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With the ever-increasing hardware design complexity comes the realization that efforts required for hardware
verification increase at an even faster rate. Driven by the push from the desired verification productivity
boost and the pull from leap-ahead capabilities of machine learning (ML), recent years have witnessed the
emergence of exploiting ML-based techniques to improve the efficiency of hardware verification. In this paper,
we present a panoramic view of how ML-based techniques are embraced in hardware design verification, from
formal verification to simulation-based verification, from academia to industry, and from current progress to
future prospects. We envision that the adoption of ML-based techniques will pave the road for more scalable,
more intelligent, and more productive hardware verification.
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1 INTRODUCTION

Hardware verification is at least comparably important with hardware design, if not more, in
terms of labor, costs [191, 217], and project time [93] consumed in chip development cycles: the
number of average engineers required for verification is commensurate with that of design [93];
Figure 1 shows the development efforts for advanced circuit designs, where verification roughly
occupies half of the cost for hardware development; Figure 2 illustrates that verification obviously
dominates the project time. With the growing complexity in design and verification, nearly 70% of
application-specific integrated circuit (ASIC) or field-programmable gate array (FPGA) projects are
completed behind schedule [93]. This indication is appealing for innovations in not only design
but also verification.

Machine learning (ML) has demonstrated its versatility in hardware design optimization and
evaluation [267]. This brings up one key question: whether ML-based techniques can improve
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Fig. 1. Development efforts for advanced designs under different technology nodes, which is redrawn based
on data from Cadence [217].

the quality and productivity of hardware design verification? Hardware verification tech-
nologies can be roughly classified into two categories: hardware-assisted and software-assisted.
The former includes emulation and prototyping, and the latter encompasses formal verification and
oracle-based verification. Hardware-assisted verification has been gaining an expanding market
share [141], especially advantageous for large-scale hardware designs. Despite its growth, the
application of ML-based techniques in hardware-assisted verification is still in its early stages,
with limited research studies available. For example, Siemens EDA employs ML to analyze the
knowledge database built from previous compilations and emulation runs, making the hardware
emulator smarter and more cost-effective over time [213]. To improve the compilation flow of
multi-FPGA-based emulation systems, ML models can be applied to predict whether a netlist is easy
or hard to compile, identify effective compilation strategies, estimate compilation time, and offer
recommendations for modifying hard-to-compile netlist partitions into easier ones [6]; evaluation
on a large-scale industry system-on-chip design demonstrates that the ML-based recommendation
flow achieves an additional 15% reduction in compilation time. It is highly expected that more
endeavors will be made in the future to leverage ML to enhance hardware-assisted verification. In
light of the wealth of research integrating ML with software-assisted verification, our emphasis in
this survey is on exploring how ML complements software-assisted design verification, specifically
within the realms of formal and oracle-based verification.

Formal verification uses static analysis to mathematically prove or disprove the functional
correctness of a system with respect to certain formal specifications or properties [220]. Several
popular formal methods include the Boolean satisfiability (SAT) problem and equivalence checking.
As the SAT problem is NP-complete [66] and equivalence checking is coNP-complete [113], they
become computationally impractical with complex systems or hardware designs. Oracle-based
verification exercises the designs with valid input stimulus to compare whether the outputs match
the oracle provided by a golden reference model [40]. Different coverage metrics are defined to
assess if the design-under-verification (DUV) or design-under-test (DUT) has been adequately
examined. Though oracle-based verification has been the major technique for hardware verification,
it still suffers from the scalability issue caused by the growing design size and more complex
system-level integration; the tremendous amount of data generated during simulation further
complicates the problem. These challenges all call for more productive verification by incorporating
more intelligence. Driven by both the push from the desired verification productivity boost and the
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Fig. 2. Percentage of ASIC/IC and FPGA project time spent in verification, which is redrawn based on data
from the 2020 Wilson Research Group Functional Verification Study [93]. Similar trends are observed in the
study in 2022 [93]. Note that verification time dominates project time on average.

pull from leap-ahead capabilities of ML-based techniques, this question has a positive answer,
as follows.

e In formal verification:

— graph-based learning approaches are naturally suitable to improve the efficiency of SAT
solvers, since Boolean formulas can be represented as graphs;

— the natural language processing (NLP)-based techniques largely benefit assertion generation
across natural languages, verification languages, and hardware description languages;

— various types of classifiers enable efficient identification of equivalence across different
levels of abstractions, facilitate fast generation and verification of properties, and aid in
selecting the optimal premises and heuristics used in theorem proving as well as the most
suitable formal engine for diverse verification problems.

e In oracle-based verification:

— fast and accurate ML-based predictive models can significantly reduce the long simulation
time of DUTs and simplify exhaustive coverage analysis;

— ML-based optimizers are capable to eliminate the long search time for stressful and com-
prehensive test sets and accelerate coverage closure;
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Fig. 3. Overall organization of this paper. Note that hardware verification is an indispensable step to guarantee
desired functionalities.

- various clustering and classification methods enable the automation of bug detection,
localization, and debug from a tremendous amount of failure information, which is nearly
impossible for human engineers to well parse..

While there exist several short surveys about ML applications in hardware verification [70,
145, 251], they mostly focus on simulation-based verification, which is insufficient in practice,
and provide detailed discussions on a few case studies, lacking a panorama of both static and
dynamic verification, both academia and industry, and both current progress and future prospects.
In this paper, we present a comprehensive overview of ML for hardware verification. From the
static perspective (Section 2), we first briefly introduce the mainstream formal methods and their
applications in hardware verification; then we summarize the problems in formal verification that
can be solved by ML techniques, the common ML techniques adopted to resolve each of them, and
the reason why ML techniques are powerful in these scenarios. From the dynamic perspective
(Section 3), we review studies associated with three major steps in oracle-based verification: coverage
analysis, test generation, and debug; we further discuss the role that ML techniques play, either
a predictive model, an optimizer, or a combination of these two. We also provide a future vision
of challenges, opportunities, and prospects of applying ML for hardware verification, aiming to
pave the road for integrating more intelligence into next-generation verification (Section 2.8 and
Section 3.4). In addition to attention to academic studies, we conduct sketchy discussions on how
ML techniques are embraced in industrial productions or commercial verification tools (Section 4).

2 FORMAL METHODS AND APPLICATIONS IN HARDWARE VERIFICATION

The use of formal approaches in hardware verification is widespread. Contrary to testing-based
verification approaches, formal verification makes use of rigorous formal methods and represen-
tations to formulate the specification and verification objectives of systems and to determine,
without the need for extensive testing, whether the finalized design satisfies the specification at
all properties [154]. To be more precise, formal approaches in hardware verification cover a wide
range of specifications, from high-level specifications (such as SystemC, behavior HDL) to low-level
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logic or physical representations (e.g., netlists). Depending on the nature of the design specification
representation and its functionality, the requirements could be shown as block diagrams, look-up
tables, or temporal logic. While there are a large variety of hardware formal verification problems,
the fundamentals are to model the design properties and hardware implementation into rigorous
mathematical representations and to obtain the verification objectives using desired verification
techniques and solving mechanisms. In particular for hardware verification, the majority of the
verification problems are formulated and solved with model checking [61], equivalence check-
ing [159, 249], assertion-based formal verification [92, 97], and theorem proving [21, 74, 167]. To
prove the mathematical models introduced by such verification techniques, solving mechanisms
based on canonical diagrams [38, 39], Boolean satisfiability (SAT) [28, 175, 183], Satisfiability Modulo
Theories (SMT) [22, 29, 75, 184], theorem proving, computer algebra [58, 59, 69, 173, 212, 273], etc.,
have been designed to prove or disprove with counterexamples. Even though formal verification
can complement and eliminate extensive simulation or testing processes by rigorous mathematical
reasoning, their scalability in practical verification problems has been the biggest challenge due to
its runtime complexity and/or memory usage [96]. Hence, there have been increasing efforts in
harnessing ML techniques to improve the scalability and reduce the runtime of different formal
verification categories from various aspects. This section reviews the recent progress in SAT solving
(Section 2.1), assertion-based formal verification (Section 2.2), equivalence checking (Section 2.3),
model checking (Section 2.4), theorem proving (Section 2.5), invariant generation (Section 2.6), and
runtime prediction and optimization (Section 2.7).

2.1 Boolean Satisfiability Solving

The SAT problem (i.e., Boolean satisfiability problem) is a decision problem: given a Boolean
propositional formula, if there exists at least one valuation making the formula true, this formula is
claimed to be satisfiable (SAT); otherwise, this formula is unsatisfiable (UNSAT). Boolean formulas
are usually represented in the Conjunctive Normal Form (CNF): a formula is expressed as a
conjunction (A) of clauses; a clause is expressed as a disjunction (V) of literals that can be either a
variable or its negation (—).

Many practical problems can be reduced to the SAT problem, a proven NP-complete problem [66].
Given its broad applications, there has been consistent research attention on this hard combinatorial
problem, and one promising direction is employing ML-based techniques to advance combinatorial
optimization [24]. Targeting the SAT problem, ML-based techniques can be adopted to @ build
classifiers that provide fast SAT/UNSAT decisions based on input formulas [15, 41, 81, 198,
222, 224], or @ improve bottleneck components in existing SAT solvers [163, 221, 265, 272,
276], such as Conflict-Driven Clause Learning (CDCL) solvers and Stochastic Local Search (SLS)
solvers. For more reference, there is a comprehensive survey of ML for SAT solving [121].

Classification for fast SAT/UNSAT decisions. The SAT problem can be formulated as a binary
classification based on input Boolean formulas. A Boolean formula in CNF can be represented as a
bipartite graph, referred to as a literal-clause incidence graph (LIG), which contains nodes for each
clause and each literal in the formula as well as edges connecting a clause node and a literal node if
the clause contains this literal. When the literal nodes of the same variable in a LIG are connected, it
is defined as LIG*. The LIG-based representation makes it natural to exploit graph neural networks
(GNNs) to classify satisfiability [41]. For example, NeuroSAT [222] consists of two parts: an encoder
with a customized GNN that takes in the LIG* representation of a formula and outputs an embedding
for each literal, and an aggregator that maps each literal embedding to a scalar vote and aggregates
them into the final prediction of satisfiability. NeuroSAT reaches an accuracy of 85% when evaluating
on a synthetic random SAT generator with 40 variables per instance. Following NeuroSAT, Shi et
al. [224] employs the transformer architecture to realize parallel speedup, which uses self-attention

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July 2024.



6 Nan Wu, Yingjie Li, Hang Yang, Hanqiu Chen, Steve Dai, Cong Hao, Cunxi Yu, and Yuan Xie

Table 1. Formal verification with ML-based techniques. Both formal methods (SAT solving, assertion genera-
tion, equivalence checking, model checking, theorem proving, and invariant generation) and cost estimation
can be improved by different ML-based techniques. S, U, and R stand for supervised, unsupervised, and
reinforcement learning, respectively.

