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A B S T R A C T

We propose a new mathematical model to investigate the population dynamics of long COVID, with a focus

on the impact of chronic health conditions. Our model connects long COVID with the transmission of COVID-

19 so as to accurately predict the prevalence of long COVID from the progression of the infection in the host

population. The model additionally incorporates the effects of COVID-19 vaccination. We implement the model

with data from both the US and the UK to demonstrate the real-world applications of this modeling framework.
1. Introduction

Long COVID, also known as post-COVID-19 syndrome or post-acute

sequelae of COVID-19, is a long-lasting disorder that arises following

infection with SARS-CoV-2 (Alwan and Johnson, 2021; Davis et al.,

2021; Anon, 2023a). Long COVID can be caused by many different

mechanisms, including consequences from acute SARS-CoV-2 injury to

one or more organs, autoimmunity due to molecular mimicry between

the pathogen and host proteins, re-activation of neurotrophic pathogens

under conditions of COVID-19 immune dysregulation, SARS-CoV-2 in-

teractions with host microbiome communities, and dysfunctional brain-

stem/vagus nerve signaling (Proal and VanElzakker, 2021). In addition,

the virus may linger in the body and trigger persistent immune response

that drives the symptoms (Marshall, 2021). The situation is further

complicated by the fact that individuals with mild symptoms could

become COVID long-haulers (Nalbandian et al., 2021). Moreover, re-

ent publications reported long-term COVID-19 symptoms among fully

accinated people who developed breakthrough infections (Bergwerk

t al., 2021; Massey et al., 2021).

Underlying health conditions have been strongly linked to both the

everity of COVID-19 infection and the risk of long COVID. It was

stimated that more than 1.7 billion people worldwide had at least

ne underlying medical conditions that put them at increased risk for

evere illness caused by COVID-19 (Clark et al., 2020). A study con-

ducted by CDC found that among individuals with reported underlying

conditions, hospitalizations were 6 times higher and deaths were 12

times higher compared to those without a chronic condition (Stokes

et al., 2020). Meanwhile, it was found that people with asthma, lung

disease and several other chronic conditions were more likely to de-

velop long COVID (Sudre et al., 2021). Furthermore, a recent review

article (Nalbandian et al., 2021) concluded that COVID-19 patients with
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underlying conditions such as obesity, type-2 diabetes, hypertension,

chronic pulmonary disease, and compromised immunity were at high

risk for long COVID. It is clear that these underlying health conditions

play an important role in shaping the prevalence of long COVID.

A systematic review of 33 long COVID cohort studies showed that

the post-COVID-19 symptoms and their prevalence rates, ranging be-

tween 10% and 67%, are highly heterogeneous across different pop-

ulations (Fernández-de Las-Peñas et al., 2021). Another review article

(Nalbandian et al., 2021) provided an overview of studies based on var-

ious COVID-19 cohorts (hospitalized and non-hospitalized) around the

world and found estimates for the prevalence of long COVID ranging

from 12% to 55%. Such a heterogeneous pattern for long COVID was

also highlighted in other systematic reviews and meta-analyses (Cares-

Marambio et al., 2021; López-León et al., 2021; Willi et al., 2021). At

the population level, it is critical to predict and evaluate the burden

of long COVID to assess its impact on the healthcare system and to

design appropriate strategies for resource distribution. However, the

heterogeneity and variation for the COVID syndrome indicate that there

is generally no ready-to-use formula to quantify long COVID in a given

population, and the prediction of long COVID prevalence has to take

into account the epidemic/pandemic progression and the specific pop-

ulation characteristics, especially the prevalence of underlying health

conditions.

Mathematical and computational modeling could help us to address

such a pressing need and gain a deeper understanding of the population

dynamics associated with long COVID. A large number of mathemati-

cal, statistical and computational models have already been developed

for COVID-19 dynamics (see reviews in Wang (2020), Afzal et al.

(2022), Napolitano et al. (2022) and Padmanabhan et al. (2021)). To

our knowledge, however, no mechanistic models have been published
https://doi.org/10.1016/j.jtbi.2023.111669
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for long COVID thus far. Some predictive work for potential patients
with long COVID has been conducted using simple statistical and
learning models (Pfaff et al., 2022; Cervia et al., 2022). Particularly,
a machine learning study based on the random forest algorithm was
published to identify individuals at risk for long COVID (Sudre et al.,
2021), and a statistical classification algorithm was applied to identify
phenotypes that indicate long COVID (Estiri et al., 2021). In addition,
a regression model based on a single exponential decay function was
proposed to estimate the lost quality-adjusted life years (QALYs) from
long COVID in the UK (Martin et al., 2021). These existing models,
however, are not helpful in assessing the population dynamics of long
COVID.

As a pilot study, we propose a mechanistic model based on dif-
ferential equations in this paper to investigate long COVID dynamics
and population-level prevalence, with a focus on the impact of chronic
health conditions. Our model will divide the host population into two
groups depending on whether they have underlying conditions, and
each group is associated with different infection characteristics and
different risk of developing long COVID. We will connect the population
dynamics of long COVID with the transmission dynamics of COVID-
19, so as to accurately predict the prevalence of long COVID from the
progression of the acute infection. We will additionally incorporate the
effects of COVID-19 vaccination in our model.

The remainder of this paper proceeds as follows. The mathematical
formulation of our model is presented in Section 2. Main mathematical
results concerned with this model are summarized in Section 3, with de-
tails provided in Appendix. Numerical simulation is conducted in Sec-
tion 4 to illustrate the applications of our model. Finally, conclusions
are drawn and some discussion is made in Section 5.

2. Model formulation

We utilize mathematical modeling with differential equations to
investigate the population dynamics of long COVID with the impact of
underlying health conditions. We divide the host population into two
groups: Group 1 for individuals with underlying conditions who are
more likely to develop long COVID, and Group 2 for individuals without
underlying conditions who are less likely to develop long COVID.

The following equations describe the transmission dynamics of
COVID-19 in Group 1:
𝑑𝑆1
𝑑𝑡

= 𝛬1 − 𝛽𝑆1(𝐼1 + 𝐼2) − (𝜙 + 𝜇)𝑆1,

𝑑𝑉1
𝑑𝑡

= 𝜙𝑆1 − 𝜃𝛽𝑉1(𝐼1 + 𝐼2) − 𝜇𝑉1,

𝑑𝐼1
𝑑𝑡

= 𝛽(𝐼1 + 𝐼2)(𝑆1 + 𝜃𝑉1) − (𝛾1 +𝑤1 + 𝜇)𝐼1.

(2.1)

The following equations describe the transmission dynamics of
OVID-19 in Group 2:
𝑑𝑆2
𝑑𝑡

= 𝛬2 − 𝛽𝑆2(𝐼1 + 𝐼2) − (𝜙 + 𝜇)𝑆2,

𝑑𝑉2
𝑑𝑡

= 𝜙𝑆2 − 𝜃𝛽𝑉2(𝐼1 + 𝐼2) − 𝜇𝑉2,

𝑑𝐼2
𝑑𝑡

= 𝛽(𝐼1 + 𝐼2)(𝑆2 + 𝜃𝑉2) − (𝛾2 +𝑤2 + 𝜇)𝐼2.

(2.2)

For each group 𝑗 = 1, 2, the variables 𝑆𝑗 , 𝑉𝑗 and 𝐼𝑗 represent the
usceptible, vaccinated, and (short-term) infected individuals, and the
arameters 𝛬𝑗 , 𝛾𝑗 and 𝑤𝑗 denote the population influx rate, exit rate
rom the acute infection, and disease-induced death rate, respectively.
ince infected individuals with underlying medical conditions usually
xhibit more severe illness than those without such conditions, we
ssume that 𝛾1 < 𝛾2 and 𝑤1 > 𝑤2. Meanwhile, the parameter 𝛽 is

the disease transmission rate which may be time-dependent, 𝜇 is the
natural death rate for the human hosts, and 𝜙 is the vaccination rate,
which take the same values for both groups. In addition, we assume
2

that the vaccine has a degree of protection, or efficacy rate, 1 − 𝜃; that
is, a portion of 𝜃 in vaccinated individuals are at risk for breakthrough
nfections (Kates et al., 2021).

