10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Efficient Algorithms and Hardness Results
for the Weighted k-Server Problem

Anupam Gupta &
Computer Science, Carnegie Mellon University, Pittsburgh, USA

Amit Kumar &

Computer Science and Engineering Department, Indian Institute of Technology, Delhi.

Debmalya Panigrahi &
Computer Science, Duke University, Durham, NC, USA

—— Abstract

In this paper, we study the weighted k-server problem on the uniform metric in both the offline
and online settings. We start with the offline setting. In contrast to the (unweighted) k-server
problem which has a polynomial-time solution using min-cost flows, there are strong computational
lower bounds for the weighted k-server problem, even on the uniform metric. Specifically, we
show that assuming the unique games conjecture, there are no polynomial-time algorithms with a
sub-polynomial approximation factor, even if we use c-resource augmentation for ¢ < 2. Furthermore,
if we consider the natural LP relaxation of the problem, then obtaining a bounded integrality gap
requires us to use at least £ resource augmentation, where ¢ is the number of distinct server weights.
We complement these results by obtaining a constant-approximation algorithm via LP rounding,
with a resource augmentation of (2 4 €)¢ for any constant € > 0.

In the online setting, an exp(k) lower bound is known for the competitive ratio of any randomized
algorithm for the weighted k-server problem on the uniform metric. In contrast, we show that
2/(-resource augmentation can bring the competitive ratio down by an exponential factor to only
O(¢*1og ¢). Our online algorithm uses the two-stage approach of first obtaining a fractional solution
using the online primal-dual framework, and then rounding it online.

2012 ACM Subject Classification Theory of computation — Online algorithms
Keywords and phrases Online Algorithms, Weighted k-server, Integrality Gap, Hardness
Digital Object Identifier 10.4230/LIPIcs. APPROX/RANDOM.2023.12

Category APPROX

Funding Anupam Gupta: NSF awards CCF-1955785, CCF-2006953, and CCF-2224718
Debmalya Panigrahi: NSF awards CCF-1750140 (CAREER) and CCF-1955703

1 Introduction

The k-SERVER problem is a foundational problem in online algorithms and has been extens-
ively studied over the last 30 years [10]. In this problem, there are a set of k servers that
must serve requests arriving online at the vertices of an n-point metric space. The goal is
to minimize the total movement cost of the servers. The k-SERVER problem was defined
by Manasse et al. [22], who also showed a lower bound of k on the competitive ratio of
any deterministic algorithm for this problem. Koutsoupias and Papadimitriou [20] gave a
(2k — 1)-compeititive algorithm for k-SERVER. There has been much progress in the recent
past on obtaining randomized algorithms with polylogarithmic (in k& and n) competitive
ratio [2, 13, 21, 14]. The WEIGHTED k-SERVER version of this problem, introduced by Fiat
and Ricklin [17], allows the servers to have non-uniform positive weights; the cost of moving
a server is now scaled by its weight. In this paper, we consider the WEIGHTED k-SERVER
problem on a uniform metric, namely when all n points of the metric space are at unit
? Anupam Gupta anfi Amit Kumar 'and Debmalya Panigrahi;
5v icensed under Creative Commons License CC-BY 4.0
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques

(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 12; pp. 12:1-12:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:anupamg@cs.cmu.edu
mailto:amitk@cse.iitd.ac.in
mailto:debmalya@cs.duke.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

distance from each other, which means that the cost of moving a server between any two
distinct points is simply the weight of the server. Note that the corresponding unweighted
problem for the uniform metric is the extensively studied PAGING problem [10]. Indeed, one
of the original motivations for studying the WEIGHTED k-SERVER problem came from a
version of paging with non-uniform replacement costs for different cache slots [17]. In the rest
of this paper, we will implicitly assume that the underlying metric space is a uniform metric.

