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Simulating the time evolution of a Hamiltonian system on a classical computer is hard – The
computational power required to even describe a quantum system scales exponentially with the number
of its constituents, let alone integrate its equations of motion. Hamiltonian simulation on a quantum
machine is a possible solution to this challenge – Assuming that a quantum system composing of spin-
½ particles can be manipulated at will, then it is tenable to engineer the interaction between those particles
according to the one that is to be simulated, and thus predict the value of physical quantities by simply
performing the appropriate measurements on the system. Establishing a linkage between the unitary
operators described mathematically as a logic solution and the unitary operators recognizable as quantum
circuits for execution is therefore essential for algorithm design and circuit implementation. Most current
techniques are fallible because of truncation errors or the stagnation at local solutions. This work offers
an innovative avenue by tackling the Cartan decomposition with the notion of Lax dynamics. Within the
integration errors that is controllable, this approach gives rise to a genuine unitary synthesis which not
only is numerically feasible, but also can be utilized to gauge the quality of results produced by other
means, and extend the knowledge to a wide range of applications. This paper aims at establishing the
theoretic and algorithmic foundations by exploiting the geometric properties of Hamiltonian subalgebras
and describing a common mechanism for deriving the Lax dynamics.
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1. Introduction 1

Quantum computing, with its potential capability of transmitting information massively, swiftly, 2

concurrently, and securely, shows great promises to the next-generation quantum-enabled science and 3

technology [1, 21]. The range of applications is broad and far reaching, including communicating [3], 4

sensing [23], computing [47], machine learning and big data [29, 41, 55], and other societal grand 5

challenges, just to name a few. The current development of hardware devices is still in its infancy, 6

capable of handling only a few qubits1. Even so, it is of great interest and vital importance to gain 7

insight into how a quantum computation could be or should be conducted. This work concerns using a 8

dynamical system to facilitate Hamiltonian simulation. 9

Typically, the mathematical formalism for quantum computation is expressed through finite 10

dimensional Hilbert spaces [30, 45]. A mixed quantum state, which often is described in terms of 11

its density matrix, is a probabilistic ensemble of pure states, i.e., the unit vectors in the corresponding 12

1 As of this paper is written, Google’s Sycamore quantum computer has 53 qubits. IBM’s Eagle has 127 qubits. IBM plans to
unveil its Osprey with 433-qubit processor, and to introduce the Condor with over 1000 qubits. In the meantime, Microsoft’s
Azure offers access to an array of quantum hardware from a single cloud service.
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Hilbert space. Of practical importance is a multipartite quantum system involving the entanglement of 13

several subsystems. With respect to properly selected basis the entanglement can be mathematically 14

characterized via the Kronecker product [26, 31]. Quantum algorithms usually are described via 15

quantum circuits which consist of series of elementary operations, called quantum gates, in line with 16

the technological specifics of the hardware. Independent of the machine on which the algorithm will 17

be executed, a quantum circuit is represented as a unitary operator [46]. Synthesizing the relationship 18

between the unitary operators described as matrices and the unitary operators described as circuits is 19

therefore essential, as it helps understand better not only how to design new algorithms, but also how to 20

implement the circuits [17, 37, 38, 51] on a quantum machine. 21

The forward problem of obtaining the unitary matrix representation from a given circuit is easy. The 22

circuit can even be simulated on a classical computer [54]. It is the inverse problem of designing the 23

circuit from a given unitary matrix that is more complicated [15, 38], and falls in the realm of the so- 24

called quantum compilation. What happens is that, unlike conventional digital machines, no quantum 25

machine can accept directly a matrix as input. The central task of unitary synthesis (or quantum circuit 26

synthesis) is to translate a quantum operation described mathematically but in an unknown form for the 27

hardware into a sequence of elementary instructions understandable by the machine, e.g., a sequence 28

of one and two-qubit gates. This task of unitary synthesis has broad applications such as the quantum 29

state preparation (e.g., via the unitary coupled cluster formalism), the thermal state preparation (e.g., by 30

the unitary embedding of mixed states), and even the execution of the fundamental quantum arithmetic 31

logic. 32

More specifically, as is typical in the programming for a conventional machine, in order to cope 33

with the complexity of a high-level quantum program, several levels of abstractions are required in the 34

quantum compilation process. The choice of layers and the choice of transformations needed in each 35

layer highly depend on the applications. For example, on quantum computers that are noisy with short 36

decoherence time, the attention is at finding a quantum circuit that reduces 2-qubit gates since these are 37

noisier than 1-qubit gates, whereas on fault-tolerant quantum computers that do error-correction, the 38

goal is to reduce the usage of gates that require a large amount of error corrections, since they are more 39

expensive. In all, an effective abstractions should always take the following tasks into account: 40

• Synthesis: Converting the mathematical formulation of the logic for solving a given problem into 41

unitary operations that meet the qubit/gate structures/constraints of a quantum machine. 42

• Optimization: Developing a quantum circuit with, say, the shortest sequence of gates. 43

• Mapping: Translating a technology-independent quantum circuit into a technology-dependent 44

quantum circuit. 45

As the memory requirement for storing the unitary matrix associated with an n-qubit system grows 46

exponentially, i.e., 2n× 2n, any methods will be limited rapidly by the size of the problem on both 47

classical and quantum machines. The challenge is thus to synthesize quickly and optimally any quantum 48

operator or quantum state on only a few qubits. Being able to accomplish this task is of fundamental 49

importance and is crucial to many applications [15, 24, 38]. 50

The focus of this paper is on a paradigmatic problem where we want to perform the unitary synthesis 51

of time evolution under a time-independent Hamiltonian H , i.e., the family of unitary matrices 52

U(t) = e−iH t , (1.1)

with a given Hermitian matrix H in C2n×2n
. We shall explain the intellectual merit of studying this 53

particular unitary synthesis and the details of our methodology in the sequel. For now, it is important 54
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to point out first that the conventional ways of using floating-point arithmetic to compute this matrix 55

exponential, and there are many, such as the widely used scaled and squared Padé approximation [42, 56

43], are not suitable for and, in fact, not implementable on quantum machines. 57

A host of approximation techniques have already been proposed in the literature for simulating the 58

unitary evolution (1.1) on quantum machines, including the Trotter-Suzuki formulas, the Taylor series, 59

random walk (qubitization), and so on [4, 27, 39]. In [4], for example, the Hamiltonian dynamics 60

is simulated with a truncated Taylor series where the terms are expressed via linear combinations of 61

unitary operations together with a robust form of oblivious amplitude amplification. In [27], as another 62

example, under the structure that the layout is such that a qubit may only interact with qubits in its 63

vicinity (the so-called lattice Hamiltonian), the time-evolution unitary is approximated by a product 64

of small unitaries based on the Lieb–Robinson bounds and, hence, the performance is good only 65

when the Hamiltonian is close to commuting. These algorithms are reported to have been optimized 66

in that the circuit depth scales almost linearly in the evolution time and inverse logarithmically in the 67

approximation error. However, it must be noted that these approaches are subject to some inherent 68

constraints and that the approximation errors affect the simulation authenticity. 69

Recently, there has also been a promising approach by explicitly parameterizing a given unitary 70

transformation over an n-qubit system in terms of 1- and 2-qubit operations [17, 22, 34, 35, 49]. The 71

idea is based on the observation in the seminal paper [34] that, if the Cartan decomposition is properly 72

managed, then elements of the special unitary group SU(2n) can be determined, up to some local 73

unitaries in SU(2)⊗n, by components generated from certain Abelian subalgebras of the Lie algebra 74

su(2n). A constructive algorithm to perform such a decomposition is not easy. The procedure proposed 75

in [49] is recursive in nature, which requires at every step to solve numerically the zeros of a matrix 76

polynomial obtained by a properly truncated Baker-Campbell-Hausdorff (BCH) formula. As such, 77

though the computational concepts involved are straightforward, the truncation of the BCH formula 78

at higher orders at every iteration so as to control the overall errors is concerning. The fact that working 79

with the basis of the entire su(2n) requires generically exponential circuit depth for arbitrary unitaries 80

is another serious drawback. 81

It is under such a background, we propose in this paper a different way to find the Cartan 82

decomposition. Our idea is to apply the Cartan theory only to a necessary subalgebra of su(2n), in which 83

a Lax dynamics is constructed, whose solution flow can be tracked by any available numerical ODE 84

techniques. Our specific objectives in this paper are to describe how the subalgebra can be generated 85

effectively on an as-needed basis, to introduce a general mechanism for deriving the Lax dynamics, and 86

to propose the notion of continued Cartan decomposition that breaks down H to prepare for the unitary 87

synthesis. 88

This work is motivated by our past experience with the Toda lattice [6, 7] and the isospectral flow 89

approach for other applications [8, 9, 12], and by seeing the similarity between the setting of the 90

general Lax dynamics [11, 13] and the Cartan decomposition. We therefore think that developing a 91

computational framework for the unitary synthesis problem (1.1) in general is possible. We will explain 92

the various benefits of this undertaking, outline our methodologies, and furnish some preliminary but 93

promising empirical evidences. 94

This paper is organized as follows. Since some of the ideas are from across fields, we use some 95

extended examples to help convey the points. Beginning in Section 2 with some basic information, we 96

present a motivation for studying (1.1), the idea for working on reduced subalgebras [35], the connection 97

to the Cartan decomposition [34, 49], and a brief outline of the Lax dynamics [11, 13], followed 98

by a worked-out example. The general framework with greater mathematical details is delineated in 99