Formal Method Problem Formulation FWK ML Model/Technique
GNN [222]
Binary classification for satisfiability Transformer [224]
Boolean GNN + Contrast learning [81]
Satisfiability -
Solving Generating satisfiable assignments Deep-gated recursive GNN [15]

(Section 2.1) Recurrent GNN [198]

DQN + GNN [163]

Improving variable initialization in CDCL
Improving variable selection in SLS
Improving variable initialization in SLS

Logistic regression [265]
REINFORCE + GNN [272]
GGCN [276]

RTL + simulation trace — assertion

Binary decision tree [166, 223, 254]
Breadth-first decision tree [126]

\ \
‘ Improving branching heuristics in CDCL ‘
\ \

\
‘ GNN [221]
\

Assertion
Generation NL — SAL NLP [108]
(Section 2.2) E-GRIDS [127], constituency tree [199]
NL — SVA Transformer [50]

GPT-3 [5]

| NL — RTL + UVM, SVA — NL

LSTM + machine translation [118]

||l | vudg | gl |[lvBvw | Bw | CC|vwvn

Equivalence System-level modeling & RTL equivalence SVM [134, 135]
Checking RTL & Gate-level signal correlation Decision tree [13]
(Section 2.3) Boolean functions & hardware implementation RNN [232]
‘ Generating properties GAN with RNN+CNN [102]

Boosted tree, random forest, decision tree,

Model Checking . . . . . S an >
(Section 2.4) Directly verifying properties by classification and logistic regression [278]
s GNN [185]
‘ Finding counter-examples ‘ R ‘ Q-learning [17, 23, 269]
‘ Refining abstraction based on counter-examples ‘ S ‘ Decision tree [60, 62]
S Naive Bayes/kernel-based learning [98, 151]
Premise selection S CNN, RNN [143]
U Transformer [18]
Theorem U GNN [91]
Proving s Gradient-based methods [95]
Section 2.5 isti i : radient-based methods
¢ ) ‘ Heuristic configuration adaptation ‘ S ‘ Gaussian-kernel-based regression [160]
‘ Heuristic selection ‘ S ‘ Kernel-based learning [36, 37]
Autoformalization S+R Imitation learning, REINFORCE, and GAN [263]
u 1 S LLM [268]
Invariant Generation Generating numerical and quantified invariants S Decision tree [103, 104]
(Section 2.6) Generating loop invariants R GNN, LSTM, and policy gradient [228]
- Runtime estimation for formal verification S Linear regression [84]
Cost Estimation | engi L. ‘ficati o
(Section 2.7) Formal engine selection for verification problems S Decision tree [85]
’ Time and memory usage S MLP [247]

and cross-attention to capture interactions among homogeneous and heterogeneous nodes in
LIG-based representations, respectively. To relax the requirement of labeling a large number of
SAT instances in supervised models, Duan et al. [81] combine label-preserving augmentations
with contrast learning, which achieves comparable prediction accuracy to NeuroSAT with 100x
reduction in the number of required labels. Aiming to solve the SAT problem by directly generating
a solution, Amizadeh et al. [15] propose a differentiable framework mimicking reinforcement
learning (RL), which consists of a solver network and an evaluator network: the solver network,
with the deep-gated recursive GNN structure, takes in Boolean circuits represented in directed
acyclic graphs (DAGs) and directly generates an assignment of input variables; the evaluator
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network evaluates whether the predicted assignment is SAT; the optimization goal is to push the
solver network to generate an assignment that yields a higher satisfiability value in the evaluator
network. QuerySAT [198] adopts recurrent GNNs with a query mechanism; for each query of
a variable assignment, a differentiable unsupervised loss function is designed by relaxing input
variables from discrete to continuous values, which can be directly optimized toward finding a
satisfying assignment.

Even though ML-based techniques can make fast decisions of SAT/UNSAT, they are approxi-
mating the heuristics employed in conventional SAT solvers by stochastic NN models, without
a theoretical guarantee of correctness. Thus, these ML-assisted SAT decisions are expected to
quickly filter out obviously UNSAT solutions at early search stages instead of completely replacing
conventional SAT solvers. In addition, several studies introduce unsupervised techniques to get rid
of the efforts of labeling data, however, it requires high expertise to craft their differentiable loss
functions [81, 198]. So, there is a trade-off between labeling efforts and required expertise in loss
functions, suggesting the adoption of semi-supervised techniques in future work.

Improving conventional SAT solvers. For CDCL-based solvers, NeuroCore [221] incorporates
a simplified NeuroSAT [222] into several high-performance SAT solvers that use the Exponential
Variable State-Independent Decaying Sum (EVSIDS) as the branching heuristic [183], which main-
tains activity scores for every variable and branches on the free variable with the highest score. The
goal is to complement the branching heuristics used in existing solvers by periodically querying
NeuroSAT and resetting the variable activity scores according to NeuroSAT’s predictions of how
likely the variables appear in an unsatisfiable core. Graph-Q-SAT [163] exploits deep Q-network
(DQN) to improve the branching heuristic in CDCL-based solvers. The SAT formula is represented
in a LIG, and the DQN agent equipped with a GNN decides whether to set each unassigned variable
as true or false. Wu [265] focuses on finding the preferred initial value of each Boolean variable
in a CDCL-based solver, where a logistic regression model is employed to predict SAT/UNSAT of
Boolean formulas after fixing the values of certain variables.

For SLS-based solvers, Yolcu and Pdczos [272] incorporate GNNs with REINFORCE to act as
the variable selection heuristic. The GNN takes in LIG-based representations of Boolean formulas
together with an assignment to all variables, and outputs a probability vector of flipping the value
of each variable. NLocalSAT [276] uses a gated graph convolutional network (GGCN) to directly
predict solutions to SAT instances based on LIG-represented formulas, providing guidance to the
variable initialization heuristics.

Integrating ML-based techniques with conventional SAT solvers is a conservative yet more
feasible way. Despite the performance boost in the solvers, one thing worth noting is the employ-
ment of ML models may introduce new sources of biases [180]. For instance, a common issue is
the significant imbalance in data samples from SAT and UNSAT categories, potentially leading to
sampling bias; even with representative data, human experts perform feature engineering and ML
model selection, such as certain optimization objectives, regularizations, and constraints, based
on their understanding of the nature of verification problems, which may include flawed or stale
information that can bias the outcome of ML algorithms.

2.2 Assertion Generation

In formal verification, assertions are used to express desirable properties to be proven by formal
methods and to define constraints in the verification environment for DUTs. The effectiveness and
completeness of formal verification rely heavily on the generated assertions, however, assertion
generation requires heavy manual efforts, such as multiple iterations and man-months, to achieve
the minimal but effective assertions with high coverage [97]. This motivates automatic assertion
generation using ML techniques. In general, assertions can be generated from two major sources: @
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design-related information, such as RTL designs and simulation traces [126, 166, 223, 254],
and @ design specification documents in natural languages [5, 50, 108, 118, 127, 199].

Generation from design-related information. RTL designs and their simulation traces are
good sources to generate hardware assertions using data mining techniques. GoldMine [254] is a
methodology to automatically generate RTL assertions using data mining and static analysis. It
consists of five major components: (1) data generator, which simulates RTL designs with random
vectors to produce dynamic behavioral data; (2) lightweight static analyzer that extracts domain-
specific information about the design; (3) A-miner that derives knowledge and information from
simulation traces and design constraints, where a binary decision tree is employed to produce
a set of ranked candidate assertions; (4) formal verifier, which verifies the candidate assertions
produced by A-miner to filter out spurious assertions and retain system invariants; (5) A-Val,
which compares the machine-generated assertions to those generated by a human and provides
feedback to refine GoldMine accordingly. To achieve a higher coverage and generate more succinct
assertions, Sheridan et al. [223] improve GoldMine by proposing a coverage-guided assertion miner
with a combination of association rule learning and greedy set covering. Based on the GoldMine
framework that generates bit-level assertions, Liu et al. [166] enhance the quality of assertion
mining by generating word-level assertions that have higher expressiveness and readability than
their counterparts in the bit-level. Hanafy et al. [126] extend the binary decision tree adopted in
GoldMine to a breadth-first decision tree for assertion generation and refinement.

Generation from design specification documents. Hardware assertions can be directly
extracted from design specification documents by translation from natural languages (NL) to
assertion languages. ARSENAL [108] automatically translates NL requirements into a unified
symbolic analysis laboratory (SAL) model with associated properties, through two stages: the NLP
stage that extracts relations from texts using semantic parsing and interprets NL sentences to
logical formulas, and the formal methods stage that converts the generated logical formulas to
a SAL-based formal model. GLAst [127] transforms specification sentences in English to formal
SystemVerilog assertions (SVA) by extending the E-GRIDS algorithm [204], which creates a custom
formal grammar to capture the writing style and sentence structures of specifications to facilitate
the automatic translation. With a similar goal, SpecToSVA [199] employs a random forest classifier
to decide which sentence in specifications should be translated, an NLP package, spaCy [129], to
detect name entity recognition, and a constituency tree with a self-attentive encoder [155] for final
translation from design specifications in English to SVA. The evaluation shows an average precision
of 64% on a dataset created from proprietary IC specification documents. Notably, SpecToSVA can
only translate single and self-contained sentences to SVA, and cannot handle cases where multiple
sentences need to be collectively considered and translated into a single SVA expression. Gulliya
et al. [118] give attention to the conversion between English and SVA in register verification: from
English to SVA, a long short-term memory (LSTM)-based model is trained to classify the type and
functionality of different registers, and the prediction results are processed to generate proper RTL
and universal verification methodology (UVM) code; from SVA to English, rule-based machine
translation is employed. Recently, Transformer-based models, which are the state-of-the-art models
of NLP, outperform conventional one-step attention RNNs in machine translation from English
to SVA [50]. Though DAVE, a fine-tuned GPT-2 (the second generation Generative Pre-trained
Transformer) model, majorly aims to automatically translate NL into Verilog snippets [202], it
considers the assertion generation as the future work. Aditi et al. [5] propose a hybrid approach
that utilizes GPT-3 to extract the entity information from specification sentences, after which a set
of hand-crafted rules is applied for the final translation. This approach successfully generates SVAs
for 1712 out of the 2000 statements (~85% success rate).
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Automatic assertion generation enabled by ML-based techniques largely benefits verification
productivity. The process of identifying assertions from either design itself or specification docu-
ments is analogous to neural machine translation, revealing numerous opportunities, especially in
the era of large language models (LLMs). Though these ML-based models may not always generate
non-trivial assertions, they can offer potential candidates that can be easily refined by human
experts [5, 50].

2.3 Equivalence Checking

Equivalence checking guarantees design integrity by using mathematical modeling techniques to
show that two representations from different design levels of the DUT exhibit the same behaviors.
Practically, fast and accurate equivalence checking saves significant time and effort in engineering
change order (ECO). With the help of ML-based techniques, the features and embeddings from
one design level can be well captured and accurately mapped to another design level, greatly
accelerating equivalence checking. For cross-design-level translations, we discuss the equivalence
checking @ from system-level to RTL [134, 135], @ from RTL to gate-level, and @ from
Boolean functions to hardware implementation [232].

System-level — RTL. Modern hardware designs usually start with behavioral descriptions
in high-level languages, such as C/C++ and SystemC, which are then compiled into RTL designs
by synthesis tools or manual transformation. This translation step is time-consuming and error-
prone. Thus, Hu et al. [135] employ support vector machine (SVM) to improve the efficiency of
finite state machines with datapath (FSMD)-based equivalence checking between the system-level
modeling (SLM) and its generated RTL design. Both SLM and RTL designs are converted into FSMD
representations. The SVM model then learns from the SLM states to predict the corresponding RTL
states, which helps identify the path pairs between SLM and RTL and drastically reduces the time
complexity by avoiding arbitrary path selection. The selected path pairs will be further checked
using symbolic simulation and the SMT solver. They also analyze multiple ML models to examine
the trade-offs between effectiveness and efficiency [134].

RTL — gate-level. Designers usually optimize RTL designs for ECO, which can change the
design hierarchy and transform signal names, making it hard to correlate RTL design signals with
their counterparts in gate-level implementation [65]. Alhaddad et al. [13] explore seven ML models,
including decision tree, random forest, K-nearest neighbors, linear support vector classification
(SVC), linear regression, naive Bayes, and linear discriminant analysis, to identify each pair of
signals from RTL and gate-level are equivalent or not, based on name features, structural features,
signal proprieties, and functional similarity features. Evaluation on the OpenCores [195] benchmark
shows that the decision tree outperforms other models, with the best accuracy of 89%.

Boolean functions — hardware implementation. Singireddy et al. [232] focus on the equiv-
alence checking between flow-based computing systems in memristor crossbars and reference
Boolean functions. The crossbar design is first recast into an RNN, which allows equivalence
checking to be efficiently performed by NN inference, and then instances of Boolean variables
are verified by passing input vectors to the RNN and checking the output against the reference
Boolean function. Evaluation on circuits from the RevLib [264] and MCNC [271] suites show that
the proposed method can verify the correctness of a design 166x faster than the state-of-the-art
method based on graph reachability on average.

