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Abstract. This paper is concerned with the principal spectral theory of time-periodic coopera-
tive systems with nonlocal dispersal and Neumann boundary condition. First we present a sufficient
condition for the existence of principal eigenvalues by using the theory of resolvent positive operators
with their perturbations. Then we establish the monotonicity of principal eigenvalues with respect
to the frequency and investigate the limiting properties of principal eigenvalues as the frequency
tends to zero or infinity. We also study the effects of dispersal rates and dispersal ranges on the
principal eigenvalues, and the difficulty is that principal eigenvalues of time-periodic cooperative sys-
tems with Neumann boundary conditions are not monotone with respect to the domain. Finally, we
apply our theory to a man-environment-man epidemic model and consider the impacts of dispersal
rates, frequency, and dispersal ranges on the basic reproduction number and positive time-periodic
solutions.
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1. Introduction. It is known that the principal eigenvalue of a linearized system
can be regarded as a threshold in determining the dynamics of the corresponding
nonlinear system. In this paper we study the principal spectral theory of the following
time-periodic cooperative system with nonlocal dispersal and Neumann boundary
condition:

(1.1)
woyp(z,t) = dK[p](x,t) — dT[p](x,t) + A(z, t)p(x,t) — Ap(,t), (7,t) €QAXR,
@(x’t"i_l):(p(xvt)? (x,t)EQXR,

where 2 C R" is a smooth bounded domain; w > 0 represents the frequency; ¢ =
(p1,...,0m)T; d = diag(dy,...,d,) with each d; being a positive constant; K =
diag(Kq,...,Kyn) with K; being defined by
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Kilel(e.t)= [ i@ =)oy iy, 1 <i < m
J =diag(F,. .., Jm) with J; being defined by

Tilel(z,t) = /Q Ji(x —y)dypi(z,t), 1 <i<m;

A(x,t) = (ai;(2,t))mxm With a;;(z,t+1) = a;;(x,t) for 1 <i,j <m and (x,t) € A xR.
Recall that a square matrix is said to be cooperative if its off-diagonal elements are
nonnegative. Throughout the paper, we make the following assumptions:

(J) Ji € C(R™), J;(0) >0, J;(x) >0, [, Ji(z)dz =1 for all 1 <i<m;

(A1) A(x,t) is cooperative for any (z,t) € Q x R.

It is well-known that principal eigenvalues of nonlocal dispersal operators may not
exist or more conditions may be required to ensure the existence (see, e.g., [10, 34]). To
overcome this difficulty, some studies focus on principal spectrum points or generalized
principal eigenvalues instead of principal eigenvalues (see, e.g., [6, 10, 20, 36]). On the
other hand, it is natural to find some suitable conditions for the existence of principal
eigenvalues of nonlocal dispersal equations. By using the generalized Krein—-Rutman
theorem (see, e.g., [13]), Coville [10] gave a sufficient condition for the existence
of the principal eigenvalue of nonlocal elliptic equations; Liang, Zhang, and Zhao
[22, 23] studied the eigenvalue problem associated with a linear time-periodic nonlocal
dispersal cooperative system with and without time delay, respectively. By employing
the results about perturbations of positive semigroups in Biirger [7], Rawal and Shen
[30] gave a necessary and sufficient condition for the existence of principal eigenvalues
of time-periodic nonlocal dispersal equations; Bao and Shen [5] extended some existing
results about principal eigenvalues of time-periodic nonlocal dispersal equations to
time-periodic cooperative and irreducible systems with nonlocal dispersal. However,
the condition in [5] requires irreducibility and the condition in [23] is not easy to
verify. In this paper, we use the theory of resolvent positive operators (see, e.g.,
[40, 41]) to study this problem. It should be pointed out that Kang and Ruan [16]
investigated the existence of principal eigenvalues of age-structured operators with
nonlocal dispersal by means of this method.

In addition to the existence of the principal eigenvalue of system (1.1), another
central question of interest is to investigate the dependence of principal eigenvalues
(principal spectrum points or generalized principal eigenvalues) on parameters such
as frequency, dispersal rate, and dispersal range. For time-periodic nonlocal dispersal
equations, Shen and Vo [32] investigated the effects of dispersal rates and disper-
sal ranges on principal spectrum points; Su et al. [36] considered the monotonicity
of generalized principal eigenvalues with respect to the frequency and the asymp-
totic behavior as frequency tends to zero or infinity; Vo [43] overcame the difficulty
that principal eigenvalues of operators with Neumann boundary conditions are not
monotone with respect to the domain and obtained the limiting properties of gener-
alized principal eigenvalues as the dispersal range tends to zero. To the best of our
knowledge, the dependence of principal eigenvalues of time-periodic nonlocal dispersal
systems on parameters such as frequency, dispersal rate, and dispersal range has not
been considered in the literature.

It is worth mentioning that there have been quite a few results about principal
eigenvalues for cooperative systems with local (random) dispersal. As for cooperative
elliptic systems, Sweers [38] established the existence of a unique first eigenfunction;
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Dancer [11] and Lam and Lou [18] considered the asymptotic behavior of the princi-
pal eigenvalue with small dispersal rates. As for time-periodic cooperative parabolic
systems, Antén and Lépez-Gdémez [2] showed the existence and uniqueness of the prin-
cipal eigenvalue; Bai and He [3] and Zhang and Zhao [46] analyzed the asymptotic
behavior of principal eigenvalues with small dispersal rates and large dispersal rates,
respectively. There are also some results about principal eigenvalues of time-periodic
patch models. For example, Liu, Lou, and Song [26] examined the monotonicity of
principal eigenvalues with respect to frequency; Zhang and Zhao [47] investigated the
asymptotic behavior of principal eigenvalues as the dispersal rate tends to zero and in-
finity, respectively. Recently, there also have been a number of studies on elliptic-type
nonlocal systems. For instance, Nguyen and Vo [28] and Ninh and Vo [29] derived
the existence, simplicity, and qualitative properties of the principal eigenvalue for
the cooperative system; Su and his collaborators [35, 37] studied the principal spec-
tral theory and variational characterizations for cooperative systems with matrix-type
nonlocal operators which come from stem cell regeneration models.

The purpose of this paper is to study the existence and qualitative property of
the principal eigenvalue of (1.1). Motivated by Kang and Ruan [16], we establish a
sufficient condition for the existence of the principal eigenvalue of (1.1) by using the
theory of resolvent positive operators. Inspired by Liu and Lou [24], Liu et al. [25], and
Liu, Lou, and Song [26], we find a new type of monotonicity of the principal eigenvalue
of (1.1) with respect to the frequency. It should be pointed out that the condition
for this monotonicity is different from that of random dispersal operators (see the
details in Remark 3.3). We believe that this difference reveals an essential difference
between random dispersal operators and nonlocal dispersal operators in new insights.
Moreover, we investigate the limiting properties as the frequency approaches zero or
infinity. When considering the effects of the dispersal rates and dispersal ranges on
principal eigenvalues, we also need to overcome the difficulty that principal eigenvalues
of operators with Neumann boundary conditions are not monotone with respect to
the domain.

As far as we know, the basic reproduction number Ry is a significant threshold in
population dynamics. Recently, Zhang and Zhao [46] studied the asymptotic behavior
of the basic reproduction number for periodic reaction-diffusion systems in the case
of small and large dispersal coefficients. Based on the theory of resolvent positive
operators, they reduced the problem on the asymptotic behavior of Ry into that of
the principal eigenvalue associated with linear periodic systems. Motivated by this
idea, we consider the impacts of frequency, dispersal rate, and dispersal range on the
basic reproduction number and positive periodic solutions of a man-environment-man
epidemic model.

The rest of the paper is organized as follows. In section 2, we establish a sufficient
condition for the existence of principal eigenvalues of (1.1). In section 3, we show the
monotonicity of principal eigenvalues with respect to the frequency and study the
effects of frequency on principal eigenvalues. In section 4, we investigate the limiting
properties of principal eigenvalues as the dispersal rate or dispersal range tends to
zero or infinity. In section 5, we apply our theory to an epidemic model and consider
the properties of the basic reproduction number and positive periodic solutions.

2. Principal spectral theory. In this section, we establish a sufficient condi-
tion for the existence of the principal eigenvalue of (1.1) by using the theory of resol-
vent positive operators with their perturbations. For any o= (ay, ..., am)T eR™, we

put |a|=+/> i~ aZ. Let
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(Rm)Jr:{Oé:(Oél,.--,am)T|ai€R,ai20,i:1,2,...,m}
and
(Rm)++:{a:(al,--.,am)T|Ozi€R,ai>0,i:1,2,...,m}.
Set X = {ue C(Q xR,R™)| u(z,t + 1) = u(z,t),(x,t) € Q x R} with norm |[uljx =
SUP (5,1 caxr [u(z,1)], and
Xt ={ueX|u(z,t)e (R™™",(z,t) € Q2 x R},
Xt ={ueX|u(z,t)e R™)TT, (2,t) e A x R}.
Let X = C(Q,R™) with norm |jul| x =SUp,cq |u(z)|, and
Xt={ueX|u(x)e R™)",zeQ},
Xt ={ueX|u() e ®R™)*,2€q}.
For u,v e 2", we write
u>v if u—ve 2T,
u>v if u—ve 2"\ {0},
us>v if u—ve 2+,
where 2" =R™, X, X.

2.1. Resolvent positive operators. First we recall some results about resol-
vent positive operators. For more details, we refer to Thieme [39, 40, 41]. Let Z
denote a Banach space and ZT be a closed convex cone that is normal and generat-
ing. Denote the interior of Z+ by Z++. A bounded linear operator L on Z is said to
be positive if L: ZT — Z* and strongly positive if L: ZT\ {0} = Z*+.

DEFINITION 2.1. A closed operator A in Z is said to be resolvent positive if the
resolvent set of A, p(A), contains a ray (0,00) and the resolvent (\[ — A)~™1 is a
positive operator for all A > p.

DEFINITION 2.2. Define the spectral bound of a closed operator A by
s(A)=sup{ReAeR | ec(A4)},
the real spectral bound of A by
sr(A)=sup{AeR|Aec(A)},
and the spectral radius of A by
r(A) =sup{|\; A€ c(4)}.

If s(A) is an isolated eigenvalue of A with a positive eigenfunction ¢ (i.e., ¢ € ZT\
{0}), then s(A) is called the principal eigenvalue of A.

THEOREM 2.3 (Thieme [40, Theorem 3.5]). Let A be a resolvent positive operator
in Z. Then s(A) = sg(A) < 0o and s(A) € o(A) whenever s(A) > —oo. Moreover,
there is a constant ¢ >0 such that

||()\I—A)*1|| ch(Re)\I—A)dH whenever Re X > s(A).
Define
Fy=C(\ —-B)™', A>s(B).
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DEFINITION 2.4. The operator C: D(B) — Z is called a compact perturbator of
B and A= B+ C a compact perturbation of B if

(M — B)"'Fy: D(B) — D(B) is compact for some \ > s(B)
and
(M — B) " (F)\)*: Z— Z is compact for some \> s(B).

C' is called an essentially compact perturbator of B and A = B 4+ C an essentially

compact perturbation of B if there is some n € N such that (A — B)™' (F)\)" is
compact for all A > s(B).

THEOREM 2.5 (Thieme [41, Theorem 3.6]). Let A= B+ C be a positive pertur-
bation of B. Then r (Fy) is a decreasing convex function of A > s(B) and ezxactly one
of the following three cases holds:

(1) If r (F)) > 1 for all A > s(B), then A is not resolvent positive.

(i) If r (F\) <1 for all \> s(B), then A is resolvent positive and s(A) = s(B).

(iii) If there exists v > A > s(B) such that v (F,) <1 <r(F)), then A is resolvent

positive and s(B) < s(A) < oco; further s =s(A) is characterized by r (Fs) =1.

THEOREM 2.6 (Thieme [40, Theorem 4.7]). Assume that C is an essentially
compact perturbator of B. Moreover assume that there exist Ao > A1 > s(B) such that
r(Fy,)>1>1r(F),). Then s(B) <s(A) and the following statements hold:

(i) s(A) is an eigenvalue of A associated with positive eigenfunctions of A and
A*, has finite algebraic multiplicity, and is a pole of the resolvent of A. If
C is a compact perturbator of B, then all spectral values A of A with Re )\ €
(s(B), s(A)] are poles of the resolvent of A and are eigenvalues of A with finite
algebraic multiplicity.

(ii) 1 4s an eigenvalue of Fyay and is associated with an eigenfunction w € Z of

Fy(ay such that (\[ — B)"'w € Z*t. Actually s(A) is the largest A € R for
which 1 is an eigenvalue of F.