Section 3. We describe a mechanism for dimension reduction by using a combinatorial approach which 100
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checks only integer arrays and, thus, is highly efficient. We put forward a recipe for the construction of 101

the differential system that guarantees the convergence of the Lax dynamics from the given Hamiltonian 102

matrix to a decomposition form which can be implemented on a quantum machine. In Section 4, we 103

discuss the idea of continued Cartan decomposition together with an example to demonstrate that not 104

only can we do recursive factorization, as that which is achievable via conventional linear algebra 105

techniques [17], but also that each factor is from a smaller subalgebra and is readily implementable on a 106

quantum machine, which is hard to accomplish by the conventional means. The entire framework can be 107

extended to general or k-local Hamiltonian. We only outline the idea in Section 5, as more investigation 108

is needed to complete the generalization. Finally, in Section 6 we present an example with a 12-qubit 109

system that would have been challenging for a conventional machine, but our approach with the help 110

of existing numerical ODE integrators can accomplish the Cartan decomposition by merely checking a 111

few integer arrays. 112

2. Basics 113

In this section, we outline some background information for building our framework. At first glance, 114

it might seem that the subjects involved in the following discussion are too abstract, uncorrelated, and 115

even not suitable for classical numerical computation. Nevertheless, it is precisely our point to bring in 116

a synthesis of knowledge and understanding from different fields to the field of quantum computation. 117

2.1. Application to the Schrödinger equation 118

We have already mentioned that a quantum circuit acting on n-qubits is always represented by a unitary 119

matrix and, hence, to translate between a unitary operator and a quantum circuit is imperative. We now 120

briefly explain, among other applications, why the specific unitary synthesis in the form (1.1) is of 121

particular interest. 122

Quantum mechanics postulates that the evolution of a quantum state appears as a wave function |ψ〉 123

whose dynamics can be described by the Schrödinger equation 124

ı}
∂

∂ t
|ψ〉(r, t) =

[
− }2

2m
∇

2 +V (r)
]
|ψ〉(r, t), (2.1)

where } is the Planck constant and the quantity inside the brackets, called the Hamiltonian, corresponds 125

to the energy of the system. If we discretize |ψ〉(r, t) in the spatial variable r, e.g., particles living on a 126

lattice [38], and denote the resulting vector as |Ψ〉(t), then (2.1) can be expressed as 127

ı}
∂

∂ t
|Ψ〉(t) = H |Ψ〉(t), (2.2)

where H is a time-independent Hermitian matrix (actually, in the current context, H is real-valued 128

and symmetric). It follows that 129

|Ψ(t)〉= e
−ıH t

} |Ψ(0)〉 (2.3)

and e
−ıH t

} is unitary. The need to calculate e
−ıH t

} is now apparent. Being able to execute this calculation 130

by using quantum gates is even more paramount because the size of the matrix grows exponentially. 131

A historical note on this calculation is worth mentioning. The abstract of the influential paper 132

by Lloyd [38] in Science consists of one sentence only, “Feynman’s 1982 conjecture, that quantum 133

computers can be programmed to simulate any local quantum system, is shown to be correct,” but 134
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the impact of such an affirmation is profound. Feynman’s idea was that if we could build a quantum 135

simulator at our disposal, composed of spin-½ particles that we could manipulate at will, then we would 136

be able to engineer the interaction between those particles according to the one we want to simulate, and 137

thus predict the value of physical quantities by simply performing the appropriate measurements on the 138

quantum simulator [15]. The proof in [38] was via the notion that even evolving in small time steps of 139

(2.2) would allow efficient simulation of any many-body quantum Hamiltonian containing few-particle 140

interactions. Therefore, the application of the unitary synthesis in the form (1.1) for the Schrödinger 141

equation alone is already of considerable significance. 142

2.2. Dimension reduction on Lie subalgebra 143

Some of the most important operators in a single-qubit system are the Pauli matrices, 144

X :=
[

0 1
1 0

]
; Y :=

[
0 −ı
ı 0

]
; Z :=

[
1 0
0 −1

]
. (2.4)

Each Pauli matrix is readily an observable describing the spin of a spin-½ particle. Pauli matrices are 145

Hermitian and unitary. When exponentiated, the Pauli matrices give rise to rotation matrices around 146

the three orthogonal axis in 3-dimensional space. Together with the identity matrix I, an element in the 147

set {X ,Y,Z, I}⊗n, i.e., a tensor product of n matrices selected from the set {X ,Y,Z, I}, is referred to as 148

a Pauli string. Elements in {X ,Y,Z, I}⊗n are mutually orthogonal with respect to the Frobenius inner 149

product over C2n×2n
, so they span all possible 2n× 2n Hermitian matrices. With a multiplication by 150

the imaginary number ı to the Pauli strings, we have the Lie algebra of the unitary group U(2n), which 151

consist of skew-Hermitian matrices with the Lie bracket given by the commutator. For mathematical 152

rigor, the subsequent discussion requires the assumption of semisimplicity, but U(2n) is not. Instead, we 153

shall work with the special unitary group SU(2n) and its Lie algebra su(2n). Recall that su(2n) consists 154

of skew-Hermitian matrices with trace zero and has real dimension 4n− 1 because the element ıI⊗n is 155

removed from the basis. In practice, if I⊗n ever appears as a term in the makeup of H , its contribution 156

amounts to only a scalar multiplication which can easily be handled. 157

While any given Hamiltonian H can be expressed as a linear combination of Pauli strings, the 158

trouble is that the matrix exponential of −ıH in the summation form cannot easily be simulated on a 159

quantum circuit. The simplest reason to see this infeasibility is that the BCH formula or the Zassenhaus 160

formula [52] will involve infinite terms or products in the expansion. This is where the work proposed 161

in this paper might come in handy. 162

Most earlier works for the unitary synthesis (1.1) of a given Hamiltonian H require using the entire 163

su(2n) for the approximation [4, 22, 27, 34, 39, 49]. Among other issues, the implementation will 164

require long circuit depth which may cause loss of fidelity due to noise presented in current technology. 165

A close inspection of the Zassenhaus formula implies that only nested commutators of the individual 166

terms in H will appear in the ultimate exponents [5, 35]. Therefore, for a fixed H , it is feasible to 167

work with the subalgebra g(ıH )⊂ su(2n) which is defined to be the closure of all possible Lie brackets 168

generated from individual terms in H . Under some suitable conditions the dimension of g(ıH ) can 169

be far less than 4n−1, as we will see in our examples. This gives rise to the basic notion of dimension 170

reduction. 171

Given a subset V of an arbitrary Lie algebra, there is no general way to characterize the closure 172

g(V ). Some discussions on the dimensionality for some special subsets V can be found in [25, 35, 48]. 173

However, if we use Pauli strings as the basis, the following lemma implies that such a task is possible. 174
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Lemma 1 Let B`, `= 1, . . . ,4n, denote elements in {X ,Y,Z, I}⊗n multiplied by ı. 175

1. If the commutator [Bi,B j] of two distinct Pauli strings Bi,B j is not zero, then [Bi,B j] = cBk for some 176

k 6= i or j, and c is either 2 or -2. 177

2. If [Bi,B j] = cBk, then [B j,Bk] = cBi and [Bk,Bi] = cB j. 178

3. The proportional constants c depends on the makeup of the Pauli strings. 179

Proof : Observe first that the Pauli matrices satisfy the relationships 180

XX = YY = ZZ =−ıXY Z = I. (2.5)

These are sufficient to establish other cyclic relationships such as XY = ıZ = −Y X , Y Z = ıX = −ZY , 181

ZX = ıY = XZ, and so on. It follows that the commutator [Bi,B j] can eventually be simplified to either 182

zero or a scalar multiple of an element Bk ∈ {X ,Y,Z, I}⊗n. Observe that 183

BiB j =

{
−I, if i = j,
−B jBi, if [Bi,B j] 6= 0.

