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Abstract

The conventional triangulation of 2-spheres and subdivision of tetrahedrons in R are
difficult to generalize to higher dimensions. The challenge lies in finding a system-
atic way to characterize each of subcells after the division. This work discusses the
dissection of high-dimensional hypercubes and presents a way where all subsequent
subcells and their symmetries can be systematically enumerated. Of particular interest
is a generic coordinate system that is employed to construct all cells through suitable
homeomorphisms. By repeatedly applying this generic coordinate to all cells, multi-
tasking in parallel is possible. On the other hand, the Borsuk-Ulam theorem asserts that
every continuous function from an n-sphere into the Euclidian n-space maps at least
one pair of antipodal points on the sphere with the same function value. The exquisite-
ness lies in that only the continuity is assumed in the theorem with yet such profound
applications. As an application, this enumeration scheme can be employed to find the
Borsuk-Ulam antipodal pair guaranteed without evoking any derivative information
for the task. Numerical experiments manifest the effectiveness and potential of this
enumeration scheme.

Keywords Borsuk-Ulam theorem - Hypercubes - Generic coordinates -
Homeomorphism - Spherical mean

1 Introduction

There are many questions in nature that seem basic to formulate but can be challenging
to answer. This work takes on two such problems and proposes to develop one possible
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approach to answer the first problem, which will then be employed to tackle the second
problem.

The first problem evolves from the seemingly straightforward dissection of high-
dimensional hypercubes. The challenge is at enumerating the resulting subcells
systematically in order to make use of them. Hypercubes are the multi-dimensional
extensions of squares and cubes, whose vertices and adjacent facets can easily be iden-
tified through sequences of binaries. In contrast to the mechanism that generalizes the
conventional bisection method to higher dimensional spaces in [1], which proceeds
via a sequence of brackets with infinite intersection is the set of points desired, we
offer to carry out the subdivision via symbolic tensor products which are realizable
through systematic “foldings” of matrices. The most important contribution is that we
offer an effective way to manage the enormous amount of data during the calculation.
In particular, we explore how the binary representation gives rise to a natural com-
binatorial description of the dissection process. By exploring this representation, we
uncover further its potential to harness high degrees of parallelism, enhancing both
the inherent interest and value of our research endeavor.

The second problem delves into the elegantly simple yet profoundly important
Borsuk-Ulam theorem [2, 3]. The challenge is at finding the theoretically guaranteed
Borsuk-Ulam antipodal points without relying on any derivative information of the
underlying function. To fix the idea, we state the Borsuk-Ulam theorem in its most
basic form as follows.

Theorem 1 Let S" stand for the unit sphere in R"*1. For every continuous function
f 8" = R", there exists a point x € S" such that f(x) = f(—x).

A popular interpretation for the case n = 2 of the Borsuk-Ulam theorem is that,
if we assume that the distributions of barometric pressure and the temperatures over
the surface are continuous respectively, then at any given instant there exists one pair
of antipodal places on Earth with the same pressure and the same temperature. The
Borsuk-Ulam theorem has found applications in a wide range of disciplines, including,
for example, combinatorics [4-6], differential equations [7, 8], geometry [3, 9], social
science [10, 11], and so on. See also the 457 references collected in the survey article
[12]. It is also remarkable that the Borsuk-Ulam theorem implies other theoretical
results such as the Brouwer fixed-point theorem [13, 14], the ham sandwich theorem
[15-17], the Lusternik-Schnirelmann theorem [18-20], and the Spencer’s lemma [21],
each of which is of mathematical interest in its own right with applications to other
areas. With such a wide range of consequences in both theory and applications, finding
an antipodal pair of points numerically for a given continuous function on the unit
sphere is of paramount importance. Since the sphere S” in the theorem can be replaced
by any homeomorphic image of S”, it suffices to work specifically on the cubical sphere
Q"1 i.e., the hypercube in R"*! that circumscribes S”.

If the underlying f is piecewise differentiable, then it is plausible to utilize, say,
the conventional projected Newton’s method to find the zeros of the odd function
g(x) ;= f(x) — f(—x). On the other hand, we are aware of at least two construc-
tive proofs of the Borsuk-Ulam theorems in the literature [7, 22]. Both approaches are
similar on the principle of path-following [23, 24]. The difference is that the technique
in [22] is applicable only to piecewise linear functions on Q"*! and its path is char-
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acterized by a polygon arc generated from a sequence of subdivided triangulations of
0"*1, whereas the path in [7] is defined as the pre-image of 0 of a homotopy map con-
necting the odd function g(x) to the function of projecting an arbitrary rotation of S”
to R”. For the former, a scheme similar to the simplex method in linear programming
is needed to trace the polygon arc. For the latter, if f(x) is piecewise continuously
differentiable, then the one-dimensional homotopy curve can be characterized by a
differential equation. These constructive proofs are claimed to be implementable for
numerical calculation, but so far as we know, the processes are only axiomatized with
no actual experimentation. Different from the methods provided in [7, 22], we pur-
posely challenge ourselves in this paper by insisting on not employing any derivative
information at all to find the antipodal points.

