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Abstract9

In this paper, we study the weighted k-server problem on the uniform metric in both the offline10

and online settings. We start with the offline setting. In contrast to the (unweighted) k-server11

problem which has a polynomial-time solution using min-cost flows, there are strong computational12

lower bounds for the weighted k-server problem, even on the uniform metric. Specifically, we13

show that assuming the unique games conjecture, there are no polynomial-time algorithms with a14

sub-polynomial approximation factor, even if we use c-resource augmentation for c < 2. Furthermore,15

if we consider the natural LP relaxation of the problem, then obtaining a bounded integrality gap16

requires us to use at least ℓ resource augmentation, where ℓ is the number of distinct server weights.17

We complement these results by obtaining a constant-approximation algorithm via LP rounding,18

with a resource augmentation of (2 + ε)ℓ for any constant ε > 0.19

In the online setting, an exp(k) lower bound is known for the competitive ratio of any randomized20

algorithm for the weighted k-server problem on the uniform metric. In contrast, we show that21

2ℓ-resource augmentation can bring the competitive ratio down by an exponential factor to only22

O(ℓ2 log ℓ). Our online algorithm uses the two-stage approach of first obtaining a fractional solution23

using the online primal-dual framework, and then rounding it online.24
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1 Introduction31

The k-Server problem is a foundational problem in online algorithms and has been extens-32

ively studied over the last 30 years [10]. In this problem, there are a set of k servers that33

must serve requests arriving online at the vertices of an n-point metric space. The goal is34

to minimize the total movement cost of the servers. The k-Server problem was defined35

by Manasse et al. [22], who also showed a lower bound of k on the competitive ratio of36

any deterministic algorithm for this problem. Koutsoupias and Papadimitriou [20] gave a37

(2k − 1)-compeititive algorithm for k-Server. There has been much progress in the recent38

past on obtaining randomized algorithms with polylogarithmic (in k and n) competitive39

ratio [2, 13, 21, 14]. The Weighted k-Server version of this problem, introduced by Fiat40

and Ricklin [17], allows the servers to have non-uniform positive weights; the cost of moving41

a server is now scaled by its weight. In this paper, we consider the Weighted k-Server42

problem on a uniform metric, namely when all n points of the metric space are at unit43
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12:2 Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

distance from each other, which means that the cost of moving a server between any two44

distinct points is simply the weight of the server. Note that the corresponding unweighted45

problem for the uniform metric is the extensively studied Paging problem [10]. Indeed, one46

of the original motivations for studying the Weighted k-Server problem came from a47

version of paging with non-uniform replacement costs for different cache slots [17]. In the rest48

of this paper, we will implicitly assume that the underlying metric space is a uniform metric.49

The original paper of Fiat and Ricklin [17] introducing the Weighted k-Server problem50

(on uniform metrics) gave a deterministic algorithm with a competitive ratio of about 222k .51

They also showed a lower bound of (k + 1)!/2 for deterministic algorithms. Chiplunkar52

and Viswanathan [15] improved this lower bound to (k + 1)! − 1, and gave a randomized53

algorithm that is 1.62k -competitive against adaptive online adversaries; this also implies54

a deterministic competitive ratio of 22k+1 using the simulation technique of Ben-David et55

al. [8]. Bansal, Elias, and Koumutsos [6] showed that this competitive ratio is essentially56

tight for deterministic algorithms by showing a lower bound of 22k−4 . They also gave a57

deterministic work function algorithm with a competitive ratio of 22k+O(log k) . If the number58

of distinct server weights is ℓ and there are kj servers of weight Wj , then the competitive59

ratio of their algorithm is exp(O(ℓk3 ∏ℓ
j=1(kj + 1))), which is an exponential improvement60

over the general bound when ℓ is a constant. Unlike the k-Server and Paging problems, it61

is unknown if randomization qualitatively improves the competitive ratio for Weighted62

k-Server, although the best known lower bound for randomized algorithms against oblivious63

adversaries is only singly exponential in k [1] as against the doubly exponential lower bound64

for deterministic algorithms.65

The above competitive ratios depend only on k, and are independent of the size n of66

metric space. Moreover, the hard instances are for metric spaces with the number of points67

n that are exponentially larger than the number of servers k. This is not a coincidence, since68

better algorithms exist for smaller values of n. Indeed, the Weighted k-Server problem69

can be modeled as a metrical task system, where each state ω is a configuration (specifying70

the location of each of the k servers), and the distance between any two states ω, ω′ is the71

cost to move between the configurations. Since there are N = nk states, one can obtain an72

nk-competitive deterministic algorithm [11], and an O(poly(k log n))-competitive randomized73

algorithm against oblivious adversaries [7, 3, 12, 16]; all these algorithms use poly(nk) time74

to explicitly maintain and manipulate the entire metric space, and hence are not efficient.75

In this paper we ask: is it possible to get efficient (randomized) online algorithms76

that have competitive ratios of the form poly(k log n), or even better? Is it possible to get77

such approximation ratios even in the offline setting? We show that obtaining improved78

competitive or approximation ratios in polynomial time is possible, provided we allow for79

resource augmentation in the number of servers.80

Resource augmentation in online algorithms has been widely studied in paging and81

scheduling settings (see e.g. [19, 23]). It is often a much needed assumption that allows82

for obtaining bounded or improved competitive ratios for such problems. Bansal et al. [5]83

studied the k-Server problem on trees under resource augmentation.84

1.1 Our Results85

Our first result establishes computational hardness of approximating the Weighted k-86

Server problem in the offline setting. Unlike Paging or k-Server, which are exactly87

solvable offline in polynomial time, we show that under the Unique Games conjecture, the88

Weighted k-Server problem cannot be approximated to any subpolynomial factor even89

when we allow c-resource augmentation for any constant c < 2.90
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▶ Theorem 1 (Hardness). For any constant ε > 0, it is UG-hard to obtain an N 1/2−ε-91

approximation algorithm for Weighted k-Server with two weight classes, even when we92

are allowed c-resource augmentation for any constant c < 2. Here N represents the size of93

the input (including the request sequence length).94

Next, we show that the natural time indexed LP relaxation for Weighted k-Server95

(see LP) has a large integrality gap, unless we allow for a resource augmentation of almost ℓ,96

the number of distinct server weights.97

▶ Theorem 2 (Integrality Gap). For any constant ε > 0, the integrality gap of the relaxation LP98

for Weighted k-Server is unbounded, even with (ℓ − ε)-resource augmentation.99

It is worth noting that an optimal fractional solution to LP can be easily rounded to100

give an ℓ-approximation ratio with ℓ-resource augmentation. Indeed, we know that for101

each request, there exists a weight class which services this request to an extent of at least102

1/ℓ. We can then scale this fractional solution by a factor ℓ and reduce this problem to ℓ103

instances of standard Paging problem. The integrality gap result shows that any rounding104

algorithm with bounded competitive ratio must incur almost ℓ-resource augmentation. We105

complement this integrality gap result with our main technical result, which gives an offline106

