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Simulating the time evolution of a Hamiltonian system on a classical computer is hard — The
computational power required to even describe a quantum system scales exponentially with the number
of its constituents, let alone integrate its equations of motion. Hamiltonian simulation on a quantum
machine is a possible solution to this challenge — Assuming that a quantum system composing of spin-
14 particles can be manipulated at will, then it is tenable to engineer the interaction between those particles
according to the one that is to be simulated, and thus predict the value of physical quantities by simply
performing the appropriate measurements on the system. Establishing a linkage between the unitary
operators described mathematically as a logic solution and the unitary operators recognizable as quantum
circuits for execution is therefore essential for algorithm design and circuit implementation. Most current
techniques are fallible because of truncation errors or the stagnation at local solutions. This work offers
an innovative avenue by tackling the Cartan decomposition with the notion of Lax dynamics. Within the
integration errors that is controllable, this approach gives rise to a genuine unitary synthesis which not
only is numerically feasible, but also can be utilized to gauge the quality of results produced by other
means, and extend the knowledge to a wide range of applications. This paper aims at establishing the
theoretic and algorithmic foundations by exploiting the geometric properties of Hamiltonian subalgebras
and describing a common mechanism for deriving the Lax dynamics.
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1. Introduction

Quantum computing, with its potential capability of transmitting information massively, swiftly,
concurrently, and securely, shows great promises to the next-generation quantum-enabled science and
technology [1, 21]. The range of applications is broad and far reaching, including communicating [3],
sensing [23], computing [47], machine learning and big data [29, 41, 55], and other societal grand
challenges, just to name a few. The current development of hardware devices is still in its infancy,
capable of handling only a few qubits'. Even so, it is of great interest and vital importance to gain
insight into how a quantum computation could be or should be conducted. This work concerns using a
dynamical system to facilitate Hamiltonian simulation.

Typically, the mathematical formalism for quantum computation is expressed through finite
dimensional Hilbert spaces [30, 45]. A mixed quantum state, which often is described in terms of
its density matrix, is a probabilistic ensemble of pure states, i.e., the unit vectors in the corresponding

' As of this paper is written, Google’s Sycamore quantum computer has 53 qubits. IBM’s Eagle has 127 qubits. IBM plans to
unveil its Osprey with 433-qubit processor, and to introduce the Condor with over 1000 qubits. In the meantime, Microsoft’s
Azure offers access to an array of quantum hardware from a single cloud service.

© The Author(s) 2022. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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Hilbert space. Of practical importance is a multipartite quantum system involving the entanglement of
several subsystems. With respect to properly selected basis the entanglement can be mathematically
characterized via the Kronecker product [26, 31]. Quantum algorithms usually are described via
quantum circuits which consist of series of elementary operations, called quantum gates, in line with
the technological specifics of the hardware. Independent of the machine on which the algorithm will
be executed, a quantum circuit is represented as a unitary operator [46]. Synthesizing the relationship
between the unitary operators described as matrices and the unitary operators described as circuits is
therefore essential, as it helps understand better not only how to design new algorithms, but also how to
implement the circuits [17, 37, 38, 51] on a quantum machine.

The forward problem of obtaining the unitary matrix representation from a given circuit is easy. The
circuit can even be simulated on a classical computer [54]. It is the inverse problem of designing the
circuit from a given unitary matrix that is more complicated [15, 38], and falls in the realm of the so-
called quantum compilation. What happens is that, unlike conventional digital machines, no quantum
machine can accept directly a matrix as input. The central task of unitary synthesis (or quantum circuit
synthesis) is to translate a quantum operation described mathematically but in an unknown form for the
hardware into a sequence of elementary instructions understandable by the machine, e.g., a sequence
of one and two-qubit gates. This task of unitary synthesis has broad applications such as the quantum
state preparation (e.g., via the unitary coupled cluster formalism), the thermal state preparation (e.g., by
the unitary embedding of mixed states), and even the execution of the fundamental quantum arithmetic
logic.

More specifically, as is typical in the programming for a conventional machine, in order to cope
with the complexity of a high-level quantum program, several levels of abstractions are required in the
quantum compilation process. The choice of layers and the choice of transformations needed in each
layer highly depend on the applications. For example, on quantum computers that are noisy with short
decoherence time, the attention is at finding a quantum circuit that reduces 2-qubit gates since these are
noisier than 1-qubit gates, whereas on fault-tolerant quantum computers that do error-correction, the
goal is to reduce the usage of gates that require a large amount of error corrections, since they are more
expensive. In all, an effective abstractions should always take the following tasks into account:

o Synthesis: Converting the mathematical formulation of the logic for solving a given problem into
unitary operations that meet the qubit/gate structures/constraints of a quantum machine.

« Optimization: Developing a quantum circuit with, say, the shortest sequence of gates.

o Mapping: Translating a technology-independent quantum circuit into a technology-dependent
quantum circuit.

As the memory requirement for storing the unitary matrix associated with an n-qubit system grows
exponentially, i.e., 2" x 2", any methods will be limited rapidly by the size of the problem on both
classical and quantum machines. The challenge is thus to synthesize quickly and optimally any quantum
operator or quantum state on only a few qubits. Being able to accomplish this task is of fundamental
importance and is crucial to many applications [15, 24, 38].

The focus of this paper is on a paradigmatic problem where we want to perform the unitary synthesis
of time evolution under a time-independent Hamiltonian 7, i.e., the family of unitary matrices

U(t) = e 7T, (1.1

with a given Hermitian matrix .7 in C2"*2". We shall explain the intellectual merit of studying this
particular unitary synthesis and the details of our methodology in the sequel. For now, it is important
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to point out first that the conventional ways of using floating-point arithmetic to compute this matrix
exponential, and there are many, such as the widely used scaled and squared Padé approximation [42,
43], are not suitable for and, in fact, not implementable on quantum machines.

A host of approximation techniques have already been proposed in the literature for simulating the
unitary evolution (1.1) on quantum machines, including the Trotter-Suzuki formulas, the Taylor series,
random walk (qubitization), and so on [4, 27, 39]. In [4], for example, the Hamiltonian dynamics
is simulated with a truncated Taylor series where the terms are expressed via linear combinations of
unitary operations together with a robust form of oblivious amplitude amplification. In [27], as another
example, under the structure that the layout is such that a qubit may only interact with qubits in its
vicinity (the so-called lattice Hamiltonian), the time-evolution unitary is approximated by a product
of small unitaries based on the Lieb—Robinson bounds and, hence, the performance is good only
when the Hamiltonian is close to commuting. These algorithms are reported to have been optimized
in that the circuit depth scales almost linearly in the evolution time and inverse logarithmically in the
approximation error. However, it must be noted that these approaches are subject to some inherent
constraints and that the approximation errors affect the simulation authenticity.

Recently, there has also been a promising approach by explicitly parameterizing a given unitary
transformation over an n-qubit system in terms of 1- and 2-qubit operations [17, 22, 34, 35, 49]. The
idea is based on the observation in the seminal paper [34] that, if the Cartan decomposition is properly
managed, then elements of the special unitary group SU(2") can be determined, up to some local
unitaries in SU(2)®", by components generated from certain Abelian subalgebras of the Lie algebra
su(2"). A constructive algorithm to perform such a decomposition is not easy. The procedure proposed
in [49] is recursive in nature, which requires at every step to solve numerically the zeros of a matrix
polynomial obtained by a properly truncated Baker-Campbell-Hausdorff (BCH) formula. As such,
though the computational concepts involved are straightforward, the truncation of the BCH formula
at higher orders at every iteration so as to control the overall errors is concerning. The fact that working
with the basis of the entire su(2") requires generically exponential circuit depth for arbitrary unitaries
is another serious drawback.

