
Numerical Algorithms
https://doi.org/10.1007/s11075-023-01716-5

ORIG INAL PAPER

On the enumeration of subcells within hypercubes
and its application to the Borsuk-Ulam theorem

Moody T. Chu1 ·MatthewM. Lin2

Received: 27 July 2023 / Accepted: 27 November 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The conventional triangulation of 2-spheres and subdivision of tetrahedrons in R3 are
difficult to generalize to higher dimensions. The challenge lies in finding a system-
atic way to characterize each of subcells after the division. This work discusses the
dissection of high-dimensional hypercubes and presents a way where all subsequent
subcells and their symmetries can be systematically enumerated. Of particular interest
is a generic coordinate system that is employed to construct all cells through suitable
homeomorphisms. By repeatedly applying this generic coordinate to all cells, multi-
tasking in parallel is possible. On the other hand, the Borsuk-Ulam theorem asserts that
every continuous function from an n-sphere into the Euclidian n-space maps at least
one pair of antipodal points on the sphere with the same function value. The exquisite-
ness lies in that only the continuity is assumed in the theorem with yet such profound
applications. As an application, this enumeration scheme can be employed to find the
Borsuk-Ulam antipodal pair guaranteed without evoking any derivative information
for the task. Numerical experiments manifest the effectiveness and potential of this
enumeration scheme.

Keywords Borsuk-Ulam theorem · Hypercubes · Generic coordinates ·
Homeomorphism · Spherical mean

1 Introduction

There are many questions in nature that seem basic to formulate but can be challenging
to answer. This work takes on two such problems and proposes to develop one possible

B Matthew M. Lin
mhlin@mail.ncku.edu.tw

Moody T. Chu
chu@math.ncsu.edu

1 Department of Mathematics, North Carolina State University, Raleigh NC 27695-8205, USA

2 Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01716-5&domain=pdf

Numerical Algorithms

approach to answer the first problem, whichwill then be employed to tackle the second
problem.

The first problem evolves from the seemingly straightforward dissection of high-
dimensional hypercubes. The challenge is at enumerating the resulting subcells
systematically in order to make use of them. Hypercubes are the multi-dimensional
extensions of squares and cubes, whose vertices and adjacent facets can easily be iden-
tified through sequences of binaries. In contrast to the mechanism that generalizes the
conventional bisection method to higher dimensional spaces in [1], which proceeds
via a sequence of brackets with infinite intersection is the set of points desired, we
offer to carry out the subdivision via symbolic tensor products which are realizable
through systematic “foldings” of matrices. The most important contribution is that we
offer an effective way to manage the enormous amount of data during the calculation.
In particular, we explore how the binary representation gives rise to a natural com-
binatorial description of the dissection process. By exploring this representation, we
uncover further its potential to harness high degrees of parallelism, enhancing both
the inherent interest and value of our research endeavor.

The second problem delves into the elegantly simple yet profoundly important
Borsuk-Ulam theorem [2, 3]. The challenge is at finding the theoretically guaranteed
Borsuk-Ulam antipodal points without relying on any derivative information of the
underlying function. To fix the idea, we state the Borsuk-Ulam theorem in its most
basic form as follows.

Theorem 1 Let Sn stand for the unit sphere in R
n+1. For every continuous function

f : Sn → R
n, there exists a point x ∈ Sn such that f (x) = f (−x).

A popular interpretation for the case n = 2 of the Borsuk-Ulam theorem is that,
if we assume that the distributions of barometric pressure and the temperatures over
the surface are continuous respectively, then at any given instant there exists one pair
of antipodal places on Earth with the same pressure and the same temperature. The
Borsuk-Ulam theorem has found applications in awide range of disciplines, including,
for example, combinatorics [4–6], differential equations [7, 8], geometry [3, 9], social
science [10, 11], and so on. See also the 457 references collected in the survey article
[12]. It is also remarkable that the Borsuk-Ulam theorem implies other theoretical
results such as the Brouwer fixed-point theorem [13, 14], the ham sandwich theorem
[15–17], the Lusternik-Schnirelmann theorem [18–20], and the Spencer’s lemma [21],
each of which is of mathematical interest in its own right with applications to other
areas.With such a wide range of consequences in both theory and applications, finding
an antipodal pair of points numerically for a given continuous function on the unit
sphere is of paramount importance. Since the sphere Sn in the theorem can be replaced
by any homeomorphic image of Sn , it suffices towork specifically on the cubical sphere
Qn+1, i.e., the hypercube in Rn+1 that circumscribes Sn .

If the underlying f is piecewise differentiable, then it is plausible to utilize, say,
the conventional projected Newton’s method to find the zeros of the odd function
g(x) := f (x) − f (−x). On the other hand, we are aware of at least two construc-
tive proofs of the Borsuk-Ulam theorems in the literature [7, 22]. Both approaches are
similar on the principle of path-following [23, 24]. The difference is that the technique
in [22] is applicable only to piecewise linear functions on Qn+1 and its path is char-

123

Numerical Algorithms

acterized by a polygon arc generated from a sequence of subdivided triangulations of
Qn+1, whereas the path in [7] is defined as the pre-image of 0 of a homotopy map con-
necting the odd function g(x) to the function of projecting an arbitrary rotation of Sn

to Rn . For the former, a scheme similar to the simplex method in linear programming
is needed to trace the polygon arc. For the latter, if f (x) is piecewise continuously
differentiable, then the one-dimensional homotopy curve can be characterized by a
differential equation. These constructive proofs are claimed to be implementable for
numerical calculation, but so far as we know, the processes are only axiomatized with
no actual experimentation. Different from the methods provided in [7, 22], we pur-
posely challenge ourselves in this paper by insisting on not employing any derivative
information at all to find the antipodal points.

One possible way for finding the antipodal pair without utilizing any derivative
information of f is the brute force approach by systematically taking discrete samples
over the underlying sphere. Our initial idea is motivated by the fact that there are
many well-established methods for triangulating the unit sphere S2 effectively. See,
for example, the S2-sampling toolbox [25] written in the Matlab syntax. However,
it quickly becomes obvious that the “triangulation” for Sn , n ≥ 3, is a much more
complicated and daunting task for the reason that the notion of triangles imposed on
S2 has to be generalized to polytopes on Sn which have many more edges. When
subdivisions are needed repeatedly, tracking newly introduced vertices and facets
methodically becomes challenging. Later on,we also realize that, even though thewell-
known Nelder-Mead simplex search algorithm [26] for multidimensional problems
does not require derivative information, the algorithm is designed for unconstrained
optimization. Some discussions on extending direct search methods to constrained
optimization can be found in the literature [27, 28], but the construction of feasible
search directions remains to be a major hurdle.

We therefore embark on the task of searching for the antipodal points on the cubical
sphere Qn+1. We follow a systematic two-phase approach. In the initial phase, we
locate a possible “cell” where the antipodal points might reside. In the second phase,
we conduct a refined search within the identified cell, aiming to attain the desired
precision in locating the antipodal points. The notion of spherical means is employed
to assess the relevance of a given cell. The main feature in our algorithm is that the
same mechanism of using generic coordinates is employed universally to carry out all
homeomorphisms. Our methodology encompasses both theoretical and algorithmic
aspects, providing a strong and reliable solution to both problems mentioned above.
Although our approach might appear somewhat aggressive, it has proven to be a sure-
fire technique, producing promising results in solving the Borsuk-Ulam theorem.