O(1/ε)-approximation with (2 + ε)ℓ-resource augmentation, for any ε ∈ (0, 1).107

▶ Theorem 3 (Offline Algorithm). Let I be an instance of Weighted k-Server with kj108

servers of weight Wj for all j ∈ [ℓ]. For any ε ∈ (0, 1), there is a polynomial time algorithm109

for I that uses at most 2(1 + ε)ℓ · kj servers of weights Wj for each j ∈ [ℓ] and has server110

movement cost at most O(1/ε) times the optimal cost of I.111

Finally, we obtain an online algorithm for Weighted k-Server with 2ℓ-resource aug-112

mentation. The competitive ratio of the online algorithm is O(ℓ2 log ℓ). (In constrast to the113

offline setting, it is no longer clear how to achieve an ℓ-competitive algorithm even if we114

augment the number of servers by a factor of ℓ.)115

▶ Theorem 4 (Online Algorithm). Let I be an instance of Weighted k-Server with kj116

servers of weight Wj for all j ∈ [ℓ]. There is a randomized (polynomial time) online algorithm117

for I that uses at most 2ℓkj servers of weights Wj for each j ∈ [ℓ] and has expected server118

movement cost at most O(ℓ2 log ℓ) times the optimal cost of I.119

Since ℓ ≤ k, the competitive ratio of the online algorithm is O(k2 log k). This implies120

that an O(ℓ2)-resource augmentation achieves at least an exponential improvement in the121

competitive ratio of the Weighted k-Server problem. Moreover, by rounding the weights122

to powers of 2, we can assume that ℓ ≤ O(log W ), where W is the aspect ratio of the server123

weights. Hence, the competitive ratio of the online algorithm is O(log2 W log log W ). Finally,124

note that for ℓ = O(1), the above theorem gives a O(1)-competitive online algorithm with125

O(1)-resource augmentation. This can be seen as a generalization of the classic result for the126

Paging problem that achieves a randomized competitive ratio of O(log k
k−h+1 ) where the127

algorithm’s cache has k slots while the adversary’s has only h < k slots [24].128

1.2 Our Techniques129

In this section, we give an overview of the main techniques in the paper. The UG hardness of130

Weighted k-Server is based on a reduction from the Vertex Cover problem. Given an131

instance of the vertex cover problem, the corresponding Weighted k-Server consists of one132

point in the uniform metric space for each vertex of the graph. The main observation is that133

APPROX/RANDOM 2023



12:4 Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

if we know the minimum vertex cover size, we can keep one heavy weight server at each point134

corresponding to this vertex cover, which never change their positions. One can then generate135

an input sequence where the optimal solution pays a small cost, whereas an algorithm which136

does not cover an edge using heavy servers pays a much higher cost. The UG-hardness137

result for Vertex Cover translates to a corresponding resource augmentation lower bound138

for Weighted k-Server. Extending this approach to more than two weight classes (with139

stronger lower bounds on resource augmentation) turns out to be more challenging because140

the length of the input sequence becomes exponential in n. Instead, we show that the natural141

LP relaxation has a large integrality gap. The large gap instance consists of cycling through142

a sequence of subsets of the metric spaces with carefully varying frequency. The fractional143

solution is able to maintain a low cost by uniformly spreading servers over such cycles, but144

the integral solution is forced to service some of the cycles by small number of servers only.145

Our main technical result shows how to round a solution to the LP relaxation. The146

relaxation has both covering and packing type constraints, and the rounding carefully147

addresses one set of constraints without violating the other. We first scale the LP by a factor148

of about 2ℓ, thus increasing both the resource augmentation and the cost. As a result, each149

request σt is covered to an extent of 2ℓ, and we can split this coverage across those weight150

classes which cover σt to an extent of at least 1. Now for a fixed weight class, we consider151

the requests which are covered by it to an extent of at least 1. We show how to integrally152

round this solution so that this coverage property is satisfied and yet, we do not violate any153

packing constraint. After this, we show that the packing constraints can be ignored. This154

allows to scale down the LP solution by a factor ℓ (which saves the cost by this factor) and155

uses total unimodularity of the constraint matrix to round it.156

We extend our approximation algorithm to the online setting. The first step is to maintain157

an online fractional solution to the LP relaxation. Standard (weighted) paging algorithms158

for this problem rely on the fact that even the optimal offline algorithm needs to place a159

server at a requested location. But this turns out to be trickier here as we do not know the160

weight of the server which serves this location in the optimal solution. So we serve a request161

by ensuring that fractional mass from each weight classes is transferred at the same rate.162

The overall analysis proceeds by a careful accounting in the potential function. The online163

fractional solution satisfies the stronger guarantee that each request is served by servers of a164

particular weight class only. This allows us to reduce the rounding problem to independent165

instances of the Paging problem.166

We now give an overview of the rest of the submission. In §2, we give details of the167

integrality gap construction; we defer the UG hardness proof to §A. The offline rounding of168

the LP relaxation is given in §3, and then we extend this algorithm to the online case in §4.169

1.3 Preliminaries170

In the Weighted k-Server problem on the uniform metric, we are given a set of n points
V = {1, . . . , n}, such that d(v, v′) = 1 for each v ̸= v′. There are k servers, labeled 1, . . . , k,
with server i having weight wi ≥ 0. The input specifies a request sequence (σ1, . . . , σT )
of length T , with each request σt arriving at time t being a point in V . A solution
f : [k] × {0, . . . , T } → V specifies the position of each server at each time t ∈ [T ] (where the
initial positions f(i, 0) are specified as part of the problem statement) such that for each
time t there exists some server it such that f(it, t) = σt. The cost of the solution f is the
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total weighted distance travelled by the servers, i.e.,

1/2

k∑
i=1

wi

T∑
t=1

1[f(i, t) ̸= f(i, t − 1)].

The goal is to find a solution with the minimum cost. We say that an instance has ℓ weight171

classes if the set {w1, . . . , wk} has cardinality ℓ. For an instance with ℓ different weight172

classes, we denote the distinct weights by W1, . . . , Wℓ, and let kj denote the number of173

servers of weight Wj , with
∑

j kj = k. For such an instance and a parameter c ≥ 1, we say174

that the algorithm uses c-resource augmentation if it uses ⌊ckj⌋ servers of weight Wj for each175

j = 1, . . . , ℓ.176

We now describe the natural LP relaxation for Weighted k-Server. It has a variable177

x(v, j, t) for each request time t, weight class j ∈ [ℓ] and vertex v ∈ V ; it denotes the178

fractional mass of servers of weight Wj that are present at point v at time t. Let σt denote179

the vertex requested at time t. It is easy to verify that this is a valid relaxation.180

min 1/2
∑
j∈[ℓ]