Therefore, the scalar multiple c must be 2 or -2. Suppose that we have [Bi,B j] = cBk. Then 184

[B j,Bk] =
1
c
[B j, [Bi,B j]] =

1
c
(2B jBiB j +2Bi) =

4
c

Bi.

A similar argument can be applied to [Bk,Bi]. � 185

The practical question is how to search to determine g(ıH ) in the most efficient way. Given H 186

which is a finite sum of Pauli strings, an exhaustive search by checking through all possible brackets 187

[A,B] and continuing to check [[A,B],C] and so on of all terms until no more elements can be added 188

to g(ıH ) is possible, but such a task becomes too demanding when the dimension is high. The first 189

specific goal of this work is to develop a mechanism that identifies and executes elements in g(ıH ) by 190

checking only a few integer indices on an as-needed basis. Technical details are given in Section 3.1. 191

2.3. Connection to Cartan decomposition 192

The notion of Cartan decomposition of a semisimple Lie algebra plays an important role in the 193

theoretical study of structure and representation in the Lie theory [53]. It is interesting that this abstract 194

mathematics now finds applications in quantum simulation. This connection is nothing new in the 195

literature [19, 28, 34, 49]. What is new is to find the Cartan decomposition for the subalgebra g(ıH ) 196

by means of the Lax dynamics, which is the central theme of this work. For completion we state two 197

fundamental theorems concerning the Cartan decomposition [22, 34]. The results hold for any general 198

semisimple Lie algebra, but we apply them to the subalgebra g(ıH ) only. 199

Given a real semisimple Lie algebra g, a Lie algebra automorphism θ : g→ g is called an involution 200

if its square is equal to the identity. The Cartan decomposition can be characterized via the notion of 201

involution. 202
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Theorem 2 Let θ be an involution on a semisimple Lie algebra g. Let k and p denote the eigenspaces 203

corresponding to the eigenvalues +1 and -1 of θ , respectively. Then g can be decomposed as a direct 204

sum 205

g= k⊕p, (2.6)

with the properties that 206

[k,k]⊆ k, [k,p]⊆ p, and [p,p]⊆ k. (2.7)

Conversely, any decomposition of g with properties (2.7) defines an involution. 207

Obviously, k is a Lie subalgebra by itself, whereas any subalgebra within p is necessarily 208

commutative. Let h⊂ p be any of the maximal subalgebras contained in p and denote 209

p= p̃⊕h. (2.8)

The pair (k,p) is often referred to as a Cartan pair of g, and the subalgebra h as a Cartan subalgebra. 210

The next theorem asserts that this Cartan subalgebra h serves as the fundamental stratum of p 211

because everything else in p can be obtained from a rotation (conjugation) of h. It is this structure 212

that catches our attention to connect it to the Lax dynamics. 213

Theorem 3 Let K be the Lie subgroup corresponding to the Lie subalgebra k, i.e., K= ek. For a fixed 214

K ∈ K, let AdK : g→ g denote the conjugation action, i.e., AdK(g) = KgK−1 for g ∈ g. Then 215

1. p=
⋃

K∈K AdK(h). 216

2. If ĥ is another Cartan subalgebra in p, then ĥ= AdK(h) for some K ∈ K. 217

With regard to our unitary synthesis problem (1.1), suppose that the task of forming g(ıH )⊂ su(2n) 218

is done. Suppose that the involution 219

θ1(g) :=−g> (2.9)

is used, where we stress that g might be complex-valued but we take only the transpose, not the 220

conjugate transpose, of g ∈ g(ıH ). By Theorem 2, we can construct the decomposition 221

g(ıH ) = k⊗ (p̃⊗h), (2.10)

where elements in k are both skew-Hermitian and skew-symmetric and, hence, must be real-valued, 222

while elements in p are both skew-Hermitian and symmetric and, hence, its entries must be pure 223

imaginary. Since H in the context of (1.1) is real-valued and symmetric, ıH ∈ p. By Theorem 3, 224

there exist κ ∈ k and η ∈ h such that 225

− ıH = eκ
ηe−κ . (2.11)

It follows that the unitary synthesis can be realized from 226

e−ıH t = eκ eηte−κ . (2.12)

Such a fundamental factorization is significant because the commutativity of h implies that the 227

exponential eηt on the right hand side of (2.12) is readily implementable on quantum circuits. We 228

shall deal with the exponential eκ similarly, which will be discussed separately in Section 3.3, and there 229

are several ways to approximate eκ . If we can control the precision in computing κ ∈ k and η ∈ h, then 230

the product on the right hand side of (2.12) is a successful synthesis of e−ıH t . 231
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2.4. New realization of Lax dynamics 232

The notion of Cartan decomposition generalizes the well-studied polar decomposition, QR 233

decomposition, and singular value decomposition over the general matrices. It has been established that 234

these different matrix decompositions are related to a variety of differential systems known as the Lax 235

dynamics [6, 8, 10, 11]. We now employ the Lax dynamics to help calculate the Cartan decomposition 236

by numerical ODE techniques. 237

The decomposition (2.11) resembles the classical spectral decomposition of the matrix−ıH , where 238

eκ is unitary and η has the same spectrum as −ıH . The difference is that η is not necessarily 239

diagonal. We do know one additional property for elements in the Cartan subalgebra h, namely, 240

commutable symmetric matrices can be diagonalized simultaneously. However, finding the eigenvectors 241

for η ∈ su(2n) for its diagonalization is as hard as finding the spectral decomposition of−ıH , which is 242

precisely what is prohibited in the first place. Being able to perform the decomposition (2.11) without 243

invoking spectral decomposition and, in fact, we only need to work with dim(p) variables, should be 244

considered as a valuable contribution of this work. 245

To convey the idea, we first recollect some background information. Let µ,ν : gl(N)→ gl(N) denote 246

two linear operators on the general linear space gl(N) of dimension N such that any element X ∈ gl(N) 247

can be expressed as 248

µ(X)+ν(X) = X . (2.13)

The splitting of gl(N) in (2.13) need not even be a direct sum. Different choices of µ and ν lead to 249

different dynamics, including the so-called Toda lattice, the SVD flow, and so on. See a list in our paper 250

[10]. Let the dot ˙ denote the differential operator d
dt with respect to the parameter t. Consider the initial 251

value problem 252

Ẋ(t) := [X(t),µ(X(t))], X(0) := X0, (2.14)

referred to as a general Lax dynamical system. Consider also the two associated systems: 253

ġ1(t) := g1(t)µ(X(t)), g1(0) := I, (2.15)

and 254

ġ2(t) := ν(X(t))g2(t), g2(0) := I, (2.16)

referred to as the parameter dynamical systems. In the paper [13], we have already established the 255

following facts which can be generalized to a wider range of applications [12]. 256

Theorem 4 For any t within the interval of existence, the solutions X(t), g1(t), and g2(t) of the systems 257

(2.14), (2.15), and (2.16), respectively, are related to each other by the following three properties: 258

1. (Similarity Property) 259

X(t) = g1(t)−1X0g1(t) = g2(t)X0g2(t)−1. (2.17)

2. (Decomposition Property) 260

etX0 = g1(t)g2(t). (2.18)

3. (Reversal Property) 261

etX(t) = g2(t)g1(t). (2.19)

There is nothing particular about using the general linear space gl(N). These properties remain true 262

over the subalgebra g(ıH ). We just need be specific in the choice of µ for the Cartan decomposition. 263
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By rewriting (2.17) as 264

X0 = g1(t)X(t)g1(t)−1, (2.20)

we see its analogy to (2.11) if we interpret X0 = −ıH and g1(t) = ek(t). Our idea is to design an 265

isospectral flow X(t) which is governed by a differential system in the form of (2.14) and is restricted 266

to the subspace p such that, starting with X(0) = −ıH , X(t) converges to an element in h. In the 267

meantime, the associated flow g1(t) converges to an element in ek. In this way, both η and κ needed 268

in the factorization (2.11) are found. Of course, since we already have Pauli strings in place, we do not 269

work with matrices X(t) or g1(t) directly. Rather, we work with their combination coefficients in the 270

basis of g(ıH ). 271

To keep X(t) ∈ p, by the property (2.7), it is necessary that µ(X(t)) ∈ k. The question is how to 272

characterize this map µ : p→ k to achieve our goal. In the next section, we shall demonstrate that such 273

a flow can be constructed with guaranteed convergence. A more general mechanism for constructing µ 274

will be detailed in Section 3.2. 275

2.5. Example of Lax dynamics 276

It might be informative to work out the case n = 2 to demonstrate how the above abstract notions can 277

really be pieced together for practical usage. For clarity, we display all data, but keep in mind that the 278

first goal of this work is to avoid producing this entire set of data, only to generate them on an as-needed 279

basis. 280

There will be 4n = 16 Pauli strings. For convenience, we shall identify a Pauli string multiplied by 281