This paper is organized as follows. We begin in Sect. 2 with a brief justification
on considering the Borsuk-Ulam theorem over the cubical spheres. Then, the idea of
using symbolic tensor products to characterize themidpoint subdivision of a hypercube
leads to the notion of generic coordinates which will serve as a reference point for all
subdivisions. The homeomorphismmapping from the generic coordinates to any given
cell is discussed in Sect. 3, which facilitates all future subdivisions while maintaining
the orientation. We further propose to represent each cell conveniently by a 1-D array
of positive integers, by which the tasks of forming new subcells, exploiting symmetry,
and identifying antipodality can be handled effectively. Some numerical examples are

123

Numerical Algorithms

given in Sect. 4, including a mimicker of the continuous everywhere but differentiable
nowhere Weierstrass function.

2 Cubical sphere

The notion of hypercubes is a generalization of squares in R
2 and cubes in R

3 to
higher dimensional spaces. By a standard hypercube Qn+1 we mean the convex hull
of points in the form (±1, . . . ,±1) ∈ R

n+1 with all possible sign permutations.
One advantage of using hypercubes is that its vertices can be enumerated systemat-

ically. If we replace any -1 in the Euclidean coordinates of a given vertex of Qn+1 by
0, then the resulting sequence (xnxn−1 . . . x0) can be cast as a binary representation
of the vertex which can be enumerated as an integer k ∈ [0, 2n+1) via the formula

k = (x (k)
n x (k)

n−1 . . . x (k)
0)2 =

n∑

j=0

x (k)
j 2 j . (1)

In this way, we have introduced a specific ordering for the vertices of Qn+1. Keeping
this ordering in all subsequent subdivisions through homeomorphisms is critically
important.

The convex hull of vertices that have one common coordinate forms a side of the
hypercube. The hypercube Qn+1 admits 2(n + 1) hypercubes in its boundary ∂Qn+1,
each is homeomorphic to Qn . Depicted in Fig. 1 are two of the ten sides of Q5.

Note that all vertices of the left hypercubehave a commonbit 0 at thefirst coordinate,
while those of the right hypercube have a common bit 1 at the first coordinate. After
removing this common bit, both sides can be identified as Q4. There are eight other
“frusta in-between” with one common bit at other coordinates. The 5-dimensional
hypercube Q5 is made of drawing an additional 16 edges connecting each vertex on
the left Q4 to the corresponding vertex on the right Q4 that differs by the first bit.

00000 00001

00011

00100 00101

00111

01000 01001

01010 01011
01100 01101

01110 01111

00110

00010

10000 10001

10011

10100

10111

11000 11001

11010 11011
11100 11101

11110 11111

10110

10010

10101

Fig. 1 Vertices and adjacent edges of two of the ten sides of Q5

123

Numerical Algorithms

2.1 Equivalence

Obviously, the boundary of Qn+1 circumscribes Sn . Given f : Sn → R
n , define

g : ∂Qn+1 → R
n by

g(z) := f (
z

‖z‖2). (2)

If g(z) = g(−z) for some z ∈ ∂Qn+1, then f (w) = f (−w) with w := z
‖z‖2 ∈ Sn .

Conversely, if f (w) = f (−w) for some w ∈ Sn , then g(z) = g(−z) with z :=
w

‖w‖∞ ∈ ∂Qn+1. It is in this sense that, without loss of generality, our goal is to find

the antipodal points on the boundary of Qn+1 to satisfy the Borsuk-Ulam theorem.

2.2 Subdivisionmechanism

Each side of Qn+1 is a hypercube with n2n−1 edges. Two vertices on the hypercube
Qn+1 are adjacent to each other if their binary sequences differ by one and only one
bit. Taking the middle point of each edge and making appropriate connections should
divide the side into 2n sub-hypercubes that are topologically equivalent to Qn . We
shall refer to each of these sub-hypercubes obtained from the dissection of a given
hypercube as a cell. The challenge is at maintaining the consistency of ordering as
that of the original Qn and systematically identifying the vertices of each of the cells
in all subsequent divisions.

We first outline the general procedure inwords. Then, we describe themathematical
tools to carry out this procedure. The progression of complexity sketched in Fig. 2
should help assimilate the ideas.

1. Without loss of generality, assume that the vertices of the side being considered
are indexed in the binary form according to those of the standard Qn .

2. Any two adjacent vertices differ by one bit. Represent the middle point of the
connecting edge by replacing that distinct bit with the symbol “a.”

3. Connect any two midpoints differing by one binary bit with a new edge. Represent
the middle point of the new edge by replacing that distinct bit with the symbol “a.”
By the Varignon Theorem, the midpoint of the new edge is independent of which
edge is used. See the middle graph in Fig. 2 for Q2.

4. Continue this procedure until all midpoints are labeled. See the right graph in Fig. 2
for Q3.

5. The vertices of each of the 2n cells can be identified in exactly the same way as
those of the standard hypercube Qn , except that the binary representations are
replaced by the alphanumeric representations.

To carry out the subdivisions in general, we now introduce the idea of symbolic
tensor product. First, bisect Q1 into two parts with the middle point a. Denote the
column vectors

V1 :=
⎡

⎣
0
a
1

⎤

⎦ , u :=
[
0
a

]
, v :=

[
a
1

]
,

123

Numerical Algorithms

00
0

00
1

01
1

10
0

10
1

11
1

11
0

01
0

aa
a

0a
0

00
a

a0
1

1a
1

11
a

a1
0

01
a

0a
1

a1
1

10
a

1a
0

a0
0

0a
a

a0
a

a1
a

aa
1

aa
0

1a
a

a0
a1

10

aa

11
1a

00
01

0a

0
1

a

d
=

1
3

=
d

2
=

d

Fi
g.

2
E
nu

m
er
at
io
n
of

ve
rt
ic
es

af
te
r
su
bd

iv
id
in
g
Q
d
,
d

=
1,
2,

3,
at

m
id
po

in
ts
al
on

g
ed
ge
s.
Si
ng

le
“a
”
in
di
ca
te
s
m
id
po

in
ts
(b
lu
e
do

ts
)
al
on

g
ex
iti
ng

ed
ge
s,
do

ub
le

“a
a”

in
di
ca
te
s
m
id
po

in
ts
(r
ed

do
ts
)
of

th
e
ed
ge

co
nn

ec
tin

g
m
id
po

in
ts
,a
nd

so
on

123

Numerical Algorithms

where entries of V1 are the collection of vertices, including the midpoint, and u and v
represent the two subdivisionsof Q1. The subdivisions of Q2 shown in the middle graph
of Fig. 2 with a total of 32 vertices can be identified via the symbolic tensor product1

V2 := V1 ⊗ V1 = V⊗2
1 ≡

⎡

⎣
00 0a 01
a0 aa a1
10 1a 11

⎤

⎦ .