Wj

∑
t

∑
v∈V

|xv,j,t − xv,j,t−1| (LP)181

∑
v∈V

xv,j,t ≤ kj ∀t, j ∈ [ℓ] (1)182 ∑
j∈[ℓ]

xσt,j,t ≥ 1 ∀t (2)183

xv,j,t ≥ 0 ∀t, v ∈ V, j ∈ [ℓ]184
185

2 An Integrality Gap for the Natural Linear Program186

In this section, we show that the relaxation LP for Weighted k-Server has a large187

integrality gap, unless we allow for a resource augmentation of almost ℓ, the number of188

distinct server weights.189

Recall that the ℓ weights are denoted W1 ≫ · · · ≫ Wℓ, and there are kj servers of weight190

Wj . Our theorem is the following:191

▶ Theorem 2 (Integrality Gap). For any constant ε > 0, the integrality gap of the relaxation LP192

for Weighted k-Server is unbounded, even with (ℓ − ε)-resource augmentation.193

An Instance for Two Classes. To gain some intuition, we first consider the special194

case of ℓ = 2, and prove the result without giving any resource augmentation. There are n/2195

servers of weight W and n/4 servers of weight 1, thereby giving a total of k = 3n/4 servers.196

The input is given in “phases”. Each phase is specified by a distinct subset S of V , where197

|S| = n/2. During the phase corresponding to a subset S, we cycle through all subsets S′ of198

S with |S′| = |S|/2 = n/4. Given such a subset S′ of S, we send requests which cycle through199

the points in S′ for L times, where L is large enough.200

One fractional solution for such a sequence is defined as follows: we assign 1/2 unit of201

weight-W server at each of the n locations. During the phase for a subset S, we assign 1/2202

unit of server of unit weight at each of the locations in S. The cost of the fractional solution203

is at most Z :=
(

n
n/2

)
· n/4 (not accounting for the initial movement of the servers). However,204

an integral solution either moves at least one heavy server, or else pays at least L during one205

of the phases, thereby must pay at least min(W, L). Assuming W, L ≫ Z gives an arbitrarily206

large integrality gap. (We can account for the initial movement of the fractional servers by207
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12:6 Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

repeating the process some M times: the integral solution would pay at least min(W, L)208

in each such iteration and the fractional solution would pay at most Z, so that the initial209

movement cost would get amortized away.)210

The Instance for ℓ Classes. We extend this construction to larger values of ℓ by211

defining phases in a recursive manner on a nested sequence of subsets of V , with each phase212

containing several repetitions of the same sequence. Instead of decreasing by a factor 2,213

the number of servers of each weight class now goes down by a factor of C ≥ ℓ. This214

allows the integrality gap result to hold even when the integral solution is allowed a resource215

augmentation of nearly ℓ.216

For some r ≤ ℓ − 1, we call a tuple (S0, . . . , Sr) valid if (i) S0 = V and each Sj ⊆ Sj−1,217

and (ii) |Sj | = |Sj−1|/C = n/Cj. The request sequence is generated by calling Algorithm 1218

with the trivial valid sequence (S0 = V ). Given a valid tuple (S0, . . . , Sr), the procedure219

cycles through all subsets S ⊆ Sr of size |Sr|/C and recursively calls Generate(S0, . . . , Sr, S);220

this process is repeated Lr times. Finally, in the base case when r = ℓ − 1, it cycles through221

all the locations in Sℓ for Lℓ−1 times. For a suitably large choice of M , we define for each222

r ∈ [ℓ]:223

Lr := Mr and Wr := M ℓ−r. (3)224
225

Finally, the number of servers of weight Wr is given by kr := n
ℓCr−1 .226

Algorithm 1 Procedure Generate(S0, S1, . . . , Sr).

1.1 Input: A valid tuple (S0, S1, . . . , Sr)
1.2 repeat
1.3 if r is equal to ℓ − 1 then
1.4 Send a request at each location in Sℓ−1.
1.5 else
1.6 for each subset S of Sr with |S| = |Sr|

C do
1.7 // Move 1/ℓ mass of servers of weight Wr+2 to S

1.8 Call Generate(S0, . . . , Sr, S).

1.9 until Lr iterations have occurred

227

2.1 Analyzing the Integrality Gap228

We bound the cost of the optimal fractional solution for the above input sequence.229

▶ Lemma 5. There is a fractional solution of total cost O(f(n)M ℓ−2) for the input sequence230

constructed by Algorithm 1, where f(n) is a function solely of n.231

Proof. Our fractional solution maintains the invariant: when the procedure Generate(S0, . . . , Sr)232

is called, we have 1/ℓ fractional mass of servers of weight W1, . . . , Wr+1 respectively at each233

location in Sr. For the base case r = 0, we place 1/ℓ server mass at each location in S0 = V ;234

recall that k1 = n/ℓ. For the inductive step, suppose this invariant is satisfied for a certain235

value of r where 0 ≤ r < ℓ−1; we need to show that it is satisfied for r+1 as well. Indeed, the236

induction hypothesis implies that we have 1/ℓ amount of server mass of weight W1, . . . , Wr+1237

at each location in Sr, and hence at each location in Sr+1. Moreover, as line 1.7 indicates,238

we move 1/ℓ fractional mass of servers of weight Wr+2 to each location in Sr+1 to satisfy239

the invariant condition. This costs Wr+2 kr+2/ℓ; moreover, this is feasible because the total240

number of servers of weight Wr+2 needed is |Sr+1|
ℓ = n

ℓCr+1 = kr+2. Finally, when r = ℓ − 1,241
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the invariant shows that 1 unit of server mass is present at each of the locations in Sℓ, and242

hence the requests generated in line 1.4 can be served without any additional movement of243

servers.244

We now account for the movement cost. The total server movement cost during245

Generate(S0, . . . , Sr) (not counting the movement costs in the recursive calls) is at most246

O(Lr kr+1 Wr+2) = O(kr+1 M ℓ−2). Since kr+1 ≤ n and the number of calls to Generate is a247

function only of n, the overall movement cost can be expressed as O(f(n) · M ℓ−2). (Again,248

by repeating the entire process multiple times we can amortize away the initial movement249

cost; we avoid this step for the sake of clarity.) ◀250

The next lemma shows that any integral solution must have much higher cost.251

▶ Lemma 6. Let ε > 0 be a small enough constant. Assume that the integral solution is252

allowed (ℓ − ε)kr servers of weight Wr for each r ∈ [ℓ]. Any integral solution for the input253

sequence generated by Algorithm 1 (with C = ℓ/ε) has movement cost at least M ℓ−1.254

We defer the proof to Appendix B; combining Lemma 5 and Lemma 6 proves Theorem 2.255

3 An Offline Algorithm via LP Rounding256

We now show an algorithm for the offline setting, that rounds any fractional solution to the257