The original paper of Fiat and Ricklin [17] introducing the WEIGHTED k-SERVER problem
(on uniform metrics) gave a deterministic algorithm with a competitive ratio of about 22",
They also showed a lower bound of (k 4 1)!/2 for deterministic algorithms. Chiplunkar
and Viswanathan [15] improved this lower bound to (k + 1)! — 1, and gave a randomized
algorithm that is 1.62k—competitive against adaptive online adversaries; this also implies
a deterministic competitive ratio of 22" using the simulation technique of Ben-David et
al. [8]. Bansal, Elias, and Koumutsos [6] showed that this competitive ratio is essentially
tight for deterministic algorithms by showing a lower bound of 22" 7%, They also gave a
deterministic work function algorithm with a competitive ratio of g2tttk
of distinct server weights is £ and there are k; servers of weight W}, then the competitive
ratio of their algorithm is exp(O(¢k3 H?:l(kj + 1))), which is an exponential improvement
over the general bound when £ is a constant. Unlike the k-SERVER and PAGING problems, it
is unknown if randomization qualitatively improves the competitive ratio for WEIGHTED
k-SERVER, although the best known lower bound for randomized algorithms against oblivious
adversaries is only singly exponential in k [1] as against the doubly exponential lower bound
for deterministic algorithms.

The above competitive ratios depend only on k, and are independent of the size n of

. If the number

metric space. Moreover, the hard instances are for metric spaces with the number of points
n that are exponentially larger than the number of servers k. This is not a coincidence, since
better algorithms exist for smaller values of n. Indeed, the WEIGHTED k-SERVER problem
can be modeled as a metrical task system, where each state w is a configuration (specifying
the location of each of the k servers), and the distance between any two states w,w’ is the
cost to move between the configurations. Since there are N = n* states, one can obtain an
n*-competitive deterministic algorithm [11], and an O(poly(k log n))-competitive randomized
algorithm against oblivious adversaries [7, 3, 12, 16]; all these algorithms use poly(n*) time
to explicitly maintain and manipulate the entire metric space, and hence are not efficient.

In this paper we ask: is it possible to get efficient (randomized) online algorithms
that have competitive ratios of the form poly(klogn), or even better? Is it possible to get
such approximation ratios even in the offline setting? We show that obtaining improved
competitive or approximation ratios in polynomial time is possible, provided we allow for
resource augmentation in the number of servers.

Resource augmentation in online algorithms has been widely studied in paging and
scheduling settings (see e.g. [19, 23]). It is often a much needed assumption that allows
for obtaining bounded or improved competitive ratios for such problems. Bansal et al. [5]
studied the k-SERVER problem on trees under resource augmentation.

1.1 Our Results

Our first result establishes computational hardness of approximating the WEIGHTED k-
SERVER problem in the offline setting. Unlike PAGING or k-SERVER, which are exactly
solvable offline in polynomial time, we show that under the Unique Games conjecture, the
WEIGHTED k-SERVER problem cannot be approximated to any subpolynomial factor even
when we allow c-resource augmentation for any constant ¢ < 2.

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

A. Gupta, A. Kumar and D. Panigrahi

» Theorem 1 (Hardness). For any constant ¢ > 0, it is UG-hard to obtain an N'/*7¢-
approximation algorithm for WEIGHTED k-SERVER with two weight classes, even when we
are allowed c-resource augmentation for any constant ¢ < 2. Here N represents the size of
the input (including the request sequence length).

Next, we show that the natural time indexed LP relaxation for WEIGHTED k-SERVER
(see LP) has a large integrality gap, unless we allow for a resource augmentation of almost /,
the number of distinct server weights.

» Theorem 2 (Integrality Gap). For any constant € > 0, the integrality gap of the relazation LP
for WEIGHTED k-SERVER 1is unbounded, even with (¢ — €)-resource augmentation.

It is worth noting that an optimal fractional solution to LP can be easily rounded to
give an f-approximation ratio with f-resource augmentation. Indeed, we know that for
each request, there exists a weight class which services this request to an extent of at least
1/e. We can then scale this fractional solution by a factor ¢ and reduce this problem to ¢
instances of standard PAGING problem. The integrality gap result shows that any rounding
algorithm with bounded competitive ratio must incur almost ¢-resource augmentation. We
complement this integrality gap result with our main technical result, which gives an offline
O(1/e)-approximation with (2 + ¢)¢-resource augmentation, for any ¢ € (0,1).

» Theorem 3 (Offline Algorithm). Let Z be an instance of WEIGHTED k-SERVER with k;
servers of weight W; for all j € [{]. For any ¢ € (0,1), there is a polynomial time algorithm
for I that uses at most 2(1 4 ¢){ - k; servers of weights W; for each j € [{] and has server
movement cost at most O(1/e) times the optimal cost of T.