2.2. Existence of principal eigenvalues. Define
Alu](z,t) = —wopu(x,t) + dK[u](z,t) — dT [u](x,t) + Az, t)u(x,t),
Blu|(z,t) = —wdpu(x,t) — dT[u](z,t) + A(z, t)u(z,t),

Cluj(z,t) = dK[u(z, t).

Obviously, A = B+ C. Note that if n € C such that (nI —B)~! exists, then

(B+Cu=nu
has nontrivial solutions in X ® X is equivalent to
Cnl —B)'v=v
has nontrivial solutions in X @ ¢X, where
X@iX={u+iv|uveX}.

Without loss of generality, we assume that a;;(x,t) > 0 for all (z,¢) € 2 x R and 1 <
i <m. Otherwise, choose a sufficiently large constant C' > 0 such that a;(x,t)+C >0
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for all (z,t) € QxR and 1 < i <m. Let {Ux(t,7) |t > 7} and {Fa(t,7) |t > 7}
respectively be the evolution family on X determined by

wou(z,t) = —dJ[u)(x,t) + A(z,t)u(z,t) — Au(z,t), z€Q, teR,
and
wopu(z,t) = dK[u)(z,t) — dT[u](z,t) + A(z, t)u(z,t) — Au(z,t), x€Q, teR.

Recall that a square matrix is said to be irreducible if it is not similar, via a permuta-
tion, to a block upper triangular matrix. To guarantee that the principal eigenfunction
is strongly positive, we need the following additional assumption:
(A2) There exists some xg € Q such that A(xo,t) is irreducible for any t € R.
By [23, Lemma B.3], we have the following result.

LEMMA 2.7. Ux(t,7) and Fx(t,7) are positive on X for any t > 7 and X € R.
If, in addition, (A2) holds, then Fx(t,7) is strongly positive on X for any t > 7 and
AeR.

In view of [3, Theorem 1.4], we have the following lemma.

LEMMA 2.8. For any given x € §Q, the eigenvalue problem

{‘wd‘z?) + Az, )o(t) = A1), tER,

(2.1)
P(t+1) =o(1), teR,
has a principal eigenvalue \(x) with a positive eigenfunction ¢(x,t).

By [3, Lemma 3.6], we know that A(z) and ¢(z,t) are as smooth in = as A(x,t)
in z, and when A(x,t) = A(x), M(«) is the largest real part of the eigenvalues of the
matrix A(z). Let a(z) denote the principal eigenvalue determined in Lemma 2.8 with
A(z,t) replaced by

Bla,t) = Az, 1) + diag (—dl/QJl(x—y)dy,...,—dm/QJm(x—y)dy>.

PROPOSITION 2.9. The resolvent operator (nI — B)™! exists when Ren > a* =:
max,cq o(x). Moreover, B is a resolvent positive operator and s(B) = a*.

Proof. Similar to [5, Proposition 3.2], we know that (nI —B)~! exists when Ren >

*

a* =: max, g a(z), which implies that s(B) < a*. It follows from Lemma 2.7 that
B generates a positive semigroup. This together with [41, Theorem 3.12] gives that
B is a resolvent positive operator. By using the same argument as in the proof of
[5, Proposition 3.1], we know that s(B) > «*. Hence, s(B) = «*. The proof is
completed. 0

Recall that {Fo(t,7) |t > 7} is the evolution family on X determined by
wou(z,t) = dK[u)(x,t) — dT[u)(z,t) + A(z,t)u(x,t), x€Q, teR.
Define an operator Q) € L(X) by
O\ =e 5 Fo(1,0)9 for v eX.

PROPOSITION 2.10. There exists Ag € R such that r(Qy,) = 7’(67%0]-—0(1, 0))=1.
In addition, the operator A is resolvent positive and s(A) = Ao =wlnr(Fy(1,0)).
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Proof. Consider the resolvent equation
(M= Ay, peX, e p(A).

It follows from the variation of constants formula that

t
(2.2) o(a,t) = e~ 3 Fo (£, 0)p(x,0) +/ e—g<t_7>f0(t77)w(a: )
0
Since p(x,t) = p(x,t + 1), we derive from (2.2) that
1
(1= et = [ 20070 0y
0 w

Thus, ifle p(Q)\)7 then
(AT = A) ) (2, t) = e~ =" Fo(t,0)(T — Qx)~ U Foll, s)e “‘”@ds
t
—|—/ fo(t7s)e—a(t—5)wds
0 w

Moreover, A € p(A) if and only if 1 € p(Q,).
Set

(2.3)

mg; = min  a;(x,t) and M = (my; .
Y @teax(o,] (@1) (i )mxom
By Lemma 2.7, we derive Fo(t,7) > W(t — 1) in the sense of positive operators, where
W(t) is the semigroup generated by the operator % [dK — dJ + M]. By [18, Theorem
1.3], M admits a real eigenvalue Ay; corresponding to a positive eigenvector ¢ps. It
is easily seen that /\% is an eigenvalue of the following eigenvalue problem:

1
- dK[el(2) = dT [¢l(z) + Mp(z)] = Ap(z).
By virtue of the spectral mapping theorem (Thieme [41, Lemma 5.8]),

0_( d)C*(i)j{»M )f

(2.4) "=o(W(t))\ {0} forall ¢>0.

We derive from Lemma 2.7 that W(t) is a positive operator. Then by [27, Proposition
4.1.1], rOWV(t)) € c(W(t)) for any ¢t > 0. By (2.4),

L r(W(t)) for all ¢>0.
Then we have

AM 4

)

=r(W(t)) for all ¢>0.
As a result,
r(Qay) = ( _%}—0(170)) >r (G_ATMW(]_)) >1.

On the other hand, 7(Qx) — 0 as A — +o0.
Thus, we have that r(Q,) is strictly decreasing with respect to A € R and there
is a unique A such that r(Q,,) = 1. Then for any A € R, we have r(Q)) <7(Qx,) =1
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if A > \o, implying that (I — Q,)~! exists and p(A) contains a ray (Mg, +o0). In
addition, (A — A)~! is positive by (2.3) for all A > \g. As a result, A is a resolvent
positive operator.

Since Qj is positive, 1 = 1(Qx,) € 0(Qx,); that is, 0(Q,,) is nonempty, which
implies that Ao € 0(A) and o(.A) is nonempty. In view of the fact that Ao is larger
than any other real spectral value in o(A), we derive Ay = sg(A). Note that X is
a Banach space with a normal and generating cone X* and s(A) > X\g > —oo due
to A\g € o(A). Tt follows from Theorem 2.3 that s(A) = sg(A) = A\g. The proof is
completed. 0

PROPOSITION 2.11. For any Ren > o, C(nI — B)~! is a compact operator in
X @ikX.

Proof. For any bounded sequence {u,} € X ®iX, set
Vo=l —B) u,.

By virtue of the boundedness of B+wd;, both {v,} and {9;v,,} are bounded sequences
in X ®iX. Then {Cv,} is uniformly bounded and equicontinuous due to the assump-
tion (J). It follows from the Arzeld—Ascoli theorem that {Cv,} is relatively compact
in X. Thus, C(nl — B)~! is a compact operator in X. The proof is completed. d

COROLLARY 2.12. The operator C is a compact perturbator and also an essen-
tially compact perturbator of B. Thus the operator A= B+C is a compact perturbation
and also an essentially compact perturbation of B.

Proof. (nI —B)~'C(nI — B)~! is compact for any n > s(B) since C(nI — B)~! is
compact by Proposition 2.11. ]

Now we present the main result of this section.

THEOREM 2.13. Suppose that s(A) > s(B); then s(A) is the principal eigenvalue
of A with an eigenfunction ¢ € Xt \ {0}. Moreover, if (A2) holds, then s(A) is an
algebraically simple eigenvalue of A with an eigenfunction ¢ € X++. Conversely, if A
is an eigenvalue of A with an eigenfunction ¢ € X+, then A= s(A) > s(B).

Proof. Set
G\=CA\[—-B)", X>s(B).

Since A is resolvent positive by Proposition 2.10, case (i) in Theorem 2.5 is impossible.
We derive from the assumption s(A) > s(B) that case (iii) in Theorem 2.5 will happen.
Thus, there exist Ay > Ay > s(B) such that r(Gx,) > 1 > r(G»,). Now applying
Theorem 2.6 yields that s(A) is an eigenvalue of A with an eigenfunction ¢ € X \
{0} and has finite algebraic multiplicity and is a pole of the resolvent of .4, which
implies that s(A) is the principal eigenvalue of A. If (A2) holds, then we derive from
Lemma 2.7 that the corresponding principal eigenfunction ¢ € X*F. Similar to the
proof of [5, Theorem 2.3], we have s(A) is an algebraically simple eigenvalue.

Now assume that A € R is an eigenvalue of A with an eigenfunction ¢ € X+, It is
readily verified that Fo(t,0)¢(z,0) = e5tp(z, t). Since p(x,t) >0 for all (,t) € AR,
for any up € X+ with

ug < Myp(x,0), x€Q,

where My = — l[uo] — we derive from Lemma 2.7 that
ming <;<m Ming e @i(2,0)’

Fo(t,0)0ug < MoFo(t,0)p(-,0) = Me="p(-,t) for all ¢>0,
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from which we have

s(A)

— im In || Fo(t,0)]] < §7
t—-+oo t w

where w(Fo(t,0)) is the growth bound. By the definition of s(A), we have s(.A) > A.

Hence, s(A) = \. Finally following the argument similar to the proof of [5, Theorem

2.1], we prove A = s(A) > s(B). The proof is completed. O

S w(]:()(t, 0)) :

Remark 2.14. Theorem 2.13 also holds for the operator with Dirichlet or peri-
odic boundary condition. In this case a(x) is the principal eigenvalue determined in
Lemma 2.8 with A(z,t) replaced by A(z,t) + diag(—dy,...,—dp).

COROLLARY 2.15. s(A) is the principal eigenvalue of A if one of the following
assumptions holds:
(i) A(z,t) = A(t), that is, a;j(z,t) = a;;(t) for all 1 <i,5 <m.
(ii) (A2) holds and ()%{y() Z LY (Qo) for some bounded domain Qo C Q.
(iil) mini<;<m d; s sufficiently large.

Proof. (i) By Lemma 2.8, there exists (A, ¢(t)) satisfying

—w%gt) + A)o(t) = Ao(2).
Then —A[¢](t) + Ap(t) =0 and s(A) > X > s(B). We derive from Theorem 2.13 that
s(A) is the principal eigenvalue of A.

(ii) Note that s(A) > s(B). If s(A) > s(B), there is nothing to prove due to
Theorem 2.13. Suppose s(A) = s(B) = «*. Similar to the proof of [5, Proposition
3.4], we have r(C(nI —B)™1) > 1 for n > s(B) = o* and n — a* < 1, which contradicts
Theorem 2.5. Thus, s(A) > s(B) and s(A) is the principal eigenvalue of A.

(iii) The matrix M admits a real eigenvalue Aps corresponding to a positive eigen-
vector with M = (mg;)mxm and mij = ming, ;ecqxo,1) @ij(2,t). Obviously, s(A) >
Aar- Set j; =mingeq [o Ji(r — y)dy, mij = max, yeqxo,1) @i (T ), M = (M) mxms
and Q = diag(—dyJ1,...,—dmjm) + M. Then we have s(B) < A(Q), where A\(Q) is
the principal eigenvalue of ). Note that A(Q) — —oo as minj<;<,, d; — +oo. Hence,
there exists d, > 0 such that s(A) > s(B) for all mini<;<,, d; > d.. It follows from
Theorem 2.13 that s(A) is the principal eigenvalue of A for all min; <;<,, d; > d.. The
proof is completed. ]

3. Monotonicity with respect to the frequency. In this section, we always
suppose that assumption (A2) holds and investigate the monotonicity of principal
eigenvalues with respect to the frequency w and the limiting properties as w tends to
zero or infinity. For any 1-periodic function u(z,t) € C(Q x R), set

i(z) = /0 (), a(t):ﬁ /Q w(z, t)dz,
A@) = (@55 @)y A* = (|Q1| / aij(@dx)mxm.
Let

X ={uecC"(QxR,R™)|u(z,t+ 1) =u(x,t),(z,t) € Q x R}.
For f,g e L%(Q x [0,1],R™), we set

(fag)OZZ/O /Qf,-(m,t)gi(x,t)dzdt.
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In order to prove the monotonicity of principal eigenvalues with respect to the fre-
quency w, we need the following result.