It is under such a background, we propose in this paper a different way to find the Cartan
decomposition. Our idea is to apply the Cartan theory only to a necessary subalgebra of su(2"), in which
a Lax dynamics is constructed, whose solution flow can be tracked by any available numerical ODE
techniques. Our specific objectives in this paper are to describe how the subalgebra can be generated
effectively on an as-needed basis, to introduce a general mechanism for deriving the Lax dynamics, and
to propose the notion of continued Cartan decomposition that breaks down .77 to prepare for the unitary
synthesis.

This work is motivated by our past experience with the Toda lattice [6, 7] and the isospectral flow
approach for other applications [8, 9, 12], and by seeing the similarity between the setting of the
general Lax dynamics [11, 13] and the Cartan decomposition. We therefore think that developing a
computational framework for the unitary synthesis problem (1.1) in general is possible. We will explain
the various benefits of this undertaking, outline our methodologies, and furnish some preliminary but
promising empirical evidences.

This paper is organized as follows. Since some of the ideas are from across fields, we use some
extended examples to help convey the points. Beginning in Section 2 with some basic information, we
present a motivation for studying (1.1), the idea for working on reduced subalgebras [35], the connection
to the Cartan decomposition [34, 49], and a brief outline of the Lax dynamics [11, 13], followed
by a worked-out example. The general framework with greater mathematical details is delineated in
Section 3. We describe a mechanism for dimension reduction by using a combinatorial approach which
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checks only integer arrays and, thus, is highly efficient. We put forward a recipe for the construction of
the differential system that guarantees the convergence of the Lax dynamics from the given Hamiltonian
matrix to a decomposition form which can be implemented on a quantum machine. In Section 4, we
discuss the idea of continued Cartan decomposition together with an example to demonstrate that not
only can we do recursive factorization, as that which is achievable via conventional linear algebra
techniques [17], but also that each factor is from a smaller subalgebra and is readily implementable on a
quantum machine, which is hard to accomplish by the conventional means. The entire framework can be
extended to general or k-local Hamiltonian. We only outline the idea in Section 5, as more investigation
is needed to complete the generalization. Finally, in Section 6 we present an example with a 12-qubit
system that would have been challenging for a conventional machine, but our approach with the help
of existing numerical ODE integrators can accomplish the Cartan decomposition by merely checking a
few integer arrays.

2. Basics

In this section, we outline some background information for building our framework. At first glance,
it might seem that the subjects involved in the following discussion are too abstract, uncorrelated, and
even not suitable for classical numerical computation. Nevertheless, it is precisely our point to bring in
a synthesis of knowledge and understanding from different fields to the field of quantum computation.

2.1. Application to the Schrodinger equation

We have already mentioned that a quantum circuit acting on n-qubits is always represented by a unitary
matrix and, hence, to translate between a unitary operator and a quantum circuit is imperative. We now
briefly explain, among other applications, why the specific unitary synthesis in the form (1.1) is of
particular interest.

Quantum mechanics postulates that the evolution of a quantum state appears as a wave function |y)
whose dynamics can be described by the Schrodinger equation

2
lﬁglw (r,t) = {—fmvuvm} ) (r,1), @0

where £ is the Planck constant and the quantity inside the brackets, called the Hamiltonian, corresponds
to the energy of the system. If we discretize |y) (r,¢) in the spatial variable r, e.g., particles living on a
lattice [38], and denote the resulting vector as [¥) (z), then (2.1) can be expressed as

9 19) (6) = 1) ), 22)

where 7 is a time-independent Hermitian matrix (actually, in the current context, .7 is real-valued

and symmetric). It follows that
—1t

() =

¥(0)) (2.3)

WAt —t

and e 7 is unitary. The need to calculate e % " is now apparent. Being able to execute this calculation
by using quantum gates is even more paramount because the size of the matrix grows exponentially.

A historical note on this calculation is worth mentioning. The abstract of the influential paper
by Lloyd [38] in Science consists of one sentence only, “Feynman’s 1982 conjecture, that quantum
computers can be programmed to simulate any local quantum system, is shown to be correct,” but
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the impact of such an affirmation is profound. Feynman’s idea was that if we could build a quantum
simulator at our disposal, composed of spin-Y2 particles that we could manipulate at will, then we would
be able to engineer the interaction between those particles according to the one we want to simulate, and
thus predict the value of physical quantities by simply performing the appropriate measurements on the
quantum simulator [15]. The proof in [38] was via the notion that even evolving in small time steps of
(2.2) would allow efficient simulation of any many-body quantum Hamiltonian containing few-particle
interactions. Therefore, the application of the unitary synthesis in the form (1.1) for the Schrodinger
equation alone is already of considerable significance.

2.2. Dimension reduction on Lie subalgebra

Some of the most important operators in a single-qubit system are the Pauli matrices,

0 1 0 — 1 0
X:z{1 O]; Y::{l 0}; Z::{0 _1]. 2.4)

Each Pauli matrix is readily an observable describing the spin of a spin-¥2 particle. Pauli matrices are
Hermitian and unitary. When exponentiated, the Pauli matrices give rise to rotation matrices around
the three orthogonal axis in 3-dimensional space. Together with the identity matrix /, an element in the
set {X,Y,Z,1}*", i.e., a tensor product of n matrices selected from the set {X,Y,Z 1}, is referred to as
a Pauli string. Elements in {X,Y,Z,1}®" are mutually orthogonal with respect to the Frobenius inner
product over C2'*2" so they span all possible 2" x 2" Hermitian matrices. With a multiplication by
the imaginary number 1 to the Pauli strings, we have the Lie algebra of the unitary group U(2"), which
consist of skew-Hermitian matrices with the Lie bracket given by the commutator. For mathematical
rigor, the subsequent discussion requires the assumption of semisimplicity, but U(2") is not. Instead, we
shall work with the special unitary group SU(2") and its Lie algebra su(2"). Recall that su(2") consists
of skew-Hermitian matrices with trace zero and has real dimension 4" — 1 because the element /%" is
removed from the basis. In practice, if I®" ever appears as a term in the makeup of .57, its contribution
amounts to only a scalar multiplication which can easily be handled.

While any given Hamiltonian 7 can be expressed as a linear combination of Pauli strings, the
trouble is that the matrix exponential of —1.77 in the summation form cannot easily be simulated on a
quantum circuit. The simplest reason to see this infeasibility is that the BCH formula or the Zassenhaus
formula [52] will involve infinite terms or products in the expansion. This is where the work proposed
in this paper might come in handy.

Most earlier works for the unitary synthesis (1.1) of a given Hamiltonian .77 require using the entire
su(2") for the approximation [4, 22, 27, 34, 39, 49]. Among other issues, the implementation will
require long circuit depth which may cause loss of fidelity due to noise presented in current technology.
A close inspection of the Zassenhaus formula implies that only nested commutators of the individual
terms in .72 will appear in the ultimate exponents [5, 35]. Therefore, for a fixed 72, it is feasible to
work with the subalgebra g(1.72”) C su(2") which is defined to be the closure of all possible Lie brackets
generated from individual terms in 7. Under some suitable conditions the dimension of g(:.5¢°) can
be far less than 4" — 1, as we will see in our examples. This gives rise to the basic notion of dimension
reduction.

Given a subset V of an arbitrary Lie algebra, there is no general way to characterize the closure
g(V). Some discussions on the dimensionality for some special subsets V can be found in [25, 35, 48].
However, if we use Pauli strings as the basis, the following lemma implies that such a task is possible.
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Lemma 1l Let By, {=1,...,4" denote elements in {X,Y,Z,1}*" multiplied by 1.

1. If the commutator [B;, B;j] of two distinct Pauli strings B;, B is not zero, then [B;, B | = cBy, for some
k#ior j, and c is either 2 or -2.

