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We propose a new mathematical model to investigate the population dynamics of long COVID, with a focus
on the impact of chronic health conditions. Our model connects long COVID with the transmission of COVID-
19 so as to accurately predict the prevalence of long COVID from the progression of the infection in the host
population. The model additionally incorporates the effects of COVID-19 vaccination. We implement the model
with data from both the US and the UK to demonstrate the real-world applications of this modeling framework.

1. Introduction

Long COVID, also known as post-COVID-19 syndrome or post-acute
sequelae of COVID-19, is a long-lasting disorder that arises following
infection with SARS-CoV-2 (Alwan and Johnson, 2021; Davis et al.,
2021; Anon, 2023a). Long COVID can be caused by many different
mechanisms, including consequences from acute SARS-CoV-2 injury to
one or more organs, autoimmunity due to molecular mimicry between
the pathogen and host proteins, re-activation of neurotrophic pathogens
under conditions of COVID-19 immune dysregulation, SARS-CoV-2 in-
teractions with host microbiome communities, and dysfunctional brain-
stem/vagus nerve signaling (Proal and VanElzakker, 2021). In addition,
the virus may linger in the body and trigger persistent immune response
that drives the symptoms (Marshall, 2021). The situation is further
complicated by the fact that individuals with mild symptoms could
become COVID long-haulers (Nalbandian et al., 2021). Moreover, re-
cent publications reported long-term COVID-19 symptoms among fully
vaccinated people who developed breakthrough infections (Bergwerk
et al., 2021; Massey et al., 2021).

Underlying health conditions have been strongly linked to both the
severity of COVID-19 infection and the risk of long COVID. It was
estimated that more than 1.7 billion people worldwide had at least
one underlying medical conditions that put them at increased risk for
severe illness caused by COVID-19 (Clark et al., 2020). A study con-
ducted by CDC found that among individuals with reported underlying
conditions, hospitalizations were 6 times higher and deaths were 12
times higher compared to those without a chronic condition (Stokes
et al., 2020). Meanwhile, it was found that people with asthma, lung
disease and several other chronic conditions were more likely to de-
velop long COVID (Sudre et al., 2021). Furthermore, a recent review
article (Nalbandian et al., 2021) concluded that COVID-19 patients with
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underlying conditions such as obesity, type-2 diabetes, hypertension,
chronic pulmonary disease, and compromised immunity were at high
risk for long COVID. It is clear that these underlying health conditions
play an important role in shaping the prevalence of long COVID.

A systematic review of 33 long COVID cohort studies showed that
the post-COVID-19 symptoms and their prevalence rates, ranging be-
tween 10% and 67%, are highly heterogeneous across different pop-
ulations (Ferndndez-de Las-Pefias et al., 2021). Another review article
(Nalbandian et al., 2021) provided an overview of studies based on var-
ious COVID-19 cohorts (hospitalized and non-hospitalized) around the
world and found estimates for the prevalence of long COVID ranging
from 12% to 55%. Such a heterogeneous pattern for long COVID was
also highlighted in other systematic reviews and meta-analyses (Cares-
Marambio et al., 2021; Lépez-Ledn et al., 2021; Willi et al., 2021). At
the population level, it is critical to predict and evaluate the burden
of long COVID to assess its impact on the healthcare system and to
design appropriate strategies for resource distribution. However, the
heterogeneity and variation for the COVID syndrome indicate that there
is generally no ready-to-use formula to quantify long COVID in a given
population, and the prediction of long COVID prevalence has to take
into account the epidemic/pandemic progression and the specific pop-
ulation characteristics, especially the prevalence of underlying health
conditions.

Mathematical and computational modeling could help us to address
such a pressing need and gain a deeper understanding of the population
dynamics associated with long COVID. A large number of mathemati-
cal, statistical and computational models have already been developed
for COVID-19 dynamics (see reviews in Wang (2020), Afzal et al.
(2022), Napolitano et al. (2022) and Padmanabhan et al. (2021)). To
our knowledge, however, no mechanistic models have been published
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for long COVID thus far. Some predictive work for potential patients
with long COVID has been conducted using simple statistical and
learning models (Pfaff et al., 2022; Cervia et al., 2022). Particularly,
a machine learning study based on the random forest algorithm was
published to identify individuals at risk for long COVID (Sudre et al.,
2021), and a statistical classification algorithm was applied to identify
phenotypes that indicate long COVID (Estiri et al., 2021). In addition,
a regression model based on a single exponential decay function was
proposed to estimate the lost quality-adjusted life years (QALYs) from
long COVID in the UK (Martin et al., 2021). These existing models,
however, are not helpful in assessing the population dynamics of long
COVID.

As a pilot study, we propose a mechanistic model based on dif-
ferential equations in this paper to investigate long COVID dynamics
and population-level prevalence, with a focus on the impact of chronic
health conditions. Our model will divide the host population into two
groups depending on whether they have underlying conditions, and
each group is associated with different infection characteristics and
different risk of developing long COVID. We will connect the population
dynamics of long COVID with the transmission dynamics of COVID-
19, so as to accurately predict the prevalence of long COVID from the
progression of the acute infection. We will additionally incorporate the
effects of COVID-19 vaccination in our model.

The remainder of this paper proceeds as follows. The mathematical
formulation of our model is presented in Section 2. Main mathematical
results concerned with this model are summarized in Section 3, with de-
tails provided in Appendix. Numerical simulation is conducted in Sec-
tion 4 to illustrate the applications of our model. Finally, conclusions
are drawn and some discussion is made in Section 5.