One possible way for finding the antipodal pair without utilizing any derivative
information of f is the brute force approach by systematically taking discrete samples
over the underlying sphere. Our initial idea is motivated by the fact that there are
many well-established methods for triangulating the unit sphere > effectively. See,
for example, the S2-sampling toolbox [25] written in the Matlab syntax. However,
it quickly becomes obvious that the “triangulation” for $”, n > 3, is a much more
complicated and daunting task for the reason that the notion of triangles imposed on
S? has to be generalized to polytopes on S” which have many more edges. When
subdivisions are needed repeatedly, tracking newly introduced vertices and facets
methodically becomes challenging. Later on, we also realize that, even though the well-
known Nelder-Mead simplex search algorithm [26] for multidimensional problems
does not require derivative information, the algorithm is designed for unconstrained
optimization. Some discussions on extending direct search methods to constrained
optimization can be found in the literature [27, 28], but the construction of feasible
search directions remains to be a major hurdle.

We therefore embark on the task of searching for the antipodal points on the cubical
sphere Q"*!. We follow a systematic two-phase approach. In the initial phase, we
locate a possible “cell” where the antipodal points might reside. In the second phase,
we conduct a refined search within the identified cell, aiming to attain the desired
precision in locating the antipodal points. The notion of spherical means is employed
to assess the relevance of a given cell. The main feature in our algorithm is that the
same mechanism of using generic coordinates is employed universally to carry out all
homeomorphisms. Our methodology encompasses both theoretical and algorithmic
aspects, providing a strong and reliable solution to both problems mentioned above.
Although our approach might appear somewhat aggressive, it has proven to be a sure-
fire technique, producing promising results in solving the Borsuk-Ulam theorem.

This paper is organized as follows. We begin in Sect.2 with a brief justification
on considering the Borsuk-Ulam theorem over the cubical spheres. Then, the idea of
using symbolic tensor products to characterize the midpoint subdivision of a hypercube
leads to the notion of generic coordinates which will serve as a reference point for all
subdivisions. The homeomorphism mapping from the generic coordinates to any given
cell is discussed in Sect. 3, which facilitates all future subdivisions while maintaining
the orientation. We further propose to represent each cell conveniently by a 1-D array
of positive integers, by which the tasks of forming new subcells, exploiting symmetry,
and identifying antipodality can be handled effectively. Some numerical examples are
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given in Sect. 4, including a mimicker of the continuous everywhere but differentiable
nowhere Weierstrass function.

2 Cubical sphere

The notion of hypercubes is a generalization of squares in R? and cubes in R> to
higher dimensional spaces. By a standard hypercube Q"' we mean the convex hull
of points in the form (1, ..., 1) € R"*! with all possible sign permutations.

One advantage of using hypercubes is that its vertices can be enumerated systemat-
ically. If we replace any -1 in the Euclidean coordinates of a given vertex of Q! by
0, then the resulting sequence (x,x,—1 ...Xp) can be cast as a binary representation
of the vertex which can be enumerated as an integer k € [0, 2"*!) via the formula

n
k k k)~ i
k=P xfn =) xj. )2 (1
Jj=0

In this way, we have introduced a specific ordering for the vertices of Q"*!. Keeping
this ordering in all subsequent subdivisions through homeomorphisms is critically
important.

The convex hull of vertices that have one common coordinate forms a side of the
hypercube. The hypercube Q”*! admits 2(n + 1) hypercubes in its boundary § 9"+,
each is homeomorphic to Q. Depicted in Fig. 1 are two of the ten sides of Q7.

Note that all vertices of the left hypercube have acommon bit 0 at the first coordinate,
while those of the right hypercube have a common bit 1 at the first coordinate. After
removing this common bit, both sides can be identified as Q*. There are eight other
“frusta in-between” with one common bit at other coordinates. The 5-dimensional
hypercube Q° is made of drawing an additional 16 edges connecting each vertex on
the left Q* to the corresponding vertex on the right Q* that differs by the first bit.

00000 00001 10000 10001
000 o1 000 11

0001 00011 1001Q, 100,
Y110 o110[ 11100 1110

010 11 11010, 1 11

-0@160 00101 10100 10101

01110 0N 11 11110 11

00110 00111 10110 10111

Fig.1 Vertices and adjacent edges of two of the ten sides of Q5
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2.1 Equivalence

Obviously, the boundary of Q”Jrl circumscribes S”. Given f : §" — R", define
g: 90" - R by

g(z) == f(W) @

If g(z) = g(—2z) for some z € Q™! then f(w) = f(—w) with w : IIZHz e S".
Conversely, if f(w) = f(—w) for some w € S”, then g(z) = g(—z) with z :=

HWH € 3Q™*! Tt s in this sense that, without loss of generality, our goal is to find

the antipodal points on the boundary of Q" ! to satisfy the Borsuk-Ulam theorem.

2.2 Subdivision mechanism

Each side of Q! is a hypercube with n2"~! edges. Two vertices on the hypercube
Q"+ are adjacent to each other if their binary sequences differ by one and only one
bit. Taking the middle point of each edge and making appropriate connections should
divide the side into 2" sub-hypercubes that are topologically equivalent to Q". We
shall refer to each of these sub-hypercubes obtained from the dissection of a given
hypercube as a cell. The challenge is at maintaining the consistency of ordering as
that of the original Q" and systematically identifying the vertices of each of the cells
in all subsequent divisions.

We first outline the general procedure in words. Then, we describe the mathematical
tools to carry out this procedure. The progression of complexity sketched in Fig. 2
should help assimilate the ideas.

1. Without loss of generality, assume that the vertices of the side being considered
are indexed in the binary form according to those of the standard Q".

2. Any two adjacent vertices differ by one bit. Represent the middle point of the
connecting edge by replacing that distinct bit with the symbol “a.”

3. Connect any two midpoints differing by one binary bit with a new edge Represent
the middle point of the new edge by replacing that distinct bit with the symbol “a.”
By the Varignon Theorem, the midpoint of the new edge is independent of Wthh
edge is used. See the middle graph in Fig. 2 for Q2.