2. If[B,’,Bj} = cBy, then [Bj,Bk] = cB; and [Bk,Bi] = CB]'.

3. The proportional constants c depends on the makeup of the Pauli strings.

Proof : Observe first that the Pauli matrices satisfy the relationships
XX=YY=ZZ=—-1XYZ=1 (2.5)

These are sufficient to establish other cyclic relationships such as XY =iZ = -YX,YZ =1X = —-ZY,
ZX =1Y = XZ, and so on. It follows that the commutator [B;, B;| can eventually be simplified to either
zero or a scalar multiple of an element B € {X,Y,Z,I}*". Observe that

(- ifi=j,
BiB; —{ _B;B;, if [B;,Bj] 0.

Therefore, the scalar multiple ¢ must be 2 or -2. Suppose that we have [B;, B;] = ¢By. Then

: [Bj,[Bi,Bj]] =

1 4
[Bj,Bk] = p (ZBjBiBj-FZB,'):EBi.

c
A similar argument can be applied to [By,B;]. O

The practical question is how to search to determine g(17#) in the most efficient way. Given JZ
which is a finite sum of Pauli strings, an exhaustive search by checking through all possible brackets
[A,B] and continuing to check [[A,B],C] and so on of all terms until no more elements can be added
to g(1.5¢) is possible, but such a task becomes too demanding when the dimension is high. The first
specific goal of this work is to develop a mechanism that identifies and executes elements in g(1.5¢) by
checking only a few integer indices on an as-needed basis. Technical details are given in Section 3.1.

2.3. Connection to Cartan decomposition

The notion of Cartan decomposition of a semisimple Lie algebra plays an important role in the
theoretical study of structure and representation in the Lie theory [53]. It is interesting that this abstract
mathematics now finds applications in quantum simulation. This connection is nothing new in the
literature [19, 28, 34, 49]. What is new is to find the Cartan decomposition for the subalgebra g(1.5¢)
by means of the Lax dynamics, which is the central theme of this work. For completion we state two
fundamental theorems concerning the Cartan decomposition [22, 34]. The results hold for any general
semisimple Lie algebra, but we apply them to the subalgebra g(:.77") only.

Given areal semisimple Lie algebra g, a Lie algebra automorphism 6 : g — g is called an involution
if its square is equal to the identity. The Cartan decomposition can be characterized via the notion of
involution.
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Theorem 2 Let 0 be an involution on a semisimple Lie algebra g. Let € and p denote the eigenspaces
corresponding to the eigenvalues +1 and -1 of 0, respectively. Then g can be decomposed as a direct
sum

g=tdp, (2.6)

with the properties that
[e,8] C &, [E,p] C p, and [p,p] C L. 2.7)

Conversely, any decomposition of g with properties (2.7) defines an involution.

Obviously, ¢ is a Lie subalgebra by itself, whereas any subalgebra within p is necessarily
commutative. Let h C p be any of the maximal subalgebras contained in p and denote

p=p@h. (2.8)

The pair (¢,p) is often referred to as a Cartan pair of g, and the subalgebra § as a Cartan subalgebra.

The next theorem asserts that this Cartan subalgebra h serves as the fundamental stratum of p
because everything else in p can be obtained from a rotation (conjugation) of . It is this structure
that catches our attention to connect it to the Lax dynamics.

Theorem 3  Let 8 be the Lie subgroup corresponding to the Lie subalgebra €, i.e., R = e*. For a fixed
K € & let Adk : g — g denote the conjugation action, i.e., Adx(g) = KgK~! for g € g. Then

L. p=UgeaAdk(h). -
2. Ifb is another Cartan subalgebra in p, then ) = Adg (h) for some K € &

With regard to our unitary synthesis problem (1.1), suppose that the task of forming g(1.5¢") C su(2")
is done. Suppose that the involution

01(g) :=—¢" 2.9)

is used, where we stress that g might be complex-valued but we take only the transpose, not the
conjugate transpose, of g € g(15¢). By Theorem 2, we can construct the decomposition

g(1)=¢t2(pah), (2.10)

where elements in € are both skew-Hermitian and skew-symmetric and, hence, must be real-valued,
while elements in p are both skew-Hermitian and symmetric and, hence, its entries must be pure
imaginary. Since ¢ in the context of (1.1) is real-valued and symmetric, 1.7 € p. By Theorem 3,
there exist k € £ and 1) € b such that

— 1 =e*ne™ . (2.11)

It follows that the unitary synthesis can be realized from
e =eFele . (2.12)

Such a fundamental factorization is significant because the commutativity of h implies that the
exponential ¢ on the right hand side of (2.12) is readily implementable on quantum circuits. We
shall deal with the exponential ¢* similarly, which will be discussed separately in Section 3.3, and there
are several ways to approximate e®. If we can control the precision in computing x € € and 1] € b, then
the product on the right hand side of (2.12) is a successful synthesis of e ",
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2.4. New realization of Lax dynamics

The notion of Cartan decomposition generalizes the well-studied polar decomposition, QR
decomposition, and singular value decomposition over the general matrices. It has been established that
these different matrix decompositions are related to a variety of differential systems known as the Lax
dynamics [6, 8, 10, 11]. We now employ the Lax dynamics to help calculate the Cartan decomposition
by numerical ODE techniques.

The decomposition (2.11) resembles the classical spectral decomposition of the matrix —i.7, where
€® is unitary and n has the same spectrum as —:5¢. The difference is that 1 is not necessarily
diagonal. We do know one additional property for elements in the Cartan subalgebra f), namely,
commutable symmetric matrices can be diagonalized simultaneously. However, finding the eigenvectors
for n € su(2") for its diagonalization is as hard as finding the spectral decomposition of —.7¢, which is
precisely what is prohibited in the first place. Being able to perform the decomposition (2.11) without
invoking spectral decomposition and, in fact, we only need to work with dim(p) variables, should be
considered as a valuable contribution of this work.

To convey the idea, we first recollect some background information. Let 1, v : gl(N) — gl(N) denote
two linear operators on the general linear space gl(N) of dimension N such that any element X € gl(N)
can be expressed as

K

HX)+v(X)=X. (2.13)

The splitting of gl(N) in (2.13) need not even be a direct sum. Different choices of u and v lead to
different dynamics, including the so-called Toda lattice, the SVD flow, and so on. See a list in our paper
[10]. Let the dot * denote the differential operator % with respect to the parameter 7. Consider the initial
value problem

X(1):= [X(0), p(X ()], X(0) :=Xo, (2.14)

referred to as a general Lax dynamical system. Consider also the two associated systems:

&1(1) :=g1(u(X (1),  £1(0):=1, (2.15)
and

&(t) :=v(X(1)g2(1), £(0):=1, (2.16)
referred to as the parameter dynamical systems. In the paper [13], we have already established the
following facts which can be generalized to a wider range of applications [12].
Theorem 4 For any t within the interval of existence, the solutions X (t), g1(t), and g»(t) of the systems

(2.14), (2.15), and (2.16), respectively, are related to each other by the following three properties:
1. (Similarity Property)

X (1) = 81(1)” ' Xog1 (1) = g2(1)Xoga(1) ™" (2.17)
2. (Decomposition Property)
e = g1(1)ga(1). (2.18)
3. (Reversal Property)
X0 = g,(1)g1 (1). (2.19)

There is nothing particular about using the general linear space gl(N). These properties remain true
over the subalgebra g(1.57°). We just need be specific in the choice of y for the Cartan decomposition.
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By rewriting (2.17) as
Xo=g1(X(1)g1(1)"", (2.20)

we see its analogy to (2.11) if we interpret Xo = —.% and g;(t) = ¢*(). Our idea is to design an
isospectral flow X (¢) which is governed by a differential system in the form of (2.14) and is restricted
to the subspace p such that, starting with X(0) = —1.7, X (¢) converges to an element in §. In the
meantime, the associated flow g;(¢) converges to an element in e. In this way, both 7 and k needed
in the factorization (2.11) are found. Of course, since we already have Pauli strings in place, we do not
work with matrices X (¢) or g (¢) directly. Rather, we work with their combination coefficients in the
basis of g(1.77).