Let 𝐼𝐿 denote the number of individuals with long COVID, and 𝑅
enote the number of recovered individuals. The time evolution of the
ong COVID compartment is described by the following equation:
𝑑𝐼𝐿
𝑑𝑡

= 𝛾1𝑝1𝐼1 + 𝛾2𝑝2𝐼2 − (𝛾𝐿 +𝑤𝐿 + 𝜇)𝐼𝐿. (2.3)

eanwhile, the recovered compartment satisfies the equation below:
𝑑𝑅
𝑑𝑡

= 𝛾1(1 − 𝑝1)𝐼1 + 𝛾2(1 − 𝑝2)𝐼2 + 𝛾𝐿𝐼𝐿 − 𝜇𝑅. (2.4)

Among the individuals who exit from the acute infection period
in group 𝑗, we assume that a portion 𝑝𝑗 of them will develop long
COVID and enter the 𝐼𝐿 compartment, whereas the other portion 1−𝑝𝑗
will truly recover from the disease and enter the 𝑅 compartment, for
𝑗 = 1, 2. We have 𝑝1 > 𝑝2, since individuals in group 1 are more likely
to develop long COVID. The parameter 𝛾𝐿 denotes the recovery rate,
and 𝑤𝐿 denotes the disease-induced death rates, for individuals in the
long COVID state. We note that COVID long-haulers exhibit higher risk
of death compared to those without long COVID (Al-Aly et al., 2021).
We make an additional assumption that individuals with long CVOID
are not contagious, based on a systematic review of 79 clinical studies
on SARS-CoV-2 (Cevik et al., 2021) which found that the duration of
infectiousness was limited to a relatively short period (up to 9 days).

3. Mathematical results

The main dynamical properties of our mathematical model can be
summarized by the following theorems.

Theorem 3.1. The system (2.1)–(2.4) has a unique disease-free equilib-
rium (DFE)

𝑥0 = (𝑆10, 𝑉10, 0, 𝑆20, 𝑉20, 0, 0, 0)

=
( 𝛬1
𝜙 + 𝜇

,
𝛬1𝜙

(𝜙 + 𝜇)𝜇
, 0,

𝛬2
𝜙 + 𝜇

,
𝛬2𝜙

(𝜙 + 𝜇)𝜇
, 0, 0, 0

) (3.1)

n a positively invariant domain

=
{

(𝑆1, 𝑉1, 𝐼1, 𝑆2, 𝑉2, 𝐼2, 𝐼𝐿, 𝑅)
|

|

|

𝑆1, 𝑉1, 𝐼1, 𝑆2, 𝑉2, 𝐼2, 𝐼𝐿, 𝑅 ≥ 0,

𝑆1 ≤ 𝑆10, 𝑆2 ≤ 𝑆20, 𝑉1 ≤ 𝑉10,

𝑉2 ≤ 𝑉20, 𝑆1 + 𝑉1 + 𝐼1 + 𝑆2 + 𝑉2 + 𝐼2 + 𝐼𝐿 + 𝑅 ≤
𝛬1 + 𝛬2

𝜇

}

.

(3.2)

he basic reproduction number of the model is given by

0 = 01 +02 =
𝛽(𝑆10 + 𝜃𝑉10)
𝛾1 + 𝜔1 + 𝜇

+
𝛽(𝑆20 + 𝜃𝑉20)
𝛾2 + 𝜔2 + 𝜇

, (3.3)

where 01 and 02 are the individual reproduction numbers of Groups 1
and 2, respectively.

Theorem 3.2. When 0 < 1, the DFE 𝑥0 is the only equilibrium of the
system (2.1)–(2.4) in 𝛺. When 0 > 1, in addition to the DFE, the system
(2.1)–(2.4) has a unique positive endemic equilibrium

𝑥∗ = (𝑆1∗, 𝑉1∗, 𝐼1∗, 𝑆2∗, 𝑉2∗, 𝐼2∗, 𝐼𝐿∗, 𝑅∗) (3.4)

in the domain 𝛺.

Theorem 3.3. When 0 < 1, the disease-free equilibrium 𝑥0 is globally
asymptotically stable in the domain 𝛺.

Theorem 3.4. When 0 > 1, the endemic equilibrium 𝑥∗ is globally
asymptotically stable in the domain 𝛺.

These results are standard, showing a threshold at 0 = 1 that
separates two distinct types of dynamical behaviors: disease eradication

when 0 < 1 and disease persistence when 0 > 1. Our special
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Table 1
Parameter values in Application 1.

Parameter Description Value Unit Source

𝑁 Population size 367 804 person Anon (2023b)
𝜇 Natural death rate 2.74 × 10−5 per day Anon (2023b)
𝛬1 Population influx rate in Group 1 4.031 person/day Razzaghi et al. (2020)
𝛬2 Population influx rate in Group 2 6.047 person/day Razzaghi et al. (2020)
𝜃 Probability for breakthrough infection 5% – Kates et al. (2021)
𝑤1 Disease-induced death rate in Group 1 0.0144 per day Stokes et al. (2020)
𝑤2 Disease-induced death rate in Group 2 0.0012 per day Yang and Wang (2021)
𝛾1 Recovery rate in Group 1 0.08 per day Anon (2023f)
𝛾2 Recovery rate in Group 2 0.12 per day Anon (2023f)
𝛽 Disease transmission rate – /person/day Fitted
𝜙 Vaccination rate – per day Fitted
𝑤𝐿 Long COVID related death rate 0.00012 per day Assumed
𝛾𝐿 Recovery rate for Long COVID 1∕90 per day Assumed
𝑝1 The portion of infected individuals in Group 1 developing long COVID – per day Varied
𝑝2 The portion of infected individuals in Group 2 developing long COVID – per day Varied
interest here, however, is that these analytical results confirm the
impact of the underlying health conditions, as can be seen from the
expression of 0 in Eq. (3.3), and the connection between long COVID
(represented by 𝐼𝐿 in the model) and the acute infection (represented
y 𝐼1 and 𝐼2 in the model). Since long COVID stems from the acute
nfection, the transmission dynamics of COVID-19 play an important
ole in shaping the evolution of the long COVID prevalence. Conse-
uently, Theorems 3.3 indicates that if the COVID-19 infection is totally
liminated, long COVID will also be eradicated eventually, whereas
heorem 3.4 indicates that if the COVID-19 infection remains endemic,

ong COVID will also persist in the host population.
Proofs of Theorems 3.1–3.4 can be established through standard

athematical analysis, and details are provided in Appendix. In what
ollows, we focus on the application of our model.

. Simulation results

We have incorporated published data to demonstrate the real-world
pplications of our model. At present, time series data for long COVID
t the population level are very rare. One exception is the UK Office for
ational Statistics (ONS) that published monthly data for long COVID
revalence in the UK population (Anon, 2023e). In our study, we
onducted two modeling applications: one for a place in the US which
as high prevalence of chronic conditions and which has surveillance
ata for COVID-19 but not for long COVID, and the other for the UK
here data for both COVID-19 infection and long COVID are available.
Application 1. We first applied our model to Hamilton County,

ne of the most populous counties in the US state of Tennessee. The
revalence of underlying health conditions, particularly chronic heart
isease, chronic obstructive pulmonary disease, diabetes, and obesity,
n Hamilton County is as high as 40% (Razzaghi et al., 2020). Thus, a
ignificant portion of the population in Hamilton County is considered
ighly vulnerable to COVID-19 infection and subsequent long COVID.

There are currently no population-level long COVID data available
n the US. Thus our model fitting is based on COVID-19 data, using
qs. (2.1) and (2.2) only. Hamilton County has a total population of
= 367, 804 (Anon, 2023b). The population sizes of the two groups in

ur model were set as 𝑁1 = 0.4N and 𝑁2 = 0.6N, based on an estimate
rom CDC that about 40% of the residents in the county have at least
ne underlying health conditions (Razzaghi et al., 2020). We then
omputed the influx rate of the susceptible individuals in each group
y 𝛬𝑖 = 𝜇𝑖𝑁𝑖 (𝑖 = 1, 2), where we set 𝜇1 = 𝜇2 = 𝜇 as the natural birth
nd death rate in the region. The recovery period from acute COVID-19
nfection varies among different patients (Anon, 2023f), depending on
heir age, severity of illness, and overall health conditions. We assumed
3

hat individuals in Group 1 (with chronic conditions) and Group 2
Table 2
Fitting results in Application 1.

Parameter/Quantity Period 1 Period 2 Period 3

𝛽 1.094 × 10−6 9.58 × 10−7 7.20 × 10−7

𝜙 0.0285 0.0033 0.0031
NMSE 0.0131 0.00051 0.0059

(without chronic conditions) would recover, on average, in 12.5 days
and 8.5 days, respectively, which led to 𝛾1 = 0.08 per day and 𝛾2 = 0.12
per day. We used the disease-induced mortality rate from Yang and
Wang (2021) for Group 2, 𝑤2 = 1.2 × 10−3 per day. Meanwhile, base
on the CDC study that COVID-19 related deaths were 12 times higher
among those with reported underlying conditions than those without
such conditions (Stokes et al., 2020), we took 𝑤1 = 1.44×10−2 per day.
We assumed that the breakthrough infection rate was approximately
𝜃 = 5% (Kates et al., 2021). The definitions and values of these
parameters are listed in Table 1. Additionally, the values for the disease
transmission rate 𝛽 and the vaccination rate 𝜙 were obtained from data
fitting.