4. Continue this procedure until all midpoints are labeled. See the right graph in Fig. 2
for Q3.

5. The vertices of each of the 2" cells can be identified in exactly the same way as
those of the standard hypercube Q", except that the binary representations are
replaced by the alphanumeric representations.

To carry out the subdivisions in general, we now introduce the idea of symbolic

tensor product. First, bisect Q' into two parts with the middle point a. Denote the
column vectors
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where entries of V| are the collection of vertices, including the midpoint, and u and v
represent the two subdivisions of Q. The subdivisions of Q2 shown in the middle graph
of Fig.2 with a total of 32 vertices can be identified via the symbolic tensor product!

00 Oa 01
Vo =ViQV, = 1®2E a0 aa al
10 1a 11

There are 22 cells, which can be represented through the four 2 x 2 matrices

u@u, u®vV, vu, vVQRY,

respectively. If we introduce an artificial bilinear operator H that satisfies the distribu-
tive property with respect to ® in the sense that

WEW? =wEYQuBY) =uuBuevBVeu H({vev),

then the cells of Q2 are the four terms in the expansion of (uEv) ®2 In a similar vein,
the 33 vertices for the subdivision of Q3 in the right graph of Fig.2 can be obtained
via the order-3 tensor product

V3i=Vi®@ V=V,

whereas the 23 cells can be identified via the binomial expansion (uH v)®3. Since the
midpoints on each edge will separate the original vertices from each other, each cell
contains one and only one original vertex. For example, the cell v®3 has vertices in

aaaallll
aallaall |,
alalalal

v =

which contains only 111 as the original vertex. Note that the symbol “a” is only a
generic indicator of a midpoint whose value depends on the true coordinates of the
corresponding endpoints. We shall describe a homeomorphism in Sect. 3.1 to calculate
the true values.

For high-dimensional problems, it becomes increasingly more difficult to conjure
up the image of all midpoints and newly created edges. For example, one side of Q° is
equivalent to Q* with 32 edges. A midpoint subdivision of Q% will produce 2* cells.
Each cell has 2* vertices. A sketch of further subdivisions would be more confusing,
if possible at all. We really should rely on a mathematical way to characterize the new
vertices and the new subcells of the subdivisions. The mechanism outlined above can
serve exactly that purpose.

! The tensor product is not the Kronecker product, though in the literature often the same notation is
used for both. Suppose we use o for the tensor product and ® for the Kronecker product, and assumes
the commutativity of multiplications among scalars or symbols, then vec(uov) = v®@u = vec(uVT).
Relevant to this paper, however, is that we do not assume the commutativity of multiplications among the
alphanumeric bits. The tensor product u ® v (more indicatively, u o v or uvT), therefore, yields the set of
ordered pairs {Oa, aa, 01, al}, which represents vertices for the cell at the upper-right corner in the middle
graph of Fig.2.
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2.3 Generic coordinates

The enumeration of the 2" vertices of Q" based on their binary digits sets a standard
orientation of the hypercube. From there, one subdivision of Q" contains 3" vertices
representable by V" and 2" cells representable by (u B v)®", all of which can also
be enumerated systematically. A typical vertex is made of n alphanumeric values O,
a, and 1, which will be called the generic coordinates. Being able to systematically
and automatically identify vertices and group them into relevant cells while keeping
their orientation is the main contribution of this paper.

Furthermore, the boundary 9 Q”+1 is made of 2(n + 1) sides each of which is topo-
logically equivalent to Q". Every subcell obtained from a subdivision of any cell at
any level remains equivalent to Q". The only difference is that the vertices of different
cells are located at places with different coordinates. Since the calculation for each cell
as well as its successive subdivisions is similar, it suffices to build one mechanism of
subdivision for the standard hypercube Q", and use it repeatedly whenever a subdivi-
sion is needed. Once we know how the generic coordinates of Q" in R” are mapped to
the true coordinates of each cell of 3 Q"*! in R"*!, the calculation is embarrassingly
parallelizable. It will be seen in the subsequent discussion that the homeomorphism
is in fact easy to obtain.

The procedure can be applied repeatedly to all sides of Q"*! to generate a finer mesh on
90"+ Actually, because of the symmetry, it suffices to work with n+1 sides. The goal
is to locate one patch or several patches of interest where the antipodal points might
reside. This is the initial phase. The same procedure can then be applied repeatedly
to the patch of interest, which is also equivalent to Q", to zoom in the search for the
antipodal points. This is the second phase. Both phases employ the same procedure.

3 Implementation

We have argued in the above that the symbolic tensor products can facilitate the
representations of the vertices and the subdivided hypercubes. In practice, we have
to know what the symbol a stands for in real values. Also, individual variables in
most computing devices, including symbolic variables, are typically assumed to be
scalars whose multiplications are commutative. We cannot use the Kronecker product
directly to simulate the tensor product. In our application, the point with coordinates
Oa is different from that with a0 and the tensor product certainly cannot be simplified
to 0. In this section, we propose a numerical algorithm to work around this hurdle, to
distinguish the values of a, and to effectively identify the needed homeomorphism.