ı by using its ordinal index, i.e., B`V `, after some proper enumeration strategy (see Section 3.1). The 282

commutator table of [Bi,B j] is as follows: 283




0 −15 14 0 −12 0 0 −9 8 0 0 5 0 −3 2 0
15 0 −13 0 0 −12 0 −10 0 8 0 6 3 0 −1 0
−14 13 0 0 0 0 −12 −11 0 0 8 7 −2 1 0 0

0 0 0 0 −9 −10 −11 −12 5 6 7 8 0 0 0 0
12 0 0 9 0 −15 14 0 −4 0 0 −1 0 −7 6 0

0 12 0 10 15 0 −13 0 0 −4 0 −2 7 0 −5 0
0 0 12 11 −14 13 0 0 0 0 −4 −3 −6 5 0 0
9 10 11 12 0 0 0 0 −1 −2 −3 −4 0 0 0 0
−8 0 0 −5 4 0 0 1 0 −15 14 0 0 −11 10 0

0 −8 0 −6 0 4 0 2 15 0 −13 0 11 0 −9 0
0 0 −8 −7 0 0 4 3 −14 13 0 0 −10 9 0 0
−5 −6 −7 −8 1 2 3 4 0 0 0 0 0 0 0 0

0 −3 2 0 0 −7 6 0 0 −11 10 0 0 −15 14 0
3 0 −1 0 7 0 −5 0 11 0 −9 0 15 0 −13 0
−2 1 0 0 −6 5 0 0 −10 9 0 0 −14 13 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




.

For example, the (1,2) entry reads that [B1,B2] = −2B15, where the proportional constant 2 which, 284

by Lemma 1 is universal, is suppressed, but we keep the signs. Suppose now that the target ıH is an 285

element in span{3,6,11,15}. Then, upon checking through all possible nested commutators, we obtain 286

g(ıH ) = span{3,5,6,8,11,15},

indicating that we only need to work with a subspace of dimension 6, a reduction from dim(su(22)) = 287

15. We further find that the splitting asserted in Theorem 2 is given by 288

k= span{5,8}, p= span{3,6,11,15}, p̃= span{3,15}, h= span{6,11}.
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Express a flow p(t) ∈ p in terms of the basis as 289

p(t) = α1(t)B3 +α2(t)B15 +β1(t)B6 +β2(t)B11,

where the real-valued scalar functions α1(t),α2(t),β1(t),β2(t) are yet to be determined by the Lax 290

dynamics. Define also 291

µ(p(t)) :=
1
2

α2(t)B5 +
1
2

α1(t)B8.

The mathematical reason of such a choice of µ(p(t)) will be described in Section 3.2. Note that 292

µ(p(t)) ∈ k. The corresponding Lax dynamics (2.14) for p(t) can be expressed in terms of the 293

coefficients αi(t),βi(t), t = 1,2. Upon simplification, we find that the coefficients are governed by 294

the differential equations 295

{
α̇1 = α1β2,
α̇2 = α2β1,

{
β̇1 = −α2

2 ,

β̇2 = −α2
1 .

By (2.17), p(t) is norm-preserved, so all its coefficients are bounded. Since β1(t) and β2(t) are 296

descending, it follows that α1(t) and α2(t) must converge to zero, while β1(t) and β2(t) converge 297

to some values. Thus, p(t) converges to an element η in h. In the meantime, note that [B5,B8] = 0. 298

Therefore, if we write g1(t) = eγ1(t)B5+γ2(t)B8 , then by using (2.15) we find that 299

{
γ̇1 = α2,
γ̇2 = α1,

which determines a limit point κ ∈ k. Since everything is now expressible in terms of implementable 300

Pauli matrices, the unitary matrix e−ıH t is ready to be simulated on a quantum circuit. 301

We stress that to characterize the flow p(t), we only need to work with its scalar combination 302

coefficients. The Pauli strings play only in the interpretation, but not in the calculation. The differential 303

equations for the parameters are nonlinear in general, but can be integrated numerically (this example 304

is simple that an analytic solution can be obtained), and involved only dim(p) many variables. It is true 305

in this example, as is true in general, that the vector fields for these coefficient flows are always made 306

of homogeneous polynomials of degree 2 and that the coefficients of monomials in the polynomials are 307

approximately of equal magnitudes, suggesting that the numerical integration is not difficult [40, 50]. 308

3. General framework 309

In this section, we give more technical details about the general framework. We divide the discussion 310

to subsections to address each of the goals specified earlier. 311

3.1. Generating g(ıH ) 312

Even as simple as the case n = 2 in the example above, we have seen the benefit of working with 313

the lower dimensional subalgebra g(ıH ). Once g(ıH ) is known, the splitting (2.7) is an immediate 314

consequence by merely using the involution to separate its eigenspace, e.g., skew-symmetric versus 315

symmetric. Therefore, effectively generating g(ıH ) for a given H is the first imperative task. 316

To our knowledge, furnishing an a priori estimate for the dimension of g(ıH ) for a general H 317

is still an open question. For some specifically structure quantum models, it is sometimes possible to 318
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exploit the structure to give an analytic description of g(ıH ). For instance, the Heisenberg model 319

assumes that the n spin-½ particles interacts with only the nearest neighbors. The corresponding 320

Hamiltonian appears in the pattern 321

H =−1
2

n−1

∑
j=1

(JX σ
X
j ∗σ

X
j+1 + JY σ

Y
j ∗σ

Y
j+1 + JZσ

Z
j ∗σ

Z
j+1 + γ

n

∑
j=1

σ
Z
j ), (3.1)

where σA
j := I⊗ j−1⊗A⊗ I⊗n− j and JA is the coupling constant with A standing for any of the Pauli 322

matrices X , Y , or Z, γ denotes an transverse interfering magnetic field, and ∗ denotes the matrix 323

multiplication. In this case, it can be argued that dim(g(ıH )) = 4n − 4, so there is not much gain 324

in using g(ıH ) for the Heisenberg model [35]. This case-by-case closed-form analysis is interesting, 325

but we look for some practical ways to generate g(ıH ) for any given general H . We also are aware 326

of some powerful software packages, e.g., Maple’s LIEALGEBRA, which are capable of creating Lie 327

algebras from a variety of sources and calculating Cartan decompositions [2]. These are helpful tools 328

for initial investigations, but suffer from the curse of dimensionality. To overcome these issues, we 329

propose to employ some basic tools to cast this construction of g(ıH ) as a combinatorial problem. 330

Denote X ,Y,Z, I by the Fraktur numerics 1,2,3,4, which will be used both as an integer index and 331

as a symbol. Every element in {X ,Y,Z, I}⊗n has a unique n-digit ID 332

d1⊗d2⊗ . . .⊗dnV d1d2 . . .dn, d j ∈ {1,2,3,4},

which can be translated into a unique ordinal number ` with 333

` :=
n

∑
j=1

4 j−1(d j−1)+1, (3.2)

and vice versa. This conversion enables us to identify the Pauli string B` by the single integer `. We 334

have already used this notion in Section 2.5. As another example, for the case n = 5, we have 335

X⊗Y ⊗Z⊗ I⊗ZV 12343≡ B741.

Our goal is to avoid generating the commutator table for all B` as we did in Section 2.5. Indeed, we 336

just need the closure under the commutator of terms involved in ıH . From the relationships (2.5), the 337

matrix-to-matrix multiplication table can be summarized as in Table 1. 338

TABLE 1 Matrix-to-matrix multiplication table of {X ,Y,Z, I}.