We considered a time frame of 11 months from January 1, 2022
to November 30, 2022. We collected the COVID-19 surveillance data
from the Tennessee Department of Health (Anon, 2023d) that included
the numbers of daily new infections, active infections, and cumulative
cases, as well as vaccination coverage. We then fitted Eqs. (2.1) and
(2.2) to the reported data for the number of the daily reported active
cases, using the least squares method. Specifically, the error function to

be minimized is give by
𝑚
∑

𝑗=1

[

𝐼1(𝑡𝑗 )+𝐼2(𝑡𝑗 )−𝑌𝑗
]2, where 𝑚 is the number

of days in the period of consideration, 𝐼1(𝑡𝑗 ) and 𝐼2(𝑡𝑗 ) are the model
predictions for the active infections on the 𝑗th day for Groups 1 and 2,
respectively, and 𝑌𝑗 is the reported number of active infections on the
𝑗th day, for 𝑗 = 1, 2,… , 𝑚.

Our preliminary fitting based on the entire time frame of 11 months
yielded unsatisfactory results, mainly due to the different patterns
exhibited by the data at different times. To overcome this challenge,
we divided the time domain into 3 periods:

Period 1: January 1, 2022 to April 7, 2022;
Period 2: April 8, 2022 to June 30, 2022;
Period 3: July 1, 2022 to November 30, 2022.
We then fitted our model separately to these 3 periods for the

two unknown parameters 𝛽 and 𝜙. The reported data provided initial
conditions for each period.

The fitted values for 𝛽 and 𝜙 are presented in Table 2. We can see
that the disease transmission rate 𝛽 is relatively stable in the entire
time frame, though its value is slightly decreased from Period 1 to



Journal of Theoretical Biology 576 (2024) 111669J. Bai and J. Wang

P

2
i
t
t
2
s
t

C

n
g
t
o
f
f

p
d
p

Fig. 1. Number of active COVID-19 cases in Application 1. Red circles represent the reported data and blue solid lines represent the fitting results.
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eriod 2 and then to Period 3. Meanwhile, the vaccination rate 𝜙
has a significant reduction from Period 1 to Period 2, and then a
small decrease from Period 2 to Period 3. This pattern of change for
the values for 𝜙 reflects the fact that by April 2022, the majority of
the population in Hamilton County had received at least two doses
of vaccines (primary series plus boosters) (Anon, 2023c) and fewer
people would need vaccination afterwards. In addition, we calculated
the normalized mean square error (NMSE) for the fitting in each period
and listed the results in the last row of Table 2.

The fitting curves for the number of active cases in all the three pe-
riods are presented in Fig. 1, in comparison with the reported data. We
clearly observe three distinct shapes for these curves: an approximate
parabola followed by a gradual decrease in Period 1, a monotonically
increasing curve in Period 2, and a dominantly decreasing curve in
Period 3. These curves match the reported data well, as evidenced by
the computed NMSE (shown in Table 2). This provides a quantitative
justification for our piecewise fitting.

Following the data fitting, we conducted a series of simulations for
the possible prevalence levels of long COVID in Hamilton County, using
Eq. (2.3). We assumed that 𝜔𝐿 = 0.1𝜔2 and 𝛾𝐿 = 1∕(90 days). We then
picked three different values for 𝑝1, the portion of infected individuals
from Group 1 who would go on to develop long COVID: 𝑝1 = 12%,
4%, and 36%. Based on the CDC estimates (Stokes et al., 2020) that
ndividuals with underlying health conditions were 6 times more likely
o be hospitalized than those without such conditions, we assumed that
he risk of developing long COVID in Group 1 is 6 times that in Group
. This led to 𝑝2 = 2%, 4%, and 6%, respectively. We then ran the
imulation for Eq. (2.3), together with Eqs. (2.1) and (2.2), for each of
he three periods.

Fig. 2 displays the simulation curves for the number of active long
OVID cases, 𝐼𝐿, and for 𝑆, 𝑉 and 𝐼 in each group, for all the three

periods. In particular, the panels in the top row show that the peak
of 𝐼𝐿 ranges from about 1500 (when 𝑝1 = 12%) to nearly 4500 (when
𝑝1 = 36%). Even with the minimal estimate of 𝑝1 = 12%, the lowest
point on the simulation curves in all the three periods is 𝐼𝐿 = 400,
indicating a significant public health burden caused by long COVID.
We were not able to fit and predict the evolution of long COVID in
this case, due to the unavailability of long COVID data. Nevertheless,
our simulation results provided possible ranges for the prevalence of
long COVID in the given population, which could inform public health
agencies in developing their policies and scaling their efforts.

Additionally, the panels in the bottom row of Fig. 2 shows that the
umber of infections is disproportionally distributed between the two
roups. Although the population size in Group 2 is about 60% of the
otal; i.e., about 1.5 times of the population size in Group 1, the value
f 𝐼2 is only slightly larger than, or even overlapping with, that of 𝐼1
or most of the time. These results confirm the higher risk of infection
or individuals in Group 1 (with underlying health conditions).
Application 2. In this study, we applied our model to the UK

opulation. The Office for National Statistics (ONS) published survey
ata for the prevalence of long COVID in the UK (Anon, 2023e). The
4

eriod covered by the ONS data started from February 6, 2021. The
Table 3
Number of active long COVID cases in the UK (Anon, 2023e).
Date (year/month/day) Cases Date (year/month/day) Cases

2021/02/06 1 094 000 2021/04/04 1021000
2021/05/09 962 000 2021/06/06 945 000
2021/07/04 970 000 2021/08/08 1086000
2021/09/04 1 202 000 2021/10/03 1209000
2021/11/09 1 266 000 2021/12/06 1332000
2022/01/04 1 528 000 2022/02/06 1724000
2022/03/07 1 796 000 2022/04/04 1988000
2022/05/08 1 950 000 2022/06/05 1790000
2022/07/04 1 985 000 2022/08/07 2290000
2022/09/04 2 134 000 2022/10/10 2180000
2022/11/07 2 131 000 2022/12/06 1977000

time series data were published approximately once a month. Based on
the ONS data, we list the number of active long COVID cases in the UK
from February 6, 2021 to December 6, 2022 in Table 3, which were
used for our model fitting and testing.

Instead of fitting again the regular COVID-19 data in the UK (as
what we did for Hamilton County in the US), we took advantage
of the available long COVID data and focused our attention on the
fitting of active long COVID cases (see Table 3) using Eq. (2.3) and
the least squares method. We chose the period from February 6, 2021
to July 4, 2022 (about 17 months) for model fitting, and the period
from July 5, 2022 to December 6, 2022 (about 5 months) for model
testing/prediction.

We took the same values as before for the parameters 𝛾1, 𝛾2, and
𝑤𝐿. The natural death rate 𝜇 was calculated using the demographic
information of the UK population. Data for the daily number of active
COVID-19 infections reported in the UK were used to determine 𝐼1
and 𝐼2 in Eq. (2.3), where we incorporated the finding from Walker
et al. (2021) that about 25% of the UK population had at least one
underlying health conditions that put them at higher risk for COVID-
19. We then fitted Eq. (2.3) to the monthly reported long COVID
data for the three key parameters 𝑝1, 𝑝2, and 𝛾𝐿 associated with the
long COVID prevalence over the 17-month fitting period. Next, we
conducted numerical simulation to generate a prediction for the 5-
month testing period, using the parameter values estimated from the
fitting period.

Table 4 lists the fitted parameter values. Fig. 3 displays the sim-
lation curves for the number of active long COVID cases in the UK,
ogether with the published ONS data. The vertical dashed line sepa-
ates the fitting and prediction periods. We found that NMSE ≈ 0.019
or the fitting, and NMSE ≈ 0.013 for the testing.

Based on our numerical results, about 35% of the infected individ-
als in Group 1 and about 28% of the infected individuals in Group 2
ent on to develop long COVID in the UK, confirming the higher risk
f long COVID for individuals with underlying conditions. Meanwhile,
he average recovery rate for long COVID was 𝛾𝐿 ≈ 0.012 per day.