LP relaxation (LP), and achieves the following guarantee:258

▶ Theorem 3 (Offline Algorithm). Let I be an instance of Weighted k-Server with kj259

servers of weight Wj for all j ∈ [ℓ]. For any ε ∈ (0, 1), there is a polynomial time algorithm260

for I that uses at most 2(1 + ε)ℓ · kj servers of weights Wj for each j ∈ [ℓ] and has server261

movement cost at most O(1/ε) times the optimal cost of I.262

Instead of working with the relaxation (LP), we work with an equivalent relaxation which263

turns out to be easier to interpret. For each vertex v ∈ V , index j ∈ [ℓ] and time interval I,264

we have a variable yv,j,I , which denotes the fractional mass of server of weight Wj residing265

at v during the entire time interval I. The variable xv,j,t used in (LP) can be expressed as266

follows:267

xv,j,t =
∑

I:t∈I

yv,j,I . (4)268

269

Let I denote the set of all intervals during the request timeline. The new linear program270

relaxation for Weighted k-Server is the following:271

min 1/2
∑
j∈[ℓ]

Wj

∑
I∈I

∑
v∈V

yv,j,I (LP2)272

s.t.
∑
j∈[ℓ]

∑
I:t∈I

yσt,j,I ≥ 1 ∀t (5)273

∑
v∈V

∑
I:t∈I

yv,j,I ≤ kj ∀t, j ∈ [ℓ] (6)274

yv,j,I ≥ 0 ∀t, j ∈ [ℓ], v ∈ V.275
276

Note that the covering constraint (5) enforces having at least one unit of (fractional) server277

mass at the location σt requested for each time t. The packing constraint (6) enforces that278

the total (fractional) server mass of weight Wj used at any time t is at most the number of279

APPROX/RANDOM 2023



12:8 Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

Algorithm 2 Procedure ScaleRound(x, y, v, Wj).

2.1 Input: A fractional solution (yv,j,I , xv,j,t) to LP2, a location v and a weight Wj

2.2 Initialize variables yv,j,I to 0 for all intervals I.
2.3 (Scale): Define ỹv,j,I = (2 + ε/2) ℓ · yv,j,I and therefore,

x̃v,j,t =
∑

I:t∈I ỹv,j,I = (2 + ε/2) ℓ · xv,j,t for each I ∈ I.
2.4 (Round): for h = 1, 2, . . . , ℓ do
2.5 Initialize LastEvent = DOWN, LastTime = 0.
2.6 repeat
2.7 if LastEvent = UP then
2.8 Let t be the first DOWN after LastEvent
2.9 Update LastEvent = DOWN, LastTime = t.

2.10 else
2.11 (LastEvent = DOWN) Let t be the first UP after LastEvent
2.12 Add I = [LastTime, t) to Iv,j(h) and increase yv,j,I by 1.
2.13 Update LastEvent = DOWN, LastTime = t.

2.14 until we have reached the end of the timeline [0, T ]

servers of this weight, namely kj . Given a solution yv,j,I to LP2, the variables xv,j,t defined280

using (4) define a feasible solution to LP of the same cost.281

Fix any constant ε ∈ (0, 1). We now prove Theorem 3 by rounding an optimal fractional282

solution yv,j,I to LP2. The rounding algorithm has two stages. The first stage scales and283

discretizes the LP variables to integers such that284

1. the packing constraints are satisfied up to a factor of (2 + ε)ℓ,285

2. the covering constraints are satisfied with a scaled covering requirement of ℓ instead of 1,286

i.e.,
∑

j

∑
I:t∈I yσt,j,I ≥ ℓ, for all times t, and287

3. the cost of the fractional solution increases by a factor of O(ℓ/ε).288

In the second stage, we remove the packing constraints from the LP; this results in the289

resulting interval covering LP being integral. Next, we scale the solution from the first stage290

down by ℓ, getting a feasible fractional solution to the standard LP relaxation for the interval291

covering problem. Finally, we use the integrality of the interval covering LP relaxation to292

obtain an integral solution for LP2. We present these two stages in the next two sections.293

3.1 Stage I: Scaling and Discretization294

The first stage of the rounding algorithm operates independently on each location v ∈ V and295

for each server weight Wj ; the formal algorithm ScaleRound(x, y, v, Wj) is given in Algorithm 2.296

We work with both the yv,j,I variables and the equivalent xv,j,t variables defined in (4); this297

representational flexibility makes it convenient to explain the algorithm. To begin, we scale298

the LP variables yv,j,I by a factor (2 + ε/2)ℓ to obtain ỹv,j,I (we also define the auxiliary299

variables x̃v,j,t by scaling xv,j,t similarly).300

Discretization. Next we discretize the scaled variables ỹv,j,I and x̃v,j,t to nonnegative301

integers yv,j,I and xv,j,t respectively. To start, let us describe the discretization of x̃v,j,t to302

obtain xv,j,t. Intuitively, we would like to define xv,j,t as ⌊x̃v,j,t⌋, i.e., the largest step function303

with unit step sizes entirely contained in x̃v,j,t, but this can amplify small fluctuations around304

integer values, and hence may increases the cost. To avoid this, we introduce hysteresis in305

our discretization, by setting different thresholds for increasing and decreasing the value of306
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x̃v,j,t. We view x̃v,j,t as a time-varying profile and define horizontal slabs in it corresponding307

to the restriction of the range of x̃v,j,t to [h, h + 1) for some integer h. For each such slab, we308

identify intervals I of width at most 1 and at least 1/2 and set the increase the corresponding309

yv,j,I value by 1. In more detail, for each such level h, we identify a subset Iv,j(h) of intervals310

for which the corresponding yv,j,I variable is to be increased by 1. We identify an alternating311

sequence of up and down events in the timeline [0, T ] as follows:312

UP event: At time t, there is an UP event at level h if x̃v,j,t− < h and x̃v,j,t ≥ h, and the313

previous event at level h was a DOWN event.314

DOWN event: At time t, there is a DOWN event at level h if the previous event at level315

h was an UP, and x̃v,j,t− > h − ε/2 and x̃v,j,t ≤ h − ε/2, or t = T , the end of the timeline.316

(The reader should think of ε/2 as the “hysteresis gap” between the up and down events317

at any level.)318

To make the definition complete, we set x̃v,j,t to 0 at t = 0− and at t = T +, and start with a319

DOWN at time 0. Finally, we add intervals stretching from each UP to the next DOWN to320

the set Iv,j(h) of intervals. By construction, these intervals are mutually disjoint. Finally,321

whenever an interval I is added to such a set Iv,j(h), we increment the corresponding variable322

yv,j,I . Thus we have:323

yv,j,I = |{h : I ∈ Iv,j(h)}|, and correspondingly, xv,j,t =
∑

I:t∈I

yv,j,I .324

The next lemma shows that xv,j,t can be thought of as a discretized form of x̃v,j,t:325

▶ Lemma 7. The following holds for variables xv,j,t:326

x̃v,j,t − 1 < xv,j,t < x̃v,j,t + ε/2. (7)327

Proof. Suppose x̃v,j,t ∈ [r, r + 1). Consider the for loop in line 2.4 in Algorithm 2 for a value328

h ≤ r. We claim that at time t, the value of the variable LastEvent must be UP. Suppose329

not. Let t′ be the value of LastTime at time t (i.e., t′ is the last time before and including t330

when an UP or a DOWN occurred). Since a DOWN event happened at time t′, x̃v,j,t′ < h.331