LEMMA 3.1. Assume that J;(—x) = Ji(x), d; = d;(w) € C*((0,00)) for 1 <i<m,
s(A) is the principal eigenvalue of A, and a;j(x,t) = aj;(x,t) for all (z,t) € A xR
and 1 <4i,5<m. Let ¢ and 1 be the principal eigenfunctions of (1.1) and the adjoint
problem of (1.1) corresponding to s(A), respectively. Then the following statements
hold:

(i) Given f € X, there exists u € Xy such that Au — s(A)u = £ if and only if

(f, 1) =0. Also there exists v € Xy such that A*v — s(A)v == if and only if
(f,©)o =0, where A* is the adjoint operator of A defined by

A*[v](x,t) =wdpv(z,t) + dK[v](z,t) — dT[v](x,t) + Az, t)v(z,t).

(i) (s(A), @, ) is continuously differentiable with respect to w.

Proof. (i) If there exists u € AX; such that Au — s(A)u = f, then (f,¢)y =
(Au — s(A)u, ) = (u, A — s(A))o = 0.

Set A=A — s(A)Z. By virtue of the proof of Theorem 2.13, s(A) =0is an
algebraically simple eigenvalue of A and is isolated in the spectrum o (A). Let o1 = {0}
and oy = o(A) \ 01. It follows from [17, Theorem 6.17, p. 178] that there exists a
decomposition of A according to a _decomposition X = M; & Mj of the space in such a
way that the spectra of the parts A M, and A M, coincide with o7 and o9, respectively,
where .AM is an operator in the space M; with D(Am,) = D(A) N M; such that
Apu=Aue M;, i=1,2. Then, s(An,) <0. Clearly, we have M; = {cyp | c € C}.
If (£,4)p =0, then f € ./\/l2 Since 0 is in the resolvent set of .AMz, there exists u e X
such that Au — s(A)u=f.

Let

Alu)(z,t) = —wdpu(z, t) + dK[u](z,t) — dT [u](z,t) + A(z, —t)u(z, 1),

U(x,t) = Y(z,—t), p(z,t) = p(x,~1), and f(x,t) = f(x,—t) for all (z,t) € Q x R.
Then ¢ satisfies Av) = s(A)p. We derive from Theorem 2.13 that S(A) = s(A) is
an algebraically simple eigenvalue of A and is isolated in the spectrum U(/\). By
the above arguments, there exists v € X} such that AV — s(A)v = f if and only if
(f,¢)o = 0. Thus, there exists v € &} such that A*v — s(A)v = f if and only if
(f’ 90)0 =0.

(ii) Inspired by [19, Proposition 1.3.15 and Theorem 4.3.4], we prove the continu-
ous differentiability of s(.A) and ¢ with respect to w via the implicit function theorem.
Normalize ¢ and 1 such that %((p, ©)o=(p,¥)o =1 for any w > 0. Define a mapping
F: X xR x (0,00) > X xR by

Flu,p,w):= <.Au — pu, %(u, u)p — 1> .

Clearly, F(p,s(A),w) = (0,0). In order to prove the continuous differentiability of
s(A) and ¢ with respect to w, it suffices to show that for each fixed w > 0, the linear

mapping
D,y F(p,5(A),w): &1 x R— & xR

is invertible. To this end, given (f,c) € X x R, we need to prove the existence and
uniqueness of (g,h) € X; x R such that
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(3.1) {A[g](x,t) - S(A)g(xvt) - th(:E,t) = f(xvt)v (IC,t) S Q X R,
(p.8)o=c.

First we show the existence. To this end, we choose h = —(f,1))0, so that (ho+£,1)g =
0. By (i), there exists u € & such that Au—s(A)ju=hp+f. Set g=u+ %g@;
then (g, h) satisfies (3.1).

To show uniqueness, we set (f,¢) = (0,0) in (3.1) and proceed to show (g,h) =
(0,0). In view of f =0, we have

Thus A =0 and (3.1) becomes

A[g}(x,t)fs(A)g(z,t)zo, (I,t)EQXR,
(%g)o =0.

Since s(A) is an algebraically simple eigenvalue, we have g = kp for some k € C.
Then, (¢,8)o =2k =0. As a result, g=0.

For the continuous differentiability of ¢ with respect to w, we define a mapping
G: X1 xR x (0,00) =X xR by

G(u, p,w) = (A"u—pu, (p,u)o —1).

Clearly, G(, s(A),w) = (0,0). It remains to show that for each fixed w > 0, the linear
mapping

DG, s(A),w): X xR— X xR

is invertible. Given (w,b) € X x R, by the same arguments as above, we can prove
the existence and uniqueness of (p,q) € X1 x R such that

{A* p](z,1) — s(A)p(w,t) — qib(z,t) = w(z,t), (z,1) €Q xR,
0

The proof is completed. a0

In the following, for convenience, the ' notation denotes differentiation with re-

spect to w.
THEOREM 3.2. Suppose the assumptions of Lemma 3.1 hold. If di(w) > 0 and
(%)’ <0 for 1 <i<m, then s(A) is nonincreasing with respect to w. In addition,
(i) if di(w) > 0 for 1 <i<m, then s'(A) = 0 if and only if there exists some
1-periodic function ((t) € C(R) with fo ¢(t)dt =0 satisfying

€I — (A(z,t) — A*)|®=0 for any x€Q and te€]0,1],
where ® is the principal eigenvector corresponding to the principal eigenvalue

X of A*;
(ii) iof dj(w)=0, (d'i (1) ) <0 for 1 <i<m and the eigenvalue problem

w

(3.2) dKp](2) — dT [¢](x) + Alz)p(x) = Ap(x)

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/03/24 to 108.83.28.210 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PRINCIPAL SPECTRAL THEORY OF COOPERATIVE SYSTEMS 4051

admits a principal eigenvalue, then s (.A) =0 if and only if there exists some
1-periodic function r(t) € C(R) with fo t)dt =0 satisfying

[r(t)[ — (A(z,t) — A(:c))] ¢(x)=0 for any x€Q and te]0,1],

where ¢(x) is the principal eigenfunction of (3.2).

Remark 3.3. A typical example for Theorem 3.2 is d;(w) = a;w + b; for some
nonnegative constants a; and b; satisfying (a;, ;) # (0,0). Our results are new even for
scalar time periodic nonlocal equations when d’'(w) > 0 and (@)’ < 0. However, the

condition for random dispersal equations is (%)’ <0 (see [24, Theorem 1.1]). This
observation may reflect an essential difference between nonlocal dispersal operators
and random dispersal operators.

Proof of Theorem 3.2. By the definition of the principal eigenvalue of A, there
exists ¢ € XT1 such that

(3.3)

Wat@('%t) = dK:[(p](.'L‘,t) - dj[(p] (*T7t) + A(l‘,t)(p(a?,t) - S(A)(p(l’,t).

Let 1) € X be the eigenfunction of the adjoint problem to (1.1) given by

(3.4)
Set

—wOp(x,t) = d[Y](x, 1) — dT[¢](x,t) + Az, t)p(x, 1) — s(A)p (2, ).

1 i .
a; =+/pit; and 5i—2ln<Z) for 1<i<m.

4

Then some computation yields that

(3.5)

where

o /Q Ji(w = y)(0a(y,t) — i, 1) dy = Y (2, ) (,1) — ci(w, )i (x,1)

Jj=1

= —s(A)a;(x,1),

+ = Zam x,t) (\/% @) \/ > — w0 Bi(x,t).

In view of Lemma 3.1, we can differentiate both sides of (3.5) with respect to w to

find
(3.6)

—dé(W)/Q Ji(x—y)(ai(yyt)—ai(%t))dy—di/QJi(x—y)(aé(y,t)—aé(x,t))dy

— Zaij (z,t)(x,t) = cj(x,t)a;(x,t) — ci(z, t) oz, 1)

= —5'(A)o (@, 1) — s(A) o (z,1).

Multiplying (3.5) by «f, multiplying (3.6) by «;, subtracting the resulting equations,
and integrating over Q x (0,1) yield
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S(A) /0 1 /Q 02(a.t)dwt = - ) /0 1 /Q /Q Ji(z — y)(@ily,t) — as(a, £))*dydadt

1
—|—/ /cg(x,t)af(x,t)dazdt.
0o Jo

Adding the above equations from i =1 to m yields

(3.7) s'(A)i /O 1 /Q o (x,t)dxdt
- —id(;’) [ [ 5ttt estonpagae

mo 1
+Z/ /c;(x,t)a?(x,t)dxdt.
=170 JQ

A simple computation gives that

. d;(w) (pi(y,t) wi(y’t)
) =457 [ ey (V ped) V wm) v
di (pi(y,t) i(y’t) i
Jrg jS(x*y) |:<\/<pi(l‘,t> a i(l‘,t)> ] w

1 - aii(x @j(l‘,t) _ de(.T,t) _ () — w "o
+2Z (@) [(\/%‘(m,t) \/%(:}ci)) ] 0uBi(e,1) = wdifi(z ).

j=1

And a further computation yields

di [ (o ei(yt)  [vily,t) i /agx .
a9 G L y)K\/%(%t) ﬁi(x,t))] Dyt
_di o e v gy EGGE@)
=5 [ [ [ a0 |ditouten At

901‘<x,t)
/ (Pz($,t)¢z(y,t) /
15 (y, ) pi(@, t) — Wwi(x,t)} dydzdt

_ A [ (g — bi(m,t) (oilz,t)\ o
2 /0 /Q/le( y)@i@?,t) <wi(l‘,t>) (%(Z/vt)ﬂh( ,t)
—Yi(y,t)pi(x,t))dydadt,

27/
21t & (2t (T, 2
(3.9) ;2/0 /Q;aij(x’t) [(\/izé%t; - \/zzéx,t))> ] o (@ t)dadi
m 1 m (2 (z, )
Y5 [ [ L asten et tunton - SEDAED gy

<pi(x,t)

Vi(z, 1)
LIRS, bt (e

B 2/0 /Q;; ”( ’t)@i(x’t) <¢i(l’,t)) (SDJ( vt)l/}i( ,t)

= ¥j(@,)pi(x,1))dzdt,

(s ) g, 1) — wg(x,w} dadt
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and

(3.10)
m 1
; /o /Q wdy B, t)ai (x,t)dwdt

:-Z / / WBL (2, 1) Brpis(, O)s(, 1) + i, ) (, £)]dadt

/ /Z;Zﬁ ( 1%3)/[‘11‘/9“ v)(pi(y, t)i(w, 1)

—i(y, )iz, t))dy + Z aij(z, 1) (pj (2, )iz, t) — j(x, t)pi(z, 1)) | dedt.

Now in view of (3.7)—(3.10), we have

(3.11)

/A)é / 1 [ attnasar

=—id§;“’) [ [ 5t et - stz
Y 0 R (e oy
—§:j / /Q OuBi(w,1)a? (x, t)ddt.

Moreover, we have

(3.12)
mo el
(z,t)a?(z T
;/0 /Qf’tﬂz( ()2 (x,t)dzdt

m a1
=-3 / / B, 1) [Bupi (. )i, ) + 01 (2, 1)yt (a, 1)l

:_Z/ /Q ( o = ) [ﬁ[)li( )iy, )i(,1)

- @i<x7t)wi(y’t))dy + Z ;aij (x’t)((pj (‘r’t)wi(xat) - %‘(x’t)%‘ (.’L‘,t))‘| dzdt

j=1

S50 [ e - et 2EDED
/ /dez( )/QJZ( Y)pi(y, t)vi(z, 1)1 t)w(z,t)dyd dt

ol )0y t)
/ /ZZ (02, )y | RS dt+2<z,

i=1 j=1
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where
@i(,1) (o Mo "
%= / / < ) <,¢}Z< z, )>/QJ1( y)(%(y,t)i/&( 775)
_%(x»t)%( Y, ))dydxdt
And
- [ diw) ©i(y,t) i (y, 1) ’
;/0 /QT/QJi(x -y) (\/%(x,t) B \/%(x,@) o; (a,t)dydzdt
m 1 " w
=3 [ L5 A )+t
(3.13) _Z/ /d/ / (@ =)V iy, )i, )i (y, )i (w, t)dydadt.

Define g(2):=2—1—1Inz, 2 >0, and h(z1,22) := (21 — 22)(Inz; —Inz2s), 21,22 > 0. By
virtue of (3.11)—(3.13), we obtain

s’(A)i /O 1 /Q 02 (. t)dadt
=—i@ / 1 [ [ 5= ) (auta-t) — ) Py
/ / Z a;j(z,t)h(pj(x, t)i(x,t),v;(x, t)p;(x,t))dxdt

7,7=1

i#]
(49 " i;“ (dii,w)> pi— ;dé(w)e
where
= 0 /Q/QJZ(x_y) (pi(y, t)i(x, 1), i(y, t)pi(x,t))dydzdt
and

0; —/ //J (x —y)pi(y, t)i(z,t)g ( E sz:g ;)dydxdt.