This means that long COVID, on average, would last about 1∕𝛾𝐿 ≈ 83
days among the UK population. These numbers would provide useful
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Fig. 2. Simulation curves for Application 1. (a)–(c): Long COVID prevalence with three choices of 𝑝1 and 𝑝2; (d)–(f): Number of susceptible and vaccinated individuals in Groups
1 and 2; (g)–(i): Number of active infections in Groups 1 and 2.
Table 4
Parameter values in Application 2.

Parameter Description Value Unit Source

𝜇 Natural death rate 3.91 × 10−5 per day Rahman and Kuddus (2021)
𝛾1 Recovery rate in Group 1 0.08 per day Anon (2023f)
𝛾2 Recovery rate in Group 2 0.12 per day Anon (2023f)
𝑤𝐿 Long COVID related death rate 0.00012 per day Assumed
𝛾𝐿 Recovery rate for Long COVID 0.01198 per day Fitted
𝑝1 The portion of infected individuals in Group 1 developing long COVID 0.345 per day Fitted
𝑝2 The portion of infected individuals in Group 2 developing long COVID 0.280 per day Fitted
F
2
o
t
p
s
C
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information to assess the burden of long COVID and to guide policy
development and resource allocation.

We make two additional remarks for our numerical results in the
UK application. First, we have used the same values for the disease
recovery rates (𝛾1 and 𝛾2) in both the US and UK populations, as shown
n Table 1 and Table 4. To examine whether this is reasonable, we
onduct another numerical test by adding 𝛾1 and 𝛾2 into the list of
arameters to be fitted; i.e., we use the long COVID data in the UK
o fit the parameters 𝛾1 and 𝛾2, together with 𝑝1, 𝑝2 and 𝛾𝐿. We obtain
1 ≈ 0.097 and 𝛾2 ≈ 0.118 in this case, which are very close to the values
iven in Table 4. Meanwhile, the fitting and prediction curves for the
K long COVID cases are presented in Fig. 4 for this setting. Compared

o Fig. 3, we see that the results are almost identical.
Second, we note that Fig. 3 provides a baseline scenario for our

odel outcomes based on the simplest fitting technique, with all pa-
ameters fixed as constants during the entire period. There are various
ays to improve the fitting and prediction. For example, Fig. 5 shows
scenario where we divide the fitting period into sub-period 1 (from
5

e

ebruary 6, 2021 to April 3, 2022) and sub-period 2 (from April 4,
022 to July 4, 2022) and where we consider the 7-day moving average
f the UK data. We then conduct piecewise fitting separately for these
wo sub-periods, where the fitting result from sub-period 1 is used to
rovide the initial condition for sub-period 2, and the fitting result from
ub-period 2 is used to generate the prediction in the prediction period.
ompared to Fig. 3, we observe better performance for both the fitting
nd prediction in Fig. 5.

. Conclusions

Despite many theoretical discoveries and clinical advances (includ-
ng the development of efficacious vaccines) for COVID-19, our current
nowledge and intervention strategies for long COVID remain very
imited. Quantitative and predictive studies are urgently needed to
etermine at-risk population groups for long COVID, to engage in
cience-based policy development and resource allocation, and to target
arly intervention strategies and clinical services. This paper represents
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Fig. 3. Fitting and prediction results for the long COVID cases in Application 2. The red circles represent the reported data and the blue solid line represents the numerical results.
Fig. 4. Fitting and prediction results for the long COVID cases in Application 2, with 𝛾1 and 𝛾2 added into the set of parameters to be fitted. The red circles represent the reported
data and the blue solid line represents the numerical results.
a proof of concept for the investigation of long COVID through quantita-
tive and computational means. We have developed a novel mechanistic
model based on differential equations to study the population dynamics
of long COVID with the impact of underlying health conditions. Our
model connects long COVID prevalence with the population-level trans-
mission of COVID-19, emphasizing the interplay between the COVID-19
infection, vaccination, chronic conditions, and long COVID dynamics.
We have carried out a detailed mathematical analysis for the model.
We have also conducted numerical simulation to validate this modeling
framework using real data from the US and the UK.

Our first model application is based on Hamilton County in the US,
where data for COVID-19 are available but those for long COVID are
not, representing a typical scenario at present in terms of data availabil-
ity. The place also has high prevalence of underlying health conditions.
We fitted our model to the COVID-19 data, based on which we simu-
lated the progression of long COVID using several prescribed values for
6

the parameters 𝑝1 and 𝑝2 that characterize the risk of developing long
COVID. The simulation results could provide useful information for the
range of the long COVID prevalence at the population level.

Our second model application targets the UK which, as an excep-
tional case, has published data for both COVID-19 and long COVID
at the population level. We fitted our model to the monthly long
COVID data over a period of 17 months, and then tested the results
by running the model for another 5 months immediately following the
fitting period. We found that the percentage of infected individuals
with underlying medical conditions to develop long COVID (35%) was
significantly higher than that of infected individuals without under-
lying conditions (28%). The findings confirm that underlying health
conditions contribute to increased risk of long COVID.

These two application studies demonstrate the utility and validity
of our modeling framework. They have shown that our model can not
only analyze the population dynamics of long COVID, but also predict
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Fig. 5. Fitting and prediction results for the long COVID cases in Application 2, with the fitting period divided into two sub-periods based on piecewise fitting. The red circles
represent the reported data and the blue solid line represents the numerical results.
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the progression of long COVID in the future (with the availability of
historical data). Our work is a pilot effort toward a better understanding
of the population dynamics of long COVID. The findings in this study
contribute to quantitative knowledge associated with the population-
level prevalence and burden of long COVID, and their interplay with the
transmission of COVID-19, the impact of underlying health conditions,
and the progression from acute infection to long-lasting disorder.

It is anticipated that more long COVID data at the population level
will be generated and published in the near future. For example, the
US Department of Health and Human Services initiated a large-scale
research action plan for long COVID data collection (Anon, 2022) in

ugust 2022 and this project is currently ongoing. The availability of
igh-quality long COVID data will facilitate broader applications of
omputational models and will motivate extensions and improvements
f the current modeling framework.

The model proposed in this paper can be extended in several direc-
ions. For example, we may conduct an optimal control study, utilizing
oth mathematical analysis and numerical simulation, to explore an
ffective intervention strategy for long COVID that could balance the
ffects of the control measures and the related costs in an optimal way.
eanwhile, the model can be naturally extended to study the impact

f long COVID on the economy and society. Long COVID has been
ecognized as a disability under the Americans with Disabilities Act
ince 2021. We may use model predictions to estimate the total years
ived with disability associated with long COVID, and to measure the
urden of long COVID on quality of life and on society. Furthermore,
e may introduce additional variables such as the employment rate and

he economic development level into the modeling framework to study
he interplay between long COVID and the economy, particularly the
egatively impacted labor force and the lost productivity due to long
OVID.
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Appendix. Mathematical analysis

Proof of Theorem 3.1. It is obvious that 𝑥0 in Eq. (3.1) is a disease-free
quilibrium (DFE) of the system, and the DFE is unique. The positive
nvariance of the domain 𝛺 can also be easily verified. In particular,
dding up all the equations in (2.1)–(2.4), we obtain
𝑑𝑁
𝑑𝑡

= 𝛬1 + 𝛬2 −𝑤1𝐼1 −𝑤2𝐼2 −𝑤𝐿𝐼𝐿 − 𝜇𝑁, (A.1)

where 𝑁 = 𝑆1 + 𝑉1 + 𝐼1 + 𝑆2 + 𝑉2 + 𝐼2 + 𝐼𝐿 + 𝑅. Eq. (A.1) yields

≤
𝛬1 + 𝛬2

𝜇
. (A.2)

The basic reproduction number 0 can be derived from the classical
next-generation matrix technique (van den Driessche and Watmough,
2002), with the new infection matrix 𝐹 and the transition matrix 𝐺
given by

𝐹 =
⎛

⎜

⎜

⎝

𝛽𝑆10 + 𝛽𝜃𝑉10 𝛽𝑆10 + 𝛽𝜃𝑉10 0
𝛽𝑆20 + 𝛽𝜃𝑉20 𝛽𝑆20 + 𝛽𝜃𝑉20 0

𝛾1𝑝1 𝛾2𝑝2 0

⎞

⎟

⎟

⎠

, (A.3)

nd

=
⎛

⎜

⎜

⎝

𝛾1 + 𝜔1 + 𝜇 0 0
0 𝛾2 + 𝜔2 + 𝜇 0
0 0 𝛾𝐿 + 𝜔𝐿 + 𝜇

⎞

⎟

⎟

⎠

. (A.4)

The basic reproduction number is the spectral radius of the next-
generation matrix 𝐹𝐺−1; i.e.,

0 = 𝜌(𝐹𝐺−1) = 01 +02 =
𝛽𝑆10 + 𝛽𝜃𝑉10 +

𝛽𝑆20 + 𝛽𝜃𝑉20 . (A.5)

𝛾1 + 𝜔1 + 𝜇 𝛾2 + 𝜔2 + 𝜇
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Each of the two individual reproduction numbers 01 and 02 is a
combination of the disease risk from the primary infection and that
from the breakthrough infection.