∗ 1 2 3 4

1 4 ı3 −ı2 1
2 −ı3 4 ı1 2
3 ı2 −ı1 4 3
4 1 2 3 4

If we write the Pauli string Bi in its n-digit ID as Bi = di1 . . .din, where dik ∈ {1,2,3,4} for k = 1, . . . ,n, 339

then the commutator [Bi,B j] is given by 340
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[Bi,B j] = (di1 . . .din)∗ (d j1 . . .d jn)− (d j1 . . .d jn)∗ (di1 . . .din)

= (di1 ∗d j1) . . .(din ∗d jn)− (d j1 ∗di1) . . .(d jn ∗din),

where, for clarity, we have carefully distinguished the matrix multiplication ∗ from the Kronecker 341

product ⊗ whose writing is suppressed. Each of the products dik ∗ d jk, k = 1, . . . ,n, can be looked up 342

from Table 1. Furthermore, note that dik ∗ d jk and d jk ∗ dik differ by at most a negative sign, so the 343

two terms on the right side are essentially the same. We have either [Bi,B j] = 0 or [Bi,B j] = 2(di1 ∗ 344

d j1) . . .(din ∗d j1). The n-digit ID of the bracket [Bi,B j] is thus completely determined. There is no need 345

to execute any real matrix or tensor multiplications at all. All we need is just a few index retrievals 346

or swaps. Once we know the terms involved in H , together with Lemma 1, we can generate the 347

subalgebra g(ıH ) effectively by just checking the membership through the associated ordinal numbers. 348

The immediate benefit of this approach is that we can handle large n, which has caused the exponential 349

growth in the size of su(2n). A general-purpose code that implements the procedure described above 350

has been implemented for this paper and can be furnished to interested readers. 351

3.2. Characterizing µ(p(t)) 352

The key ingredients in the Cartan decomposition approach for the Hamiltonian simulation of a given 353

H are the matrices κ ∈ k and η ∈ h satisfying (2.11). Different from other approaches in the literature 354

that compute only their approximations, we propose using the Lax dynamics to pinpoint the values of 355

κ and η to high precision. We have seen a special example in Section 2.5. Now we describe a general 356

mechanism. We should point out that there is more than one way to design this mechanism. It is yet to 357

be further investigated on whether some might converge faster than others. The following discussions 358

hold for any Cartan decomposition, but we limit our attention to the subalgebra g(ıH ). 359

Lemma 5 Let g be a semisimple Lie algebra and g = k⊕ p be its Cartan decomposition. Suppose 360

p= p̃⊕h with h as a nonempty Cartan subalgebra. Then dim(k) = dim(p̃). 361

Proof : By the stratification relationship in Theorem 3, we see that dim(p) = dim(k)+dim(h). � 362

We may therefore denote the basis in each subspace by the Pauli strings multiplied by ı as 363

p̃= span{p̃1, . . . p̃r}; h= span{h1, . . .hs}; k= span{k1, . . .kr},

respectively. A flow p(t) ∈ p is necessarily of the form 364

p(t) =
r

∑
i=1

αi(t)p̃i +
s

∑
j=1

β j(t)h j, (3.3)

where αi(t) and β j(t) are to be determined. We want the vector field 365

ṗ(t) = [p(t),µ(p(t))] (3.4)

to stay inside p. It is necessary to choose µ(p(t)) ∈ k. Express µ(p(t)) in terms of the basis of k as 366

µ(p(t)) =
r

∑
`=1

z`(t)k`. (3.5)
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Then, we have two ways to convey the derivative of ṗ(t) in the Lax dynamics: 367

ṗ(t) = [p(t),µ(p(t))] =

{
∑

r
i=1 α̇i(t)p̃i +∑

s
j=1 β̇ j(t)h j,

∑
r
`=1 ∑

r
i=1 αi(t)z`(t)[ p̃i,k`]+∑

s
j=1 ∑

r
`=1 β j(t)z`(t)[h j,k`].

(3.6)

Since the Pauli strings are mutually orthogonal, we can obtain the differential equations for α̇i and β̇ j 368

by comparing the two equivalent expressions in (3.6) with respect to the basis. Toward that end, we 369

have to separate the terms in the double summations into those belonging to p̃ and those to h. We do 370

know that [ p̃i,k`] ∈ p, but it is hard to tell whether it falls in p̃ or h. It is the second double summation 371

that provides the clue on how to select z`, `= 1, . . .r, to ensure that the p(t) converges to an element in 372

h as t goes to the infinity. The idea is based on the following observation. 373

Lemma 6 Suppose that a semisimple Lie algebra g has a Cartan decomposition g= k⊕p and that p 374

has a splitting p = p̃⊕h with h as a maximal subalgebra. Then for all h ∈ h and k ∈ k, it is true that 375

[h,k] ∈ p̃. 376

Proof : Since h⊂ p, by (2.7), we can write 377

[h,k] = p̂+ ĥ,

for some p̂ ∈ p̃ and ĥ ∈ h. It follows that 378

〈ĥ, ĥ〉= 〈hk− kh, ĥ〉= 〈k,h∗ĥ− ĥh∗〉= 0,

where the last equality is because h and ĥ commute. This proves that [h,k] = p̂ ∈ p̃. � 379

For j = 1, . . . ,s, define 380

H j := {`|[h j,k`] 6= 0}.

It should be easy to see that 381

k=
s⋃

j=1

H j. (3.7)

For each ` j ∈ H j, by Lemma 6, there exists an integer 1 ≤ i` j ≤ r such that [h j,k` j ] = ci` j
p̃i` j

with 382

ci` j
=±2. By Lemma 1, 383

[p̃i` j
,k` j ] =−ci` j

h j. (3.8)

We now rely on these indices i` j , ` j ∈ H j, j = 1, . . . ,s, to define the flow µ(p(t)) in (3.5) segment by 384

segment. Without causing ambiguity, when j is fixed, we shall drop the reference to j in ` j as `. 385

Lemma 7 Starting with hs, for each ` ∈ Hs, choose the integer i` as above. Define the coefficients 386

z`(t) :=
ci`
4

αi`(t), ` ∈ Hs. (3.9)

Then 387

αi`(t)→ 0, for all ` ∈ Hs. (3.10)
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Proof : By the way the integer i` is chosen and the fact (3.8), we find from (3.6) that 388

β̇s(t) =− ∑
`∈Hs

ci`αi`(t)z`(t) =− ∑
`∈Hs

α
2
i`(t). (3.11)

Therefore, βs(t) is strictly decreasing unless αi`(t) becomes zero for all ` ∈Hs. Since βs(t) is bounded, 389

it must be the case as t→ ∞. It also follows that βs(t) converges to a limit point. � 390

It is possible that there exists some ` 6∈ Hs, i.e., [hs,k`] = 0. Then we move to examine the set Hs−1 391

and for ` ∈Hs−1 define for the remaining z`(t) accordingly. We repeat the process for every h j ∈ h until 392

every z`(t) is defined. In this way, segment by segment αi`(t)→ 0 for ` ∈ H j while β j(t) converges to 393

a limit point. It follows that the limit point of p(t), i.e., 394

η := lim
t→∞

p(t) =
s

∑
j=1

( lim
t→∞

β j(t))h j ∈ h (3.12)

exists. In this way, we have secured a point in the subalgebra h which is isospectral to −ıH without 395

knowing the spectrum of−ıH . Note that we are not trying to diagonalize−ıH as a conventional Toda 396

lattice will do. Rather, we use the flow to locate a point η ∈ h which is not necessarily diagonal, but is 397

surely quantum implementable. We do think that this innovative application of the Lax dynamics (2.14) 398

is interesting. 399

Usually the dimension s of the maximal Abelian subalgebra h is relatively low. The sign of ci` can 400

quickly be determined by using the techniques described in Section 3.1. In our preliminary experiment 401

thus far, we have found that this strategy of construction works fairly well. 402

The reason we start with examining hs and work backward for other h` is only for the convenience of 403

explaining our ideas. There is a lot of room for further investigation. For example, is there a preferable 404

ordering, say, starting with the largest set H j, that will help improve the convergent behavior? Also, 405

the current choice z`(t) is solely for enforcing the nonnegativity in the summation of (3.11). Will other 406

choices, such as using a high degree odd polynomial in αi`(t), help speed up the convergence? Thus far, 407

by our construction, the vector field involves homogeneous polynomials of degree 2 with coefficients 408

of almost equal module. This particular quadratic form might help justify that the differential system is 409

not stiff. Any further investigation of these questions will likely help improve our framework. 410

3.3. Simulating ek(t)
411

The conjugation action AdK in Theorem 3 can be interpreted as a rotation of the subalgebra h. As such, 412

many approaches proposed in the literature have been resorting to the notion of optimization. One such 413

formulation is of the form [20, 34, 49] 414

min
h∈h,K∈K

‖KhK−1− ıH ‖F , (3.13)

which is a special type of the so-called weighted orthogonal Procrustes problem [14]. Because this is 415

a nonlinear programming problem, there is a great danger of being trapped in a local solution which 416

does not warrant an equality in (2.11). In contrast, our idea outlined above uses the Lax dynamics to 417

construct an isospectral flow that finds the absolute optimal η ∈ h without using any information of K. 418

With the state-of-the-art numerical ODE techniques, the flow can be followed closely with precision up 419

to the user-controlled integration tolerance. Now we outline some ideas for finding the corresponding 420

unitary matrix K. 421
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3.3.1. Derivative of exponential map 422

To maintain the similarity property (2.20), g1(t) must satisfy the initial value problem (2.15). To fit in 423

Theorem 3, we also want g1(t) to be of the form g1(t) = ek(t) for some 424

k(t) =
r

∑
`=1

γ`(t)k` ∈ k. (3.14)