Since g(z) >0 for all z >0, a;;(z,t) >0 for i # j and (z,t) € Q x R, and h(z1,22) >0
for all 21,29 >0, we derive from (3.14) that s'(A) <0 for all w > 0.
(i) If §'(A) =0 for some w >0, then (3.14) gives that

1
(3.15) / //Ji(x—y)(ai(y,t)—ai(x,t))gdydwdtzo for all 1<i<m,
o JalJa

vi(@,t)¥i(y,t)
(3.16) / // (x —y)eily, t)i(x,t)g ( o0t )%‘(%t)) dydzdt =0,
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and
(3.17) @, (z,t)i(z,t) =;(x,t)pi(z,t) for each (2,t) €Q xR and 1<i,5<m,

which implies that o; = a;(t) is independent of 2 € Q and % =1 for each
z,y € Qand t € [0,1]. Thus, ¢; = r;(t)1; for some 1-periodic function r;(t). By virtue
of (3.17), we have k;(t) = k;(t) = £(t) with x(t) being some 1-periodic function for

t€[0,1] and 1 <4i,j <m. A direct computation yields that

oy(a? / T — ) iy, 0 (2, £) — s )i (1)) dy = 0,

implying that «; is independent of ¢ and is a constant. By (3.5), we have

. 1
Z a;j(z,t)a; —w= dIn r(?) a; = s(A)a,.
= 2 dt

Integrating the above equality over € x (0,1) gives s(A) = A. Thus, the conclusion

holds with ((t) =w3 dh:i'z(t).

If there exists some 1-periodic function ((¢) € C(R) with fo t)dt = 0 satisfying

[C() — (A(z,t) — A*)]®=0 for any x€Q and t€]0,1],

set o(t) =exp [+ fo 5)ds]®. Then,

wy' () = Az, t)p(t) — Ap(t),

implying that s(A) = A for all w > 0. As a result, s'(A) =0.
(ii) If there exists some 1-periodic function r(t) € C'(R) with fol r(t)dt = 0 satis-
fying

[r(t)] — (A(z,t) — fl(m))} #(r)=0 for any x€Q and t<|0,1],

where ¢(x) is the principal eigenfunction of (3.2), set p(z,t) =exp[= fo
Then,

—adiiant) +ds [ T =)o) = oo Oy + D a0

— Api(x,t)
= —r(D)pi(w,t) + > (aij(@,t) — i j(2))p;(x, 1)
=1
—0, ’
where A is the principal eigenvalue of (3.2). Thus, s(A) = A and §'(A) = 0 for all

w > 0.
If '(A) =0 for some w >0, then (3.14) gives that

i@, )hi(x,t) =vj(x, t)pi(x,t) and o;(y,t)Yi(x,t) =Yi(y,t)pi(z,t)
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for each z,y € Q, t €[0,1], and 1 < i,5 <m. This implies that ¢; = 0;(t)1); for some
1-periodic function g;(t) and g;(t) = 0;(t) = o(t) for some 1-periodic function o(t).
Thus, ¢ = o(t)Y and B; = %ln o(t). A direct computation yields that

d;
8t(af(x,t)) = ; /Q Jl(x - y)(%(yat)%‘(%t) - d}i(y»t)goi(mvt))dy: 0,
implying that «; = a;(x) is independent of t. By (3.5), we have

(3.18)

- dp;(t
i [ 3o = )(s() ~ ey + Y- aont)ao) — 0o (o) = s( (o).

j=1

Integrating the above equality over (0,1) gives
(3.19) di /Q Ji(z —y)(i(y) — ai(z))dy + Z aij(z)ay(z) = s(A)ai(z).
j=1

Now we derive from (3.18) and (3.19) that

) (aij (1) = @i () (z) — %wdh;iﬁt’(t)

a;(xz)=0.

1, . dlnp(t)

Hence, the conclusion holds with r(t) = 3w=57~. The proof is completed. 0

Next we give the limiting properties of principal eigenvalues as w tends to zero
or infinity. We obtain these results with the help of generalized principal eigenvalues
defined by

Ap(A):=sup{AeR|Tpe Xt st. (—A+N)[p] <0 in QxR}
and

A(A):=inf{AeR[Ipe X st. (—A+A)[p]>0 in QxR}.

PROPOSITION 3.4. Assume that (ri;(2,t))mxm satisfies the same conditions as
(@i (z,1))mxm- If aij(x,t) <rij(z,t) for all 1 <i,5 <m and (z,t) € Q2 x R, then

Ap(A) +1< A (R),

where

= min {min [rii(x,t)—aii(:c,t)}}

1<i<m | Qx[0,1]

and R is defined by replacing (a;;(z,t))mxm by (15;(z,t)) in the definition of A.

mXxXm

Proof. For any A < \,(A), there exists ¢ € X+ such that

—Alg](z,t) + Ap(z,t) <0 in QxR.
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Then

wOpi(x,t) — d; /Q Ti(z =) (@i(y, 1) — @i, 1)dy = Y rij (@, 1)y, t)

j=1

+ ()\ + l)(pi(x,t)

< wopi(x,t) — d; A Ji(x —y)(pi(y,t) — @i(z,t))dy
= ai(x, )i (@, ) + (=1 (x,) + N+ Dy, 1)
-
i
<0

which implies that A + 1 < A,(R). Thus, \,(A) +1 < A, (R). The proof is
completed. 0

PROPOSITION 3.5. If s(A) is the principal eigenvalue of A, then
s(A) = Ap(A) = A, (A).

Proof. First we prove s(A) = A,(A). If s(A) is the principal eigenvalue of A, then
there exists ¢ € XT+ such that

Ap—s(A)p=0 in QxR.

By the definition of A,(A), we have s(A) < A\,(A). Suppose to the contrary that
s(A) < Ap(A). By virtue of the definition of A,(A), there exist A € (s(A), A\, (A)) and
© € X such that

~Ap+ <0 in QxR.

RS
w

Then ¢(-,t) <e” &' Fy(t,0)p(-,0). Together with ¢(-,0) = ¢(-,1), we have

QO("O) < 67%]:0(170)%0('70)'

It follows from [31, Proposition 3] that r(e~ Fo(1,0)) > 1. We derive from Propo-
sition 2.10 that 7‘(6_#}—0(1,0)) = 1. We obtain from the proof of Proposition 2.10
that (e~ Fo(1,0)) is strictly decreasing with respect to A € R. As a result, s(A) > \.
A contradiction occurs implying s(A) = A, (A).

Next we prove s(A) = \},(A). If s(A) is the principal eigenvalue of A, then it is
easy to see that \},(A) < s(A). The eigenfunction ¢ corresponding to s(A) satisfies

(3.20)
w¢i(z,t) — di/QJi(x —y)(i(y,t) — di(x,1))dy —Zaij (2,t);(2,t) +5(A)di(x, 1) =0.

=1

Assume that A7 (A) < s(A). By the definition of \},(A), there exist A, € (A},(A),s(A))
and 1 € X such that

(3.21)

wdi(a,t)— d; /Q Ji(w = y) (i, ) — i, 0))dy =Y a2, £)05 (2, 1)+ Authi (2, 1) 0.

Jj=1
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Let
§*:=sup {4 |y > d¢ for all (z,t) € Q x [0,1]}.

Due to ¢, ¥ € XTT, we have §* € (0,+00). By the definition of §*, we have V =
¥ —6*¢p > 0. We derive from (3.20) and (3.21) that V satisfies

(3.22)
Watvi(mvt)_di/QJi(x_y)(Vi(yvt)_%(x’t))dy+K%($7t)

m

> Zaij(ac,t) (j(z,t) — 0" P;(x,t)) + (s(A) — A )i(z,t) + (K — s(A))Vi(z,t)

j=1
>0,

provided that K is sufficiently large. And V;(z,0) = V;(z,1) > 0. By the strong
maximum principle and the periodicity of ¢ and ¥, we get V; > 0 for all 1 <7 < m.
Hence, there exists 8* > 0 small enough such that ¢ > (0* + 6*)¢, contradicting the
definition of 6*. As a result, s(A) = \},(A). The proof is completed. O

THEOREM 3.6. Suppose that s(A) is the principal eigenvalue of A. Then the
following conclusions hold:
(i) Assume that a;; € CO1(QxR) and d;(w) — b; as w —0 for some nonnegative
constant b;. If s(P(t)) is the principal eigenvalue of P(t), then

lim s(A) = /0 s(P(t))dt,

w—0
where P(t) is defined by
P)[u](z) := b;K[u](z) — b;T[u](x) + A(z,t)u(z), ueC(Q,R™).

(ii) Assume that the conditions of Theorem 3.2 hold. Then the following asser-
tions hold:
(a) If d;j(w) — p; as w— 400 for some positive constant p;, then

lim s(A) = so = sup (L[u],u),
w00 l[ull=1

where L is defined by

L[u](z) = piK[u](z) — piT[u](z) + A(z)u(z), weC(Q,R™),

and Seo 1S the principal eigenvalue of L.
(b) If d;(w) = 400 as w — +0o0 and % — @q; for some nonnegative constant
qi, then

lim s(A)=A(A"),

w—r—+00

where \(A*) is the principal eigenvalue of A*.
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Proof. (i) For fixed t € [0, 1], since s(P(t)) is the principal eigenvalue of P(¢), there
exists v(-,t) € C(Q,R™) with v(-,#) > 0 in  such that P(t)v = s(P(t))v. It follows
from the classical perturbation theory (see Kato [17]) that v € C'([0,1],C(€2,R™))
and v(z,t+ 1) =v(z,t).
Set p(x,t) =b(t)v(z,t) with

b@)=em{—i[{Aldpﬁbds—%fdp®»d4}.

Given an arbitrary € > 0, there exists a sufficiently small wy > 0 such that w|0v;| <

5v; and

’(di - bl)/ Ji(x —y)(vi(y,t) — vi(x,t))dy‘ < gvi for all w <wy.
Q

In addition,

—AM+([4W%@—Q¢

1
<wto+ |- [ s(Po)as +5(PO)] - PO+ 50

+(A¥mwwug¢

<0.

By the definition of \,(A), we get

/1 s(P(s))ds —e < Ap(A) =s(A) for all w<wp.
0

Similarly, we have

—Alp] + (/01 s(P(s))ds + 5> ©>0.

It follows from the definition of A}, (A) that
1
S(A) = No(A) g/ s(P(s))ds+ ¢ for all w < wp.
0

As a result, lim,, o s(A) = fol s(P(t))dt.

(ii) Choose a sequence {w;,} with w, — 400 as n — +00 and denote (s, (A),¢n)
the corresponding eigenpairs; that is, (s,(A),¢n) with ¢, € XTT normalized by
llonllx =1 satisfies

(3.23)

WnOspn, = d; /Q Ti(x =) (n, (U, ) = @n, (@, 0))dy + > aij (2, 8)n, — 5n(A)pn, -

Jj=1
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Dividing (3.23) by ¢,, and integrating it over £ x (0,1) yield
2
d; (! on, (Y, 1) ©n, (x,1)
A)= ///Jix— ) L A dydzdt
=20 I \Wentwn  Venwn) ¥
on; (z,t)
i ) dzdt
|Q|/ /Z“” ) o (1)

> (2273 (SU, iL)dQCCHf7
.

from which we obtain

m 1
(3.24) sn(A) > mlmZ; /0 /Q a5, t)dadt,

We derive from Theorem 3.2 that s, (A) is nonincreasing and thus lim,,_, oo 5, (A) =
Seo €xists. Moreover, {s,(A)} is a bounded sequence.

(a) If d;(w) — p; as w — 400 for some positive constant p;, dividing (3.23) by w,
and letting n — +oc0 yields 0y, — 0 uniformly on Q x [0,1] as n — +oo due to the
boundedness of s, (A) and ¢,,. Note that ||¢,||x =1. There exists some subsequence
of {©,}, still denoted by itself, such that ¢, — ¢ weakly in L?(2 x (0,1),R™) and
Oz, — Opp = 0 for some function ¢ as n — +oo. This implies that ¢ is independent
of t. Integrating (3.23) over (0,1) and letting n — 400 yield

Sn(

(3.25) pi /Q Jilx =) (pi(y) — i(@)dy + > i ()@ (x) — secipi(w) =0.
j=1

Applying the dominated convergence theorem, we conclude that ||¢, [ L2 (Qx (0,1),rm) =
ol L2(0,rm) as n— 4oc0. Hence, ¢, — ¢ in L?(2x (0,1),R™) as n — +oo. Obviously,
 is not identically 0. In view of (3.25), ¢ € X1 and s, is the principal eigenvalue
of L. This together with the symmetry of A(z,t) gives Soc = sup|y=1(L[u,u).