Since x̃v,j,t ≥ h, an UP event must occur during (t′, t], a contradiction. Therefore must have332

added an interval containing time t to Iv,j(h). Thus, xv,j,t gets increased during each such333

iteration, i.e., xv,j,t ≥ r > x̃v,j,t − 1. This proves the first inequality in (7).334

We now prove the second inequality. Let h be an integer satisfying h ≥ x̃v,j,t + ε/2.335

Consider the iteration of the for loop in Algorithm 2 for this particular value of h. We336

claim that the value of the variable LastEvent at time t must be DOWN. Suppose not, and337

let t′ denote the value of the variable LastTime. Then an UP happened at time t′ and338

so x̃v,j,t′ ≥ h. Since x̃v,j,t ≤ h − ε/2, a DOWN event must have happened during (t′, t],339

a contradiction. Hence, we do not add any interval containing time t to the set Iv,j(h).340

Therefore, xv,j,t < x̃v,j,t + ε/2, which proves the second inequality in (7). ◀341

The next lemma establishes the key properties of the variables yv,j,I and xv,j,t.342

▶ Lemma 8. The following properties hold the for the variables yv,j,I :343

(i) (Cost) The LP cost increases by at most O(ℓ/ε) when the original variables yv,j,I are344

replaced by the new variables yv,j,I :345 ∑
v,j,I

Wj · yv,j,I ≤ O(ℓ/ε) ·
∑
v,j,I

Wj · yv,j,I .346
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(ii) (Covering) The variables yv,j,I satisfy the scaled covering constraints of (LP2)347 ∑
j,I:t∈I

yv,j,I ≥ ℓ ∀t.348

(iii) (Packing) The variables yv,j,I approximately satisfy the packing constraints of (LP2):349 ∑
v,I:t∈I

yv,j,I ≤ (2 + ε)ℓkj ∀j ∈ [ℓ], t.350

Proof. We first prove the cost bound: the cost of the solution yv,j,I is the weight of all351

intervals added to the sets Iv,j(h) for all v, j, h. I.e.,352 ∑
v,j,I

Wj · yv,j,I =
∑
v,j

Wj ·
∑
h∈[ℓ]

|Iv,j(h)|. (8)353

354

Fix a vertex v and indices j, h. For a non-negative number x, and non-negative integer h,355

define the h-level truncation of x to be trunch(x) := min(1, (x−h)+), where (a)+ := max(a, 0)356

for any real a. Observe that x =
∑

h≥0 trunch(x). In fact, for any two non-negative integers357

x and y:358

|x − y| =
∑
h′≥0

|trunch′(x) − trunch′(y)|. (9)359

360

Now let I1 = [s1, t1), . . . , Iu = [su, tu) be the intervals added to Iv,j(h) (in left to right order).361

Define t0 = 0. We know that for any i ∈ [u], an UP happens at su and a DOWN happens at362

tu. Therefore, trunch(x̃v,j,su
) − trunch(x̃v,j,tu−1) ≥ ε/2. Hence,363

εWj/2 · |Iv,j(h)| ≤ WJ ·
u∑

i=1
|trunch(x̃v,j,su) − trunch(x̃v,j,tu−1)|364

≤ Wj ·
T∑

t′=1
|trunch(x̃v,j,t−1) − trunch(x̃v,j,t)|,365

366

where the last inequality follows from triangle inequality. Summing over all h and using (9),
we get

εWj/2 · yv,j,I ≤ Wj ·
T∑

t′=1
|x̃v,j,t−1) − x̃v,j,t|.

Summing over all vertices v and indices j ∈ [ℓ], we see that the cost of the solution yv,j,I is367

at most 2/ε times that of ỹv,j,I . Finally, the fact that ỹv,j,I are obtained by scaling yv,j,I by368

a factor (2 + ε/2)ℓ, we get the desired bound on the cost of yv,j,I solution.369

Next, we prove the covering property. Since xv,j,t is a feasible solution to LP2, we have370

for any time t:371 ∑
j

xσt,j,t ≥ 1, and therefore,
∑

j

x̃σt,j,t ≥ (2 + ε/2)ℓ.372

Using Lemma 7, we have x̃σt,j,t < xσt,j,t + 1, so373 ∑
j∈ℓ

(xσt,j,t + 1) > (2 + ε/2)ℓ, and therefore,
∑

j

xσt,j,t > ℓ.374
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Finally, we prove the packing property. Since xv,j,t is a feasible solution to the LP, we375

have for any j ∈ [ℓ] and time t,376 ∑
v

xv,j,t ≤ kj , and therefore,
∑

v

x̃v,j,t ≤ (2 + ε/2)ℓkj .377

Again Lemma 7 gives x̃v,j,t > xv,j,t − ε/2, which implies378 ∑
j

(xv,j,t − ε/2)+
< (2 + ε/2)ℓkj . (10)379

Since xv,j,t is a nonnegative integer,380

xv,j,t > 0 =⇒ xv,j,t ≥ 1 Lemma 7=⇒ x̃v,j,t > xv,j,t − ε/2 ≥ 1 − ε/2.381

Since
∑

v x̃v,j,t ≤ kj , it follows that the number of locations v for which xv,j,t > 0 is at most382
kj

1−ε/2
< 2kj , if ε < 1. Using this fact in Equation (10), we get383 ∑

v

xv,j,t =
∑

v:xv,j,t>0
xv,j,t =

∑
v:xv,j,t>0

(xv,j,t − ε/2) +
∑

v:xv,j,t>0

ε/2384

≤
∑

v

(xv,j,t − ε/2)+ + 2kj · ε/2 ≤ (2 + ε/2)ℓkj + εkj .385

386

Since ℓ ≥ 2 (otherwise, we have the unweighted problem), we get387 ∑
v

xv,j,t ≤ (2 + ε)ℓkj . ◀388

3.2 Stage II: Weighted Interval Cover389

In the second stage of the rounding algorithm, we first scale the (integer-valued) variables390

yv,j,I down by a factor of ℓ to obtain new variables y∗
v,j,I :391

y∗
v,j,I := yv,j,I/ℓ and therefore, x∗

v,j,t =
∑

I:t∈I

y∗
v,j,I = xv,j,t/ℓ. (11)392

393

Our goal is to round the fractional variables y∗
v,j,I to {0, 1} values. In fact, our rounding394

will ensure that if the rounded value equals 1 then y∗
v,j,I > 0. Since yv,j,I is integral, the395

packing property in Lemma 8 implies that for any time t, vertex v, and index j ∈ [ℓ], there396

are at most (2 + ε)ℓkj intervals I ∋ t for which yv,j,I > 0. The rounding property of our397

algorithm will ensure that the final integral solution, which lies in the support of y∗
v,j,I , will398

also satisfy that there are at most (2 + ε)ℓkj intervals containing any time t. Since we are399

allowed a resource augmentation of (2 + ε)ℓ factor in the number of servers of weight Wj ,400

we can serve the requests with the set of available servers. Henceforth, we can ignore the401

packing constraint (6) for our rounded solution. As a result, the relaxation LP2 decouples402

into n independent relaxations, one for each location v ∈ V .403

In this decoupled instance, we get the following LP relaxation for each location v, where404

for each class j ∈ [ℓ], we define Iv,j := {I | y∗
v,j,I > 0} as the set of intervals I with a nonzero405

value of y∗
v,j,I and R(v) as the set of times t when v is requested:406

min 1/2
∑
j∈[ℓ]