3.1 Midpoint evaluation
We first explain the underlying homeomorphism between a given cell and the generic

coordinates. We then use the generic coordinates to calculate the true midpoints of the
given cell and complete one subdivision.
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Let the columns of C = [¢p, €1, ...Con_1] € R®+D*2" qenote the true coordinates
of 2" points in R"*!. These points can be the vertices of the top cell, i.e., one side
of the original Q"*!, or those of any of the smaller subcells after several levels of
subdivisions. Since C originates from one particular side of Q"*!, one row of C must
have the same value of either 1 or —1, regardless of the levels of subdivisions. This
unique marker can be regarded as a group identification. Inherited in C is that its
columns are specially ordered, which is passed down from the very top cell with the
same group ID and is maintained throughout all subdivisions. That is, the generic
coordinates corresponding to the kth column of C, k = 0, ..., 2" — 1, are precisely
the binary representation of the integer k over the vertices of Q". This defines a
homeomorphism between Q" and the convex hull of C.

Recall that Vl®" represents one subdivision of Q". Suppose now that C is to be
subdivided by taking midpoints at its edges. Our goal is to evaluate the true coordinates
of points corresponding to V1®" . The task can be accomplished as follows. For each
given generic point g = [g;] € {0, a, 1}" in V1®”, partition the indices 1, ..., n into
three disjoint sets

Z(g) = lialgi, =0}, A = {iplgi; =a}, O(®) = {iylgi, =1},

where some sets might be empty. While keeping g;, = 0 foriy € Z and g;, = 1 for

i, € O, replace a by 0 and 1 for each ig € A to create a total 2l new binary arrays,
where | A| denotes the cardinality of A. Convert the resulting binary arrays to integers

k1, ..., kya. Then, corresponding to the generic coordinates g, the true coordinates
of the point in the convex hull of C are given by
2l Al
1
g— o X} <, - 3)
J:

In this way, the cell C of 2" vertices is dissected into 2" subcells with a total of 3"
vertices. Once these subcells are identified, they can be further subdived.

3.2 Cell formation

We have already discussed that the subcells after one division of Q" can be obtained
via the expansion of (u B v)®* and that Vl®” specifies all vertices in an ordered
manner. Each cell, therefore, can be conveniently represented by a 1-D array of 2"
positive integers which are ordinal numbers of their vertices in the list of Vl®".

We begin with the example of d Q* which has eight sides. Each row of the matrix

(02 4 6 81012147]
1357 9111315
01 4 58 91213
304 — 23 6 710111415 7
01 2 3 8 91011
45 6 712131415
01 234567
| 8910111213 1415 |
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denotes one side of Q. The eight vertices of one side are identified by the integer
converted from the binary coordinates of vertices in the original Q*. See Fig.1. In
general, the boundary 8 Q"*! can be represented by a 2(n + 1) x 2" integer matrix.
These rows of Q"*! are easy to form because each side has only one common
coordinate of its vertices.

The symbolic tensor product V2" can be achieved by repeatedly and systemati-
cally copying the vector Vj to interleaved blocks. This undertaking can be effectively
implemented. See, for example, the command combvec in Matlab. However, to avoid
evoking the symbolic math engine, and also to allow a convenient arithmetic conver-
sion which will be explained later, we make an artificial substitution

0—->1 a—>2 1—3,

where the choice of the digits {1, 2, 3} is immaterial. Instead of writing V,, := V1®" as
an order-n tensor whose entries are made of arrays of n alphanumeric bits in {0, a, 1},
we represent V, as a matrix of size n x 3" whose entries are from the set {1, 2, 3}.
Instead of using the generic coordinates, the ordinal numbers of columns of V,, form a
natural way to enumerate the mesh points in the subdivision of Q". Instead of keeping
the full coordinates, we may use the ordinal numbers of V), to identify vertices of the
subcells.

With the above substitution, the first step is to replace uH v by the 1 x 4 row vector

Ui :=11,2,23],

so the information contained in (u B v)®" is precisely the same as that in U, := U f®”
which, similar to V,,, is obtained by repeatedly copying U to interleaved blocks, i.e.,
the tensor product U fb" can be represented by a matrix U, of size n x 4". For example,
U 1®3 leads to the 3 x 47 matrix

1223122312231223122312231223122312231223122312231223122312231223
Uz = | 1111222222223333111122222222333311112222222233331111222222223333
1111111111111111222222222222222222222222222222223333333333333333

Note the specific structure manifested in Uz by the action of the interleaved block
copying. Exploiting this regular pattern enables us to identify the vertices of individual
subcells by simply “folding” this matrix properly. Each of the 4" columns of U,
corresponds to one mesh point in V,. Identifying the mesh points by the column
numbers in V,, we can represent U, by a 1-D array Y, of integers in the range [1, 3"].
Checking the membership of U, in V,, can be done as follows. Let p denote an n-
dimensional vector of large random prime numbers. We encode each vertex v in V,,
in a tag number

t(v) = pTV.
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If the prime numbers are sufficiently far apart, then 7(v) is unique. In this way, we
can effectively generate Y, by checking the membership of 7(U,,) against #(V},). For
instance, the above U3 can be identified as the integer array

[1 2234556 45567 8 8910111112134 1415
T3=1314 141516 17 17 18] 10 11 11 12 13 14 1415[13 14 14 15 161717 18]
19 20 20 21 22 23 23 24| 22 23 23 24 25 26 26 27]

We have used the delimiter “|” to separate the entries into blocks of eight to prepare
for forming cells that will be explained below.

To completely characterize one subdivision of Q", the 4" integers in Y, must be
regrouped into 2" subcells. The task can be accomplished by systematically merg-
ing and folding Y}, which we outline below. The rationale behind is nothing but a
mechanical way to track the correspondence between combvec and the expansion of
(u @ v)®", The procedure involves no floating-point arithmetic.