Proof of Theorem 3.2. At an equilibrium of the system, we have

𝛬1 − 𝛽𝑆1(𝐼1 + 𝐼2) − (𝜙 + 𝜇)𝑆1 = 0, (A.6)
𝜙𝑆1 − 𝜃𝛽𝑉1(𝐼1 + 𝐼2) − 𝜇𝑉1 = 0, (A.7)

𝛽(𝐼1 + 𝐼2)(𝑆1 + 𝜃𝑉1) − (𝛾1 +𝑤1 + 𝜇)𝐼1 = 0, (A.8)
𝛬2 − 𝛽𝑆2(𝐼1 + 𝐼2) − (𝜙 + 𝜇)𝑆2 = 0, (A.9)

𝜙𝑆2 − 𝜃𝛽𝑉2(𝐼1 + 𝐼2) − 𝜇𝑉2 = 0, (A.10)
𝛽(𝐼1 + 𝐼2)(𝑆2 + 𝜃𝑉2) − (𝛾2 +𝑤2 + 𝜇)𝐼2 = 0, (A.11)

𝛾1𝑝1𝐼1 + 𝛾2𝑝2𝐼2 − (𝛾𝐿 +𝑤𝐿 + 𝜇)𝐼𝐿 = 0, (A.12)
𝛾1(1 − 𝑝1)𝐼1 + 𝛾2(1 − 𝑝2)𝐼2 + 𝛾𝐿𝐼𝐿 − 𝜇𝑅 = 0. (A.13)

According to Eq. (A.6), we obtain

𝐼2 =
𝛬1 − (𝜙 + 𝜇)𝑆1 − 𝛽𝑆1𝐼1

𝛽𝑆1
. (A.14)

Multiply Eq. (A.6) by 𝑆2 and Eq. (A.9) by 𝑆1, and subtract one from
the other. This yields

𝑆1 =
𝛬1𝑆2
𝛬2

. (A.15)

Similarly, multiplying Eq. (A.7) by 𝑉2 and Eq. (A.10) by 𝑉1, and
subtracting one from the other, we obtain

𝑉1 =
𝑆1𝑉2
𝑆2

=
𝛬1𝑉2
𝛬2

, (A.16)

where the second equality follows Eq. (A.15). Substituting Eqs. (A.15)
and (A.16) into (A.8), we have

𝛽(𝐼1 + 𝐼2)(
𝛬1𝑆2
𝛬2

+ 𝜃
𝛬1𝑉2
𝛬2

) = (𝛾1 +𝑤1 + 𝜇)𝐼1. (A.17)

By Eq. (A.11), we observe

𝛽(𝐼1 + 𝐼2)(𝑆2 + 𝜃𝑉2) = (𝛾2 +𝑤2 + 𝜇)𝐼2. (A.18)

Dividing (A.17) from (A.18), we obtain
𝛬1
𝛬2

=
(𝛾1 +𝑤1 + 𝜇)𝐼1
(𝛾2 +𝑤2 + 𝜇)𝐼2

, (A.19)

and

𝐼2 =
𝛬2(𝛾1 +𝑤1 + 𝜇)𝐼1
𝛬1(𝛾2 +𝑤2 + 𝜇)

. (A.20)

Equating (A.14) and (A.20), we obtain

1 =

𝛬1
𝑆1

− (𝜙 + 𝜇)

𝛽(1 + 𝜂)
, with 𝜂 =

𝛬2(𝛾1 + 𝜔1 + 𝜇)
𝛬1(𝛾2 + 𝜔2 + 𝜇)

. (A.21)

According to (A.6), we have

𝛽(𝐼1 + 𝐼2) =
𝛬1 − (𝜙 + 𝜇)𝑆1

𝑆1
. (A.22)

Substituting Eq. (A.22) separately to (A.7) and (A.8), we obtain

1 =
𝜙𝑆1

𝜃[𝛬1
𝑆1

− (𝜙 + 𝜇)] + 𝜇
, (A.23)

and

𝐼1 =
[𝛬1
𝑆1

− (𝜙 + 𝜇)](𝑆1 + 𝜃𝑉1)

𝛾1 + 𝜔1 + 𝜇
=

[𝛬1
𝑆1

− (𝜙 + 𝜇)](𝑆1 + 𝜃 𝜙𝑆1

𝜃[ 𝛬1𝑆1
−(𝜙+𝜇)]+𝜇

)

𝛾1 + 𝜔1 + 𝜇
.

(A.24)

quating (A.21) and (A.24), we obtain the equation below
𝛬1
𝑆1

− (𝜙+ 𝜇)
]

⋅
{

𝑆1 + 𝜃
𝜙𝑆1

𝜃[𝛬1 − (𝜙 + 𝜇)] + 𝜇
−

𝛾1 + 𝜔1 + 𝜇
𝛽(1 + 𝜂)

}

= 0. (A.25)
8

𝑆1
The first factor of Eq. (A.25), 𝛬1
𝑆1

−(𝜙+𝜇) = 0, obviously leads to 𝑆1 = 𝑆10
which subsequently determines the DFE 𝑥0.

The second factor of Eq. (A.25) can be written as the following
equation

𝑓 (𝑆1) =
𝛾1 + 𝜔1 + 𝜇
𝛽(1 + 𝜂)

, (A.26)

where the function 𝑓 is defined as

(𝑆1) = 𝑆1 + 𝜃
𝜙𝑆1

𝜃[𝛬1
𝑆1

− (𝜙 + 𝜇)] + 𝜇
, 0 ≤ 𝑆1 ≤

𝛬1
𝜙 + 𝜇

. (A.27)

Clearly, 𝑓 (0) = 0, and 𝑓 (𝑆1) is strictly increasing for 0 ≤ 𝑆1 ≤ 𝛬1
𝜙+𝜇 =

𝑆10. Hence, Eq. (A.26) has a unique positive root 𝑆1 = 𝑆1∗ that satisfies
< 𝑆1∗ < 𝑆10, if and only if

(𝑆10) >
𝛾1 + 𝜔1 + 𝜇
𝛽(1 + 𝜂)

. (A.28)

hrough direct algebraic manipulation, it can be easily verified that the
ondition (A.28) is equivalent to

0 > 1, (A.29)

here 0 is defined in Eq. (A.5).
Hence, when 0 > 1, a positive root 𝑆1 = 𝑆1∗ satisfying 0 < 𝑆1∗ <

10 can be uniquely determined. Consequently, 𝑉1, 𝐼1, 𝑆2, 𝑉2, 𝐼2, 𝐼𝐿,
nd 𝑅 at the equilibrium can all be uniquely determined. From the
quations derived above, it is straightforward to observe that these
omponents are all positive and that the unique positive equilibrium
∗ = (𝑆1∗, 𝑉1∗, 𝐼1∗, 𝑆2∗, 𝑉2∗, 𝐼2∗, 𝐼𝐿∗, 𝑅∗) ∈ 𝛺. In contrast, when 0 < 1,
he system has only one equilibrium in 𝛺 which is the DFE 𝑥0.

roof of Theorem 3.3. From the system (2.1)–(2.4), we obtain
𝑑𝐼1
𝑑𝑡

≤ 𝛽(𝐼1 + 𝐼2)(𝑆10 + 𝜃𝑉10) − (𝛾1 +𝑤1 + 𝜇)𝐼1,

𝑑𝐼2
𝑑𝑡

≤ 𝛽(𝐼1 + 𝐼2)(𝑆20 + 𝜃𝑉20) − (𝛾2 +𝑤2 + 𝜇)𝐼2,

𝑑𝐼𝐿
𝑑𝑡

≤ 𝛾1𝑝1𝐼1 + 𝛾2𝑝2𝐼2 − (𝛾𝐿 +𝑤𝐿 + 𝜇)𝐼𝐿.

et 𝑌 = (𝐼1, 𝐼2, 𝐼𝐿)𝑇 . Then we have
𝑑𝑌
𝑑𝑡

≤ (𝐹 − 𝐺)𝑌 , (A.30)

here the matrices 𝐹 and 𝐺 are defined in Eqs. (A.3) and (A.4). By the
erron–Frobenius theorem, there exists a non-negative left eigenvector
of the non-negative matrix 𝐺−1𝐹 with respect to the eigenvalue 0 =
(𝐹𝐺−1) = 𝜌(𝐺−1𝐹 ). We define the Lyapunov function:

= 𝑢𝑇𝐺−1𝑌 . (A.31)

ifferentiating 𝐿 along the solutions of the system yields

′ = 𝑢𝑇𝐺−1 𝑑𝑌
𝑑𝑡

≤ 𝑢𝑇𝐺−1(𝐹 − 𝐺)𝑌 = (0 − 1)𝑢𝑇 𝑌 . (A.32)

If 0 < 1, then 𝐿′ ≤ 0. The equality 𝐿′ = 0 leads to 𝑢𝑇 𝑌 = 0.
Therefore, at least one of the three equations 𝐼1 = 0, 𝐼2 = 0 and
𝐼𝐿 = 0 must hold. By one of the three equations, we can obtain that the
other two equations also hold. Consequently, the largest invariant set
where 𝐿′ = 0 is the DFE 𝑥0 = (𝑆10, 𝑉10, 0, 𝑆20, 𝑉20, 0, 0, 0). By LaSalle’s
Invariance Principle, the DFE is globally asymptotically stable in 𝛺
when 0 < 1.