2. Model formulation

We utilize mathematical modeling with differential equations to
investigate the population dynamics of long COVID with the impact of
underlying health conditions. We divide the host population into two
groups: Group 1 for individuals with underlying conditions who are
more likely to develop long COVID, and Group 2 for individuals without
underlying conditions who are less likely to develop long COVID.

The following equations describe the transmission dynamics of
COVID-19 in Group 1:

s,

ar =A; =S\ U+ L) —(p+ Sy,

dv,

—F =S =0V, + 1) = V). @n
dr,

vy = + L)(S, +0V) = (ry +w + ;.

The following equations describe the transmission dynamics of
COVID-19 in Group 2:

s,

e Ay = S,y + 1) — (P + u)S,,

dv;

d—f =S, — 0pVL(I, + 1) — uVs, (2.2)
di,

—2 = UL+ DS, +0V) = (13 + w0y + W

For each group j = 1, 2, the variables S;, V; and I; represent the
susceptible, vaccinated, and (short-term) infected individuals, and the
parameters A;, y; and w; denote the population influx rate, exit rate
from the acute infection, and disease-induced death rate, respectively.
Since infected individuals with underlying medical conditions usually
exhibit more severe illness than those without such conditions, we
assume that y; < y, and w; > w,. Meanwhile, the parameter g is
the disease transmission rate which may be time-dependent, u is the
natural death rate for the human hosts, and ¢ is the vaccination rate,
which take the same values for both groups. In addition, we assume
that the vaccine has a degree of protection, or efficacy rate, 1 — 6; that
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is, a portion of 6 in vaccinated individuals are at risk for breakthrough
infections (Kates et al., 2021).

Let I; denote the number of individuals with long COVID, and R
denote the number of recovered individuals. The time evolution of the
long COVID compartment is described by the following equation:

dl

d_tL =yl + el - +wp + i 2.3
Meanwhile, the recovered compartment satisfies the equation below:
dR

E=7/1(1—P1)11+72(1—P2)12+7L1L—14R- 2.4

Among the individuals who exit from the acute infection period
in group j, we assume that a portion p; of them will develop long
COVID and enter the I; compartment, whereas the other portion 1 - p;
will truly recover from the disease and enter the R compartment, for
j =1, 2. We have p, > p,, since individuals in group 1 are more likely
to develop long COVID. The parameter y; denotes the recovery rate,
and w; denotes the disease-induced death rates, for individuals in the
long COVID state. We note that COVID long-haulers exhibit higher risk
of death compared to those without long COVID (Al-Aly et al., 2021).
We make an additional assumption that individuals with long CVOID
are not contagious, based on a systematic review of 79 clinical studies
on SARS-CoV-2 (Cevik et al., 2021) which found that the duration of
infectiousness was limited to a relatively short period (up to 9 days).

3. Mathematical results

The main dynamical properties of our mathematical model can be
summarized by the following theorems.

Theorem 3.1. The system (2.1)-(2.4) has a unique disease-free equilib-
rium (DFE)
xo = (S105 V105 05 S20, V20, 0,0,0)

A A Ay Ay 3E.1)

= , ,0, ) ,0,0,0

(¢+/4 (@+wu  d+u (D+pu )
in a positively invariant domain
Q:{(SI,VI,II,SZ,VZ,IZ,IL,R) S, V11,85, V5, 1,,1;,R >0,

Sy <810, §2 <830, V1 £ Vo

A+ A,
Vo<Vay S1+Vi+ 1L +S+Vo+ 1+ + RS ——= }
(3.2)
The basic reproduction number of the model is given by
S0 + 0V SHo + 0V,
Ry = Roj + Ry = B(Syo 10) + B(Sy 20) 3.3)

Vito+u oy +u

where R, and R, are the individual reproduction numbers of Groups 1
and 2, respectively.

Theorem 3.2. When R < 1, the DFE x, is the only equilibrium of the
system (2.1)-(2.4) in Q. When R, > 1, in addition to the DFE, the system
(2.1)-(2.4) has a unique positive endemic equilibrium

Xy :(Slwl/l*’ll*’S2*’I/2>:<’IZ*’IL*’R*) (3~4)

in the domain .

Theorem 3.3. When R < 1, the disease-free equilibrium x is globally
asymptotically stable in the domain €.

Theorem 3.4. When R, > 1, the endemic equilibrium x, is globally
asymptotically stable in the domain Q.

These results are standard, showing a threshold at R, = 1 that
separates two distinct types of dynamical behaviors: disease eradication
when R, < 1 and disease persistence when R, > 1. Our special
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Table 1
Parameter values in Application 1.

Parameter Description Value Unit Source

N Population size 367 804 person Anon (2023b)

" Natural death rate 274 %1073 per day Anon (2023b)

A Population influx rate in Group 1 4.031 person/day Razzaghi et al. (2020)

A, Population influx rate in Group 2 6.047 person/day Razzaghi et al. (2020)

/] Probability for breakthrough infection 5% - Kates et al. (2021)

w, Disease-induced death rate in Group 1 0.0144 per day Stokes et al. (2020)

w, Disease-induced death rate in Group 2 0.0012 per day Yang and Wang (2021)

7 Recovery rate in Group 1 0.08 per day Anon (2023f)

72 Recovery rate in Group 2 0.12 per day Anon (2023f)

p Disease transmission rate - /person/day Fitted

¢ Vaccination rate - per day Fitted

wy Long COVID related death rate 0.00012 per day Assumed

7L Recovery rate for Long COVID 1/90 per day Assumed

P The portion of infected individuals in Group 1 developing long COVID - per day Varied

P> The portion of infected individuals in Group 2 developing long COVID - per day Varied
interest here, however, is that these analytical results confirm the Table 2
impact of the underlying health conditions, as can be seen from the Fitting results in Application 1.
expression of R, in Eq. (3.3), and the connection between long COVID Parameter/Quantity Period 1 Period 2 Period 3
(represented by I; in the model) and the acute infection (represented l 1.094 x 10 9.58x 1077 7.20% 1077
by I, and I, in the model). Since long COVID stems from the acute 4 0.0285 0.0033 0.0031

NMSE 0.0131 0.00051 0.0059

infection, the transmission dynamics of COVID-19 play an important
role in shaping the evolution of the long COVID prevalence. Conse-
quently, Theorems 3.3 indicates that if the COVID-19 infection is totally
eliminated, long COVID will also be eradicated eventually, whereas
Theorem 3.4 indicates that if the COVID-19 infection remains endemic,
long COVID will also persist in the host population.