To keep X(¢) € p, by the property (2.7), it is necessary that u(X(r)) € €. The question is how to
characterize this map t : p — € to achieve our goal. In the next section, we shall demonstrate that such
a flow can be constructed with guaranteed convergence. A more general mechanism for constructing
will be detailed in Section 3.2.

2.5. Example of Lax dynamics

It might be informative to work out the case n = 2 to demonstrate how the above abstract notions can
really be pieced together for practical usage. For clarity, we display all data, but keep in mind that the
first goal of this work is to avoid producing this entire set of data, only to generate them on an as-needed

basis.

There will be 4" = 16 Pauli strings. For convenience, we shall identify a Pauli string multiplied by
1 by using its ordinal index, i.e., B; = ¢, after some proper enumeration strategy (see Section 3.1). The
commutator table of [B;, B;] is as follows:

o 15 14 o -2 0 0 -9 8 0 0 5 0 -3 2 0
15 0 -13 0 0 —12 0o -10 0 8 0 6 3 0 -1 0
14 13 0 0 0o 0o -2 -1 0 0 8 7 -2 1 00
0 0 0 0 -9 —-10 -11 —12 5 6 7 8 0 0 0
2 0 0 9 0 -5 14 0 -4 0 0 -1 0 -7 6 0
o 12 0 1 15 0 -13 0 0 -4 0 -2 7 0 -5 0
o 0o 12 1 -1 13 0 0 0 0 -4 -3 -6 5 0 0
9 1o 1 12 0o 0 0 0 -1 -2 -3 -4 0 0 0 0
-8 0 0 -5 4 0 0 1 0 -15 14 0 0 —I1 10 0
o -8 0 -6 0 4 0 2 15 0 -13 0 11 0 -9 0
0 0 -8 -7 0 0 4 3 —14 13 0 0 -10 9 0 0
s 6 -7 -8 1 2 3 4 0 0 0 0 0 0 00
o -3 2 0o 0 -7 6 0 0 -1 10 0 0 -5 14 0
3 0o -1 0o 7 0 -5 0 11 0 -9 o0 15 0 -13 0
2 1 0 0 -6 5 0 0 -0 9 0 0 -14 13 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
For example, the (1,2) entry reads that [B;,B;] = —2B;s, where the proportional constant 2 which,

by Lemma 1 is universal, is suppressed, but we keep the signs. Suppose now that the target .77 is an
element in span{3,6,11,15}. Then, upon checking through all possible nested commutators, we obtain

g(1#) = span{3,5,6,8,11,15},

indicating that we only need to work with a subspace of dimension 6, a reduction from dim(su(2?)) =
15. We further find that the splitting asserted in Theorem 2 is given by

t=span{5,8}, p=span{3,6,11,15}, p=span{3,15}, b =span{6,11}.
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Express a flow p(¢) € p in terms of the basis as
p(t) = (t)Bs + aa(t)Bys + Bi1(t)Bs + B2(t)B11,

where the real-valued scalar functions «;(¢),(t),B1(¢), B2(¢) are yet to be determined by the Lax
dynamics. Define also

(p(1)) = 50a(0)Bs + S a1 (1)Bs.

The mathematical reason of such a choice of u(p(r)) will be described in Section 3.2. Note that
u(p(t)) € t. The corresponding Lax dynamics (2.14) for p(r) can be expressed in terms of the
coefficients o (¢),B;(¢), t = 1,2. Upon simplification, we find that the coefficients are governed by
the differential equations
{ o oupa, { B = —a,
(o) o pi, B2 —a.

By (2.17), p(¢) is norm-preserved, so all its coefficients are bounded. Since B;(¢) and By(¢) are
descending, it follows that o (¢) and o (7) must converge to zero, while B;(¢) and B»(¢) converge
to some values. Thus, p(f) converges to an element 7 in h. In the meantime, note that [Bs,Bg] = 0.
Therefore, if we write g (1) = " ()Bs+12(0Bs then by using (2.15) we find that

{ n o=

}./2 = o,

which determines a limit point k € €. Since everything is now expressible in terms of implementable
Pauli matrices, the unitary matrix e ”" is ready to be simulated on a quantum circuit.

We stress that to characterize the flow p(z), we only need to work with its scalar combination
coefficients. The Pauli strings play only in the interpretation, but not in the calculation. The differential
equations for the parameters are nonlinear in general, but can be integrated numerically (this example
is simple that an analytic solution can be obtained), and involved only dim(p) many variables. It is true
in this example, as is true in general, that the vector fields for these coefficient flows are always made
of homogeneous polynomials of degree 2 and that the coefficients of monomials in the polynomials are
approximately of equal magnitudes, suggesting that the numerical integration is not difficult [40, 50].

3. General framework

In this section, we give more technical details about the general framework. We divide the discussion
to subsections to address each of the goals specified earlier.

3.1. Generating g(1.7¢)

Even as simple as the case n = 2 in the example above, we have seen the benefit of working with
the lower dimensional subalgebra g(1.5¢). Once g(15¢) is known, the splitting (2.7) is an immediate
consequence by merely using the involution to separate its eigenspace, e.g., skew-symmetric versus
symmetric. Therefore, effectively generating g(17¢) for a given 47 is the first imperative task.

To our knowledge, furnishing an a priori estimate for the dimension of g(:.72) for a general J#
is still an open question. For some specifically structure quantum models, it is sometimes possible to
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exploit the structure to give an analytic description of g(1.7¢). For instance, the Heisenberg model
assumes that the n spin-%2 particles interacts with only the nearest neighbors. The corresponding
Hamiltonian appears in the pattern

1n71 n
H = ) Y Uxof «of +Iyo] xo]  +Jz07 x07 +7) o), (3.1
= “

where 6 := I®/"1 ® A® I®"~/ and J, is the coupling constant with A standing for any of the Pauli
matrices X, Y, or Z, y denotes an transverse interfering magnetic field, and * denotes the matrix
multiplication. In this case, it can be argued that dim(g(:.72")) = 4" — 4, so there is not much gain
in using g(1.9¢) for the Heisenberg model [35]. This case-by-case closed-form analysis is interesting,
but we look for some practical ways to generate g(15¢) for any given general s#. We also are aware
of some powerful software packages, e.g., Maple’s LIEALGEBRA, which are capable of creating Lie
algebras from a variety of sources and calculating Cartan decompositions [2]. These are helpful tools
for initial investigations, but suffer from the curse of dimensionality. To overcome these issues, we
propose to employ some basic tools to cast this construction of g(i.¢°) as a combinatorial problem.

Denote X,Y,Z, 1 by the Fraktur numerics 1, 2, 3, 4, which will be used both as an integer index and
as a symbol. Every element in {X,Y,Z,I}®" has a unique n-digit ID

01®0®...00, = 0102...0,, Dje{l>27374}7

which can be translated into a unique ordinal number ¢ with
n .
=Y 40— 1)+1, (3.2)
j=1

and vice versa. This conversion enables us to identify the Pauli string By by the single integer /. We
have already used this notion in Section 2.5. As another example, for the case n = 5, we have

XRYRZRXIRZ = 12343 = Bya;.

