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Abstract. This paper is concerned with the principal spectral theory of time-periodic coopera-
tive systems with nonlocal dispersal and Neumann boundary condition. First we present a sufficient
condition for the existence of principal eigenvalues by using the theory of resolvent positive operators
with their perturbations. Then we establish the monotonicity of principal eigenvalues with respect
to the frequency and investigate the limiting properties of principal eigenvalues as the frequency
tends to zero or infinity. We also study the effects of dispersal rates and dispersal ranges on the
principal eigenvalues, and the difficulty is that principal eigenvalues of time-periodic cooperative sys-
tems with Neumann boundary conditions are not monotone with respect to the domain. Finally, we
apply our theory to a man-environment-man epidemic model and consider the impacts of dispersal
rates, frequency, and dispersal ranges on the basic reproduction number and positive time-periodic
solutions.
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1. Introduction. It is known that the principal eigenvalue of a linearized system
can be regarded as a threshold in determining the dynamics of the corresponding
nonlinear system. In this paper we study the principal spectral theory of the following
time-periodic cooperative system with nonlocal dispersal and Neumann boundary
condition:

\Biggl\{ 
\omega \partial t\varphi (x, t) = d\scrK [\varphi ](x, t) - d\scrJ [\varphi ](x, t) +A(x, t)\varphi (x, t) - \lambda \varphi (x, t), (x, t)\in \=\Omega \times \BbbR ,
\varphi (x, t+ 1) =\varphi (x, t), (x, t)\in \=\Omega \times \BbbR ,

(1.1)

where \Omega \subset \BbbR n is a smooth bounded domain; \omega > 0 represents the frequency; \varphi =
(\varphi 1, . . . ,\varphi m)T ; d = diag(d1, . . . , dm) with each di being a positive constant; \scrK =
diag(\scrK 1, . . . ,\scrK m) with \scrK i being defined by
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4041

\scrK i[\varphi ](x, t) =
\int 
\Omega 

Ji(x - y)\varphi i(y, t)dy, 1\leq i\leq m;

\scrJ =diag(\scrJ 1, . . . ,\scrJ m) with \scrJ i being defined by

\scrJ i[\varphi ](x, t) =
\int 
\Omega 

Ji(x - y)dy\varphi i(x, t), 1\leq i\leq m;

A(x, t) = (aij(x, t))m\times m with aij(x, t+1) = aij(x, t) for 1\leq i, j \leq m and (x, t)\in \=\Omega \times \BbbR .
Recall that a square matrix is said to be cooperative if its off-diagonal elements are
nonnegative. Throughout the paper, we make the following assumptions:

(J) Ji \in C(\BbbR n), Ji(0)> 0, Ji(x)\geq 0,
\int 
\BbbR n Ji(x)dx= 1 for all 1\leq i\leq m;

(A1) A(x, t) is cooperative for any (x, t)\in \=\Omega \times \BbbR .
It is well-known that principal eigenvalues of nonlocal dispersal operators may not

exist or more conditions may be required to ensure the existence (see, e.g., [10, 34]). To
overcome this difficulty, some studies focus on principal spectrum points or generalized
principal eigenvalues instead of principal eigenvalues (see, e.g., [6, 10, 20, 36]). On the
other hand, it is natural to find some suitable conditions for the existence of principal
eigenvalues of nonlocal dispersal equations. By using the generalized Krein--Rutman
theorem (see, e.g., [13]), Coville [10] gave a sufficient condition for the existence
of the principal eigenvalue of nonlocal elliptic equations; Liang, Zhang, and Zhao
[22, 23] studied the eigenvalue problem associated with a linear time-periodic nonlocal
dispersal cooperative system with and without time delay, respectively. By employing
the results about perturbations of positive semigroups in B\"urger [7], Rawal and Shen
[30] gave a necessary and sufficient condition for the existence of principal eigenvalues
of time-periodic nonlocal dispersal equations; Bao and Shen [5] extended some existing
results about principal eigenvalues of time-periodic nonlocal dispersal equations to
time-periodic cooperative and irreducible systems with nonlocal dispersal. However,
the condition in [5] requires irreducibility and the condition in [23] is not easy to
verify. In this paper, we use the theory of resolvent positive operators (see, e.g.,
[40, 41]) to study this problem. It should be pointed out that Kang and Ruan [16]
investigated the existence of principal eigenvalues of age-structured operators with
nonlocal dispersal by means of this method.

In addition to the existence of the principal eigenvalue of system (1.1), another
central question of interest is to investigate the dependence of principal eigenvalues
(principal spectrum points or generalized principal eigenvalues) on parameters such
as frequency, dispersal rate, and dispersal range. For time-periodic nonlocal dispersal
equations, Shen and Vo [32] investigated the effects of dispersal rates and disper-
sal ranges on principal spectrum points; Su et al. [36] considered the monotonicity
of generalized principal eigenvalues with respect to the frequency and the asymp-
totic behavior as frequency tends to zero or infinity; Vo [43] overcame the difficulty
that principal eigenvalues of operators with Neumann boundary conditions are not
monotone with respect to the domain and obtained the limiting properties of gener-
alized principal eigenvalues as the dispersal range tends to zero. To the best of our
knowledge, the dependence of principal eigenvalues of time-periodic nonlocal dispersal
systems on parameters such as frequency, dispersal rate, and dispersal range has not
been considered in the literature.

It is worth mentioning that there have been quite a few results about principal
eigenvalues for cooperative systems with local (random) dispersal. As for cooperative
elliptic systems, Sweers [38] established the existence of a unique first eigenfunction;
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4042 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

Dancer [11] and Lam and Lou [18] considered the asymptotic behavior of the princi-
pal eigenvalue with small dispersal rates. As for time-periodic cooperative parabolic
systems, Ant\'on and L\'opez-G\'omez [2] showed the existence and uniqueness of the prin-
cipal eigenvalue; Bai and He [3] and Zhang and Zhao [46] analyzed the asymptotic
behavior of principal eigenvalues with small dispersal rates and large dispersal rates,
respectively. There are also some results about principal eigenvalues of time-periodic
patch models. For example, Liu, Lou, and Song [26] examined the monotonicity of
principal eigenvalues with respect to frequency; Zhang and Zhao [47] investigated the
asymptotic behavior of principal eigenvalues as the dispersal rate tends to zero and in-
finity, respectively. Recently, there also have been a number of studies on elliptic-type
nonlocal systems. For instance, Nguyen and Vo [28] and Ninh and Vo [29] derived
the existence, simplicity, and qualitative properties of the principal eigenvalue for
the cooperative system; Su and his collaborators [35, 37] studied the principal spec-
tral theory and variational characterizations for cooperative systems with matrix-type
nonlocal operators which come from stem cell regeneration models.

The purpose of this paper is to study the existence and qualitative property of
the principal eigenvalue of (1.1). Motivated by Kang and Ruan [16], we establish a
sufficient condition for the existence of the principal eigenvalue of (1.1) by using the
theory of resolvent positive operators. Inspired by Liu and Lou [24], Liu et al. [25], and
Liu, Lou, and Song [26], we find a new type of monotonicity of the principal eigenvalue
of (1.1) with respect to the frequency. It should be pointed out that the condition
for this monotonicity is different from that of random dispersal operators (see the
details in Remark 3.3). We believe that this difference reveals an essential difference
between random dispersal operators and nonlocal dispersal operators in new insights.
Moreover, we investigate the limiting properties as the frequency approaches zero or
infinity. When considering the effects of the dispersal rates and dispersal ranges on
principal eigenvalues, we also need to overcome the difficulty that principal eigenvalues
of operators with Neumann boundary conditions are not monotone with respect to
the domain.

As far as we know, the basic reproduction number \scrR 0 is a significant threshold in
population dynamics. Recently, Zhang and Zhao [46] studied the asymptotic behavior
of the basic reproduction number for periodic reaction-diffusion systems in the case
of small and large dispersal coefficients. Based on the theory of resolvent positive
operators, they reduced the problem on the asymptotic behavior of \scrR 0 into that of
the principal eigenvalue associated with linear periodic systems. Motivated by this
idea, we consider the impacts of frequency, dispersal rate, and dispersal range on the
basic reproduction number and positive periodic solutions of a man-environment-man
epidemic model.

The rest of the paper is organized as follows. In section 2, we establish a sufficient
condition for the existence of principal eigenvalues of (1.1). In section 3, we show the
monotonicity of principal eigenvalues with respect to the frequency and study the
effects of frequency on principal eigenvalues. In section 4, we investigate the limiting
properties of principal eigenvalues as the dispersal rate or dispersal range tends to
zero or infinity. In section 5, we apply our theory to an epidemic model and consider
the properties of the basic reproduction number and positive periodic solutions.

2. Principal spectral theory. In this section, we establish a sufficient condi-
tion for the existence of the principal eigenvalue of (1.1) by using the theory of resol-
vent positive operators with their perturbations. For any \alpha = (\alpha 1, . . . , \alpha m)

T \in \BbbR m, we
put | \alpha | =

\sqrt{} \sum m
i=1\alpha 

2
i . Let
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4043

(\BbbR m)
+
=
\Bigl\{ 
\alpha = (\alpha 1, . . . , \alpha m)

T | \alpha i \in \BbbR , \alpha i \geq 0, i= 1,2, . . . ,m
\Bigr\} 

and

(\BbbR m)
++

=
\Bigl\{ 
\alpha = (\alpha 1, . . . , \alpha m)

T | \alpha i \in \BbbR , \alpha i > 0, i= 1,2, . . . ,m
\Bigr\} 
.

Set \scrX = \{ u \in C(\=\Omega \times \BbbR ,\BbbR m)| u(x, t+ 1) = u(x, t), (x, t) \in \=\Omega \times \BbbR \} with norm \| u\| \scrX =
sup(x,t)\in \=\Omega \times \BbbR | u(x, t)| , and

\scrX + = \{ u\in \scrX | u(x, t)\in (\BbbR m)+, (x, t)\in \=\Omega \times \BbbR \} ,
\scrX ++ = \{ u\in \scrX | u(x, t)\in (\BbbR m)++, (x, t)\in \=\Omega \times \BbbR \} .

Let X =C(\=\Omega ,\BbbR m) with norm \| u\| X = supx\in \=\Omega | u(x)| , and

X+ =
\bigl\{ 
u\in X| u(x)\in (\BbbR m)+, x\in \=\Omega 

\bigr\} 
,

X++ =
\bigl\{ 
u\in X| u(x)\in (\BbbR m)++, x\in \=\Omega 

\bigr\} 
.

For u,v \in X , we write

u\geq v if u - v \in X +,

u> v if u - v \in X + \setminus \{ 0\} ,
u\gg v if u - v \in X ++,

where X =\BbbR m,X,\scrX .

2.1. Resolvent positive operators. First we recall some results about resol-
vent positive operators. For more details, we refer to Thieme [39, 40, 41]. Let Z
denote a Banach space and Z+ be a closed convex cone that is normal and generat-
ing. Denote the interior of Z+ by Z++. A bounded linear operator L on Z is said to
be positive if L :Z+ \rightarrow Z+ and strongly positive if L :Z+ \setminus \{ 0\} \rightarrow Z++.

Definition 2.1. A closed operator A in Z is said to be resolvent positive if the
resolvent set of A, \rho (A), contains a ray (\varrho ,\infty ) and the resolvent (\lambda I  - A) - 1 is a
positive operator for all \lambda > \varrho .

Definition 2.2. Define the spectral bound of a closed operator A by

s(A) = sup\{ Re\lambda \in \BbbR | \lambda \in \sigma (A)\} ,

the real spectral bound of A by

s\BbbR (A) = sup\{ \lambda \in \BbbR | \lambda \in \sigma (A)\} ,

and the spectral radius of A by

r(A) = sup\{ | \lambda | ;\lambda \in \sigma (A)\} .

If s(A) is an isolated eigenvalue of A with a positive eigenfunction \varphi (i.e., \varphi \in Z+ \setminus 
\{ 0\} ), then s(A) is called the principal eigenvalue of A.

Theorem 2.3 (Thieme [40, Theorem 3.5]). Let A be a resolvent positive operator
in Z. Then s(A) = s\BbbR (A) < \infty and s(A) \in \sigma (A) whenever s(A) >  - \infty . Moreover,
there is a constant c > 0 such that\bigm\| \bigm\| (\lambda I  - A) - 1

\bigm\| \bigm\| \leq c
\bigm\| \bigm\| (Re\lambda I  - A) - 1

\bigm\| \bigm\| whenever Re\lambda > s(A).

Define

F\lambda =C(\lambda I  - B) - 1, \lambda > s(B).
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4044 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

Definition 2.4. The operator C :D(B)\rightarrow Z is called a compact perturbator of
B and A=B +C a compact perturbation of B if

(\lambda I  - B) - 1F\lambda :D(B)\rightarrow D(B) is compact for some \lambda > s(B)

and

(\lambda I  - B) - 1 (F\lambda )
2
:Z\rightarrow Z is compact for some \lambda > s(B).

C is called an essentially compact perturbator of B and A = B + C an essentially
compact perturbation of B if there is some n \in \BbbN such that (\lambda I  - B) - 1 (F\lambda )

n
is

compact for all \lambda > s(B).

Theorem 2.5 (Thieme [41, Theorem 3.6]). Let A=B +C be a positive pertur-
bation of B. Then r (F\lambda ) is a decreasing convex function of \lambda > s(B) and exactly one
of the following three cases holds:

(i) If r (F\lambda )\geq 1 for all \lambda > s(B), then A is not resolvent positive.
(ii) If r (F\lambda )< 1 for all \lambda > s(B), then A is resolvent positive and s(A) = s(B).
(iii) If there exists v > \lambda > s(B) such that r (Fv)< 1\leq r (F\lambda ), then A is resolvent

positive and s(B)< s(A)<\infty ; further s= s(A) is characterized by r (Fs) = 1.

Theorem 2.6 (Thieme [40, Theorem 4.7]). Assume that C is an essentially
compact perturbator of B. Moreover assume that there exist \lambda 2 >\lambda 1 > s(B) such that
r (F\lambda 1

)\geq 1> r (F\lambda 2
). Then s(B)< s(A) and the following statements hold:

(i) s(A) is an eigenvalue of A associated with positive eigenfunctions of A and
A\ast , has finite algebraic multiplicity, and is a pole of the resolvent of A. If
C is a compact perturbator of B, then all spectral values \lambda of A with Re\lambda \in 
(s(B), s(A)] are poles of the resolvent of A and are eigenvalues of A with finite
algebraic multiplicity.

(ii) 1 is an eigenvalue of Fs(A) and is associated with an eigenfunction w \in Z of
Fs(A) such that (\lambda I  - B) - 1w \in Z+. Actually s(A) is the largest \lambda \in \BbbR for
which 1 is an eigenvalue of F\lambda .

2.2. Existence of principal eigenvalues. Define

\scrA [u](x, t) = - \omega \partial tu(x, t) + d\scrK [u](x, t) - d\scrJ [u](x, t) +A(x, t)u(x, t),

\scrB [u](x, t) = - \omega \partial tu(x, t) - d\scrJ [u](x, t) +A(x, t)u(x, t),

\scrC [u](x, t) = d\scrK [u](x, t).

Obviously, \scrA =\scrB + \scrC . Note that if \eta \in \BbbC such that (\eta I  - \scrB ) - 1 exists, then

(\scrB + \scrC )u= \eta u

has nontrivial solutions in \scrX \oplus i\scrX is equivalent to

\scrC (\eta I  - \scrB ) - 1v= v

has nontrivial solutions in \scrX \oplus i\scrX , where

\scrX \oplus i\scrX = \{ u+ iv | u,v \in \scrX \} .

Without loss of generality, we assume that aii(x, t)> 0 for all (x, t) \in \=\Omega \times \BbbR and 1\leq 
i\leq m. Otherwise, choose a sufficiently large constant C > 0 such that aii(x, t)+C > 0
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4045

for all (x, t) \in \=\Omega \times \BbbR and 1 \leq i \leq m. Let \{ \scrU \lambda (t, \tau ) | t \geq \tau \} and \{ \scrF \lambda (t, \tau ) | t \geq \tau \} 
respectively be the evolution family on X determined by

\omega \partial tu(x, t) = - d\scrJ [u](x, t) +A(x, t)u(x, t) - \lambda u(x, t), x\in \=\Omega , t\in \BbbR ,

and

\omega \partial tu(x, t) = d\scrK [u](x, t) - d\scrJ [u](x, t) +A(x, t)u(x, t) - \lambda u(x, t), x\in \=\Omega , t\in \BbbR .

Recall that a square matrix is said to be irreducible if it is not similar, via a permuta-
tion, to a block upper triangular matrix. To guarantee that the principal eigenfunction
is strongly positive, we need the following additional assumption:

(A2) There exists some x0 \in \Omega such that A(x0, t) is irreducible for any t\in \BbbR .
By [23, Lemma B.3], we have the following result.

Lemma 2.7. \scrU \lambda (t, \tau ) and \scrF \lambda (t, \tau ) are positive on X for any t \geq \tau and \lambda \in \BbbR .
If, in addition, (A2) holds, then \scrF \lambda (t, \tau ) is strongly positive on X for any t > \tau and
\lambda \in \BbbR .

In view of [3, Theorem 1.4], we have the following lemma.

Lemma 2.8. For any given x\in \=\Omega , the eigenvalue problem\Biggl\{ 
 - \omega d\phi (t)

dt +A(x, t)\phi (t) = \lambda \phi (t), t\in \BbbR ,
\phi (t+ 1) = \phi (t), t\in \BbbR ,

(2.1)

has a principal eigenvalue \lambda (x) with a positive eigenfunction \phi (x, t).

By [3, Lemma 3.6], we know that \lambda (x) and \phi (x, t) are as smooth in x as A(x, t)
in x, and when A(x, t) \equiv A(x), \lambda (x) is the largest real part of the eigenvalues of the
matrix A(x). Let \alpha (x) denote the principal eigenvalue determined in Lemma 2.8 with
A(x, t) replaced by

B(x, t) :=A(x, t) + diag

\biggl( 
 - d1

\int 
\Omega 

J1(x - y)dy, . . . , - dm
\int 
\Omega 

Jm(x - y)dy

\biggr) 
.

Proposition 2.9. The resolvent operator (\eta I  - \scrB ) - 1 exists when Re\eta > \alpha \ast =:
maxx\in \=\Omega \alpha (x). Moreover, \scrB is a resolvent positive operator and s(\scrB ) = \alpha \ast .

Proof. Similar to [5, Proposition 3.2], we know that (\eta I - \scrB ) - 1 exists when Re\eta >
\alpha \ast =: maxx\in \=\Omega \alpha (x), which implies that s(\scrB ) \leq \alpha \ast . It follows from Lemma 2.7 that
\scrB generates a positive semigroup. This together with [41, Theorem 3.12] gives that
\scrB is a resolvent positive operator. By using the same argument as in the proof of
[5, Proposition 3.1], we know that s(\scrB ) \geq \alpha \ast . Hence, s(\scrB ) = \alpha \ast . The proof is
completed.

Recall that \{ \scrF 0(t, \tau ) | t\geq \tau \} is the evolution family on X determined by

\omega \partial tu(x, t) = d\scrK [u](x, t) - d\scrJ [u](x, t) +A(x, t)u(x, t), x\in \=\Omega , t\in \BbbR .