(b) If d;(w) — +o0 and ( — ¢; for some nonnegative constant g; as w — 400,
dividing (3.23) by w,, implies that Oppn, is uniformly bounded due to ||¢,||lx =1 and
the boundedness of d'ff”) and s, (A). Multiplying (3.23) by O:p,,, integrating over
Q % (0,1), and adding the resulting equations from i =1 to m yield

m .1
wnZ/O /Q|6'tg0ni(x,t)|2dxdt
=1
m .1
-3 / / d / Ti(@ = )P (1) — P (@,0))dydypn, (2, t)dadt
—Jo Ja Ja
m 1 m
> / / S 5 (5, ), (2,£)) 0o, (&, )t
i=170 725
LS
—sn(A)Z/ /g@m(x,t)agpm(:c,t)dxdt

m

= / / i (@ D) om, (@) Beon, (2, £)dadt
Q

1,7=1
<M,
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where M >0 is a constant. Hence, ||Oppn, L2(x(0,1)) — 0 as n — +o00. By the above
result and the boundedness of |¢n,[|z2(ax(0,1)), Up to an extraction, there exists
P, € WH2((0,1), L2(£2)) such that ¢, — 1; and Oy, — Oy1h; weakly in L2(Q x (0,1))
as n — +oo. In addition, we have ||0p;|| < liminf, oo ||Oton,
thus 1); is independent of ¢.

If ¢; > 0, dividing (3.23) by wj,, integrating over (0,1) and letting n — 400 yield

r2(Qx(0,1)) = 0 and

" / Ji(x — ) (s(y) — 1)) dy = O,
Q

which implies that v; is a constant and v; is positive due to the normalization of ¢,,.
Integrating (3.23) over Q x (0,1) and sending n — +oo yield

m 1 1
Zﬁ/ /aij(x,t)dxdtwj:sood)i,
200l Jo Ja

which implies that s, is the principal eigenvalue of A*.
If ¢; = 0, dividing (3.23) by d;(w,,), integrating over (0,1), and letting n — 400
yield

/Q Ji(w = ) (6s(y) — i (x))dy = 0.

The remaining proof is the same as above. The proof is completed. 0

4. Effects of dispersal rates and dispersal ranges. In this section, we in-
vestigate the effects of small and large dispersal rates or dispersal ranges on principal
eigenvalues. Set A(t) = (a;;(t)) Let {¥(¢,s) | t > s} be the evolution family on
R™ of wd® = A(t)u,t > s.

THEOREM 4.1. Suppose that J;(—x) = J;i(z) for 1 < i < m; then the following
statements hold:

(i) s(A) = X* as ming<;<m, d; = +00, where A* is the principal eigenvalue of the
etgenvalue problem

mxm’®

dat

T e

(ii) Assume s(A) is the principal eigenvalue of A. Then s(A) — max, g A(z) as
maxi<i<mi{di} =0, where A(z) is defined in Lemma 2.8.

Proof. (i) It follows from Corollary 2.15(iii) that there exists d. > 0 such that
s(A) is the principal eigenvalue of A for all minj<;<,, d; > d.. Then there exists
p e X1\ {0} such that for (z,t) € Q x R,

(4.2)

wihpi(a,t) = d; /Q Ji( = i (w:t) — il Oy + 3 g (2005, 1) — s(A) i, ).

j=1

Integrating (4.2) over 2 x (0,1) and adding the resulting equations from ¢ =1 to m
give

s(A)jZl/Ol/Qcpi(w,t)dxdt:ii/ol/Qaij(x,t)cpj(x,t)dxdt,

i=1j=1
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which implies that s(.A) > 0. Normalize ¢ by

(4.3) i/ol/ﬂwf(x,t)dxdtzl.

Multiplying (4.2) by ¢;, integrating over € x (0,1) and adding the resulting equations
from =1 to m yield

0<s(=-2 % /0 /Q/QJi(l“ — ) (i (5, 1) — i (x, 1)) >dydadt
=1
+Z/0 /Q§ aj(x,t)p;(x, t) iz, t)dzdt
: =

1 1
2 2
< E xt)Iélgi([Ol laij(x,t)] </0 /ngj(a:,t)d:vdt—&-/o /Qwi (x,t)dxdt)

(4.4) < Z max |a;i(z,t)].

(ch )eQx[0,1]

Then we have

/01/ / Ji(z = y)(pi(y,t) — pi(, 1)) dydadt

2
< df JrZ/ /Za” z,t)p;(x,t)pi(z, t)dedt
2 m
45 <z it
(4.5) = d; ”2:1 (x,t)rggi([o,u a4 (,2)]

Set ¢(x,t) = p(x,t) — @(t). Then [, ¢(x,t)dz=0. Note that

//J (x —y)(pi(y,t) — pi(x,t)) dydx—//J (x —y)(ds(y,t) — ¢i(x,t))?dydz.

y [33, Formula (5.6), p. 1688], there exists C; > 0 such that

(4.7) /¢2 x,t)d <5 / /Q y)(di(y,t) — ¢s(x,t))*dyda for all d; > 1.
In view of (4.5), (4.6), and (4.7), we have

1 , 1 m
(4.8) ‘AL@“mmﬁaai§NﬁﬁmW“W”

Integrating (4.2) over 2 yields

m

Wﬁ=29/%xmwm—wwz+zm/%xwmw
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In view of (4.8), we have

m

1t N ,
;ml/o /Qaij(x,t)d)j(x,t)dxdt:O<;di ) for all 1glgnmdi>>l'

The variation of constants formula gives rise to

s, B N o
(4.9) p(t)y=e \Il(t,O)ga(O)—!—O(z;di ) for all  Inin d; > 1.

Note that ¢(1) = @(0). We derive

s(A)

< \D(1,0)¢(0)+O<Zdi;> for all 1£I}i<nmdi>>1.
i=1 ==

(4.10) B(0)=e~

If liminfuin, <<, dis+oo 251 $5(0) = 0, we derive from (4.9) that

lim inf ©;(t) =0 uniformly for ¢e[0,1],
=1

min d;—4o00 %
1<i<m 7

which implies that im infuin, .-, a, o0 Soges Jy Jo @2 (t)dzdt =0. Since

/Ol/ggo?(x,t)dxdt§2</01/ng@(a;,t)dxdwr/ol/Qcp?(t)dxdt),

combining with (4.8), we have Kminfuin, .-, d,—s+o0 Sy Jy Jo @3 (2, t)dadt = 0.
This contradicts (4.3). Thus,

m

(4.11) Jmint 375,(0)>0
1<i<m Jj=1

If BmSup i, - - 4,400 MaX1<j<m P;(0) = +00, we derive from (4.9) that

limsup  max @;(t) =4oo uniformly for te[0,1].

min d;—+oo 1SI<m

Note that
1 1/ 2 1 1
_2 2
/ wj(t)dt:/ (/w(w,t)dx) dtg—/ /gpj(x,t)dxdt.
0 o \2| Ja 12 Jo Ja
‘We obtain

1
limsup  max / /gp?(x,t)dxdtz—koo,
min di—+oo15i<m Jo  Ja

1<i<m

contradicting (4.3). Thus,

(4.12) limsup  max ©;(0) < +oc.
B, dimpoo LSS
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Case 1. W(1,0) is irreducible. For any sequence {dy} with di, = (dk,,...,d,, )7,
there exists a subsequence {dj, } such that @, (0) = ¢* and s(A) — s* as minj<j<m,
dy,, — +oo for some ¢* € (R™)* and s* > 0. Tt follows from (4.10) that ¢* =
e_%\Il(l,O)go*. Since ¥(1,0) is irreducible, we derive from the Perron—Frobenius
theorem that s* = wlnr(¥(1,0)). By the arbitrariness of {dj}, we get the desired
conclusion.

Case 2. ¥(1,0) is reducible. Although the remaining proof is similar to the proof
of [46, Theorem 3.3], we still present the proof here for the sake of completeness.
We first prove that seo := limmin, <<, d;—+00 S(A) exists. By (4.4), we know s_ :=
WM infimin, -, di—+00 $(A) and sy :=Hmsup,i, 4. 1o S(A) exist. It suffices to
show s_ =s,. If s_ < sy, for any 5 € [s_,s.], we derive from (4.11), (4.12), and
[46, Lemma 3.13] that there exists a sequence {d;} with d; = (dy,,...,d;, )T such that
@1(0) = ¢ and s(A) — 5 as minj<j<m, dj, = 400 for some ¢ € (R™)* with ¢ #0. It
follows from (4.10) that ¢ = e~ W¥(1,0)®, which implies that e& is an eigenvalue of
U(1,0) for any § € [s_, s4]. This is a contradiction. Thus, s_ = s4.

Next we prove so, =wlnr(¥(1,0)). For any given € >0, let af;(z,t) = a;j(z,t) +¢
and A®(z,t) = (aj;(2,t))mxm for all (z,t) € Q x R. Let {¥°(t,s) | t > s} be the
evolution family on R™ of w‘é—;‘ = A%(t)u, t > s with A%(t) = (W)mxm.
In view of Lemma 2.7 and Proposition 2.10, s(A%) > s(A), where A° is defined by
replacing A(z,t) by A¢(x,t) in the definition of A. Since s(A°) — wlnr(We(1,0))
as miny<;<m,m d; — 400 and Inr(¥(1,0)) — Inr(¥(1,0)) as € — 0, we have so <
wlnr(¥(1,0)). Via a suitable permutation, we may rewrite ¥(1,0) into the following

form:

M, 0o ... 0
My My - 0
Msy Mpay - M

where My is an ig X i irreducible matrix and Z?zl i, = m. Without loss of gen-
erality, we assume that ¥(1,0) is already in the above form. We know r(¥(1,0)) =
maxi<p<m (Myr). We split d,K,J, A(z,t), and A(t) into d = diag(%x, ..., Zm),
K=diag(1,..., %), J =diag(_71,..., Zm)

App(z,t)  Agpa(x,t) - Ayg(z,t)
Ao t) = Agl(:x, t) A (:x, t) . AQm:(x, t) |
Apn(21) Apa(mt) - Ap (1)
and
An(t) At A1 (1)
) = Azf(f) Azf(f) | A (t)
Aun(®) Asa(t) -~ Aaal)

For each k=1,2,...,7m, let {Wy(t,s) |t > s} be the evolution family of wd% = Ay (t)u,
t > s. It follows from [46, Lemma 3.11] that for each k=1,2,...,m and [ > k, Ay (t),
and hence Ay (z,t) is a zero matrix for any t € R and (z,t) €  x R, respectively.
Define @7, by

A [ug)(x,t) = —wopug(z,t) + DI [ug](x,t) — D _Filug|(z,t) + Api(z, t)ug(z, t).
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By virtue of Lemma 2.7 and Proposition 2.10, s(A) > s(4). By the results obtained
in Case 1, we have s(%,) — wlnr(¥,(1,0)) as mini<;<., d; — +00. As a result, soc >
maxi<g<mwlnr(¥,(1,0)). Now we have soo =wInr(¥(1,0)). We know wlnr(¥(1,0))
is the principal eigenvalue of (4.1). The proof of (i) is completed.

(ii) We first assume that

(4.13) aij(z,t) >0 forall (z,t)€ QxR and i#j.
It follows from [3, Theorem 1.4] that there exists ¢(z,t) € X1 satisfying
—wdd(x,t) + Alw, )d(w, 1) = A@)d(x,1), (w,t) € Qx[0,1].

Then for any & > 0, there is dy > 0 such that for all max;<;<m{d;} <do,

€2

— Alp](x,t) + <mag<)\(x) + €> (x,t)

e

= —dK[¢](z,t) + dT[)(z,t) — Ax)p(z,t) + (mag( Mz) + 5) o(x,t)

>0

)

which implies that s(A) < max,cq A(x)+e for all max;<;<m{d;} < dp by the definition
of A},(A). Hence, imsuppay, ., 1d,}—0 5(A) Smax,cq A(z).