There are 22 cells, which can be represented through the four 2 × 2 matrices

u ⊗ u, u ⊗ v, v ⊗ u, v ⊗ v,

respectively. If we introduce an artificial bilinear operator � that satisfies the distribu-
tive property with respect to ⊗ in the sense that

(u � v)⊗2 = (u � v) ⊗ (u � v) := (u ⊗ u) � (u ⊗ v) � (v ⊗ u) � (v ⊗ v),

then the cells of Q2 are the four terms in the expansion of (u�v)⊗2. In a similar vein,
the 33 vertices for the subdivision of Q3 in the right graph of Fig. 2 can be obtained
via the order-3 tensor product

V3 := V1 ⊗ V2 = V⊗3
1 ,

whereas the 23 cells can be identified via the binomial expansion (u� v)⊗3. Since the
midpoints on each edge will separate the original vertices from each other, each cell
contains one and only one original vertex. For example, the cell v⊗3 has vertices in

v⊗3 =
⎡

⎣
a a a a 1 1 1 1
a a 1 1 a a 1 1
a 1 a 1 a 1 a 1

⎤

⎦ ,

which contains only 111 as the original vertex. Note that the symbol “a” is only a
generic indicator of a midpoint whose value depends on the true coordinates of the
corresponding endpoints.We shall describe a homeomorphism in Sect. 3.1 to calculate
the true values.

For high-dimensional problems, it becomes increasingly more difficult to conjure
up the image of all midpoints and newly created edges. For example, one side of Q5 is
equivalent to Q4 with 32 edges. A midpoint subdivision of Q4 will produce 24 cells.
Each cell has 24 vertices. A sketch of further subdivisions would be more confusing,
if possible at all. We really should rely on a mathematical way to characterize the new
vertices and the new subcells of the subdivisions. The mechanism outlined above can
serve exactly that purpose.

1 The tensor product is not the Kronecker product, though in the literature often the same notation is
used for both. Suppose we use ◦ for the tensor product and ⊗ for the Kronecker product, and assumes
the commutativity of multiplications among scalars or symbols, then vec(u ◦ v) = v ⊗ u = vec(uv
).
Relevant to this paper, however, is that we do not assume the commutativity of multiplications among the
alphanumeric bits. The tensor product u ⊗ v (more indicatively, u ◦ v or uv
), therefore, yields the set of
ordered pairs {0a, aa, 01, a1}, which represents vertices for the cell at the upper-right corner in the middle
graph of Fig. 2.

123

Numerical Algorithms

2.3 Generic coordinates

The enumeration of the 2n vertices of Qn based on their binary digits sets a standard
orientation of the hypercube. From there, one subdivision of Qn contains 3n vertices
representable by V⊗n and 2n cells representable by (u � v)⊗n , all of which can also
be enumerated systematically. A typical vertex is made of n alphanumeric values 0,
a, and 1, which will be called the generic coordinates. Being able to systematically
and automatically identify vertices and group them into relevant cells while keeping
their orientation is the main contribution of this paper.

Furthermore, the boundary ∂Qn+1 is made of 2(n+1) sides each of which is topo-
logically equivalent to Qn . Every subcell obtained from a subdivision of any cell at
any level remains equivalent to Qn . The only difference is that the vertices of different
cells are located at places with different coordinates. Since the calculation for each cell
as well as its successive subdivisions is similar, it suffices to build one mechanism of
subdivision for the standard hypercube Qn , and use it repeatedly whenever a subdivi-
sion is needed. Once we know how the generic coordinates of Qn inRn are mapped to
the true coordinates of each cell of ∂Qn+1 in Rn+1, the calculation is embarrassingly
parallelizable. It will be seen in the subsequent discussion that the homeomorphism
is in fact easy to obtain.

Theprocedure canbeapplied repeatedly to all sides of Qn+1 to generate a finermesh on
∂Qn+1.Actually, because of the symmetry, it suffices toworkwith n+1 sides. The goal
is to locate one patch or several patches of interest where the antipodal points might
reside. This is the initial phase. The same procedure can then be applied repeatedly
to the patch of interest, which is also equivalent to Qn , to zoom in the search for the
antipodal points. This is the second phase. Both phases employ the same procedure.

3 Implementation

We have argued in the above that the symbolic tensor products can facilitate the
representations of the vertices and the subdivided hypercubes. In practice, we have
to know what the symbol a stands for in real values. Also, individual variables in
most computing devices, including symbolic variables, are typically assumed to be
scalars whose multiplications are commutative. We cannot use the Kronecker product
directly to simulate the tensor product. In our application, the point with coordinates
0a is different from that with a0 and the tensor product certainly cannot be simplified
to 0. In this section, we propose a numerical algorithm to work around this hurdle, to
distinguish the values of a, and to effectively identify the needed homeomorphism.

3.1 Midpoint evaluation

We first explain the underlying homeomorphism between a given cell and the generic
coordinates. We then use the generic coordinates to calculate the true midpoints of the
given cell and complete one subdivision.

123

Numerical Algorithms

Let the columns ofC = [c0, c1, . . . c2n−1] ∈ R
(n+1)×2n denote the true coordinates

of 2n points in R
n+1. These points can be the vertices of the top cell, i.e., one side

of the original Qn+1, or those of any of the smaller subcells after several levels of
subdivisions. Since C originates from one particular side of Qn+1, one row of C must
have the same value of either 1 or −1, regardless of the levels of subdivisions. This
unique marker can be regarded as a group identification. Inherited in C is that its
columns are specially ordered, which is passed down from the very top cell with the
same group ID and is maintained throughout all subdivisions. That is, the generic
coordinates corresponding to the kth column of C , k = 0, . . . , 2n − 1, are precisely
the binary representation of the integer k over the vertices of Qn . This defines a
homeomorphism between Qn and the convex hull of C .

Recall that V⊗n
1 represents one subdivision of Qn . Suppose now that C is to be

subdivided by takingmidpoints at its edges. Our goal is to evaluate the true coordinates
of points corresponding to V⊗n

1 . The task can be accomplished as follows. For each
given generic point g = [gi] ∈ {0, a, 1}n in V⊗n

1 , partition the indices 1, . . . , n into
three disjoint sets

Z(g) := {iα|giα = 0}, A(g) := {iβ |giβ = a}, O(g) := {iγ |giγ = 1},

where some sets might be empty. While keeping giα = 0 for iα ∈ Z and giγ = 1 for

iγ ∈ O, replace a by 0 and 1 for each iβ ∈ A to create a total 2|A| new binary arrays,
where |A| denotes the cardinality ofA. Convert the resulting binary arrays to integers
k1, . . . , k2|A| . Then, corresponding to the generic coordinates g, the true coordinates
of the point in the convex hull of C are given by

g �−→ 1

2|A|
2|A|∑

j=1

ck j . (3)

In this way, the cell C of 2n vertices is dissected into 2n subcells with a total of 3n

vertices. Once these subcells are identified, they can be further subdived.

3.2 Cell formation

We have already discussed that the subcells after one division of Qn can be obtained
via the expansion of (u � v)⊗n , and that V⊗n

1 specifies all vertices in an ordered
manner. Each cell, therefore, can be conveniently represented by a 1-D array of 2n

positive integers which are ordinal numbers of their vertices in the list of V⊗n
1 .

