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Abstract: We propose a new mathematical model based on differential equations to investigate the

transmission and spread of frogeye leaf spot, a major soybean disease caused by the fungus Cercospora
sojina. The model incorporates the primary and secondary transmission routes of the disease as well

as the intrinsic dynamics of the pathogen in the contaminated soil. We conduct detailed equilibrium

and stability analyses for this model using theories of dynamical systems. We additionally conduct

numerical simulations to verify the analytical predictions and to implement the model for a practical

application.
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1. Introduction

Frogeye leaf spot (FLS), caused by the fungus Cercospora sojina, is a common soybean disease

[1, 2]. First reported in Japan in 1915, the disease has spread to most soybean-growing countries

throughout the world. In the United States, FLS has historically been most common in the southern

region, especially the states of Alabama, Arkansas, Kentucky, Louisiana, Mississippi, and Tennessee,

which account for a large portion of soybean production in the nation. Recent years have seen FLS

reported with increasing frequency and severity in the midwestern and northern regions of the United

States, including states such as Illinois, Iowa, Minnesota, Nebraska, North Dakota, and Wisconsin

[3–5].

FLS represents a significant threat to soybean production by reducing photosynthetic leaf areas,

causing premature defoliation and reduced seed weight, and eventually leading to yield losses. It

is estimated that soybean yield losses due to the FLS disease can range from 30% to 60% [6, 7]. In

Argentina alone, losses due to FLS during the 2009–2010 crop season were estimated at about 2 billion

USD [8]. In the United States and Canada, the average soybean yield losses caused by FLS were up to
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1,453,225 metric tons per year during the 10-year period 2010–2019; furthermore, the estimated yield
losses from 2015 to 2019 were more than twice that reported in the previous 5-year period from 2010
to 2014 [9, 10]. Hence, effective prevention and intervention of FLS are tremendously important for
agriculture, food, and the economy.

The causative agent of FLS, Cercospora sojina, can survive and overwinter in crop residue left in
the soil that provides the initial inoculum [2,11]. Infectious conidia (i.e., asexual spores) are produced
on infested residue in spring and dispersed to nearby plants via wind or rain splashes, which represents
the primary route of the infection. The pathogen causes small, irregularly circular leaf lesions, typically
seen in the upper canopy of the infected plants. Individual lesions can merge to form larger patterns
of blight on the leaves. Such symptoms can be observed 8–12 days after infection, and new spores are
produced within these lesions and subsequently spread to other plants, which represents the secondary
route of the FLS disease [1]. Hence, the transmission and spread of FLS are polycyclic and involve
multiple pathways, including both the environment (i.e., the soil) and the infected plants [12]. Mean-
while, some conidia generated and dispersed from infected plants will deposit on the soil surface,
which may increase the primary inoculum and may contribute to the fungal growth in the soil [13].
This represents the feedback from the infected plants to the environment. Additionally, soybean seeds
infected with Cercospora sojina may also spread the fungus when they are planted.

FLS is but one example of infectious plant diseases, which can be caused by a wide variety of
pathogens including bacteria, fungi, and viruses [14]. Mathematical models for plant infections, al-
though not as extensively used as for human and animal infections, started several decades ago [15].
Since then significant progress has been made in this area, as reviewed in [16–22]. Common mathemat-
ical tools for plant pathology and epidemiology include, among others: (1) Disease progress curves,
which employ curves of prescribed shapes (such as monomolecular, exponential, logistic, and Gom-
pertz functions) to describe the epidemic progression over time [23, 24]. (2) Area under the disease
progress curve, which can be used as a measure of epidemic development and may be further applied
to hypothesis testing and regression analysis [22,25]. (3) Disease cycle models, which utilize different
variables for different stages of the disease cycle, and which employ a prescribed function (with pa-
rameters fitted from data) at each stage to model the infection process [26–28]. (4) Linked differential
equations, which are formulated to describe the rate of change for each state variable, typically referred
to as a compartment, and the flow of infection through different compartments [21, 29].

Among these modeling techniques, linked differential equations provide a general and powerful
approach to examine the transmission, spread, and progression of plant diseases. The equations can
not only characterize the generation of new infections and the transfer of individuals and exchange
of information between compartments but also naturally incorporate the host population growth and
the pathogen dynamics. By describing the rate of change, instead of prescribing the trajectory of
evolution, for each state variable, models based on differential equations offer a more flexible way than
others to investigate the complex infection process that could potentially yield a better mechanistic
understanding of the disease. Compared to their applications in plant epidemiology, linked differential
equations have a longer history in modeling infectious diseases for humans and other animals [30,31].
Classical epidemic models such as the SIR (susceptible-infectious-recovered) and SEIR (susceptible-
exposed-infectious-recovered) are based on this approach. On the other hand, since analytical solutions
are generally impossible to find for nonlinear differential equations, dynamical system theories are
typically applied to analyze the equilibrium points and stability properties, and numerical simulation
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is normally conducted to approximate the solution orbits so as to gain useful insights into the infection
dynamics [32–36].

Simple models based on the area under the disease progress curve have been utilized for frogeye
leaf spot [37]. Other studies (e.g., [38]) have applied statistical regression to predict the progression of
the FLS disease. To our knowledge, however, no mathematical models based on differential equations
have been published for frogeye leaf spot thus far. To fill this gap, we propose an innovative modeling
study for FLS in this paper using linked differential equations. Our goal is to achieve a deep mechanis-
tic understanding of FLS dynamics, taking into account both the disease transmission among soybean
plants and the intrinsic growth and decay of the fungus Cercospora sojina in the soil. To that end,
we will modify the standard SEIR model and combine it with an additional equation that represents
the environmental dynamics of the pathogen, forming a coupled differential-equation system that in-
corporates the multiple transmission pathways of FLS. Although such a modeling technique has been
utilized for some human and animal infections that involve both direct and indirect transmission routes
(e.g., cholera and brucellosis) [39–41], its application to plant diseases appears to be new. We will
conduct detailed equilibrium and stability analyses for the proposed model, and will use numerical
simulation to verify the analytical results and to implement the model with real data for a practical
application.