Wj ·
∑

I∈Iv,j

yv,j,I (LPv)407

s.t.
∑

j

∑
I∈Iv,j :t∈I

yv,j,I ≥ 1 ∀t ∈ Rv408

yv,j,I ≥ 0.409
410
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By the covering property of Lemma 8, the variables y∗
v,j,I defined in (11) are feasible solutions411

for (LPv) for all locations v. Furthermore, by the lemma’s cost property (and the scaling412

down by ℓ), the total cost
∑

v

∑
j Wj ·

∑
I y∗

v,j,I is at most O(1/ε) times the optimal cost of413

(LP2).414

Finally, the constraint matrix for (LPv) satisfies the consecutive-ones property: if the415

constraints are ordered chronologically, then a variable yv,j,I appears in the constraints416

corresponding to times t ∈ I where σt = v, which is a contiguous subsequence of all times417

t where σv = j. Constraint matrices with this property are totally unimodular (see, e.g.,418

[18]). Therefore, each of the solutions {y∗
v,j,I : j ∈ [ℓ], I ∈ Iv,j} for LPv can be rounded to a419

feasible integral solution without any increase in cost, which proves Theorem 3.420

4 Online Algorithm421

In this section, we describe an efficient online algorithm for Weighted k-Server and prove422

the following result:423

▶ Theorem 4 (Online Algorithm). Let I be an instance of Weighted k-Server with kj424

servers of weight Wj for all j ∈ [ℓ]. There is a randomized (polynomial time) online algorithm425

for I that uses at most 2ℓkj servers of weights Wj for each j ∈ [ℓ] and has expected server426

movement cost at most O(ℓ2 log ℓ) times the optimal cost of I.427

We begin by re-writing the LP relaxation (LP2) in terms of the “anti-page” variables, as428

in [4]. Recall that (LP2) has variables yv,j,I representing the (fractional) weight Wj server429

mass present at location v during the interval I; instead we first rewrite it in terms of the430

“page” variables xv,j,t, which denote the total amount of weight Wj server mass at location v431

at time t, as given in (4). The objective of this LP in terms of xv,j,t is:432 ∑
v,j,I

Wj · yv,j,I =
∑
v,j,I

Wj · (xv,j,t − xv,j,t−)+.433

We can constrain any algorithm to values xv,j,t ∈ [0, 1] for all v, j, t (since having multiple434

servers at a location is not beneficial). This allows us to work with non-negative anti-page435

variables zv,j,t := 1 − xv,j,t. The objective, now rewritten in terms of these new variables436

zv,j,t, becomes:437 ∑
v,j,I

Wj · (xv,j,t − xv,j,t−)+ =
∑
v,j,I

Wj · (zv,j,t− − zv,j,t)+. (12)438

439

We shall also maintain the following invariant for each server weight Wj and time t:440 ∑
v

xv,j,t = kj ⇐⇒
∑

v

zv,j,t = n − kj ∀j, t. (13)441

442

We write the covering constraint (5) (or equivalently (2)) in terms of zv,j,t as:443 ∑
j

zσt,j,t ≤ ℓ − 1 (14)444

The algorithm follows the standard relax-and-round paradigm in the online setting. The first445

step is to compute a feasible fractional solution to an LP consisting of objective (12) and446

constraints (13) and (14), in an online setting. We show in §4.1 that we can find a fractional447

solution that uses O(ℓkj) servers of weight Wj for each class j, and has a competitive ratio448

of O(ℓ2). The second step is to give an online rounding algorithm to convert this fractional449

solution to an integral solution: our rounding algorithm given in §4.2 uses the standard450

online rounding algorithm for the paging problem and increases the cost of the solution by a451

constant factor.452
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4.1 Online Fractional Algorithm453

In this section, we give an online algorithm for maintaining a fractional solution to the LP454

involving zv,j,t variables. We obtain the following result:455

▶ Theorem 9. There is a deterministic (polynomial time) online fractional algorithm that456

maintains the condition that for every request time t, there exists an index j ∈ [ℓ] such that457

there is unit server mass of weight Wj at location σt at time t. The algorithm uses 2ℓkj458

servers of weight Wj for each j ∈ [ℓ], and whose cost is at most O(ℓ2 log ℓ) times that of an459

optimal fractional solution.460

Note that the condition in the theorem is stronger than (14), the feasibility condition for461

(LP2), because we are using server from a single weight class to service this request.462

Consider a time t, and the request arriving at location σt. We first set zv,j,t = zv,j,t− for463

all v ∈ V, j ∈ ℓ. Now the algorithm moves fractional server mass to σt until a relaxed version464

of the covering constraint (14) for time t gets satisfied. The relaxed constraint is given by465

∃j ∈ [ℓ] such that zσt,j,t ≤ 1 − 1
2ℓ

. (15)466

Indeed, if the constraint is violated, then for each vertex v ̸= σt and each j ∈ [ℓ], if v has467

non-zero server mass of weight Wj (i.e., zv,j,t < 1), then the algorithm moves server mass468

of weight Wj from v to σt using the following differential equation. (The derivative is with469

respect to a variable s which starts from 0 and increases at uniform rate.)470

żv,j,t = 1
Wj |Sj |

· (zv,j,t + δ) ∀j ∈ [ℓ], ∀v ∈ Sj . (16)471

Here, Sj ⊆ V denotes the instantaneous set of locations (i.e., at the current value of the472

variable s) that have zv,j,t < 1, not including the location σt, and δ > 0 is a parameter that473

we shall fix later. Correspondingly, we reduce zσt,j,t by the total amount of server mass of474

weight Wj entering σt:475

żσt,j,t = − 1
Wj |Sj |

·
∑
v∈Sj

(zv,j,t + δ) ∀j ∈ [ℓ]. (17)476

Note that server mass is moved away other locations and into location σt only if zσt,j,t > 1− 1
2ℓ477

for all j. Since zσt,j,t ≤ 1 for all j, it follows that zv,j,t ∈ [1 − 1
2ℓ , 1] for all j, t. Hence,478

zv,j,t ≥ 1 − 1
2ℓ

for all j, t =⇒ |Sj | ≥ 2ℓkj − 1 ≥ 3ℓkj

2 ≥ 3 for all j, t, (18)479

since ℓ ≥ 2, kj ≥ 1.480

To analyze the algorithm, we use a potential function Φ. The potential function depends481

on the offline (integral) optimal solution—let us call it O, and let optv,j,t be the indicator482

variable for the location v containing a server of weight Wj at time t. The potential at time483

t is defined as follows:484

Φ(t) :=
∑

v,j:optv,j,t=0
Wj · ln

(
1 + δ

zv,j,t + δ

)
.485

Let cost(t) denote the algorithm’s server movement cost at time t and costO(t) denote the486

corresponding quantity for the optimum solution O. Our goal is to show that:487

cost(t)
4ℓ

+ Φ(t + 1) − Φ(t) ≤ ln(1 + 1/δ) · costO(t). (19)488
489

The following properties of Φ(t) can verified easily:490
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Nonnegativity: Φ is always nonnegative, since zv,j,t ≤ 1.491