We begin with the example of ∂Q4 which has eight sides. Each row of the matrix

∂Q4 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 4 6 8 10 12 14
1 3 5 7 9 11 13 15
0 1 4 5 8 9 12 13
2 3 6 7 10 11 14 15
0 1 2 3 8 9 10 11
4 5 6 7 12 13 14 15
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

123

Numerical Algorithms

denotes one side of Q4. The eight vertices of one side are identified by the integer
converted from the binary coordinates of vertices in the original Q4. See Fig. 1. In
general, the boundary ∂Qn+1 can be represented by a 2(n + 1) × 2n integer matrix.
These rows of ∂Qn+1 are easy to form because each side has only one common
coordinate of its vertices.

The symbolic tensor product V⊗n
1 can be achieved by repeatedly and systemati-

cally copying the vector V1 to interleaved blocks. This undertaking can be effectively
implemented. See, for example, the command combvec inMatlab. However, to avoid
evoking the symbolic math engine, and also to allow a convenient arithmetic conver-
sion which will be explained later, we make an artificial substitution

0 → 1 a → 2 1 → 3,

where the choice of the digits {1, 2, 3} is immaterial. Instead of writing Vn := V⊗n
1 as

an order-n tensor whose entries are made of arrays of n alphanumeric bits in {0, a, 1},
we represent Vn as a matrix of size n × 3n whose entries are from the set {1, 2, 3}.
Instead of using the generic coordinates, the ordinal numbers of columns of Vn form a
natural way to enumerate the mesh points in the subdivision of Qn . Instead of keeping
the full coordinates, we may use the ordinal numbers of Vn to identify vertices of the
subcells.

With the above substitution, the first step is to replace u�v by the 1×4 row vector

U1 := [1, 2, 2, 3] ,

so the information contained in (u� v)⊗n is precisely the same as that inUn := U⊗n
1

which, similar to Vn , is obtained by repeatedly copying U1 to interleaved blocks, i.e.,
the tensor productU⊗n

1 can be represented by a matrixUn of size n×4n . For example,
U⊗3
1 leads to the 3 × 43 matrix

U3 =
⎡

⎣
1223122312231223122312231223122312231223122312231223122312231223
1111222222223333111122222222333311112222222233331111222222223333
1111111111111111222222222222222222222222222222223333333333333333

⎤

⎦ .

Note the specific structure manifested in U3 by the action of the interleaved block
copying. Exploiting this regular pattern enables us to identify the vertices of individual
subcells by simply “folding” this matrix properly. Each of the 4n columns of Un

corresponds to one mesh point in Vn . Identifying the mesh points by the column
numbers in Vn , we can representUn by a 1-D array ϒn of integers in the range [1, 3n].
Checking the membership of Un in Vn can be done as follows. Let p denote an n-
dimensional vector of large random prime numbers. We encode each vertex v in Vn
in a tag number

t(v) := p
v.

123

Numerical Algorithms

If the prime numbers are sufficiently far apart, then t(v) is unique. In this way, we
can effectively generate ϒn by checking the membership of t(Un) against t(Vn). For
instance, the above U3 can be identified as the integer array

ϒ3=
[1 2 2 3 4 5 5 6| 4 5 5 6 7 8 8 9| 10 11 11 12 13 4 14 15|
13 14 14 15 16 17 17 18| 10 11 11 12 13 14 1415|13 14 14 15 16 17 17 18|
19 20 20 21 22 23 23 24| 22 23 23 24 25 26 26 27]

We have used the delimiter “|” to separate the entries into blocks of eight to prepare
for forming cells that will be explained below.

To completely characterize one subdivision of Qn , the 4n integers in ϒn must be
regrouped into 2n subcells. The task can be accomplished by systematically merg-
ing and folding ϒn , which we outline below. The rationale behind is nothing but a
mechanical way to track the correspondence between combvec and the expansion of
(u � v)⊗n . The procedure involves no floating-point arithmetic.

1. Partition ϒn from left to right into blocks with block size 1 × 8. See the example
ϒ3. Swap entries {3, 4} with {5, 6} in each block. Such a swap is to mechanically
fix an aftereffect due to the way the interleavingworks. Denote the resulting blocks
as B1, . . . , B22n−3 .

2. Arrange the blocks row-wise as a cell array

Wn :=

⎡

⎢⎢⎢⎣

B1 B2 B3 B4
B5 B6 B7 B8
...

...

B22n−3−3 B22n−3

⎤

⎥⎥⎥⎦ .

That is, Wn has 22n−5 × 4 containers, each with block size 1× 8. This matrix will
be futher folded in the next step.

3. Assuming the relevant sizes are compatible, introduce the three commands for
convenience:

reshape(X,M,N) = rearrange elements from X columnwise to an M × N matrix,

cell2mat(C) = convert a multidimensional cell array C to a single matrix,

mat2tiles(X,M,N) = break X with adjacent chunks of size M × N into a cell array.

The rearrangement of Wn can be described algorithmically as follows:

if n = 3
W_3 = mat2tiles(cell2mat(W_3),2,8);
W_3 = mat2tiles(cell2mat(reshape(W_3,1,[])),2,4);

elseif n > 3
for iwrap = 1:n-3

fold = 2ˆ(iwrap+1);
W_n = reshape(W_n’,fold,[])’;
W_n = mat2tiles(cell2mat(W_n),fold,8);

123

Numerical Algorithms

end
W_n = mat2tiles(cell2mat(reshape(W_n,1,[])),

fold,4);
end

At the end,Wn consists of 2n blocks with block size 2n−2×4. Each block contains
2n vertices of one subcell. Each vertex corresponds to one mesh point in Vn .

4. Reshaping each block of the final Wn into a row, we obtain a 2n × 2n matrix Fn
of integers. The entries in each row of Fn point to which vertices in Vn are to
be gathered to form one cell after one subdivision at the midpoints of Qn , and
maintain consistently the orientation of the original Qn . We shall call Fn the cell
ID of Qn after one subdivision.

As an example, each side of ∂Q6 is equivalent to Q5 whose subdivision contains
32 cells. Each row of the 32× 32 matrix F5 below represents the vertices of one cell.
The integers in a row correspond to the positions of columns in V5.

⎡

⎢⎢⎣

1 10 28 37 82 91 109 118 2 11 29 38 83 92 110 119 4 13 31 40 85 94 112 121 5 14 32 41 86 95 113 122
2 11 29 38 83 92 110 119 3 12 30 39 84 93 111 120 5 14 32 41 86 95 113 122 6 15 33 42 87 96 114 123