Define an operator \scrQ \lambda \in \scrL (X) by

\scrQ \lambda \psi = e - 
\lambda 
\omega \scrF 0(1,0)\psi for \psi \in X.

Proposition 2.10. There exists \lambda 0 \in \BbbR such that r(\scrQ \lambda 0
) = r(e - 

\lambda 0
\omega \scrF 0(1,0)) = 1.

In addition, the operator \scrA is resolvent positive and s(\scrA ) = \lambda 0 = \omega ln r(\scrF 0(1,0)).
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4046 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

Proof. Consider the resolvent equation

\varphi = (\lambda I  - \scrA ) - 1\psi , \psi \in \scrX , \lambda \in \rho (\scrA ).

It follows from the variation of constants formula that

\varphi (x, t) = e - 
\lambda 
\omega t\scrF 0(t,0)\varphi (x,0) +

\int t

0

e - 
\lambda 
\omega (t - \tau )\scrF 0(t, \tau )

\psi (x, \tau )

\omega 
d\tau .(2.2)

Since \varphi (x, t) =\varphi (x, t+ 1), we derive from (2.2) that

(I  - \scrQ \lambda )\varphi (x,0) =

\int 1

0

e - 
\lambda 
\omega (1 - \tau )\scrF 0(1, \tau )

\psi (x, \tau )

\omega 
d\tau .

Thus, if 1\in \rho (\scrQ \lambda ), then

[(\lambda I  - \scrA ) - 1\psi ](x, t) = e - 
\lambda 
\omega t\scrF 0(t,0)(I  - \scrQ \lambda )

 - 1

\biggl[ \int 1

0

\scrF 0(1, s)e
 - \lambda 

\omega (1 - s)\psi (x, s)

\omega 
ds

\biggr] 
+

\int t

0

\scrF 0(t, s)e
 - \lambda 

\omega (t - s)\psi (x, s)

\omega 
ds.

(2.3)

Moreover, \lambda \in \rho (\scrA ) if and only if 1\in \rho (\scrQ \lambda ).
Set

mij = min
(x,t)\in \=\Omega \times [0,1]

aij(x, t) and M = (mij)m\times m.

By Lemma 2.7, we derive \scrF 0(t, \tau )\geq \scrW (t - \tau ) in the sense of positive operators, where
\scrW (t) is the semigroup generated by the operator 1

\omega [d\scrK  - d\scrJ +M ] . By [18, Theorem
1.3], M admits a real eigenvalue \lambda M corresponding to a positive eigenvector \varphi M . It
is easily seen that \lambda M

\omega is an eigenvalue of the following eigenvalue problem:

1

\omega 
[d\scrK [\varphi ](x) - d\scrJ [\varphi ](x) +M\varphi (x)] = \lambda \varphi (x).

By virtue of the spectral mapping theorem (Thieme [41, Lemma 5.8]),

e\sigma (
d\scrK  - d\scrJ +M

\omega )t = \sigma (\scrW (t)) \setminus \{ 0\} for all t > 0.(2.4)

We derive from Lemma 2.7 that \scrW (t) is a positive operator. Then by [27, Proposition
4.1.1], r(\scrW (t))\in \sigma (\scrW (t)) for any t > 0. By (2.4),

es(
d\scrK  - d\scrJ +M

\omega )t = r(\scrW (t)) for all t > 0.

Then we have

e
\lambda M
\omega t \leq es(

d\scrK  - d\scrJ +M
\omega )t = r(\scrW (t)) for all t > 0.

As a result,

r(\scrQ \lambda M
) = r

\Bigl( 
e - 

\lambda M
\omega \scrF 0(1,0)

\Bigr) 
\geq r

\Bigl( 
e - 

\lambda M
\omega \scrW (1)

\Bigr) 
\geq 1.

On the other hand, r(\scrQ \lambda )\rightarrow 0 as \lambda \rightarrow +\infty .
Thus, we have that r(\scrQ \lambda ) is strictly decreasing with respect to \lambda \in \BbbR and there

is a unique \lambda 0 such that r(\scrQ \lambda 0
) = 1. Then for any \lambda \in \BbbR , we have r(\scrQ \lambda )< r(\scrQ \lambda 0

) = 1
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4047

if \lambda > \lambda 0, implying that (I  - \scrQ \lambda )
 - 1 exists and \rho (\scrA ) contains a ray (\lambda 0,+\infty ). In

addition, (\lambda I  - \scrA ) - 1 is positive by (2.3) for all \lambda > \lambda 0. As a result, \scrA is a resolvent
positive operator.

Since \scrQ \lambda is positive, 1 = r(\scrQ \lambda 0
) \in \sigma (\scrQ \lambda 0

); that is, \sigma (\scrQ \lambda 0
) is nonempty, which

implies that \lambda 0 \in \sigma (\scrA ) and \sigma (\scrA ) is nonempty. In view of the fact that \lambda 0 is larger
than any other real spectral value in \sigma (\scrA ), we derive \lambda 0 = s\BbbR (\scrA ). Note that \scrX is
a Banach space with a normal and generating cone \scrX + and s(\scrA ) \geq \lambda 0 >  - \infty due
to \lambda 0 \in \sigma (\scrA ). It follows from Theorem 2.3 that s(\scrA ) = s\BbbR (\scrA ) = \lambda 0. The proof is
completed.

Proposition 2.11. For any Re\eta > \alpha \ast , \scrC (\eta I  - \scrB ) - 1 is a compact operator in
\scrX \oplus i\scrX .

Proof. For any bounded sequence \{ un\} \in \scrX \oplus i\scrX , set

vn = (\eta I  - \scrB ) - 1un.

By virtue of the boundedness of \scrB +\omega \partial t, both \{ vn\} and \{ \partial tvn\} are bounded sequences
in \scrX \oplus i\scrX . Then \{ \scrC vn\} is uniformly bounded and equicontinuous due to the assump-
tion (J). It follows from the Arzel\'a--Ascoli theorem that \{ \scrC vn\} is relatively compact
in \scrX . Thus, \scrC (\eta I  - \scrB ) - 1 is a compact operator in \scrX . The proof is completed.

Corollary 2.12. The operator \scrC is a compact perturbator and also an essen-
tially compact perturbator of \scrB . Thus the operator \scrA =\scrB +\scrC is a compact perturbation
and also an essentially compact perturbation of \scrB .

Proof. (\eta I  - \scrB ) - 1\scrC (\eta I  - \scrB ) - 1 is compact for any \eta > s(\scrB ) since \scrC (\eta I  - \scrB ) - 1 is
compact by Proposition 2.11.

Now we present the main result of this section.

Theorem 2.13. Suppose that s(\scrA )> s(\scrB ); then s(\scrA ) is the principal eigenvalue
of \scrA with an eigenfunction \varphi \in \scrX + \setminus \{ 0\} . Moreover, if (A2) holds, then s(\scrA ) is an
algebraically simple eigenvalue of \scrA with an eigenfunction \varphi \in \scrX ++. Conversely, if \lambda 
is an eigenvalue of \scrA with an eigenfunction \varphi \in \scrX ++, then \lambda = s(\scrA )> s(\scrB ).

Proof. Set

\scrG \lambda = \scrC (\lambda I  - \scrB ) - 1, \lambda > s(\scrB ).

Since \scrA is resolvent positive by Proposition 2.10, case (i) in Theorem 2.5 is impossible.
We derive from the assumption s(\scrA )> s(\scrB ) that case (iii) in Theorem 2.5 will happen.
Thus, there exist \lambda 2 > \lambda 1 > s(\scrB ) such that r(\scrG \lambda 1

) \geq 1 > r(\scrG \lambda 2
). Now applying

Theorem 2.6 yields that s(\scrA ) is an eigenvalue of \scrA with an eigenfunction \varphi \in \scrX + \setminus 
\{ 0\} and has finite algebraic multiplicity and is a pole of the resolvent of \scrA , which
implies that s(\scrA ) is the principal eigenvalue of \scrA . If (A2) holds, then we derive from
Lemma 2.7 that the corresponding principal eigenfunction \varphi \in \scrX ++. Similar to the
proof of [5, Theorem 2.3], we have s(\scrA ) is an algebraically simple eigenvalue.

Now assume that \lambda \in \BbbR is an eigenvalue of \scrA with an eigenfunction \varphi \in \scrX ++. It is
readily verified that \scrF 0(t,0)\varphi (x,0) = e

\lambda 
\omega t\varphi (x, t). Since \varphi (x, t)> 0 for all (x, t)\in \=\Omega \times \BbbR ,

for any u0 \in X+ with

u0 \leq M0\varphi (x,0), x\in \=\Omega ,

where M0 =
\| u0\| 

min1\leq i\leq m minx\in \=\Omega \varphi i(x,0)
, we derive from Lemma 2.7 that

\scrF 0(t,0)u0 \leq M0\scrF 0(t,0)\varphi (\cdot ,0) =M0e
\lambda 
\omega t\varphi (\cdot , t) for all t > 0,
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4048 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

from which we have

s(\scrA )

\omega 
\leq \omega (\scrF 0(t,0)) := lim

t\rightarrow +\infty 

ln\| \scrF 0(t,0)\| 
t

\leq \lambda 

\omega 
,

where \omega (\scrF 0(t,0)) is the growth bound. By the definition of s(\scrA ), we have s(\scrA )\geq \lambda .
Hence, s(\scrA ) = \lambda . Finally following the argument similar to the proof of [5, Theorem
2.1], we prove \lambda = s(\scrA )> s(\scrB ). The proof is completed.

Remark 2.14. Theorem 2.13 also holds for the operator with Dirichlet or peri-
odic boundary condition. In this case \alpha (x) is the principal eigenvalue determined in
Lemma 2.8 with A(x, t) replaced by A(x, t) + diag( - d1, . . . , - dm).

Corollary 2.15. s(\scrA ) is the principal eigenvalue of \scrA if one of the following
assumptions holds:

(i) A(x, t)\equiv A(t), that is, aij(x, t)\equiv aij(t) for all 1\leq i, j \leq m.
(ii) (A2) holds and 1

\alpha \ast  - \alpha (\cdot ) \not \in L
1(\Omega 0) for some bounded domain \Omega 0 \subset \Omega .

(iii) min1\leq i\leq m di is sufficiently large.

Proof. (i) By Lemma 2.8, there exists (\lambda ,\phi (t)) satisfying

 - \omega d\phi (t)
dt

+A(t)\phi (t) = \lambda \phi (t).

Then  - \scrA [\phi ](t) + \lambda \phi (t) = 0 and s(\scrA )\geq \lambda > s(\scrB ). We derive from Theorem 2.13 that
s(\scrA ) is the principal eigenvalue of \scrA .

(ii) Note that s(\scrA ) \geq s(\scrB ). If s(\scrA ) > s(\scrB ), there is nothing to prove due to
Theorem 2.13. Suppose s(\scrA ) = s(\scrB ) = \alpha \ast . Similar to the proof of [5, Proposition
3.4], we have r(\scrC (\eta I  - \scrB ) - 1)> 1 for \eta > s(\scrB ) = \alpha \ast and \eta  - \alpha \ast \ll 1, which contradicts
Theorem 2.5. Thus, s(\scrA )> s(\scrB ) and s(\scrA ) is the principal eigenvalue of \scrA .

(iii) The matrixM admits a real eigenvalue \lambda M corresponding to a positive eigen-
vector with M = (mij)m\times m and mij = min(x,t)\in \=\Omega \times [0,1] aij(x, t). Obviously, s(\scrA ) \geq 
\lambda M . Set ji =minx\in \=\Omega 

\int 
\Omega 
Ji(x - y)dy, \~mij =max(x,t)\in \=\Omega \times [0,1] aij(x, t), \~M = ( \~mij)m\times m,

and Q = diag( - d1j1, . . . , - dmjm) + \~M . Then we have s(\scrB ) \leq \lambda (Q), where \lambda (Q) is
the principal eigenvalue of Q. Note that \lambda (Q)\rightarrow  - \infty as min1\leq i\leq m di\rightarrow +\infty . Hence,
there exists d\ast > 0 such that s(\scrA ) > s(\scrB ) for all min1\leq i\leq m di \geq d\ast . It follows from
Theorem 2.13 that s(\scrA ) is the principal eigenvalue of \scrA for all min1\leq i\leq m di \geq d\ast . The
proof is completed.

3. Monotonicity with respect to the frequency. In this section, we always
suppose that assumption (A2) holds and investigate the monotonicity of principal
eigenvalues with respect to the frequency \omega and the limiting properties as \omega tends to
zero or infinity. For any 1-periodic function u(x, t)\in C(\=\Omega \times \BbbR ), set

\^u(x) =

\int 1

0

u(x, t)dt, \=u(t) =
1

| \Omega | 

\int 
\Omega 

u(x, t)dx,

\^A(x) = (\^aij(x))m\times m, A\ast =

\biggl( 
1

| \Omega | 

\int 
\Omega 

\^aij(x)dx

\biggr) 
m\times m

.

Let

\scrX 1 = \{ u\in C0,1(\=\Omega \times \BbbR ,\BbbR m)| u(x, t+ 1) = u(x, t), (x, t)\in \=\Omega \times \BbbR \} .

For f ,g \in L2(\Omega \times [0,1],\BbbR m), we set

(f ,g)0 =

m\sum 
i=1

\int 1

0

\int 
\Omega 

fi(x, t)gi(x, t)dxdt.
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4049

In order to prove the monotonicity of principal eigenvalues with respect to the fre-
quency \omega , we need the following result.

Lemma 3.1. Assume that Ji( - x) = Ji(x), di = di(\omega ) \in C1((0,\infty )) for 1\leq i\leq m,
s(\scrA ) is the principal eigenvalue of \scrA , and aij(x, t) = aji(x, t) for all (x, t) \in \=\Omega \times \BbbR 
and 1\leq i, j \leq m. Let \varphi and \psi be the principal eigenfunctions of (1.1) and the adjoint
problem of (1.1) corresponding to s(\scrA ), respectively. Then the following statements
hold:

(i) Given f \in \scrX , there exists u \in \scrX 1 such that \scrA u  - s(\scrA )u = f if and only if
(f ,\psi )0 = 0. Also there exists v \in \scrX 1 such that \scrA \ast v - s(\scrA )v= f if and only if
(f ,\varphi )0 = 0, where \scrA \ast is the adjoint operator of \scrA defined by

\scrA \ast [v](x, t) = \omega \partial tv(x, t) + d\scrK [v](x, t) - d\scrJ [v](x, t) +A(x, t)v(x, t).

(ii) (s(\scrA ),\varphi ,\psi ) is continuously differentiable with respect to \omega .

Proof. (i) If there exists u \in \scrX 1 such that \scrA u  - s(\scrA )u = f , then (f ,\psi )0 =
(\scrA u - s(\scrA )u,\psi )0 = (u,\scrA \ast \psi  - s(\scrA )\psi )0 = 0.

Set \~\scrA = \scrA  - s(\scrA )\scrI . By virtue of the proof of Theorem 2.13, s( \~\scrA ) = 0 is an
algebraically simple eigenvalue of \~\scrA and is isolated in the spectrum \sigma ( \~\scrA ). Let \sigma 1 = \{ 0\} 
and \sigma 2 = \sigma ( \~\scrA ) \setminus \sigma 1. It follows from [17, Theorem 6.17, p. 178] that there exists a
decomposition of \~\scrA according to a decomposition \scrX =\scrM 1\oplus \scrM 2 of the space in such a
way that the spectra of the parts \~\scrA \scrM 1 and \~\scrA \scrM 2

coincide with \sigma 1 and \sigma 2, respectively,
where \~\scrA \scrM i

is an operator in the space \scrM i with D( \~\scrA \scrM i
) = D( \~\scrA ) \cap \scrM i such that

\~\scrA \scrM i
u= \~\scrA u \in \scrM i, i= 1,2. Then, s( \~\scrA \scrM 2

)< 0. Clearly, we have \scrM 1 = \{ c\varphi | c \in \BbbC \} .
If (f ,\psi )0 = 0, then f \in \scrM 2. Since 0 is in the resolvent set of \~\scrA \scrM 2

, there exists u\in \scrX 1

such that \scrA u - s(\scrA )u= f .
Let

\v \scrA [u](x, t) = - \omega \partial tu(x, t) + d\scrK [u](x, t) - d\scrJ [u](x, t) +A(x, - t)u(x, t),

\v \psi (x, t) = \psi (x, - t), \v \varphi (x, t) = \varphi (x, - t), and \v f(x, t) = f(x, - t) for all (x, t) \in \=\Omega \times \BbbR .
Then \v \psi satisfies \v \scrA \v \psi = s(\scrA ) \v \psi . We derive from Theorem 2.13 that s( \v \scrA ) = s(\scrA ) is
an algebraically simple eigenvalue of \v \scrA and is isolated in the spectrum \sigma ( \v \scrA ). By
the above arguments, there exists \v v \in \scrX 1 such that \v \scrA \v v  - s(\scrA )\v v = \v f if and only if
(\v f , \v \varphi )0 = 0. Thus, there exists v \in \scrX 1 such that \scrA \ast v  - s(\scrA )v = f if and only if
(f ,\varphi )0 = 0.

(ii) Inspired by [19, Proposition 1.3.15 and Theorem 4.3.4], we prove the continu-
ous differentiability of s(\scrA ) and \varphi with respect to \omega via the implicit function theorem.
Normalize \varphi and \psi such that 1

2 (\varphi ,\varphi )0 = (\varphi ,\psi )0 = 1 for any \omega > 0. Define a mapping
\scrF :\scrX 1 \times \BbbR \times (0,\infty )\rightarrow \scrX \times \BbbR by

\scrF (u, \mu ,\omega ) :=

\biggl( 
\scrA u - \mu u,

1

2
(u,u)0  - 1

\biggr) 
.

Clearly, \scrF (\varphi ,s(\scrA ), \omega ) = (0,0). In order to prove the continuous differentiability of
s(\scrA ) and \varphi with respect to \omega , it suffices to show that for each fixed \omega > 0, the linear
mapping

D(u,\mu )\scrF (\varphi ,s(\scrA ), \omega ) :\scrX 1 \times \BbbR \rightarrow \scrX \times \BbbR 

is invertible. To this end, given (f , c) \in \scrX \times \BbbR , we need to prove the existence and
uniqueness of (g, h)\in \scrX 1 \times \BbbR such that
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4050 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

\Biggl\{ 
\scrA [g](x, t) - s(\scrA )g(x, t) - h\varphi (x, t) = f(x, t), (x, t)\in \=\Omega \times \BbbR ,
(\varphi ,g)0 = c.

(3.1)

First we show the existence. To this end, we choose h= - (f ,\psi )0, so that (h\varphi +f ,\psi )0 =

0. By (i), there exists u\in \scrX 1 such that \scrA u - s(\scrA )u= h\varphi + f . Set g= u+ c - (u,\varphi )0
2 \varphi ;

then (g, h) satisfies (3.1).
To show uniqueness, we set (f , c) = (0,0) in (3.1) and proceed to show (g, h) =

(0,0). In view of f = 0, we have

0 = (\psi , f)0 = (\psi ,\scrA g - s(\scrA )g - h\varphi )0 = - h.