Our goal is to avoid generating the commutator table for all B, as we did in Section 2.5. Indeed, we
just need the closure under the commutator of terms involved in 1.77. From the relationships (2.5), the
matrix-to-matrix multiplication table can be summarized as in Table 1.

TABLE |  Matrix-to-matrix multiplication table of {X,Y,Z,1}.

* 1 2 3 4
1 4 13 —12 1
2 —13 4 1 2
3 12 —11 4 3
4 | 1 2 3 4

If we write the Pauli string B; in its n-digit ID as B; = ...y, where 0 € {1,2,3,4} fork=1,...,n,
then the commutator [B;, B,| is given by
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[B,',Bj} = (0[1...0[;1)*(0/1...0jn)—(0/1...0/,1)*(011...0,'”)
= (D,-l*Djl)...(bm*ojn)—(bjl*Oil)...(bjn*bi,,),

where, for clarity, we have carefully distinguished the matrix multiplication * from the Kronecker
product & whose writing is suppressed. Each of the products 9 %0, k= 1,...,n, can be looked up
from Table 1. Furthermore, note that 0;; * 0, and 9 j; x 0 differ by at most a negative sign, so the
two terms on the right side are essentially the same. We have either [B;,B;] = 0 or [B;,B;] = 2(0;; *
0j1)... (9 x0j1). The n-digit ID of the bracket [B;, B,] is thus completely determined. There is no need
to execute any real matrix or tensor multiplications at all. All we need is just a few index retrievals
or swaps. Once we know the terms involved in .77, together with Lemma 1, we can generate the
subalgebra g(1.77) effectively by just checking the membership through the associated ordinal numbers.
The immediate benefit of this approach is that we can handle large n, which has caused the exponential
growth in the size of su(2"). A general-purpose code that implements the procedure described above
has been implemented for this paper and can be furnished to interested readers.

3.2. Characterizing u(p(t))

The key ingredients in the Cartan decomposition approach for the Hamiltonian simulation of a given
¢ are the matrices k € ¥ and 1 € h satisfying (2.11). Different from other approaches in the literature
that compute only their approximations, we propose using the Lax dynamics to pinpoint the values of
k and 1 to high precision. We have seen a special example in Section 2.5. Now we describe a general
mechanism. We should point out that there is more than one way to design this mechanism. It is yet to
be further investigated on whether some might converge faster than others. The following discussions
hold for any Cartan decomposition, but we limit our attention to the subalgebra g(1.5¢).

Lemma 5 Let g be a semisimple Lie algebra and g = € @ p be its Cartan decomposition. Suppose
p = p Db with b as a nonempty Cartan subalgebra. Then dim(€) = dim(p).

Proof : By the stratification relationship in Theorem 3, we see that dim(p) = dim(€) +dim(h). O
We may therefore denote the basis in each subspace by the Pauli strings multiplied by 1 as

p=span{pi,...p,}; b=span{hy,...h}; €=span{ki,...k},

respectively. A flow p(r) € p is necessarily of the form

o)=Y a0+ Y Bi(0)h, (3.3)
i=1 j=1

where o;(f) and f3;() are to be determined. We want the vector field

p(t) = [p(1), u(p(0))] 3.4)

to stay inside p. It is necessary to choose i (p(t)) € €. Express u(p(¢)) in terms of the basis of € as

u(p(t)) = ia(f)/% (3.5)
(=1
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Then, we have two ways to convey the derivative of p(z) in the Lax dynamics:

Yoy 6t)pi+ X5y Bj(t)hy,
) = [p(0), _ : (3.6)
PO =@k {zzzlz;lai<r>a<r>[ﬁ,~,ke]+z;lzz=1ﬁ,~<r>a<z>[h,~,kd.

Since the Pauli strings are mutually orthogonal, we can obtain the differential equations for ¢; and [3 I
by comparing the two equivalent expressions in (3.6) with respect to the basis. Toward that end, we
have to separate the terms in the double summations into those belonging to p and those to h. We do
know that [p;, k] € p, but it is hard to tell whether it falls in p or . It is the second double summation
that provides the clue on how to select zy, £ = 1,...r, to ensure that the p(f) converges to an element in
h as t goes to the infinity. The idea is based on the following observation.

Lemma 6 Suppose that a semisimple Lie algebra g has a Cartan decomposition g = €@ p and that p
has a splitting p = p ® b with b as a maximal subalgebra. Then for all h € b and k € ¥, it is true that
[h,K] € p.

Proof : Since b C p, by (2.7), we can write
(k] = 5+,
for some p € p and he b. It follows that
(h,h) = (hk —kh,h) = (k, "l — hh*) =0,
where the last equality is because /4 and 7t commute. This proves that [1,k] =pep. O

For j=1,...,s, define
9= {llhj,ke] # 0}
It should be easy to see that

b= U, (3.7)
j=1

For each /; € §);, by Lemma 6, there exists an integer 1 < ig; <r such that [hj,kgj] = ¢j, pi, With
J ]
¢j,, = 2. By Lemma I,
]
[piéjdklj} = _Cl'éjhj' (38)
We now rely on these indices i;, e, j=1,...,s, to define the flow u(p(r)) in (3.5) segment by

segment. Without causing ambiguity, when j is fixed, we shall drop the reference to j in £; as .

Lemma 7 Starting with hy, for each £ € §),, choose the integer iy as above. Define the coefficients

20(t) = %a,z (1), (e, (3.9)

Then
0, (t) =0, foralll e $,. (3.10)

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387



14 MOODY T. CHU

Proof : By the way the integer iy is chosen and the fact (3.8), we find from (3.6) that

Bs(t) ==Y cio4,(ze(t) ==Y 02 (1). (3.11)

[0 LEH;

Therefore, fB(t) is strictly decreasing unless o, (1) becomes zero for all £ € $,. Since f(r) is bounded,
it must be the case as t — . It also follows that () converges to a limit point. [

It is possible that there exists some £ & s, i.e., [hg, k¢] = 0. Then we move to examine the set £,
and for ¢ € ),_; define for the remaining z,(¢) accordingly. We repeat the process for every /; € b until
every z¢(t) is defined. In this way, segment by segment «;, (1) — 0 for £ € $); while f3;(¢) converges to
a limit point. It follows that the limit point of p(¢), i.e.,

N
n := lim p(1) _j;(tlggﬁ,(r))hj €h (3.12)
exists. In this way, we have secured a point in the subalgebra §) which is isospectral to —1.7 without
knowing the spectrum of —:1.77°. Note that we are not trying to diagonalize —1.7#" as a conventional Toda
lattice will do. Rather, we use the flow to locate a point 11 € f) which is not necessarily diagonal, but is
surely quantum implementable. We do think that this innovative application of the Lax dynamics (2.14)
is interesting.

Usually the dimension s of the maximal Abelian subalgebra b is relatively low. The sign of ¢;, can
quickly be determined by using the techniques described in Section 3.1. In our preliminary experiment
thus far, we have found that this strategy of construction works fairly well.

The reason we start with examining A, and work backward for other 4, is only for the convenience of
explaining our ideas. There is a lot of room for further investigation. For example, is there a preferable
ordering, say, starting with the largest set §3;, that will help improve the convergent behavior? Also,
the current choice z;(¢) is solely for enforcing the nonnegativity in the summation of (3.11). Will other
choices, such as using a high degree odd polynomial in ¢, (), help speed up the convergence? Thus far,
by our construction, the vector field involves homogeneous polynomials of degree 2 with coefficients
of almost equal module. This particular quadratic form might help justify that the differential system is
not stiff. Any further investigation of these questions will likely help improve our framework.