The remainder of this paper is organized as follows. The formulation of our mathematical model
is presented in Section 2. Details of the equilibrium and stability analyses are provided in Section
3, followed by numerical simulation and data fitting in Section 4. Conclusions are drawn and some
discussion is made in Section 5.

2. Model formulation

Let S , E, I and R denote the densities of the susceptible (healthy), exposed, infectious, and removed
(post-infectious) soybean plants, respectively, in terms of the number of plants per unit area in a field.
Let also B denote the density of the fungus Cercospora sojina in the soil. We propose the following
model to describe the transmission and spread of frogeye leaf spot in soybean plants:

d
dt S (t) = µN − (αI + βB)S − µS ,
d
dt E(t) = (αI + βB)S − µE − λE,
d
dt I(t) = λE − µI − δI,
d
dt R(t) = δI − µR,
d
dt B(t) = rB(1 − B

k ) − τB + ξI.

(2.1)

Here N = S +E+ I+R is the total plant density in a given field, which is assumed to be a constant. The
parameter µ is the natural growth and removal rate of the plants, β and α are the primary and secondary
transmission rates, respectively, λ is the reciprocal of the mean latent period, δ is the removal rate of
infectious plants, r is the fungal intrinsic growth rate, k is the carrying capacity of the fungus, τ is the
removal rate of the fungus from the soil, and ξ is the average rate of contribution from an infectious
plant to the fungus in the soil. All these parameters are assumed to be non-negative constants.

System (2.1) consists of nonlinear and coupled differential equations for five state variables. In
this model, healthy plants (represented by the S compartment) contract the infection either through
the primary inoculum from the fungus in the soil, or through the secondary inoculum from the fungus
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produced by the infected plants, and then enter the exposed (E) compartment. We represent each of
these two transmission modes using a bilinear incidence based on the law of mass action, where the
incidence rate is directly proportional to the product of the densities of the susceptible plants and the
infectious plants (or, the environmental pathogen). Exposed plants go through a latent period of the
length λ−1, after which they are capable of spreading the disease and enter the infectious (I) compart-
ment. The last equation in system (2.1) describes the intrinsic growth of Cercospora sojina in the soil
by a logistic model with the growth rate r and carrying capacity k. Additionally, the term ξI repre-
sents the total of the reciprocal contribution per unit time from the infected plants to the environmental
pathogen.

3. Mathematical analysis

3.1. Basic reproduction number

We conduct a detailed analysis of the disease risk, equilibrium points, and stability properties for
our FLS model. First, it can be easily observed from system (2.1) that all the solutions will remain
non-negative as long as the initial conditions are non-negative. Next, from the last equation in system
(2.1), we have

dB
dt
≤ ξN − (τ − r +

r
k

B)B. (3.1)

It follows that B has an upper bound Bmax. Thus, we consider system (2.1) in the following positively
invariant set

Γ =
{
(S , E, I,R, B) ∈ R5

+ : S + E + I + R = N, B ≤ Bmax
}

(3.2)

as a biologically meaningful domain. Clearly, there is a unique disease-free equilibrium (DFE) at

X0 = (N, 0, 0, 0, 0). (3.3)

To determine the basic reproduction number R0 for the model, we consider E, I, and B as the infectious
compartments. Using the next-generation matrix technique [42], we obtain the nonnegative matrix F
representing the generation of new infections and the non-singular matrix V representing the transfer
of individuals between compartments:

F =


0 αN βN
0 0 0
0 ξ r

 and V =


µ + λ 0 0
−λ µ + δ 0
0 0 τ

 . (3.4)

Then we compute V−1 and, consequently, the next-generation matrix FV−1, as follows,

V−1 =


1
µ+λ

0 0
λ

(µ+λ)(µ+δ)
1
µ+δ

0
0 0 1

τ

 , FV−1 =


αNλ

(µ+λ)(µ+δ)
αN

(µ+δ)
βN
τ

0 0 0
ξλ

(µ+λ)(µ+δ)
ξ

µ+δ
r
τ

 . (3.5)

Thus, the basic reproduction number can be determined by the spectral radius of FV−1; that is, R0 =

ρ(FV−1). Since

det(xI − FV−1) = x
((

x −
αNλ

(µ + λ)(µ + δ)
)
(x −

r
τ

) −
ξλβN

τ(µ + λ)(µ + δ)

)
, (3.6)
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where I denotes the corresponding identity matrix, we have

R0 =
1
2

 αNλ
(µ + λ)(µ + δ)

+
r
τ
+

√( αNλ
(µ + λ)(µ + δ)

−
r
τ

)2
+

4ξλβN
τ(µ + λ)(µ + δ)

 . (3.7)

Equation (3.7) shows that the disease risk of FLS, quantified by the basic reproduction number R0, is
shaped collectively by the primary infection (represented by the terms associated with β), the secondary
infection (represented by the terms associated with α), and the environmental dynamics of the fungus
(represented by the terms associated with r and ξ).