1. Partition Y, from left to right into blocks with block size 1 x 8. See the example
Y3. Swap entries {3, 4} with {5, 6} in each block. Such a swap is to mechanically
fix an aftereffect due to the way the interleaving works. Denote the resulting blocks
as By, ..., Byw-s.

2. Arrange the blocks row-wise as a cell array

B B> B3 By
Bs Bg B7 Bg

Byon—3_5 Byon-3

That is, W,, has 221=5 « 4 containers, each with block size 1 x 8. This matrix will
be futher folded in the next step.

3. Assuming the relevant sizes are compatible, introduce the three commands for
convenience:

reshape(X,M,N) = rearrange elements from X columnwise to an M x N matrix,
cell2mat(C) = convert a multidimensional cell array C to a single matrix,

mat2tiles(X,M,N) = break X with adjacent chunks of size M x N into a cell array.

The rearrangement of W), can be described algorithmically as follows:

ifn=23
W_3 = mat2tiles(cell2mat (W_3),2,8);
W_3 = mat2tiles(cell2mat (reshape(W_3,1,[1)),2,4);

elseif n > 3
for iwrap = 1:n-3
fold = 2" (iwrap+l) ;
W_n = reshape(W_n’, fold, []
W_n = mat2tiles(cell2mat (W

)
n), fold, 8) ;
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end

W_n
fold, 4);
end

mat2tiles (cell2mat (reshape(W_n,1,[]1)),

At the end, W,, consists of 2" blocks with block size 22 x 4. Each block contains
2" vertices of one subcell. Each vertex corresponds to one mesh point in V;,.

. Reshaping each block of the final W,, into a row, we obtain a 2" x 2" matrix F,
of integers. The entries in each row of F), point to which vertices in V,, are to
be gathered to form one cell after one subdivision at the midpoints of Q”", and
maintain consistently the orientation of the original Q. We shall call F;, the cell
ID of Q" after one subdivision.

As an example, each side of d Q° is equivalent to Q> whose subdivision contains
32 cells. Each row of the 32 x 32 matrix F5 below represents the vertices of one cell.
The integers in a row correspond to the positions of columns in Vs.

o o=

8

o
ENRA &

5
8,
86

[

10 28 37 82 91109118
11 29 38 83 92110119
91109118163 172190 199
92110119164 173 191 200
13 31 40 85 94112121
14 32 41 86 95113122
94112121166 175193202
95113122167 176 194203

w N

11 29 38 83 92110119
12 30 39 84 93111120
92110119164 173191200
93 111120165174 192201
14 32 41 86 95113122
15 33 42 87 96114123
95113122167 176 194203
96114123 168 177 195 204

13 31 40 85 94112121
14 32 41 86 95113122
94112121166 175 193202
95113122167 176 194 203
16 34 43 83 97115124
17 35 44 89 98116125
97115124169 178 196 205
98116125170 179 197 206

o % %
© o AR W

9
Bl

=1

14 32 41 86 951131227
15 33 42 87 96114123
95113122167 176 194203
96114123168 177 195 204
17 35 44 89 98116125
18 36 45 90 99117126
98116125170 179 197 206
99117126 171 180 198 207

13 22 40 49 94103121130
14 23 41 50 95104122131
94103 121130175184 202211
95104122131176 185203212
16 25 43 52 97106124133
17 26 44 53 98107125134
97106124 133 178 187205214
98107 125134179 188206 215

14 23 41 50 95104122131
15 24 42 51 96105123132
95104 122131176 185203212
96105123 132177 186204 213
17 26 44 53 98107125134
18 27 45 54 99108126135
98107125134 179 188206215
99108 126 135 180 189207 216

10
11 20 38 47 92101119128
91100118127 172181199208
92101119128 173 182200 209
13 22 40 49 94103121130
14 23 41 50 95104122131
94103 121130175 184202211
95104 122131176 185203212
28 37 55 64109118136145 29 38 56 65110119137146 31 40 58 67112121139148 32 41 59 68113122140 149
29 38 56 65110119137146 30 39 57 66111120138147 32 41 59 68113122140149 33 42 60 69114123 141150
109 118 136 145190 199217226 110 119 137 146 191200 218 227 112 121 139 148 193 202220229 113 122 140 149 194 203 221 230
110119137146 191200 218 227 111 120 138 147 192201 219228 113 122 140 149 194 203 221230 114 123 141 150 195 204 222 231
31 40 58 67112121139148 32 41 59 68113122140149 34 43 61 70115124 142151 35 44 62 71116125143152
32 41 59 68113122140149 33 42 60 69114123141150 35 44 62 71116125143152 36 45 63 72117126144 153
112121139 148 193202220229 113 122 140 149 194203 221 230 115 124 142 151 196 205223232 116 125 143 152 197 206 224 233
113122140 149 194203221230 114 123 141 150 195204 222231 116 125 143 152 197 206224 233 117 126 144 153 198 207 225 234
37 46 64 73118127145154 38 47 65 74119128146155 40 49 67 76121130148157 41 50 68 77122131149 158
38 47 65 74119128146155 39 48 66 75120129147156 41 50 68 77122131149158 42 51 69 78123132150 159
118127 145 154 199 208 226 235 119 128 146 155200 209 227 236 121 130 148 157202211 229238 122 131 149 158 203 212230 239
119 128 146 155200209 227 236 120 129 147 156 201 210 228 237 122 131 149 158 203212230239 123 132 150 159 204 213 231 240
40 49 67 76121130148157 41 50 68 77122131149158 43 52 70 79124 133151160 44 53 71 80125134152161
41 50 68 77122131149158 42 51 69 78123132150159 44 53 71 80125134152161 45 54 72 81126135153 162
121130148 157202211 229238 122 131 149 158 203212230239 124 133 151 160 205214 232241 125 134 152 161 206 215 233 242
L 122131149 158 203212230239 123 132150 159204 213 231 240 125 134 152 161 206 215233 242 126 135 153 162 207 216 234 243 |