Proof of Theorem 3.4. By Theorem 3.2, there exists a unique positive
equilibrium 𝑥∗ when 0 > 1. Define the Lyapunov function

𝐿 = ∫

𝑆1

𝑆1∗

𝑢 − 𝑆1∗

𝑢
𝑑𝑢 + ∫

𝑉1

𝑉1∗

𝑢 − 𝑉1∗

𝑢
𝑑𝑢 + ∫

𝐼1

𝐼1∗

𝑢 − 𝐼1∗
𝑢

𝑑𝑢

+
𝑆1∗𝐼2∗
𝑆2∗𝐼1∗ ∫

𝑆2

𝑆2∗

𝑢 − 𝑆2∗

𝑢
𝑑𝑢 +

𝑉1∗𝐼2∗
𝑉2∗𝐼1∗ ∫

𝑉2

𝑉2∗

𝑢 − 𝑉2∗

𝑢
𝑑𝑢 +

𝑉1∗𝐼2∗
𝑉2∗𝐼1∗ ∫

𝐼2

𝐼2∗

𝑢 − 𝐼2∗
𝑢

𝑑𝑢.
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According to (A.16), we have
𝑆1∗𝐼2∗
𝑆2∗𝐼1∗

=
𝑉1∗𝐼2∗
𝑉2∗𝐼1∗

.

sing Eqs. (A.6)–(A.11), we calculate the derivative of 𝐿 along the
olutions of Eqs. (2.1) and (2.2):

′ = (1 −
𝑆1∗

𝑆1
){𝛬1 − 𝛽𝑆1𝐼1 − 𝛽𝑆1𝐼2 − (𝜙 + 𝜇)𝑆1

− [𝛬1 − 𝛽𝑆1∗𝐼1∗ − 𝛽𝑆1∗𝐼2∗ − (𝜙 + 𝜇)𝑆1∗]}

(denoted as 𝑘1)

+ (1 −
𝑉1∗

𝑉1
)[𝜙𝑆1 − 𝜃𝛽𝑉1𝐼1 − 𝜃𝛽𝑉1𝐼2 − 𝜇𝑉1

− (𝜙𝑆1∗ − 𝜃𝛽𝑉1∗𝐼1∗ − 𝜃𝛽𝑉1∗𝐼2∗ − 𝜇𝑉1∗)]

(denoted as 𝑘2)

+ (1 −
𝐼1∗
𝐼1

){(𝛽𝐼1𝑆1 + 𝛽𝐼2𝑆1 + 𝜃𝛽𝐼1𝑉1 + 𝜃𝛽𝐼2𝑉1) − (𝛾1 +𝑤1 + 𝜇)𝐼1

− [(𝛽𝐼1∗𝑆1∗ + 𝛽𝐼2∗𝑆1∗ + 𝜃𝛽𝐼1∗𝑉1∗ + 𝜃𝛽𝐼2∗𝑉1∗) − (𝛾1 +𝑤1 + 𝜇)𝐼1∗]}

(denoted as 𝑘3)

+
𝑆1∗𝐼2∗
𝑆2∗𝐼1∗

(1 −
𝑆2∗

𝑆2
){𝛬2 − 𝛽𝑆2𝐼1 − 𝛽𝑆2𝐼2 − (𝜙 + 𝜇)𝑆2

− [𝛬2 − 𝛽𝑆2∗𝐼1∗ − 𝛽𝑆2∗𝐼2∗ − (𝜙 + 𝜇)𝑆2∗]}

(denoted as 𝑘4)

+
𝑉1∗𝐼2∗
𝑉2∗𝐼1∗

(1 −
𝑉2∗

𝑉2
)[𝜙𝑆2 − 𝜃𝛽𝑉2𝐼1 − 𝜃𝛽𝑉2𝐼2 − 𝜇𝑉2

− (𝜙𝑆2∗ − 𝜃𝛽𝑉2∗𝐼1∗ − 𝜃𝛽𝑉2∗𝐼2∗ − 𝜇𝑉2∗)]

(denoted as 𝑘5)

+
𝑉1∗𝐼2∗
𝑉2∗𝐼1∗

(1 −
𝐼2∗
𝐼2

){(𝛽𝐼1𝑆2 + 𝛽𝐼2𝑆2 + 𝜃𝛽𝐼1𝑉2 + 𝜃𝛽𝐼2𝑉2) − (𝛾2 +𝑤2 + 𝜇)𝐼2

− [(𝛽𝐼1∗𝑆2∗ + 𝛽𝐼2∗𝑆2∗ + 𝜃𝛽𝐼1∗𝑉2∗ + 𝜃𝛽𝐼2∗𝑉2∗) − (𝛾2 +𝑤2 + 𝜇)𝐼2∗]}

(denoted as 𝑘6).

To facilitate the algebraic manipulation, we re-arrange 𝑘1, 𝑘2, 𝑘3,
𝑘4, 𝑘5, 𝑘6 as follows, with each 𝑘𝑖 represented as a summation of 𝐾𝑖𝑗
𝑗 = 0, 1, 2,…):

1 = 𝜙𝑆1∗(2 −
𝑆1
𝑆1∗

−
𝑆1∗
𝑆1

) 𝐾10 + 𝜇𝑆1∗(2 −
𝑆1
𝑆1∗

−
𝑆1∗
𝑆1

) 𝐾11

+ 𝛽(𝑆1∗𝐼1∗ + 𝑆1∗𝐼2∗ − 𝑆1𝐼1 − 𝑆1𝐼2) 𝐾12

− 𝛽(
𝑆2
1∗𝐼1∗
𝑆1

+
𝑆2
1∗𝐼2∗
𝑆1

− 𝑆1∗𝐼1 − 𝑆1∗𝐼2) 𝐾13,

𝑘2 = 𝜙(𝑆1 − 𝑆1∗) − 𝜙(
𝑉1∗𝑆1
𝑉1

−
𝑉1∗𝑆1∗
𝑉1

) 𝐾20

+ 𝜃𝛽(𝑉1∗𝐼1∗ + 𝑉1∗𝐼2∗ − 𝑉1𝐼1 − 𝑉1𝐼2) 𝐾21

− 𝜃𝛽(
𝑉 2
1∗𝐼1∗
𝑉1

+
𝑉 2
1∗𝐼2∗
𝑉1

− 𝑉1∗𝐼1 − 𝑉1∗𝐼2) 𝐾22

+ 𝜇𝑉1∗(2 −
𝑉1
𝑉1∗

−
𝑉1∗
𝑉1

) 𝐾23,

𝑘3 = 𝛽(𝐼1𝑆1 + 𝐼2𝑆1 + 𝜃𝐼1𝑉1 + 𝜃𝐼2𝑉1 − 𝐼1∗𝑆1∗ − 𝐼2∗𝑆1∗

− 𝜃𝐼1∗𝑉1∗ − 𝜃𝐼2∗𝑉1∗) 𝐾30

− 𝛽(𝐼1∗𝑆1 +
𝐼1∗𝐼2𝑆1

𝐼1
+ 𝜃𝐼1∗𝑉1 +

𝜃𝐼1∗𝐼2𝑉1
𝐼1

−
𝐼21∗𝑆1∗

𝐼1

−
𝐼1∗𝐼2∗𝑆1∗

𝐼1
−

𝜃𝐼21∗𝑉1∗
𝐼1

−
𝜃𝐼1∗𝐼2∗𝑉1∗

𝐼1
) 𝐾31

+ (𝛾1 + 𝜔1 + 𝜇)𝐼1∗(2 −
𝐼1
𝐼1∗

−
𝐼1∗
𝐼1

) 𝐾32,

4 =
𝑆1∗𝐼2∗
𝑆2∗𝐼1∗

[

𝜙𝑆2∗(2 −
𝑆2
𝑆2∗

−
𝑆2∗
𝑆2

) 𝐾40 + 𝜇𝑆2∗(2 −
𝑆2
𝑆2∗

−
𝑆2∗
𝑆2

) 𝐾41

+ 𝛽(𝑆 𝐼 + 𝑆 𝐼 − 𝑆 𝐼 − 𝑆 𝐼 ) 𝐾
9

2∗ 1∗ 2∗ 2∗ 2 1 2 2 42
− 𝛽(
𝑆2
2∗𝐼1∗
𝑆2

+
𝑆2
2∗𝐼2∗
𝑆2

− 𝑆2∗𝐼1 − 𝑆2∗𝐼2) 𝐾43
]