3.2. Nontrivial equilibrium

A nontrivial equilibrium X = (S , E, I,R, B) for system (2.1) satisfies

µN = (αI + βB)S + µS , (3.8)
(αI + βB)S = (µ + λ)E, (3.9)
λE = (µ + δ)I, (3.10)
δI = µR, (3.11)

ξI =
r
k

B2 + (τ − r)B. (3.12)

At a nontrivial equilibrium, at least one of the variables E, I, R and B should be greater than 0. Since
all the variables are non-negative (to make biological sense), it is easy to observe from Eqs (3.8)–
(3.12) that as long as one of these four equilibrium components is positive, all the other equilibrium
components also become positive. Let θ = µNλ

(µ+λ)(µ+δ) . Canceling S and E from (3.8)–(3.10), we obtain

αI2 + (µ + βB − θα)I − θβB = 0. (3.13)

Solving the above quadratic equation for nonnegative I, we have I = g1(B), where

g1(B) =

√
(µ − θα + βB)2 + 4θαβB − (µ − θα + βB)

2α
, B ≥ 0. (3.14)

In addition, we have B = p(I) from (3.13), where

p(I) =
µI

β(θ − I)
−
α

β
I, I ≥ 0. (3.15)

Hence B = p(g1(B)), B ≥ 0. Then we have g′1(B) = 1/p′(g1(B)) = 1/p′(I) for B > 0. For an endemic
equilibrium, p(I) = B is positive, which implies that

max(0, θ −
µ

α
) < I < θ. (3.16)

It follows from (3.12) that I = g2(B), where

g2(B) =
r
ξk

B2 +
τ − r
ξ

B, B ≥ 0. (3.17)
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To obtain an endemic equilibrium, we need to solve the equation

g1(B) = g2(B), B > 0. (3.18)

Let m = min(θ, µ
α
). Then 0 < θ − I < m from (3.16), and µ

α
θ ≥ m2. Hence we have

µθ − α(θ − I)2 > µθ − αm2 = α
(
µ

α
θ − m2

)
≥ 0. (3.19)

Thus,

g′1(B) = 1/p′(I) =
β(θ − I)2

µθ − α(θ − I)2 > 0, (3.20)

and

g′′1 (B) =
−p′′(I)
p′(I)3 =

−2µθg′1(B)3

β(θ − I)3 < 0. (3.21)

On the other hand,

g′′2 (B) =
2r
ξk
> 0. (3.22)

Notice that g1(0) = max{0, θ − µ
α
} ≥ 0 = g2(0). By considering the intersection of the two curves

I = g1(B) and I = g2(B) for B > 0, we have
(1) if θ > µ

α
, i.e., αNλ

(µ+λ)(µ+δ) > 1, then g1(0) > g2(0) and Eq (3.18) has a unique solution;
(2) if θ = µ

α
, i.e., αNλ

(µ+λ)(µ+δ) = 1, then g1(0) = g2(0), g′1(0+) = +∞ > g′2(0), and Eq (3.18) has a unique
solution;

(3) if θ < µ
α
, i.e., αNλ

(µ+λ)(µ+δ) < 1, then g1(0) = g2(0), and

g′1(0) − g′2(0) =
βθ

µ − αθ
−
τ − r
ξ
=

βNλ
(µ+λ)(µ+δ)

1 − αNλ
(µ+λ)(µ+δ)

−
1 − r

τ

ξ

τ

=

ξβNλ
(µ+λ)(µ+δ)τ − (1 − r

τ
)(1 − αNλ

(µ+λ)(µ+δ) )

(1 − αNλ
(µ+λ)(µ+δ) )

ξ

τ

=
( αNλ

(µ+λ)(µ+δ) −
r
τ
)2 +

4ξβNλ
(µ+λ)(µ+δ)τ − ( αNλ

(µ+λ)(µ+δ) +
r
τ
− 2)2

4(1 − αNλ
(µ+λ)(µ+δ) )

ξ

τ

=

√(
αNλ

(µ+λ)(µ+δ) −
r
τ

)2
+

4ξβNλ
(µ+λ)(µ+δ)τ −

(
αNλ

(µ+λ)(µ+δ) +
r
τ
− 2

)
2
(
1 − αNλ

(µ+λ)(µ+δ)

)
r
τ

(R0 − 1).

(3.23)

Note that√(
αNλ

(µ+λ)(µ+δ) −
r
τ

)2
+

4ξβNλ
(µ+λ)(µ+δ)τ −

(
αNλ

(µ+λ)(µ+δ) +
r
τ
− 2

)
2
(
1 − αNλ

(µ+λ)(µ+δ)

)
r
τ

>
max{1 − αNλ

(µ+λ)(µ+δ) , 1 −
r
τ
}(

1 − αNλ
(µ+λ)(µ+δ)

)
r
τ

> 0. (3.24)

Thus,

(a) if R0 > 1, then g′1(0) > g′2(0) and Eq (3.18) has a unique solution;
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(b) if R0 ≤ 1, then g′1(0) ≤ g′2(0) and there is no solution for Eq (3.18).

From Eq (3.7), R0 > max
(

αNλ
(µ+λ)(µ+δ) ,

r
τ

)
. It follows that αNλ

(µ+λ)(µ+δ) ≥ 1 implies R0 > 1. Hence, there is a
unique endemic equilibrium (EE)

X1 = (S 1, E1, I1,R1, B1) (3.25)

for system (2.1) when R0 > 1. The above results can be summarized as the following theorem.

Theorem 3.1. If R0 ≤ 1, system (2.1) has a unique equilibrium, the DFE. If R0 > 1, system (2.1) has
two equilibria, the DFE and the unique endemic equilibrium (EE).

3.3. Stability property

We establish the following stability theorems that characterize the main dynamical behavior of our
FLS model.

Theorem 3.2. If R0 ≤ 1, the DFE X0 of system (2.1) is globally asymptotically stable in the domain Γ.
If R0 > 1, the DFE is unstable.

Proof. Define the vector Z = [E, I, B]T for the infected compartments. One can verify that

dZ
dt
≤

[
− (µ + λ)E + αNI + βNB, λE − (µ + δ)I, ξI + (r − τ)B

]T

= (F − V)Z,
(3.26)

where the matrices F and V are given in Eq (3.4). Introduce the vector

u =
[
0, ξ
τ
, R0 −

αNλ
(µ+λ)(µ+δ)

]
.