Thus h= 0 and (3.1) becomes\Biggl\{ 
\scrA [g](x, t) - s(\scrA )g(x, t) = 0, (x, t)\in \=\Omega \times \BbbR ,
(\varphi ,g)0 = 0.

Since s(\scrA ) is an algebraically simple eigenvalue, we have g = k\varphi for some k \in \BbbC .
Then, (\varphi ,g)0 = 2k= 0. As a result, g= 0.

For the continuous differentiability of \psi with respect to \omega , we define a mapping
\scrG :\scrX 1 \times \BbbR \times (0,\infty )\rightarrow \scrX \times \BbbR by

\scrG (u, \mu ,\omega ) := (\scrA \ast u - \mu u, (\varphi ,u)0  - 1) .

Clearly, \scrG (\psi ,s(\scrA ), \omega ) = (0,0). It remains to show that for each fixed \omega > 0, the linear
mapping

D(u,\mu )\scrG (\psi ,s(\scrA ), \omega ) :\scrX 1 \times \BbbR \rightarrow \scrX \times \BbbR 

is invertible. Given (w, b) \in \scrX \times \BbbR , by the same arguments as above, we can prove
the existence and uniqueness of (p, q)\in \scrX 1 \times \BbbR such that\Biggl\{ 

\scrA \ast [p](x, t) - s(\scrA )p(x, t) - q\psi (x, t) =w(x, t), (x, t)\in \=\Omega \times \BbbR ,
(\varphi ,p)0 = b.

The proof is completed.

In the following, for convenience, the \prime notation denotes differentiation with re-
spect to \omega .

Theorem 3.2. Suppose the assumptions of Lemma 3.1 hold. If d\prime i(\omega ) \geq 0 and

(di(\omega )\omega )\prime \leq 0 for 1\leq i\leq m, then s(\scrA ) is nonincreasing with respect to \omega . In addition,
(i) if d\prime i(\omega ) > 0 for 1 \leq i \leq m, then s\prime (\scrA ) = 0 if and only if there exists some

1-periodic function \zeta (t)\in C(\BbbR ) with
\int 1

0
\zeta (t)dt= 0 satisfying

[\zeta (t)I  - (A(x, t) - A\ast )]\Phi = 0 for any x\in \=\Omega and t\in [0,1],

where \Phi is the principal eigenvector corresponding to the principal eigenvalue
\~\lambda of A\ast ;

(ii) if d\prime i(\omega ) = 0, (di(\omega )\omega )\prime < 0 for 1\leq i\leq m and the eigenvalue problem

d\scrK [\varphi ](x) - d\scrJ [\varphi ](x) + \^A(x)\varphi (x) = \lambda \varphi (x)(3.2)
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4051

admits a principal eigenvalue, then s\prime (\scrA ) = 0 if and only if there exists some

1-periodic function r(t)\in C(\BbbR ) with
\int 1

0
r(t)dt= 0 satisfying\Bigl[ 

r(t)I  - (A(x, t) - \^A(x))
\Bigr] 
\phi (x) = 0 for any x\in \=\Omega and t\in [0,1],

where \phi (x) is the principal eigenfunction of (3.2).

Remark 3.3. A typical example for Theorem 3.2 is di(\omega ) = ai\omega + bi for some
nonnegative constants ai and bi satisfying (ai, bi) \not = (0,0). Our results are new even for

scalar time periodic nonlocal equations when d\prime (\omega )> 0 and (d(\omega )\omega )\prime \leq 0. However, the

condition for random dispersal equations is (d(\omega )\omega 2 )\prime \leq 0 (see [24, Theorem 1.1]). This
observation may reflect an essential difference between nonlocal dispersal operators
and random dispersal operators.

Proof of Theorem 3.2. By the definition of the principal eigenvalue of \scrA , there
exists \varphi \in \scrX ++ such that

\omega \partial t\varphi (x, t) = d\scrK [\varphi ](x, t) - d\scrJ [\varphi ](x, t) +A(x, t)\varphi (x, t) - s(\scrA )\varphi (x, t).(3.3)

Let \psi \in \scrX ++ be the eigenfunction of the adjoint problem to (1.1) given by

 - \omega \partial t\psi (x, t) = d\scrK [\psi ](x, t) - d\scrJ [\psi ](x, t) +A(x, t)\psi (x, t) - s(\scrA )\psi (x, t).(3.4)

Set

\alpha i =
\sqrt{} 
\varphi i\psi i and \beta i =

1

2
ln

\biggl( 
\varphi i
\psi i

\biggr) 
for 1\leq i\leq m.

Then some computation yields that

 - di

\int 
\Omega 

Ji(x - y)(\alpha i(y, t) - \alpha i(x, t))dy - 
m\sum 
j=1

aij(x, t)\alpha j(x, t) - ci(x, t)\alpha i(x, t)

= - s(\scrA )\alpha i(x, t),

(3.5)

where

ci(x, t) =
di
2

\int 
\Omega 

Ji(x - y)

\Biggl( \sqrt{} 
\varphi i(y, t)

\varphi i(x, t)
 - 

\sqrt{} 
\psi i(y, t)

\psi i(x, t)

\Biggr) 2

dy

+
1

2

m\sum 
j=1

aij(x, t)

\Biggl( \sqrt{} 
\varphi j(x, t)

\varphi i(x, t)
 - 

\sqrt{} 
\psi j(x, t)

\psi i(x, t)

\Biggr) 2

 - \omega \partial t\beta i(x, t).

In view of Lemma 3.1, we can differentiate both sides of (3.5) with respect to \omega to
find

 - d\prime i(\omega )

\int 
\Omega 

Ji(x - y)(\alpha i(y, t) - \alpha i(x, t))dy - di

\int 
\Omega 

Ji(x - y)(\alpha \prime 
i(y, t) - \alpha \prime 

i(x, t))dy

(3.6)

 - 
m\sum 
j=1

aij(x, t)\alpha 
\prime 
j(x, t) - c\prime i(x, t)\alpha i(x, t) - ci(x, t)\alpha 

\prime 
i(x, t)

= - s\prime (\scrA )\alpha i(x, t) - s(\scrA )\alpha \prime 
i(x, t).

Multiplying (3.5) by \alpha \prime 
i, multiplying (3.6) by \alpha i, subtracting the resulting equations,

and integrating over \Omega \times (0,1) yield

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

3/
24

 to
 1

08
.8

3.
28

.2
10

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



4052 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

s\prime (\scrA )

\int 1

0

\int 
\Omega 

\alpha 2
i (x, t)dxdt= - d\prime i(\omega )

2

\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)(\alpha i(y, t) - \alpha i(x, t))
2dydxdt

+

\int 1

0

\int 
\Omega 

c\prime i(x, t)\alpha 
2
i (x, t)dxdt.

Adding the above equations from i= 1 to m yields

s\prime (\scrA )

m\sum 
i=1

\int 1

0

\int 
\Omega 

\alpha 2
i (x, t)dxdt(3.7)

= - 
m\sum 
i=1

d\prime i(\omega )

2

\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)(\alpha i(y, t) - \alpha i(x, t))
2dydxdt

+

m\sum 
i=1

\int 1

0

\int 
\Omega 

c\prime i(x, t)\alpha 
2
i (x, t)dxdt.

A simple computation gives that

c\prime i(x, t) =
d\prime i(\omega )

2

\int 
\Omega 

Ji(x - y)

\Biggl( \sqrt{} 
\varphi i(y, t)

\varphi i(x, t)
 - 

\sqrt{} 
\psi i(y, t)

\psi i(x, t)

\Biggr) 2

dy

+
di
2

\int 
\Omega 

Ji(x - y)

\left[  \Biggl( \sqrt{} \varphi i(y, t)

\varphi i(x, t)
 - 

\sqrt{} 
\psi i(y, t)

\psi i(x, t)

\Biggr) 2
\right]  \prime 

dy

+
1

2

m\sum 
j=1

aij(x, t)

\left[  \Biggl( \sqrt{} \varphi j(x, t)

\varphi i(x, t)
 - 

\sqrt{} 
\psi j(x, t)

\psi i(x, t)

\Biggr) 2
\right]  \prime 

 - \partial t\beta i(x, t) - \omega \partial t\beta 
\prime 
i(x, t).

And a further computation yields

di
2

\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)

\left[  \Biggl( \sqrt{} \varphi i(y, t)

\varphi i(x, t)
 - 

\sqrt{} 
\psi i(y, t)

\psi i(x, t)

\Biggr) 2
\right]  \prime 

\alpha 2
i (x, t)dydxdt(3.8)

=
di
2

\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)

\biggl[ 
\varphi \prime 
i(y, t)\psi i(x, t) - 

\varphi i(y, t)\psi i(x, t)

\varphi i(x, t)
\varphi \prime 
i(x, t)

+\psi \prime 
i(y, t)\varphi i(x, t) - 

\varphi i(x, t)\psi i(y, t)

\psi i(x, t)
\psi \prime 
i(x, t)

\biggr] 
dydxdt

= - di
2

\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)
\psi i(x, t)

\varphi i(x, t)

\biggl( 
\varphi i(x, t)

\psi i(x, t)

\biggr) \prime 

(\varphi i(y, t)\psi i(x, t)

 - \psi i(y, t)\varphi i(x, t))dydxdt,

m\sum 
i=1

1

2

\int 1

0

\int 
\Omega 

m\sum 
j=1

aij(x, t)

\left[  \Biggl( \sqrt{} \varphi j(x, t)

\varphi i(x, t)
 - 

\sqrt{} 
\psi j(x, t)

\psi i(x, t)

\Biggr) 2
\right]  \prime 

\alpha 2
i (x, t)dxdt(3.9)

=

m\sum 
i=1

1

2

\int 1

0

\int 
\Omega 

m\sum 
j=1

aij(x, t)

\biggl[ 
\varphi \prime 
j(x, t)\psi i(x, t) - 

\varphi j(x, t)\psi i(x, t)

\varphi i(x, t)
\varphi \prime 
i(x, t)

+\psi \prime 
j(x, t)\varphi i(x, t) - 

\varphi i(x, t)\psi j(x, t)

\psi i(x, t)
\psi \prime 
i(x, t)

\biggr] 
dxdt

= - 1

2

\int 1

0

\int 
\Omega 

m\sum 
i=1

m\sum 
j=1

aij(x, t)
\psi i(x, t)

\varphi i(x, t)

\biggl( 
\varphi i(x, t)

\psi i(x, t)

\biggr) \prime 

(\varphi j(x, t)\psi i(x, t)

 - \psi j(x, t)\varphi i(x, t))dxdt,
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4053

and

m\sum 
i=1

\int 1

0

\int 
\Omega 

\omega \partial t\beta 
\prime 
i(x, t)\alpha 

2
i (x, t)dxdt

(3.10)

= - 
m\sum 
i=1

\int 1

0

\int 
\Omega 

\omega \beta \prime 
i(x, t)[\partial t\varphi i(x, t)\psi i(x, t) +\varphi i(x, t)\partial t\psi i(x, t)]dxdt

= - 
\int 1

0

\int 
\Omega 

m\sum 
i=1

1

2

\psi i(x, t)

\varphi i(x, t)

\biggl( 
\varphi i(x, t)

\psi i(x, t)

\biggr) \prime \biggl[ 
di

\int 
\Omega 

Ji(x - y)(\varphi i(y, t)\psi i(x, t)

 - \psi i(y, t)\varphi i(x, t))dy+
m\sum 
j=1

aij(x, t)(\varphi j(x, t)\psi i(x, t) - \psi j(x, t)\varphi i(x, t))

\right]  dxdt.
Now in view of (3.7)--(3.10), we have

s\prime (\scrA )

m\sum 
i=1

\int 1

0

\int 
\Omega 

\alpha 2
i (x, t)dxdt

(3.11)

= - 
m\sum 
i=1

d\prime i(\omega )

2

\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)(\alpha i(y, t) - \alpha i(x, t))
2dydxdt

+

m\sum 
i=1

\int 1

0

\int 
\Omega 

d\prime i(\omega )

2

\int 
\Omega 

Ji(x - y)

\Biggl( \sqrt{} 
\varphi i(y, t)

\varphi i(x, t)
 - 

\sqrt{} 
\psi i(y, t)

\psi i(x, t)

\Biggr) 2

\alpha 2
i (x, t)dydxdt

 - 
m\sum 
i=1

\int 1

0

\int 
\Omega 

\partial t\beta i(x, t)\alpha 
2
i (x, t)dxdt.

Moreover, we have

m\sum 
i=1

\int 1

0

\int 
\Omega 

\partial t\beta i(x, t)\alpha 
2
i (x, t)dxdt

(3.12)

= - 
m\sum 
i=1

\int 1

0

\int 
\Omega 

\beta i(x, t)[\partial t\varphi i(x, t)\psi i(x, t) +\varphi i(x, t)\partial t\psi i(x, t)]dxdt

= - 
m\sum 
i=1

\int 1

0

\int 
\Omega 

1

2
ln

\biggl( 
\varphi i(x, t)

\psi i(x, t)

\biggr) \Biggl[ 
di
\omega 

\int 
\Omega 

Ji(x - y)(\varphi i(y, t)\psi i(x, t)

 - \varphi i(x, t)\psi i(y, t))dy+

m\sum 
j=1

1

\omega 
aij(x, t)(\varphi j(x, t)\psi i(x, t) - \varphi i(x, t)\psi j(x, t))

\Biggr] 
dxdt

= - 
\int 1

0

\int 
\Omega 

m\sum 
i=1

d\prime i(\omega )

\int 
\Omega 

Ji(x - y)\varphi i(y, t)\psi i(x, t) ln

\sqrt{} 
\varphi i(x, t)\psi i(y, t)

\varphi i(y, t)\psi i(x, t)
dydxdt

 - 
\int 1

0

\int 
\Omega 

m\sum 
i=1

m\sum 
j=1

1

\omega 
aij(x, t)\varphi j(x, t)\psi i(x, t) ln

\sqrt{} 
\varphi i(x, t)\psi j(x, t)

\varphi j(x, t)\psi i(x, t)
dxdt+

m\sum 
i=1

\varsigma i,
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where

\varsigma i =

\int 1

0

\int 
\Omega 

\omega 

2

\biggl( 
di(\omega )

\omega 

\biggr) \prime 

ln

\biggl( 
\varphi i(x, t)

\psi i(x, t)

\biggr) \int 
\Omega 

Ji(x - y)(\varphi i(y, t)\psi i(x, t)

 - \varphi i(x, t)\psi i(y, t))dydxdt.

And

m\sum 
i=1

\int 1

0

\int 
\Omega 

d\prime i(\omega )

2

\int 
\Omega 

Ji(x - y)

\Biggl( \sqrt{} 
\varphi i(y, t)

\varphi i(x, t)
 - 

\sqrt{} 
\psi i(y, t)

\psi i(x, t)

\Biggr) 2

\alpha 2
i (x, t)dydxdt

=

m\sum 
i=1

\int 1

0

\int 
\Omega 

d\prime i(\omega )

2

\int 
\Omega 

Ji(x - y)(\varphi i(y, t)\psi i(x, t) +\psi i(y, t)\varphi i(x, t))dydxdt

 - 
m\sum 
i=1

\int 1

0

\int 
\Omega 

d\prime i(\omega )

\int 
\Omega 

Ji(x - y)
\sqrt{} 
\varphi i(y, t)\varphi i(x, t)\psi i(y, t)\psi i(x, t)dydxdt.(3.13)

Define g(z) := z - 1 - lnz, z > 0, and h(z1, z2) := (z1 - z2)(lnz1 - lnz2), z1, z2 > 0. By
virtue of (3.11)--(3.13), we obtain

s\prime (\scrA )

m\sum 
i=1

\int 1

0

\int 
\Omega 

\alpha 2
i (x, t)dxdt

= - 
m\sum 
i=1

d\prime i(\omega )

2

\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)(\alpha i(y, t) - \alpha i(x, t))
2dydxdt

 - 1

4\omega 

\int 1

0

\int 
\Omega 

m\sum 
i,j=1
i \not =j

aij(x, t)h(\varphi j(x, t)\psi i(x, t),\psi j(x, t)\varphi i(x, t))dxdt

+
1

4

m\sum 
i=1

\omega 

\biggl( 
di(\omega )

\omega 

\biggr) \prime 

\rho i  - 
m\sum 
i=1

d\prime i(\omega )\theta i,(3.14)

where

\rho i =

\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)h(\varphi i(y, t)\psi i(x, t),\psi i(y, t)\varphi i(x, t))dydxdt

and

\theta i =

\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)\varphi i(y, t)\psi i(x, t)g

\Biggl( \sqrt{} 
\varphi i(x, t)\psi i(y, t)

\varphi i(y, t)\psi i(x, t)

\Biggr) 
dydxdt.

Since g(z)\geq 0 for all z > 0, aij(x, t)\geq 0 for i \not = j and (x, t) \in \=\Omega \times \BbbR , and h(z1, z2)\geq 0
for all z1, z2 > 0, we derive from (3.14) that s\prime (\scrA )\leq 0 for all \omega > 0.

(i) If s\prime (\scrA ) = 0 for some \omega > 0, then (3.14) gives that\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)(\alpha i(y, t) - \alpha i(x, t))
2dydxdt= 0 for all 1\leq i\leq m,(3.15)

\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)\varphi i(y, t)\psi i(x, t)g

\Biggl( \sqrt{} 
\varphi i(x, t)\psi i(y, t)

\varphi i(y, t)\psi i(x, t)

\Biggr) 
dydxdt= 0,(3.16)
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4055

and

\varphi j(x, t)\psi i(x, t) =\psi j(x, t)\varphi i(x, t) for each (x, t)\in \=\Omega \times \BbbR and 1\leq i, j \leq m,(3.17)

which implies that \alpha i = \alpha i(t) is independent of x \in \=\Omega and \varphi i(x,t)\psi i(y,t)
\varphi i(y,t)\psi i(x,t)

\equiv 1 for each

x, y \in \=\Omega and t\in [0,1]. Thus, \varphi i = \kappa i(t)\psi i for some 1-periodic function \kappa i(t). By virtue
of (3.17), we have \kappa i(t) = \kappa j(t) = \kappa (t) with \kappa (t) being some 1-periodic function for
t\in [0,1] and 1\leq i, j \leq m. A direct computation yields that

\partial t(\alpha 
2
i (x, t)) =

di
\omega 

\int 
\Omega 

Ji(x - y)(\varphi i(y, t)\psi i(x, t) - \psi i(y, t)\varphi i(x, t))dy= 0,

implying that \alpha i is independent of t and is a constant. By (3.5), we have

m\sum 
j=1

aij(x, t)\alpha j  - \omega 
1

2

d ln\kappa (t)

dt
\alpha i = s(\scrA )\alpha i.

Integrating the above equality over \Omega \times (0,1) gives s(\scrA ) = \~\lambda . Thus, the conclusion

holds with \zeta (t) = \omega 1
2
d ln\kappa (t)

dt .

If there exists some 1-periodic function \zeta (t)\in C(\BbbR ) with
\int 1

0
\zeta (t)dt= 0 satisfying

[\zeta (t)I  - (A(x, t) - A\ast )]\Phi = 0 for any x\in \=\Omega and t\in [0,1],

set \varphi (t) = exp [ 1\omega 
\int t
0
\zeta (s)ds]\Phi . Then,

\omega \varphi \prime (t) =A(x, t)\varphi (t) - \~\lambda \varphi (t),

implying that s(\scrA ) = \~\lambda for all \omega > 0. As a result, s\prime (\scrA )\equiv 0.

