familial branches (figure 2b), indicating that the complexity
and variation of carnivoran forelimb morphology cannot
be captured effectively by dietary, hunting behavioural or
locomotor categories. Instead, these shifts suggest that
clade-specific adaptations enabled the diversity of forelimb
skeletons for tasks such as grappling or manipulating prey,
swimming or digging [30–33,36,57,58]. For example, most
felids use their prehensile forelimbs to ambush and subdue
prey, most canids and hyaenids pounce and pursue prey,
and some mustelids use their powerful forelimbs to dig
out prey while other more derived mustelids (i.e. weasels)
pursue prey in tight crevices and burrows [59]. By contrast,
the hindlimb was best supported by the mvOUMlocomotion

model (AICcW= 0.83) in the hindlimb with a short phyloge-
netic half-life of 5.05 myr (figure 1; electronic supplementary
material, table S2), supporting hypotheses that the hindlimb
is adapted primarily for locomotion as typically found in
quadrupedal mammals [60]. Although the forelimb and
hindlimb covary (r = 0.87; electronic supplementary material,
table S3), previous work found that this integration is weaker
than expected in carnivorans that do not specialize in cursori-
ality [36]. This work together supports the hypothesis of
functional divergence between the forelimbs and hindlimbs
of carnivorans.

The axial skeleton exhibits distinct evolutionary modes
between the anterior and posterior regions of the vertebral
column: cervical and most thoracic vertebrae tended to be
best supported by clade-specific shift or single-peak OU
models, whereas the last thoracic and all lumbar vertebrae
were best supported by mvOUMhunting or mvOUMlocomotion

models (figure 1; figure 2c–f; electronic supplementary
material, table S2). Our findings strengthen the coalescing
hypothesis that anterior vertebrae exhibit lower disparity,
higher evolutionary constraints, and more subtle adaptations
to locomotion whereas posterior vertebrae exhibit the oppo-
site patterns in carnivorans [37] and broadly across
mammals [14]. We posit that high evolutionary constraints
of the anterior vertebrae are associated with clade-specific
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Figure 2. Clade-specific evolutionary shifts in skeletal components across terrestrial carnivorans identified by PhylogeneticEM. Shifts are represented as pink circles,
and branches on the phylogenies are coloured according to each regime.
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shifts in the cervical and most thoracic vertebrae. Importantly,
subtle adaptations in these anterior vertebrae could be
masked by many-to-one or one-to-many mappings, making
it difficult to uncover the form–function associations with
evolutionary models [61]. By contrast, relaxed evolutionary
constraints of the posterior vertebrae facilitate the evolution
of disparate lumbar vertebrae across the entire carnivoran
order. These disparate vertebrae adapt to diverse locomotor
modes or hunting behaviors based on the mobility of the
posterior vertebrae and irrespective of clade origins. The
short phylogenetic half-lives (1.47–5.12 myr) further suggests
strong pulls towards these different adaptive optima. More
broadly, this increased mobility of the lumbar region over
evolutionary time is hypothesized to be an innovation charac-
terizing crown mammals [14,62,63]. Correspondingly, the
posterior vertebrae are tightly integrated (r = 0.84–0.96;
electronic supplementary material, table S3).

Lastly, we found that the clade-specific shift model
(mvOUMphyloEM; AICcW> 0.99) best described the overall
skeletal phenome (electronic supplementary material,
table S2), a pattern that is consistent with previous investi-
gations of whole-body proxies such as body size and body
shape [28,38,39]. The mammalian body plan is comprised of
cranial, axial and appendicular components; therefore, its
multidimensionality transcends one-to-one mapping relation-
ships between morphology and ecological function. Instead,
individual skeletal components within distinct body plans
can adapt to specific ecological factors independently from
each other, enabling species with distinct body plans to exhibit
similar ecological or functional regimes and vice versa.
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Overall, we elucidate the mosaic evolution of the carni-
voran skeleton, finding that different skeletal components
exhibit distinct modes of evolution. Our results suggest
that different methodologies and taxonomic samples do
not necessarily explain previously reported region-specific
macroevolutionary patterns; rather, complexity in explana-
tory factors of skeletal diversity is a key feature of
Carnivora. The ability of individual skeletal components to
adapt to specific ecological factors independently from each
other may have contributed to the clade’s hierarchical [64,65]
evolution. As previously hypothesized [28,38], the restriction
of carnassial shear to the P4/m1 pair may have been the key
innovation that facilitated the initial carnivoran diversifica-
tion early in the clade’s evolutionary history. Subsequent
evolution led to the continual partitioning between clades,
resulting in the origination of extant carnivoran families as
discrete phylogenetic clusters that occupy different adaptive
zones [66] with distinct morphologies including body size
and shape [39,67] and various components of the skeleton
([6]; figure 2). Within-clade variation then arises to reflect
resource partitioning among ecologically similar taxa, lead-
ing to adaptations in morphologies such as the mandible,
hindlimb and posterior region of the vertebral column
(figure 1). These traits were strongly pulled towards distinct
ecological peaks across the adaptive landscape as revealed
by their short phylogenetic half-lives (1.47–5.12 myr) relative
to the clade’s age (48.2 myr).

Our research statistically revealed the mosaic evolution of
carnivoran skeletons. These distinct evolutionary modes
demonstrate the importance of examining multiple skeletal
components in ecomorphological analyses. Nevertheless,
key questions remain: what spurred the evolutionary tran-
sitions towards the evolutionary shifts or adaptations of the
various skeletal components? When in the 55 million years
of carnivoran evolutionary history did these evolutionary
events occur? And what developmental and genetic phenom-
ena underlie the evolutionary dissociation of various skeletal
elements? Ongoing work integrating the fossil and palaeoen-
vironmental record will further elucidate the carnivoran
diversity we see today and reveal the complexity of
evolutionary processes in multicomponent systems.
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