It follows from the fact R0 = ρ(FV−1) = ρ(V−1F) and direct calculation that u is a left eigenvector
associated with the eigenvalueR0 of the matrix V−1F; i.e., uV−1F = R0u. Let us consider the Lyapunov
function

L = uV−1Z. (3.27)

Differentiating L along the solution of system (2.1), we have

dL
dt
= uV−1 dZ

dt
≤ uV−1(F − V)Z = (R0 − 1)uZ. (3.28)

Case 1: If R0 < 1, then the equality dL
dt = 0 implies that uZ = 0, which leads to I = B = 0 since R0 >

αNλ
(µ+λ)(µ+δ) . The trajectory that starts in {(S , E, I,R, B) ∈ Γ : I = B = 0} and remains in it for all t > 0
can only be the DFE X0. That is, the largest positive invariant set on {(S , E, I,R, B) ∈ Γ : dL

dt = 0}
is the singleton {X0}.

Case 2: If R0 = 1, i.e.,

1 − (
αNλ

(µ + λ)(µ + δ)
+

r
τ

) +
rαNλ

τ(µ + λ)(µ + δ)
=

ξβNλ
(µ + λ)(µ + δ)

,
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then 1 > max
(

αNλ
(µ+λ)(µ+δ) ,

r
τ

)
. Thus we have (µ + λ)(µ + δ) − αNλ > 0 and τ − r > 0. The equality

dL
dt = 0 implies that

ξαλ(S − N)I
τ(µ + λ)(µ + δ)

+

(
ξλβ(S − N)
τ(µ + λ)(µ + δ)

−
rB
τk

(1 −
αNλ

(µ + λ)(µ + δ)
)
)

B = 0.

Hence, S = N and B = 0. Similarly, we can obtain that the largest positive invariant set on
{(S , E, I,R, B) ∈ Γ : dL

dt = 0} is the singleton {X0}.

Therefore, in either case, the largest invariant set on which dL
dt = 0 consists of only the singleton

X0 = (N, 0, 0, 0, 0). By LaSalle’s Invariance Principle [43], the DFE X0 is globally asymptotically
stable in Γ when R0 ≤ 1.

In contrast, if R0 > 1, then it follows from the continuity of vector fields that dL
dt > 0 in a neighbor-

hood of the DFE in Γ̊. Thus, the DFE is unstable based on the Lyapunov stability theory.

Before we proceed, we make two remarks here. First, based on Theorem 4.3 in [44], it follows
that our system (2.1) is uniformly persistent when R0 > 1. This can be established by using the
standard arguments that the DFE X0 is the only equilibrium on the boundary of the domain Γ and
that X0 is unstable when R0 > 1 (see Theorem 2.2 of [45] or Proposition 3.3 of [46]). Second, the
local asymptotic stability of the endemic equilibrium X1 when R0 > 1 can be proved by using the
Routh-Hurwitz criterion, and the details are provided in Appendix A.

In what follows, we will construct a Lyapunov function to establish a stronger result and show the
global asymptotic stability of the unique endemic equilibrium X1 in Γ̊, the interior of Γ.

Theorem 3.3. If R0 > 1, the EE X1 is globally asymptotically stable in Γ̊.

Proof. Let

f (Y) = Y − Y1 − Y1 ln
Y
Y1
,

where the symbol Y can be replaced by any of the state variables S , E, I, and B. Then f (Y) ≥ 0 for
Y, Y1 > 0 and

d
dt

f (Y) = f ′(Y)
dY
dt
=

Y − Y1

Y
dY
dt
.

Now we consider a Lyapunov function in the following form:

L1 = f (S ) + f (E) + (αI1+βB1)S 1
λE1

f (I) + βB1S 1
ξI1

f (B).

Then L1 ≥ 0 in Γ̊ and

dL1

dt
=

d f (S )
dt
+

d f (E)
dt
+

(αI1 + βB1)S 1

λE1

d f (I)
dt
+
βB1S 1

ξI1

d f (B)
dt

.

By using Eqs (3.8)–(3.12) and the inequality 1 − x ≤ − ln x for x > 0, we have
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d f (S )
dt

=
S − S 1

S
dS
dt
≤ (1 −

S 1

S
)
(
α(I1S 1 − IS ) + β(B1S 1 − BS )

)
=αI1S 1

(
1 −

S 1

S
−

IS
I1S 1

+
I
I1

)
+ βB1S 1

(
1 −

S 1

S
−

BS
B1S 1

+
B
B1

)
,

d f (E)
dt

=
E − E1

E
dE
dt
= (1 −

E1

E
)
(
(αI + βB)S − (µ + λ)E

)
=αI1S 1

(
IS

I1S 1
−

E
E1
−

IS E1

I1S 1E
+ 1

)
+ βB1S 1

(
BS

B1S 1
−

E
E1
−

BS E1

B1S 1E
+ 1

)
,

d f (I)
dt
=

I − I1

I
dI
dt
= (1 −

I1

I
)
(
λE −

λE1I
I1

)
= λE1

(
E
E1
−

I
I1
−

I1E
IE1
+ 1

)
≤λE1

(
E
E1
−

I
I1
+ ln

I
I1
− ln

E
E1

)
,

d f (B)
dt
=

B − B1

B
dB
dt
= (B − B1)

(
r
k

(B1 − B) + ξ(
I
B
−

I1

B1
)
)

≤ξI1

(
I
I1
−

B
B1
−

B1I
BI1
+ 1

)
≤ξI1

(
I
I1
−

B
B1
+ ln

B
B1
− ln

I
I1

)
.