(ii) If there exists some 1-periodic function r(t) \in C(\BbbR ) with
\int 1

0
r(t)dt = 0 satis-

fying \Bigl[ 
r(t)I  - (A(x, t) - \^A(x))

\Bigr] 
\phi (x) = 0 for any x\in \=\Omega and t\in [0,1],

where \phi (x) is the principal eigenfunction of (3.2), set \varphi (x, t) = exp [ 1\omega 
\int t
0
r(s)ds]\phi (x).

Then,

 - \omega \partial t\varphi i(x, t) + di

\int 
\Omega 

Ji(x - y)(\varphi i(y, t) - \varphi i(x, t))dy+

m\sum 
j=1

aij(x, t)\varphi j(x, t)

 - \^\lambda \varphi i(x, t)

= - r(t)\varphi i(x, t) +
m\sum 
j=1

(aij(x, t) - \^ai,j(x))\varphi j(x, t)

= 0,

where \^\lambda is the principal eigenvalue of (3.2). Thus, s(\scrA ) = \^\lambda and s\prime (\scrA ) = 0 for all
\omega > 0.

If s\prime (\scrA ) = 0 for some \omega > 0, then (3.14) gives that

\varphi j(x, t)\psi i(x, t) =\psi j(x, t)\varphi i(x, t) and \varphi i(y, t)\psi i(x, t) =\psi i(y, t)\varphi i(x, t)
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4056 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

for each x, y \in \Omega , t \in [0,1], and 1 \leq i, j \leq m. This implies that \varphi i = \varrho i(t)\psi i for some
1-periodic function \varrho i(t) and \varrho i(t) = \varrho j(t) = \varrho (t) for some 1-periodic function \varrho (t).
Thus, \varphi = \varrho (t)\psi and \beta i =

1
2 ln\varrho (t). A direct computation yields that

\partial t(\alpha 
2
i (x, t)) =

di
\omega 

\int 
\Omega 

Ji(x - y)(\varphi i(y, t)\psi i(x, t) - \psi i(y, t)\varphi i(x, t))dy= 0,

implying that \alpha i = \alpha i(x) is independent of t. By (3.5), we have

di

\int 
\Omega 

Ji(x - y)(\alpha i(y) - \alpha i(x))dy+

m\sum 
j=1

aij(x, t)\alpha j(x) - \omega 
d\beta i(t)

dt
\alpha i(x) = s(\scrA )\alpha i(x).

(3.18)

Integrating the above equality over (0,1) gives

di

\int 
\Omega 

Ji(x - y)(\alpha i(y) - \alpha i(x))dy+

m\sum 
j=1

\^aij(x)\alpha j(x) = s(\scrA )\alpha i(x).(3.19)

Now we derive from (3.18) and (3.19) that

m\sum 
j=1

(aij(x, t) - \^aij(x))\alpha j(x) - 
1

2
\omega 
d ln\varrho (t)

dt
\alpha i(x) = 0.

Hence, the conclusion holds with r(t) = 1
2\omega 

d ln\varrho (t)
dt . The proof is completed.

Next we give the limiting properties of principal eigenvalues as \omega tends to zero
or infinity. We obtain these results with the help of generalized principal eigenvalues
defined by

\lambda p(\scrA ) := sup
\bigl\{ 
\lambda \in \BbbR | \exists \varphi \in \scrX ++ s.t. ( - \scrA + \lambda ) [\varphi ]\leq 0 in \=\Omega \times \BbbR 

\bigr\} 
and

\lambda \prime p(\scrA ) := inf
\bigl\{ 
\lambda \in \BbbR | \exists \varphi \in \scrX ++ s.t. ( - \scrA + \lambda ) [\varphi ]\geq 0 in \=\Omega \times \BbbR 

\bigr\} 
.

Proposition 3.4. Assume that (rij(x, t))m\times m satisfies the same conditions as
(aij(x, t))m\times m. If aij(x, t)\leq rij(x, t) for all 1\leq i, j \leq m and (x, t)\in \=\Omega \times \BbbR , then

\lambda p(\scrA ) + l\leq \lambda p(\scrR ),

where

l= min
1\leq i\leq m

\biggl\{ 
min

\=\Omega \times [0,1]
[rii(x, t) - aii(x, t)]

\biggr\} 
and \scrR is defined by replacing (aij(x, t))m\times m by (rij(x, t))m\times m in the definition of \scrA .

Proof. For any \lambda < \lambda p(\scrA ), there exists \varphi \in \scrX ++ such that

 - \scrA [\varphi ](x, t) + \lambda \varphi (x, t)\leq 0 in \=\Omega \times \BbbR .
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4057

Then

\omega \partial t\varphi i(x, t) - di

\int 
\Omega 

Ji(x - y)(\varphi i(y, t) - \varphi i(x, t))dy - 
m\sum 
j=1

rij(x, t)\varphi j(x, t)

+ (\lambda + l)\varphi i(x, t)

\leq \omega \partial t\varphi i(x, t) - di

\int 
\Omega 

Ji(x - y)(\varphi i(y, t) - \varphi i(x, t))dy

 - 
m\sum 
j=1
j \not =i

aij(x, t)\varphi j(x, t) + ( - rii(x, t) + \lambda + l)\varphi i(x, t)

\leq 0,

which implies that \lambda + l \leq \lambda p(\scrR ). Thus, \lambda p(\scrA ) + l \leq \lambda p(\scrR ). The proof is
completed.

Proposition 3.5. If s(\scrA ) is the principal eigenvalue of \scrA , then

s(\scrA ) = \lambda p(\scrA ) = \lambda \prime p(\scrA ).

Proof. First we prove s(\scrA ) = \lambda p(\scrA ). If s(\scrA ) is the principal eigenvalue of \scrA , then
there exists \phi \in \scrX ++ such that

\scrA \phi  - s(\scrA )\phi = 0 in \=\Omega \times \BbbR .

By the definition of \lambda p(\scrA ), we have s(\scrA ) \leq \lambda p(\scrA ). Suppose to the contrary that
s(\scrA )<\lambda p(\scrA ). By virtue of the definition of \lambda p(\scrA ), there exist \lambda \in (s(\scrA ), \lambda p(\scrA )) and
\varphi \in \scrX ++ such that

 - \scrA \varphi + \lambda \varphi \leq 0 in \=\Omega \times \BbbR .

Then \varphi (\cdot , t)\leq e - 
\lambda 
\omega t\scrF 0(t,0)\varphi (\cdot ,0). Together with \varphi (\cdot ,0) =\varphi (\cdot ,1), we have

\varphi (\cdot ,0)\leq e - 
\lambda 
\omega \scrF 0(1,0)\varphi (\cdot ,0).

It follows from [31, Proposition 3] that r(e - 
\lambda 
\omega \scrF 0(1,0)) \geq 1. We derive from Propo-

sition 2.10 that r(e - 
s(\scrA )
\omega \scrF 0(1,0)) = 1. We obtain from the proof of Proposition 2.10

that r(e - 
\lambda 
\omega \scrF 0(1,0)) is strictly decreasing with respect to \lambda \in \BbbR . As a result, s(\scrA )\geq \lambda .

A contradiction occurs implying s(\scrA ) = \lambda p(\scrA ).
Next we prove s(\scrA ) = \lambda \prime p(\scrA ). If s(\scrA ) is the principal eigenvalue of \scrA , then it is

easy to see that \lambda \prime p(\scrA )\leq s(\scrA ). The eigenfunction \phi corresponding to s(\scrA ) satisfies

\omega \partial t\phi i(x, t) - di

\int 
\Omega 

Ji(x - y)(\phi i(y, t) - \phi i(x, t))dy - 
m\sum 
j=1

aij(x, t)\phi j(x, t)+s(\scrA )\phi i(x, t)=0.

(3.20)

Assume that \lambda \prime p(\scrA )< s(\scrA ). By the definition of \lambda \prime p(\scrA ), there exist \lambda \ast \in (\lambda \prime p(\scrA ), s(\scrA ))
and \psi \in \scrX ++ such that

\omega \partial t\psi i(x, t) - di

\int 
\Omega 

Ji(x - y)(\psi i(y, t) - \psi i(x, t))dy - 
m\sum 
j=1

aij(x, t)\psi j(x, t)+\lambda \ast \psi i(x, t)\geq 0.

(3.21)
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4058 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

Let

\delta \ast := sup
\bigl\{ 
\delta | \psi > \delta \phi for all (x, t)\in \=\Omega \times [0,1]

\bigr\} 
.

Due to \phi , \psi \in \scrX ++, we have \delta \ast \in (0,+\infty ). By the definition of \delta \ast , we have V =
\psi  - \delta \ast \phi \geq 0. We derive from (3.20) and (3.21) that V satisfies

\omega \partial tVi(x, t) - di

\int 
\Omega 

Ji(x - y)(Vi(y, t) - Vi(x, t))dy+KVi(x, t)

\geq 
m\sum 
j=1

aij(x, t) (\psi j(x, t) - \delta \ast \phi j(x, t)) + (s(\scrA ) - \lambda \ast )\psi i(x, t) + (K  - s(\scrA ))Vi(x, t)

> 0,

(3.22)

provided that K is sufficiently large. And Vi(x,0) = Vi(x,1) \geq 0. By the strong
maximum principle and the periodicity of \phi and \psi , we get Vi > 0 for all 1 \leq i \leq m.
Hence, there exists \theta \ast > 0 small enough such that \psi > (\delta \ast + \theta \ast )\phi , contradicting the
definition of \delta \ast . As a result, s(\scrA ) = \lambda \prime p(\scrA ). The proof is completed.

Theorem 3.6. Suppose that s(\scrA ) is the principal eigenvalue of \scrA . Then the
following conclusions hold:

(i) Assume that aij \in C0,1(\=\Omega \times \BbbR ) and di(\omega )\rightarrow bi as \omega \rightarrow 0 for some nonnegative
constant bi. If s(\scrP (t)) is the principal eigenvalue of \scrP (t), then

lim
\omega \rightarrow 0

s(\scrA ) =

\int 1

0

s(\scrP (t))dt,

where \scrP (t) is defined by

\scrP (t)[u](x) := bi\scrK [u](x) - bi\scrJ [u](x) +A(x, t)u(x), u\in C(\=\Omega ,\BbbR m).

(ii) Assume that the conditions of Theorem 3.2 hold. Then the following asser-
tions hold:

(a) If di(\omega )\rightarrow pi as \omega \rightarrow +\infty for some positive constant pi, then

lim
\omega \rightarrow +\infty 

s(\scrA ) = s\infty = sup
\| u\| =1

\langle \scrL [u],u\rangle ,

where \scrL is defined by

\scrL [u](x) := pi\scrK [u](x) - pi\scrJ [u](x) + \^A(x)u(x), u\in C(\=\Omega ,\BbbR m),

and s\infty is the principal eigenvalue of \scrL .
(b) If di(\omega ) \rightarrow +\infty as \omega \rightarrow +\infty and di(\omega )

\omega \rightarrow qi for some nonnegative constant
qi, then

lim
\omega \rightarrow +\infty 

s(\scrA ) = \lambda (A\ast ),

where \lambda (A\ast ) is the principal eigenvalue of A\ast .
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4059

Proof. (i) For fixed t\in [0,1], since s(\scrP (t)) is the principal eigenvalue of \scrP (t), there
exists v(\cdot , t) \in C(\=\Omega ,\BbbR m) with v(\cdot , t)\gg 0 in \=\Omega such that \scrP (t)v = s(\scrP (t))v. It follows
from the classical perturbation theory (see Kato [17]) that v \in C1([0,1],C(\=\Omega ,\BbbR m))
and v(x, t+ 1) = v(x, t).

Set \varphi (x, t) = b(t)v(x, t) with

b(t) = exp

\biggl\{ 
 - 1

\omega 

\biggl[ 
t

\int 1

0

s(\scrP (s))ds - 
\int t

0

s(\scrP (s))ds

\biggr] \biggr\} 
.

Given an arbitrary \varepsilon > 0, there exists a sufficiently small \omega 0 > 0 such that \omega | \partial tvi| \leq 
\varepsilon 
2vi and \bigm| \bigm| \bigm| \bigm| (di  - bi)

\int 
\Omega 

Ji(x - y)(vi(y, t) - vi(x, t))dy

\bigm| \bigm| \bigm| \bigm| \leq \varepsilon 

2
vi for all \omega \leq \omega 0.

In addition,

 - \scrA [\varphi ] +

\biggl( \int 1

0

s(\scrP (s))ds - \varepsilon 

\biggr) 
\varphi 

\leq \omega b(t)\partial tv+

\biggl[ 
 - 
\int 1

0

s(\scrP (s))ds+ s(\scrP (t))

\biggr] 
\varphi  - \scrP (t)[\varphi ] +

\varepsilon 

2
\varphi 

+

\biggl( \int 1

0

s(\scrP (s))ds - \varepsilon 

\biggr) 
\varphi 

\leq 0.

By the definition of \lambda p(\scrA ), we get\int 1

0

s(\scrP (s))ds - \varepsilon \leq \lambda p(\scrA ) = s(\scrA ) for all \omega \leq \omega 0.

Similarly, we have

 - \scrA [\varphi ] +

\biggl( \int 1

0

s(\scrP (s))ds+ \varepsilon 

\biggr) 
\varphi \geq 0.

It follows from the definition of \lambda \prime p(\scrA ) that

s(\scrA ) = \lambda \prime p(\scrA )\leq 
\int 1

0

s(\scrP (s))ds+ \varepsilon for all \omega \leq \omega 0.

As a result, lim\omega \rightarrow 0 s(\scrA ) =
\int 1

0
s(\scrP (t))dt.

(ii) Choose a sequence \{ \omega n\} with \omega n \rightarrow +\infty as n\rightarrow +\infty and denote (sn(\scrA ),\varphi n)
the corresponding eigenpairs; that is, (sn(\scrA ),\varphi n) with \varphi n \in \scrX ++ normalized by
\| \varphi n\| \scrX = 1 satisfies

\omega n\partial t\varphi ni
= di

\int 
\Omega 

Ji(x - y)(\varphi ni
(y, t) - \varphi ni

(x, t))dy+

m\sum 
j=1

aij(x, t)\varphi nj
 - sn(\scrA )\varphi ni

.

(3.23)
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4060 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

Dividing (3.23) by \varphi ni and integrating it over \Omega \times (0,1) yield

sn(\scrA ) =
di
2| \Omega | 

\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)

\Biggl( \sqrt{} 
\varphi ni

(y, t)

\varphi ni
(x, t)

 - 

\sqrt{} 
\varphi ni

(x, t)

\varphi ni
(y, t)

\Biggr) 2

dydxdt

+
1

| \Omega | 

\int 1

0

\int 
\Omega 

m\sum 
j=1

aij(x, t)
\varphi nj

(x, t)

\varphi ni
(x, t)

dxdt

\geq 1

| \Omega | 

\int 1

0

\int 
\Omega 

aii(x, t)dxdt,

from which we obtain

sn(\scrA )\geq 1

m| \Omega | 

m\sum 
i=1

\int 1

0

\int 
\Omega 

aii(x, t)dxdt.(3.24)

We derive from Theorem 3.2 that sn(\scrA ) is nonincreasing and thus limn\rightarrow +\infty sn(\scrA ) =
s\infty exists. Moreover, \{ sn(\scrA )\} is a bounded sequence.

(a) If di(\omega )\rightarrow pi as \omega \rightarrow +\infty for some positive constant pi, dividing (3.23) by \omega n
and letting n\rightarrow +\infty yields \partial t\varphi ni

\rightarrow 0 uniformly on \=\Omega \times [0,1] as n\rightarrow +\infty due to the
boundedness of sn(\scrA ) and \varphi n. Note that \| \varphi n\| \scrX = 1. There exists some subsequence
of \{ \varphi n\} , still denoted by itself, such that \varphi n \rightarrow \varphi weakly in L2(\Omega \times (0,1),\BbbR m) and
\partial t\varphi n \rightarrow \partial t\varphi = 0 for some function \varphi as n\rightarrow +\infty . This implies that \varphi is independent
of t. Integrating (3.23) over (0,1) and letting n\rightarrow +\infty yield

pi

\int 
\Omega 

Ji(x - y)(\varphi i(y) - \varphi i(x))dy+

m\sum 
j=1

\^aij(x)\varphi j(x) - s\infty \varphi i(x) = 0.(3.25)

Applying the dominated convergence theorem, we conclude that \| \varphi n\| L2(\Omega \times (0,1),\BbbR m) \rightarrow 
\| \varphi \| L2(\Omega ,\BbbR m) as n\rightarrow +\infty . Hence, \varphi n\rightarrow \varphi in L2(\Omega \times (0,1),\BbbR m) as n\rightarrow +\infty . Obviously,
\varphi is not identically 0. In view of (3.25), \varphi \in X++ and s\infty is the principal eigenvalue
of \scrL . This together with the symmetry of A(x, t) gives s\infty = sup\| u\| =1\langle \scrL [u],u\rangle .

(b) If di(\omega )\rightarrow +\infty and di(\omega )
\omega \rightarrow qi for some nonnegative constant qi as \omega \rightarrow +\infty ,

dividing (3.23) by \omega n implies that \partial t\varphi ni
is uniformly bounded due to \| \varphi n\| \scrX = 1 and

the boundedness of di(\omega n)
\omega n

and sn(\scrA ). Multiplying (3.23) by \partial t\varphi ni , integrating over
\Omega \times (0,1), and adding the resulting equations from i= 1 to m yield

\omega n

m\sum 
i=1

\int 1

0

\int 
\Omega 

| \partial t\varphi ni(x, t)| 2dxdt

=

m\sum 
i=1

\int 1

0

\int 
\Omega 

di

\int 
\Omega 

Ji(x - y)(\varphi ni
(y, t) - \varphi ni

(x, t))dy\partial t\varphi ni
(x, t)dxdt

+

m\sum 
i=1

\int 1

0

\int 
\Omega 

m\sum 
j=1

aij(x, t)\varphi nj
(x, t))\partial t\varphi ni

(x, t)dxdt

 - sn(\scrA )

m\sum 
i=1

\int 1

0

\int 
\Omega 

\varphi ni
(x, t)\partial t\varphi ni

(x, t)dxdt

=

m\sum 
i,j=1

\int 1

0

\int 
\Omega 

aij(x, t)\varphi nj
(x, t))\partial t\varphi ni

(x, t)dxdt

\leq M,
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4061

where M > 0 is a constant. Hence, \| \partial t\varphi ni\| L2(\Omega \times (0,1)) \rightarrow 0 as n\rightarrow +\infty . By the above
result and the boundedness of \| \varphi ni\| L2(\Omega \times (0,1)), up to an extraction, there exists
\psi i \in W 1,2((0,1),L2(\Omega )) such that \varphi ni

\rightarrow \psi i and \partial t\varphi ni
\rightarrow \partial t\psi i weakly in L2(\Omega \times (0,1))

as n\rightarrow +\infty . In addition, we have \| \partial t\psi i\| \leq lim infn\rightarrow +\infty \| \partial t\varphi ni
\| L2(\Omega \times (0,1)) = 0 and

thus \psi i is independent of t.
If qi > 0, dividing (3.23) by \omega n, integrating over (0,1) and letting n\rightarrow +\infty yield

qi

\int 
\Omega 

Ji(x - y)(\psi i(y) - \psi i(x))dy= 0,

which implies that \psi i is a constant and \psi i is positive due to the normalization of \varphi n.
Integrating (3.23) over \Omega \times (0,1) and sending n\rightarrow +\infty yield

m\sum 
j=1

1

| \Omega | 

\int 1

0

\int 
\Omega 

aij(x, t)dxdt\psi j = s\infty \psi i,

which implies that s\infty is the principal eigenvalue of A\ast .
If qi = 0, dividing (3.23) by di(\omega n), integrating over (0,1), and letting n\rightarrow +\infty 

yield \int 
\Omega 

Ji(x - y)(\psi i(y) - \psi i(x))dy= 0.