Despite the speedup achieved by ML-based techniques, there are several observations on existing
approaches. First, feature engineering plays an important role in building effective ML models [13,
135]. However, this process can become cumbersome, particularly in scenarios involving large
feature spaces. Second, the trained ML models seek to imitate the rules in equivalence checking,
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aiming to provide rapid suggestions. Their full potential can be realized by integrating them with
solvers that offer theoretical guarantees [13, 232].

2.4 Model Checking

Model checking involves abstracting the execution of a concrete system into a finite-state automaton
and expressing the properties of interest by temporal logics. The procedure of model checking
exhaustively explores the (abstract) state space, and either validates the properties or provides a
counter-example. In practice, exhaustive exploration is challenging in face of the state explosion
problem [63], which prompts the development of various techniques aiming at reducing the state
space or enhancing its exploration through path exploration heuristics. We discuss how ML-based
techniques contribute to @ automatically generating properties [102], @ directly verifying
properties [185, 278], @ finding counter-examples [17, 23, 269], and @ refining abstraction
based on counter-examples [60, 62].

Generating properties. To automate the laborious process of manually generating verification
properties, Gao et al. [102] present a GAN-based property generation approach, which employs
an LSTM-based model as the generator and a CNN-based classifier as the discriminator. Existing
verification properties are represented as sequences of word vectors, serving as the initial inputs
for the SeqGAN [274] algorithm to generate new verification properties. As this approach focuses
on generating new verification properties using computational tree logic (CTL) formulas and/or
Kripke structures, and given that hardware designs can be converted to Kripke structures and
design specifications can be translated into CTL formulas, it is easily transferrable to hardware
program property generation by adjusting the training data and corresponding labeling efforts.

Directly verifying properties. Linear temporal logic (LTL) model checking suffers from the
state explosion problem and the exponentially growing compute complexity [63]. To alleviate
these issues, several studies formulate LTL model checking as binary classification problems, in
which 0/1 indicates the model (un)satisfies the specification. Zhu et al. [278] evaluate several
ML algorithms (i.e., boosted tree, random forest, decision tree, and logistic regression) to predict
whether an automaton satisfies a specification. While receiving comparable prediction accuracy to
the classical LTL model checking tool, NuXMV [47], these algorithms exhibit limited generalization
across different LTL formula lengths and automaton sizes. To achieve better generalization, GNN is
adapted to encode the automaton with the target LTL formula expressed as node embeddings [185].
This graph classification method is capable of predicting results up to 17X faster than the tool
LTL3BA [19], especially when dealing with very large LTL formulas.

Finding counter-examples. Model checking tools should be geared towards efficient error
detection [64]. Several studies improve the efficiency of finding counter-examples by using Q-
learning to explicitly guide the exploration of paths in automaton that would violate properties of
interest. For instance, Araragi and Mo Cho [17] give rewards to explorations leading to cycles or
infinite paths between the premise and the response that invalidate the response property, which
states that if a premise event occurs, a response event will be true thereafter. Behjati et al. [23] then
extend the Q-learning algorithm to accommodate more LTLs. To enhance the search efficiency of
Q-learning based approaches, neural Monte Carlo tree search (MCTS) is employed [269], which is
capable to find counter-examples in less runtime. While Q-learning is effective in identifying counter-
examples, it may face challenges due to high sensitivity in reward functions [239]. Hence, crafting
meaningful rewards is crucial in these problems, especially in situations when it is challenging to
build a clear relationship between the optimization goal and rewards.

Refining abstraction based on counter-examples. A counter-example can be spurious, if the
last state of a path in the abstracted system model unites both deadend states (i.e. states without
concrete transitions to failure states) and bad states (i.e., states with transitions to failure states) in

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July 2024.



Survey of Machine Learning for Software-assisted Hardware Design Verification: Past, Present, and Prospect 1

the actual system. This is because some system variables that are useful to prove the properties and
distinguish these states are not considered in the system abstraction, suggesting a refinement in
the abstracted system model by making these variables visible. To separate these states, Clarke et
al. [60, 62] employ decision trees to classify whether system variables from the failure state should
be visible.

2.5 Theorem Proving

In theorem proving, systems are described by appropriate mathematical logics, and important
mathematical properties of the system are proved by theorem provers. Theorem provers check
whether a conjecture, the target mathematical statement to be inferred, can be derived from a set
of statements (e.g., axiom, hypothesis) and output the proof for the conjecture or a trace thereof.
This is similar to computer algebra since both of them are used for symbolic computation, but with
the advantages of more flexibility in logic expressiveness, clearer expression, and more rigor.

Theorem provers are essentially based on mathematical logics, and there is always a trade-off
between automation and expressive power of logics [36]. For example, first-order logic (FOL) has
high-level automation and is usually used to construct automated theorem provers (ATPs) [186];
higher-order logic (HOL) is more expressive and has the ability to prove complex problems, but
requires more human guidance, which is often used to build interactive theorem provers (ITPs), e.g.,
Isabelle [30, 189], MIZAR [116], and Coq [26]. These theorem provers can be effectively applied
for hardware design verification with light modifications. For example, Kami [55] is an extended
library embedded in Coq, enabling expressive and modular reasoning for hardware designs, which
has the capability to verify fairly realistic processors within Coq.

ML-based techniques have been successfully employed to aid theorem-proving systems in the
following aspects: @ the selection of facts (also know as premises) that are most relevant for
proving a new conjecture, which can be formulated as ML-based classification tasks [11, 18, 91, 143,
148, 151]; @ automatic heuristic configuration and selection in ATPs, where ML can help to
model the relationship between input problems and the chosen heuristics [36, 37, 98, 160]; and @
autoformalization [263, 268].

Premise selection. The premise selection task entails a conjecture and a set of facts/premises,
with the objective of strategically choosing a subset of premises to be forwarded to an ATP. Alama
et al. [11] employ naive Bayes and kernel-based learning methods to estimate which premises
are likely to be useful for constructing a proof. To improve the scalability, Kaliszyk and Urban
[151] adopt the sparse implementation of a multi-class naive Bayes classifier to rank available
facts, where the top-ranked facts are selected to realize the proof. Irving et al. [143] simplify the
subset selection of premises to computing pairwise relevance: two CNN/RNN sequence models are
developed to compute the embeddings for a conjecture and a premise, respectively, which are then
concatenated to produce the probability that this premise is useful for proving the conjecture.

Recent approaches convert logic statements into graphs and leverage graph representations to
assist theorem provers. Aygun et al. [18] build a FOL prover by replacing all the clause-scoring
heuristics of the state-of-the-art E prover [218, 219] with a Transformer-based clause scoring
function. The Transformer-based model takes in clauses represented in graphs with spectral
features and outputs the probability of a clause appearing in the proof, which is trained using
hindsight experience replay in an incremental learning setting. The proposed approach can compete
with the E prover in its best configuration. To further improve the transferability across domains
using different vocabularies, NIAGRA [91] generates name invariant graph neural representations
of clauses that provide more meaningful embeddings of non-logical symbols, such as predicates,
functions, and constants. It also adopts the ensemble method that leverages different configurations
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of the underlying ATP to learn proof guidance models. Evaluation shows that NIAGRA outperforms
the method proposed by Aygun et al. [18] by 10%.

Heuristic configuration adaptation and selection. Heuristic configuration refers to a set
of parameters in theorem provers that affect their preference on clause weighting and selection
schemes, term orderings, and sets of inference and reduction rules used. Tuning such parameters
is time-consuming and can be automated by different ML-based techniques. Fuchs [98] makes
an early attempt to learn search-guiding heuristics from past experiences, where gradient-based
methods are used to adapt coefficients in the heuristics to ensure application for a wider range of
target problems. Kithlwein and Urban [160] propose an automatic framework to tune parameters
inside ATPs. Given the parameter setting of an ATP and a target problem, a Gaussian-kernel-based
method is adopted to predict its runtime, which enables more efficient adaptation of parameter
settings for different problems. In addition to setting parameters in heuristics, Bridge et al. [36, 37]
emphasize on selecting useful heuristics for proof search. Based on features of the conjecture to
be proved and the associated axioms/facts, SVM and Gaussian-kernel-based methods are capable
to select a beneficial set of heuristics. The developed ML-assisted system is also able to decline
proof attempts, significantly reducing the time spent in proof with only a moderate reduction in
the number of provable theorems.

ML-based techniques can greatly improve the scalability of premise selection and configuring
heuristics, but a key consideration is the quality of these ML models often heavily depends on
the available training data. Given the large search space of premises or configurations, it is highly
probable that the collected training data implicitly incorporate the preference and domain knowl-
edge from human experts. On the positive side, ML models can quickly imitate the behavior of
human experts, while on the negative side, the learned solutions may be suboptimal and bounded
by human perception. Possible solutions to address this concern involve combining techniques such
as active learning, RL, or generative approaches with existing methods, which can generate new
data points on-the-fly and potentially mitigate the limitations of relying solely on human-derived
data.

Autoformalization. Autoformalization refers to the automatic translation from NL mathematics
to formal specifications, theorems, and proofs. MetaGen [263] is a neural theorem generator, which
synthesizes new theorems and their proofs expressed in the formalism in Metamath [179]. Two
scenarios are considered: if both human-written theorem statements and their proofs are available,
MetaGen is trained by imitation learning to provide human-like theorems; if only theorems are
available, MetaGen uses the REINFORCE algorithm to find synthetic theorems similar to human-
written theorems, where a discriminator, such as the one in generative adversarial networks
(GAN) [114], is trained to measure the similarity. Wu et al. [268] observe that LLMs, such as OpenAl
Codex [51, 193] and PaLM [57], can correctly translate a certain portion (25.3%) of mathematical
competition problems in English to formal code used by the interactive proof assistant Isabelle [189].
The performance of a neural theorem prover, LISA [147], can be improved by training with these
autoformalized theorems, reaching a new state-of-the-art proof rate from 29.6% to 35.2% on the
MiniF2F [277] theorem proving benchmark. Though LLMs may not be able to generate perfect
specifications or correct statements, they can produce slightly incorrect formal specifications and
properties quickly, making it easier for hardware designers to iterate them efficiently.

2.6 Invariant Generation

Invariants, by capturing properties that remain unchanged during program execution, provide a
foundation for reasoning about programs’ behavior. Once appropriate inductive invariants are
identified, the focus of program verification shifts to checking the validity of verification conditions
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derived from finite loop-free paths extracted based on the invariants. This reduction in complexity
is a key benefit of leveraging invariants in the verification process.

ML-based invariant generation excels in uncovering the implicit and intricate logic embedded
within programs and target properties, with a moderate level of generalization to handle similar
constraints and program structures. ICE-learning [103] (which stands for learning using implica-
tions, counter-examples, and examples) consists of two components in its framework: a teacher,
which is a program verifier fully aware of the program and the property to be verified, and a learner,
which is entirely agnostic of the program and property, aiming to generate invariants through
interactions with the teacher. During each iteration, the teacher evaluates whether the current
invariant is sufficient to prove a certain property and provides (counter-)examples accordingly;
the learner refines the constructed invariant based on samples received from the teacher. In this
abstraction, the learner can leverage any ML algorithm effective in generating Boolean functions.
One example is to tailor a decision tree by developing new measures to determine the best attributes
to branch current examples and implications [104]; the well-trained model will output a universal
representation of Boolean functions composed of atomic formulas that are either inequalities
bounding the numerical attributes by constants or Boolean attributes. To enhance the general-
ization capability across structurally similar programs, Code2Inv [228] utilizes a GNN to acquire
neural representations of program structures. It frames the loop invariant generation as a deep RL
problem: the learning agent, structured as an LSTM, accepts neural program representations as
inputs and employs the policy gradient algorithm to execute a sequence of actions for generating
a loop invariant. Remarkably, as invariants in hardware designs can be learned through the use
of examples and counter-examples [236, 275] and hardware designs are naturally represented in
graph formats, techniques developed in ICE-learning [103] (e.g., leveraging examples of properties)
and Code2Inv [228] (e.g., generating invariants via neural program representations) can be applied
in the hardware domain with insignificant modifications.