Hence,

dL1

dt
≤αI1S 1

(
2 −

S 1

S
−

E
E1
+

I
I1
−

IS E1

I1S 1E

)
+ βB1S 1

(
2 −

S 1

S
−

E
E1
+

B
B1
−

BS E1

B1S 1E

)
+ (αI1 + βB1)S 1

(
E
E1
−

I
I1
+ ln

I
I1
− ln

E
E1

)
+ βB1S 1

(
I
I1
−

B
B1
+ ln

B
B1
− ln

I
I1

)
≤αI1S 1

(
I
I1
−

E
E1
− ln

I
I1
+ ln
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−
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+ ln
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E
E1
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+ βB1S 1

(
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−
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B1
+ ln

B
B1
− ln

E
E1

)
=0,

and dL1
dt = 0 if and only if (S , E, I, B) = (S 1, E1, I1, B1). Thus, the largest invariant set in Γ̊ such that

dL1
dt = 0 is the singleton {X1 = (S 1, E1, I1,R1, B1)}. Additionally, the uniform persistence of system

(2.1) ensures that for all solution orbits starting in Γ̊, we can find a compact set inside the domain such
that LaSalle’s Invariance Principle [43] can be applied. Therefore, X1 is globally asymptotically stable
in Γ̊.

Theorems 3.1–3.3 describe the essential dynamics of the FLS model (2.1). These results show that
the condition R0 = 1 is a sharp threshold for the stability, where a forward transcritical bifurcation
takes place. As long as R0 > 1, the disease will persist in the hosts (i.e., the soybean plants). In the
next section, we will use numerical simulation to verify these analytical predictions and to demonstrate
a real-world application of our model through data fitting.
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4. Numerical simulation

In practical field studies, the infection data for FLS are typically recorded by the rating of disease
severity, ranging between 0 to 100%, which measures the percentage of currently infected soybean
plants. For convenience of simulation and data fitting, we introduce the following new variables that
scale the original variables S , E and I with respect to N, the total plant density in the given field:

s(t) =
S (t)
N
, e(t) =

E(t)
N
, i(t) =

I(t)
N
. (4.1)

We can then re-write system (2.1) as
d
dt s(t) = µ − (Nαi + βB)s − µs,
d
dt e(t) = (Nαi + βB)s − µe − λe,
d
dt i(t) = λe − µi − δi,
d
dt B(t) = rB(1 − B

k ) − τB + Nξi,

(4.2)

where we have dropped the equation for R(t) (the removed plants) since it is not needed in the numerical
simulation. Under system (4.2), each of the variables s(t), e(t) and i(t) ranges between 0 and 1, and the
disease-free state corresponds to s = 1 and e = i = B = 0. All the simulation results presented in this
section are generated from Matlab.

4.1. Threshold dynamics

We first numerically illustrate the stability properties of the DFE and EE. Figure 1 shows a phase
portrait of i(t) vs. s(t) when R0 = 0.92. Each (red) curve represents a solution orbit that is determined
by a unique initial condition, which differs for different orbits. We observe that all these trajectories
eventually converge to the disease-free equilibrium corresponding to s0 = 1 and i0 = 0, indicating the
global asymptotic stability of the DFE. The pattern is similar for other scenarios with R0 < 1. These
results confirm the analytical prediction in Theorem 3.2.

0 0.2 0.4 0.6 0.8 1

s

0

0.2

0.4

0.6

0.8

1

i

R
0
=0.92

Figure 1. A typical phase portrait of i(t) vs. s(t) with R0 < 1. Each orbit starts from a
different initial condition, and all the orbits converge to the disease-free equilibrium at s0 = 1
and i0 = 0.
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Meanwhile, Figure 2 displays a phase portrait of i(t) vs. s(t) for R0 = 1.48, where we observe that
all the solution orbits converge to the endemic equilibrium at (s1, i1) with 0 < s1 < 1 and 0 < i1 < 1.
Other simulation results with varied values of R0 > 1 show a similar pattern and are not presented
here. These results demonstrate the global asymptotic stability of the EE which is consistent with the
prediction in Theorem 3.3.
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Figure 2. A typical phase portrait of i(t) vs. s(t) withR0 > 1. Each orbit starts from a different
initial condition, and all the orbits converge to the endemic equilibrium with 0 < s1 < 1 and
0 < i1 < 1.

4.2. Data fitting and application

We now fit our model (4.2) to the disease severity data reported from [37] as a real-world application
of our study. The field research conducted in [37] was designed such that each plot consisted of four
rows spaced 76.2 cm apart with each row being 6 m long. Soybeans were planted at a rate of 12 per
meter along each row, giving a plant density of N � 21.0 per square meter for each plot. Soybeans were
planted in May and harvested in September/October, with varied dates in different years. We take the
average length of a soybean growing season as 150 days, which yields a natural growth and removal
rate of µ = 1/150 per day. FLS symptoms typically appear 8-12 days after a plant is infected, and
we take the average latent period as λ−1 = 10 days. The infection can span the soybean reproductive
growth stages from flowering (R1) to beginning maturity (R7), and we take the average infectious
period as δ−1 = 75 days. The fungus Cercospora sojina can survive in crop residue left in the soil for 2
years [2,11], which leads to a removal rate of τ = 1/(2 ∗ 365) per day from the soil. Since Cercospora
sojina spreads the infection through the conidia, we may interpret B as the number density of the
conidia in the soil environment. Based on the experimental study performed in [11], the mean number
of Cercospora sojina conidia in the month of May was about 21,250 per gram of leaf tissue collected
from the overwintering crop residue. Given that the leaf mass density normally ranges between 0.1–
0.5 grams per ml and that the crop residue is relatively dry, we take 0.2 g/ml as the average leaf mass
density. This yields a number density of approximately 4000 conidia per ml in May, which will be used
as the initial condition for B(t) in our model. Additionally, the primary inoculum concentration can be
as high as 60,000 conidia per ml [11], which will be used as the carrying capacity k in our model. The

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1144–1166.



1155

values of all these parameters are listed in Table 1.

Table 1. Parameter values for the FLS model.