The remaining proof is the same as above. The proof is completed.

4. Effects of dispersal rates and dispersal ranges. In this section, we in-
vestigate the effects of small and large dispersal rates or dispersal ranges on principal
eigenvalues. Set \=A(t) = (\=aij(t))m\times m. Let \{ \Psi (t, s) | t \geq s\} be the evolution family on

\BbbR m of \omega du
dt =

\=A(t)u, t\geq s.

Theorem 4.1. Suppose that Ji( - x) = Ji(x) for 1 \leq i \leq m; then the following
statements hold:

(i) s(\scrA )\rightarrow \lambda \ast as min1\leq i\leq m di\rightarrow +\infty , where \lambda \ast is the principal eigenvalue of the
eigenvalue problem\Biggl\{ 

\omega du(t)
dt = \=A(t)u(t) - \lambda u(t), t\in \BbbR ,

u(t+ 1) = u(t), t\in \BbbR .
(4.1)

(ii) Assume s(\scrA ) is the principal eigenvalue of \scrA . Then s(\scrA )\rightarrow maxx\in \=\Omega \lambda (x) as
max1\leq i\leq m\{ di\} \rightarrow 0, where \lambda (x) is defined in Lemma 2.8.

Proof. (i) It follows from Corollary 2.15(iii) that there exists d\ast > 0 such that
s(\scrA ) is the principal eigenvalue of \scrA for all min1\leq i\leq m di \geq d\ast . Then there exists
\varphi \in \scrX + \setminus \{ 0\} such that for (x, t)\in \Omega \times \BbbR ,

\omega \partial t\varphi i(x, t) = di

\int 
\Omega 

Ji(x - y)[\varphi i(y, t) - \varphi i(x, t)]dy+

m\sum 
j=1

aij(x, t)\varphi j(x, t) - s(\scrA )\varphi i(x, t).

(4.2)

Integrating (4.2) over \Omega \times (0,1) and adding the resulting equations from i = 1 to m
give

s(\scrA )

m\sum 
i=1

\int 1

0

\int 
\Omega 

\varphi i(x, t)dxdt=

m\sum 
i=1

m\sum 
j=1

\int 1

0

\int 
\Omega 

aij(x, t)\varphi j(x, t)dxdt,
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4062 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

which implies that s(\scrA )\geq 0. Normalize \varphi by

m\sum 
i=1

\int 1

0

\int 
\Omega 

\varphi 2
i (x, t)dxdt= 1.(4.3)

Multiplying (4.2) by \varphi i, integrating over \Omega \times (0,1) and adding the resulting equations
from i= 1 to m yield

0\leq s(\scrA ) = - 
m\sum 
i=1

di
2

\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)(\varphi i(y, t) - \varphi i(x, t))
2dydxdt

+

m\sum 
i=1

\int 1

0

\int 
\Omega 

m\sum 
j=1

aij(x, t)\varphi j(x, t)\varphi i(x, t)dxdt

\leq 1

2

m\sum 
i,j=1

max
(x,t)\in \=\Omega \times [0,1]

| aij(x, t)| 
\biggl( \int 1

0

\int 
\Omega 

\varphi 2
j (x, t)dxdt+

\int 1

0

\int 
\Omega 

\varphi 2
i (x, t)dxdt

\biggr) 

\leq 
m\sum 

i,j=1

max
(x,t)\in \=\Omega \times [0,1]

| aij(x, t)| .(4.4)

Then we have\int 1

0

\int 
\Omega 

\int 
\Omega 

Ji(x - y)(\varphi i(y, t) - \varphi i(x, t))
2dydxdt

\leq 2

di

\left[   - s(\scrA ) +

m\sum 
i=1

\int 1

0

\int 
\Omega 

m\sum 
j=1

aij(x, t)\varphi j(x, t)\varphi i(x, t)dxdt

\right]  
\leq 2

di

\left(  m\sum 
i,j=1

max
(x,t)\in \=\Omega \times [0,1]

| aij(x, t)| 

\right)  .(4.5)

Set \phi (x, t) =\varphi (x, t) - \=\varphi (t). Then
\int 
\Omega 
\phi (x, t)dx= 0. Note that

\int 
\Omega 

\int 
\Omega 

Ji(x - y)(\varphi i(y, t) - \varphi i(x, t))
2dydx=

\int 
\Omega 

\int 
\Omega 

Ji(x - y)(\phi i(y, t) - \phi i(x, t))
2dydx.

(4.6)

By [33, Formula (5.6), p. 1688], there exists Ci > 0 such that\int 
\Omega 

\phi 2i (x, t)dx\leq 
1

2Ci

\int 
\Omega 

\int 
\Omega 

Ji(x - y)(\phi i(y, t) - \phi i(x, t))
2dydx for all di\gg 1.(4.7)

In view of (4.5), (4.6), and (4.7), we have

\int 1

0

\int 
\Omega 

\phi 2i (x, t)dxdt\leq 
1

Cidi

\left(  m\sum 
i,j=1

max
(x,t)\in \=\Omega \times [0,1]

| aij(x, t)| 

\right)  .(4.8)

Integrating (4.2) over \Omega yields

\omega 
d \=\varphi i(t)

dt
=

m\sum 
j=1

1

| \Omega | 

\int 
\Omega 

aij(x, t)dx \=\varphi j(t) - s(\scrA ) \=\varphi i(t) +

m\sum 
j=1

1

| \Omega | 

\int 
\Omega 

aij(x, t)\phi j(x, t)dx.
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4063

In view of (4.8), we have

m\sum 
j=1

1

| \Omega | 

\int 1

0

\int 
\Omega 

aij(x, t)\phi j(x, t)dxdt=O

\Biggl( 
m\sum 
i=1

d
 - 1

2
i

\Biggr) 
for all min

1\leq i\leq m
di\gg 1.

The variation of constants formula gives rise to

\=\varphi (t) = e - 
s(\scrA )
\omega t\Psi (t,0) \=\varphi (0) +O

\Biggl( 
m\sum 
i=1

d
 - 1

2
i

\Biggr) 
for all min

1\leq i\leq m
di\gg 1.(4.9)

Note that \=\varphi (1) = \=\varphi (0). We derive

\=\varphi (0) = e - 
s(\scrA )
\omega \Psi (1,0) \=\varphi (0) +O

\Biggl( 
m\sum 
i=1

d
 - 1

2
i

\Biggr) 
for all min

1\leq i\leq m
di\gg 1.(4.10)

If lim infmin1\leq i\leq m di\rightarrow +\infty 
\sum m
j=1 \=\varphi j(0) = 0, we derive from (4.9) that

lim inf
min

1\leq i\leq m
di\rightarrow +\infty 

m\sum 
j=1

\=\varphi j(t) = 0 uniformly for t\in [0,1],

which implies that lim infmin1\leq i\leq m di\rightarrow +\infty 
\sum m
j=1

\int 1

0

\int 
\Omega 
\=\varphi 2
j (t)dxdt= 0. Since\int 1

0

\int 
\Omega 

\varphi 2
j (x, t)dxdt\leq 2

\biggl( \int 1

0

\int 
\Omega 

\phi 2j (x, t)dxdt+

\int 1

0

\int 
\Omega 

\=\varphi 2
j (t)dxdt

\biggr) 
,

combining with (4.8), we have lim infmin1\leq i\leq m di\rightarrow +\infty 
\sum m
j=1

\int 1

0

\int 
\Omega 
\varphi 2
j (x, t)dxdt = 0.

This contradicts (4.3). Thus,

lim inf
min

1\leq i\leq m
di\rightarrow +\infty 

m\sum 
j=1

\=\varphi j(0)> 0.(4.11)

If limsupmin1\leq i\leq m di\rightarrow +\infty max1\leq j\leq m \=\varphi j(0) =+\infty , we derive from (4.9) that

limsup
min

1\leq i\leq m
di\rightarrow +\infty 

max
1\leq j\leq m

\=\varphi j(t) =+\infty uniformly for t\in [0,1].

Note that\int 1

0

\=\varphi 2
j (t)dt=

\int 1

0

\biggl( 
1

| \Omega | 

\int 
\Omega 

\varphi j(x, t)dx

\biggr) 2

dt\leq 1

| \Omega | 

\int 1

0

\int 
\Omega 

\varphi 2
j (x, t)dxdt.

We obtain

limsup
min

1\leq i\leq m
di\rightarrow +\infty 

max
1\leq j\leq m

\int 1

0

\int 
\Omega 

\varphi 2
j (x, t)dxdt=+\infty ,

contradicting (4.3). Thus,

limsup
min

1\leq i\leq m
di\rightarrow +\infty 

max
1\leq j\leq m

\=\varphi j(0)<+\infty .(4.12)
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Case 1. \Psi (1,0) is irreducible. For any sequence \{ dk\} with dk = (dk1 , . . . , dkm)T ,
there exists a subsequence \{ dkl\} such that \=\varphi kl(0)\rightarrow \varphi \ast and s(\scrA )\rightarrow s\ast as min1\leq i\leq m
dkli \rightarrow +\infty for some \varphi \ast \in (\BbbR m)+ and s\ast \geq 0. It follows from (4.10) that \varphi \ast =

e - 
s\ast 
\omega \Psi (1,0)\varphi \ast . Since \Psi (1,0) is irreducible, we derive from the Perron--Frobenius

theorem that s\ast = \omega ln r(\Psi (1,0)). By the arbitrariness of \{ dk\} , we get the desired
conclusion.

Case 2. \Psi (1,0) is reducible. Although the remaining proof is similar to the proof
of [46, Theorem 3.3], we still present the proof here for the sake of completeness.
We first prove that s\infty := limmin1\leq i\leq m di\rightarrow +\infty s(\scrA ) exists. By (4.4), we know s - :=
lim infmin1\leq i\leq m di\rightarrow +\infty s(\scrA ) and s+ := limsupmin1\leq i\leq m di\rightarrow +\infty s(\scrA ) exist. It suffices to
show s - = s+. If s - < s+, for any \~s \in [s - , s+], we derive from (4.11), (4.12), and
[46, Lemma 3.13] that there exists a sequence \{ dl\} with dl = (dl1 , . . . , dlm)T such that
\=\varphi l(0)\rightarrow \~\varphi and s(\scrA )\rightarrow \~s as min1\leq i\leq m dli \rightarrow +\infty for some \~\varphi \in (\BbbR m)+ with \~\varphi \not = 0. It

follows from (4.10) that \~\varphi = e - 
\~s
\omega \Psi (1,0) \~\varphi , which implies that e

\~s
\omega is an eigenvalue of

\Psi (1,0) for any \~s\in [s - , s+]. This is a contradiction. Thus, s - = s+.
Next we prove s\infty = \omega ln r(\Psi (1,0)). For any given \varepsilon > 0, let a\varepsilon ij(x, t) = aij(x, t)+\varepsilon 

and A\varepsilon (x, t) = (a\varepsilon ij(x, t))m\times m for all (x, t) \in \=\Omega \times \BbbR . Let \{ \Psi \varepsilon (t, s) | t \geq s\} be the

evolution family on \BbbR m of \omega du
dt = \=A\varepsilon (t)u, t \geq s with \=A\varepsilon (t) = (

\int 
\Omega 
a\varepsilon ij(x,t)dx

| \Omega | )m\times m.

In view of Lemma 2.7 and Proposition 2.10, s(\scrA \varepsilon ) \geq s(\scrA ), where \scrA \varepsilon is defined by
replacing A(x, t) by A\varepsilon (x, t) in the definition of \scrA . Since s(\scrA \varepsilon ) \rightarrow \omega ln r(\Psi \varepsilon (1,0))
as min1\leq i\leq m di \rightarrow +\infty and ln r(\Psi \varepsilon (1,0)) \rightarrow ln r(\Psi (1,0)) as \varepsilon \rightarrow 0, we have s\infty \leq 
\omega ln r(\Psi (1,0)). Via a suitable permutation, we may rewrite \Psi (1,0) into the following
form: \left(     

M11 0 \cdot \cdot \cdot 0
M21 M22 \cdot \cdot \cdot 0
...

...
. . .

...
M \~m1 M \~m2 \cdot \cdot \cdot M \~m \~m

\right)     ,

where Mkk is an ik \times ik irreducible matrix and
\sum \~m
k=1 ik = m. Without loss of gen-

erality, we assume that \Psi (1,0) is already in the above form. We know r(\Psi (1,0)) =
max1\leq k\leq \~m r(Mkk). We split d,\scrK ,\scrJ , A(x, t), and \=A(t) into d = diag(D1, . . . ,D \~m),
\scrK =diag(K1, . . . ,K \~m), \scrJ =diag(J1, . . . ,J \~m),

A(x, t) =

\left(     
A11(x, t) A12(x, t) \cdot \cdot \cdot A1 \~m(x, t)
A21(x, t) A22(x, t) \cdot \cdot \cdot A2 \~m(x, t)

...
...

. . .
...

A \~m1(x, t) A \~m2(x, t) \cdot \cdot \cdot A \~m \~m(x, t)

\right)     ,

and

\=A(t) =

\left(     
\=A11(t) \=A12(t) \cdot \cdot \cdot \=A1 \~m(t)
\=A21(t) \=A22(t) \cdot \cdot \cdot \=A2 \~m(t)
...

...
. . .

...
\=A \~m1(t) \=A \~m2(t) \cdot \cdot \cdot \=A \~m \~m(t)

\right)     .

For each k= 1,2, . . . , \~m, let \{ \Psi k(t, s) | t\geq s\} be the evolution family of \omega du
dt =

\=Akk(t)u,
t\geq s. It follows from [46, Lemma 3.11] that for each k= 1,2, . . . , \~m and l > k, \=Akl(t),
and hence Akl(x, t) is a zero matrix for any t \in \BbbR and (x, t) \in \=\Omega \times \BbbR , respectively.
Define Ak by

Ak[uk](x, t) := - \omega \partial tuk(x, t) +DKk[uk](x, t) - DJk[uk](x, t) +Akk(x, t)uk(x, t).
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4065

By virtue of Lemma 2.7 and Proposition 2.10, s(\scrA )\geq s(Ak). By the results obtained
in Case 1, we have s(Ak)\rightarrow \omega ln r(\Psi k(1,0)) as min1\leq i\leq m di\rightarrow +\infty . As a result, s\infty \geq 
max1\leq k\leq \~m \omega ln r(\Psi k(1,0)). Now we have s\infty = \omega ln r(\Psi (1,0)). We know \omega ln r(\Psi (1,0))
is the principal eigenvalue of (4.1). The proof of (i) is completed.

(ii) We first assume that

aij(x, t)> 0 for all (x, t)\in \=\Omega \times \BbbR and i \not = j.(4.13)

It follows from [3, Theorem 1.4] that there exists \phi (x, t)\in \scrX ++ satisfying

 - \omega \partial t\phi (x, t) +A(x, t)\phi (x, t) = \lambda (x)\phi (x, t), (x, t)\in \=\Omega \times [0,1].

Then for any \varepsilon > 0, there is d0 > 0 such that for all max1\leq i\leq m\{ di\} \leq d0,

 - \scrA [\phi ](x, t) +

\biggl( 
max
x\in \=\Omega 

\lambda (x) + \varepsilon 

\biggr) 
\phi (x, t)

= - d\scrK [\phi ](x, t) + d\scrJ [\phi ](x, t) - \lambda (x)\phi (x, t) +

\biggl( 
max
x\in \=\Omega 

\lambda (x) + \varepsilon 

\biggr) 
\phi (x, t)

\geq 0,

which implies that s(\scrA )\leq maxx\in \=\Omega \lambda (x)+\varepsilon for all max1\leq i\leq m\{ di\} \leq d0 by the definition
of \lambda \prime p(\scrA ). Hence, limsupmax1\leq i\leq m\{ di\} \rightarrow 0 s(\scrA )\leq maxx\in \=\Omega \lambda (x).

Now we remove the extra assumption (4.13). Let \delta > 0 be any small constant and
define \scrA \delta by replacing A(x, t) by A\delta (x, t) = (aij(x, t) + \delta )m\times m in the definition of \scrA .
The above arguments give that limsupmax1\leq i\leq m\{ di\} \rightarrow 0 s(\scrA \delta ) \leq maxx\in \=\Omega \lambda \delta (x), where
\lambda \delta (x) is defined in Lemma 2.8 by replacing A(x, t) by A\delta (x, t). By virtue of Lemma 2.7
and Proposition 2.10, s(\scrA \delta ) \geq s(\scrA ). We derive from the proof of [3, Theorem 1.5]
that \lambda \delta (x) \rightarrow \lambda (x) uniformly on \=\Omega as \delta \rightarrow 0. Hence, limsupmax1\leq i\leq m\{ di\} \rightarrow 0 s(\scrA ) \leq 
maxx\in \=\Omega \lambda (x).

By Propositions 2.9 and 2.10 we know that both \scrA and \scrB are resolvent positive.
By [22, Lemma 2.2], we obtain s(\scrA ) \geq s(\scrB ) = \alpha \ast . Hence, s(\scrA ) \rightarrow maxx\in \=\Omega \lambda (x) as
max1\leq i\leq m\{ di\} \rightarrow 0. The proof is completed.

Next we investigate the effect of dispersal ranges. Set J\sigma i
(x) = 1

\sigma n
i
Ji(

x
\sigma i
) and

denote \scrA \sigma the corresponding operator replacing Ji by J\sigma i
and di by di

\sigma 
mi
i

for all

1\leq i\leq m in the definition of \scrA , where \sigma i > 0 is the dispersal range and mi > 0 is the
cost parameter (see Hutson et al. [15]). Motivated by Shen and Vo [32] and Vo [43],
we have the following results.

Theorem 4.2. Suppose that Ji is compactly supported and s(\scrA \sigma ) is the principal
eigenvalue of \scrA \sigma . Then the following statements hold:

(i) s(\scrA \sigma )\rightarrow maxx\in \=\Omega \lambda (x) as min1\leq i\leq m\{ \sigma i\} \rightarrow +\infty for mi \geq 0 and 1\leq i\leq m.
(ii) If (A2) holds, Ji is symmetric with respect to each component, and aij \in 

C4,0(\=\Omega \times [0,1]) for all 1\leq i, j \leq m, then s(\scrA \sigma )\rightarrow maxx\in \=\Omega \lambda (x) as max1\leq i\leq m
\{ \sigma i\} \rightarrow 0 for mi \in [0,2) and 1\leq i\leq m.