The decoupling of a comprehensive program verifier and an agnostic learner for invariant
generation brings more flexibility, allowing the learner to apply various ML algorithms. Since this
framework exhibits similarities to the general RL formulation, it can be seamlessly integrated with
different RL algorithms as well as imitation learning to accelerate the learning process. Additional
efforts are expected on multiple fronts, including designing new metrics for assessing the quality
of generated invariants to effectively guide the ML-based learner, improving the capability of the
teacher (i.e., the environment in the RL setting) to offer more representative (counter-)examples,
and developing strategies for generalization, either across various invariant generation methods or
diverse programs.

2.7 Cost Estimation

Estimating the complexity of formal methods in advance provides the possibility to applying
more appropriate verification methods for target hardware designs and better formal results
with the minimum efforts. The cost estimation and planning of formal verification can be con-
ducted manually by systematically analyzing attributes of DUTs, property specifications, design
constraints/assumptions, which requires sufficient domain expertise and long analysis time. By
contrast, ML-based fast and accurate modeling improves the efficiency of automatic cost estimation.

Elmandouh and Wassal [84] employ multiple linear regression models, such as ridge regression
and lasso regression, to predict the total CPU time of formal verification runs, based on features
extracted from DUT attributes, design properties, formal netlists, and formal run initialization.
Later, they give more attention on formal engine orchestration, the methodology to select the
most appropriate formal engine for a specific verification problem [85]. The proposed framework
includes a group of multi-class classifiers, each of which is trained to predict the capabilities of
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one formal engine/algorithm to solve a verification problem in the form of categorical labels (i.e.,
easy, medium, hard, very hard, or not able to verify). These classifiers take in features distilled from
RTL designs (written in VHDL, Verilog or SystemVerilog) and design properties (described in PSL,
OVL, or SVA); several ML models are explored, among which the decision tree performs the best,
reaching up to 59% of the maximum achievable time improvement. Twigg et al. [247] employ a
multi-layer perceptron (MLP) to predict the time and memory usage of Synopsys Formality, a tool
used for equivalence checking [241], by using features extracted from Verilog designs.

While cost estimation of formal verification is important, as a majority of failures stem from
exceeding memory limits or time constraints, the process of fully automating this estimation still
has a considerable journey ahead. First, data scarcity poses a significant obstacle. Each run of
verification can consume a substantial amount of time, making it difficult to collect enough data to
well train an ML model. Second, different formal methods may require different sets of features,
and their behavior can vary largely on different platforms, presenting difficulties in developing
generalizable ML models across diverse verification scenarios. There await innovative solutions
and further advancements in data collection strategies, feature engineering techniques, and the
development of robust ML algorithms tailored to the intricacies of formal verification processes.

2.8 Roadmap of ML in Formal Verification

To leverage current ML practices to improve and enhance formal verification tools, we often follow
the pipeline for efficient integration: @ identify the formal verification problem, e.g., SAT solver,
theorem proving, etc., and formulate it into an ML task, e.g., classification, regression, etc.; @ collect
information or data from formal verification for the ML task, e.g., converting CNFs or Boolean
networks to graphs for GNNs [15, 163, 221, 266, 272], extracting features of variables [108, 118] for
NLP models; @ figure out the best ML model, as well as parameters, for the formal verification
problem.

However, formal verification and ML have opposite mathematical foundations and opposite use
in real-life problems: formal verification usually relies on determinate mathematics and aims at
ensuring correctness; ML often relies on probabilistic models and consists of learning patterns from
training data. As a result, ML techniques cannot “replace” the conventional formal verification
techniques or adequately “automatically solve" formal verification problems at present. Instead,
ML techniques can "help” or "guide" the formal verification solving process. ML techniques have
shown their great potential in improving/accelerating the formal verification process compared to
human design. Specifically, ML techniques improve the runtime/efficiency of formal verification
by providing a shortcut from data (input variables) to answer (if valuable in formal verification)
to help formal verification experts to filter meaningless cases. Additionally, ML techniques can
provide higher quality than manual designs by learning from the training data, which is confirmed
especially in assertion generation tasks (Section 2.2).

While there have been exciting progresses, existing approaches in leveraging ML for formal
verification have critical challenges to address. @ Functional-aware ML. For example, there
are great needs in enforcing strong logic relations in ML features and the training process. Un-
fortunately, ML approaches in fundamental formal verification solving problems such as SAT
solving only include soft logical constraints in the training and embedding, which greatly limits
the generalizability in scaling to practical scaled SAT problems. Exploring hard logical constraints
in developing domain-specific ML approaches for such problems is believed to generate broad
impacts, e.g., developing computer algebra-based gradient descent mechanisms for training. @
Heuristics mining and orchestration. In addition to directly using ML to “solve” formal verifica-
tion problems, there are substantial opportunities in leveraging the strength of decision-making
to boost the solving capabilities of formal verification solvers and heuristics. For example, in SAT
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solving, the major progress of runtime improvements for modern SAT solvers comes from the
introduction of novel heuristics in the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [1].
There is an increasing number of such heuristics on either cause/variable elimination or DPLL
solving, each of which maintains its own strength in different SAT instances. Similar cases happen
to other mathematical solving procedures such as solving Grébner Basis [58, 59, 169, 172, 212]
for arithmetic circuits verification problems. Leveraging the power of adaptive decision making
in orchestrating existing heuristics and mining novel heuristics in formal solvers will be of great
interest. @ Parallelism in formal verification. One of the greatest challenges in practical formal
verification applications is the runtime cost. While most of the formal verification instances are
NP-hard in nature, exploring high-performance computing capabilities offered by modern DL
frameworks could significantly improve the scalability. Recently, we have seen lightweight neural
network models or convex/non-convex formulation based approaches that solve combinatorial
optimization problems with extensive parallelization on heterogeneous platforms. While formal
verification solvers start leveraging GPU acceleration [73, 197], it is believed that exploring the
tensor-level computation kernels of high-performance DL frameworks can further improve run-
time performance of formal verification solvers. @ Integratability. While ML approaches are
demonstrated to be effective in improving the verification process in various aspects, landing such
approaches in end-to-end system integration is a non-trivial task. For example, the majority of the
formal verification solvers and industrial verification toolchains are built with high-performance im-
plementations in C/C++ and are mostly optimized for CPU computations. However, ML frameworks
mostly involve multiple-level intermediate representations and require a GPU environment to
efficiently perform the computations. Moreover, due to the nature of randomness in ML algorithms,
lacking determinism could be a concern to land ML-based verification approaches in real-world
products. One interesting and challenging direction will be exploring ML deployment in terms
of system engineering challenges, e.g., considering the efficiency of heterogeneous computing
platforms, programmability, etc.

Therefore, we can say employing ML in formal verification is promising but needs more efforts.
We believe ML for formal verification can be further improved when more data is collected and
more ML models are developed. ML for formal verification can get rid of human designs and
abstractions, and may find a new aspect for problem-solving in formal verification, providing new
understandings/interpretations in the formal verification domain.

3 ORACLE-BASED VERIFICATION

Oracle-based verification focuses on generating tests and achieving sufficient coverage [40]. The
primary goal is to reveal failures by executing tests and comparing output results with the oracle
provided by a golden reference model. Since the design under test (DUT) is exercised by input
tests or stimulus, oracle-based verification is also acknowledged as simulation-based or dynamic
verification. In general, simulation-based verification consists of three aspects: coverage measure-
ment, test/stimulus generation, and response checking [205]. Specifically, coverage goals define
the scope of a verification problem, and coverage measurement monitors the verification progress
with respect to different types of coverage, such as code and functional coverage; test/stimulus
generation intends to fully exercise a DUT, i.e., taking a DUT into all the possible behaviors, by
constructing tests/stimulus required by the coverage goals; response checking is responsible for
demonstrating how behaviors of the DUT conform with its specifications or the golden reference,
which triggers the troubleshooting once the discrepancy is detected.

As mentioned by the Moore’s law [171, 182], the principle powering the integrated-circuit revo-
lution since the 1960s, the transistor density doubles every 18 months. Even if we are approaching
the end of the Moore’s law, the electronic industry continues to move to larger, more complex,
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Fig. 4. An overview of the oracle-based functional verification. We identify the major ML-based components
that could be inserted into the verification flow and how they change the classical verification flow.

and heterogeneous designs. Thus, simulation-based verification, which has been the major yet
time-expensive technique for hardware verification, is encountering new challenges. The increasing
design size is merely one aspect of the scalability challenge. It is the movement towards system-on-
a-chip (SoC) integration and heterogeneous systems that drives simulation-based verification into
a corner: nearly 70% of ASIC or FPGA designs contain multiple embedded processors, and around
one-fifth to one-fourth of the designs incorporate RISC-V processors or Al processors/accelerators
[93]. First, many of the techniques that work well for IP-block-level or sub-system-level verification
(e.g., constrained-random and functional coverage) do not scale well to the entire SoC integration
or system-level validation [93, 96]. Second, along with the increasing design complexity, simulation-
based verification is producing so many data that it has become a big data problem [261, 262],
begging for a new level of intelligence in verification, including but not limited to smarter test
generation, coverage collection/analysis, and debug.

Reckoning on the growth in design and SoC complexity, system heterogeneity, and the amount
of verification data, any endeavor enhancing the aforementioned three principal verification as-
pects (i.e., coverage measurement, test generation, and troubleshooting), either independently or
integrally, will greatly promote the productivity and efficacy of simulation-based verification and
hardware development. Figure 5 illustrates the breakdown of the time that verification engineers
spend on different verification steps, also indicating that debug, test generation, and running simu-
lation dominate the verification time. These all boost opportunities and prospects for incorporating
ML-based techniques in verification.

In oracle-based verification, ML-based techniques usually serve as three roles. @ The predictive
models for fast and accurate coverage predictions (Section 3.1). ML has been widely adopted
for predictive models [86], since many supervised learning algorithms can infer a general law
from observations of particular instances. Such a law is generalizable from labeled examples to
new instances under certain constraints. These ML-based predictive models, typically mining the
relationships among design signals or from tests to coverage metrics, support eliminating the
time-consuming simulation time of DUTs. @ The optimizer for test generation or selection
(Section 3.2). It has always been challenging to find the most stressful and comprehensive tests
to stimulate DUTs, so that the coverage closure can be reached within time limits. Several ML-
based optimization techniques, such as gradient-based methods [34, 235] or maximum a posteriori
estimations [80], have the potentials to advance test generation. @ The troubleshooting assistant
(Section 3.3). Debug is the bottleneck in verification. Clustering and classification algorithms [181]
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Fig. 5. Breakdown of the average time spent on different verification steps by verification engineers in 2022,
which is redrawn based on the data from the 2022 Wilson Research Group Functional Verification Study [94].

are flourishing in reasoning out root causes of failures and pinpointing the suspicious design
signals/areas.

3.1 Coverage Prediction and Design Characterization

A satisfactory coverage level is necessary for verification sign-off. Commonly used coverage metrics
include fault coverage, code coverage, and functional coverage [244]: fault coverage indicates the
ability to handle faults in a DUT; code coverage measures the execution status of the actual code,
which can be recognized as a quantitative measure; functional coverage attempts to measure
whether the functionalities described in specifications and the implementation of the DUT have
been adequately exercised, which can be considered as a qualitative measure.

Many studies adopt ML models to accelerate the verification cycle by fast and accurate coverage
predictions, instead of resorting to the time-consuming simulation process. These learned ML
models, which are surrogate models approximating the relation between tests or test templates
and coverage metrics, can be either merely employed as predictive models, combined with con-
ventional heuristic-based search algorithms to speed up the evaluation phase of test generation,
or interpreted for rule learning of testing knowledge. We review the studies regarding @ how
ML-based surrogate models are embraced in fault [157, 170, 238], code [99, 112, 146, 233],
and functional coverage analysis [2, 82, 112, 161] in Section 3.1.1, and @ ML-based design
characterization [77, 139, 215] and rule learning [53, 132, 133, 153] in Section 3.1.2.