19 37 46 91100118127 11 20 38 47 92101119128
12 21 39 48 93102120129
92101119128 173 182200 209
93102120129 174 183201210
14 23 41 50 95104122131
15 24 42 51 96105123132
95104122131 176 185203212
96105123 132177186204 213

Since each cell of Q" is homeomorphic to Q" itself, and since we know their exact
locations in the space, the same algorithm can be applied repeatedly to subdivide the
cells for further refinement, i.e., each cell can be subdivided into another 2" subcells.
Let V,,(k) and F,Sk), k =1,2,..., denote the set of vertices and cell IDs after Q" has
been subdivided & times. In the above example, therefore, Fs(l) = Fs5. Because we

use the same machinery to produce subcells, we know how the subcells in Fn(k) are
stratified one layer after another.

@ Springer



Numerical Algorithms

3.3 Symmetry

Since 3 Q" *! is centrally symmetric, we should exploit the symmetry inherent in both
the vertices and the cells throughout the subdivision. By doing so, we can effectively
cut the calculation by half. The symmetry inherited in V,,(l) and F, n(]) is easy to discern,
but after Q" has been subdivided & times, tracking the symmetry is not that obvious.
Our way of enumerating V,,(k) and Fn(k) identifies symmetry easily.

For convenience, we store the data after £ subdivisions in a single structure array
Qd with the field containers to distinguish the data, thatis, Qd.X = Vn(k) and Qd.F =
F,gk) . We exploit the stratification in Qd.F by folding and flipping as follows to obtain
F1 and F2 as antipodal cells, and columns in the matrices X 1 and X2 as antipodal
vertices.

FF = reshape(Qd.F’, (2"n) " (k+1)),I[1);
F(:,2:2:end) = flipud(FF(:,2:2:end)) ;
Fl = reshape(FF(:,1:2:end),2"n,[])"’;
F2 = reshape(FF(:,2:2:end),2"n,I[])";

BB = sort(reshape(FF’',2,[]1)",2);
Anti = unique (BB, 'rows’, 'stable’);
X1l = Qd.X(:,Anti(:,1));

X2 Qd.X(:,Anti(:,2));

3.4 Spherical mean

Assign the weight w (x) := || f (x) — f (—X)|| to each pointx € 9 Q”Jrl . We use w (x) to
help search for an approximate location of the Borsuk-Ulam points. Ideally, we should
look for the place where w(x) = 0. Since we only have a discrete approximation of
a 0", we shall settle for w(x) < € with a preselected tolerance €.

Suppose that C = [cg, €1, ...cxm_1] € R®TD*2" denote a typical cell on 9 Q" !
after several levels of subdivisions. The average weight of the cell C is given by

1
Vommearc [ @4V @
C

which is analogous to the notion of spherical mean [29-31]. We look for the few cells
that have relatively lighter weights than others and then continue to refine the cells by
further subdivisions. The rationale is that, by continuity, the values of w(x) at points
nearby the Borsuk-Ulam points should also be nearly zero. The proper size of the
neighboring cell, of course, is problem-dependent. If the mesh is not fine enough or
if the weights at the vertices of one specific cell vary drastically, it is possible that we
might miss the correct cell. To safeguard against this possible failure, we choose in
the initial phase a few extra antipodal cells, and apply the refinement process to all of
them.
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Since all cells at the same level of subdivision have the same volume, we only need
to compute the integral which can be approximated by the Riemann sum. To better
approximate the Riemann sum, we use our subdivision technique to dissection C a
few more levels deeper and compare the sums of w(x) at all vertices within the cell C
with its peers. These extra dissections are not wasted because they can be reused for
the next subdivision.

3.5 Overhead count

While the subdivision mechanism described above for generating mesh points involves
mostly combinatorial manipulations and very few actual computations, the algorithm
does generate an enormous amount of data.

To subdivide Q3, we find that the total number of distinct vertices generated in V;M
is given by exactly 3(2%*1) 42, whereas for the case Q*, there will be 4(23%+1 4-2k+1)
distinct vertices in V4(k). For Q" in general, the cardinality of points in Vn(k) grows like
O (n2=Dk+1) A numerical example is given in Sect. 4.

3.6 Code organization

The above discussion can be put together to become an algorithm which we summarize
below.