,

𝑘5 =
𝑉1∗𝐼2∗
𝑉2∗𝐼1∗

[

𝜙(𝑆2 − 𝑆2∗) − 𝜙(
𝑉2∗𝑆2
𝑉2

−
𝑉2∗𝑆2∗
𝑉2

) 𝐾50

+ 𝜃𝛽(𝑉2∗𝐼1∗ + 𝑉2∗𝐼2∗ − 𝑉2𝐼1 − 𝑉2𝐼2) 𝐾51

− 𝜃𝛽(
𝑉 2
2∗𝐼1∗
𝑉2

+
𝑉 2
2∗𝐼2∗
𝑉2

− 𝑉2∗𝐼1 − 𝑉2∗𝐼2) 𝐾52

+ 𝜇𝑉2∗(2 −
𝑉2
𝑉2∗

−
𝑉2∗
𝑉2

) 𝐾53
]

,

𝑘6 =
𝑉1∗𝐼2∗
𝑉2∗𝐼1∗

[

𝛽(𝐼1𝑆2 + 𝐼2𝑆2 + 𝜃𝐼1𝑉2 + 𝜃𝐼2𝑉2 − 𝐼1∗𝑆2∗

− 𝐼2∗𝑆2∗ − 𝜃𝐼1∗𝑉2∗ − 𝜃𝐼2∗𝑉2∗) 𝐾60

− 𝛽(𝐼2∗𝑆2 +
𝐼2∗𝐼1𝑆2

𝐼2
+ 𝜃𝐼2∗𝑉2 +

𝜃𝐼2∗𝐼1𝑉2
𝐼2

−
𝐼22∗𝑆2∗

𝐼2
−

𝐼1∗𝐼2∗𝑆2∗
𝐼2

−
𝜃𝐼22∗𝑉2∗

𝐼2
−

𝜃𝐼1∗𝐼2∗𝑉2∗
𝐼2

) 𝐾61

+ (𝛾2 + 𝜔2 + 𝜇)𝐼2∗(2 −
𝐼2
𝐼2∗

−
𝐼2∗
𝐼2

) 𝐾62
]

.

t is obvious that 𝐾12 +𝐾21 +𝐾30 = 0 and 𝐾42 +𝐾51 +𝐾60 = 0. Because
∗ satisfies Eq. (A.8), we have

32 = (𝛽𝐼1∗𝑆1∗ + 𝛽𝐼2∗𝑆1∗ + 𝜃𝛽𝐼1∗𝑉1∗ + 𝜃𝛽𝐼2∗𝑉1∗)(2 −
𝐼1
𝐼1∗

−
𝐼1∗
𝐼1

)

= 𝛽𝐼1∗𝑆1∗(2 −
𝐼1
𝐼1∗

−
𝐼1∗
𝐼1

) 𝐾70 + 𝛽𝐼2∗𝑆1∗(2 −
𝐼1
𝐼1∗

−
𝐼1∗
𝐼1

) 𝐾71

+ 𝜃𝛽𝐼1∗𝑉1∗(2 −
𝐼1
𝐼1∗

−
𝐼1∗
𝐼1

) 𝐾72 + 𝛽𝜃𝐼2∗𝑉1∗(2 −
𝐼1
𝐼1∗

−
𝐼1∗
𝐼1

) 𝐾73 .

Denote the first term of 𝐾13 by 𝐾131, the second term by 𝐾132, the third
term by 𝐾133, etc. With similar notations, we have 𝐾131 +𝐾311 +𝐾701 =
𝛽𝐼1∗𝑆1∗(2 − 𝑆1

𝑆1∗
− 𝑆1∗

𝑆1
) ≤ 0, 𝐾133 + 𝐾702 = 0, 𝐾221 + 𝐾313 + 𝐾721 =

𝛽𝐼1∗𝑉1∗(2−
𝑉1
𝑉1∗

− 𝑉1∗
𝑉1

) (denoted as 𝐾8), 𝐾223+𝐾722 = 0, 𝐾315+𝐾703 = 0,
𝐾316 + 𝐾713 = 0, 𝐾317 + 𝐾723 = 0, 𝐾318 + 𝐾733 = 0. Because 𝑥∗
atisfies Eq. (A.7), we have

23 = (𝜙𝑆1∗ − 𝜃𝛽𝑉1∗𝐼1∗ − 𝜃𝛽𝑉1∗𝐼2∗)(2 −
𝑉1
𝑉1∗

−
𝑉1∗
𝑉1

)

= 𝜙𝑆1∗(2 −
𝑉1
𝑉1∗

−
𝑉1∗
𝑉1

) 𝐾90 − 𝜃𝛽𝑉1∗𝐼1∗(2 −
𝑉1
𝑉1∗

−
𝑉1∗
𝑉1

)

𝐾91 − 𝜃𝛽𝑉1∗𝐼2∗(2 −
𝑉1
𝑉1∗

−
𝑉1∗
𝑉1

) 𝐾92.

It can be observed that 𝐾10+𝐾20+𝐾90 = 𝜙𝑆1∗(3−
𝑉1∗𝑆1
𝑉1𝑆1∗

− 𝑉1
𝑉1∗

− 𝑆1∗
𝑆1

) ≤ 0,
nd 𝐾91 +𝐾8 = 0.

Next, we reorganize the sum of 𝑘1, 𝑘2 and 𝑘3:

𝑘1 + 𝑘2 + 𝑘3

𝛽𝐼1∗𝑆1∗(2 −
𝑆1

𝑆1∗
−

𝑆1∗

𝑆1
) + 𝜙𝑆1∗(3 −

𝑉1∗𝑆1

𝑉1𝑆1∗
−

𝑉1

𝑉1∗
−

𝑆1∗

𝑆1
)

+ 𝜇𝑆1∗(2 −
𝑆1

𝑆1∗
−

𝑆1∗

𝑆1
)

− 𝛽
𝑆2
1∗𝐼2∗
𝑆1

+ 𝛽𝑆1∗𝐼2 − 𝜃𝛽
𝑉 2
1∗𝐼2∗
𝑉1

+ 𝜃𝛽𝑉1∗𝐼2 − 𝜃𝛽𝑉1∗𝐼2∗(2 −
𝑉1

𝑉1∗
−

𝑉1∗

𝑉1
)

− 𝛽
𝐼1∗𝐼2𝑆1

𝐼1
− 𝜃𝛽

𝐼1∗𝐼2𝑉1

𝐼1
+ 𝛽𝐼2∗𝑆1∗(2 −

𝐼1
𝐼1∗

) + 𝛽𝜃𝐼2∗𝑉1∗(2 −
𝐼1
𝐼1∗

)

= 𝛽𝐼1∗𝑆1∗(2 −
𝑆1

𝑆1∗
−

𝑆1∗

𝑆1
) + 𝜙𝑆1∗(3 −

𝑉1∗𝑆1

𝑉1𝑆1∗
−

𝑉1

𝑉1∗
−

𝑆1∗

𝑆1
)

+ 𝜇𝑆1∗(2 −
𝑆1

𝑆1∗
−

𝑆1∗

𝑆1
)

+ 𝛽𝐼2∗𝑆1∗(4 −
𝐼1
𝐼1∗

−
𝑆1∗

𝑆1
−

𝐼1∗𝐼2𝑆1

𝐼1𝐼2∗𝑆1∗
−

𝐼2∗
𝐼2

) − 𝛽𝐼2∗𝑆1∗(2 −
𝐼2
𝐼2∗

−
𝐼2∗
𝐼2

)

(denoted as 𝑘7)

+ 𝛽𝜃𝐼2∗𝑉1∗(4 −
𝐼1 −

𝑉1∗ −
𝐼1∗𝐼2𝑉1 −

𝐼2∗ )

𝐼1∗ 𝑉1 𝐼1𝐼2∗𝑉1∗ 𝐼2
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− 𝛽𝜃𝐼2∗𝑉1∗(4 −
𝑉1

𝑉1∗
−

𝑉1∗

𝑉1
−

𝐼2
𝐼2∗

−
𝐼2∗
𝐼2

)

(denoted as 𝑘8).