Proofs of Theorems 3.1-3.4 can be established through standard
mathematical analysis, and details are provided in Appendix. In what
follows, we focus on the application of our model.

4. Simulation results

We have incorporated published data to demonstrate the real-world
applications of our model. At present, time series data for long COVID
at the population level are very rare. One exception is the UK Office for
National Statistics (ONS) that published monthly data for long COVID
prevalence in the UK population (Anon, 2023e). In our study, we
conducted two modeling applications: one for a place in the US which
has high prevalence of chronic conditions and which has surveillance
data for COVID-19 but not for long COVID, and the other for the UK
where data for both COVID-19 infection and long COVID are available.

Application 1. We first applied our model to Hamilton County,
one of the most populous counties in the US state of Tennessee. The
prevalence of underlying health conditions, particularly chronic heart
disease, chronic obstructive pulmonary disease, diabetes, and obesity,
in Hamilton County is as high as 40% (Razzaghi et al., 2020). Thus, a
significant portion of the population in Hamilton County is considered
highly vulnerable to COVID-19 infection and subsequent long COVID.

There are currently no population-level long COVID data available
in the US. Thus our model fitting is based on COVID-19 data, using
Egs. (2.1) and (2.2) only. Hamilton County has a total population of
N = 367,804 (Anon, 2023b). The population sizes of the two groups in
our model were set as N; = 0.4N and N, = 0.6N, based on an estimate
from CDC that about 40% of the residents in the county have at least
one underlying health conditions (Razzaghi et al., 2020). We then
computed the influx rate of the susceptible individuals in each group
by A; = u;N; (i =1, 2), where we set u; = yu, = u as the natural birth
and death rate in the region. The recovery period from acute COVID-19
infection varies among different patients (Anon, 2023f), depending on
their age, severity of illness, and overall health conditions. We assumed
that individuals in Group 1 (with chronic conditions) and Group 2

(without chronic conditions) would recover, on average, in 12.5 days
and 8.5 days, respectively, which led to y; = 0.08 per day and y, = 0.12
per day. We used the disease-induced mortality rate from Yang and
Wang (2021) for Group 2, w, = 1.2 x 10~ per day. Meanwhile, base
on the CDC study that COVID-19 related deaths were 12 times higher
among those with reported underlying conditions than those without
such conditions (Stokes et al., 2020), we took w; = 1.44x 1072 per day.
We assumed that the breakthrough infection rate was approximately
0 = 5% (Kates et al., 2021). The definitions and values of these
parameters are listed in Table 1. Additionally, the values for the disease
transmission rate § and the vaccination rate ¢ were obtained from data
fitting.

We considered a time frame of 11 months from January 1, 2022
to November 30, 2022. We collected the COVID-19 surveillance data
from the Tennessee Department of Health (Anon, 2023d) that included
the numbers of daily new infections, active infections, and cumulative
cases, as well as vaccination coverage. We then fitted Egs. (2.1) and
(2.2) to the reported data for the number of the daily reported active
cases, using the least squares method. Specifically, the error function to

be minimized is give by Z [I, )+ @) - Yj]z, where m is the number

of days in the period ofjcv.!)nsideration, I,(t;) and I,(t;) are the model
predictions for the active infections on the jth day for Groups 1 and 2,
respectively, and Y; is the reported number of active infections on the
jth day, for j =1,2,...,m.

Our preliminary fitting based on the entire time frame of 11 months
yielded unsatisfactory results, mainly due to the different patterns
exhibited by the data at different times. To overcome this challenge,
we divided the time domain into 3 periods:

Period 1: January 1, 2022 to April 7, 2022;

Period 2: April 8, 2022 to June 30, 2022;

Period 3: July 1, 2022 to November 30, 2022.

We then fitted our model separately to these 3 periods for the
two unknown parameters f and ¢. The reported data provided initial
conditions for each period.

The fitted values for g and ¢ are presented in Table 2. We can see
that the disease transmission rate f is relatively stable in the entire
time frame, though its value is slightly decreased from Period 1 to
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Fig. 1. Number of active COVID-19 cases in Application 1. Red circles

Period 2 and then to Period 3. Meanwhile, the vaccination rate ¢
has a significant reduction from Period 1 to Period 2, and then a
small decrease from Period 2 to Period 3. This pattern of change for
the values for ¢ reflects the fact that by April 2022, the majority of
the population in Hamilton County had received at least two doses
of vaccines (primary series plus boosters) (Anon, 2023c) and fewer
people would need vaccination afterwards. In addition, we calculated
the normalized mean square error (NMSE) for the fitting in each period
and listed the results in the last row of Table 2.

The fitting curves for the number of active cases in all the three pe-
riods are presented in Fig. 1, in comparison with the reported data. We
clearly observe three distinct shapes for these curves: an approximate
parabola followed by a gradual decrease in Period 1, a monotonically
increasing curve in Period 2, and a dominantly decreasing curve in
Period 3. These curves match the reported data well, as evidenced by
the computed NMSE (shown in Table 2). This provides a quantitative
justification for our piecewise fitting.