Algorithm 1 Finding Borsuk-Ulam Points

REQUIRE: Create an homeomorphism, if necessary, define the objective function f : 9 ontl R,
ENSURE: Antipodal points where f(x) ~ f(—X).
: Create and store the cell information of 8Q”+l in Qd.
2: Create the main mechanism “Cube Divider” using generic coordinates.
3: Apply the “Cube Divider” to divide d 0"t1 k; times and store the cell information in Qd1. > [can be
done in parallel]
4: Multitasking: Use the procedure described in Section 3.3 to identify antipodal cells F1 and F>, denoted
by the cell IDs by and by, respectively, and copy Qd1 to Qd3 to prepare for the local search.
5: Multitasking: Apply the “Cube Divider” to subdivide Qd1 k; times and store the cell information in
Qd? to prepare for spherical means calculation.
6: Evaluate f(Q2.F) and patch groups into Sg. > [can be done in parallel]
7: Identify the patches with minimal spherical means and integrate the corresponding patches that make
up the cells in Qd3.
8: Apply the “Cube Divider” to subdivide the potential cell Qd3 k3 times.
9: Test whether the “meshsize” is less than €. Either stop the iteration or redefine Qd3 as Qd1 and return
to Step 3. > [sizes are much smaller]

—_

It might be more informative to also outline the algorithm in the flowchart depicted
in Fig. 3. A recurring theme throughout the calculation is the call for the subroutine
“Cube Divider” which is the apparatus of applying the generic coordinates to the
current cells. We also denote in the flowchart the two phases of calculation which
essentially embody the same procedure by using different sets of data marked in
the structure array Qd1. In the global search, Qd1 contains all data after a0t is
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Generic

Coordinates
can be in parallel

[
4 Cube Divider
I — |
5 d. X
f: OQ“Z —R" Qd QQdAF k1 times

Global Search

Local Search

Antipodal
QaLx ok
. F1,F2

no 4[f(Qd24X)]<— 8’;%55 l«—— Cube Divider
yes
ks times
<o o <o

I Cell IDs

b1,b2

Patch Groups
Sd

l

‘ 0 ‘ Qd3.X
ini Qd3.F
Spherical Means Minimal 0 ’—>

Patch(s) ‘ ' ‘ ¢—]—‘

Cube Divider

k3 times

Fig.3 Algorithm flowchart

subdivided k; times. In the local search, Qd 1 contains data after one patch, identified
as Qd3, is subdivided k3 times. The data needed in the local search is much smaller
than that in the global search, as will be demonstrated in Table 1 in our numerical
experiments. The subdivision of Qd1 to Qd?2 is for the purpose of approximating the
spherical means for cells in Qd3.

At three places in the flowchart, we mark that multitasking is possible because the
data involved can be divided into independent work. For example, when generating
data from Qd to Qd1 by dividing 9"+, the task can be accomplished by working
with separate sides. How the parallelism is carried out depends on what comprises
the parallel device and how the compiler handles the multitasking. In our numerical
experiments, we use merely the available Matlab Parallel Computing Toolbox on an
8-core machine.

The few snippets in Sect. 3.2 demonstrate how the generic coordinates are formed
by matrix folding, which is the essence of the routine “Cube Divider,” whereas the cell
IDs, b1 and b2, of the antipodal cells F1 and F?2, together with the patch group IDs
Sd are integer arrays for helping the calculation of the spherical means. The actual
program we have developed for the following experiments is much more sophisticated.
For interested readers, we will make our code available upon request.
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4 Numerical experiments

In this section, we apply our dissection method to some selected functions and report
the empirical results.

Example 1 Though our emphasis in this work is on not utilizing any derivative infor-
mation, a test on smooth functions has the advantage of using other techniques to
produce a more accurate approximation to the true solution, which can be used as a
basis of comparison with our brute force algorithm. Consider the case of a high-order
polynomial system f : Q3 — R? where

x12+x§ + X1 X203 +x1 X2 +X2x3 —x] — 1 —Xx2 —x3 :|

fx)=
w2443 46 )0+ 4 9 x5 + (0 +xF + D] +Ha]) 5 a3 — D (3 +x) +af 4257 +xf —xf—xd —xf -3

It can be checked that the zero set of the odd function g(x) = f(x) — f(—X) is
a l-dimensional algebraic variety in R3. When restricted to 8 Q3, there is one unique
antipodal pair. We find by the Newton method that the antipodal pair is given by

X := [+1, 70.8570772441361144, 70.07696112604641343] "

which almost satisfy the Borsuk-Ulam theorem with @ (X) ~ 1.8310 x 10~15,

For the global search, we subdivide each side four times with mesh size 273,
Using the spherical mean, we find one subcell that happens to contain X in its inte-
rior. Upon further refinement, we locate our numerical solution x* with mesh size at
approximately 27! and final & (x*) & 3.2790 x 10~!!. Subdividing the hypercube 52
times to reach nearly machine precision seems expensive, but the dissection process
is applied to one patch only each time and the technique described in this paper makes
the bookkeeping effectively.

Example 2 The Weierstrass function defined by the Fourier series

h(x:a,b) := Y a*cos(b*nx), 5)
k=0

where (a, b) are fixed parameters with 0 < a < 1 and b being a positive odd integer

satisfying ab > 1 + %n, is a classical example of a continuous everywhere but

differentiable nowhere function. This Fourier series converges uniformly on R. It is

not possible to visualize this function precisely even on high-resolution computers.
Take a = .9 and b = 7. Consider the partial sum

7
hx) ==Y 9 cos(T'x) + p(x), xe[-1.1],
k=0
where the term p(x) is added to break the evenness of the cosine function. Although

h(x) is continuously differentiable, we use its high-oscillation behavior to simulate the
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non-differentiability of & _(x; a, b).For our test, we consider the function f : 9 Q3 —- R
defined by a mixture of 4 (x) via

F&) = (h(x1) + sin(x2)) (h(x2) + x3).