Proof. (i) We derive from [22, Lemma 2.2] that s(\scrA \sigma )\geq max\=\Omega \alpha \sigma (x), where \alpha \sigma (x)
is the principal eigenvalue determined in Lemma 2.8 with A(x, t) replaced by
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4066 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

A(x, t) + diag

\biggl( 
 - d1
\sigma m1
1

\int 
\Omega 

J\sigma 1(x - y)dy, . . . , - dm
\sigma mm
m

\int 
\Omega 

J\sigma m(x - y)dy

\biggr) 
,

which implies that

lim inf
min

1\leq i\leq m
\{ \sigma i\} \rightarrow +\infty 

s(\scrA \sigma )\geq max
x\in \=\Omega 

\lambda (x).

It suffices to show that

limsup
min

1\leq i\leq m
\{ \sigma i\} \rightarrow +\infty 

s(\scrA \sigma )\leq max
x\in \=\Omega 

\lambda (x).

We first assume that

aij(x, t)> 0 for all (x, t)\in \=\Omega \times \BbbR and i \not = j.(4.14)

It follows from [3, Theorem 1.4] that there exists \phi \in \scrX ++ satisfying

 - \omega \partial t\phi (x, t) +A(x, t)\phi (x, t) = \lambda (x)\phi (x, t), (x, t)\in \=\Omega \times [0,1].

Since \phi (x, t)\in \scrX ++ and\bigm\| \bigm\| \bigm\| \bigm\| di
\sigma mi
i

\int 
\Omega 

J\sigma i
(x - y)(\phi i(y, t) - \phi i(x, t))dy

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (\Omega \times (0,1))

\rightarrow 0 as min
1\leq i\leq m

\{ \sigma i\} \rightarrow +\infty ,

for any \varepsilon > 0, there exists \sigma 0 > 0 such that for all min1\leq i\leq m\{ \sigma i\} \geq \sigma 0,

\omega \partial t\phi i(x, t) - 
di
\sigma mi
i

\int 
\Omega 

J\sigma i
(x - y)(\phi i(y, t) - \phi i(x, t))dy

 - 
m\sum 
j=1

aij(x, t)\phi j(x, t) +

\biggl( 
max
x\in \=\Omega 

\lambda (x) + \varepsilon 

\biggr) 
\phi i(x, t)

= - di
\sigma mi
i

\int 
\Omega 

J\sigma i
(x - y)(\phi i(y, t) - \phi i(x, t))dy - \lambda (x)\phi (x, t)

+

\biggl( 
max
x\in \=\Omega 

\lambda (x) + \varepsilon 

\biggr) 
\phi i(x, t)

\geq  - di
\sigma mi
i

\int 
\Omega 

J\sigma i
(x - y)(\phi i(y, t) - \phi i(x, t))dy+ \varepsilon \phi i(x, t)

\geq 0.

By the definition of \lambda \prime p(\scrA \sigma ), we have s(\scrA \sigma ) = \lambda \prime p(\scrA \sigma )\leq (maxx\in \=\Omega \lambda (x) + \varepsilon ). Hence,

limsup
min

1\leq i\leq m
\{ \sigma i\} \rightarrow +\infty 

s(\scrA \sigma )\leq max
x\in \=\Omega 

\lambda (x).

By using the same argument as the proof of Theorem 4.1(ii), we can remove the extra
assumption (4.14).

(ii) Since aij \in C4,0(\=\Omega \times [0,1]), we have \lambda (x) \in C4(\=\Omega ) and the corresponding
eigenfunction \phi (x, t) \in C4,0(\=\Omega \times [0,1],\BbbR m). Normalize \phi by \| \phi \| \scrX = 1. Then for any
\varepsilon > 0,
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4067

\omega \partial t\phi i(x, t) - 
di
\sigma mi
i

\int 
\Omega 

J\sigma i
(x - y)(\phi i(y, t) - \phi i(x, t))dy

 - 
m\sum 
j=1

aij(x, t)\phi j(x, t) +

\biggl( 
max
x\in \=\Omega 

\lambda (x) + \varepsilon 

\biggr) 
\phi i(x, t)

= - di
\sigma mi
i

\int 
\Omega 

J\sigma i(x - y)(\phi i(y, t) - \phi i(x, t))dy - \lambda (x)\phi i(x, t)

+

\biggl( 
max
x\in \=\Omega 

\lambda (x) + \varepsilon 

\biggr) 
\phi i(x, t)

\geq  - di
\sigma mi
i

\int 
\Omega 

J\sigma i
(x - y)(\phi i(y, t) - \phi i(x, t))dy+ \varepsilon \phi i(x, t)

= - di
\sigma mi
i

\int 
\Omega  - x
\sigma i

Ji(z)(\phi i(x+ \sigma iz, t) - \phi i(x, t))dz + \varepsilon \phi i(x, t).(4.15)

Since Ji is compactly supported, there exists \sigma \ast > 0 such that suppJi \subset \Omega  - x
\sigma i

for all
\sigma i \leq \sigma \ast and 1 \leq i \leq m. Thus, by Taylor's expansion and the symmetry of Ji, there
holds

di
\sigma mi
i

\int 
\Omega  - x
\sigma i

Ji(z)(\phi i(x+ \sigma iz, t) - \phi i(x, t))dz

=
di
\sigma mi
i

\int 
\BbbR n

Ji(z)(\phi i(x+ \sigma iz, t) - \phi i(x, t))dz

=
di
\sigma mi
i

\int 
\BbbR n

Ji(z)

\biggl[ 
D\phi i(x, t)(\sigma iz) +

1

2
(\sigma iz)

TD2\phi i(x, t)(\sigma iz) + o
\bigl( 
\sigma 2
i

\bigr) \biggr] 
dz

=
di\sigma 

2 - mi
i

2

\int 
\BbbR n

Ji(z)z
TD2\phi i(x, t)zdz + o

\bigl( 
\sigma 2 - mi
i

\bigr) 
.(4.16)

Combining (4.15) with (4.16) yields

 - \scrA \sigma [\phi ](x, t) +

\biggl( 
max
x\in \=\Omega 

\lambda (x) + \varepsilon 

\biggr) 
\phi (x, t)\geq 0 for all max

1\leq i\leq m
\sigma i \leq \sigma \ast .

By the definition of \lambda \prime p(\scrA \sigma ), we have

s(\scrA \sigma ) = \lambda \prime p(\scrA \sigma )\leq max
x\in \=\Omega 

\lambda (x) + \varepsilon .

Then it implies that

limsup
max

1\leq i\leq m
\sigma i\rightarrow 0

s(\scrA \sigma )\leq max
x\in \=\Omega 

\lambda (x).

It suffices to show that

lim inf
max

1\leq i\leq m
\sigma i\rightarrow 0

s(\scrA \sigma )\geq max
x\in \=\Omega 

\lambda (x).

For any \epsilon > 0, there exists an open ball B\epsilon \subset \Omega of radius \epsilon such that \lambda (x) + \epsilon >
max\=\Omega \lambda (x) in B\epsilon . Let \~\phi \epsilon \in C4,1 (\BbbR n \times \BbbR ,\BbbR m) be nonnegative and 1-periodic in t and
satisfy

\~\phi \epsilon = \phi in \=B\epsilon \times \BbbR , \~\phi \epsilon = 0 in (\BbbR n\setminus B2\epsilon )\times \BbbR , and sup
(x,t)\in \BbbR n\times \BbbR 

| \~\phi \epsilon (x, t)| \leq \| \phi \| \scrX = 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

3/
24

 to
 1

08
.8

3.
28

.2
10

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



4068 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

Let \~\lambda p(\scrA \scrD 
\sigma ) be the generalized principal eigenvalue of \scrA \scrD 

\sigma , where \scrA \scrD 
\sigma is defined by

\scrA \scrD 
\sigma [u](x, t) := - \omega \partial tu(x, t) +\scrO \scrK \scrD [u](x, t) - \scrO u(x, t) +A(x, t)u(x, t)

with \scrO =diag( d1
\sigma 
m1
1

, . . . , dm
\sigma mm
m

) and

\scrK \scrD [u](x, t) =

\biggl( \int 
\scrD 
J\sigma 1

(x - y)u1(y, t)dy, . . . ,

\int 
\scrD 
J\sigma m

(x - y)um(y, t)dy

\biggr) 
.

Then we have for (x, t)\in \=B\epsilon \times \BbbR that

\omega \partial t\phi i(x, t) - 
di
\sigma mi
i

\biggl[ \int 
B\epsilon 

J\sigma i
(x - y)\phi i(y, t)dy - \phi i(x, t)

\biggr] 
 - 

m\sum 
j=1

aij(x, t)\phi j(x, t) +

\biggl( 
max
x\in \=\Omega 

\lambda (x) - \epsilon  - 1

| ln \epsilon | 

\biggr) 
\phi i(x, t)

= - di
\sigma mi
i

\biggl[ \int 
B\epsilon 

J\sigma i
(x - y)\phi i(y, t)dy - \phi i(x, t)

\biggr] 
+

\biggl( 
 - \lambda (x) +max

x\in \=\Omega 
\lambda (x) - \epsilon  - 1

| ln \epsilon | 

\biggr) 
\phi i(x, t)

\leq  - di
\sigma mi
i

\biggl[ \int 
B\epsilon 

J\sigma i
(x - y)\phi i(y, t)dy - \phi i(x, t)

\biggr] 
 - 1

| ln \epsilon | 
\phi i(x, t)

= - di
\sigma mi
i

\Biggl[ \int 
\BbbR n

J\sigma i
(x - y)\~\phi \epsilon i(y, t)dy - \~\phi \epsilon i(x, t) - 

\int 
B2\epsilon \setminus B\epsilon 

J\sigma i
(x - y)\~\phi \epsilon i(y, t)dy

\Biggr] 
 - 1

| ln \epsilon | 
\phi i(x, t).

Set \sigma = max1\leq i\leq m \sigma i and m
\ast = max1\leq i\leq mmi. Now following a similar argument as

in Shen and Vo [32, Theorem D] and choosing \epsilon = \sigma k and k = m\ast +2n
n , we have for

0<\sigma \ll 1 and (x, t)\in \=B\sigma k \times \BbbR that

\omega \partial t\phi i(x, t) - 
di
\sigma mi
i

\Biggl[ \int 
B

\sigma k

J\sigma i(x - y)\phi i(y, t)dy - \phi i(x, t)

\Biggr] 

 - 
m\sum 
j=1

aij(x, t)\phi j(x, t) +

\biggl( 
max
x\in \=\Omega 

\lambda (x) - \sigma k  - 1

| ln (\sigma k) | 

\biggr) 
\phi i(x, t)\leq 0.

Then by the definition of \~\lambda p(\scrA 
B

\sigma k
\sigma ), we have

\~\lambda p

\Bigl( 
\scrA B

\sigma k
\sigma 

\Bigr) 
\geq max

x\in \=\Omega 
\lambda (x) - \sigma k  - 1

| ln (\sigma k) | 
.

It is easy to check that \~\lambda p
\bigl( 
\scrA \Omega 
\sigma 

\bigr) 
\geq \~\lambda p(\scrA 

B
\sigma k

\sigma ) and thus

\~\lambda p
\bigl( 
\scrA \Omega 
\sigma 

\bigr) 
\geq max

x\in \=\Omega 
\lambda (x) - \sigma k  - 1

| ln (\sigma k) | 
.(4.17)
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4069

Set

\~aii(x, t) = aii(x, t) +
di
\sigma mi
i

 - di
\sigma mi
i

\int 
\Omega  - x
\sigma i

Ji(z)dz.

It is obvious to see that
\int 

\Omega  - x
\sigma i

Ji(z)dz = 1 for a sufficiently small \sigma i, which implies

that lim\sigma i\rightarrow 0 \| \~aii  - aii\| C(\=\Omega \times [0,1]) = 0. We derive from Proposition 3.4 that

\~\lambda p

\Bigl( 
\~\scrA \Omega 
\sigma 

\Bigr) 
\geq \~\lambda p

\bigl( 
\scrA \Omega 
\sigma 

\bigr) 
+ min

1\leq i\leq m

\biggl\{ 
min

\=\Omega \times [0,1]
[\~aii(x, t) - aii(x, t)]

\biggr\} 
,(4.18)

where \~\scrA \Omega 
\sigma is defined by replacing aii(x, t) by \~aii(x, t) in the definition of \scrA \Omega 

\sigma . By virtue
of (4.17) and (4.18), we obtain

lim inf
max

1\leq i\leq m
\sigma i\rightarrow 0

s(\scrA \sigma ) = lim inf
max

1\leq i\leq m
\sigma i\rightarrow 0

\~\lambda p

\Bigl( 
\~\scrA \Omega 
\sigma 

\Bigr) 
\geq max

x\in \=\Omega 
\lambda (x).

The proof is completed.

5. An application. In this section, we apply our theory to study the following
epidemic model [8, 9, 45, 14, 21]:

\Biggl\{ 
\omega \partial tu= d1

\int 
\Omega 
J1(x - y)(u(y, t) - u(x, t))dy - a(x, t)u+H(x, t, v), (x, t)\in \=\Omega \times \BbbR ,

\omega \partial tv= d2
\int 
\Omega 
J2(x - y)(v(y, t) - v(x, t))dy - b(x, t)v+G(x, t, u), (x, t)\in \=\Omega \times \BbbR ,

(5.1)

where u(x, t) and v(x, t) denote the spatial density of the bacterial population and the
infective human population at location x in the habit region and time t, respectively;
the positive constant \omega is the frequency; positive constants d1 and d2 are the dispersal
coefficients; a(x, t) and b(x, t) denote the unit natural death rates of bacteria and
infective human population, respectively; the nonlinearity H(x, t, v(x, t)) means the
growth rate of bacteria caused by infective humans; and G(x, t, u(x, t)) stands for the
infection rate of the human population under the assumption that the total susceptible
human population is constant during the evolution of epidemic. Assume that the
kernel functions Ji satisfy

(K) Ji \in C(\BbbR n), Ji(0)> 0, Ji(x)\geq 0, Ji( - x) = Ji(x),
\int 
\BbbR n Ji(x)dx= 1 for i= 1,2.

Functions a(x, t), b(x, t), H(x, t, z), and G(x, t, z) satisfy
(F) a(x, t) and b(x, t) are positive continuous functions on \=\Omega \times \BbbR and a(x, t+1) =

a(x, t), b(x, t + 1) = b(x, t) for all \=\Omega \times \BbbR . H,G \in C0,0,2(\=\Omega \times \BbbR \times [0,+\infty )),

H(x, t,0) = G(x, t,0) = 0 for all (x, t) \in \=\Omega \times \BbbR and \partial G(x,t,z)
\partial z , \partial H(x,t,z)

\partial z > 0,
H(x, t+ 1, z) =H(x, t, z), G(x, t+ 1, z) = G(x, t, z) for all (x, t, z) \in \=\Omega \times \BbbR \times 
[0,+\infty ). There exists a constant M > 0 such that M = (M,M) is an upper

solution of (5.1); \partial 
2G(x,t,z)
\partial z2 , \partial 

2H(x,t,z)
\partial z2 < 0 for all (x, t, z)\in \=\Omega \times \BbbR \times [0,+\infty ).

We aim to investigate the impacts of dispersal rates, frequency, and dispersal
ranges on the basic reproduction number and positive periodic solutions. Now we
choose m= 2. It then follows that X =C(\=\Omega ,\BbbR 2),

X+ =
\bigl\{ 
u\in C(\=\Omega ,\BbbR 2)| u(x)\in (\BbbR 2)+, x\in \=\Omega 

\bigr\} 
,

\scrX =
\bigl\{ 
u\in C(\=\Omega \times \BbbR ,\BbbR 2)| u(x, t+ 1) = u(x, t), (x, t)\in \=\Omega \times \BbbR 

\bigr\} 
.
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4070 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

Define

C(x, t) :=

\biggl( 
 - a(x, t) \partial H

\partial z (x, t,0)
\partial G
\partial z (x, t,0)  - b(x, t)

\biggr) 
,

\^C(x) :=

\Biggl( 
 - 
\int 1

0
a(x, t)dt

\int 1

0
\partial H
\partial z (x, t,0)dt\int 1

0
\partial G
\partial z (x, t,0)dt  - 

\int 1

0
b(x, t)dt

\Biggr) 
,

\=C(t) :=

\Biggl( 
 - 1

| \Omega | 
\int 
\Omega 
a(x, t)dx 1

| \Omega | 
\int 
\Omega 
\partial H
\partial z (x, t,0)dx

1
| \Omega | 
\int 
\Omega 
\partial G
\partial z (x, t,0)dx  - 1

| \Omega | 
\int 
\Omega 
b(x, t)dx

\Biggr) 
,

F (x, t) :=

\biggl( 
0 0

\partial G
\partial z (x, t,0) 0

\biggr) 
, \^F (x) :=

\biggl( 
0 0\int 1

0
\partial G
\partial z (x, t,0)dt 0

\biggr) 
,

\=F (t) :=

\biggl( 
0 0

1
| \Omega | 
\int 
\Omega 
\partial G
\partial z (x, t,0)dx 0

\biggr) 
,

A [u](x, t) := - \omega \partial tu(x, t) + d\scrK [u](x, t) - d\scrJ [u](x, t) +C(x, t)u(x, t), u\in \scrX ,
B[u](x, t) := - \omega \partial tu(x, t) + d\scrK [u](x, t) - d\scrJ [u](x, t)

+ (C(x, t) - F (x, t))u(x, t), u\in \scrX ,
L [u](x) := d\scrK [u](x) - d\scrJ [u](x) + ( \^C(x) - \^F (x))u(x), u\in X,
P(t)[u](x) := d\scrK [u](x) - d\scrJ [u](x) + (C(x, t) - F (x, t))u(x), u\in X,
C [u](x, t) := - \omega \partial tu(x, t) - d\scrJ [u](x, t) + (C(x, t) - F (x, t))u(x, t), u\in \scrX ,
D [u](x, t) := - \omega \partial tu(x, t) + (C(x, t) - F (x, t))u(x, t), u\in \scrX ,
\=D [u](x, t) := - \omega \partial tu(x, t) + ( \=C(t) - \=F (t))u(x, t), u\in \scrX ,
F [u](x, t) := F (x, t)u(x, t), u\in \scrX ,
\^F [u](x) := \^F (x)u(x), u\in X,
\=F [u](x, t) := \=F (t)u(x, t), u\in \scrX .

Let \{ T (t, s) | t\geq s\} be the evolution family on X associated with B.

Proposition 5.1. B is a resolvent positive operator on \scrX and s(B)< 0.

Proof. We know that T (t, s) is a positive operator in the sense that T (t, s)X+ \subset 
X+ for all t\geq s. It follows from [41, Theorem 3.12] that B is resolvent positive. It is
clear that s(C )< 0. Suppose for the contrary that s(B)\geq 0. Then by Theorem 2.13,
s(B)> s(C ) implies that s(B) is the principal eigenvalue of B with the corresponding
eigenfunction \varphi ; that is, (s(B),\varphi ) satisfies

\left\{     
 - \omega \partial t\varphi 1 + d1

\int 
\Omega 
J1(x - y)(\varphi 1(y, t) - \varphi 1(x, t))dy - a(x, t)\varphi 1 +

\partial H
\partial z (x, t,0)\varphi 2

= s(B)\varphi 1,

 - \omega \partial t\varphi 2 + d2
\int 
\Omega 
J2(x - y)(\varphi 2(y, t) - \varphi 2(x, t))dy - b(x, t)\varphi 2 = s(B)\varphi 2.