Now we remove the extra assumption (4.13). Let § > 0 be any small constant and
define As by replacing A(x,t) by As(z,t) = (a;j(z,t) + 0)mxm in the definition of A.
The above arguments give that imsup,ay, ., (4,30 $(As) < max,cq As(x), where
As () is defined in Lemma 2.8 by replacing A(z,t) by As(x,t). By virtue of Lemma 2.7
and Proposition 2.10, s(As) > s(A). We derive from the proof of [3, Theorem 1.5
that As(z) — A(x) uniformly on Q as 6 — 0. Hence, imsup, .., ... 4,30 5(A) <
max,cq A(z). o

By Propositions 2.9 and 2.10 we know that both A and B are resolvent positive.
By [22, Lemma 2.2], we obtain s(A) > s(B) = a*. Hence, s(A) — max, o A(z) as
maxi<;<m{di} — 0. The proof is completed. 1]

Next we investigate the effect of dispersal ranges. Set J,,(z) = - J;(£) and
di

denote A, the corresponding operator replacing J; by J,, and d; by' P for all

1 <i<m in the definition of A, where o; > 0 is the dispersal range and m; > 0 is the
cost parameter (see Hutson et al. [15]). Motivated by Shen and Vo [32] and Vo [43],
we have the following results.

THEOREM 4.2. Suppose that J; is compactly supported and s(A,) is the principal
eigenvalue of A,. Then the following statements hold:
(i) s(Ay) = max,ecq A(z) as mini<j<m{o;} = +oo for m; >0 and 1 <i<m.
(ii) If (A2) holds, J; is symmetric with respect to each component, and a;; €
C*0(Q x [0,1]) for all 1 <i,j <m, then s(A,) — max,cq A(T) as maxi<i<m
{oi} =0 form; €]0,2) and 1 <i<m.

Proof. (i) We derive from [22, Lemma 2.2] that s(A,) > maxg aq (), where a, ()
is the principal eigenvalue determined in Lemma 2.8 with A(z,t) replaced by
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d dp,
A(z,t) + diag < 0."11 /QJ(71 (x—y)dy,...,——m- /QJU’" (x— y)dy) ,

1 Om

which implies that

liminf  s(Ay) > max A(x).

min {o;}—+oco €N
1§igm{ i} €

It suffices to show that

limsup  s(Ay) <maxA(x).

min {o;}—+oo z€Q
1<i<m

We first assume that

(4.14) aij(z,t)>0 forall (z,t)€Q xR and i#j.

It follows from [3, Theorem 1.4] that there exists ¢ € X1+ satisfying
—woip(x,t) + Az, t)p(z,t) = Nx) (2, 1), (3,t) €Q x [0,1].

Since ¢(x,t) € X and

i [ e 9)0it1) ~ a1y
Q

0

—0 as min {o;} = 400,
Lo (2%(0,1)) 1<ism

for any € > 0, there exists oo > 0 such that for all min;<;<,,{0;} > 0o,

wu0i(0.) = e [ Tl = )(01(001) = 6120y

_ ;aij(x7t)¢j(x,t) + (r;lg%c/\(x) +s> oi(x,t)

== [ ae = 9)@i(00) — )y — A,
Q

0

+ (maX/\(a:) + s) ¢i(,t)

zeQ

d / Tor(@ — 9) (6w, 1) — bul,£))dy + (a1
7 Q

Z _
o

> 0.

By the definition of \},(A,), we have s(A,) = A, (Ay) < (max,cq A(z) +¢). Hence,

limsup  s(Ay) <maxA(x).
min {o;}—+o0 zeQ

1<i<m
By using the same argument as the proof of Theorem 4.1(ii), we can remove the extra
assumption (4.14). B B
(i) Since a;; € C*O(€2 x [0,1]), we have A(x) € C*(€) and the corresponding
eigenfunction ¢(z,t) € C*°(Q x [0,1],R™). Normalize ¢ by ||¢||x = 1. Then for any
e>0,
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w0u6i(2.) = e [ T =) 01(001) = 6100y

%

fZa” z, t) i (2, 1) + (max)\( )+ >¢>i(x,t)

e [ oo = 0)(61(0.0) — 6x(w D)y — M),
0; Q
+ <r£1€ag<)\(x) + 5) oi(x,1)
> =i [ e =) (6100:0) = i)+ 204 (2)
(1.19 = [ Rt )~ 61 )z + 2610 )

i

Since J; is compactly supported, there exists ¢* >0
0; <o* and 1 <i<m. Thus, by Taylor’s expansion and the symmetry of JZ, there
holds

e [ Bt ovzt) — oua )

0

&
o [ Bt gt - 6w

0

-4 / Ti(2) {D@(w,t)(aiz)—l—;(oiz)TD2(bi(x7t)(oiz)+0(UZ-2) dz
diO'-Qimi

(4.16) = Z7/ Ji(2)2" D2 ¢y(, t)2dz + o0 (07 ™).

2
Combining (4.15) with (4.16) yields

zeQ 1<i<m

Ay 9] (x,t) + <max)\(x) + s> ¢(z,t) >0 for all max o; <o™.

By the definition of \},(A,), we have
5(As) = N (As) <max A(z) +e.

€

Then it implies that

limsup s(A,) <maxA(z).
max o;—0 e
1<i<m

It suffices to show that

liminf s(A,)>max\(z).
lrgniz%xm o;—0 zeQ

For any € > 0, there exists an open ball B, C  of radius € such that A(z) + € >
maxg A(z) in Be. Let ¢. € CH1 (R™ x R,R™) be nonnegative and 1-periodic in ¢ and
satisfy

pe=¢in B.xR, ¢.=0in (R"\By) xR, and sup  |pe(z, )] < ||@]|lx =1.
(z,t)ER™ xR
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Let \,(AP) be the generalized principal eigenvalue of AP, where AP is defined by
AP (z,t) := —wdu(z,t) + OKpu](z,t) — Ou(x,t) + A(z,t)u(z,t)
with O = dlag( ml Yoy ﬂ,—mm) and
olul(e ) = ( [ Josto =m0 [ o (o= i) ).

Then we have for (x,t) € Be x R that

w@tqﬁz {E t |:/ Jo'l ¢Z(y7 )dy_¢l(x’t):|

Za” (z,t)p;(z,t) + (maX/\( )—e— |lnle|> di(x,t)

g | [ o= vestrnity—aten)]
+( A(z) —|—max)\( ) — _|lie> ¢i(z,t)
sz [, a0 (00)] - (o)
dz / o (&= )b (9. 0)dy = b, (.8) - /B - Jgi(m—y)&ei(y,t)dy]

\1|(’)

Set 0 =max;<;<m 0; and m* = max;<;<, m;. Now following a similar argument as
in Shen and Vo [32, Theorem D] and choosing € = ok and k = ™2 we have for
0<o<1and (x,t) € By x R that

watqsi('rat) - 0_61{2, [/B JO’{, (J? - y)¢1(yat)dy - ¢l(mat)‘|

fZa,J z,t)pi(z,t) + (max/\( ) —of — 1)|) ¢i(x,t) <0.

|In (o

Then by the definition of ;\p(Af"k ), we have

(Aa’ >>max)\() - !

€ [In(c*) |

It is easy to check that X, (A2) > Sxp(Af“k) and thus

1
(4.17) (AQ)>r;1§>2</\() ak—m.
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Set

d; d;
Nii ,t = Qj; ,t e e JZ dz.
Gl = auten) + i~ [, (e

It is obvious to see that [o . J;(2)dz =1 for a sufficiently small o;, which implies

that limg, 0 ||Gi; — aiiHC(QX[gJ]) =0. We derive from Proposition 3.4 that

(4.18) A (A?) >3, (A2) + min { min [&ii(x,t)—aii(x,t)]},

1<i<m ((Qx]0,1]

where A2 is defined by replacing a;;(x,t) by @s(z,t) in the definition of A2. By virtue
of (4.17) and (4.18), we obtain

liminf s(A,)= liminf A, (A?) > max A(x).
11<11a<x o;—0 1I<na<x o;—0 zeQ

The proof is completed. ad

5. An application. In this section, we apply our theory to study the following
epidemic model [8, 9, 45, 14, 21]:

(5.1)
wOu=dy [ J1(x —y)(u(y,t) —u(z,t))dy — a(z, t)u+ H(z,t,v), (z,t)€eQXR,
wov =ds [ Jo(z —y)(v(y,t) — v(z,t))dy — bz, t)v + Gz, t,u), (2,t) €QXR,

where u(x,t) and v(x,t) denote the spatial density of the bacterial population and the
infective human population at location z in the habit region and time ¢, respectively;
the positive constant w is the frequency; positive constants d; and ds are the dispersal
coefficients; a(x,t) and b(z,t) denote the unit natural death rates of bacteria and
infective human population, respectively; the nonlinearity H(z,t,v(x,t)) means the
growth rate of bacteria caused by infective humans; and G(z,t,u(x,t)) stands for the
infection rate of the human population under the assumption that the total susceptible
human population is constant during the evolution of epidemic. Assume that the
kernel functions J; satisfy
(K) Ji € C(R™),J;(0) >0, J;(x) >0, J;(—x) = Ji(z), [gn Ji(z)dz =1 for i =1,2.
Functions a(z,t), b(x,t), H(z,t, z), and G(x,t,z) satisfy
(F) a(x,t) and b(z,t) are positive continuous functions on Q x R and a(z,t+1) =
a(z,t), b(z,t + 1) = b(z,t) for all @ x R. H,G € C%%2(Q x R x [0, +0c0)),
H(z,t,0) = G(x,t,0) = 0 for all (z,t) € Q x R and aa(gz’t’z), OH(gz’t’z) > 0,
H(z,t+1,2) = H(z,t,2), G(x,t +1,2) = G(x,t, 2) for all (x,t,2) € 2 x R x
[0,+00). There exists a constant M > 0 such that M = (M, M) is an upper

2 2 —
solution of (5.1); g Ga(;’t’z), 9 Hégz’t’z) <0 for all (z,t,2) €Q xR x [0, +00).

We aim to investigate the impacts of dispersal rates, frequency, and dispersal
ranges on the basic reproduction number and positive periodic solutions. Now we

choose m = 2. It then follows that X = C(Q,R?),

Xt ={ueC(Q,R*| u(z) e (R*)",z€Q},
X={ueC(QxR,R)| u(z,t+1)=u(z,t),(z,t) €QxR}.
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Define
_( —a(z,t) %Ij(x t,0)
Cla,t):= (gG 260)  bla,t) )
R _rt 1 oH
Cay=( 3 goca z,t)dt [, 8_3 (x t,0)dt
Jo 92 (x,t,0)dt  — [ b(x,t)dt
1

Ot) = -5 Joa(z,t)dx IQ\ fﬂ 81;1 (x,t,0)dx
ﬁfg 9C (2,t,0)dz \QI Jo bz, t)da

Q
F(z,t):= (%f(g?,t,O) 8>’ Fa):= ( 136‘(2 t,0)dt g)

0 0z
_ 0 0
F(t):= (Iflll O %(m,t,(})dm O> ’
t) := —wopu(x,t) + dK[u)(z,t) — dT [u](x,t) + C(z,t)u(z,t), uek,
(z,t) := —woru(z,t) + dK[u](z,t) — dT [u](z,t)
+ (C(z,t) — F(z,t))u(x,t), uelX,

z[u](xw:d/qu}(x)—dJ[u](x) (C(a) - F(x)u(z), weX,
[u

2()[u](z) :=dK[u](x) — dT[u](z) + (C(z,t) — F(x,t))u(z), uelX,
€u](z,t) == —wopu(z,t) — dJTul(z,t) + (C(z,t) — F(z,t))u(z,t), ueX,
Du)(z,t) := —wiu(z,t) + (C(x,t) — F(z,t))u(z,t), uelk,

P (z,t) ;== —wdu(z,t) + (C(t) — F(t))u(z,t), ueX,
Fu(z,t) := F(z,t)u(z,t), uelk,

Let {7 (t,s) |t > s} be the evolution family on X associated with 2.
PROPOSITION 5.1. £ is a resolvent positive operator on X and s(#B) < 0.

Proof. We know that 7 (t,s) is a positive operator in the sense that 7 (t,s) X C

X+ for all t > s. It follows from [41, Theorem 3.12] that £ is resolvent positive. It is
clear that s(%¢) < 0. Suppose for the contrary that s(#) > 0. Then by Theorem 2.13,
s(A) > s(¢) implies that s(%) is the principal eigenvalue of Z with the corresponding
eigenfunction ¢; that is, (s(%), p) satisfies
(5.2)

—wiypr +di [o, Ji(z —y) (91, t) — ¢1(z,1)dy — a(z, t)er + L (2,t,0)p2

= S(‘@)(Plv
—wOpa +da [, Jo(z — y) (02(y, 1) — 2(2,t))dy — b(x,t)p2 = s(Z)po.