Following the data fitting, we conducted a series of simulations for
the possible prevalence levels of long COVID in Hamilton County, using
Eq. (2.3). We assumed that w; = 0.1w, and y; = 1/(90 days). We then
picked three different values for p,, the portion of infected individuals
from Group 1 who would go on to develop long COVID: p; = 12%,
24%, and 36%. Based on the CDC estimates (Stokes et al., 2020) that
individuals with underlying health conditions were 6 times more likely
to be hospitalized than those without such conditions, we assumed that
the risk of developing long COVID in Group 1 is 6 times that in Group
2. This led to p, = 2%, 4%, and 6%, respectively. We then ran the
simulation for Eq. (2.3), together with Egs. (2.1) and (2.2), for each of
the three periods.

Fig. 2 displays the simulation curves for the number of active long
COVID cases, I;, and for S, V and I in each group, for all the three
periods. In particular, the panels in the top row show that the peak
of I, ranges from about 1500 (when p, = 12%) to nearly 4500 (when
p; = 36%). Even with the minimal estimate of p; = 12%, the lowest
point on the simulation curves in all the three periods is I; = 400,
indicating a significant public health burden caused by long COVID.
We were not able to fit and predict the evolution of long COVID in
this case, due to the unavailability of long COVID data. Nevertheless,
our simulation results provided possible ranges for the prevalence of
long COVID in the given population, which could inform public health
agencies in developing their policies and scaling their efforts.

Additionally, the panels in the bottom row of Fig. 2 shows that the
number of infections is disproportionally distributed between the two
groups. Although the population size in Group 2 is about 60% of the
total; i.e., about 1.5 times of the population size in Group 1, the value
of I, is only slightly larger than, or even overlapping with, that of I,
for most of the time. These results confirm the higher risk of infection
for individuals in Group 1 (with underlying health conditions).

Application 2. In this study, we applied our model to the UK
population. The Office for National Statistics (ONS) published survey
data for the prevalence of long COVID in the UK (Anon, 2023e). The
period covered by the ONS data started from February 6, 2021. The

0
2022/06/30 2022/07/01 2022/11/30

Date Date

) Period 2

(c) Period 3

represent the reported data and blue solid lines represent the fitting results.

Table 3
Number of active long COVID cases in the UK (Anon, 2023e).

Date (year/month/day) Cases Date (year/month/day) Cases
2021/02/06 1094000 2021/04/04 1021000
2021/05/09 962000 2021/06/06 945 000
2021/07/04 970000 2021/08/08 1086000
2021/09/04 1202000 2021/10/03 1209000
2021/11/09 1266 000 2021/12/06 1332000
2022/01/04 1528000 2022/02/06 1724000
2022/03/07 1796 000 2022/04/04 1988000
2022/05/08 1950000 2022/06/05 1790000
2022/07/04 1985000 2022/08/07 2290000
2022/09/04 2134000 2022/10/10 2180000
2022/11/07 2131000 2022/12/06 1977000

time series data were published approximately once a month. Based on
the ONS data, we list the number of active long COVID cases in the UK
from February 6, 2021 to December 6, 2022 in Table 3, which were
used for our model fitting and testing.

Instead of fitting again the regular COVID-19 data in the UK (as
what we did for Hamilton County in the US), we took advantage
of the available long COVID data and focused our attention on the
fitting of active long COVID cases (see Table 3) using Eq. (2.3) and
the least squares method. We chose the period from February 6, 2021
to July 4, 2022 (about 17 months) for model fitting, and the period
from July 5, 2022 to December 6, 2022 (about 5 months) for model
testing/prediction.

We took the same values as before for the parameters y,, y,, and
w;. The natural death rate y was calculated using the demographic
information of the UK population. Data for the daily number of active
COVID-19 infections reported in the UK were used to determine I,
and I, in Eq. (2.3), where we incorporated the finding from Walker
et al. (2021) that about 25% of the UK population had at least one
underlying health conditions that put them at higher risk for COVID-
19. We then fitted Eq. (2.3) to the monthly reported long COVID
data for the three key parameters p;, p,, and y; associated with the
long COVID prevalence over the 17-month fitting period. Next, we
conducted numerical simulation to generate a prediction for the 5-
month testing period, using the parameter values estimated from the
fitting period.

Table 4 lists the fitted parameter values. Fig. 3 displays the sim-
ulation curves for the number of active long COVID cases in the UK,
together with the published ONS data. The vertical dashed line sepa-
rates the fitting and prediction periods. We found that NMSE = 0.019
for the fitting, and NMSE ~ 0.013 for the testing.

Based on our numerical results, about 35% of the infected individ-
uals in Group 1 and about 28% of the infected individuals in Group 2
went on to develop long COVID in the UK, confirming the higher risk
of long COVID for individuals with underlying conditions. Meanwhile,
the average recovery rate for long COVID was y; =~ 0.012 per day.
This means that long COVID, on average, would last about 1/y; ~ 83
days among the UK population. These numbers would provide useful
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Fig. 2. Simulation curves for Application 1. (a)-(c): Long COVID prevalence with three choices of p, and p,; (d)-(f): Number of susceptible and vaccinated individuals in Groups

1 and 2; (g)-(i): Number of active infections in Groups 1 and 2.