We characterize the coefficients γ`(t), `= 1, . . . ,r, and their limiting behavior as follows. 425

Theorem 8 Let Θ = [θ` j] ∈ Rr×r be the matrix representation of the linear map adk(t) : k→ k, where 426

adk(∆) := [k,∆], that is, 427

adk(k j) =
r

∑
`=1

θ` jk`. (3.15)

Then the column vector of coefficients γ := [γ1, . . . ,γr]
> in (3.14) satisfy the linear system of equations 428

(
∞

∑
j=0

(−Θ) j

( j+1)!
)

︸ ︷︷ ︸
Ω

γ̇ = z, (3.16)

where entries of z := [z1, . . .zr]
> are given by (3.9). 429

Proof : Recall the fact that the derivative of exponential map is given by the dexp formula [32] 430

dek(t)

dt
= ek(t)(

∞

∑
j=0

(−1) j

( j+1)!
(adk(t))

j)k̇(t). (3.17)

Comparing with the differential system (2.15), we find the relationship that 431

µ(p(t)) = (
∞

∑
j=0

(−1) j

( j+1)!
(adk)

j)k̇(t) = k̇− 1
2!
[k, k̇]+

1
3!
[k, [k, k̇]]− . . . . (3.18)

Introduce a formal row vector ω := [k1, . . . ,kr] of matrices. Then 432

(adk)
j(k̇) = ωΘ

j
γ̇, j = 0,1,2, . . . .

Upon comparing the coefficients, we see that (3.18) is equivalent to (3.16). � 433

The infinite sum can be simplified to 434

Ω =

{
I, if Θ≡ 0,

(I− e−Θ)Θ−1, if Θ is invertible.
(3.19)

Note that Θ depends on γ1, . . . ,γr, so Ω−1 in general is a nonlinear function of the variable γ . However, 435

by the fact in (3.16) that γ̇ depends linearly in z and z(t)→ 0, we still can conclude that a limit point κ 436

in the sense 437

κ :=
r

∑
`=1

( lim
t→∞

γ`(t))k`, (3.20)

exists and can be calculated. In the case that elements in k commute, it is easy to see that γ̇`(t) = z`(t), 438

`= 1, . . . ,r, which is exactly the case Θ≡ 0. 439
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By now, we have developed two dynamical systems for finding matrices η and κ , respectively, 440

needed for the Cartan decomposition of a given H . Accurate up to the user-specified tolerance, this 441

ODE approach is much more theoretically assuring and computationally economical than solving the 442

optimization problem (3.13). 443

3.3.2. Example for computing Ω 444

It might be interesting to demonstrate a different way to compute Ω. Consider the case that n = 2 and 445

ıH ∈ span{4,11,13,15}. Then, 446

g(ıH ) = span{4,5,6,7,9,10,11,13,14,15}

which is larger than the example given in Section 2.5. The splitting asserted in Theorem 2 is given by 447

k= span{5,7,10,14}, p= span{4,6,9,11,13,15}, p̃= span{4,6,11,15}, h= span{9,13}.

Note that, in contrast to the example in Section 2.5, elements in k do not commute this time. Following 448

(3.15), we obtain that 449

−Θ = 2




0 γ4 0 −γ2
−γ4 0 0 γ1

0 0 0 0
γ2 −γ1 0 0


 ,

which is always skew-symmetric. Note that span{5,7,14} is itself the maximal proper subalgebra of k, 450

while the singleton B10 commutes with every element in k. It follows that 451

(−Θ)2 = 4




−γ2
2− γ4

2 γ1γ2 0 γ1γ4
γ1γ2 −γ1

2− γ4
2 0 γ2γ4

0 0 0 0
γ1γ4 γ2γ4 0 −γ1

2− γ2
2


 ,

(−Θ)3 = −4ρ(−Θ),

with ρ := γ2
1 + γ2

2 + γ2
4 . This establishes the recursion relationship that 452

(−Θ)2 j+1 = −4ρ(−Θ)2 j−1 = . . .= (−4ρ) j(−Θ),

(−Θ)2 j+2 = −4ρ(−Θ)2 j = . . .= (−4ρ) j(−Θ)2, j = 0,1,2, . . . .

Therefore, the coefficient matrix Ω in (3.16) is given by 453

Ω =
∞

∑
j=0

(−Θ) j

( j+1)!
= I +

∞

∑
j=0

(−Θ)2 j+1

(2 j+2)!
+

∞

∑
j=0

(−Θ)2 j+2

(2 j+3)!

= I− (
∞

∑
j=0

(−4ρ) j

(2 j+2)!
)Θ+(

∞

∑
j=0

(−4ρ) j

(2 j+3)!
)Θ2

= I−
1− cos

(
2
√

ρ
)

4ρ
Θ+

2
√

ρ− sin
(
2
√

ρ
)

8ρ
√

ρ
Θ

2.
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It can be checked that determinant is 454

det(Ω) =
1− cos

(
2
√

ρ
)

2ρ
.

Therefore, unless
√

ρ is an integer multiple of π , the linear system (3.16) is uniquely solvable. In fact, 455

it is not difficult to prove that the recursion relationship exemplified above holds for any subalgebra of 456

dimension three. 457

3.3.3. Block diagonal Θ 458

The above example actually sheds light on another way to facilitate the calculation of Θ. Suppose that 459

the subalgebra k can be partitioned as 460

k= (
s⊕

i=1

ki)⊕ r, (3.21)

where each ki is a maximal, proper and non-commutative subalgebra of k and r is the remainder. It is 461

possible that ki or r is empty. By the definition, it must be that 462

[r,r] = 0, [ki,r] = 0for each i, and [ki,k j] = 0for all i 6= j. (3.22)

Therefore, upon rearranging the basis if necessary, we may assume without loss of generality that Θ is 463

a block diagonal matrix. In fact, the block corresponds to r is identically zero. Write 464

Θ = diag{Θ1, . . . ,Θs,0}. (3.23)

Then the calculation of Ω in (3.19) can be limited to each Θi, i = 1, . . . ,s. Correspondingly, if we group 465

the terms involved in k(t) defined in (3.14) according to 466

k(t) =
s

∑
i=1

∑
k`i∈ki

γ`i(t)k`i + ∑
kr j∈r

γr j(t)kr j , (3.24)

then each of these groups {γ̇`i}, k`i ∈ ki, and {γr j}, kr j ∈ r, can be calculated by using the corresponding 467

blocks in Θ. 468

4. Continued Cartan decomposition 469

Our initial goal is to establish the relationship 470

− ıH ≡ ek(t)p(t)e−k(t)→ eκ
ηe−κ as t→ ∞. (4.1)

Because elements in h commute, the summation involved in η through the definition (3.12) can be 471

handled directly by the mixture of quantum gates. The summation involved in κ according to (3.20), 472

nonetheless, makes the quantum simulation of eκ as hard as that of e−ıH t . The reason is that, again, 473

we can handle the exponential of each individual term k` on a quantum circuit, but not an algebraic 474

combination such as the whole κ . Therefore, it is necessary to further decompose the subalgebra k, 475

which leads to the notion of continued Cartan decomposition. 476

Since k forms a subalgebra by itself, one possible approach is to apply the same theory we have 477

developed for g(ıH ) to the subalgebra k, but with a different involution. The change of the involution 478
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is necessary because k is already invariant under the old involution θ1 used in (2.9). A new involution 479

will have the effect of defining a new notion of symmetry and skew-symmetry. The point is to continue 480

breaking down eκ to the product form (2.12) by the process we have just described for decomposing 481

e−ıH t until we have just singletons of Pauli strings in hand. By then, a quantum circuit can be 482

constructed. 483

This continued Cartan decomposition is of great mathematical interest in itself. It is similar to the 484

classical notion that every element in the special unitary group SU(2n) can be recursively factorized [18, 485

22, 34] by using, say, the elementary Givens rotations [17]. See also [36, 44] for the idea of recursively 486

applying generalized polar decompositions in such a way that any element of the Lie algebra is written 487

as a sum of elements whose corresponding exponentials are easier to compute. However, there are two 488

fundamental differences in practicality. First, we limit our decomposition to Pauli strings only which 489

are readily quantum implementable. Second, we conduct the continued decomposition on subalgebras 490

contained in g(ıH ) and each time we work on some smaller subalgebras. This successive reduction 491

of sizes is analogous to the idea of divide-and-conquer used in, say, the Fast Fourier Transform. For 492

example, in Section 2.5 we see the case of a quick reduction from dim(su(22)) = 15 to dim(g(ıH ) = 6, 493

and then to dim(k) = 2 and dim(h) = 2. A theoretical understanding on how quickly the dimensions are 494

reduced through this nested decomposition for su(2n) where n is large is a question of high interest, but 495

we do not have room to address it in this paper. It is worth remarking that ultimately the factors in the 496

decomposition consists of Pauli strings within the subalgebra g(ıH ) only. 497

4.1. Choice of involution 498

The beauty of the Cartan decomposition is its generality – that the splitting in Theorems 2 exists 499