3.3. Simulating é*(")

The conjugation action Adg in Theorem 3 can be interpreted as a rotation of the subalgebra ). As such,
many approaches proposed in the literature have been resorting to the notion of optimization. One such
formulation is of the form [20, 34, 49]

min ||KhK~' =1 ||, (3.13)
heh,KeR

which is a special type of the so-called weighted orthogonal Procrustes problem [14]. Because this is
a nonlinear programming problem, there is a great danger of being trapped in a local solution which
does not warrant an equality in (2.11). In contrast, our idea outlined above uses the Lax dynamics to
construct an isospectral flow that finds the absolute optimal 1) € h without using any information of K.
With the state-of-the-art numerical ODE techniques, the flow can be followed closely with precision up
to the user-controlled integration tolerance. Now we outline some ideas for finding the corresponding
unitary matrix K.
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3.3.1. Derivative of exponential map
To maintain the similarity property (2.20), g;(#) must satisfy the initial value problem (2.15). To fit in
Theorem 3, we also want g; (¢) to be of the form g; (1) = ) for some

.
k(t) =Y v(t)k €t (3.14)
(=1
We characterize the coefficients (), £ = 1,...,r, and their limiting behavior as follows.

Theorem 8 Let ® = [6,;] € R"™" be the matrix representation of the linear map ady() 1 € — & where
adi(A) := [k, Al, that is,

,
ade(kj) =Y Oujky. (3.15)

(=1
Then the column vector of coefficients vy := [11,..., }/,]T in (3.14) satisfy the linear system of equations

o (-©) .

- Y=1z, (3.16)

(jg’o (j+1)! )

———

Q

where entries of 7 .= [z1,...2,] | are given by (3.9).

Proof : Recall the fact that the derivative of exponential map is given by the dexp formula [32]

di:t) =0 (j;) (g_;li;! (adg(r)) k(). (3.17)
Comparing with the differential system (2.15), we find the relationship that
= (—1)7 o A I | .
up() = (j;o (1)1 Q0RO = k= AT e k] = (3.18)
Introduce a formal row vector ® := [ky,...,k,] of matrices. Then
(ady)/ (k) = @@, j=0,1,2,....

Upon comparing the coefficients, we see that (3.18) is equivalent to (3.16). U

The infinite sum can be simplified to

I, if®@=0,
Q= { (I—e=®)@7!, if ®is invertible. (3-19)
Note that ® depends on 71,...,7%, so Q! in general is a nonlinear function of the variable y. However,

by the fact in (3.16) that ¥ depends linearly in z and z(t) — 0, we still can conclude that a limit point ¥

in the sense
-

K=Y (lim y(t))ke, (3.20)

=1 [—o0

exists and can be calculated. In the case that elements in € commute, it is easy to see that ¥(¢) = z¢(¢),
¢=1,...,r, which is exactly the case ® = 0.
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By now, we have developed two dynamical systems for finding matrices 1 and k, respectively,
needed for the Cartan decomposition of a given 5#°. Accurate up to the user-specified tolerance, this
ODE approach is much more theoretically assuring and computationally economical than solving the
optimization problem (3.13).

3.3.2. Example for computing
It might be interesting to demonstrate a different way to compute €. Consider the case that n = 2 and
1.7¢ € span{4,11,13,15}. Then,
9(15¢) = span{4,5,6,7,9,10,11,13, 14,15}
which is larger than the example given in Section 2.5. The splitting asserted in Theorem 2 is given by

t=span{5,7,10,14}, p=span{4,6,9,11,13,15}, p=span{4,6,11,15}, b =span{9,13}.

Note that, in contrast to the example in Section 2.5, elements in £ do not commute this time. Following
(3.15), we obtain that

0 1 0 —-»
o —% 00
=2 0 0 0 0|’

» —n O 0

which is always skew-symmetric. Note that span{5,7, 14} is itself the maximal proper subalgebra of €,
while the singleton By commutes with every element in €. It follows that

oW 0 2
a2 ne —n—-mu 0 11
(-6)" = 4 0 0 0 0’
N ru 0 —ni-p’
(-8 = —4p(-0),
with p := }/12 + y22 + yf. This establishes the recursion relationship that
(-OP = —dp(-0pI ! .= (~4p)i(-@),
(O =  ap(-@)  =..=(~4p)/(-O). j=0.12.....
Therefore, the coefficient matrix Q in (3.16) is given by
= (@) o 2]+1 ~ (_@)2+2
N >’:,+Z Sk
=G+ 2J+2 = (2j+3)!

- (—4p) o (—4p)
I= ?EO (2j+2)!)®+ (;0 (2j+3)!)®2

B lfcos(Zﬁ) 2\/ﬁfsin(2ﬁ) )
ip 0+ 8pyp Q)
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It can be checked that determinant is

det(Q) 1—cos (2\/5)

2p

Therefore, unless ,/p is an integer multiple of 7, the linear system (3.16) is uniquely solvable. In fact,
it is not difficult to prove that the recursion relationship exemplified above holds for any subalgebra of
dimension three.

3.3.3. Block diagonal ®
The above example actually sheds light on another way to facilitate the calculation of ®. Suppose that
the subalgebra £ can be partitioned as

t= (Pt or, (3.21)
i=1

where each ¢; is a maximal, proper and non-commutative subalgebra of £ and v is the remainder. It is
possible that €; or v is empty. By the definition, it must be that

[t,t] =0, [¢,t] = Ofor each i, and [¢;,¢;] = Ofor all i # j. (3.22)

Therefore, upon rearranging the basis if necessary, we may assume without loss of generality that @ is
a block diagonal matrix. In fact, the block corresponds to t is identically zero. Write

© = diag{®,,...,0,,0}. (3.23)

Then the calculation of Q in (3.19) can be limited to each ®;, i = 1,...,s. Correspondingly, if we group
the terms involved in k(¢) defined in (3.14) according to

k() = i Y ke + Y, vk, (3.24)

iZlkyiEE; krjEt

then each of these groups {7, }, ky; € i, and {¥;,}, k;; € v, can be calculated by using the corresponding
blocks in @. S

4. Continued Cartan decomposition

Our initial goal is to establish the relationship
— 1 = p(r)e™ ) 5 eFne ™ ast — oo, 4.1)

Because elements in fj commute, the summation involved in 1) through the definition (3.12) can be
handled directly by the mixture of quantum gates. The summation involved in x according to (3.20),
nonetheless, makes the quantum simulation of ¢* as hard as that of e ! The reason is that, again,
we can handle the exponential of each individual term k, on a quantum circuit, but not an algebraic
combination such as the whole k. Therefore, it is necessary to further decompose the subalgebra €,
which leads to the notion of continued Cartan decomposition.

Since ¢ forms a subalgebra by itself, one possible approach is to apply the same theory we have
developed for g(1.57°) to the subalgebra &, but with a different involution. The change of the involution
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is necessary because ¢ is already invariant under the old involution 0 used in (2.9). A new involution
will have the effect of defining a new notion of symmetry and skew-symmetry. The point is to continue
breaking down e* to the product form (2.12) by the process we have just described for decomposing
e’ until we have just singletons of Pauli strings in hand. By then, a quantum circuit can be
constructed.

This continued Cartan decomposition is of great mathematical interest in itself. It is similar to the
classical notion that every element in the special unitary group SU(2") can be recursively factorized [18,
22, 34] by using, say, the elementary Givens rotations [17]. See also [36, 44] for the idea of recursively
applying generalized polar decompositions in such a way that any element of the Lie algebra is written
as a sum of elements whose corresponding exponentials are easier to compute. However, there are two
fundamental differences in practicality. First, we limit our decomposition to Pauli strings only which
are readily quantum implementable. Second, we conduct the continued decomposition on subalgebras
contained in g(17¢) and each time we work on some smaller subalgebras. This successive reduction
of sizes is analogous to the idea of divide-and-conquer used in, say, the Fast Fourier Transform. For
example, in Section 2.5 we see the case of a quick reduction from dim(su(22)) = 15 to dim(g(1.5¢) = 6,
and then to dim(¥) = 2 and dim(h) = 2. A theoretical understanding on how quickly the dimensions are
reduced through this nested decomposition for su(2") where n is large is a question of high interest, but
we do not have room to address it in this paper. It is worth remarking that ultimately the factors in the
decomposition consists of Pauli strings within the subalgebra g(1.7¢) only.