Table 4
Parameter values in Application 2.
Parameter  Description Value Unit Source
" Natural death rate 391x 1075 per day Rahman and Kuddus (2021)
7 Recovery rate in Group 1 0.08 per day  Anon (2023f)
72 Recovery rate in Group 2 0.12 per day  Anon (2023f)
wy Long COVID related death rate 0.00012 per day  Assumed
7L Recovery rate for Long COVID 0.01198 per day Fitted
P The portion of infected individuals in Group 1 developing long COVID  0.345 per day  Fitted
Py The portion of infected individuals in Group 2 developing long COVID  0.280 per day  Fitted

information to assess the burden of long COVID and to guide policy
development and resource allocation.

We make two additional remarks for our numerical results in the
UK application. First, we have used the same values for the disease
recovery rates (y; and y,) in both the US and UK populations, as shown
in Table 1 and Table 4. To examine whether this is reasonable, we
conduct another numerical test by adding y, and y, into the list of
parameters to be fitted; i.e., we use the long COVID data in the UK
to fit the parameters y, and y,, together with p,, p, and y;. We obtain
7, ~ 0.097 and y, ~ 0.118 in this case, which are very close to the values
given in Table 4. Meanwhile, the fitting and prediction curves for the
UK long COVID cases are presented in Fig. 4 for this setting. Compared
to Fig. 3, we see that the results are almost identical.

Second, we note that Fig. 3 provides a baseline scenario for our
model outcomes based on the simplest fitting technique, with all pa-
rameters fixed as constants during the entire period. There are various
ways to improve the fitting and prediction. For example, Fig. 5 shows
a scenario where we divide the fitting period into sub-period 1 (from

February 6, 2021 to April 3, 2022) and sub-period 2 (from April 4,
2022 to July 4, 2022) and where we consider the 7-day moving average
of the UK data. We then conduct piecewise fitting separately for these
two sub-periods, where the fitting result from sub-period 1 is used to
provide the initial condition for sub-period 2, and the fitting result from
sub-period 2 is used to generate the prediction in the prediction period.
Compared to Fig. 3, we observe better performance for both the fitting
and prediction in Fig. 5.

5. Conclusions

Despite many theoretical discoveries and clinical advances (includ-
ing the development of efficacious vaccines) for COVID-19, our current
knowledge and intervention strategies for long COVID remain very
limited. Quantitative and predictive studies are urgently needed to
determine at-risk population groups for long COVID, to engage in
science-based policy development and resource allocation, and to target
early intervention strategies and clinical services. This paper represents
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Fig. 3. Fitting and prediction results for the long COVID cases in Application 2.

The red circles represent the reported data and the blue solid line represents the numerical results.
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Fig. 4. Fitting and prediction results for the long COVID cases in Application 2, with y,
data and the blue solid line represents the numerical results.

a proof of concept for the investigation of long COVID through quantita-
tive and computational means. We have developed a novel mechanistic
model based on differential equations to study the population dynamics
of long COVID with the impact of underlying health conditions. Our
model connects long COVID prevalence with the population-level trans-
mission of COVID-19, emphasizing the interplay between the COVID-19
infection, vaccination, chronic conditions, and long COVID dynamics.
We have carried out a detailed mathematical analysis for the model.
We have also conducted numerical simulation to validate this modeling
framework using real data from the US and the UK.

Our first model application is based on Hamilton County in the US,
where data for COVID-19 are available but those for long COVID are
not, representing a typical scenario at present in terms of data availabil-
ity. The place also has high prevalence of underlying health conditions.
We fitted our model to the COVID-19 data, based on which we simu-
lated the progression of long COVID using several prescribed values for

and y, added into the set of parameters to be fitted. The red circles represent the reported

the parameters p; and p, that characterize the risk of developing long
COVID. The simulation results could provide useful information for the
range of the long COVID prevalence at the population level.

Our second model application targets the UK which, as an excep-
tional case, has published data for both COVID-19 and long COVID
at the population level. We fitted our model to the monthly long
COVID data over a period of 17 months, and then tested the results
by running the model for another 5 months immediately following the
fitting period. We found that the percentage of infected individuals
with underlying medical conditions to develop long COVID (35%) was
significantly higher than that of infected individuals without under-
lying conditions (28%). The findings confirm that underlying health
conditions contribute to increased risk of long COVID.

These two application studies demonstrate the utility and validity
of our modeling framework. They have shown that our model can not
only analyze the population dynamics of long COVID, but also predict
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Fig. 5. Fitting and prediction results for the long COVID cases in Application 2, with the fitting period divided into two sub-periods based on piecewise fitting. The red circles

represent the reported data and the blue solid line represents the numerical results.

the progression of long COVID in the future (with the availability of
historical data). Our work is a pilot effort toward a better understanding
of the population dynamics of long COVID. The findings in this study
contribute to quantitative knowledge associated with the population-
level prevalence and burden of long COVID, and their interplay with the
transmission of COVID-19, the impact of underlying health conditions,
and the progression from acute infection to long-lasting disorder.

It is anticipated that more long COVID data at the population level
will be generated and published in the near future. For example, the
US Department of Health and Human Services initiated a large-scale
research action plan for long COVID data collection (Anon, 2022) in
August 2022 and this project is currently ongoing. The availability of
high-quality long COVID data will facilitate broader applications of
computational models and will motivate extensions and improvements
of the current modeling framework.