(but varies) for any given involution and that the conjugation in Theorem 3 holds for any Cartan 500

decomposition. Furthermore, our Lax dynamics relies only on the inclusion relationship (2.7). Other 501

than the fact that the basis is made of Pauli strings which are readily quantum implementable, the 502

innate structure of k and p is fundamentally immaterial. Therefore, per given involution θ , and with 503

the resulting k and h, we can develop a corresponding Lax dynamical system with the property that 504

p(t)→ η ∈ h and k(t)→ κ ∈ k. What we have demonstrated in Sections 3.2 and 3.3 represents only 505

one choice of θ in the form (2.9), and shows the feasibility and applicability of our ideas. 506

Suppose that ϕ : su(2n)→ su(2n) is an automorphism. Then 507

θ2 = ϕθ1ϕ
−1. (4.2)

defines a new involution with respect to which the notion of skew-symmetry and symmetry will have a 508

new meaning [19, Sec. 2.2.2]. That is, 509

θ2(g) =±g⇐⇒ ϕθ1(g) =±gϕ ⇐⇒ g> =∓ϕ
−1gϕ ⇐⇒

{
ϕ-skew-symmetry,
ϕ-symmetry. (4.3)

This idea can be applied to g(ıH ) as well as to the Lie subalgebra k of g(ıH ). 510

4.2. Example of continued Cartan decomposition 511

We work out an example in details to illuminate the essential steps. Consider the case n = 3, so 512

{X ,Y,Z, I}⊗3 has 64 Pauli strings. Suppose ıH ∈ span{1,4,6,7,11,12,13}. The subalgebra 513

g(ıH )=span{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63}
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is of dimension 30 only. Using θ1, we find that 514

k = span{2,5,7,8,10,14,50,53,55,56,58,62},
p = span{1,3,4,6,9,11,12,13,15,49,51,52,54,57,59,60,61,63}.

There are actually five Cartan subalgebras within p, spanned by the bases 515

{1,4,13,49,52,61},{3,4,15,51,52,63},{3,6,9,51,54,57},{1,6,11,49,54,59},{11,12,15,59,60,63},

respectively. By Theorem 3, each can be reached by some suitable conjugations of others. We can 516

choose any as h for the Lax dynamics to construction the decomposition (4.1). Depending on which 517

subalgebra is used, the resulting limit point of the dynamics will be different. What matters is that the 518

exponentials of limit points of all choices are quantum implementable. We conjecture that the answer 519

is negative, but it will be interesting to investigate whether one particular selection is computationally 520

superior to the other. 521

Suppose that η and κ have been found. The emphasis in this example is to further decompose eκ
522

to make it quantum implementable. We find that k contains two maximal, proper and non-commutative 523

subalgebras 524

k1 = span{2,8,10,50,56,58}, k2 = span{5,7,14,53,55,62}.

Therefore, by writing κ = κ1 +κ2 with κi ∈ ki, i = 1,2, we already have 525

eκ = eκ1eκ2 . (4.4)

It suffices to work with each subalgebra separately. Suppose that we use the automorphism 526

ϕ :=
[

I4 0
0 −I4

]
,

where I4 stands for the 4× 4 identity matrix, to define θ2. Based on Theorem 2, we find new Cartan 527

decompositions 528

k1 = span{8,56}︸ ︷︷ ︸
k(1)

⊕span{10,58}︸ ︷︷ ︸
p̃(1)

⊕span{2,50}︸ ︷︷ ︸
h(1)

, k2 = span{7,55}︸ ︷︷ ︸
k(2)

⊕span{14,62}︸ ︷︷ ︸
p̃(2)

⊕span{5,53}︸ ︷︷ ︸
h(2)

,

where k(i), p(i) := p̃(i) ⊕ h(i), i = 1,2, correspond to the decompositions in (2.6) and (2.8) for the 529

subalgebras k1 and k2, respectively. It turns out that each of these subsets commutes with itself. 530

Additionally, they enjoy these transitive relations through the Lie bracket: 531

[k(i), p̃(i)]⊆ h(i), [p̃(i),h(i)]⊆ k(i), [h(i),k(i)]⊆ p̃(i), i = 1,2. (4.5)

Even so, we still cannot apply Theorem 3 to decompose κi ∈ ki immediately because κi might not reside 532

entirely in p(i), i.e., some components from k(i) might contribute to the makeup of κi. To remedy this, 533

we modify the Lax dynamics (3.4) as follows. 534
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We shall concentrate on the subalgebra k1 only. A similar argument applies to k2. Consider the 535

solution flow x(t) ∈ k1 to the initial value problem 536

ẋ(t) = [x(t),ν(x(t))], x(0) = κ1, (4.6)

and the flow ε(t) ∈ ek
(1)

defined by 537

ε̇(t) = ε(t)ν(x(t)), ε(0) = I, (4.7)

with 538

ν(x(t)) = ζ1(t)B8 +ζ2(t)B56 ∈ k(1)

whose coefficients ζ1(t) and ζ2(t) are to be determined. By Theorem 4, the similarity relationship 539

κ1 = ε(t)x(t)ε(t)−1

still holds. Since know only that x(t) ∈ k1, we write 540

x(t) = α1(t)B10 +α2(t)B58 +β1(t)B2 +β2(t)B50 +δ1(t)B8 +δ2(t)B56.

Upon comparison, the coefficients of x(t) must satisfy the differential equations 541

{
α̇1 = −2β1ζ2−2β2ζ1,
α̇2 = −2β1ζ1−2β2ζ2,

{
β̇1 = 2α1ζ2 +2α2ζ1,

β̇2 = 2α1ζ1 +2α2ζ2.

{
δ̇1 = 0,
δ̇2 = 0.

Therefore, if we choose 542{
ζ1 := −α1,
ζ2 := −α2,

then, by the boundedness of β2(t), it must be such that α1(t) and α2(t) converge to zero. That is, the 543

components of x(t) involving p̃(1) are gradually diminished. Together with the fact that β1(t) and β2(t) 544

converge to some fixed values, we conclude that x(t) converges to a point κ̃1 ∈ h(1)⊕ k(1). By the fact 545

that δ1(t) and δ2(t) stay invariant, we can write κ̃1 := η(1)+Pk(1)κ1 for some η(1) ∈ h(1) and Pk(1)κ1 546

is merely the projection of κ1 onto k(1). Furthermore, if we write 547

ε(t) = eγ1(t)B8+γ2(t)B56 ,

then by the commutativity of B8 and B56 we have 548

{
γ̇1 = ζ1,
γ̇2 := ζ2,

and ε(t) converges to a limit point, say, eκ̂1 . By now, we see that 549

eκ1 = eγ1(t)B8+γ2(t)B56ex(t)e−γ1(t)B8−γ2(t)B56 → eκ̂1eκ̃1e−κ̂1 . (4.8)

The accomplishment we have advanced in (4.8) is that the matrix exponential eκ1 has been transformed 550

into the product of three matrix exponentials, in which eκ̂1 and its inverse are readily quantum 551
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k(1)

p̃(1)

h(1)

κ1

κ̃1

x(t)

y(t)

η(1)

Pk(1)κ1

π1

1

FIG. 1. Continued Cartan decomposition, where the initial point κ1 is first transited by the path x(t) ∈ k1 (thin curve) to κ̃1, and
then transited by the path y(t) ∈ k(1)⊕h(1) (thick curve) to π1 ∈ h(1).

implementable and κ̃1 ∈ h(1) ⊕ k(1). This dynamics is depicted by the black curve in the diagram 552

sketched in Figure 1. We still need to decompose eκ̃1 . 553

To deal with eκ̃1 , we exploit the transitive properties (4.5) by restricting a third flow y(t) to the 554

subspace h(1)⊕ k(1). Define the Lax dynamics via 555

ẏ(t) = [y(t),ρ(y(t))], y(0) = κ̃1, (4.9)

and the flow ε(t) ∈ ep̃
(1)

via 556

ε̇(t) = ε(t)ρ(y(t)), ε(0) = I, (4.10)

with 557

ρ(y(t)) = ξ1(t)B10 +ξ2(t)B58 ∈ p̃(1)

By going through the same argument as that for (4.8), we can choose ξ1(t) and ξ2(t) properly, and 558

conclude finally that there exist matrices ς1 ∈ k(1) and π1 ∈ h(1) such that 559

eκ1 → eκ̂1eκ̃1e−κ̂1 → eκ̂1eς1eπ1e−ς1e−κ̂1 . (4.11)