This function f is scalar-valued, so it is not in the full form of the Borsuk-Ulam
theorem. Still, antipodal points satisfying f(x) = f(—x) should exist. This partic-
ular f(x) is a complicated function that cannot be easily resolved. The left graph
in Fig. 4 is a low-resolution plot (at 50 evaluation points per direction) of the set
E = {x € Q3lfx) = f(—x)}. This stalactitic and stalagmitic surface is not even
close to revealing the delicate details. We are only interested in the solutions on the
boundary 3 Q3. The right graph in Fig. 4 is a high-resolution plot (at 5000 evaluation
points per direction) of E at the face z = 1. The bottom graph is a high-resolution
plot of E at y = —1. Needless to say, there are lots of antipodal solutions on 3 Q> to
satisfy the Borsuk-Ulam theorem.

Using the same initial mesh size 273 as in Example 1 and the minimal spherical
mean criteria, we find an approximate solution

x* ~ [£0.513602491897643, ££0.555251817860182, &1.000000000000000] "

with final o value at approximately 6.8593 x 10~. Using a smaller initial mesh size
24 for the global search, we find another approximate solution

x* 2 [F0.140994477289453, 0.858994588808685, +1.000000000000000]

with o (x*) &~ 5.7130 x 107°.

Example 3 On a broader scope, we may interpret our algorithm as a means for finding
the global minimum of a continuous, nonnegative, and even function w : 9 Q"Jrl — R.
The extension of the well-known Nelder-Mead simplex search algorithm for this pur-
pose is not very satisfactory because determining the search direction and proving the
convergence are challenging, as has been discussed in [27], and, even more disap-
pointingly, gives rise to only a local minimum. In contrast, our brute force approach
deals specifically with the constraint d 9" *! and is a sure-fire method.

Consider the minimization of w (x) = | p(x)| and its minimizer(s) over the compact
set 30> where p(x) is a randomly generated odd polynomial given by:

p(x) = 8x37x42 + 24xx3%x4% + (2x57 + 2)x3° + (2x1% + 2x1)x3*
+ (2)613)653 + 2x1xs3 + 8)(46 + (24)522 + 2))542 + 2X52 — 2))(33
+ (2)642)C53 + 4x13 + 2)62)652 +4x) + 2x2)x32 + (2x13x2
+ 20130 4 2x47 — 2)x3 + ((2x52 + 2)x47 + 2x0x5° — 2)(x1° + x1)
+ 8x2x4% + (8x2° + 2)653))642 + 2xx5% — 2x5° — 2x2.
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Zero Set of f(x)-f(-x) in Example 2 Top View of Zero Set of f(x) in Example 2
—_—

Front View of Zero Set of f(x)-f(-x) in Example 2
s =t :

YT

1

0.5

i

Fig.4 Solutions to Example 2

Using our algorithm, we do find an approximate minimizer at

x* & [£0.625005779438879, F0.749996406646233,
£ 0.539866285713742, F0.187325815015356,

T 1.000000000000000] "

with @ (x*) &~ 1.2335 x 10713,

Tabulated in Table 1 is a possible configuration of our division mechanism and
the corresponding sizes of data generated in trying to solve the problem. In the left
table at level k; = 0, Q> has 25 vertices and 10 sides to begin with. Each side
is equivalent to a hypercube Q* whose subdivision at the midpoint will generate 2*
subcells. Therefore, the number of cells grows exponentially as 10(2*)¥1. Suppose that
we have subdivided 0 Q5 three times, i.e., k| = 3. There will be 40960 candidates of
subcells for further refinement. However, recall that all cells are identified by integers
and that we can enumerate them systematically for further subdivision if so needed.

A different strategy is to work with one side at a time and choose the potentially
best side. In this way, the number of subcells for each side is reduced by a factor of
10. Taking into account the symmetry, we can further reduce the number of cells by
a factor of 2. The work on each side is independent of each other and, hence, can be
executed in parallel.
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Table 1 Overhead at different
configurations of subdivisions

Global Search Spherical Mean

[levelk] | #vertices | #cells | levelky | #vertices | #subcells |
[ o | 32| 0] | J
[ 1 | 242 160 | | | ]
2 2882 2560 Subdivide for Spherical Means
42242 40960
2 660482 655360
3 ma 40960 Subdivide for Spherical Means
660482 655360
2 10506242 10485760
4 660482 655360 Subdivide for Spherical Means
1 | 10506242 | 10485760
[ Local Search ]
[[levelky [ #vertices [ #ecells |
o ] 32 ] 2|
1 162 32
2 1250 512
3 13122 8192
4 167042 131072

To choose a potential subcell, we subdivide each subcell k; times and compare
the approximate spherical means. Once a patch is selected for refinement, the same
strategy can be applied repeatedly. In each cycle of the local search, we start with 27
vertices and 2 cells in tandem of symmetry, which is much cheaper than the global
search.

In this experiment, we have chosen ki = 4, ko = 1, k3 = 3, and repeated the
local search 45 times. The final mesh size is approximately 3.5526 x 10~ and an
approximate solution with reasonable precision is found.

5 Conclusion

We propose a brute force algorithm to find the antipodal points on the boundary of
the hypercube Q"*! promised by the Borsuk-Ulam theorem. Only the continuity of
the underlying function is used. In order to accomplish this task, we must be able
to enumerate all cells, their vertices, and their orientation. The main contribution of
this paper is to offer a way to overcome this challenge. As with all direct search
algorithms, an enormous amount of points will be needed for comparison. However,
by taking advantage of the binary representations of vertices, we argue that just one
dissection of Q" is enough to serve as a universal mechanism of generic coordinates,
and that this universal frame can be constructed via appropriate foldings of the data
matrix. Any further dissections can be obtained with appropriate homeomorphisms.
Numerical experiments suggest the effectiveness and potential of this enumeration
scheme.
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