4.1. Choice of involution

The beauty of the Cartan decomposition is its generality — that the splitting in Theorems 2 exists
(but varies) for any given involution and that the conjugation in Theorem 3 holds for any Cartan
decomposition. Furthermore, our Lax dynamics relies only on the inclusion relationship (2.7). Other
than the fact that the basis is made of Pauli strings which are readily quantum implementable, the
innate structure of € and p is fundamentally immaterial. Therefore, per given involution 6, and with
the resulting ¢ and ), we can develop a corresponding Lax dynamical system with the property that
p(t) = n € b and k() — k € &. What we have demonstrated in Sections 3.2 and 3.3 represents only
one choice of 6 in the form (2.9), and shows the feasibility and applicability of our ideas.
Suppose that @ : su(2") — su(2") is an automorphism. Then

6 =900 . 4.2)

defines a new involution with respect to which the notion of skew-symmetry and symmetry will have a
new meaning [19, Sec. 2.2.2]. That is,

(@-skew-symmetry,

4.3)
@-symmetry.

6(g) = tg = 00,(g) =+gp =g =T 'gp —= {

This idea can be applied to g(1.7¢) as well as to the Lie subalgebra € of g(1.57).

4.2. Example of continued Cartan decomposition

We work out an example in details to illuminate the essential steps. Consider the case n = 3, so
{X,Y,Z,1}*3 has 64 Pauli strings. Suppose 1.7 € span{1,4,6,7,11,12,13}. The subalgebra

a(17) =span{1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14,15,49,50,51,52, 53, 54,55,56,57,58,59,60,61,62,63}
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is of dimension 30 only. Using 8y, we find that

¢ = span{2,5,7,8,10,14,50,53,55,56,58,62},
p span{1,3,4,6,9,11,12,13,15,49,51,52,54,57,59,60,61,63}.

There are actually five Cartan subalgebras within p, spanned by the bases
{1,4,13,49,52,61},{3,4,15,51,52,63},{3,6,9,51,54,57},{1,6,11,49,54,59},{11,12,15,59,60,63},

respectively. By Theorem 3, each can be reached by some suitable conjugations of others. We can
choose any as h for the Lax dynamics to construction the decomposition (4.1). Depending on which
subalgebra is used, the resulting limit point of the dynamics will be different. What matters is that the
exponentials of limit points of all choices are quantum implementable. We conjecture that the answer
is negative, but it will be interesting to investigate whether one particular selection is computationally
superior to the other.

Suppose that n and k have been found. The emphasis in this example is to further decompose e*
to make it quantum implementable. We find that € contains two maximal, proper and non-commutative
subalgebras

¢ = span{2,8,10,50,56,58}, ¢, =span{5,7,14,53,55,62}.
Therefore, by writing k = k] + k» with k; € &, i = 1,2, we already have
e’ =eMe™. (4.4)

It suffices to work with each subalgebra separately. Suppose that we use the automorphism

[n o
(P_|:O _14:|7

where I; stands for the 4 x 4 identity matrix, to define 6,. Based on Theorem 2, we find new Cartan
decompositions

¢, = span{8,56} @ span{10,58} @ span{2,50}, & = span{7,55} G span{14,62} G span{5,53},
¢ 20 b ¢@ 5@ 52

where £0, p() .= p@ g ;= 1,2, correspond to the decompositions in (2.6) and (2.8) for the
subalgebras £; and ,, respectively. It turns out that each of these subsets commutes with itself.
Additionally, they enjoy these transitive relations through the Lie bracket:

(€0 p01Cp@, @ Ce?, p@ eI, i=1,2. (4.5)
Even so, we still cannot apply Theorem 3 to decompose k; € £; immediately because k; might not reside

entirely in p(?), i.e., some components from £ might contribute to the makeup of &;. To remedy this,
we modify the Lax dynamics (3.4) as follows.
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We shall concentrate on the subalgebra £; only. A similar argument applies to £. Consider the
solution flow x(7) € ¢; to the initial value problem

x(t) = [x(1), v(x(1))],  x(0) =i, (4.6)

() = e(r)v(x(r)), €(0)=1, 4.7)

with
v(x(1)) = & (1)Bs + & (1) Bsg € £

whose coefficients ) (¢) and §;(¢) are to be determined. By Theorem 4, the similarity relationship
K1 = e(t)x(t)e(r) ™!
still holds. Since know only that x(¢) € €, we write
x(t) = 0y (t)B1o + 02 (1) Bsg + B1 (£)B2 + B2 (¢)Bso + 61 (t)Bg + 62()Bse.
Upon comparison, the coefficients of x(¢) must satisfy the differential equations

{061 —2B16 = 2B, {ﬁl = 205 +2m0, {51 = 0
3 —2B18i =228, P = 2008i+200. 6

Therefore, if we choose

Il
o

{ Cl = =0,

H o= -,

then, by the boundedness of f,(¢), it must be such that a;(¢) and a,(¢) converge to zero. That is, the
components of x(¢) involving p(!) are gradually diminished. Together with the fact that By (r) and B,(r)
converge to some fixed values, we conclude that x(¢) converges to a point K| € h( @ e, By the fact
that &) () and &, () stay invariant, we can write xj := n(!) + P K1 for some n e p™® and Pkl
is merely the projection of k7 onto (1), Furthermore, if we write

e(t) =eM (f)325+7’2(l>1-’3567
then by the commutativity of Bg and Bsg we have
{ no= &,
ho= O,
and &(¢) converges to a limit point, say, e, By now, we see that
oK1 — N (DBs+12(1)Bs6 ,x(1) , =11 (1)Bs—12(1)Bss _y K1 oK1 =K1 (4.8)

The accomplishment we have advanced in (4.8) is that the matrix exponential eX1 has been transformed
into the product of three matrix exponentials, in which ¢! and its inverse are readily quantum
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Py K1

118

O

FIG. 1. Continued Cartan decomposition, where the initial point ki is first transited by the path x(¢) € € (thin curve) to ki, and
then transited by the path y(¢) € 1) @ (1) (thick curve) to m; € bV,

implementable and & € h(V) @ ¢(1). This dynamics is depicted by the black curve in the diagram
sketched in Figure 1. We still need to decompose e*!.

To deal with €1, we exploit the transitive properties (4.5) by restricting a third flow y(z) to the
subspace h!) @ £(1). Define the Lax dynamics via

¥(0) =), p(@)],  ¥(0)=x, 4.9)

F(1 .
and the flow £(¢) € " via

é(r) =e()p(y(r)), €(0)=1I, (4.10)
with
p(y(t)) = &1(1)Bio+ & (1)Bsg € p)
By going through the same argument as that for (4.8), we can choose &;(r) and &,(¢) properly, and
conclude finally that there exist matrices ¢; € £!) and 7; € h()) such that

Xl — eXleKle™ 1 oK1 pSl M e 5l 4.11)

By now, every matrix exponential is quantum implementable.