Parameter Description Value Source
N Total plant density 21.0 per square meter [37]
µ Natural removal rate of all plants 1/150 per day [37]
λ Latent period of FLS 1/10 per day [1]
δ Removal rate of infectious plants 1/75 per day [37]
τ Removal rate of the fungus 1/(2 ∗ 365) per day [2]
k Carrying capacity of the fungus 60, 000 per ml [11]
r Growth rate of the fungus 0.001 per day Assumed
β Primary transmission rate of FLS − Fitted
α Secondary transmission rate of FLS − Fitted
ξ Rate of contribution to the fungus − Fitted

There are, however, no published sources for the FLS primary transmission rate (β), the FLS sec-
ondary transmission rate (α), and the rate of contribution from infectious plants to the fungus in the
soil (ξ). These three parameters play critical roles in shaping the epidemics of FLS. We will estimate
these parameters (α, β and ξ) by fitting the active infections i(t) in our model system (4.2) to the FLS
disease data reported in [37], where the disease severity was rated and recorded for each growth stage
from R1 (flowering) to R7 (beginning maturity).

Before we present the fitting results, we briefly discuss the identifiability of these parameters. We
apply the scale invariance local structural identifiability method, described in [47] and also summarized
in Appendix B, to our system (4.2), where α, β and ξ are the parameters to be analyzed, and where only
the variable i(t) is observed (from the FLS disease severity data). Following this method, we re-scale
the non-observed variables s, e, B and the parameters α, β, ξ as follows

s→ uss, e→ uee, B→ uBB, α→ uαα, β→ uββ, ξ → uξξ , (4.3)

where us, ue, uB, uα, uβ and uξ are the unknown scaling factors. Let fx denote the right-hand side of the
equation for the variable x in system (4.2), where x = s, e, i, B. We then write each fx as a summation
of linearly independent functions given below:


fs1(s) = µ − µS , fs2(s, i, B, α, β) = −(Nαi + βB)s;
fe1(s, i, B, α, β) = (Nαi + βB)s, fe2(e) = −(µ + λ)e;
fi1(e) = λe, fi2(i) = −(µ + δ)i;
fB1(B) = rB(1 − B

k ) − τB, fB2(i, ξ) = Nξi,

(4.4)

where fx j denotes the jth summand for the function fx, with j = 1, 2 and x = s, e, i, B. The invariance
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equations (i.e., Equation (B.5)) for our system then become

µ − µs =
1
us

(µ − µuss), −(Nαi + βB)s = −
1
us

(Nuααi + uββuBB)uss;

(Nαi + βB)s =
1
ue

(Nuααi + uββuBB)uss, −(µ + λ)e = −
1
ue

(µ + λ)uee;

λe = λuee, −(µ + δ)i = −(µ + δ)i;

rB(1 −
B
k

) − τB =
1
uB

ruBB(1 −
uBB

k
) − τuBB, Nξi =

1
uB

Nuξξi.

(4.5)

It is easy to see that system (4.5) admits only one solution

us = ue = uB = uα = uβ = uξ = 1 . (4.6)

It follows that the parameters α, β and ξ are all identifiable when the variable i(t) is observed. We note,
however, that this result is concerned with structural identifiability and does not necessarily indicate
practical identifiability of these parameters. For more detailed discussion of parameter identifiability,
we refer readers to the review article [48].

Table 2. FLS disease severity data [37].

Days after planting 0 45 50 75 89 96 117 138
Disease severity 3% 5% 6% 8% 16% 21% 28% 36%

We list the dataset used for our model fitting in Table 2. Based on our discussion before and the
data in Table 2, the initial conditions for the model (4.2) are set as s(0) = 97%, e(0) = 0, i(0) = 3%,
and B(0) = 4000/ml.
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Figure 3. Fitting result for the FLS disease severity. The blue circles represent the reported
data and the red solid line represents the numerical solution.

Figure 3 shows the fitting result for i(t) against the disease severity data presented in Table 2. The
fitted values for the three parameters α, β and ξ and their confidence intervals are listed in Table 3.
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Based on these parameter values, we are able to evaluate the basic reproduction number for FLS using
Eq (3.7), and we obtain R0 ≈ 18.3. The value of R0 for FLS appears to be high, compared to most
human infections whose basic reproduction numbers typically range between 1 and 5 [32]. This large
R0, fitted from field data, stems from the rapid spread of the infection and the high level of disease
prevalence associated with FLS – 36% of the total host population (i.e, the soybean plants) become
infected in a period of less than 5 months. The result indicates the high infection risk for FLS and the
importance of effective control for this disease.

Table 3. Fitted parameter values.

Parameter Value 95% Confidence Interval
α 2.05 × 10−3 [1.90 × 10−3, 2.20 × 10−3]
β 1.35 × 10−8 [1.23 × 10−8, 1.46 × 10−8]
ξ 2960 [2686, 3234]

Various disease control measures for FLS have been implemented in order to improve the soybean
yields [1]. For example, cultural practices such as tillage and crop rotation may reduce the primary
infection rate β, and chemical control such as the use of fungicides may reduce the secondary infection
rate α and the environmental fungal contribution rate ξ from infected plants. To examine the effects
of these intervention strategies, and to quantify the impact of these three critical parameters on model
outcomes, we have conducted a series of numerical simulations with varied parameter values.
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Figure 4. FLS disease severity, represented by the variable i(t) in system (4.2), with reduced
values of the primary transmission rate β.