Lipschitzness property: When the optimal solution moves a server of weight Wj from492

one location to another, the increase in Φ is at most Wj · ln(1 + 1/δ).493

The Lipschitzness property implies that (19) holds when O serves the request at σt. It494

remains the analyze the cost and change in potential when the algorithm changes its solution.495

Consider the process when we transfer server mass to σt.496

We first bound the online algorithm’s cost. Since all the weight classes incur the same497

server movement cost while transferring to σt, the movement cost is ℓ times the movement498

cost incurred while transferring servers of a fixed class, say j⋆. The latter is at most499

Wj⋆

∑
v∈Sj⋆

żv,j⋆,t
(16)= 1

|Sj⋆ |
∑

v∈Sj⋆

(zv,j⋆,t + δ) = |Sj⋆ | + 1 − kj⋆ + δ|Sj⋆ |
|Sj⋆ |

≤ 1 + δ. (20)500

501

Thus, the upper bound on the cost(t)
4ℓ term in the LHS of (19) is at most 1+δ

4 ≤ 1/3 provided502

δ ≤ 1/3.503

Next, we lower bound the rate of decrease of potential Φ. We begin by bounding the rate504

of decrease in potential due to because of server mass leaving all locations except σt:505

∆− = −
∑

j∈[ℓ],v ̸=σt:optv,j,t=0

Wj

zv,j,t + δ
· żv,j,t

(16)= −
∑

j,v∈Sj :optv,j,t=0

1
zv,j,t + δ

· zv,j,t + δ

|Sj |
506

= −
∑

j

|{v ∈ Sj : optv,j,t = 0}|
|Sj |

(18)
≤ −

∑
j

|Sj | − kj

|Sj |
≤ −ℓ

(
1 − 2

3ℓ

)
= −ℓ + 2/3.

(21)

507

508

Next, we bound the rate of increase in potential due to server classes j ̸= j∗ because of server509

mass entering σt:510

∆+ =
∑
j ̸=j∗

Wj

zσt,j,t + δ
· żσt,j,t

(16)=
∑

j ̸=j∗,v∈Sj

Wj

zσt,j,t + δ
· zv,j,t + δ

|Sj |Wj
511

=
∑
j ̸=j∗

∑
v∈Sj

(zv,j,t + δ)
|Sj |(zσt,j,t + δ) =

∑
j ̸=j∗

(|Sj | − kj + (1 − zσt,j,t)) + δ · |Sj |
|Sj |(zσt,j,t + δ)512

(18)
≤

∑
j ̸=j∗

(|Sj | − kj + 1/2ℓ) + δ · |Sj |
|Sj |(1 − 1/2ℓ + δ)

(18)
≤

∑
j ̸=j⋆

1 − 2/3ℓ + 1/6ℓ + δ

1 − 1/2ℓ + δ
≤ ℓ − 1,513

514

provided δ = 1/2ℓ. Combining with (21), we see that the overall change in potential is515

∆− + ∆+ ≤ −1/3. Consequently, we get that the change in potential pays for the increase516

in the algorithm’s cost (divided by 4ℓ)—which shows (19)—when the fractional solution517

changes.518

This implies that we have an algorithm for maintaining zv,j,t that satisfies (15). In terms519

of the competitive ratio, the algorithm loses 4ℓ in (19) and ln(1 + 1/δ) = O(log ℓ) in the520

Lipschitzness of the potential function. Note that (15) implies that for all t, there exists j521

such that xσt,j,t ≥ 1
2ℓ . We scale the fractional variables to obtain x̃v,j,t := min(2ℓxv,j,t, 1);522

then, for all t, there exists j such that x̃σt,j,t = 1. Note that this satisfies the condition in523

Theorem 9. Equivalently, the corresponding “anti-page” variables z̃v,j,t := 1 − x̃v,j,t satisfy524

the following condition for all t:525

∃j such that z̃σt,j,t = 0. (22)526

The last scaling step creates a resource augmentation of 2ℓ, and increases the competitive527

ratio to O(ℓ2 log ℓ). This completes the proof of Theorem 9.528
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4.2 Rounding the Fractional Solution Online529

We round the fractional solution for each weight class j separately. Let Tj represent the530

request times t when (22) is satisfied by weight class j. Note that the solution z̃v,j,t for531

weight class j represents a feasible fractional solution for an instance of the paging problem532

with 2ℓkj cache slots, where there is a page request for each time t ∈ Tj at location σt.533

We now invoke the following known online rounding algorithm for the paging problem534

separately in each weight class j to complete the proof of Theorem 4.535

▶ Lemma 10. [9] There is a randomized (polynomial time) online algorithm that converts536

any feasible fractional solution for an instance of the Paging problem to an integral solution537

using the same number of cache slots, and incurs constant times the cost of the fractional538

solution.539

5 Discussion540

In this work, we have given the first efficient offline and online algorithms with non-trivial541

guarantees for Weighted k-Server. Several interesting problems remains open:542

1. For the case of two distinct weight classes, we show in Appendix A that it is UG-Hard to543

obtain an Ω(N c)-approximation algorithm for some constant c > 0, even with (2 − ε)-544

resource augmentation. Can we extend such a hardness result to more weight classes?545

For example, can we show that for three distinct weight classes, it is UG-Hard to obtain a546

C-approximation algorithm for any constant C, even with (3 − ε)-resource augmentation?547

The principal reason why our hardness proof for ℓ = 2 does not extend here is because548

one needs to recursively cycle through all subsets (of a certain size) of V to create an549

integrality gap instance for the natural LP relaxation. If the size of these subsets is large,550

then the length of the input becomes very large. If the size of these subsets is small, then551

it is not clear how to extend this to a hardness proof.552

2. In Section 3, we give an offline constant approximation algorithm which requires slightly553

more than 2ℓ-resource augmentation. Can we get a constant approximation algorithm554

(or even an optimal algorithm) with exactly ℓ-resource augmentation? We conjecture555

that the integrality gap of LP is constant (or even 1) if the integral solution is allowed556

ℓ-resource augmentation.557

3. In the online case, we give a O(ℓ2 log ℓ)-competitive algorithm with 2ℓ-resource augment-558

ation in Section 4. Can we get a constant-competitive algorithm with O(ℓ)-resource559

augmentation, i.e., a result in the same vein as our offline algorithm?560
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Appendix633