The details above exemplify the feasibility of continued Cartan decomposition. It is not a
coincidence that our idea works in this example. The general notion is that the Lax dynamics can
be used to “annihilate” an undesired portion in the sum of Pauli strings by converting it to a “partial”
spectral decomposition, even under the situation such as (4.6) where x(¢) does not fit Theorem 3 exactly.
By executing this annihilation procedure systematically we can break down the unitary matrix (1.1)
to make it implementable on a quantum machine. Different from the classical Givens rotations that
annihilate one entry of the matrix at a time, our method annihilate a segment of subspace at a time. To
analyze all procedures rigorously to establish a comprehensive theory for this continued factorization,
including the effect of different choices of involutions, will have to be discussed in a separate paper.
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5. Applications to general or k-local Hamiltonians

Using the involution 6 (g) = —g to perform the Cartan decomposition results in the structure that £ and
p contain skew-symmetric and symmetric matrices, respectively. If the given Hamiltonian .5# happens
to be real and symmetric (as is the case in the Schrodinger equation), then 15 € p and Theorem 3 fits
in perfectly. It become curious to explore other scenarios such as .77 is a general Hermitian matrix, but
not symmetric, or ¢ is symmetric, but sparse, e.g., the Heisenberg model or k-local Hamiltonian. The
first scenario is perhaps merely a mathematical inquiry, but the other models have practical significance
because in most quantum systems the interaction is only with neighboring particles. We briefly outline
some ideas about how the above theory could be modified to tackle these scenarios. A thorough general
theory is still under development.

The example discussed in Section 4.2 with the dynamical system (4.6) is actually a case where the
flow x(¢) and the target matrix k; are not symmetric. We have demonstrated in (4.11) that a sequence of
Lax dynamical systems can still be exploited to factorize the matrix exponential e¢*1. The key to success
is the same notion of annihilation we have mentioned earlier — After choosing some properly selected
involutions to divide the subalgebra g(x;) into three parts, £, pM and h(V, use £V) to construct a
dynamics to annihilate the components of p(!) in x(r) while maintaining the conjugation relationship
(2.17). If necessary, repeat this procedure multiple times to annihilate other components such as that
demonstrated in Figure 1. The idea has been applied successfully in several other settings [10, 11, 13].

With regard to the case that 7 is sparse, observe that in our representation of g(:1.#°) we identify
each basis matrix by an integer ID, and never physically generate the matrices. Because we only work
with the coefficients of the basis, i.e., @;(¢), B;(¢) and so on, the specific structure of the underlying Pauli
strings is not essential at all. We do think that the above-mentioned approach is applicable, regardless
of the sparsity of 7.

The idea of using dynamical systems to prepare the Hamiltonian simulation on a quantum machine
is still at a rudimentary stage. Any further investigation to see how our theory can be generalized will
be interesting. It will be a useful tool for quantum simulation, if the procedure that can be automated to
generate the decomposition for arbitrarily given Hamiltonian 7.

6. Example of large scale problem in small breadth calculation

In this section, we apply the algorithm described in this paper to a 12-qubit Hamiltonian simulation
problem which, if done on a conventional machine, will amount to a large scale problem. By this
example, we wish to demonstrate the efficiency of our algorithm for achieving the Cartan decomposition
via checking a few integer arrays. We can make our code available for interested readers.

Consider the Heisenberg model (3.1) with n = 12 and Jz = 0. The corresponding Hamiltonian ¢
therefore consists of 34 terms in its summation. The underlying Lie algebra su(2'?) has real dimension
4'2 _ 1 = 16777215. Each basis element By in the Lie algebra is of size 2!2 x 212 = 4096 x 4096.
However, as we have argued in Section 3, it suffices to represent each B, by a 12-digit ID which is further
translated via (3.2) into a unique ordinal number /. Since we can easily convert ¢ back to its 12-digit ID,
this single integer ¢ provides every bit information of B,. There is no need to generate the commutator
table of all [B;,B;] in its entirety, which would be an enormous matrix of size (4'> — 1) x (412 —1).
Instead, using the technique described in Section 3.1, we can quickly find the basis of the subalgebra
9(17#) and, indeed, dim(g(2.7#)) = 276 which is less than 0.00165% of the dimension of su(2'2). This
is a significant reduction of the work when comparing with the conventional approaches for the unitary
synthesis of 1.7. In Figure 2, we observer a fractal pattern in the commutator table of g(:.57).
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0 50 100 150 200 250
nz = 12144

FIG. 2. Nonzero Lie brackets among elements of g(1.7¢).

Using the fact that (A®B)" = AT @ B, we can also effectively determine whether an element
g € g(12) is symmetric or skew-symmetric with respect to the involution 6, in (2.9) by simply counting
how many 2’s, i.e., the Pauli matrix Y, are in its 12-digit ID. This task is almost trivial. As a result, we
find the Cartan decomposition (2.10) of g(15¢) with dim(¢) = dim(p) = 132 and dim(h) = 12. It is
interesting to note that among the 144 basis elements of p, there are 111 maximal subalgebras, each of
dimension 12, that can be used to form h. The differential system (3.4) proposed in Section 3.2 defines a
144-dimensional solution flow p(f) which is guaranteed to converge to a point 7 in the 12-dimensional
subalgebra . Note that we never form p(¢) per se, but merely work on its 144 real-valued coefficients.
Even so, we can control the precision of 1 via the numerical ODE integrator.

To calculate k(r), we use the technique described in Section 3.3 by computing ® which can be
obtained from the the relationship (3.15) over €, whereas the commutators can be obtained by looking
up from Table 1. It turns out that the algebra £ also contains rich structure therein. First, using our
index searching technique, we find that £ contains 85 subalgebras, each of which is of dimension 12. Of
course, these subalgebras overlap. Second, there are only two maximal, proper and non-commutative
subalgebras each of which is of dimension 66. We can exploit the block diagonal structure of ®. In this
way, we formulate a flow k(¢) from the differential equation (3.16), which leads to a limit point x in
the sense of (3.20). By now, we have achieve the decomposition (4.1). We can write kK = k] + k» with
K; € £; and exact information of ¢;, i = 1,2.

In fact, similar to €, each & contains 43 subalgebras, each of which is of dimension 6 and is
commutative, suggesting also its rich structure. By choosing appropriate involutions (4.2), we apply
the continued Cartan decomposition, as is described in Section 4, to each k;, { = 1,2. It might
be necessary to repeat the continued Cartan decomposition multiple times. There is a lot of open
questions about choosing the involutions, including how the choice affects the dimensionality in the
resulting Cartan decomposition and how many times are needed to carry out the continued Cartan
decomposition. Ultimately, the unitary matrix e *” is decomposed as the product of pieces each of
which is implementable on a quantum machine. A lengthy detail of the computational data might not be
suitable for this presentation, but we stress that other than solving the differential systems that requires
using existing numerical integrators, most of the bookkeeping tasks are handled by using our system of
ordinal numbers.
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7. Conclusion

The computational power required to describe a quantum system scales exponentially with the number
of its constituents. To merely describe the most general (pure) quantum state for n spin-¥2 particles,
we have to store 2" coefficients, not to mention that we will have to operate on these coefficients in
order to productively describe a physical quantity. Quantum simulation promises to use a number of
qubits similar to the number of particles in the original system to mimic the physical phenomenon. The
overall time needed for the simulation would not grow exponentially with the number of particles. The
essential task for this simulation is to approximate each time step by a sequence of quantum gates.

Most existing methods for unitary synthesis rely on approximation, some of which are elegant
in theory but suffer from truncation errors or being only a local solution. In contrast, we develop
a framework which calls for an eclectic mix of techniques from the Cartan decomposition and Lax
dynamics, together with a combinatorial type representation of Pauli strings. Our techniques prepare
numerically the essential components needed to synthesize the final unitary operator effectively and
more precisely. In contrast to other existing methods, the most important attribute of our approach
is that we can quantify the exact factors up to integration error which is easy to control by existing
numerical techniques. This combination of techniques is innovative. The expected result should be
useful to the field.
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