Integrating (5.2) over £ x (0,1) yields

*fol Ja a(:c,lt)gol(m,t)dxdtJrfo 0 2 (2,t,0)pa(z, t)dadt
) B) [y [oe1(x, t)dadt, 1
— [y Jo b, t)po(z, t)dadt = s(B) [, [ e2(z,t)dzdt,

which implies that s(#) <0 due to ¢ #0. A contradiction occurs. Thus, s(#) < 0.
The proof is completed. ad
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Define
“+ o0
H[B)(s) = / F(8)T (5,5 — )p(-s — )dt, $eX.

Suppose that ¢(z,t) is the density distribution of infected individuals at the spatial
location z € Q and time ¢. Then F(z,s)7 (s,s —t)¢(z,s —t) is the distribution of
individuals newly infected at time s by those infected individuals who were introduced
at time s — t. Inspired by the ideas of next generation operators (see [12, 42, 44]),
define the spectral radius of A~

Fo=r1(N)

as the basic reproduction number of system (5.1).

In order to investigate the impact of dispersal range, we set J,, () = -5 J;(£)
and denote %, and 6, the corresponding operator replacing J; by J,, and d; by %
for i = 1,2 in the definition of & and %, respectively, where o; > 0 is the dispersal
range and m; > 0 is the cost parameter. Similar to the definition of %, we define

where

+oo
Ne[9)(s) := ; F(-,8),(s,s—t)p(-, s —t)dt, ¢PeX,

with 7, (¢, s) being the evolution operator associated with Z,,.

THEOREM b5.2. The following statements hold:

(i) Zo — 1 has the same sign as s()=s(B+ .F).

(i) If Zo >0, then p= %y is the unique solution of s(%# + %ﬁ) =0.

Proof. We derive from Proposition 5.1 that & is resolvent positive and s(%) < 0.
Then [41, Theorem 3.12] gives

o0
(5.3) (/\1—93)71(;5:/ e MT (5,5 —t)p(-,s —t)dt for any \>s(%), ¢ € X.
0

Choosing A =0 in (5.3) yields

+oo
B = T (s,8s —t)p(,s —t)dt for all € X.
0
Then we have A = —F %~ 1¢. By virtue of Proposition 2.10, we know that % + iﬂ
is resolvent positive for any p > 0. It follows from [41, Theorem 3.5] that s() has
the same sign as 1(—F B ) —1=% — 1. f r(—FB~') =% >0, we derive from
[46, Lemma 2.5(ii)] that u = %y is the unique solution of s(% + %ﬁ) =0. The proof
is completed. ]

Remark 5.3. Proposition 5.1 also holds for %, and Theorem 5.2 also holds for
X .

Next we study the effects of small and large dispersal rates, frequency, and dis-
persal ranges. Set

P ={ucCR,R?) |u(t)=u(t+1),tcR}.
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For each x € Q, let {T',(¢,s) |t > s} be the evolution family on R? of

{(311; =—a(z,t)u+ %—Ij(x,t,O)U, t>s,

U = —b(z,t)v, t>s.

(5.4)

We use {T'(t,s) |t > s} to denote the evolution family on R? of

Z

dt = B(t) t>s.

Let {®(t,s) |t >s} and {®(¢t,s) |t > s} be the evolution families on X of

% = —b(z,t)v, t>s,
and
9 = —a(t)u + ar Jo 91 (3,t,0)dav, t>s,
%:—b(t)v, t>s,
respectively.

Let {®4(t)}+>0 be the semigroup generated by .. We define a series of bounded
linear operators @: X - X, Q: X = X, 2, : P — P, 9 P — P, and Q X—-X
by

+o00o
Qul(s) := F(z,s)®(s,s —t)u(-,s —t)dt, sc€RuedlX,

0
—+oo

Q[ul(s) := F(s)®(s,s —t)u(-,s —t)dt, scRucX,

+oo
2.[u](s) = /0 F(z,s)Tx(s,s —t)u(s —t)dt, seRue P,

+oo

D[u](s) := F(s)[(s,s —t)u(s—t)dt, scRuec 2,

~ Foo
Qlul(x) ::/0 F(z)®4(t)udt, ueX.

Let us define Ry :=7(Q), Ro:=7(Q), Ro(x) :=r(2,) for any x €Q, Ro —r(g) and
Ro:=r(Q). In the following, we always suppose that s(%, + ﬂ) > 3(% +-= y) for
any u>0. Then s(%, + 1 ﬁ) is the principal eigenvalue of 93 +

THEOREM b.4. The following statements hold:
(i) %o — max,ecq Ro(x) as max{di,d2} — 0.
(11) %(] —Ro as mm{dl,dg} — +00.
(iti) If 22 (2,t,0), % (x,t,0) € CO¥L(Q x R) and s(P,(t)) is the principal eigen-
value of 73 (t) for t € [0,1], then %o — R as w — 0, where R satisfies
fo (Prz(t)) dt =0 and P,(t) is defined by

Pu(t)[u](z) :==dK[u](z) — dT [u](x) + <C(x,t) — F(x,t) + iF(x,t)) u(z).

(iv) If A (z,t,0) = 6G(a: £,0) for all (z,t) € Q x R, then %o — Ro as w — +00.
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(v) If J; is compactly supported and symmetric with respect to each component,

9 (3,1,0), 2% (x,t,0) € C*O(Q x [0,1]), and m; € [0,2) for i = 1,2, then

K — max,cq Ro(z) as max{oi,002} — 0.

(vi) If J; is compactly supported and m; € [0,400) for i = 1,2, then #§ —

max,cq Ro(z) as min{oy, 02} — +o0.

Proof. Since s(%’—!— L7Z)>s(6+ L J) for any p >0, 5(93—!— L 7) is the principal
eigenvalue of %+ * ﬁz due to Theorem 2.13. It follows from Theorem 4.1 that s(Z +
;J) — s(2 + ;9) as min{dy,ds} — +oo and s(# + u‘/) — max,co A (x) as
max{dy,ds} — 0, where \*(x) is the principal eigenvalue of the following eigenvalue
problem:

(5.6) {_w dﬁgt) + (C(x,t) — F(x,t)+ %F(:at)) o(t) =Ap(t), o(t) € R2,
Pt +1) = ¢(t).

We derive from Theorem 3.6 that s(# + 1,?) — s(.,? + i?) as w — +oo for any
> 0. We conclude from Proposition 2.9 that s(2 + F) =max,q A (x) for any
@ > 0. Note that & + uﬁ is resolvent positive for any u> 0. It follows from [46,
Theorem 2.6] that

lim Ry = lim r"(—FB ) =r(-FI7),
min{dy,d2 }—+o0 min{dy,d2}—+o0
lim Ho = lim r"(—FRB V) =r(-F27),
max{di,d2}—0 max{dy,d2}—0

and

lim %Zy= lim r(—FB )=r(—ZZL"),
w——+00 w—+—+00
where we use Zo = r(—F#%~") derived in the proof of Theorem 5.2. By the same
arguments as the proof of Theorem 5.2, we have Ry = r(fﬁ.@fl)_, Ro :_r(ff.@’l),
and Rg = r(—F.£1). We derive from [46, Lemma 4 2] that Ry = Ro and Ry =

max,cq Ro(z). By Theorem 3.6(i), s(#+ - L7y — fo t)dt as w — 0. Together with
Theorem 5.2, we can derive (iii). (v) and (V1) can be proved by the same arguments
as above. The proof is completed. 0

Now we focus on positive periodic solutions of (5.1).

THEOREM 5.5. Suppose that o > 1. Then (5.1) admits a unique bounded positive
periodic solution u*. Moreover, for any ug € X+ \ {0} with up <M = (M, M), the
solution u(-,t;ug) of (5.1) with initial data ug satisfies

u(-,t;u0) —u*(-,t)||x =0 as t— +oo.

Proof. Since Zy > 1, we derive from Theorem 5.2(i) that s(<7) > 0. Since s(«)
is the principal eigenvalue of .27, there exists ¢ € X+ which satisfies
(5.7)
~wdipr +du [o Ji(z = y)(p1(y,t) — p1(2,1))dy — a(z,t)pr + G (2,,0) 02
=s( )1,
—wdyp +da [o Ja(x = y) (p2(y,t) — pa(a,t))dy + 52 (,t,0)01 — b(z, t)ps
= s()p2.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/03/24 to 108.83.28.210 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4074 Y.-X. FENG, W.-T. LI, S. RUAN, AND M.-Z. XIN

Set u = (uq,uy) = (d¢1,dp2) for some positive constant §. Then we have

wat@l —d; /Q Jl(x - y)(yl(%t) _ﬂl(xﬂt))dy + a(mat)gl(xvt) - H(l’,t,QQ(fE,t))

— %—Z(x,t,o)gg(m,t) — s(@)uy (z,t) — H(z,t,uy(2,1))

< —ds( Ypr (1) + \ i

aQ(xtug)

(¢p2(x,1))?

<0,

provided § > 0 small enough and here s is between 0 and u,(z,t). Similarly, if § >0
small enough, we get

WOy — do /Q Ja(x — y)(us(y,t) — ug(x,t))dy + b(z, t)us(z,t) — G(z,t,u, (,)) <0.

As a result, u is a lower solution of (5.1). By assumption (F), M = (M, M) is an
upper solution of (5.1). The desired conclusion follows from the standard argument
and one can see the proof of [4, Theorem 1.1]. d

For each x € Q, let p(x) be the principal eigenvalue of

{ﬂgﬂzcu@u@—xmw,teK

u(t+1) =u(t), teR.
Consider
wdg = —a(.’I}, t)u(t) + H(I7 t’ ’U(t)),

y [48, Theorem 3.1.2], we have the following lemma.

LEMMA 5.6. Assume that min,cq p(x) > 0. Then system (5.8) admits a unique

positive 1-periodic solution, denoted by w(z,t). Moreover, w(x,t) is continuous on
Q xR.

LEMMA 5.7. If Ro > 1, then there exists dg > 0 such that (5.1) admits a unique
positive 1-periodic solution (u,v) for all min{dy,ds} >do. In addition,

li a(t), o(t)) = (wi(t), wi(t iforml R,
gl (@(0).5(0) = (i (). w5 (1)) uniformly on

where (w3 (t),w3(t)) is the unique positive 1-periodic solution of
wdt = |Q\ fQ t)dzu(t +ﬁf9 H(z,t,0(t))dz,
w = IQ\ Jo bz, t)dzu(t) + ﬁfﬂ G(z,t,u(t))dz.

Proof. Since Rg > 1, we derive from Theorem 5.4(ii) and Theorem 5.5 that there
exists do > 0 such that (5.1) admits a unique positive 1-periodic solution (u,v) for
all min{d;,ds} > dy. It follows from [48, Theorem 3.1.2] that (5.9) admits a unique
positive 1-periodic solution (w3 (t),w3(t)). Integrating (5.1) over Q) yields

(5.10) w D) — —%f u(z,t)dr + & \QI Jo H(z,t,v(x,t)dz, teR,
' wdv(t ﬁf v(z,t)de + & m Jo Gl tu(z,t))dz, teR.

(5.9)
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In view of assumption (F), we have
(5.11) u(z,t),v(z,t) <M forall (z,t)€Q xR,

and there exists Cy > 0 independent of d; and ds such that

(5.12) H(z,t,2),G(x,t,2) <Cy for all (z,t,2)€Q xR x[0,M].
Thus,
(5.13)
B B Co+ < max a(x,t)+ max b(x,t)) M
du(t) ’ 7 dw(t) ‘ < (z,t)EQXR (z,1) QxR for all tER.
dt dt w
Integrating (5.10) from 0 to ¢ gives
(5.14)
wii(t) — wia(0) = — [5 a(s)a(s)ds + [ & i fQ 5,0(s))dxds + hy(t), tER,
wi(t) = wi(0) = — [y b(s)v(s)ds + [§ & Jo G, s,u(s))dads + ha(t), tER,
where
1 t
hi(t)=— —/ / a(z, s) [u(x,s) —u(s)] dads
9 Jo Jo
t
+ L/ / [H(z,s,v(z,s)) — H(z,s,0(s))] dzds
€ Jo Ja
and

ho(t) =— |Ql|/ / b(zx, s) [v(z,s) — v(s)] dads

|Q|/ / (z,s,u(z,s)) — Gz, s,u(s))] dzds.