The model proposed in this paper can be extended in several direc-
tions. For example, we may conduct an optimal control study, utilizing
both mathematical analysis and numerical simulation, to explore an
effective intervention strategy for long COVID that could balance the
effects of the control measures and the related costs in an optimal way.
Meanwhile, the model can be naturally extended to study the impact
of long COVID on the economy and society. Long COVID has been
recognized as a disability under the Americans with Disabilities Act
since 2021. We may use model predictions to estimate the total years
lived with disability associated with long COVID, and to measure the
burden of long COVID on quality of life and on society. Furthermore,
we may introduce additional variables such as the employment rate and
the economic development level into the modeling framework to study
the interplay between long COVID and the economy, particularly the
negatively impacted labor force and the lost productivity due to long
COVID.
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Appendix. Mathematical analysis

Proof of Theorem 3.1. It is obvious that x in Eq. (3.1) is a disease-free
equilibrium (DFE) of the system, and the DFE is unique. The positive
invariance of the domain £ can also be easily verified. In particular,
adding up all the equations in (2.1)-(2.4), we obtain

% = Ay + Ay —w Iy — wyly — w, I — uN, (A1)
where N =S, +V,+I1; + S, + Vo + I, + I; + R. Eq. (A1) yields
A+ A
N2 (A.2)
U

The basic reproduction number R, can be derived from the classical
next-generation matrix technique (van den Driessche and Watmough,
2002), with the new infection matrix F and the transition matrix G
given by

pS10+ POVyy BSip+ POV O
F =] BS)y+p0Vy,y pSr+p0Vy 0 |, (A.3)
1P V2P2 0
and
yi+o+pu 0 0
G = 0 Yo+ + 0 (A.4)
0 0 yptop+u

The basic reproduction number is the spectral radius of the next-
generation matrix FG~'; i.e.,

BS10+ B8V1o
Yy top+pu

S5 + B0V

Ry =p(FGY) =Ry + Ry, = .
0 = n( ) 01 02 PR

(A.5)
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Each of the two individual reproduction numbers R and R, is a
combination of the disease risk from the primary infection and that

from the breakthrough infection.

Proof of Theorem 3.2. At an equilibrium of the system, we have

=BS\ I+ L) —(p+mw)S, =0, (A.6)

S, - 08V,, + L) — uV; = 0, (A7)

B, + L)( S, +0V) — () +w, + I =0, (A.8)

Ay =S, + L) = (+w)S, =0, (A.9)

$S, = 0pV;(I, + 1) — uV; = 0, (A.10)

Py + 1)(S, + V) — (v, +wy, + ), =0, (A11)

vipi Iy +vopol, = (yp +wyp + )l =0, (A.12)

i =pIy+ (1 =p)I, +y I —uR = (A.13)
According to Eq. (A.6), we obtain

I = Al_(¢+/’;;fl_ﬂSlII' (A.14)

Multiply Eq. (A.6) by S, and Eq. (A.9) by S, and subtract one from
the other. This yields
A5,

A,
Similarly, multiplying Eq. (A.7) by V, and Eq. (A.10) by V;, and
subtracting one from the other, we obtain

S,V A V5
_21" _ 27 (A.16)
Sy Ay
where the second equality follows Eq. (A.15). Substituting Egs. (A.15)
and (A.16) into (A.8), we have

A12

S, = (A15)

4

A152
B + 1) 1 )— (ry +wy + ;. (A.17)
By Eq. (A.11), we observe
By + 1))(Sy +0V,) = (ry + wy + w1,. (A.18)
Dividing (A.17) from (A.18), we obtain
A _ntw ol (A.19)
Ay (n+wy+mwl,
and
A 1
I = 2+ wy + )1 . (A.20)
A(y, + wy + 1)
Equating (A.14) and (A.20), we obtain
—(p+u A
I = ——, with 5= M (A.21)
p+n) Ay + 03+ 1)
According to (A.6), we have
A —(P+p)S
Py + 1) = ——— L (A.22)
S
Substituting Eq. (A.22) separately to (A.7) and (A.8), we obtain
S
y=— (A.23)
—(@+mWl+u
and
— (¢ + WIS, + 9
~ @+ WIS +0%) @+ IS, (¢+;¢)J+M
= 7w +u - y1+w1+/4
(A.24)
Equating (A.21) and (A.24), we obtain the equation below
A S _nto tu
[S—l—(¢+;4)]~{51+9 = ! LT~ 0. (A25)
1 F-@+wi+u  PAED
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The first factor of Eq. (A. 25) —(¢+p) =0, obviously leads to S| = S},
which subsequently determmels the DFE x,,.

The second factor of Eq. (A.25) can be written as the following
equation

Wtw+u
S =——, A.26
T =50 (A.26)
where the function f is defined as
A
fS)=5+6 51 ., 0<s <! (A.27)
—(p+ Wl +u b+u

Clearly, f(0) = 0, and f(S,) is strictly increasing for 0 < §, < ¢— =
S|0- Hence, Eq. (A.26) has a unique positive root S, = .5}, that satisfies
0< S|, <S8, if and only if
ntoiti

B +n)
Through direct algebraic manipulation, it can be easily verified that the
condition (A.28) is equivalent to

f(S10) > (A.28)

Ry > 1, (A.29)

where R, is defined in Eq. (A.5).

Hence, when R, > 1, a positive root S; = S, satisfying 0 < S}, <
S|o can be uniquely determined. Consequently, V;, I}, S,, V5, I,, I;,
and R at the equilibrium can all be uniquely determined. From the
equations derived above, it is straightforward to observe that these
components are all positive and that the unique positive equilibrium

e = 1 Vi Lir S0 Voo Inys It R,) € L. In contrast, when R, < 1,
the system has only one equilibrium in £ which is the DFE x,.