A The Unique Games Hardness634

In this section, we consider the special case of Weighted k-Server when there are only two635

weight classes. Assume wlog that the two distinct weights are 1 and W , where W ≫ 1. Our636

first main result shows that getting a good approximation algorithm with (2 − ε)-resource637

augmentation for any constant ε > 0 is as hard as getting a better-than-two approximation638

for the vertex cover problem.639

▶ Theorem 1 (Hardness). For any constant ε > 0, it is UG-hard to obtain an N 1/2−ε-640

approximation algorithm for Weighted k-Server with two weight classes, even when we641

are allowed c-resource augmentation for any constant c < 2. Here N represents the size of642

the input (including the request sequence length).643

Proof. We give a reduction from the Vertex Cover problem. Let d = d(ε) be a constant644

to be fixed later, and let c < 2 be a constant as in the statement of the theorem. Let645

I = (G = (V, E), t) be an instance of the Vertex Cover problem on n vertices. We know646

that it is UG-hard to distinguish between the following two cases: (i) G has a vertex cover of647

size at most t, or (ii) every vertex cover of G must have size strictly larger than ct.648

We map I to an instance I ′ of Weighted k-Server as follows: the set of points in I ′

is given by V ∪ {v0}, where v0 is a special vertex. There are t servers of weight W = nd and
one server of unit weight. Let the edges in E be e1, . . . , em. A subsequence of the request
sequence consists of m phases, where we have a phase for each edge ei. During phase i

corresponding to edge ei = (ui, vi), the request sequence toggles between ui and vi for W

times. Finally, the subsequence is repeated W times. In other words, it is the following
sequence (

u1, v1, u1, v1, . . . , u1, v1︸ ︷︷ ︸
W times

, . . . , um, vm, um, vm, . . . , um, vm︸ ︷︷ ︸
W times

)W
.

We also have to specify the initial location of the servers. Assume that all servers are at649

location v0 in the beginning. This completes the description of the instance I ′. Observe that650

N , the number of requests in instance I ′ is O(m · n2d).651

▷ Claim 11. Suppose G has a vertex cover of size at most t. Then the cost of the optimal652

solution for I ′ is at most 2mW .653

Proof. Let V ′ ⊆ V be a vertex cover of size t. Consider the following solution: we move the t654

heavy servers from v0 to V ′ at the beginning. From now on, the heavy servers will not move at655

all. During a phase corresponding to an edge ei = (ui, vi), we know that at least one of these656

vertices will be occupied by a heavy server. If the other end-point, say vi, is not occupied by657

a heavy server, we move the server of weight 1 to vi. Now we have two servers occupying ui658
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and vi respectively until the end of this phase. The total movement cost is incurred either at659

the beginning (which is tW overall), or at the beginning of each phase (when the cost is 1).660

Since there are mW phases, the overall cost is at most tW + mW ≤ 2mW . ◀661

▷ Claim 12. Suppose every vertex cover in G has size strictly larger than ct. Then cost of662

the optimal solution for I ′, even with c-resource augmentation, is at least W 2.663

Proof. Consider any solution for I ′. Recall that the input consists of W subsequences, call664

these S1, . . . , SW , where each subsequence Sj consists of m phases, one for each edge of G.665

We claim that during each such subsequence Sj , the solution must pay movement cost of at666

least W . Indeed, consider a subsequence Sj . If the solution moves a heavy server during667

Sj , then the claim follows directly. Else observe that the size of any vertex cover is strictly668

larger than the number of heavy servers ct, so there is some edge ei = (ui, vi) not covered by669

the heavy servers during Sj . Now the phase for ei in Sj would require the unit weight server670

to toggle between ui and vi for W times. In either case, the cost of each subsequence is at671

least W , and the overall cost of the solution is at least W 2. ◀672

The above two results along with the UG-hardness result for Vertex Cover impliy that673

it is UG-hard to obtain a W 2

2mW -approximation for Weighted k-Server with two weight674

classes. This ratio is equal to W
2m ≥ nd−2 ≥ N 1/2−ε, assuming d is Ω(1/ε), which proves675

Theorem 1. ◀676

B Missing proofs from §2677

▶ Lemma 6. Let ε > 0 be a small enough constant. Assume that the integral solution is678

allowed (ℓ − ε)kr servers of weight Wr for each r ∈ [ℓ]. Any integral solution for the input679

sequence generated by Algorithm 1 (with C = ℓ/ε) has movement cost at least M ℓ−1.680

Proof of Lemma 6. We prove the following more general statement by reverse induction on681

r: any integral solution for the sequence generated by Generate(S0, . . . , Sr) for a valid tuple682

(S0, . . . , Sr) which does not use any server of weight class W1, . . . , Wr (at any location in683

Sr) has cost at least M ℓ−1. It suffices to prove this statement, because the case when r = 0684

implies the lemma.685

Consider the base case when r = ℓ − 1. Consider the sequence generated by such a686

procedure Generate(S0, . . . , Sr) such that no server of weight W1, . . . , Wℓ−1 is used for serving687

the requests at Sℓ−1. Thus all requests generated by this procedure must be served by servers688

of weight Wℓ. Now, |Sℓ−1| = n
Cℓ−1 , whereas the number of weight Wℓ servers available to689

the algorithm is (ℓ − ε)kℓ < n
Cℓ−1 . Therefore, during each iteration of the repeat-until loop690

in lines 1.2–1.8 in Algorithm 1, at least one server of weight Wℓ must move. So the overall691

movement cost during this input sub-sequence is at least Wℓ · Lℓ−1 = M ℓ−1. This proves the692

base case.693

The inductive case is proved in an analogous manner. Suppose the statement is true for694

r + 1, and now consider the sub-sequence generated by Gen(S0, . . . , Sr) for some valid tuple695

(S0, . . . , Sr). Assume that no server of weight W1, . . . , Wr is present at any node in Sr during696

this time. We claim that the algorithm must incur movement cost of at least Wr+1 during697

each iteration of the repeat-until loop. Indeed, fix such an iteration. Two cases arise: (a)698

The algorithm moves a server of weight Wr+1 then the claim follows trivially, or (b) No server699

of weight Wr+1 is moved during this period. Now observe that |Sr| = n
Cr , and the number of700

weight Wr+1 servers available to the algorithm is (ℓ − ε)kr+1 = |Sr| − εkr+1 = |Sr|
(
1 − 1

C

)
.701

Thus, there is a subset Sr+1 of S of size |Sr|
C = n

Cr+1 where no server of weight Wr+1 appears702
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during this input sub-sequence. Consider the recursive call Generate(S0, . . . , Sr, Sr+1) in703

line 1.8. The induction hypothesis implies that the movement cost during this recursive call704

is at least M ℓ−1 ≥ Wr+1.705

Thus, we have shown that the movement cost during each iteration of the repeat-until706

loop during Generate(S0, . . . , Sr) is at least Wr+1. Since there are Lr such iterations, the707

overall movement cost is at least Wr+1 ·Lr = M ℓ−1. This completes the proof of the induction708

hypothesis, and implies the lemma. ◀709
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