82 91 109 118 163 172 190 199 83 92 110 119 164 173 191 200 85 94 112 121 166 175 193 202 86 95 113 122 167 176 194 203
83 92 110 119 164 173 191 200 84 93 111 120 165 174 192 201 86 95 113 122 167 176 194 203 87 96 114 123 168 177 195 204
4 13 31 40 85 94 112 121 5 14 32 41 86 95 113 122 7 16 34 43 88 97 115 124 8 17 35 44 89 98 116 125
5 14 32 41 86 95 113 122 6 15 33 42 87 96 114 123 8 17 35 44 89 98 116 125 9 18 36 45 90 99 117 126
85 94 112 121 166 175 193 202 86 95 113 122 167 176 194 203 88 97 115 124 169 178 196 205 89 98 116 125 170 179 197 206
86 95 113 122 167 176 194 203 87 96 114 123 168 177 195 204 89 98 116 125 170 179 197 206 90 99 117 126 171 180 198 207
10 19 37 46 91 100 118 127 11 20 38 47 92 101 119 128 13 22 40 49 94 103 121 130 14 23 41 50 95 104 122 131
11 20 38 47 92 101 119 128 12 21 39 48 93 102 120 129 14 23 41 50 95 104 122 131 15 24 42 51 96 105 123 132
91 100 118 127 172 181 199 208 92 101 119 128 173 182 200 209 94 103 121 130 175 184 202 211 95 104 122 131 176 185 203 212
92 101 119 128 173 182 200 209 93 102 120 129 174 183 201 210 95 104 122 131 176 185 203 212 96 105 123 132 177 186 204 213
13 22 40 49 94 103 121 130 14 23 41 50 95 104 122 131 16 25 43 52 97 106 124 133 17 26 44 53 98 107 125 134
14 23 41 50 95 104 122 131 15 24 42 51 96 105 123 132 17 26 44 53 98 107 125 134 18 27 45 54 99 108 126 135
94 103 121 130 175 184 202 211 95 104 122 131 176 185 203 212 97 106 124 133 178 187 205 214 98 107 125 134 179 188 206 215
95 104 122 131 176 185 203 212 96 105 123 132 177 186 204 213 98 107 125 134 179 188 206 215 99 108 126 135 180 189 207 216
28 37 55 64 109 118 136 145 29 38 56 65 110 119 137 146 31 40 58 67 112 121 139 148 32 41 59 68 113 122 140 149
29 38 56 65 110 119 137 146 30 39 57 66 111 120 138 147 32 41 59 68 113 122 140 149 33 42 60 69 114 123 141 150

109 118 136 145 190 199 217 226 110 119 137 146 191 200 218 227 112 121 139 148 193 202 220 229 113 122 140 149 194 203 221 230
110 119 137 146 191 200 218 227 111 120 138 147 192 201 219 228 113 122 140 149 194 203 221 230 114 123 141 150 195 204 222 231
31 40 58 67 112 121 139 148 32 41 59 68 113 122 140 149 34 43 61 70 115 124 142 151 35 44 62 71 116 125 143 152
32 41 59 68 113 122 140 149 33 42 60 69 114 123 141 150 35 44 62 71 116 125 143 152 36 45 63 72 117 126 144 153
112 121 139 148 193 202 220 229 113 122 140 149 194 203 221 230 115 124 142 151 196 205 223 232 116 125 143 152 197 206 224 233
113 122 140 149 194 203 221 230 114 123 141 150 195 204 222 231 116 125 143 152 197 206 224 233 117 126 144 153 198 207 225 234
37 46 64 73 118 127 145 154 38 47 65 74 119 128 146 155 40 49 67 76 121 130 148 157 41 50 68 77 122 131 149 158
38 47 65 74 119 128 146 155 39 48 66 75 120 129 147 156 41 50 68 77 122 131 149 158 42 51 69 78 123 132 150 159

118 127 145 154 199 208 226 235 119 128 146 155 200 209 227 236 121 130 148 157 202 211 229 238 122 131 149 158 203 212 230 239
119 128 146 155 200 209 227 236 120 129 147 156 201 210 228 237 122 131 149 158 203 212 230 239 123 132 150 159 204 213 231 240
40 49 67 76 121 130 148 157 41 50 68 77 122 131 149 158 43 52 70 79 124 133 151 160 44 53 71 80 125 134 152 161
41 50 68 77 122 131 149 158 42 51 69 78 123 132 150 159 44 53 71 80 125 134 152 161 45 54 72 81 126 135 153 162

121 130 148 157 202 211 229 238 122 131 149 158 203 212 230 239 124 133 151 160 205 214 232 241 125 134 152 161 206 215 233 242
122 131 149 158 203 212 230 239 123 132 150 159 204 213 231 240 125 134 152 161 206 215 233 242 126 135 153 162 207 216 234 243

⎤

⎥⎥⎦

Since each cell of Qn is homeomorphic to Qn itself, and since we know their exact
locations in the space, the same algorithm can be applied repeatedly to subdivide the
cells for further refinement, i.e., each cell can be subdivided into another 2n subcells.
Let V (k)

n and F (k)
n , k = 1, 2, . . ., denote the set of vertices and cell IDs after Qn has

been subdivided k times. In the above example, therefore, F (1)
5 = F5. Because we

use the same machinery to produce subcells, we know how the subcells in F (k)
n are

stratified one layer after another.

123

Numerical Algorithms

3.3 Symmetry

Since ∂Qn+1 is centrally symmetric, we should exploit the symmetry inherent in both
the vertices and the cells throughout the subdivision. By doing so, we can effectively
cut the calculation by half. The symmetry inherited in V (1)

n and F (1)
n is easy to discern,

but after Qn has been subdivided k times, tracking the symmetry is not that obvious.
Our way of enumerating V (k)

n and F (k)
n identifies symmetry easily.

For convenience, we store the data after k subdivisions in a single structure array
Qd with the field containers to distinguish the data, that is, Qd.X = V (k)

n and Qd.F =
F (k)
n . We exploit the stratification in Qd.F by folding and flipping as follows to obtain

F1 and F2 as antipodal cells, and columns in the matrices X1 and X2 as antipodal
vertices.

FF = reshape(Qd.F’,(2ˆn)ˆ(k+1)),[]);
FF(:,2:2:end) = flipud(FF(:,2:2:end));
F1 = reshape(FF(:,1:2:end),2ˆn,[])’;
F2 = reshape(FF(:,2:2:end),2ˆn,[])’;

BB = sort(reshape(FF’,2,[])’,2);
Anti = unique(BB,’rows’,’stable’);
X1 = Qd.X(:,Anti(:,1));
X2 = Qd.X(:,Anti(:,2));

3.4 Spherical mean

Assign the weightω(x) := ‖ f (x)− f (−x)‖ to each point x ∈ ∂Qn+1.We useω(x) to
help search for an approximate location of the Borsuk-Ulam points. Ideally, we should
look for the place where ω(x) = 0. Since we only have a discrete approximation of
∂Qn , we shall settle for ω(x) ≤ ε with a preselected tolerance ε.

Suppose that C = [c0, c1, . . . c2n−1] ∈ R
(n+1)×2n denote a typical cell on ∂Qn+1

after several levels of subdivisions. The average weight of the cell C is given by

1

Volume of C

∫

C

ω(x) dV (x) (4)

which is analogous to the notion of spherical mean [29–31]. We look for the few cells
that have relatively lighter weights than others and then continue to refine the cells by
further subdivisions. The rationale is that, by continuity, the values of ω(x) at points
nearby the Borsuk-Ulam points should also be nearly zero. The proper size of the
neighboring cell, of course, is problem-dependent. If the mesh is not fine enough or
if the weights at the vertices of one specific cell vary drastically, it is possible that we
might miss the correct cell. To safeguard against this possible failure, we choose in
the initial phase a few extra antipodal cells, and apply the refinement process to all of
them.

123

Numerical Algorithms

Since all cells at the same level of subdivision have the same volume, we only need
to compute the integral which can be approximated by the Riemann sum. To better
approximate the Riemann sum, we use our subdivision technique to dissection C a
few more levels deeper and compare the sums of ω(x) at all vertices within the cell C
with its peers. These extra dissections are not wasted because they can be reused for
the next subdivision.