With similar manipulations, we obtain

𝑘4 + 𝑘5 + 𝑘6

=
𝑆1∗𝐼2∗
𝑆2∗𝐼1∗

[𝛽𝐼2∗𝑆2∗(2 −
𝑆2
𝑆2∗

−
𝑆2∗
𝑆2

) + 𝜙𝑆2∗(3 −
𝑉2∗𝑆2
𝑉2𝑆2∗

−
𝑉2
𝑉2∗

−
𝑆2∗
𝑆2

)

+ 𝜇𝑆2∗(2 −
𝑆2
𝑆2∗

−
𝑆2∗
𝑆2

)]

+
𝑆1∗𝐼2∗
𝑆2∗𝐼1∗

[𝛽𝐼1∗𝑆2∗(4 −
𝐼1∗
𝐼1

−
𝑆2∗
𝑆2

−
𝐼2∗𝐼1𝑆2
𝐼2𝐼1∗𝑆2∗

−
𝐼2
𝐼2∗

)

− 𝛽𝑆2∗𝐼1∗(2 −
𝐼1
𝐼1∗

−
𝐼1∗
𝐼1

)]

(denoted as 𝑘9)

+
𝑉1∗𝐼2∗
𝑉2∗𝐼1∗

[𝛽𝜃𝑉2∗𝐼1∗(4 −
𝐼1∗
𝐼1

−
𝑉2∗
𝑉2

−
𝐼2∗𝐼1𝑉2
𝐼2𝐼1∗𝑉2∗

−
𝐼2
𝐼2∗

)

− 𝛽𝜃𝑉2∗𝐼1∗(4 −
𝑉2
𝑉2∗

−
𝑉2∗
𝑉2

−
𝐼1
𝐼1∗

−
𝐼1∗
𝐼1

)]

(denoted as 𝑘10).

𝑘7 + 𝑘9

= 𝛽𝐼2∗𝑆1∗(4 −
𝐼1
𝐼1∗

−
𝑆1∗
𝑆1

−
𝐼1∗𝐼2𝑆1
𝐼1𝐼2∗𝑆1∗

−
𝐼2∗
𝐼2

− 2 +
𝐼2
𝐼2∗

+
𝐼2∗
𝐼2

+ 4 −
𝐼1∗
𝐼1

−
𝑆2∗
𝑆2

−
𝐼2∗𝐼1𝑆2
𝐼2𝐼1∗𝑆2∗

−
𝐼2
𝐼2∗

− 2 +
𝐼1
𝐼1∗

+
𝐼1∗
𝐼1

)

𝛽𝐼2∗𝑆1∗(4 −
𝑆1∗
𝑆1

−
𝐼1∗𝐼2𝑆1
𝐼1𝐼2∗𝑆1∗

−
𝑆2∗
𝑆2

−
𝐼2∗𝐼1𝑆2
𝐼2𝐼1∗𝑆2∗

)

≤ 0.

Since

𝜙𝑆1∗ − 𝜃𝛽𝑉1∗(𝐼1∗ + 𝐼2∗) − 𝜇𝑉1∗ = 0,

𝜙𝑆2∗ − 𝜃𝛽𝑉2∗(𝐼1∗ + 𝐼2∗) − 𝜇𝑉2∗ = 0,

we have

𝜙𝑆1∗(3 −
𝑉1∗𝑆1
𝑉1𝑆1∗

−
𝑉1
𝑉1∗

−
𝑆1∗
𝑆1

) (f rom 𝑘1 + 𝑘2 + 𝑘3)

(𝛽𝜃𝑉1∗𝐼1∗ + 𝜇𝑉1∗)(3 −
𝑉1∗𝑆1
𝑉1𝑆1∗

−
𝑉1
𝑉1∗

−
𝑆1∗
𝑆1

)

+ 𝛽𝜃𝑉1∗𝐼2∗(3 −
𝑉1∗𝑆1
𝑉1𝑆1∗

−
𝑉1
𝑉1∗

−
𝑆1∗
𝑆1

) (denoted as 𝑘11),

and
𝑆1∗𝐼2∗
𝑆2∗𝐼1∗

𝜙𝑆2∗(3 −
𝑉2∗𝑆2
𝑉2𝑆2∗

−
𝑉2
𝑉2∗

−
𝑆2∗
𝑆2

) (f rom 𝑘4 + 𝑘5 + 𝑘6)

𝑉1∗𝐼2∗
𝑉2∗𝐼1∗

𝜙𝑆2∗(3 −
𝑉2∗𝑆2
𝑉2𝑆2∗

−
𝑉2
𝑉2∗

−
𝑆2∗
𝑆2

)

𝑉1∗𝐼2∗
𝑉2∗𝐼1∗

(𝛽𝜃𝑉2∗𝐼2∗ + 𝜇𝑉2∗)(3 −
𝑉2∗𝑆2
𝑉2𝑆2∗

−
𝑉2
𝑉2∗

−
𝑆2∗
𝑆2

)

+
𝑉1∗𝐼2∗
𝑉2∗𝐼1∗

𝛽𝜃𝑉2∗𝐼1∗(3 −
𝑉2∗𝑆2
𝑉2𝑆2∗

−
𝑉2
𝑉2∗

−
𝑆2∗
𝑆2

) (denoted as 𝑘12).

We thus obtain

𝑘8 + 𝑘10 + 𝑘11 + 𝑘12

= 𝛽𝜃𝑉1∗𝐼2∗(4 −
𝐼1
𝐼1∗

−
𝑉1∗

𝑉1
−

𝐼1∗𝐼2𝑉1

𝐼1𝐼2∗𝑉1∗
−

𝐼2∗
𝐼2

− 4 +
𝑉1

𝑉1∗
+

𝑉1∗

𝑉1
+

𝐼2
𝐼2∗

+
𝐼2∗
𝐼2

+ 4 −
𝐼1∗
𝐼1

−
𝑉2∗

𝑉2
−

𝐼2∗𝐼1𝑉2

𝐼2𝐼1∗𝑉2∗
−

𝐼2
𝐼2∗

− 4 +
𝑉2

𝑉2∗
+

𝑉2∗

𝑉2
+

𝐼1
𝐼1∗

+
𝐼1∗
𝐼1

+ 3 −
𝑉1∗𝑆1

𝑉1𝑆1∗
−

𝑉1

𝑉1∗
−

𝑆1∗

𝑆1
+ 3 −

𝑉2∗𝑆2

𝑉2𝑆2∗
−

𝑉2

𝑉2∗
−

𝑆2∗

𝑆2
)

= 𝛽𝜃𝑉1∗𝐼2∗
(

6 −
𝐼1∗𝐼2𝑉1

𝐼1𝐼2∗𝑉1∗
−

𝐼2∗𝐼1𝑉2

𝐼2𝐼1∗𝑉2∗
−

𝑉1∗𝑆1

𝑉1𝑆1∗
−

𝑆1∗

𝑆1
−

𝑉2∗𝑆2

𝑉2𝑆2∗
−

𝑆2∗

𝑆2

)

0.
10
herefore 𝐿′ ≤ 0, and 𝐿′ = 0 if and only if (𝑆1, 𝑉1, 𝐼1, 𝑆2, 𝑉2, 𝐼2) =
𝑆1∗, 𝑉1∗, 𝐼1∗, 𝑆2∗, 𝑉2∗, 𝐼2∗). Based on LaSalle’s Invariance Principle, the

endemic equilibrium (𝑆1∗, 𝑉1∗, 𝐼1∗, 𝑆2∗, 𝑉2∗, 𝐼2∗) of the subsystem (2.1)
and (2.2) is globally asymptotically stable. Letting 𝐼1 → 𝐼1∗ and 𝐼2 →
𝐼2∗ in Eqs. (2.3) and (2.4), we clearly observe that all solutions of 𝐼𝐿
pproach 𝐼𝐿∗ and that all solutions of 𝑅 approach 𝑅∗. This completes
he proof that the endemic equilibrium 𝑥∗ is globally asymptotically
table in 𝛺.
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