3.1.1 Coverage Prediction. Fault coverage often refers to the percentage of detected faults in all
potential faults. Test point insertion (TPI) is a commonly adopted approach to improving fault
coverage, which modifies DUTs by inserting extra control points or observation points, but it
may degrade the performance of a design in terms of area, power, and timing. The optimal TPI
aims to achieve high fault coverage with as little performance degradation as possible, which is
NP-complete [156]. Thus, ML techniques are employed to enhance the TPI process by providing
accurate predictions on the testability. Given circuit netlists and node features (e.g., controllability,
observability, logic depth from the furthest primary input), the impact on fault coverage after
inserting a candidate test point can be accurately estimated by an ANN [238]. To better characterize
the graph structure of circuits, Ma et al. [170] use graph convolutional networks (GCNs) to predict
whether a node is easy or hard to observe, based on which new observation points are inserted.
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Table 2. Coverage prediction and design characterization with ML models. S and U stand for supervised and
unsupervised learning, respectively.

Problem [FWK]| ML Model \ Target HW
S ANN [238] Industrial circuits
Testability prediction S GCN [170] Four industrial designs
S SiFS [157] Combinational circuits
L Linear regression, decision tree,
Code coverage prediction ‘ S ‘ random forest [146] ‘ An IP module
Toggle pair coverage analysis ‘ U ‘ K-means clustering [233] ‘ Not mentioned
L S Random forest [112] Quad-core cache (four private L1 caches
FSM coverage prediction ‘ S ‘ MLP, random forest [99] ‘ and a shared L2 cache) [112]
U K-means clustering [82] Industrial designs [82]
Functional coverage analysis S |LSTM, random forest, SVM, DNN [112] Quad-core cache [112]
or prediction S | Linear regression, SVR/C, KNN [161] MESI cache coherence intersection controller [78]
S ANN, DNN, SVR, decision tree [2] CORDIC core [79]
S MLP [76] GPU units [76]
Cross-design coverage prediction‘U + S‘ K-means clustering and DNNs [215] ‘ Nvidia designs [215]
Desien characterization U K-means clustering [139] Queue management block and serial line interface [139]
& S Random forest [77] UART custom protocol transceiver [111]
U ILP [133] Five-stage pipelined superscalar DLX processor [201]
Rule learnin S Decision tree [153] IBM Power?7 Processor [152]
wele s U+S CN2-SD [53] Load-store unit (LSU) in a processor
S CART [132] Control unit in a commercial dual-core SoC

Compared with classical ML models, such as logistic regression, random forest, SVM, and ANN,
the classification accuracy is improved by at least 7.5%; compared with commercial testability
analysis tools, this GCN-aided TPI flow achieved similar fault coverage with an 11% reduction in
observation points and a 6% reduction in test pattern count. To better explain decisions made by
the ML models, Krishnamurthy et al. [157] introduce an intrinsically interpretable and rule-based
ML technique, namely Sentences in Feature Subsets (SiFS) [158], to classify whether a point is hard
to test, reaching up to 95% accuracy with extra bonus of model interpretability.

Code coverage often refers to the percentage of the source code covered by tests, and typical code
coverage analysis includes line, branch, condition, toggle, and finite state machine (FSM) coverage.
Aiming to save manual efforts spent for general code coverage analysis, several ML techniques
(i.e., linear regression, decision tree, and random forest) can be applied to predict per-test coverage
percentage and simulation runtime based on input test parameters [146]. (1) Toggle coverage often
refers to describing design activity in terms of changes in signal values, which monitors value
changes on registers and nets and measures whether the value has changed from either 1 to 0 or 0
to 1. Stan Sokorac [233] introduces a new coverage metric, toggle pair coverage, which extracts all
possible pairs of signals and measures their toggles, reaching a sweet point between the vanilla
toggle coverage and the full state space regarding the number of coverage points; then K-means
clustering is leveraged to group tests that cover similar areas of toggle pair coverage; after the
clustering, genetic algorithm is applied individually within each group to generate tests that would
exercise the rarely reached parts of DUTs as frequently as possible. (2) FSM coverage typically refers
to how many states and transitions in an FSM have been visited during simulation. To recognize
the correlation between instructions and FSM states, ML models, such as random forest [112] and
MLP [99], can take the current state of the DUT and instructions to be executed as inputs to predict
the next state. These learned models either help construct an augmented FSM upon which the
shortest path algorithm (e.g., the Dijkstra [9] algorithm) is applied to direct generate sequences of
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instructions as tests, or examine state transitions of current tests to prune out the ones unhelpful
to improve transition coverage.

Functional coverage often refers to how many required design functionalities have been examined.
These functionalities are converted to coverage points awaiting to be activated by the tests. Since
different coverage points may share similarities, clustering algorithms are naturally suitable to
group similar coverage points to provide guidance for new test generation. Mandouh et al. [82]
take a two-step K-means clustering to prioritize coverage points with low coverage: the first step
groups coverage points based on their functional similarities, and the second step assembles the
identified clusters based on their coverage ratios. In terms of predicting functional coverage based
on input tests, from the micro-architectural level, Gorgi et al. [112] notice that instruction-based
predictions provide finer-grained feedback compared with test-template-based predictions, offering
better guidance on generating test patterns towards coverage holes: specifically, the instruction-
based predictor (LSTM or random forest) takes a sequence of instructions to forecast whether
the interested events happen; the test-template-based predictor (DNN, random forest, or SVM)
classifies whether an interested event is covered, uncovered, or uncertain. From the RTL, targeting
a multi-processor cache controller, Kulkarni [161] studies various types of linear regression, SVR,
SVC, and K-nearest neighbors to predict the FIFO queue depth based on test constraints; targeting
arithmetic units, a case study [2] of the CORDIC core [79] performs comparative analysis among
multiple ML models (MLP, DNN, SVR, and decision trees) and indicates that decision trees have the
highest accuracy; targeting channel/datapath stalling to uncover corner-case timing critical bugs
in GPU units, Dhodhi et al. [76] use an MLP to model the relation between stall parameters and the
coverage metric, which is integrated with GA to efficiently tune the parameters for better coverage.

Among these ML-based coverage predictions, the more complex the hardware designs are, the
larger ML models are employed. Though simple ML models are easy to train with moderate amount
of data, their representation power is limited due to the number of parameters in the models.
Currently, most of the discussed studies focus on single functional units instead of entire designs,
and thus they tend to adopt conventional ML models. One issue that may arise is these ML models
usually rely heavily on design-specific features, which is nearly impossible to migrate well-trained
models to new hardware designs. Recent efforts tend to make analogy between ML models and
target problems, such as using LSTM to handle sequences of instructions [112] and exploiting GNNs
to represent circuit designs [170], so that domain-specific knowledge or contextual information
can be integrated into ML models to enable better transferability.

3.1.2  Design Characterization and Model Interpretation. Several studies put more emphasis on
design characterization with ML models. Ikram and Ellis [139] use K-means clustering to group
modules based on code coverage metrics, and once there are changes in the DUT, the clustering
information helps to find all the probably affected modules, providing guidance to test suite
generation to cover the influence of the new changes. To reduce the mammoth simulation overhead
of coverage collection, Roy et al. [215] use K-means clustering to select representative modules
from the DUT, whose coverage metrics are collected and used to train a DNN that can predict
the module-level coverage metrics (i.e. the reachability conditions in a module by a test during
simulation) for the rest of modules given the same set of tests; experiment results indicate that
collecting coverage for 3% of the modules enables predictions with less than 5% error averaged
across various modules. Dinu et al. [77] use ML models to analyze the correlations among DUT
signals, where a well-trained model can be recognized as a reference model to the DUT whose
predictions help reduce the running time of DUT simulation; specifically, a wide range of ML
techniques are evaluated to predict whether the data transmission by an UART [111] custom
protocol transceiver is erroneous, among which the random forest shows the superior performance.
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Instead of simply constructing surrogate models that associate test cases and their simulation
traces with certain events, a series of studies focuses on rule learning from test data and interpreting
the learned surrogate models. The learned rules explain the reasons why the target coverage points
are hit by the tests, and thus can help update the constraints in new test templates to activate
desired coverage points. From the micro-architectural level, Hsueh et al. [133] adopt inductive
logic programming (ILP) [164] to discover the relationships between input test sequences and their
related coverage using the first-order logic representation. Katz et al. [153] build a decision tree to
approximate the relations from instructions and processor states (i.e., tests and simulation traces)
to micro-architectural behaviors (e.g., more or fewer internal operations, long or short execution
time in clock cycles). The rules derived from the learned decision tree are then embedded in the
stimuli generator to control the micro-architectural behaviors of newly generated instructions
so that interesting events in the design can be reached. Taking a similar set of input features,
Chen et al. [53] apply the CN2-SD [165] algorithm that stands in the middle of supervised and
unsupervised learning to find rules that can guide the generated tests to hit certain components
of an assertion. They pay attention to the load store unit in a dual-threaded low-power 64-bit
power-architecture-based processor core, and compared with the best test templates refined by
human experts, the test template refined by the learned rules can effectively generate new tests
that activate an assertion either with low coverage or not yet covered before. From the RTL, Hsieh
et al. [132] leverage text mining to automatically select proper RTL signals from design documents,
upon which the classification and regression trees (CARTSs) are used to learn the rules that can hit
target assertion coverage points with respect to the selected RTL signals.

One criticism of using ML as surrogate models is the lack of transparency and interpretability,
since verification aims to ensure guaranteed correctness or understand the reasons for potential
incorrectness. Rule learning is a great attempt to improve the explainability but may suffer from
scalability issue when handling large designs. Thus, more advanced explainable ML techniques are
highly expected in production-ready ML for verification. In addition to explainable ML, another
possible solution is integrating uncertainty quantification [3] to provide the confidence of different
predictions, which can also calibrate ML models during runtime.

3.2 Stimuli and Test Generation

Stimuli and test generation aim to produce tests that are (1) effective in terms of meeting constraints
specified by users, DUTSs, or verification environments and (2) random but expected to trigger
particular or hard-to-hit events. There are different forms of tests or stimuli, such as bit vectors
applied to input ports of DUTs or assembly programs (i.e., sequences of instructions) directly
loaded into the program memory. Conventionally, this generation process is often guided by
manually devised test templates or directives based on the testing knowledge from experts, which is
labor-intensive, error-prone, and hard to maintain, especially when DUTs are getting increasingly
complicated and large-scale. Striving to release manual efforts and improve the quality of generated
tests, the exploitation of ML provides the possibility of automatic testing knowledge extraction and
efficient test generation.

ML-based techniques typically involve two roles in the stimuli and test generation [262]. @
The first role leverages the collected coverage metrics to enable a smarter and more pow-
erful search for newly generated tests. This involves applying some ML-based optimization
approaches to generating better sets of tests or directly imitating the test generation flow using ML
models, which is discussed in the Section 3.2.1. @ The second role intends to improve simulation
efficiency by filtering out unimportant or redundant tests, which is discussed in the Section
3.2.2. Even though there exist reviews regarding data mining in test generation [261] and ML-based
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Table 3. ML as the optimizer for test generation. S, U, and R stand for supervised, unsupervised, and
reinforcement learning, respectively.