3.5 Overhead count

While the subdivisionmechanismdescribed above for generatingmesh points involves
mostly combinatorial manipulations and very few actual computations, the algorithm
does generate an enormous amount of data.

To subdivide Q3, we find that the total number of distinct vertices generated in V (k)
3

is given by exactly 3(22k+1)+2, whereas for the case Q4, therewill be 4(23k+1+2k+1)

distinct vertices in V (k)
4 . For Qn in general, the cardinality of points in V (k)

n grows like
O(n2(n−1)k+1). A numerical example is given in Sect. 4.

3.6 Code organization

The above discussion can be put together to become an algorithmwhichwe summarize
below.

Algorithm 1 Finding Borsuk-Ulam Points

REQUIRE: Create an homeomorphism, if necessary, define the objective function f : ∂Qn+1 → R
n .

ENSURE: Antipodal points where f (x) ≈ f (−x).
1: Create and store the cell information of ∂Qn+1 in Qd.
2: Create the main mechanism “Cube Divider” using generic coordinates.
3: Apply the “Cube Divider” to divide ∂Qn+1 k1 times and store the cell information in Qd1. � [can be

done in parallel]
4: Multitasking: Use the procedure described in Section 3.3 to identify antipodal cells F1 and F2, denoted

by the cell IDs b1 and b2, respectively, and copy Qd1 to Qd3 to prepare for the local search.
5: Multitasking: Apply the “Cube Divider” to subdivide Qd1 k2 times and store the cell information in

Qd2 to prepare for spherical means calculation.
6: Evaluate f (Q2.F) and patch groups into Sd . � [can be done in parallel]
7: Identify the patches with minimal spherical means and integrate the corresponding patches that make

up the cells in Qd3.
8: Apply the “Cube Divider” to subdivide the potential cell Qd3 k3 times.
9: Test whether the “meshsize” is less than ε. Either stop the iteration or redefine Qd3 as Qd1 and return

to Step 3. � [sizes are much smaller]

It might be more informative to also outline the algorithm in the flowchart depicted
in Fig. 3. A recurring theme throughout the calculation is the call for the subroutine
“Cube Divider” which is the apparatus of applying the generic coordinates to the
current cells. We also denote in the flowchart the two phases of calculation which
essentially embody the same procedure by using different sets of data marked in
the structure array Qd1. In the global search, Qd1 contains all data after ∂Qn+1 is

123

Numerical Algorithms

Fig. 3 Algorithm flowchart

subdivided k1 times. In the local search, Qd1 contains data after one patch, identified
as Qd3, is subdivided k3 times. The data needed in the local search is much smaller
than that in the global search, as will be demonstrated in Table 1 in our numerical
experiments. The subdivision of Qd1 to Qd2 is for the purpose of approximating the
spherical means for cells in Qd3.

At three places in the flowchart, we mark that multitasking is possible because the
data involved can be divided into independent work. For example, when generating
data from Qd to Qd1 by dividing ∂Qn+1, the task can be accomplished by working
with separate sides. How the parallelism is carried out depends on what comprises
the parallel device and how the compiler handles the multitasking. In our numerical
experiments, we use merely the available Matlab Parallel Computing Toolbox on an
8-core machine.

The few snippets in Sect. 3.2 demonstrate how the generic coordinates are formed
by matrix folding, which is the essence of the routine “Cube Divider,” whereas the cell
IDs, b1 and b2, of the antipodal cells F1 and F2, together with the patch group IDs
Sd are integer arrays for helping the calculation of the spherical means. The actual
programwe have developed for the following experiments ismuchmore sophisticated.
For interested readers, we will make our code available upon request.

123

Numerical Algorithms

4 Numerical experiments

In this section, we apply our dissection method to some selected functions and report
the empirical results.

Example 1 Though our emphasis in this work is on not utilizing any derivative infor-
mation, a test on smooth functions has the advantage of using other techniques to
produce a more accurate approximation to the true solution, which can be used as a
basis of comparison with our brute force algorithm. Consider the case of a high-order
polynomial system f : ∂Q3 → R

2 where

f (x)=
⎡

⎣
x21+x42 +x1x2x3+x1x2+x2x3−x1−1−x2−x3

x122 +4 x112 +6 x102 +4 x92 +x82 +((x33 +x23 +1)(x31 +x21)+x33 +x23 −1)(x32 +x22)+x61 +2 x51 +x41 −x31−x33 −x21 −x23

⎤

⎦ .

It can be checked that the zero set of the odd function g(x) = f (x) − f (−x) is
a 1-dimensional algebraic variety in R

3. When restricted to ∂Q3, there is one unique
antipodal pair. We find by the Newton method that the antipodal pair is given by

x̃ := [±1,∓0.8570772441361144,∓0.07696112604641343]

which almost satisfy the Borsuk-Ulam theorem with ω(̃x) ≈ 1.8310 × 10−15.
For the global search, we subdivide each side four times with mesh size 2−3.

Using the spherical mean, we find one subcell that happens to contain x̃ in its inte-
rior. Upon further refinement, we locate our numerical solution x∗ with mesh size at
approximately 2−51 and finalω(x∗) ≈ 3.2790×10−11. Subdividing the hypercube 52
times to reach nearly machine precision seems expensive, but the dissection process
is applied to one patch only each time and the technique described in this paper makes
the bookkeeping effectively.

Example 2 The Weierstrass function defined by the Fourier series

h(x; a, b) :=
∞∑

k=0

ak cos(bkπx), (5)

where (a, b) are fixed parameters with 0 < a < 1 and b being a positive odd integer
satisfying ab > 1 + 3

2π, is a classical example of a continuous everywhere but
differentiable nowhere function. This Fourier series converges uniformly on R. It is
not possible to visualize this function precisely even on high-resolution computers.

Take a = .9 and b = 7. Consider the partial sum

h(x) :=
7∑

k=0

.9k cos(7kπx) + p(x), x ∈ [−1, 1],

where the term p(x) is added to break the evenness of the cosine function. Although
h(x) is continuously differentiable, we use its high-oscillation behavior to simulate the

123

Numerical Algorithms

non-differentiability of h(x; a, b). For our test, we consider the function f : ∂Q3 → R

defined by a mixture of h(x) via

f (x) = (h(x1) + sin(x2))(h(x2) + x33).

This function f is scalar-valued, so it is not in the full form of the Borsuk-Ulam
theorem. Still, antipodal points satisfying f (x) = f (−x) should exist. This partic-
ular f (x) is a complicated function that cannot be easily resolved. The left graph
in Fig. 4 is a low-resolution plot (at 50 evaluation points per direction) of the set

 := {

x ∈ Q3| f (x) = f (−x)
}
. This stalactitic and stalagmitic surface is not even

close to revealing the delicate details. We are only interested in the solutions on the
boundary ∂Q3. The right graph in Fig. 4 is a high-resolution plot (at 5000 evaluation
points per direction) of
 at the face z = 1. The bottom graph is a high-resolution
plot of
 at y = −1. Needless to say, there are lots of antipodal solutions on ∂Q3 to
satisfy the Borsuk-Ulam theorem.