Proof of Theorem 3.3. From the system (2.1)-(2.4), we obtain

dI

d—tl < B, + L)(Syo + 0Vig) — (ry + w0y + i,

dr,

a < Py + 1)(Syo +0Vyy) — (2 + wy + )1,

dI,

= <ol +rpdy — (g +wp + Wiy,

Let Y = (I}, I,,I;)T. Then we have

‘;_Y <(F-G)Y, (A.30)

where the matrices F and G are defined in Egs. (A.3) and (A.4). By the
Perron-Frobenius theorem, there exists a non-negative left eigenvector
u of the non-negative matrix G~! F with respect to the eigenvalue R, =
p(FG™') = p(G™' F). We define the Lyapunov function:

L=u"Gly. (A.31)
Differentiating L along the solutions of the system yields
L' =u'G- 1(21: <G N F-G)Y =Ry-1u"Y. (A.32)

If Ry < 1, then L' < 0. The equality L’ = 0 leads to «TY = 0.
Therefore, at least one of the three equations I, = 0, I, = 0 and
I; = 0 must hold. By one of the three equations, we can obtain that the
other two equations also hold. Consequently, the largest invariant set
where L’ = 0 is the DFE x;, = (S}9, V}0 0, Sa9, Va0, 0,0, 0). By LaSalle’s
Invariance Principle, the DFE is globally asymptotically stable in
when R < 1.

Proof of Theorem 3.4. By Theorem 3.2, there exists a unique positive
equilibrium x, when R, > 1. Define the Lyapunov function

Slu-8, u=v, "u-1,,
L= —du+ du+ du
K u 1Z u I, u

1* 1*

S, I RNy v, I Yy -,
+ 13 2*/ 2*du+ 1 2*/ Z*du_'_
Syl Js u Voo Iy, V. u

2%

Viih, /’z u—1,
du.
Vaudi, Jo, u

2
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According to (A.16), we have

Sl*IZ* - VI*IZ*

SZ*II* V2* I]>:< '

Using Egs. (A.6)-(A.11), we calculate the derivative of L along the
solutions of Egs. (2.1) and (2.2):

S
L'=(1- S‘* HA, = S\ I, = BS\ 1, — (& + w)S,
1

—[Ay = BSy Ay, = BS 1Ly — (P + S, 1}
(denoted as k)

Vi

+(1- V‘ MBS, — 08V, I, — 0BV, I, — uV;
1

— (@S, — 0BV, I, — 0BV, I, — uVy,)]

(denoted as k,)
l *
+(1- [#){(mlsl + BLS, + 0B1,V, + 0BL,V,) — (v, + w, + wI,
1

= [BI,.Sy, + B, S1. + Op1,V,, + 0L, V1) — (v +wy + w1, 1}

(denoted as ks)

Sialo Sz*
ts 1 (1= ){Az BSy 1y — BS, 1, — (9 + 1),
2114
-4 - ﬁS2*’1* =B L, — (¢ + w)S,, 1}
(denoted as k)
Vieds, Vo
tv T —1- )[¢Sz —0pVy 1, — 0PV, I, — uV,
21

— (@S, — 9/71/2*11* =0V Iy, — uV,)]
(denoted as ks)

Vi b, 1L,

+ — Vo1 (1- _){(ﬂllsz + 1S, + 0B1V, + 0P 1,V,) — (v, + wy + w1,

24 1%

= [(BL. Sy + 81,8, + 0811, V), + 051, V3,) = (ry + wp + ), 1}

(denoted as k).

To facilitate the algebraic manipulation, we re-arrange k, k,, ks,
ky, ks, ke as follows, with each k; represented as a summation of K;;
(=0,1,2..)

S 51* S 51*

K+ uS;,.2 -

S ) 10+ #S1.( 5.

+ 8BSy + 51*12* -Si -8 Kp

s2 Il* Sf*IZ*
Sy

ky= ¢5.2- — ) Ky,

- p( = Sudy =S ) Ky,

I/I*SI VI*SI*
S1) — p(—— ?) Ky
1

-Vl Ky

ky = &(S) —

+0p(Vy. 1y, + VI*IZ* -V
Il* VIZ*IZ*

Vi
n V]*
Vi

- 0p(—— l* -Vily = V.1 Kp

+puV. (2 - ) K3,

ky= pUS| + 1S, + 01, V] + 01,V
_QII*VI*_BIZ*V]*) K5

- Il*Sl* - IZ*SI*
HII*IZI/I Ilz*Sl*
I I
2
_ 11*12*51* _ HII*VI* _ 011*12*1/1*

Il II Il

5,55,
- pU,,.S) + I—l +61,.V, +

) K3

II Il*
+ o+, 2-— - ) Kz,
I, I

S d S S S S
2 98,0 - -2 - == 2-22 _ S
SZ*II* S S SZ* SZ

+ B(Sy L1+ Soidny — S 14

) Ky

- S2IZ) K42
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S2 I, SiD,
- B(= S, + S =Sy = 855.1) Ky ]’
V1*12* V2*SZ VZ*SZ*
ks = S, —8,,) — K.
=N [ $(S, — $5) — p(—22 ) K
+0p(Va, 1y, + Voo Ip, — VZII - VzIz) Ks,
*’1
—op(2= I =V D)) Ksp
+.‘4V2*(2_ ]’
2%
VI*IZ*
ko= === [ BUS, + LS, + 01V, + 0LV, — IS,
VZ*II*

- 12*52* - QII*VZ* - QIZ*VZ*) K60

2
1115, 0L, 01V, 1S% 1,1,
— By Sy + 2122 op v, + - -
ﬂ( 2%2 Iz 2% 72 Iz 12 IZ
01 S 01,5,V
14 2% 2*) K61
1, I,
I 12*
+(rp + wy + ), (2 — 7 ) K |-
2%

It is obvious that K, + K,; + K3, =0 and Ky, + K51 + Kgy = 0. Because
x, satisfies Eq. (A.8), we have

I*

Ky = (B11,S). + 81, S\, + 0PI, V), + 081, V)2 - I - Il )
1« 1

1 Il* I, I,

= pI,5,.2 - T~ ) K7y + pL,,S,.2 - Y ) Ky
1 1% 1
1, 1, 1 1,
+9ﬁ[1*Vl*(2_K_ 11) K3, + ﬁ912*V1*(2—K— 1]) K3 .