The fitted values for α, β and ξ listed in Table 3 are regarded as the baseline values for these
parameters. In the first numerical experiment, we reduce the primary infection rate β to 50%, 20%, and
0%, respectively, in reference to its base value, while keeping the other parameters fixed. We conduct
the simulation for each of these scenarios and plot the curves for i(t) in Figure 4. We clearly observe
the reduction of the disease severity with decreased values of β. In particular, when β is reduced to
20% of its base value, the disease severity is kept under 20% throughout the soybean growing season.
We also perform the same experiments for the secondary infection rate α and the fungal contribution
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rate ξ, with the results presented in Figures 5 and 6, respectively. We see a similar pattern that reducing
each of these parameters to 20% of its base value would push the disease severity curve under 20%
for the entire period. Among these, the reduction of α appears to have the most significant impact on
lowering the disease severity (compare Figure 5 with Figures 4 and 6), indicating the importance of
reducing the secondary infection from infected plants through control measures such as fungicides.
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Figure 5. FLS disease severity with reduced values of the secondary transmission rate α.
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Figure 6. FLS disease severity with reduced values of the fungal contribution rate ξ.

On the other hand, Figures 4–6 clearly show that changing a single parameter (among α, β and ξ)
would not be sufficient to control the FLS prevalence – even with a parameter reduced to 0 so that the
transmission mode associated with that parameter is totally removed, the disease severity still increases
and eventually reaches near or above 10%. These results underscore the complexity of the multiple
transmission pathways involved in FLS, indicating that using a single intervention method may not be
sufficiently effective to control the FLS epidemic. Hence, we have conducted several additional sets
of simulations where we assume that multiple FLS control strategies are implemented so that these
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parameters may be simultaneously reduced.

Figure 7 displays the results when various combinations of the parameters β, α and ξ are simultane-
ously reduced to 50%, 20%, and 10% of their respective base values. For each case, the improvement
in disease control can be easily observed, in comparison with the single intervention results shown
in Figures 4–6. The best performance is achieved when all the three parameters are simultaneously
reduced (see Figure 7(d)). For cases (b), (c) and (d) in Figure 7, when the parameters are reduced to
20% of their base values, the disease severity decreases from the very beginning and throughout the
entire season, indicating that no FLS epidemic occurs. Changing these parameters to 10% of their base
values would further push the disease severity curve downward, though not significantly different from
the 20% scenario.
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Figure 7. FLS disease severity with multiple parameters simultaneously reduced: (a) β and
ξ; (b) β and α; (c) α and ξ; and (d) α, β, and ξ.
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5. Discussion

Although epidemic models based on differential equations and dynamical systems have been exten-
sively used for infectious diseases of humans and other animals, their applications to plant diseases are
less popular thus far. The mathematical model proposed in this paper for frogeye leaf spot represents a
new contribution to the theoretical study of this disease and to the field of plant pathology and epidemi-
ology. Utilizing coupled nonlinear differential equations, our model is able to describe the complex
interplay between the primary infection, the secondary infection, and the environmental dynamics of
the fungus, an advantage not shared by other modeling approaches such as the area under the disease
progress curve and the regression analysis that have been utilized for this disease [37, 38]. The pro-
posed model allows us to conduct a deep investigation into the transmission, spread, and progression
of FLS among soybean plants.

Mathematical analysis of this model has established a sharp threshold at R0 = 1 that separates two
distinct types of dynamical behavior: disease eradication when R0 < 1 and disease persistence when
R0 > 1. This standard result, which is applicable to a wide variety of epidemic models, indicates
that prevention and intervention methods need to be implemented such that the basic reproduction
number may be reduced below unity in order to eliminate the disease. We have verified these analytical
predictions for our FLS model using numerical simulation.

Our data fitting and simulation studies show that the model outcomes well represent the reported
disease severity data and that our model can be utilized for realistic investigation of the transmission
and spread of FLS, including the impact of various disease control measures. In particular, our numer-
ical results demonstrate that a combination of multiple intervention methods may be more effective
than a single method in controlling the FLS epidemics. On the other hand, we note that the quality
of our data fitting may be impacted by the limited amount of time series disease data for FLS. The
accuracy of our model output could be further improved by the availability of FLS disease data with
higher resolutions in the future.

For frogeye leaf spot, there are several disease control strategies that can be put into agricultural
practices. These include tillage, crop rotation, resistant cultivars, seed treatment, and use of fungicides
[1,2,37]. Tillage can help bury infested residue and decrease the chance of fungal transmission from the
environment to the plants, thus reducing the primary infection. Foliar fungicides can kill the fungus
generated from infected plants and prevent the growth of the spores, thus reducing the secondary
infection and the reciprocal feedback from the infected plants to the environment. In addition, planting
resistant soybean varieties could prevent the spread of the disease, rotation with crops not susceptible
to FLS would allow time for the inoculum in the field to degrade before the next soybean planting
season, and seed treatment may reduce the risk of introducing infected seeds into a field. From the
modeling perspective, these intervention methods can effectively reduce the basic reproduction number
associated with FLS. We have only conducted a coarse-grained simulation study to represent some of
these control methods. Our FLS model can be extended to incorporate more detailed effects of these
disease control measures, based on which an optimal control study can be performed to explore the
most effective and practically feasible intervention strategy for FLS. We plan to pursue this direction
in our future efforts.
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Appendix A: Local stability of the endemic equilibrium

Theorem A1. If R0 > 1, the EE of system (2.1) is locally asymptotically stable.