Problem [FWK]| ML Model \ Target HW

. . NorthStar processor [33], the storage control
ML as surrogate models, S Dynamic Bayesian network [90] element (SCE) of an IBM zSeries processor [90]
with MAP estimations S Bayesian network [35] SCE of an IBM zSeries processor [35]
for test directive generation S Bayesian network [20] Instruction fetch unit (IFU) of IBM z10 processor [138]
S Bayesian network [89] PowerPC processor [178]
ML as surrogate models, S Deep residual NN [100, 101] NorthStar processor [33]
with gradient-based test generation| S GNN [253] TPU [149], IBEX v1 and v2 [208]
S Linear regression and ANN [14] Variable width comparator [14]
S ANN [252] Variable width comparator [252]
S Linear regression and ANN [4] Variable width comparator and multiplier [4]
Reverse engineering of DUTS S ANN [71, 72] 32-bit address bus [71, 72]
to directly generate tests S |MLP, DNN, SVR, and decision tree [144] Variable width squarer [144]
R DON [137] Cache in the RISCV-Ariane [117]
R DON [190] LZW compression encoder [190]
R Soft actor-critic [225] Run length encoding compressor and AXI controller [225]
R Policy gradient [54] Peripheral circuits of DRAM [54]
R Transformer + actor-critic [259] Memory management units [259]
Imitating instruction generation S Markov model [257] DLX [201] and Alpha [245] processors
and execution flow S Hopfield network [88] Codasip processors [168]

test generation prior to 2012 [142], we mostly concentrate on more recent studies and limit our
scope to discuss how ML-based techniques enhance test generation.

3.2.1 Constrained-Random and Coverage-Directed Test Generation. Stimuli and test generators
usually have built-in constraint solvers [234], which take test templates or directives to constrain
the randomly generated tests or stimulus to better target particular events or coverage points,
referred to as constrained-random test generation. The goal is to find proper sets of constraints
that increase the probability of hitting desired events and produce sufficiently stressful tests with
a wide variety. Given a large number of tests, the corresponding coverage metrics are collected
as feedback to further improve test templates/constraints or directly produce tests with a higher
likelihood of activating interested scenarios, referred to as coverage-directed test generation [25].

Aiming to accelerate coverage closure, which is the major quality criterion of the functional
verification process, constrained-random and coverage-directed test generation are often seamlessly
integrated. However, even if all the required coverage metrics are reached, critical corner cases
may still be under-exercised whereas straightforward scenarios are over-activated. Thus, the
primary objectives of efficacious test generation include not only hitting uncovered events but
also improving the coverage rate of events that are not exercised enough. In response to the
requirement of comprehensively examining every target coverage event, ML-based techniques
are promising as @ more powerful search approaches to better test templates or tests [20,
35, 89, 90, 100, 101, 253] and @ smarter test generation methods by reverse engineering
DUTs [4, 14, 71, 72, 137, 144, 225, 252] or mimicking the instruction generation flow [88, 257],
which is recapitulated in Table 3.

ML as a surrogate model for powerful test search. ML techniques can be applied to learn
surrogate models that approximate the relationships between tests and coverage metrics of interest,
followed by maximum a posteriori (MAP) estimations or gradient-based search algorithms to
generate better tests to activate hard-to-hit or uncovered cover points. @ Bayesian networks
as surrogate models with MAP estimations for test generation. A collection of studies
uses Bayesian networks to represent the complex relationships among test directives (i.e., sets of
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constraints) and coverage points [20, 35, 89, 90], offering an efficient modeling scheme as well as the
capability of encoding essential domain knowledge. In a Bayesian network, input nodes correspond
to test directives; output nodes relate to coverage points; hidden nodes represent expert domain
knowledge capturing implicit correlations between input/output nodes and help reduce compute
complexity by dimensionality reduction; each edge represents the conditional probability for the
sink node given the source node. The construction of Bayesian networks involves three stages: (1)
sampling data from simulation results and feature extraction of relevant directives, (2) structure
learning that defines the structure of the Bayesian network by domain knowledge from the DUT
and the simulation environment, and (3) parameter learning that finds the conditional probability
distribution functions within the network. After the Bayesian network is well-trained, a statistical
inference of test directives can be made by either selecting the MAP estimations or obtaining
the most probable explanation (MPE), given the requested coverage tasks. An initial attempt [90]
employs a two-slice dynamic Bayesian network [106] to describe the relationships between the
directives and the coverage points. Several enhancements are brought forward regarding the
training efficiency [35], feature selection and structure learning [20] of Bayesian networks: Braun
et al. [35] smartly sample the simulation data related to low log-likelihood coverage events for
better training efficiency; Baras et al. [20] improve the feature selection (which finds directives
with high impacts on the coverage points) and the structure learning by greedy algorithms and
genetic algorithms, respectively. Fine et al. [89] employ Bayesian networks to model the effects
of the DUT’s initial states on test generation success. Specifically, they learn the relationship
between the machine state register (MSR) and exceptions, which reduces the number of exceptions
in generated tests and accelerates coverage closure. @ Neural network variants as surrogate
models with gradient-based search for test generation. Gal et al. [100, 101] adopt deep residual
neural networks to capture the relations between test templates and the expected probabilities
of achieving coverage events with these templates. The trained DNN model proposes new test
templates by maximizing the hitting probability of hard-to-hit events through gradient-based
methods; if the new test template does not help with reducing hard-to-hit events, heuristic-based
optimization methods (i.e., simulated annealing, genetic algorithm, particle swarm optimization,
and implicit filtering) are applied to explore new test templates. To better utilize the graph structure
inside RTL designs, Vasudevan et al. [253] exploit IPA-GNN [27] to characterize RTL semantics
and computation flows, which predicts the probability of covering a cover point (specifically, in
branch coverage) with current test parameters; new tests targeting uncovered points are generated
by maximizing the predicted probability of covering desired points with respect to test parameters
through gradient-based search. This GNN-based test generator is complementary to random
generators to guarantee high coverage.

Undoubtedly, leveraging ML-based surrogate models can accelerate test generation compared to
conventional approaches, as they are capable of exploring a wider design space and generating
tests covering rare or complex scenarios due to their stochastic nature. One key distinction between
using Bayesian networks and neural network variants lies in the assumption of whether the learned
surrogate models should be differentiable or not. The adoption of Bayesian networks releases the
requirement of being differentiable but often requires more domain expertise in developing models;
while neural network variants offer more automatic model training, they are more sensitive to
biases in the training data and the assumption of differentiability may not always hold true. Another
notable issue is that trivial coverage points are much easier to collect than hard-to-hit ones, which
may cause trained ML models to overfit to regular coverage points. Possible solutions include
employing efficient sampling strategies and data augmentation methods to improve the likelihood
of hitting hard-to-cover events.
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Reverse engineering based test generation. To directly generate proper input stimuli that
would activate the desired coverage points, several studies utilize ML models to reverse engineer
the inputs and outputs of DUTs, and update constraints according to the predicted test stimuli. €@
Supervised learning approaches. Linear regression and MLPs can take the output signals of
DUTs as inputs to predict the test stimuli that could generate the desired outputs, which currently
work well for small circuit designs, such as comparators [4, 14, 252], multipliers [4], and a 32-bit
address bus [71, 72]. Ismail et al. [144] conduct a comparison among multiple ML modes (MLP,
DNN, SVR, and decision trees) targeting a variable width squarer, in which decision trees perform
the best in terms of fast training time and prediction accuracy. With the help of these ML models,
the number of simulation cycles is significantly eliminated since unnecessary tests either activating
previously hit coverage points or out-of-interested groups are weeded out. @ RL approaches. By
observing current simulation results of DUTs, RL-based approaches [54, 137, 190, 225] are capable
of proactively exploring test parameters that guide test stimuli generation towards desired coverage
points. Hughes et al. [137] take advantage of the deep Q-network (DQN) [239] to explore input
knobs such as test parameters and DUT configurations. Specifically, they target cache designs: the
state is the current simulation results; the action space involves all possible combinations of input
knobs; the optimization goal is to maximize the FIFO occupancy or the victim buffer occupancy so
that the generated test parameters can extensively stress DUTs and hit corner cases. Ohana [190]
also exploits DQN to generate tests for a Lempel-Ziv—Welch (LZW) compression encoder: the state
is a representation of the last 17 input symbols received by the encoder; the action drives a specific
input symbol; the reward function returns high values when more input symbols are written or
matched in the content-addressable memory (CAM) of the LZW encoder, aiming to accelerate the
CAM write functional coverage closure. With the goal of facilitating RL applied for test generation,
VeRLPy [225] is an open-source library, which employs the soft actor-critic algorithm [124] to
figure out test parameters by maximizing accumulated rewards that represent the coverage of
interested functional events. One limitation is that VeRLPy formulates test parameter exploration as
a one-step single-state MDP, and a more general multi-step MDP formulation awaits future efforts.
Choi et al. [54] focus on peripheral circuit blocks of DRAM and apply the policy gradient method
to directly generate input stimuli (i.e., sequences of legal DRAM commands as test vectors). The
state is a sequence of past 100 actions; the action space includes all possible DRAM commands; the
reward relates to the coverage score that measures state transition coverage of the target circuitry.
The generated test vectors are then curtailed by Bayesian optimization to remove redundant actions
without compromising the coverage score, whose length is only 7% compared to human-crafted
vectors. Wang et al. [259] deal with the challenging corner case verification of FIFO full conditions
in memory management units (MMUs). They devise a two-stage framework: the first step adopts
the Transformer model [255] to identify appropriate constrained sub-ranges that can trigger higher
numbers of PUSH counts, and the second step uses the actor-critic method to select a sequence of
constraints based on the sub-range set provided in the first step. This approach increases the hit
rate of the corner case by up to 380X compared to traditional constrained random generation.

These reverse-engineering-based techniques offer a relatively straightforward approach to
generating input tests. However, they are often tailored to specific hardware designs by design-
specific features and signals. This implies that a new ML model must be trained for each new design,
which can outweigh the benefits derived from using ML.

ML models imitating instruction flows. A series of studies use ML models to imitate in-
struction generation and execution flows for micro-processor verification, where test constraints
are inherently embedded in the learned ML models to guide desired test generation. One early
attempt constructs a Markov model as a proxy for the FSM of a micro-processor [257], where
each node represents one type of instructions and each edge indicates the transition probability
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Table 4. ML techniques for test selection. S stands for supervised learning.

Problem ‘ FWK ‘ ML Model ‘ Target HW
Detecting novel tests S One-class SVM [123] Execution unit in OpenSPARC T1 [192]
€ S One-class SVM [120] Godson-2 [136]
S One-class SVM [49] Plasma/MIPS CPU core [206]
S One-class SVM [52] Dual-thread low-power power architecture-based processor core [52]
S Two-class SVM [214] StreamProc module of a Bluetooth adapter [32]
Classifying tests for selection S MLP [260] Dual-core RISC processor [260]
S Ensemble model [200] Four IP designs and one open-source design (i.e. Ibex [216])
Selecting valid test vectors ‘ S ‘ MLP [105] ‘ Small combinational circuits represented in NAND gates [105]

between two nodes. The tests, represented as sequences of instructions or assembly programs,
correspond to paths in the graph-structured Markov model; transition probabilities controlling
test program generation are adjusted based on feedback from activity monitors that assess signals
in the DUT for particular activities of interest. Fajcik et al. [88] use the Hopfield network [130]
to mimic the instruction set architecture (ISA) of Codasip processors [168], where each neuron
represents one type of instructions and its appearing probability. The proposed model updates
probability constraints for instructions based on feedback from functional coverage metrics and
alters the constraints in the stimuli generator accordingly.

Recent efforts explore the application of LLMs for direct test generation. Chip-Chat [31] examines
the capabilities of several conversational LLMs to produce Verilog, among which ChatGPT-4 [194]
performs the best. By careful prompt engineering, ChatGPT-4 can design an 8-bit accumulator-based
processor, but cannot write non-trivial test programs.

3.2.2 Test Selection and Filtering. In addition to improving test generation, test selection is another
approach that accelerates the verification process by filtering out redundant or unimportant tests
from the testbench. The goal is to figure out representative and important tests from a large pool of
generated tests, so that a high coverage can be reached with a significant reduction in the number
of simulations. ML-based techniques are majorly employed for @ novel test detection [49, 52, 120,
123], @ test classification towards interested coverage events [200, 214, 260], and @ valid
test selection [105], as encapsulated in Table 4.