Using the same initial mesh size 2−3 as in Example 1 and the minimal spherical
mean criteria, we find an approximate solution

x∗ ≈ [±0.513602491897643,±0.555251817860182,±1.000000000000000]

with final ω value at approximately 6.8593× 10−9. Using a smaller initial mesh size
2−4 for the global search, we find another approximate solution

x∗ ≈[∓0.140994477289453,∓0.858994588808685,±1.000000000000000]

with ω(x∗) ≈ 5.7130 × 10−9.

Example 3 On a broader scope, we may interpret our algorithm as a means for finding
the globalminimumof a continuous, nonnegative, and even functionω : ∂Qn+1 → R.
The extension of the well-known Nelder-Mead simplex search algorithm for this pur-
pose is not very satisfactory because determining the search direction and proving the
convergence are challenging, as has been discussed in [27], and, even more disap-
pointingly, gives rise to only a local minimum. In contrast, our brute force approach
deals specifically with the constraint ∂Qn+1 and is a sure-fire method.

Consider the minimization of ω(x) = |p(x)| and its minimizer(s) over the compact
set ∂Q5 where p(x) is a randomly generated odd polynomial given by:

p(x) = 8x3
9x4

2 + 24x2x3
6x4

2 + (2x5
2 + 2)x3

5 + (2x1
3 + 2x1)x3

4

+ (2x1
3x5

3 + 2x1x5
3 + 8x4

6 + (24x2
2 + 2)x4

2 + 2x5
2 − 2)x3

3

+ (2x4
2x5

3 + 4x1
3 + 2x2x5

2 + 4x1 + 2x2)x3
2 + (2x1

3x2

+ 2x1x2 + 2x4
2 − 2)x3 + ((2x5

2 + 2)x4
2 + 2x2x5

3 − 2)(x1
3 + x1)

+ 8x2x4
6 + (8x2

3 + 2x5
3)x4

2 + 2x2x5
2 − 2x5

3 − 2x2.

123

Numerical Algorithms

Fig. 4 Solutions to Example 2

Using our algorithm, we do find an approximate minimizer at

x∗ ≈ [±0.625005779438879,∓0.749996406646233,

± 0.539866285713742,∓0.187325815015356,

∓ 1.000000000000000]

with ω(x∗) ≈ 1.2335 × 10−13.
Tabulated in Table 1 is a possible configuration of our division mechanism and

the corresponding sizes of data generated in trying to solve the problem. In the left
table at level k1 = 0, ∂Q5 has 25 vertices and 10 sides to begin with. Each side
is equivalent to a hypercube Q4 whose subdivision at the midpoint will generate 24

subcells. Therefore, the number of cells grows exponentially as 10(24)k1 . Suppose that
we have subdivided ∂Q5 three times, i.e., k1 = 3. There will be 40960 candidates of
subcells for further refinement. However, recall that all cells are identified by integers
and that we can enumerate them systematically for further subdivision if so needed.

A different strategy is to work with one side at a time and choose the potentially
best side. In this way, the number of subcells for each side is reduced by a factor of
10. Taking into account the symmetry, we can further reduce the number of cells by
a factor of 2. The work on each side is independent of each other and, hence, can be
executed in parallel.

123

Numerical Algorithms

Table 1 Overhead at different
configurations of subdivisions

Global Search Spherical Mean

level k1 # vertices # cells level k2 # vertices # subcells

0 32 10

1 242 160

2 2882 2560 Subdivide for Spherical Means

1 42242 40960

2 660482 655360

3 42242 40960 Subdivide for Spherical Means

1 660482 655360

2 10506242 10485760

4 660482 655360 Subdivide for Spherical Means

1 10506242 10485760

Local Search

level k3 # vertices # cells

0 32 2

1 162 32

2 1250 512

3 13122 8192

4 167042 131072

To choose a potential subcell, we subdivide each subcell k2 times and compare
the approximate spherical means. Once a patch is selected for refinement, the same
strategy can be applied repeatedly. In each cycle of the local search, we start with 25

vertices and 2 cells in tandem of symmetry, which is much cheaper than the global
search.

In this experiment, we have chosen k1 = 4, k2 = 1, k3 = 3, and repeated the
local search 45 times. The final mesh size is approximately 3.5526 × 10−15 and an
approximate solution with reasonable precision is found.

5 Conclusion

We propose a brute force algorithm to find the antipodal points on the boundary of
the hypercube Qn+1 promised by the Borsuk-Ulam theorem. Only the continuity of
the underlying function is used. In order to accomplish this task, we must be able
to enumerate all cells, their vertices, and their orientation. The main contribution of
this paper is to offer a way to overcome this challenge. As with all direct search
algorithms, an enormous amount of points will be needed for comparison. However,
by taking advantage of the binary representations of vertices, we argue that just one
dissection of Qn is enough to serve as a universal mechanism of generic coordinates,
and that this universal frame can be constructed via appropriate foldings of the data
matrix. Any further dissections can be obtained with appropriate homeomorphisms.
Numerical experiments suggest the effectiveness and potential of this enumeration
scheme.

Acknowledgements The second author would like to express gratitude to the National Center for Theoret-
ical Sciences of Taiwan and the Miin Wu School of Computing at the National Cheng Kung University for
their valuable assistance in research.

Author contribution Conceptualization, MTC and MML; methodology, MTC; software, MTC and MML;
validation, MTC and MML; formal analysis, MTC and MML; investigation, MTC; resources, MTC; data
curation, MTC; writing—original draft preparation, MTC; writing—review and editing, MML; visualiza-

123

Numerical Algorithms

tion, MTC; supervision, MTC; project administration, MTC; funding acquisition, MTC and MML. All
authors have read and agreed to the published version of the manuscript.

Funding The first author was supported in part by the National Science Foundation under grants DMS-
1912816 andDMS-2309376. The second authorwas supported in part by theNational Center for Theoretical
Sciences of Taiwan and by the National Science and Technology Council of Taiwan under grants 112-2636-
M-006-002, 112-2628-M-006-009-MY4, and 112-2119-M-006-004.

Data availability The Matlab code associated with the algorithm proposed in this paper can be made
available upon request.

Declarations

Ethical approval Not applicable

Conflict of interest The authors declare no competing interests.

References

1. Wood, G.R.: The bisection method in higher dimensions. Math. Program. 55(1), 319–337 (1992).
https://doi.org/10.1007/BF01581205

2. Borsuk, K.: Drei sätze über die n-dimensionale euklidische sphäre. Fundam. Math. 20(1), 177–190
(1933)

3. Yamabe, H., Yujobô, Z.: On the continuous function defined on a sphere. Osaka Math. J. 2, 19–22
(1950)

4. Matoušek, J.: Using the Borsuk-Ulam Theorem. Universitext, p. 196. Springer, (2003). Lectures on
topological methods in combinatorics and geometry

5. Müller, T., Stehlík, M.: Generalised Mycielski graphs and the Borsuk-Ulam theorem. Electron. J.
Comb. 26, 4–8 (2019)

6. Roy, S., Steiger, W.: Some combinatorial and algorithmic applications of the Borsuk-Ulam theorem.
Graphs Combin. 23(suppl. 1), 331–341 (2007). https://doi.org/10.1007/s00373-007-0716-1

7. Alexander, J.C., Yorke, J.A.: The homotopy continuation method: numerically implementable topo-
logical procedures. Trans. Amer. Math. Soc. 242, 271–284 (1978). https://doi.org/10.2307/1997737