Denote the first term of K3 by K3, the second term by K3,, the third
term by K3, etc. With similar notations, we have K3, + K3;; + K7, =
BI1,.81.2 - S - l*) 0, Ki33 + Kg0p = 0, Ky + K313 + Kppy =
eﬂII*V]*(2— : - V'*) (denoted as Kg), Kyy;+ Kz = 0, K35+ K03 = 0,
K316 + K713 = 0, K;” + K73 = 0, K33 + K733 = 0. Because x,

satisfies Eq. (A.7), we have

i V.
Ky = (¢St — 0BV 1, — 0PV, )2 — —— — —=)
Vl* Vl
e P RO S OO Yt/ e S A
) Vie W o Vie W
i Vi
Koy =0fV1u10, 2 = = = 4 ) Kg,.

1

It can be observed that K+ K,;+ Kgg = ¢5;,(3— 2L — —L —=1=) <,
1%
and Ky, + Kg = 0.
Next, we reorganize the sum of k, k, and k;:

ky +ky+ ks
= pI,,S,2 - S S‘*)+¢S (3_@_&_51*)
FEETSL s FTUWSL Ve Sy
uS - S Sy
Sl* Sl
St Sl(;‘*’“@VI opv,. 1, (2 — L _ Ve
- f— 5 + S 1, —0p—— v, +ﬁ]*2_ﬁ]*2*(_1/1*_71)
_plelS g bV s 0 - Ik pon e - 11
I, I, o N o 1.
T e R R WP e P R (R
EECTC PTUVSL Ve Sy
Sl Sl*
+;4S1*(2—S1*— Sl)
+ 41,8, (4—1—1—&—M——)—ﬂ1 S,.2- ) —2)
L, S LS, Y S A
(denoted as k)
+ﬂ012*m4—i—5—ﬂ—[2*>

L W LbV. L
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POLV, (4 o Ve b
o Vl* Vl IZ*

(denoted as kg).

I,
I

)

With similar manipulations, we obtain

ky + ks + kg
ST S V; S
= E2P,8,0- 2 - )+ 95,0 22 - L -tk
SZ*II* SZ* VZSZ* 1/2* SZ
Sy S
+uS,,2-— - —=—
H 2*( S2* S2 )]
S 1 S 1,1, I
4 Sl*Iz* [BI,, Sy, (4 — % _ % _ Iz; 1S2 _ I_2
2 13 1 2 201492+ 2
I I,
- pS,,. 1,2 - — — —
ﬂ 2% ]*( [1* Il )]
(denoted as kg)
Vi1 1 v, 1, 1,V; 1
At 2*[ﬁ0VZ*Il*(4—i—ﬁ— 012 oy
VZ*II* Il V2 IZII*VZ* 12*
1Z v, 1 1
—BOVy Iy, (4— =2 — 2 - —L 5]

VZ* VZ Il* Il

(denoted as k).

k7 + kg
S I,.1,S I I I
=ﬁIz*S1*(4——l_i_ e e TN _2+ﬁ
I, S 11,8, I, I, I,
S U e o B R ) B U
Il S2 IZII*SZ* IZ* Il* Il
s S IuhS S b
S] IIIZ*SI* S2 IZII*Sz*
< 0.
Since

¢Sl* - eﬁVl*(Il* + 12*) - ”Vl* =0,
¢S2* - eﬁVZ*(Il* + 12*) - ”VZ* =0,

we have

"SS5

POV, I, (3 — 2220 ZL 2y (Genoted as ky ),
BV, I, ( Vs V.S ) (denoted as ki)
and
V5,8 V; S.
L2 8, (3— 22— 2 _ T (from ky + ks + kg)
Sl V28, Vau S,
Vi V5,S 1Z S
- 13 2*¢SZ*(3_£__2_ 2*)
VZ*II* VZSZ* VZ* SZ
V9l V5,8 1Z S
= EEBOVy D, + uVa )3 - R - 22 -
I/Z*Il* I/2S2>i< 1/2* SZ
+ V]*Iz*ﬂeV I (3 I/Z*SZ V2 S2*) (d ted k )
—_ - = enotea as .
VZ*II* S VZSZ* VZ* SZ 2

We thus obtain

kg +kig+ ki +kpy

Vi ©L.LV, I Vi Vi, L I
V)70 A ¢t M Ol e 148 U Uy PR WP L R L
L. 7 LLV, L Vie W I,, A
I, Vi LV, I v, v, I, I
42 212 2 4y 24 T2 1 1k
I, V, LIV, I, Voo Vo I, I
+3 I/I*SI Vl Sl* Vz*sz I/Z SZ*)
VISI* V]* S1 VZSZ* V2* Sz
1,1,V L, 1,V, V.S S V.S S
= PV T Vs, s, s, 5
1hVie LIV, 1514 | 2S), ,
<0
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Therefore L'’ < 0, and L’ = 0 if and only if (S,V}.1;,5,, V5, I,) =
(81 Vies Iss Soss Vo In,). Based on LaSalle’s Invariance Principle, the
endemic equilibrium (S},, Vi, I}, Ss., Va.. I5,) of the subsystem (2.1)
and (2.2) is globally asymptotically stable. Letting I, — I, and I, -
I,, in Egs. (2.3) and (2.4), we clearly observe that all solutions of I,
approach I;, and that all solutions of R approach R,. This completes
the proof that the endemic equilibrium x, is globally asymptotically
stable in Q.
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