Striving for estimating the similarity among different tests, many SVM variants are explored
to detect novel tests or classify tests based on the interested similarity metrics. @ One-class SVM,
which uses one hypersphere to encompass data instances in the projected high-dimension space
and identifies data points lying outside the hypersphere as outliers, is widely applied to detect
novel tests. Guzey et al. [123] incorporate domain knowledge into the kernel function that projects
input test parameters into the similarity metric space, and employ a one-class SVM to search for
outliers as the selected tests. To update the one-class SVM dynamically based on runtime coverage
reports, an online learning approach is proposed to modify the trained model with new tests
while retaining memory of historical tests [120]. Moreover, there are some innovations in kernel
functions of the one-class SVM: Chang et al. [49] develop a graph-based kernel to measure the
similarity of a pair of assembly programs, which converts assembly programs into directed graphs
and measures the similarity based on the graph edit distance between a pair of graphs; Chen et
al. [52] employ a coverage-based kernel, which measures the similarity of assembly programs
by estimating coverage results before simulation, and dynamically update the training set by
accumulating newly simulated tests so that the novelty of a test is always evaluated based on its
probability to activate the currently uncovered points. @ Two-class SVM, which is also referred to
as the conventional SVM that separates data points in the high-dimension space by a hyperplane,
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is typically used to classify tests based on their similarity. Romero et al. [214] employ multiple
two-class SVM classifiers to compose a multi-class classifier. In this approach, each test is labeled
with the most activated coverage event. Test selection is achieved by selecting the tests associated
with the desired class (i.e., the coverage event of interest) and discarding the rest.

More recent studies apply MLPs for test selection, leveraging their compatibility with fixed-size
test vectors for RTL verification. Wang et al. [260] group assertions according to their functional and
structural dependencies, and then train an MLP to classify input test vectors based on their potential
target assertion groups. Test vectors that trigger assertion groups with high priorities are selected
and passed to the DUT, while irrelevant test vectors are pruned. Gaur et al. [105] eliminate invalid
input test vectors that either violate design constraints or may cause unexpected output signals;
they employ a six-layer MLP to predict the transition probability (i.e., the probability of a node
switching from 0 to 1) of outputs given input signal transition probabilities, which measures the
output randomization to help identify whether an input test is randomizable; subsequently, these
random input test vectors are filtered to prevent randomization-induced failures. Parthasarathy et
al. [200] select a subset of tests based on their predicted failure likelihood given an incremental
design modification. They build an ensemble model (including adaptive boosting, gradient boosted
machines, logistic regression, Naive Bayes, MLP, and random forest) to analyze information from
code changes and history behaviors of tests, which provides a binary classification of whether a
test will pass or fail along with its failure likelihood.

In general, test selection tasks typically exhibit a higher tolerance for false positives: it is more
acceptable to mispredict a small number of trivial tests as important ones. Although running these
false positives may incur some overhead, mistakenly excluding novel tests can cause more additional
efforts, since it is usually generating tests targeting either hard-to-hit or not fully exercised events
that dominates the test generation process.

3.3 Bug Detection/Localization and Debug

Debug usually takes the majority of time in the functional verification cycle, even for experienced
engineers or experts, since it is extremely time-consuming and challenging to detect, localize, and
analyze bugs from a sea of data produced from design simulation, as shown in Figure 5. Once
mismatches in the execution results between the DUT and the golden reference are detected,
verification engineers should precisely identify the root causes of observed failures and swiftly
narrow down the critical design signals and areas that warrant further examination. However,
this process is non-trivial: given test failures, it is difficult to distinguish whether they stem from
the same root cause or multiple different issues, since a single bug in the DUT or verification
environment can result in numerous test failures and different bugs can also lead to similar failures;
in cases involving multiple root causes, there is a strong demand of grouping failures with the
common root cause and pinpointing the exact root problem. To promote debug efficiency, many
endeavors exploiting ML-based techniques have been made to automate different steps in debug,
such as bug detection with version control systems [115, 119], root cause recognition with
failure information [207, 246], simulation trace analysis [83, 177], bug localization with
version control systems [174] or bug signatures [176, 209, 258], and generating repairs for
bugs [7], as summarized in Table 5.

Version control system are a category of software tools designed to track modifications made
to code as projects are being developed. Subversion (SVN) [16] and Git [110] are two widely used
version control systems. Besides recording code changes, version control systems also contain basic
information about projects, such as source code history, commit logs, and engineer assignments.
Making use of the features extracted from version control systems (e.g., author information, code
complexity, and commits information), Guo et al. [119] predict whether a committed design has

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July 2024.



26 Nan Wu, Yingjie Li, Hang Yang, Hanqiu Chen, Steve Dai, Cong Hao, Cunxi Yu, and Yuan Xie

Table 5. Bug detection or localization with ML techniques. FWK, S, and U stand for framework, supervised
learning, and unsupervised learning, respectively.

Problem | FWK ML Model Target HW

Predicting whether a commit has
bugs using version control systems

Naive Bayes, SVM, MLP, decision tree, random forest [119]
XGBoost [115]

Four OpenCores designs [195]
ASICIP [115]

Bug localization using Eight OpenCores designs [195] and

version control systems U+s Affinity propagation clustering and SVM [174] one in-house real-life industrial design
Grouping test failures U
based on root causes U,s DBSCAN, random forest [246] IPs related to image processing
K-means clustering [83] Five OpenCores designs [195] and UART [111]
X-means clustering [177] Ethernet MAC IP core [195]

Random forest [176]
XGBoost, random forest [209]
Decision trees [258]

SimpleScalar PISA ISA by FabScalar [56]
32-bit MIPS processor [206]
Two-threaded x86 processor [258]

Bug localization using
bug signatures

CWE [68], OpenTitan SoC [67],

LM [7] and the Hack@DAC 2021 SoC [125]

‘ Hierarchical clustering [207] ‘ Three OpenCores designs [195]
Generating repairs for bugs ‘ ‘

. . . . U
Simulation trace diagnosis ‘ U

bugs as well as the number of bugs in the new version using decision trees, SVM, MLP, etc. Likewise,
Graber et al. [115] examine several ML models with 51 manually designed features (e.g., developer
and debugger information) to predict whether a commit has bugs, among which XGBoost reaches
the highest accuracy. To further locate bugs in hardware designs, Maksimovic et al. [174] leverage
version control systems for bug localization by a three-step method: first, affinity propagation
clustering is used to find possibly erroneous code areas; next, SVM is utilized to analyze commit
logs, predicting the likelihood of one commit being buggy; finally, by combining the results from
both clustering and SVM in a weighted scheme, a ranked revision list is produced to direct the
debug process.

Failure information collected after design simulation/execution not only reveals hints to root
causes but also implicates potential debug strategies. To prevent overburdening with the vast amount
of failure information, clustering and classification algorithms are employed to identify root causes
of failures, so that crucial issues requiring debug are prioritized. Poulos et al. [207] introduce a
metric of measuring the similarities among failures regarding the likelihood of sharing the same
root cause, upon which hierarchical clustering algorithms effectively group failures originating from
the same root errors. These non-overlapping groups are then assigned to appropriate engineers for
debug. Truong et al. [246] extensively compare different clustering and classification algorithms
to cluster and classify test failures based on root causes, and emphasize that the top performant
algorithms in clustering and classification are the density-based spatial clustering of applications
with noise (DBSCAN) [87] and the random forest, respectively.

Simulation traces of DUTs depict the changes in design signal values during execution. By
repeatedly examining and analyzing the trace dump from a huge number of design signals, verifica-
tion engineers can identify erroneous signals and design areas. However, manual screening is not
scalable with the increasing complexity of hardware designs, which has become the bottleneck in
the debug process. Thus, any attempt that automates the diagnosis of simulation traces will greatly
improve the debug efficiency. To alleviate the tedious efforts on inspecting overwhelming signal
traces, K-means clustering can help to group trace segments with high similarities and identify
unique ones that may exhibit rare design behaviors [83], which provides indicators of anomalous
behaviors or areas worthy of careful examination. Later, a more advanced version of K-means
clustering, X-means clustering [203], is leveraged to group similar trace segments from passed tests,
with each time window having a separate clustering model [177]. Once the models are well-trained,
the buggy trace segment will be identified as an outlier failing to be assigned to any previously
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identified clusters. After the buggy trace window is detected, its design signals are compared with
the signals from its closest neighbor selected by a one-nearest-neighbor classifier, so that the bug
localization module can report the design module name, the list of signals, and the trace window
number that contains bugs.

A bug signature provides contextual information explaining the cause or effect of a bug [237].
BugMD [176] detects bugs by comparing the architectural states (e.g., register values, memory
contents, program counter values) of the DUT against a golden reference model, and records
mismatches (e.g., the difference and the Hamming distance between the wrong and correct values)
starting from the first manifestation of a bug as symptoms to form a bug signature; with a bug
signature, BugMD adopts a random forest (comprising 64 trees) as the classifier to pinpoint the
hardware unit responsible for the bug. BugMD is evaluated with synthetic bugs and identifies
the location for a single bug in a single test run, reaching an accuracy of 70%. A comprehensive
assessment of different ML techniques in BugMD, such as XGBoost, random forest, and MLP,
indicates that XGBoost and random forest generally show higher accuracy [209]. Wahba et al. [258]
analyze both single- and multi-defect signatures extracted from past failing simulations, and
leverage decision trees to learn a set of rules that differentiate failures caused by defects in RTL
code or the verification environment, achieving 90% and 95% RTL bug capturing rates for single-
and multi-defect signatures, respectively.

To generate repairs for hardware security bugs, Ahmad et al. [7] investigate the potential of
using LLMs, such as OpenAl Codex [51, 193] and CodeGen [188]. They build a corpus of benchmark
designs, consisting of ten hardware security bugs from Common Weakness Enumerations (CWE)
descriptions on the MITRE website [68], OpenTitan SoC [67], and the Hack@DAC 2021 SoC [125].
Given a hardware design, a static analysis tool detects certain weaknesses within the RTL. For each
bug, human experts develop different instructions to assist LLMs in generating repairs, such as
comments before and after the buggy code. By combining the code before the bug, buggy code with
comments, and instructions, prompts are formed and fed to LLMs. The repairs output by LLMs will
be evaluated in terms of functionality and security. Experimental results show that an ensemble of
LLMs can repair all ten bugs in the proposed benchmark and outperform the hardware bug repair
tool Cirfix [8]. However, at the current stage, some assistance based on the designers’ expertise is
still required to identify the location and nature of the bug.

In bug detection and localization, one observation is that many studies rely on analyzing infor-
mation from version control systems and bug signatures to detect the presence and location of
bugs. However, a significant challenge arises: while data from version control systems are easily
interpretable by humans, they may not be as clear to ML models. Additionally, the data often
contains considerable redundancy. Therefore, the careful selection of features becomes highly
important [48].

In analyzing failure/simulation information, a notable trend is the inclination of many studies
to utilize unsupervised learning techniques. This aligns with the motivation behind employing
ML, i.e., automatically uncovering patterns within a vast sea of failure information or simulation
traces. One more factor contributing to the prevalence of unsupervised learning is the substantial
effort required to provide high-quality labels for failure information. However, when employing
unsupervised learning, the twist is the requirement for stronger assumptions on data distributions
to choose suitable algorithms and ensure performance [107]. This still necessitates considerable
expertise in both debug and ML. Hence, efficiently cleaning the collected failure data to feed into
unsupervised learning models is crucial in this context.
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3.4 Roadmap of ML in Oracle-based Verification

Building upon current achievements in ML-assisted simulation-based verification, there are several
dimensions worth further investigation, including generalization, interpretation, and scalability,
which have the potential to propel ML applied in simulation-based verification forward into a
bright future.

3.4.1 Generalization. Generalization capability is a fundamental requirement for ML-based predic-
tive models, optimizers, and debug assistants to be well adopted in simulation-based verification.
Currently, most studies reviewed in Section 3 focus on design-specific approaches, indicating data
collection and model training are invoked for every new DUT. Though the initialization process for
each new DUT is tolerable, ML models that can generalize across a family of similar DUTs remain
highly desirable. Such models are capable to keep the knowledge learned from past experiences
and significantly reduce the number of data samples required for new DUTSs, releasing the bur-
den on data collection and model retraining. Potential cures for DUT-level generalization include
meta-learning [131, 187] and transfer learning [279]. The incorporation of out-of-distribution meth-
ods [270] will benefit model robustness toward outliers of both DUTs and tests targeting certain
coverage points.