Proof. Linearizing system (2.1) at the endemic equilibrium X1 = (S 1, E1, I1, R1, B1) and using Eqs
(3.8)–(3.12) yield the Jacobian matrix at X1:

J1 =


−
µN
S 1

0 −αS 1 0 −βS 1

αI1 + βB1 −(µ + λ) αS 1 0 βS 1

0 λ −(µ + δ) 0 0
0 0 δ −µ 0
0 0 ξ 0 −( ξI1

B1
+ rB1

k )


. (A.1)

It is easy to see that the characteristic polynomial of J1 is

det(xI − J1) = (x + µ)(x4 + a3x3 + a2x2 + a1x + a0), (A.2)

where I represents the corresponding identity matrix and

a3 =
µN
S 1
+ (2µ + λ + δ) +

rB1

k
+
ξI1

B1
,

a2 =
µN
S 1

(2µ + λ + δ +
rB1

k
+
ξI1

B1
) + (

rB1

k
+
ξI1

B1
)(2µ + λ + δ) +

βλB1S 1

I1
,

a1 =
rβλB2

1S 1

kI1
+
µN
S 1

(2µ + λ + δ)(
rB1

k
+
ξI1

B1
) +
βλµB1N

I1
+ αλµ(N − S 1),

a0 = λµ(N − S 1)(
αI1

B1
+ β)ξ +

rB1

k

(βλµB1N
I1

+ αλµ(N − S 1)
)

are all positive. To prove the local asymptotical stability of X1, it suffices to show (a3a2 − a1)a1 > a2
3a0

according to the Routh-Hurwitz criterion. For simplicity, we denote m = 2µ+ λ+ δ, M = m+ µNS 1
+ rB1

k ,
and θ = βλµB1N

I1
+ αλµ(N − S 1). We may express a2

3a0 as a function of ξ in the following way,

a2
3a0 = c3ξ

3 + c2ξ
2 + c1ξ + c0, (A.3)
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where

c3 = λµ(N − S 1)
I2
1(αI1 + βB1)

B3
1

,

c2 =
I2
1

B2
1

(rB1

k
θ + 2λµ(N − S 1)M(α +

βB1

I1
)
)
,

c1 = λµ(N − S 1)M2(β +
αI1

B1
) +

2rI1M
k
θ,

c0 =
rB1

k
θM2.

Similarly, we can also express (a3a2 − a1)a1 as a function of ξ,

(a3a2 − a1)a1 = C3ξ
3 +C2ξ

2 +C1ξ +C0. (A.4)

We note that θ > λµ(N − S 1)(βB1
I1
+ α) and

m2 ≥ 2(µ + λ)(µ + δ) =
2λ(αI1 + βB1)S 1

I1
≥ 2 max

{S 1θ

µN
, λαS 1,

λβB1S 1

I1

}
.

After some tedious algebraic calculations, we find

C3 =
I3
1

B3
1

(
µ2N2

S 2
1

m +
µN
S 1

m2) ≥
I3
1µN

B3
1S 1
·

2λ(αI1 + βB1)S 1

I1

> c3,

C2 ≥
I2
1

B2
1

(
(
µN
S 1
+ m)(

βλB1S 1

I1
+
µNm
S 1

)
rB1

k
+
µNm2M

S 1

)
≥

I2
1

B2
1

(
(
βλµB1N

I1
+ 2αλµN)

rB1

k
+ 2λµNM(α +

βB1

I1
)
)

> c2,

C1 ≥
I1

B1
M2

(
θ + (
βλB1S 1

I1
+
µNm
S 1

)
rB1

k

)
+

rI1M
k
·
µNm
S 1

(
µN
S 1
+ m)

>
I1

B1
M2θ +

rI1M2

k
(
βλB1S 1

I1
+
µNm
S 1

) +
rI1M2

k
·
λµβB1N

I1

> λµ(N − S 1)M2(β +
αI1

B1
) +

rI1M
k

(
2βλµB1N

I1
+ 2αλµN

)
> c1,

C0 ≥
rB1M

k
(
µN
S 1
+ m)

(
θ +

rB1

k
(
βλB1S 1

I1
+
µN
S 1

m)
)

>
rB1M

k

(
(
µN
S 1
+ m)θ +

rB1

k
θ

)
=

rB1M2

k
θ

= c0.

Thus, we have (a3a2 − a1)a1 > a2
3a0 for any ξ ≥ 0, as expected. This completes the proof for the local

asymptotic stability of the endemic equilibrium X1.
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Appendix B: The scale invariance local structural identifiability method

In what follows, we summarize the scale invariance local structural identifiability method intro-

duced in [47]. Consider a system of differential equations involving n variables x j ( j = 1, · · · , n) and

m parameters λk (k = 1, · · · ,m):

dx j

dt
= f j(x1, · · · , xr, xr+1, · · · , xn; λ1, · · · , λm), 1 ≤ j ≤ n. (B.1)

It is assumed that the variables x1, · · · , xr can be observed (measured) from the experiment, while the

variables xr+1, · · · , xn cannot be observed.

Write each function f j as a summation of linearly independent terms:

f j(x1, · · · , xr, xr+1, · · · , xn; λ1, · · · , λm) =

M∑
k=1

f jk(x̃k, λ̃k), (B.2)

where x̃k and λ̃k denote the subset of variables and parameters, respectively, included in the function

f jk for 1 ≤ k ≤ M and j = 1, · · · , n. The method consists of the following steps:

1) Scale the unobserved variables and parameters by

x j → ux j x j, j = r + 1, · · · , n;

λk → uλkλk, k = 1, · · · ,m, (B.3)

where ux j and uλk are unknown scaling factors associated with the variable x j and the parameter λk,

respectively. Substitute the scaled variables and parameters into the equations

dx j

dt
= f j(x1, · · · , xr, xr+1, · · · , xn; λ1, · · · , λm) =

M∑
k=1

f jk(x̃k, λ̃k) (B.4)

for j = 1, · · · , n.

2) Equate each linearly independent function f jk to its scaled counterpart; i.e.,

f jk(x̃k, λ̃k) =
1

ux j

f jk
(
ux̃k x̃k, uλ̃k

λ̃k
)
, k = 1, · · · ,M; j = 1, · · · , n, (B.5)

where ux j = 1 for 1 ≤ j ≤ r. These are referred to as the invariance equations.

3) Solve the invariance equations for the scaling factors ux j and uλk or find combinations of these

scaling factors that leave the system invariant.

4) Any parameter λk associated with a solution uλk = 1 is identifiable. Any variable x j associated with

a solution ux j = 1 is observable. In contrast, those parameters whose scaling factors are coupled

will form identifiable groups but cannot be identified independently.
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