(5.2)

Integrating (5.2) over \Omega \times (0,1) yields\left\{     
 - 
\int 1

0

\int 
\Omega 
a(x, t)\varphi 1(x, t)dxdt+

\int 1

0

\int 
\Omega 
\partial H
\partial z (x, t,0)\varphi 2(x, t)dxdt

= s(B)
\int 1

0

\int 
\Omega 
\varphi 1(x, t)dxdt,

 - 
\int 1

0

\int 
\Omega 
b(x, t)\varphi 2(x, t)dxdt= s(B)

\int 1

0

\int 
\Omega 
\varphi 2(x, t)dxdt,

which implies that s(B) < 0 due to \varphi \not \equiv 0. A contradiction occurs. Thus, s(B) < 0.
The proof is completed.
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4071

Define

N [\phi ](s) :=

\int +\infty 

0

F (\cdot , s)T (s, s - t)\phi (\cdot , s - t)dt, \phi \in \scrX .

Suppose that \phi (x, t) is the density distribution of infected individuals at the spatial
location x \in \Omega and time t. Then F (x, s)T (s, s  - t)\phi (x, s  - t) is the distribution of
individuals newly infected at time s by those infected individuals who were introduced
at time s  - t. Inspired by the ideas of next generation operators (see [12, 42, 44]),
define the spectral radius of N

R0 = r(N )

as the basic reproduction number of system (5.1).
In order to investigate the impact of dispersal range, we set J\sigma i

(x) = 1
\sigma n
i
Ji(

x
\sigma i
)

and denote B\sigma and C\sigma the corresponding operator replacing Ji by J\sigma i
and di by

di
\sigma 
mi
i

for i = 1,2 in the definition of B and C , respectively, where \sigma i > 0 is the dispersal
range and mi > 0 is the cost parameter. Similar to the definition of R0, we define

R\sigma 
0 = r(N\sigma ),

where

N\sigma [\phi ](s) :=

\int +\infty 

0

F (\cdot , s)T\sigma (s, s - t)\phi (\cdot , s - t)dt, \phi \in \scrX ,

with T\sigma (t, s) being the evolution operator associated with B\sigma .

Theorem 5.2. The following statements hold:
(i) R0  - 1 has the same sign as s(A ) = s (B +F ).
(ii) If R0 > 0, then \mu =R0 is the unique solution of s(B + 1

\mu F ) = 0.

Proof. We derive from Proposition 5.1 that B is resolvent positive and s(B)< 0.
Then [41, Theorem 3.12] gives

(\lambda I  - B) - 1\phi =

\int +\infty 

0

e - \lambda tT (s, s - t)\phi (\cdot , s - t)dt for any \lambda > s(B), \phi \in \scrX .(5.3)

Choosing \lambda = 0 in (5.3) yields

 - B - 1\phi =

\int +\infty 

0

T (s, s - t)\phi (\cdot , s - t)dt for all \phi \in \scrX .

Then we have N = - FB - 1\phi . By virtue of Proposition 2.10, we know that B+ 1
\mu F

is resolvent positive for any \mu > 0. It follows from [41, Theorem 3.5] that s(A ) has
the same sign as r( - FB - 1) - 1 = R0  - 1. If r( - FB - 1) = R0 > 0, we derive from
[46, Lemma 2.5(ii)] that \mu =R0 is the unique solution of s(B + 1

\mu F ) = 0. The proof
is completed.

Remark 5.3. Proposition 5.1 also holds for B\sigma and Theorem 5.2 also holds for
R\sigma 

0 .

Next we study the effects of small and large dispersal rates, frequency, and dis-
persal ranges. Set

P := \{ u\in C(\BbbR ,\BbbR 2) | u(t) = u(t+ 1), t\in \BbbR \} .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

3/
24

 to
 1

08
.8

3.
28

.2
10

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



4072 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

For each x\in \=\Omega , let \{ \Gamma x(t, s) | t\geq s\} be the evolution family on \BbbR 2 of\Biggl\{ 
du
dt = - a(x, t)u+ \partial H

\partial z (x, t,0)v, t\geq s,
dv
dt = - b(x, t)v, t\geq s.

(5.4)

We use \{ \=\Gamma (t, s) | t\geq s\} to denote the evolution family on \BbbR 2 of\Biggl\{ 
du
dt = - \=a(t)u+ 1

| \Omega | 
\int 
\Omega 
\partial H
\partial z (x, t,0)dxv, t\geq s,

dv
dt = - \=b(t)v, t\geq s.

(5.5)

Let \{ \Phi (t, s) | t\geq s\} and \{ \=\Phi (t, s) | t\geq s\} be the evolution families on X of\Biggl\{ 
\partial u
\partial t = - a(x, t)u+ \partial H

\partial z (x, t,0)v, t\geq s,
\partial v
\partial t = - b(x, t)v, t\geq s,

and \Biggl\{ 
\partial u
\partial t = - \=a(t)u+ 1

| \Omega | 
\int 
\Omega 
\partial H
\partial z (x, t,0)dxv, t\geq s,

\partial v
\partial t = - \=b(t)v, t\geq s,

respectively.
Let \{ \Phi d(t)\} t\geq 0 be the semigroup generated by L . We define a series of bounded

linear operators \scrQ : \scrX \rightarrow \scrX , \=\scrQ : \scrX \rightarrow \scrX , Qx : P \rightarrow P, \=Q : P \rightarrow P, and \^\scrQ :X \rightarrow X
by

\scrQ [u](s) :=

\int +\infty 

0

F (x, s)\Phi (s, s - t)u(\cdot , s - t)dt, s\in \BbbR ,u\in \scrX ,

\=\scrQ [u](s) :=

\int +\infty 

0

\=F (s)\=\Phi (s, s - t)u(\cdot , s - t)dt, s\in \BbbR ,u\in \scrX ,

Qx[u](s) :=

\int +\infty 

0

F (x, s)\Gamma x(s, s - t)u(s - t)dt, s\in \BbbR ,u\in P,

\=Q[u](s) :=

\int +\infty 

0

\=F (s)\=\Gamma (s, s - t)u(s - t)dt, s\in \BbbR ,u\in P,

\^\scrQ [u](x) :=

\int +\infty 

0

\^F (x)\Phi d(t)udt, u\in X.

Let us define R0 := r(\scrQ ), \=R0 := r( \=\scrQ ), \scrR 0(x) := r(Qx) for any x\in \=\Omega , \=\scrR 0 := r( \=Q), and
\^\scrR 0 := r( \^\scrQ ). In the following, we always suppose that s(B\sigma +

1
\mu F )> s(C\sigma +

1
\mu F ) for

any \mu > 0. Then s(B\sigma +
1
\mu F ) is the principal eigenvalue of B\sigma +

1
\mu F .

Theorem 5.4. The following statements hold:
(i) R0 \rightarrow maxx\in \=\Omega \scrR 0(x) as max\{ d1, d2\} \rightarrow 0.
(ii) R0 \rightarrow \=\scrR 0 as min\{ d1, d2\} \rightarrow +\infty .
(iii) If \partial H

\partial z (x, t,0),
\partial G
\partial z (x, t,0) \in C0,1(\=\Omega \times \BbbR ) and s(\scrP \mu (t)) is the principal eigen-

value of \scrP \mu (t) for t \in [0,1], then R0 \rightarrow \scrR \ast 
0 as \omega \rightarrow 0, where \scrR \ast 

0 satisfies\int 1

0
s
\bigl( 
\scrP \scrR \ast 

0
(t)
\bigr) 
dt= 0 and \scrP \mu (t) is defined by

\scrP \mu (t)[u](x) := d\scrK [u](x) - d\scrJ [u](x) +

\biggl( 
C(x, t) - F (x, t) +

1

\mu 
F (x, t)

\biggr) 
u(x).

(iv) If \partial H\partial z (x, t,0) =
\partial G
\partial z (x, t,0) for all (x, t)\in \=\Omega \times \BbbR , then R0 \rightarrow \^\scrR 0 as \omega \rightarrow +\infty .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

3/
24

 to
 1

08
.8

3.
28

.2
10

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4073

(v) If Ji is compactly supported and symmetric with respect to each component,
\partial H
\partial z (x, t,0),

\partial G
\partial z (x, t,0) \in C4,0(\=\Omega \times [0,1]), and mi \in [0,2) for i = 1,2, then

R\sigma 
0 \rightarrow maxx\in \=\Omega \scrR 0(x) as max\{ \sigma 1, \sigma 2\} \rightarrow 0.

(vi) If Ji is compactly supported and mi \in [0,+\infty ) for i = 1,2, then R\sigma 
0 \rightarrow 

maxx\in \=\Omega \scrR 0(x) as min\{ \sigma 1, \sigma 2\} \rightarrow +\infty .

Proof. Since s(B+ 1
\mu F )> s(C + 1

\mu F ) for any \mu > 0, s(B+ 1
\mu F ) is the principal

eigenvalue of B+ 1
\mu F due to Theorem 2.13. It follows from Theorem 4.1 that s(B+

1
\mu F ) \rightarrow s( \=D + 1

\mu 
\=F ) as min\{ d1, d2\} \rightarrow +\infty and s(B + 1

\mu F ) \rightarrow maxx\in \=\Omega \lambda 
\ast (x) as

max\{ d1, d2\} \rightarrow 0, where \lambda \ast (x) is the principal eigenvalue of the following eigenvalue
problem: \Biggl\{ 

 - \omega d\phi (t)
dt +

\Bigl( 
C(x, t) - F (x, t) + 1

\mu F (x, t)
\Bigr) 
\phi (t) = \lambda \phi (t), \phi (t)\in \BbbR 2,

\phi (t+ 1) = \phi (t).
(5.6)

We derive from Theorem 3.6 that s(B + 1
\mu F ) \rightarrow s(L + 1

\mu 
\^F ) as \omega \rightarrow +\infty for any

\mu > 0. We conclude from Proposition 2.9 that s(D + 1
\mu F ) = maxx\in \=\Omega \lambda 

\ast (x) for any

\mu > 0. Note that B + 1
\mu F is resolvent positive for any \mu > 0. It follows from [46,

Theorem 2.6] that

lim
min\{ d1,d2\} \rightarrow +\infty 

R0 = lim
min\{ d1,d2\} \rightarrow +\infty 

r( - FB - 1) = r( - \=F \=D - 1),

lim
max\{ d1,d2\} \rightarrow 0

R0 = lim
max\{ d1,d2\} \rightarrow 0

r( - FB - 1) = r( - FD - 1),

and

lim
\omega \rightarrow +\infty 

R0 = lim
\omega \rightarrow +\infty 

r( - FB - 1) = r( - \^FL  - 1),

where we use R0 = r( - FB - 1) derived in the proof of Theorem 5.2. By the same
arguments as the proof of Theorem 5.2, we have \=R0 = r( - \=F \=D - 1), R0 = r( - FD - 1),
and \^\scrR 0 = r( - \^FL  - 1). We derive from [46, Lemma 4.2] that \=R0 = \=\scrR 0 and R0 =

maxx\in \=\Omega \scrR 0(x). By Theorem 3.6(i), s(B+ 1
\mu F )\rightarrow 

\int 1

0
\scrP \mu (t)dt as \omega \rightarrow 0. Together with

Theorem 5.2, we can derive (iii). (v) and (vi) can be proved by the same arguments
as above. The proof is completed.

Now we focus on positive periodic solutions of (5.1).

Theorem 5.5. Suppose that R0 > 1. Then (5.1) admits a unique bounded positive
periodic solution u\ast . Moreover, for any u0 \in X+ \setminus \{ 0\} with u0 \leq M = (M,M), the
solution u(\cdot , t;u0) of (5.1) with initial data u0 satisfies

\| u(\cdot , t;u0) - u\ast (\cdot , t)\| X \rightarrow 0 as t\rightarrow +\infty .

Proof. Since R0 > 1, we derive from Theorem 5.2(i) that s(A ) > 0. Since s(A )
is the principal eigenvalue of A , there exists \varphi \in \scrX ++ which satisfies

\left\{         
 - \omega \partial t\varphi 1 + d1

\int 
\Omega 
J1(x - y)(\varphi 1(y, t) - \varphi 1(x, t))dy - a(x, t)\varphi 1 +

\partial H
\partial z (x, t,0)\varphi 2

= s(A )\varphi 1,

 - \omega \partial t\varphi 2 + d2
\int 
\Omega 
J2(x - y)(\varphi 2(y, t) - \varphi 2(x, t))dy+

\partial G
\partial z (x, t,0)\varphi 1  - b(x, t)\varphi 2

= s(A )\varphi 2.

(5.7)
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4074 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

Set u= (u1, u2) = (\delta \varphi 1, \delta \varphi 2) for some positive constant \delta . Then we have

\omega \partial tu1  - d1

\int 
\Omega 

J1(x - y)(u1(y, t) - u1(x, t))dy+ a(x, t)u1(x, t) - H(x, t, u2(x, t))

=
\partial H

\partial z
(x, t,0)u2(x, t) - s(A )u1(x, t) - H(x, t, u2(x, t))

\leq  - \delta s(A )\varphi 1(x, t) +

\bigm| \bigm| \bigm| \bigm| \partial 2H\partial z2 (x, t, \^u2)

\bigm| \bigm| \bigm| \bigm| (\delta \varphi 2(x, t))
2

\leq 0,

provided \delta > 0 small enough and here \^u2 is between 0 and u2(x, t). Similarly, if \delta > 0
small enough, we get

\omega \partial tu2  - d2

\int 
\Omega 

J2(x - y)(u2(y, t) - u2(x, t))dy+ b(x, t)u2(x, t) - G(x, t, u1(x, t))\leq 0.

As a result, u is a lower solution of (5.1). By assumption (F), M = (M,M) is an
upper solution of (5.1). The desired conclusion follows from the standard argument
and one can see the proof of [4, Theorem 1.1].

For each x\in \=\Omega , let \rho (x) be the principal eigenvalue of\Biggl\{ 
\omega du(t)

dt =C(x, t)u(t) - \lambda u(t), t\in \BbbR ,
u(t+ 1) = u(t), t\in \BbbR .

Consider \Biggl\{ 
\omega du

dt = - a(x, t)u(t) +H(x, t, v(t)),

\omega dv
dt = - b(x, t)v(t) +G(x, t, u(t)).

(5.8)

By [48, Theorem 3.1.2], we have the following lemma.

Lemma 5.6. Assume that minx\in \=\Omega \rho (x) > 0. Then system (5.8) admits a unique
positive 1-periodic solution, denoted by w(x, t). Moreover, w(x, t) is continuous on
\=\Omega \times \BbbR .

Lemma 5.7. If \=\scrR 0 > 1, then there exists d0 > 0 such that (5.1) admits a unique
positive 1-periodic solution (u, v) for all min\{ d1, d2\} >d0. In addition,

lim
min\{ d1,d2\} \rightarrow +\infty 

(\=u(t), \=v(t)) = (w\ast 
1(t),w

\ast 
2(t)) uniformly on \BbbR ,

where (w\ast 
1(t),w

\ast 
2(t)) is the unique positive 1-periodic solution of\Biggl\{ 
\omega du

dt = - 1
| \Omega | 
\int 
\Omega 
a(x, t)dxu(t) + 1

| \Omega | 
\int 
\Omega 
H(x, t, v(t))dx,

\omega dv
dt = - 1

| \Omega | 
\int 
\Omega 
b(x, t)dxv(t) + 1

| \Omega | 
\int 
\Omega 
G(x, t, u(t))dx.

(5.9)

Proof. Since \=\scrR 0 > 1, we derive from Theorem 5.4(ii) and Theorem 5.5 that there
exists d0 > 0 such that (5.1) admits a unique positive 1-periodic solution (u, v) for
all min\{ d1, d2\} > d0. It follows from [48, Theorem 3.1.2] that (5.9) admits a unique
positive 1-periodic solution (w\ast 

1(t),w
\ast 
2(t)). Integrating (5.1) over \Omega yields\Biggl\{ 

\omega d\=u(t)
dt = - 1

| \Omega | 
\int 
\Omega 
a(x, t)u(x, t)dx+ 1

| \Omega | 
\int 
\Omega 
H(x, t, v(x, t))dx, t\in \BbbR ,

\omega d\=v(t)
dt = - 1

| \Omega | 
\int 
\Omega 
b(x, t)v(x, t)dx+ 1

| \Omega | 
\int 
\Omega 
G(x, t, u(x, t))dx, t\in \BbbR .

(5.10)
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4075

In view of assumption (F), we have

u(x, t), v(x, t)\leq M for all (x, t)\in \=\Omega \times \BbbR ,(5.11)

and there exists C0 > 0 independent of d1 and d2 such that

H(x, t, z),G(x, t, z)\leq C0 for all (x, t, z)\in \=\Omega \times \BbbR \times [0,M ].(5.12)

Thus,

\bigm| \bigm| \bigm| \bigm| d\=u(t)dt

\bigm| \bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| \bigm| d\=v(t)dt

\bigm| \bigm| \bigm| \bigm| \leq C0 +

\biggl( 
max

(x,t)\in \=\Omega \times \BbbR 
a(x, t) + max

(x,t)\in \=\Omega \times \BbbR 
b(x, t)

\biggr) 
M

\omega 
for all t\in \BbbR .

(5.13)

Integrating (5.10) from 0 to t gives

\Biggl\{ 
\omega \=u(t) - \omega \=u(0) = - 

\int t
0
\=a(s)\=u(s)ds+

\int t
0

1
| \Omega | 
\int 
\Omega 
H(x, s, \=v(s))dxds+ h1(t), t\in \BbbR ,

\omega \=v(t) - \omega \=v(0) = - 
\int t
0
\=b(s)\=v(s)ds+

\int t
0

1
| \Omega | 
\int 
\Omega 
G(x, s, \=u(s))dxds+ h2(t), t\in \BbbR ,

(5.14)

where

h1(t) = - 1

| \Omega | 

\int t

0

\int 
\Omega 

a(x, s) [u(x, s) - \=u(s)] dxds

+
1

| \Omega | 

\int t

0

\int 
\Omega 

[H(x, s, v(x, s)) - H(x, s, \=v(s))] dxds

and

h2(t) = - 1

| \Omega | 

\int t

0

\int 
\Omega 

b(x, s) [v(x, s) - \=v(s)] dxds

+
1

| \Omega | 

\int t

0

\int 
\Omega 

[G(x, s,u(x, s)) - G(x, s, \=u(s))] dxds.