3.4.2 Interpretation. Promising as ML for verification is, the lack of interpretability regarding the
behaviors and decisions of ML models hinders their broader adoption. Fortunately, several studies
have shifted the focus from high-performant models to explainable models, such as rule learning
to explain the reasons why coverage points are hit by tests [53, 132, 133, 153] and rule-based ML
techniques for test point analysis [157]. Since interpretation and explanation are important to
identify and expose potential problems during training, encode expert knowledge and intuitions
into models, and ensure the fidelity of predictions, interpretable ML [46, 109] is expected to offer
more confidence, reliability, and security for the decisions made in simulation-based verification.

3.4.3 Scalability. The scalability of ML-based methods in simulation-based verification is trans-
forming from extra credit to an obligation, especially when considering the skyrocketing complexity
of electronic designs. This challenge is caused by the synergy of technology scaling, design size
increase, SoC and heterogeneous system integration, adoption of emerging technologies, etc. Even
though many studies discussed in Section 3 conspicuously improve verification efficiency by
reducing DUT simulation time, generating better tests to accelerate coverage closure, filtering
unimportant tests, and automatic debugging, most DUTs are single circuit units or IP blocks. No-
tably, many of the techniques effective for IP-block-level or sub-system-level verification, no matter
conventional or ML-based, often struggle to scale to the entire SoC integration or system-level
validation, heralding that more attention should be given to how to exploit ML-based techniques
for large-scale and system-level verification. This poses challenges to how to formulate system-
level verification as ML problems and how to develop ML algorithms that can handle multi-level
abstraction and multi-granularity optimization. Potential solutions are hierarchical ML algorithms.
For example, hierarchical RL [162] has flexible goal specifications and can learn goal-directed
behaviors in complex environments with sparse feedback, enabling more flexible and effective
multi-level design and control, which is helpful for test generation and selection; hierarchical
clustering algorithms [210] are capable to cluster samples either bottom-up or top-down, naturally
matching multi-level abstraction in EDA flows, which is helpful for diagnosing root causes from
failure information.

3.4.4 Data Collection. Data are the mainstay of ML. It is the sufficiency, variety, and representative-
ness of data that majorly determine the behavior and capability of ML models. In contrast to some
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EDA tasks suffering data scarcity (e.g., placement and routing in physical synthesis), hardware
verification naturally comes with an enormous amount of data. However, these data are mostly
designed for human perception instead of ML, which could be imperfect in terms of implicit labeling,
high redundancy, and inevitable noise. Meanwhile, real hardware designs are often proprietary,
which limits most academic research to open-source and relatively small-scale hardware designs.
Thus, we shed light on how to handle imperfect data through different supervision and data aug-
mentation, and provide pointers to open-source datasets and benchmarks for hardware designs,
verification libraries, and EDA tools.

Imperfect Data. In the case of lacking perfect labels, potential alternatives are to adopt hybrid
supervision, such as self-supervised learning [128], semi-supervised learning [250], or combin-
ing supervised with unsupervised techniques [12]; transfer learning [279] can be a workaround
since fewer data samples are required to transfer pre-trained models to target domains; active
learning [211] seeks to maximize the performance of a model with the fewest annotated samples
possible. In the case of data augmentation, generative methods can generate synthetic data [10] that
are artificial but realistic, i.e., indistinguishable from real hardware designs; by applying different
constraints during data generation, the redundancy in training data can be reduced. In the case of
noisy data, different data cleaning approaches [122, 140] are beneficial to improve model capability.

Dataset and Benchmark. From the hardware design standpoint, OpenCores [195] is a promi-
nent platform for open-source digital IP cores (e.g., central processing cores, memory controllers,
peripherals), aiming to slash hardware development costs. It is noted that many verification-related
studies from academia choose designs from OpenCores as their DUTs. From the verification library
standpoint, Open Verification Library [95] is a vendor- and language-independent assertion library
applicable across multiple verification processes, which provides common assertions that have
been compiled and optimized by experts and can be easily tailored according to users’ needs. From
the general EDA standpoint, OpenROAD [150, 196] provides open-source EDA infrastructures,
including an industry-strength database and timing analysis, Tcl and Python script interfaces, and
design-rule clean layout generation, which greatly fosters the transparency and reproductivity in
academic research. The openness of datasets and benchmarks matters the innovations in hardware
verification. The low-barrier access to industry-strength data is expected to be a thrust in more
general adoption of ML in verification.

4 INDUSTRIAL ADOPTION
4.1 From Academic to Industrial

As we tackle increasing design complexity and more challenging technology nodes, industry players
are looking ever more seriously at minimizing simulation cycles, reducing manual verification effort,
and accelerating the verification engines on which they rely. Motivated by various proposals of ML
for verification from academia, the industry has been expressing immense interest in integrating
ML algorithms into product verification efforts to achieve the aforementioned goals. In the last
few years, both chip design and design automation companies have formed working groups to
identify areas of the verification flow that would most immediately benefit from an ML approach
and implemented prototypes to experiment with various proposals. A typical industry approach
to ML for verification focuses on oracle-based verification and involves breaking the verification
flow into different steps, including test generation, test selection, simulation, failure analysis, bug
detection, and bug fix, many of which are covered in the previous sections. Engineers then look for
ML opportunities within each step and propose relevant ML techniques based on the characteristics
of the specific problem in that step. While a few proposals have been incorporated into actual
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products, most remain under development pending stronger results. This fact underlies that with
opportunities come challenges of practically applying ML in a production work flow.

Test generation sits at the forefront of the verification flow. The quality of generated test cases
directly affects key coverage metrics used for design sign-off. Today, test generation remains a
largely manual process because of the semantic gap between design specification and design entry.
Verification engineers need to manually parse through design specifications and translate these
specifications into either constraints for randomized tests or directed test cases. While there exists
heuristic-level automation to expand human-designed test templates into many tests, the initial
step of translating design specifications into these templates remains time-consuming and error-
prone. In addition, human-designed tests and automatically expanded tests either are repetitive
or lack the focus needed to activate corner case bugs and hard-to-hit combinations. We expect
supervised learning and RL approaches that model the relationship between the signals of the
DUT and configurations of test templates to be very helpful in being more selective during test
generation [137]. However, it is necessary to demonstrate that these techniques scale to large
circuits. More importantly, though, we hope that recent advances in natural language processing
can be applied similarly to design specification language and hardware description language so
that we can automatically extract design intents from design specifications and generate tests
in a manner similar to that of a natural language translation task. This would alleviate the most
laborious part of the test generation process and also create good-quality test templates in the first
place.

Test selection is very important because simulation time is similarly determined by how many
tests need to be run to reach a certain coverage goal. We are interested in techniques that compute
the similarity between tests so that similar stimuli don’t need to be repeatedly stressed and that
more simulation cycles can be allocated to novel or corner test cases. Novelty detection based on
similarity metrics can be applied to more intelligently filter out unnecessary tests [120, 123]. On top
of that, we should focus on failing tests as opposed to repeatedly stressing passing tests. However,
we don’t know ahead of time whether a test will pass or fail without running it. That’s why ARM
researcher has initiated the effort of using ML models to predict the likelihood of failure of new
stimuli and to run tests on those that are more likely to fail [226, 227]. The proposed method is a
combination of supervised classification and unsupervised outlier detection. Similar functionality
has been proposed by Synopsys [200] and also available with Cadence Verisium [45].

Because coverage is a key metric for sign-off, industry tends to be most interested in test
selection techniques that optimize for coverage. These techniques typically leverage RL or blackbox
optimization such as Bayesian optimization and consist of ML models that predict coverage and a
feedback mechanism to update test templates/constraints based on predicted or measured coverage.
In these cases, ML coverage prediction model is used in conjunction with actual coverage collection
from simulation to strike a balance between efficiency and accuracy. While coverage is the top-level
metric at sign-off, it may not be the most effective metrics for optimizing test selection. In addition
to considering coverage in test selection, we should consider other metrics that more effectively
stress the DUT. Examples of common ways to stress a design include maximizing the occupancy of
FIFO, creating stalls and backpressure, and forcing resource contention [76].

Once failures are observed from the test cases, we need to analyze these failures and detect
the bug related to the failure. Typically there are many more failures occurring simultaneously
than what the limited number of engineers can handle. As a result, it is necessary to triage the
many failures by categorizing them into different bins. We can then analyze a representative failure
from each bin. In addition, we need to relate failures to bugs and find the expert responsible for
resolving each bug. This involves studying source code revisions or looking at important waveform
signals to pinpoint the root cause of a test failure. To facilitate this process, for example, Cadence
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Verisium AutoTriage builds ML models to classify failures that have common root causes. In
addition, Cadence provides Verisium SemanticDiff for classifying and ranking the importance of
revisions and Verisium WaveMiner for predicting the signals and the times most relevant to the
failure [45].

4.2 Commercial ML-driven Verification Platforms

Cadence has integrated ML into their commercial products such as Verisium [45], Xcelium Logic
Simulation [44], and Jasper RTL Apps [43]. Verisium is an ML-driven verification platform to
optimize verification workloads, boost coverage, and accelerate root cause analysis, which employs
ML models to rank code revisions most disruptive to system behaviors, classify failures with same
root causes, and identify signals/times most likely to expose failures. Xcelium is a comprehensive
logic simulation tool equipped with an Xcelium ML accelerator for boosting user regression
throughput. The Xcelium ML is trained on coverage random seed data collected during user
regressions, which predicts the influence of these conditions on the target coverage goal and
generates a much faster regression set that can reach the same coverage. It enables up to 5%
faster verification closure on randomized regressions [42]. Jasper is a formal verification tool
incorporating ML to improve verification productivity. Inside Jasper, ML is used to select and tune
the hyperparameters of verification proof solvers to speed up proofs; ML has also been used to
speed up successive runs of regression testing. The observed speedup is 2X to 5X.

Synopsys has been integrating ML into their VC Formal [242], VC SpyGlass RTL Static Signoff
Platform [243], and VCS functional verification solution [240]. In VC Formal, ML is used for speeding
up the convergence of formal proofs for subsequent runs; in VC SpyGlass, ML is used for reducing
the number of false clock domain crossing (CDC) violations, and thus to enable faster identification
of root cause; in VCS functional verification, ML is integrated into intelligent coverage optimization
(ICO), which analyzes the relations between the user inputs and the tests executed in simulation and
improves the test quality through diversification in the constraint space. A case study adopting ICO
in early verification stages of cache designs achieves faster testbench stabilization by discovering
and fixing hard-to-hit testbench bugs due to under- and over-constraints [248].

Siemens [229] has been exploring ML techniques in the Siemens EDA Solido Characterization
Suite [230] to accelerate the production quality library characterization and verification of standard
cells, memory, and custom blocks; ML techniques are also used in Solido Variation Designer [231] to
accelerate simulation. Unfortunately, we do not find more details due to commercial confidentiality.

TestGuru [256] from VerifAl, which uses LLM, RL, and other algorithms to analyze code, is
capable to generate tests, write code, explain code, finds bugs, and fixes bugs on Python and Verilog,
achieving one order magnitude speedup compared to human developers.

5 CONCLUSION

There have been many victories in hardware verification coming from the exploitation of ML-based
techniques. In formal verification, @ GNN-based approaches greatly improve the performance of
SAT solvers; @ NLP-based methods automate the assertion generation across human languages,
verification languages, and hardware description languages; @ different classifiers provide potentials
to always make the smartest selections in equivalence checking, model checking, theorem proving,
and saving verification costs. In simulation-based verification, ML-based techniques act as @
predictive models for fast and accurate coverage analysis, @ optimizer for smart test generation or
selection, and @ automatic troubleshooting assistants. To fully unveil potentials and possibilities
of ML applied for hardware verification, we provide our visions on the road ahead and expect the
broader, generic, and efficacious ML applications be the enabler for more scalable, more intelligent,
and more productive hardware design verification.
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