Next we aim to prove that h;(¢) — 0 uniformly on [0,1] as min{d;,ds} — +o0 for
i=1,2. Multiplying the first equation of (5.1) by u and the second equation by v and
then integrating over  x (0,1) give

/ /Q/QJl x —y)(u(y,t) — u(z,t))*dydedt
=—d1/ //J1 x—y)(u(y,t) —u(z,t))u(z, t)dydedt
// (z,t)u xtdxdt—i—//thvxt)(mt)dxdt

<|QM max H(x,t,z)
(z,t,2) EQXRx[0,M]
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/(;//Jg z—y)(v(y,t) —v(x,t)) dydzdt
:—dg/ //J2 x—y)(v(y,t) —v(x,t))v(z, t)dydadt
// (x,t)v xtdxdt—l—//Gmtuwt Yo(z,t)dadt

<|QM max G(z,t,2) =
(z,t,2) EQXRX[0,M]

and

Set w(x,t) = u(x,t) — u(t) and 0(x,t) = v(x,t) — 0(t). Then we have [, u(x,t)dz =
Jo 0(z,t)dz =0 for all t € R. By [33, Formula (5.6), p. 1688], there exists C > 0 such
that

/122( x<—//,]1x— y,t) — i(x,t))*dyde for all dy >1
O 203
and
/ 2(x,t)de < —/ / Jo(x —y)(0(y,t) — 9(z,t))*dyde for all dy>> 1.
O 203
Note that

/Q/le(x_y)(u(y’t)_u(x’t))zdydxz/g/ﬂ«]l(w—y)(ﬁ(%t)—ﬂ(:c,t)>2dydx
//sz— oy, ) — v(,1)) dyda:—//J2 5= ) (3(y,t) — 5(, 1)) 2dyda.
Then we have
e
WAL

By the Holder inequality, there exists Cy > 0 such that

and

1
Cy
u(zx,t)|dedt < — for all d;>1
| [t ~ 1

and

1
Cy

v(z,t)| dedt < — for all dy > 1.
/0 /Q| (&) Vds

Since H,G € C%%2(Q2 x R x [0,+00)), there exists L > 0 independent of x, ¢, d;, and
ds such that

(5.15) |H (z,t,v(x,t)) — H(z,t,0(t))| < L|v(z,t) —o(t)] forall (z,#)e QxR
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and
(5.16)  |G(x,t,u(z,t)) — G(z,t,u(t))| < L|u(z,t) —u(t)| for all (z,t)€QxR.

A simple calculation gives for all ¢ € [0, 1] that

|hi(t)] <—= max a(amt)/o /Q|u(;v,s)—ﬂ(s)|dxds

‘Q| (z,t)EQXR

+|S12L/Ot/9v(x,s)—v(s)|dxds

1 G max a(x t)—l—LLg
TRV @oeaxe T [QVd,

and

ho(t)| <~ max bx,t)/t/ lo(z, 5) — 5(s)| dads

|Q| (a: t)EQXR

IQI //|uzs (s)] dzds

Cy
<——— max bt —|——L—,
|Q| iV d2 (z,t)EQXR ( ) |Q| V d1

which imply that h;(¢) — 0 uniformly on [0,1] as min{d;,d2} — 400 for i =1,2.
Suppose to the contrary that there exists a sequence {d; = (dj,,d;,)T} with
min{dy,,d;, } = +00 as I = 400 such that

[(ay,v;) — (wf,wS)HC([OJLRz) >¢p for some €y >0,

where (ug,v;) is the corresponding positive 1-periodic solution of (5.1) and

(@(t), 5,(t)) = (é'/ﬂul(x,t)dx,|Ql|/Qvl(m,t)dz>.

By virtue of (5.13), we derive from the Ascoli-Arzela theorem that there is a subse-
quence {d;, } such that

(ay,,71,) — (U, V) in C([0,1],R?) as min{dlkl,dle}%—I—oo
and (U(0),V(0)) = (

{wU( ) —wU(0)= —fo s)U(s ds—&—fotmilfg x,s,V(s))dzds, teR,
wV(t) —wV(0)= —fO s)V (s ds—i—fg @ Jo G@,5,U(s))dads, teR,

U(1),V(1)). By (5.14), (U, V) satisfies

which imply that (U,V) = (wy,wj). This is a contradiction. The proof is
completed. ]

THEOREM 5.8. The following statements hold:

(i) If max,cqRo(x) > 1, then there exists dj > 0 such that (5.1) admits a
unique positive 1-periodic solution u for all max{d;,d2} < df. Furthermore,
if min,cq p(x) >0, then

lim u(z,t) =w(z,t) uniformly in (x,t) € Q xR,
max{dy,d2}—0

where w is the unique positive 1-periodic solution of (5.8).
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(i) If Ro > 1, then there exists dg > 0 such that (5.1) admits a unique positive
1-periodic solution u for all min{dy,ds} > do. In addition,

lim u(z,t) =w*(t) uniformly in (x,t) € Q xR,

min{dy,d2 }—+o0

where w*(t) is the unique positive 1-periodic solution of (5.9).

Proof. (i) Since max,cq Ro(x) > 1, we derive from Theorems 5.4(i) and 5.5 that
there exists d > 0 such that (5.1) admits a unique positive 1-periodic solution u for
all max{d;,ds} < dj. Lemma 5.6 gives the existence of the unique positive 1-periodic
solution w of (5.8). Similar to [32, Theorem C], we can prove

max{(liilri}%o u(z,t) =w(z,t) uniformly in (z,t) € Q x R.

(ii) Our argument is motivated by [46]. Set @(z,t) = u(x,t) — u(t) and v(z
v(x,t) — 9(t). In view of Lemma 5.7, it suffices to prove (a(x,t),v(z,t))

uniformly on Q x R as min{d;,d>} — +oo. By (5.1) and (5.10), @(z,t) an
satisfy

wot(z,t) =dy /Q Ji(x —y)(a(y,t) — a(z,t))dy — a(z, t)u(z,t) + H(z,t,v(x,t))
—|—ﬁ/ﬂa(x,t)u(x,t)dx—ﬁ/ﬂH(m,t,v(m,t))dx
=d /Q Ji(x —y)(uly,t) — a(z,t))dy + g1(z,1) + g2(x,t) + g3(,1)
and

wdo(x,t) =da /Q Ja(z —y)(0(y,t) — 0(z,t))dy — b(z, t)v(z, t) + Gz, t,u(z,t))

1 1
+ @/ﬂb(z,t)v(x,t)dz - M/QG(JS,t,u(x,t))dz
:dQ/ JQ(x - y)(f}<yat) - ﬁ(zvt))dy + fl(xat) + fQ(xvt) + f3(z>t)a
Q
where
g1(z,t) = —a(x, t)u(x,t) + alx, t)u(t) + H(x,t,v(z, t)) H(z,t,o(t
B 1
ga(a.t) = —a(o.5(0) + [ ol t)dan(t) + Ha. 1 / Hix .,
1 1 _
g3(xz,t) = @/ﬂa(x,t)[u(m,t) a(t))dx + @ [H(x,t,9(t)) — H(z,t,v(x,t))]dz
and
fl ((E,t) = —b(x,t)v(m,t) + b(xvt)/[)(t) + G(:r,t,u(x,t)) - G(amt,ﬂ(t)),

Fola,t) = —b(z, )5(t) + b, )das(t) + Gl t, () — — [ Gl t, a(t))de,

1
€9 Jo Q[ Jo
fa(z,t) = ﬁ/ﬂb(m,t)[v(m,t) o(t)]dx + @ [G(z,t,u(t)) — G(z,t,u(zx,t))]dx.
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By (5.15) and (5.16), we have

g1 (2, t)| <lu(z,t)] max a(x,t)+ Llo(z,1)],
(z,t)€QXR

‘fl(‘rvt)|§|6(m7t)| max b(.%‘,t)+L|’L~L("E,t)|,
(z,t)eQxR

_1 - 1~
lga(z, )| < Q72 max a(z,t)]|al-,t)l|L2) + 92172 Lo(, D)2 ),
(z,t)€QXR

f3(z, 1) <1977 max  b(x,)[|5(-t)| 20y + |Q|_%L‘|a('7t)”L2(Q)~
(z,t) QxR
In addition, there exists some C > 0 such that
lg2(z,1)|, | fa(x,t)| < C for all (z,t) € Q x R.

Set

Ailé)(@) = / Ji(x — y)(6() — d())dy, deC@QR),i=1,2.

Q

Let {%;(t)}+>0 be the semigroup generated by %/Z for i =1,2. It follows from the
variation of constants formula that

ﬁ(-,t)Z%l(t)ﬂ(',O)-f-%/o 2 (t—s)(g1+ g2 +93)(-,s)ds
and

_ _ I

fu(~,t):?/2(t)v(-,0)+a/0 Us(t —s)(f1+ fa+ f3)(-,s)ds.

Define

= 3 Jo Jo Ji(z — y)(uy) — u(x))*dydz
i u€L?(Q), [, udz=0,u%0 fQ u?(z)dx

for i=1,2.
Note that for all t € R,
/fc(x,t)dmzo, /[gl(x,t)—i—gg(x,t)]dxzo, /gg(x7t)dx:0,
Q Q Q
/ﬁ(m,t)dxzo, /[fl(x,t)—i—fg(x,t)]dxzo, /fg(x,t)dx:O.
Q Q Q
It follows from [1, Theorem 3.6] that
_ _digy C (" _ag s
i B)lzzor < = SRl Oz + S [ e 250
0
1 45 (t-5)
tol e (g1 4 93) (-, )l L2()ds
0

and
t
IOl < e EH o0y + - [ e ER0s
0

1t g,
= / e~ ER0=I | (£ + £3)(-, 5)|| 2y ds.
0
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Set f = min{B1, B2}, d* = min{dy,d>} and m(t) = max{[|a@(-,t)||2(q), |0, t)||L2(0) }-
Then

m(t) < e*%ﬁtm(()) + ¢ + Q /t efgﬂ(tfs)m(s)ds
> Bd* w Jo ’

where
C= (1+|Q|_§)max{ max a(x,t),L, max b(x,t)}.
(z,t)EQXR (z,t)€EQXR

*

Choose v € (0,3) and define x(t) := e = tm(t), x(t) := sup{x(s) | 0 < s < t}. Then we
get

and hence,

Ce n -
Bd- 5&X

(5.17) X(t) <m(0) +

Since d* — 400, without loss of generality, we assume B - % We derive from (5.17)
that

. . C
m(t) <e VTt(t) <2 <m(0)e—”it + Bd*> :
which implies that limsup,_, . m(t) < Zﬁ%. Since m(t) is periodic in t € R, we
have sup,cg m(t) < 255 C_. As a result, sup,cp m( ) — 0 as d* — +o00, implying that
m(t) — 0 uniformly on R as d* — +oo. Set ji(x) = [ Ji y)dy for i =1,2. By
[1, Lemma 3.5], §; <min,cq ji(z). The variation of constants formula gives

(1) = (-, 0)e LN @

1 t dy . _ ~
+a/ e~ w@t=s) {dl/Jl(xy)U(y,S)der(gl + 92+ 93)(-,8)| ds.
0 Q

By the Holder inequality, we have
/ Ji(z —y)u(y, s)dy < C*|Ja(-, s)||L2(q) for some constant C* > 0.
Q

As a result,

C* _ 1
(-, 8)] < |-, 0)[e™ 2Pt + = supmi(t) + C—,
B1 ter d1 61

where constant C > 0 is the upper bound of gi, g2, and g3. Hence, @(z,t) — 0
uniformly on 2 x R as d* — +o0. Similarly, we can prove that o(z,t) — 0 uniformly
on 2 x R as d* — 4+00. The proof is completed. O

Now we study the effects of dispersal range and replace J; by J,,

fori=1,21in (5.1). By the same proof of Theorem 5.8(i), we have the followmg result
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THEOREM 5.9. The following statements hold:

(i) Suppose that the conditions of Theorem 5.4(v) hold. If max,cqRo(z) > 1,
then there exists oo > 0 such that (5.1) admits a unique positive 1-periodic
solution u for all max{o1,02} < 0¢. In addition, if min cq p(x) >0, then

lim u(z,t) =w(z,t) uniformly in (z,t) € Q xR,

max{o1,02}—0

where w is the unique positive 1-periodic solution of (5.8).

(ii) Suppose that the conditions of Theorem 5.4(vi) hold. If max,cqRo(z) > 1,
then there exists o1 > 0 such that (5.1) admits a unique positive 1-periodic
solution u for all min{oq,02} > 0. In addition, if min,cq p(x) >0, then

lim u(z,t) =w(z,t) uniformly in (z,t) € Q xR,

min{o,02}—+00
where w is the unique positive 1-periodic solution of (5.8).
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