8. Fenn, R.: Some generalizations of the Borsuk-Ulam theorem and applications to realizing homotopy
classes by embedded spheres. Proc. Cambridge Philos. Soc. 74, 251–256 (1973). https://doi.org/10.
1017/s0305004100048040

9. Kakutani, S.: A proof that there exists a circumscribing cube around any bounded closed convex set
in R3. Ann. of Math. 2(43), 739–741 (1942). https://doi.org/10.2307/1968964

10. Deligkas, A., Fearnley, J., Melissourgos, T., Spirakis, P.G.: Computing exact solutions of consensus
halving and the Borsuk-Ulam theorem. J. Comput. System Sci. 117, 75–98 (2021). https://doi.org/10.
1016/j.jcss.2020.10.006

11. Simmons, F.W., Su, F.E.: Consensus-halving via theorems of Borsuk-Ulam and Tucker. Math. Soc.
Sci. 45(1), 15–25 (2003). https://doi.org/10.1016/S0165-4896(02)00087-2

12. Steinlein, H.: Borsuk’s antipodal theorem and its generalizations and applications: a survey. In: Topo-
logicalMethods in Nonlinear Analysis. Sém.Math. Sup., vol. 95, pp. 166–235. Presses Univ.Montréal,
Montreal, QC, (1985)

13. Su, F.E.: Borsuk-Ulam implies Brouwer: a direct construction. Amer. Math. Monthly 104(9), 855–859
(1997). https://doi.org/10.2307/2975293

14. Volovikov, A.Y.: Borsuk-Ulam implies Brouwer: a direct construction revisited. Amer. Math. Monthly
115(6), 553–556 (2008). https://doi.org/10.1080/00029890.2008.11920563

15. Felsner, S., Pilz, A.: Ham-sandwich cuts for abstract order types. Algorithmica 80(1), 234–257 (2018).
https://doi.org/10.1007/s00453-016-0246-4

16. Suciu, A., Fries, M.: The Borsuk-Ulam theorem and applications. Tapas seminar, Northeastern Uni-
versity, (2005). https://doi.org/10.13140/RG.2.2.20061.51687

123

https://doi.org/10.1007/BF01581205
https://doi.org/10.1007/s00373-007-0716-1
https://doi.org/10.2307/1997737
https://doi.org/10.1017/s0305004100048040
https://doi.org/10.1017/s0305004100048040
https://doi.org/10.2307/1968964
https://doi.org/10.1016/j.jcss.2020.10.006
https://doi.org/10.1016/j.jcss.2020.10.006
https://doi.org/10.1016/S0165-4896(02)00087-2
https://doi.org/10.2307/2975293
https://doi.org/10.1080/00029890.2008.11920563
https://doi.org/10.1007/s00453-016-0246-4
https://doi.org/10.13140/RG.2.2.20061.51687

Numerical Algorithms

17. Karthik,C.S., Saha,A.:Hamsandwich is equivalent toBorsuk-Ulam. In: 33rd International Symposium
on Computational Geometry. LIPIcs. Leibniz Int. Proc. Inform., vol. 77, pp. 24–15. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, (2017)

18. Bollobás, B.: The art of mathematics, p. 359. Cambridge University Press, New York,
(2006). https://doi.org/10.1017/CBO9780511816574. https://doi-org.prox.lib.ncsu.edu/10.1017/
CBO9780511816574

19. Lusternik, L.A., Schnirelmann, L.G.: Méthodes Topologiques dans les Problèmes Variationnels vol.
188. Hermann & cie, (1934)

20. Oprea, J.:Applications ofLusternik-Schnirelmanncategory and its generalizations. J.Geom.Symmetry
Phys. 36, 59–97 (2014)

21. Nyman, K.L., Su, F.E.: A Borsuk-Ulam equivalent that directly implies Sperner’s lemma. Amer. Math.
Monthly 120(4), 346–354 (2013). https://doi.org/10.4169/amer.math.monthly.120.04.346

22. Meyerson, M.D., Wright, A.H.: A new and constructive proof of the Borsuk-Ulam theorem. Proc.
Amer. Math. Soc. 73(1), 134–136 (1979). https://doi.org/10.2307/2042898

23. Eaves, B.C.: A short course in solving equations with PL homotopies. In: Nonlinear Programming
(Proc. SIAM-AMS Sympos., NewYork, 1975), pp. 73–143 (1976)

24. Eaves, B.C., Scarf, H.: The solution of systems of piecewise linear equations. Math. Oper. Res. 1(1),
1–27 (1976). https://doi.org/10.1287/moor.1.1.1

25. Semechko, A.: Suite of functions to perform uniform sampling of a sphere. MIT, (2021). MIT. Package
available at https://github.com/AntonSemechko/S2-Sampling-Toolbox

26. Nelder, J.A., Mead, R.: A simplexmethod for functionminimization. Comput. J. 7(4), 308–313 (1965).
https://doi.org/10.1093/comjnl/7.4.308

27. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on
some classical and modern methods. SIAM Rev. 45(3), 385–482 (2003). https://doi.org/10.1137/
S003614450242889

28. Wright, M.H.: Direct search methods: once scorned, now respectable. In: Numerical Analysis 1995
(Dundee, 1995). Pitman Res. Notes Math. Ser., vol. 344, pp. 191–208. Longman, Harlow, (1996)

29. Finch, D.: Rakesh: the spherical mean value operator with centers on a sphere. Inverse Prob. 23(6),
37–49 (2007). https://doi.org/10.1088/0266-5611/23/6/S04

30. Görner, T., Hielscher, R., Kunis, S.: Efficient and accurate computation of spherical mean values at
scattered center points. Inverse Probl. Imaging 6(4), 645–661 (2012). https://doi.org/10.3934/ipi.2012.
6.645

31. Langer, T., Belyaev, A., Seidel, H.-P.: Mean value coordinates for arbitrary spherical polygons and
polyhedra in R

3. In: Curve and Surface Design: Avignon 2006. Mod. Methods Math., pp. 193–202.
Nashboro Press, Brentwood, TN, (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1017/CBO9780511816574
https://doi-org.prox.lib.ncsu.edu/10.1017/CBO9780511816574
https://doi-org.prox.lib.ncsu.edu/10.1017/CBO9780511816574
https://doi.org/10.4169/amer.math.monthly.120.04.346
https://doi.org/10.2307/2042898
https://doi.org/10.1287/moor.1.1.1
https://github.com/AntonSemechko/S2-Sampling-Toolbox
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1137/S003614450242889
https://doi.org/10.1137/S003614450242889
https://doi.org/10.1088/0266-5611/23/6/S04
https://doi.org/10.3934/ipi.2012.6.645
https://doi.org/10.3934/ipi.2012.6.645

	On the enumeration of subcells within hypercubes and its application to the Borsuk-Ulam theorem
	Abstract
	1 Introduction
	2 Cubical sphere
	2.1 Equivalence
	2.2 Subdivision mechanism
	2.3 Generic coordinates

	3 Implementation
	3.1 Midpoint evaluation
	3.2 Cell formation
	3.3 Symmetry
	3.4 Spherical mean
	3.5 Overhead count
	3.6 Code organization

	4 Numerical experiments
	5 Conclusion
	Acknowledgements
	References