Next we aim to prove that hi(t) \rightarrow 0 uniformly on [0,1] as min\{ d1, d2\} \rightarrow +\infty for
i= 1,2. Multiplying the first equation of (5.1) by u and the second equation by v and
then integrating over \Omega \times (0,1) give

d1
2

\int 1

0

\int 
\Omega 

\int 
\Omega 

J1(x - y)(u(y, t) - u(x, t))2dydxdt

= - d1
\int 1

0

\int 
\Omega 

\int 
\Omega 

J1(x - y)(u(y, t) - u(x, t))u(x, t)dydxdt

= - 
\int 1

0

\int 
\Omega 

a(x, t)u2(x, t)dxdt+

\int 1

0

\int 
\Omega 

H(x, t, v(x, t))u(x, t)dxdt

\leq | \Omega | M max
(x,t,z)\in \=\Omega \times \BbbR \times [0,M ]

H(x, t, z) :=C1
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4076 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

and

d2
2

\int 1

0

\int 
\Omega 

\int 
\Omega 

J2(x - y)(v(y, t) - v(x, t))2dydxdt

= - d2
\int 1

0

\int 
\Omega 

\int 
\Omega 

J2(x - y)(v(y, t) - v(x, t))v(x, t)dydxdt

= - 
\int 1

0

\int 
\Omega 

b(x, t)v2(x, t)dxdt+

\int 1

0

\int 
\Omega 

G(x, t, u(x, t))v(x, t)dxdt

\leq | \Omega | M max
(x,t,z)\in \=\Omega \times \BbbR \times [0,M ]

G(x, t, z) :=C2.

Set \~u(x, t) = u(x, t) - \=u(t) and \~v(x, t) = v(x, t) - \=v(t). Then we have
\int 
\Omega 
\~u(x, t)dx =\int 

\Omega 
\~v(x, t)dx= 0 for all t\in \BbbR . By [33, Formula (5.6), p. 1688], there exists C3 > 0 such

that \int 
\Omega 

\~u2(x, t)dx\leq 1

2C3

\int 
\Omega 

\int 
\Omega 

J1(x - y)(\~u(y, t) - \~u(x, t))2dydx for all d1 \gg 1

and \int 
\Omega 

\~v2(x, t)dx\leq 1

2C3

\int 
\Omega 

\int 
\Omega 

J2(x - y)(\~v(y, t) - \~v(x, t))2dydx for all d2 \gg 1.

Note that\int 
\Omega 

\int 
\Omega 

J1(x - y)(u(y, t) - u(x, t))2dydx=

\int 
\Omega 

\int 
\Omega 

J1(x - y)(\~u(y, t) - \~u(x, t))2dydx

and\int 
\Omega 

\int 
\Omega 

J2(x - y)(v(y, t) - v(x, t))2dydx=

\int 
\Omega 

\int 
\Omega 

J2(x - y)(\~v(y, t) - \~v(x, t))2dydx.

Then we have \int 1

0

\int 
\Omega 

\~u2(x, t)dxdt\leq C1

d1C3
for all d1 \gg 1

and \int 1

0

\int 
\Omega 

\~v2(x, t)dxdt\leq C2

d2C3
for all d2 \gg 1.

By the H\"older inequality, there exists C4 > 0 such that\int 1

0

\int 
\Omega 

| \~u(x, t)| dxdt\leq C4\surd 
d1

for all d1 \gg 1

and \int 1

0

\int 
\Omega 

| \~v(x, t)| dxdt\leq C4\surd 
d2

for all d2 \gg 1.

Since H,G \in C0,0,2(\=\Omega \times \BbbR \times [0,+\infty )), there exists L> 0 independent of x, t, d1, and
d2 such that

| H(x, t, v(x, t)) - H(x, t, \=v(t))| \leq L | v(x, t) - \=v(t)| for all (x, t)\in \=\Omega \times \BbbR (5.15)
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PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4077

and

| G(x, t, u(x, t)) - G(x, t, \=u(t))| \leq L | u(x, t) - \=u(t)| for all (x, t)\in \=\Omega \times \BbbR .(5.16)

A simple calculation gives for all t\in [0,1] that

| h1(t)| \leq 
1

| \Omega | 
max

(x,t)\in \=\Omega \times \BbbR 
a(x, t)

\int t

0

\int 
\Omega 

| u(x, s) - \=u(s)| dxds

+
1

| \Omega | 
L

\int t

0

\int 
\Omega 

| v(x, s) - \=v(s)| dxds

\leq 1

| \Omega | 
C4\surd 
d1

max
(x,t)\in \=\Omega \times \BbbR 

a(x, t) +
1

| \Omega | 
L
C4\surd 
d2

and

| h2(t)| \leq 
1

| \Omega | 
max

(x,t)\in \=\Omega \times \BbbR 
b(x, t)

\int t

0

\int 
\Omega 

| v(x, s) - \=v(s)| dxds

+
1

| \Omega | 
L

\int t

0

\int 
\Omega 

| u(x, s) - \=u(s)| dxds

\leq 1

| \Omega | 
C4\surd 
d2

max
(x,t)\in \=\Omega \times \BbbR 

b(x, t) +
1

| \Omega | 
L
C4\surd 
d1
,

which imply that hi(t)\rightarrow 0 uniformly on [0,1] as min\{ d1, d2\} \rightarrow +\infty for i= 1,2.
Suppose to the contrary that there exists a sequence \{ dl = (dl1 , dl2)

T \} with
min\{ dl1 , dl2\} \rightarrow +\infty as l\rightarrow +\infty such that

\| (\=ul, \=vl) - (w\ast 
1 ,w

\ast 
2)\| C([0,1],\BbbR 2) \geq \epsilon 0 for some \epsilon 0 > 0,

where (ul, vl) is the corresponding positive 1-periodic solution of (5.1) and

(\=ul(t), \=vl(t)) =

\biggl( 
1

| \Omega | 

\int 
\Omega 

ul(x, t)dx,
1

| \Omega | 

\int 
\Omega 

vl(x, t)dx

\biggr) 
.

By virtue of (5.13), we derive from the Ascoli--Arzel\`a theorem that there is a subse-
quence \{ dlk\} such that

(\=ulk , \=vlk)\rightarrow (U,V ) in C([0,1],\BbbR 2) as min\{ dlk1
, dlk2

\} \rightarrow +\infty 

and (U(0), V (0)) = (U(1), V (1)). By (5.14), (U,V ) satisfies\Biggl\{ 
\omega U(t) - \omega U(0) = - 

\int t
0
\=a(s)U(s)ds+

\int t
0

1
| \Omega | 
\int 
\Omega 
H(x, s,V (s))dxds, t\in \BbbR ,

\omega V (t) - \omega V (0) = - 
\int t
0
\=b(s)V (s)ds+

\int t
0

1
| \Omega | 
\int 
\Omega 
G(x, s,U(s))dxds, t\in \BbbR ,

which imply that (U,V ) = (w\ast 
1 ,w

\ast 
2). This is a contradiction. The proof is

completed.

Theorem 5.8. The following statements hold:
(i) If maxx\in \=\Omega \scrR 0(x) > 1, then there exists d\ast 0 > 0 such that (5.1) admits a

unique positive 1-periodic solution u for all max\{ d1, d2\} < d\ast 0. Furthermore,
if minx\in \=\Omega \rho (x)> 0, then

lim
max\{ d1,d2\} \rightarrow 0

u(x, t) =w(x, t) uniformly in (x, t)\in \=\Omega \times \BbbR ,

where w is the unique positive 1-periodic solution of (5.8).
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(ii) If \=\scrR 0 > 1, then there exists d0 > 0 such that (5.1) admits a unique positive
1-periodic solution u for all min\{ d1, d2\} >d0. In addition,

lim
min\{ d1,d2\} \rightarrow +\infty 

u(x, t) =w\ast (t) uniformly in (x, t)\in \=\Omega \times \BbbR ,

where w\ast (t) is the unique positive 1-periodic solution of (5.9).

Proof. (i) Since maxx\in \=\Omega \scrR 0(x)> 1, we derive from Theorems 5.4(i) and 5.5 that
there exists d\ast 0 > 0 such that (5.1) admits a unique positive 1-periodic solution u for
all max\{ d1, d2\} <d\ast 0. Lemma 5.6 gives the existence of the unique positive 1-periodic
solution w of (5.8). Similar to [32, Theorem C], we can prove

lim
max\{ d1,d2\} \rightarrow 0

u(x, t) =w(x, t) uniformly in (x, t)\in \=\Omega \times \BbbR .

(ii) Our argument is motivated by [46]. Set \~u(x, t) = u(x, t) - \=u(t) and \~v(x, t) =
v(x, t)  - \=v(t). In view of Lemma 5.7, it suffices to prove (\~u(x, t), \~v(x, t)) \rightarrow (0,0)
uniformly on \=\Omega \times \BbbR as min\{ d1, d2\} \rightarrow +\infty . By (5.1) and (5.10), \~u(x, t) and \~v(x, t)
satisfy

\omega \partial t\~u(x, t) =d1

\int 
\Omega 

J1(x - y)(\~u(y, t) - \~u(x, t))dy - a(x, t)u(x, t) +H(x, t, v(x, t))

+
1

| \Omega | 

\int 
\Omega 

a(x, t)u(x, t)dx - 1

| \Omega | 

\int 
\Omega 

H(x, t, v(x, t))dx

=d1

\int 
\Omega 

J1(x - y)(\~u(y, t) - \~u(x, t))dy+ g1(x, t) + g2(x, t) + g3(x, t)

and

\omega \partial t\~v(x, t) =d2

\int 
\Omega 

J2(x - y)(\~v(y, t) - \~v(x, t))dy - b(x, t)v(x, t) +G(x, t, u(x, t))

+
1

| \Omega | 

\int 
\Omega 

b(x, t)v(x, t)dx - 1

| \Omega | 

\int 
\Omega 

G(x, t, u(x, t))dx

=d2

\int 
\Omega 

J2(x - y)(\~v(y, t) - \~v(x, t))dy+ f1(x, t) + f2(x, t) + f3(x, t),

where

g1(x, t) = - a(x, t)u(x, t) + a(x, t)\=u(t) +H(x, t, v(x, t)) - H(x, t, \=v(t)),

g2(x, t) = - a(x, t)\=u(t) + 1

| \Omega | 

\int 
\Omega 

a(x, t)dx\=u(t) +H(x, t, \=v(t)) - 1

| \Omega | 

\int 
\Omega 

H(x, t, \=v(t))dx,

g3(x, t) =
1

| \Omega | 

\int 
\Omega 

a(x, t)[u(x, t) - \=u(t)]dx+
1

| \Omega | 

\int 
\Omega 

[H(x, t, \=v(t)) - H(x, t, v(x, t))]dx

and

f1(x, t) = - b(x, t)v(x, t) + b(x, t)\=v(t) +G(x, t, u(x, t)) - G(x, t, \=u(t)),

f2(x, t) = - b(x, t)\=v(t) + 1

| \Omega | 

\int 
\Omega 

b(x, t)dx\=v(t) +G(x, t, \=u(t)) - 1

| \Omega | 

\int 
\Omega 

G(x, t, \=u(t))dx,

f3(x, t) =
1

| \Omega | 

\int 
\Omega 

b(x, t)[v(x, t) - \=v(t)]dx+
1

| \Omega | 

\int 
\Omega 

[G(x, t, \=u(t)) - G(x, t, u(x, t))]dx.
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By (5.15) and (5.16), we have

| g1(x, t)| \leq | \~u(x, t)| max
(x,t)\in \=\Omega \times \BbbR 

a(x, t) +L| \~v(x, t)| ,

| f1(x, t)| \leq | \~v(x, t)| max
(x,t)\in \=\Omega \times \BbbR 

b(x, t) +L| \~u(x, t)| ,

| g3(x, t)| \leq | \Omega |  - 1
2 max
(x,t)\in \=\Omega \times \BbbR 

a(x, t)\| \~u(\cdot , t)\| L2(\Omega ) + | \Omega |  - 1
2L\| \~v(\cdot , t)\| L2(\Omega ),

| f3(x, t)| \leq | \Omega |  - 1
2 max
(x,t)\in \=\Omega \times \BbbR 

b(x, t)\| \~v(\cdot , t)\| L2(\Omega ) + | \Omega |  - 1
2L\| \~u(\cdot , t)\| L2(\Omega ).

In addition, there exists some C > 0 such that

| g2(x, t)| , | f2(x, t)| \leq C for all (x, t)\in \=\Omega \times \BbbR .

Set

Ji[\phi ](x) =

\int 
\Omega 

Ji(x - y)(\phi (y) - \phi (x))dy, \phi \in C(\=\Omega ,\BbbR ), i= 1,2.

Let \{ Ui(t)\} t\geq 0 be the semigroup generated by di
\omega Ji for i = 1,2. It follows from the

variation of constants formula that

\~u(\cdot , t) =U1(t)\~u(\cdot ,0) +
1

\omega 

\int t

0

U1(t - s)(g1 + g2 + g3)(\cdot , s)ds

and

\~v(\cdot , t) =U2(t)\~v(\cdot ,0) +
1

\omega 

\int t

0

U2(t - s)(f1 + f2 + f3)(\cdot , s)ds.

Define

\beta i := inf
u\in L2(\Omega ),

\int 
\Omega 
udx=0,u \not \equiv 0

1
2

\int 
\Omega 

\int 
\Omega 
Ji(x - y)(u(y) - u(x))2dydx\int 

\Omega 
u2(x)dx

for i= 1,2.

Note that for all t\in \BbbR ,\int 
\Omega 

\~u(x, t)dx= 0,

\int 
\Omega 

[g1(x, t) + g3(x, t)]dx= 0,

\int 
\Omega 

g2(x, t)dx= 0,\int 
\Omega 

\~v(x, t)dx= 0,

\int 
\Omega 

[f1(x, t) + f3(x, t)]dx= 0,

\int 
\Omega 

f2(x, t)dx= 0.

It follows from [1, Theorem 3.6] that

\| \~u(\cdot , t)\| L2(\Omega ) \leq e - 
d1
\omega \beta 1t\| \~u(\cdot ,0)\| L2(\Omega ) +

C

\omega 

\int t

0

e - 
d1
\omega \beta 1(t - s)ds

+
1

\omega 

\int t

0

e - 
d1
\omega \beta 1(t - s)\| (g1 + g3)(\cdot , s)\| L2(\Omega )ds

and

\| \~v(\cdot , t)\| L2(\Omega ) \leq e - 
d2
\omega \beta 2t\| \~v(\cdot ,0)\| L2(\Omega ) +

C

\omega 

\int t

0

e - 
d2
\omega \beta 2(t - s)ds

+
1

\omega 

\int t

0

e - 
d2
\omega \beta 2(t - s)\| (f1 + f3)(\cdot , s)\| L2(\Omega )ds.
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Set \beta = min\{ \beta 1, \beta 2\} , d\ast = min\{ d1, d2\} and m(t) = max\{ \| \~u(\cdot , t)\| L2(\Omega ),\| \~v(\cdot , t)\| L2(\Omega )\} .
Then

m(t)\leq e - 
d\ast 
\omega \beta tm(0) +

C

\beta d\ast 
+

\~C

\omega 

\int t

0

e - 
d\ast 
\omega \beta (t - s)m(s)ds,

where

\~C =
\Bigl( 
1 + | \Omega |  - 1

2

\Bigr) 
max

\biggl\{ 
max

(x,t)\in \=\Omega \times \BbbR 
a(x, t),L, max

(x,t)\in \=\Omega \times \BbbR 
b(x, t)

\biggr\} 
.

Choose \nu \in (0, \beta ) and define \chi (t) := e\nu 
d\ast 
\omega tm(t), \~\chi (t) := sup\{ \chi (s) | 0\leq s\leq t\} . Then we

get

\chi (t)\leq e - 
d\ast 
\omega (\beta  - \nu )tm(0) +

C

\beta d\ast 
e

d\ast 
\omega \nu t +

\~C

\beta d\ast 
\~\chi (t),

and hence,

\~\chi (t)\leq m(0) +
C

\beta d\ast 
e

d\ast 
\omega \nu t +

\~C

\beta d\ast 
\~\chi (t).(5.17)

Since d\ast \rightarrow +\infty , without loss of generality, we assume
\~C
\beta d\ast <

1
2 . We derive from (5.17)

that

m(t)\leq e - \nu 
d\ast 
\omega t \~\chi (t)\leq 2

\biggl( 
m(0)e - \nu 

d\ast 
\omega t +

C

\beta d\ast 

\biggr) 
,

which implies that limsupt\rightarrow +\infty m(t) \leq 2 C
\beta d\ast . Since m(t) is periodic in t \in \BbbR , we

have supt\in \BbbR m(t) \leq 2 C
\beta d\ast . As a result, supt\in \BbbR m(t) \rightarrow 0 as d\ast \rightarrow +\infty , implying that

m(t) \rightarrow 0 uniformly on \BbbR as d\ast \rightarrow +\infty . Set ji(x) =
\int 
\Omega 
Ji(x  - y)dy for i = 1,2. By

[1, Lemma 3.5], \beta i \leq minx\in \=\Omega ji(x). The variation of constants formula gives

\~u(\cdot , t) = \~u(\cdot ,0)e - 
d1
\omega j1(x)t

+
1

\omega 

\int t

0

e - 
d1
\omega j1(x)(t - s)

\biggl[ 
d1

\int 
\Omega 

J1(x - y)\~u(y, s)dy+ (g1 + g2 + g3)(\cdot , s)
\biggr] 
ds.

By the H\"older inequality, we have\int 
\Omega 

J1(x - y)\~u(y, s)dy\leq C\ast \| \~u(\cdot , s)\| L2(\Omega ) for some constant C\ast > 0.

As a result,

| \~u(\cdot , t)| \leq | \~u(\cdot ,0)| e - 
d1
\omega \beta 1t +

C\ast 

\beta 1
sup
t\in \BbbR 

m(t) + \=C
1

d1\beta 1
,

where constant \=C > 0 is the upper bound of g1, g2, and g3. Hence, \~u(x, t) \rightarrow 0
uniformly on \=\Omega \times \BbbR as d\ast \rightarrow +\infty . Similarly, we can prove that \~v(x, t)\rightarrow 0 uniformly
on \=\Omega \times \BbbR as d\ast \rightarrow +\infty . The proof is completed.

Now we study the effects of dispersal range and replace Ji by J\sigma i and di by
di
\sigma 
mi
i

for i= 1,2 in (5.1). By the same proof of Theorem 5.8(i), we have the following result.
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Theorem 5.9. The following statements hold:
(i) Suppose that the conditions of Theorem 5.4(v) hold. If maxx\in \=\Omega \scrR 0(x) > 1,

then there exists \sigma 0 > 0 such that (5.1) admits a unique positive 1-periodic
solution u for all max\{ \sigma 1, \sigma 2\} <\sigma 0. In addition, if minx\in \=\Omega \rho (x)> 0, then

lim
max\{ \sigma 1,\sigma 2\} \rightarrow 0

u(x, t) =w(x, t) uniformly in (x, t)\in \=\Omega \times \BbbR ,

where w is the unique positive 1-periodic solution of (5.8).
(ii) Suppose that the conditions of Theorem 5.4(vi) hold. If maxx\in \=\Omega \scrR 0(x) > 1,

then there exists \sigma 1 > 0 such that (5.1) admits a unique positive 1-periodic
solution u for all min\{ \sigma 1, \sigma 2\} >\sigma 1. In addition, if minx\in \=\Omega \rho (x)> 0, then

lim
min\{ \sigma 1,\sigma 2\} \rightarrow +\infty 

u(x, t) =w(x, t) uniformly in (x, t)\in \=\Omega \times \BbbR ,

where w is the unique positive 1-periodic solution of (5.8).
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