By now, every matrix exponential is quantum implementable. 560

The details above exemplify the feasibility of continued Cartan decomposition. It is not a 561

coincidence that our idea works in this example. The general notion is that the Lax dynamics can 562

be used to “annihilate” an undesired portion in the sum of Pauli strings by converting it to a “partial” 563

spectral decomposition, even under the situation such as (4.6) where x(t) does not fit Theorem 3 exactly. 564

By executing this annihilation procedure systematically we can break down the unitary matrix (1.1) 565

to make it implementable on a quantum machine. Different from the classical Givens rotations that 566

annihilate one entry of the matrix at a time, our method annihilate a segment of subspace at a time. To 567

analyze all procedures rigorously to establish a comprehensive theory for this continued factorization, 568

including the effect of different choices of involutions, will have to be discussed in a separate paper. 569
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5. Applications to general or k-local Hamiltonians 570

Using the involution θ1(g)=−g> to perform the Cartan decomposition results in the structure that k and 571

p contain skew-symmetric and symmetric matrices, respectively. If the given Hamiltonian H happens 572

to be real and symmetric (as is the case in the Schrödinger equation), then ıH ∈ p and Theorem 3 fits 573

in perfectly. It become curious to explore other scenarios such as H is a general Hermitian matrix, but 574

not symmetric, or H is symmetric, but sparse, e.g., the Heisenberg model or k-local Hamiltonian. The 575

first scenario is perhaps merely a mathematical inquiry, but the other models have practical significance 576

because in most quantum systems the interaction is only with neighboring particles. We briefly outline 577

some ideas about how the above theory could be modified to tackle these scenarios. A thorough general 578

theory is still under development. 579

The example discussed in Section 4.2 with the dynamical system (4.6) is actually a case where the 580

flow x(t) and the target matrix κ1 are not symmetric. We have demonstrated in (4.11) that a sequence of 581

Lax dynamical systems can still be exploited to factorize the matrix exponential eκ1 . The key to success 582

is the same notion of annihilation we have mentioned earlier – After choosing some properly selected 583

involutions to divide the subalgebra g(κ1) into three parts, k(1), p̃(1), and h(1), use k(1) to construct a 584

dynamics to annihilate the components of p̃(1) in x(t) while maintaining the conjugation relationship 585

(2.17). If necessary, repeat this procedure multiple times to annihilate other components such as that 586

demonstrated in Figure 1. The idea has been applied successfully in several other settings [10, 11, 13]. 587

With regard to the case that H is sparse, observe that in our representation of g(ıH ) we identify 588

each basis matrix by an integer ID, and never physically generate the matrices. Because we only work 589

with the coefficients of the basis, i.e., αi(t), β j(t) and so on, the specific structure of the underlying Pauli 590

strings is not essential at all. We do think that the above-mentioned approach is applicable, regardless 591

of the sparsity of H . 592

The idea of using dynamical systems to prepare the Hamiltonian simulation on a quantum machine 593

is still at a rudimentary stage. Any further investigation to see how our theory can be generalized will 594

be interesting. It will be a useful tool for quantum simulation, if the procedure that can be automated to 595

generate the decomposition for arbitrarily given Hamiltonian H . 596

6. Example of large scale problem in small breadth calculation 597

In this section, we apply the algorithm described in this paper to a 12-qubit Hamiltonian simulation 598

problem which, if done on a conventional machine, will amount to a large scale problem. By this 599

example, we wish to demonstrate the efficiency of our algorithm for achieving the Cartan decomposition 600

via checking a few integer arrays. We can make our code available for interested readers. 601

Consider the Heisenberg model (3.1) with n = 12 and JZ = 0. The corresponding Hamiltonian H 602

therefore consists of 34 terms in its summation. The underlying Lie algebra su(212) has real dimension 603

412 − 1 = 16777215. Each basis element B` in the Lie algebra is of size 212 × 212 = 4096× 4096. 604

However, as we have argued in Section 3, it suffices to represent each B` by a 12-digit ID which is further 605

translated via (3.2) into a unique ordinal number `. Since we can easily convert ` back to its 12-digit ID, 606

this single integer ` provides every bit information of B`. There is no need to generate the commutator 607

table of all [Bi,B j] in its entirety, which would be an enormous matrix of size (412− 1)× (412− 1). 608

Instead, using the technique described in Section 3.1, we can quickly find the basis of the subalgebra 609

g(ıH ) and, indeed, dim(g(ıH )) = 276 which is less than 0.00165% of the dimension of su(212). This 610

is a significant reduction of the work when comparing with the conventional approaches for the unitary 611

synthesis of ıH . In Figure 2, we observer a fractal pattern in the commutator table of g(ıH ). 612
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FIG. 2. Nonzero Lie brackets among elements of g(ıH ).

Using the fact that (A⊗B)> = A>⊗B>, we can also effectively determine whether an element 613

g∈ g(ıH ) is symmetric or skew-symmetric with respect to the involution θ1 in (2.9) by simply counting 614

how many 2’s, i.e., the Pauli matrix Y , are in its 12-digit ID. This task is almost trivial. As a result, we 615

find the Cartan decomposition (2.10) of g(ıH ) with dim(k) = dim(p̃) = 132 and dim(h) = 12. It is 616

interesting to note that among the 144 basis elements of p, there are 111 maximal subalgebras, each of 617

dimension 12, that can be used to form h. The differential system (3.4) proposed in Section 3.2 defines a 618

144-dimensional solution flow p(t) which is guaranteed to converge to a point η in the 12-dimensional 619

subalgebra h. Note that we never form p(t) per se, but merely work on its 144 real-valued coefficients. 620

Even so, we can control the precision of η via the numerical ODE integrator. 621

To calculate k(t), we use the technique described in Section 3.3 by computing Θ which can be 622

obtained from the the relationship (3.15) over k, whereas the commutators can be obtained by looking 623

up from Table 1. It turns out that the algebra k also contains rich structure therein. First, using our 624

index searching technique, we find that k contains 85 subalgebras, each of which is of dimension 12. Of 625

course, these subalgebras overlap. Second, there are only two maximal, proper and non-commutative 626

subalgebras each of which is of dimension 66. We can exploit the block diagonal structure of Θ. In this 627

way, we formulate a flow k(t) from the differential equation (3.16), which leads to a limit point κ in 628

the sense of (3.20). By now, we have achieve the decomposition (4.1). We can write κ = κ1 +κ2 with 629

κi ∈ ki and exact information of ki, i = 1,2. 630

In fact, similar to k, each ki contains 43 subalgebras, each of which is of dimension 6 and is 631

commutative, suggesting also its rich structure. By choosing appropriate involutions (4.2), we apply 632

the continued Cartan decomposition, as is described in Section 4, to each κi, i = 1,2. It might 633

be necessary to repeat the continued Cartan decomposition multiple times. There is a lot of open 634

questions about choosing the involutions, including how the choice affects the dimensionality in the 635

resulting Cartan decomposition and how many times are needed to carry out the continued Cartan 636

decomposition. Ultimately, the unitary matrix e−ıH is decomposed as the product of pieces each of 637

which is implementable on a quantum machine. A lengthy detail of the computational data might not be 638

suitable for this presentation, but we stress that other than solving the differential systems that requires 639

using existing numerical integrators, most of the bookkeeping tasks are handled by using our system of 640

ordinal numbers. 641
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7. Conclusion 642

The computational power required to describe a quantum system scales exponentially with the number 643

of its constituents. To merely describe the most general (pure) quantum state for n spin-½ particles, 644

we have to store 2n coefficients, not to mention that we will have to operate on these coefficients in 645

order to productively describe a physical quantity. Quantum simulation promises to use a number of 646

qubits similar to the number of particles in the original system to mimic the physical phenomenon. The 647

overall time needed for the simulation would not grow exponentially with the number of particles. The 648

essential task for this simulation is to approximate each time step by a sequence of quantum gates. 649

Most existing methods for unitary synthesis rely on approximation, some of which are elegant 650

in theory but suffer from truncation errors or being only a local solution. In contrast, we develop 651

a framework which calls for an eclectic mix of techniques from the Cartan decomposition and Lax 652

dynamics, together with a combinatorial type representation of Pauli strings. Our techniques prepare 653

numerically the essential components needed to synthesize the final unitary operator effectively and 654

more precisely. In contrast to other existing methods, the most important attribute of our approach 655

is that we can quantify the exact factors up to integration error which is easy to control by existing 656

numerical techniques. This combination of techniques is innovative. The expected result should be 657

useful to the field. 658
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