Finally, we obtain an online algorithm for WEIGHTED k-SERVER with 2/-resource aug-
mentation. The competitive ratio of the online algorithm is O(¢?log¢). (In constrast to the
offline setting, it is no longer clear how to achieve an f-competitive algorithm even if we
augment the number of servers by a factor of ¢.)

» Theorem 4 (Online Algorithm). Let Z be an instance of WEIGHTED k-SERVER with k;
servers of weight W; for all j € []. There is a randomized (polynomial time) online algorithm
for I that uses at most 20k; servers of weights W; for each j € [{] and has expected server
movement cost at most O(¢?log () times the optimal cost of T.

Since ¢ < k, the competitive ratio of the online algorithm is O(k?logk). This implies
that an O(¢?)-resource augmentation achieves at least an exponential improvement in the
competitive ratio of the WEIGHTED k-SERVER problem. Moreover, by rounding the weights
to powers of 2, we can assume that ¢ < O(log W), where W is the aspect ratio of the server
weights. Hence, the competitive ratio of the online algorithm is O(log2 W loglog W). Finally,
note that for £ = O(1), the above theorem gives a O(1)-competitive online algorithm with
O(1)-resource augmentation. This can be seen as a generalization of the classic result for the
PAGING problem that achieves a randomized competitive ratio of O(log k%hﬂ) where the
algorithm’s cache has k slots while the adversary’s has only h < k slots [24].

1.2 Our Techniques

In this section, we give an overview of the main techniques in the paper. The UG hardness of
WEIGHTED k-SERVER is based on a reduction from the VERTEX COVER problem. Given an
instance of the vertex cover problem, the corresponding WEIGHTED k-SERVER consists of one
point in the uniform metric space for each vertex of the graph. The main observation is that

12:3

APPROX/RANDOM 2023

12:4

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

if we know the minimum vertex cover size, we can keep one heavy weight server at each point
corresponding to this vertex cover, which never change their positions. One can then generate
an input sequence where the optimal solution pays a small cost, whereas an algorithm which
does not cover an edge using heavy servers pays a much higher cost. The UG-hardness
result for VERTEX COVER translates to a corresponding resource augmentation lower bound
for WEIGHTED k-SERVER. Extending this approach to more than two weight classes (with
stronger lower bounds on resource augmentation) turns out to be more challenging because
the length of the input sequence becomes exponential in n. Instead, we show that the natural
LP relaxation has a large integrality gap. The large gap instance consists of cycling through
a sequence of subsets of the metric spaces with carefully varying frequency. The fractional
solution is able to maintain a low cost by uniformly spreading servers over such cycles, but
the integral solution is forced to service some of the cycles by small number of servers only.

Our main technical result shows how to round a solution to the LP relaxation. The
relaxation has both covering and packing type constraints, and the rounding carefully
addresses one set of constraints without violating the other. We first scale the LP by a factor
of about 2¢, thus increasing both the resource augmentation and the cost. As a result, each
request o; is covered to an extent of 2¢, and we can split this coverage across those weight
classes which cover o; to an extent of at least 1. Now for a fixed weight class, we consider
the requests which are covered by it to an extent of at least 1. We show how to integrally
round this solution so that this coverage property is satisfied and yet, we do not violate any
packing constraint. After this, we show that the packing constraints can be ignored. This
allows to scale down the LP solution by a factor ¢ (which saves the cost by this factor) and
uses total unimodularity of the constraint matrix to round it.

We extend our approximation algorithm to the online setting. The first step is to maintain
an online fractional solution to the LP relaxation. Standard (weighted) paging algorithms
for this problem rely on the fact that even the optimal offline algorithm needs to place a
server at a requested location. But this turns out to be trickier here as we do not know the
weight of the server which serves this location in the optimal solution. So we serve a request
by ensuring that fractional mass from each weight classes is transferred at the same rate.
The overall analysis proceeds by a careful accounting in the potential function. The online
fractional solution satisfies the stronger guarantee that each request is served by servers of a
particular weight class only. This allows us to reduce the rounding problem to independent
instances of the PAGING problem.

We now give an overview of the rest of the submission. In §2, we give details of the
integrality gap construction; we defer the UG hardness proof to §A. The offline rounding of
the LP relaxation is given in §3, and then we extend this algorithm to the online case in §4.

1.3 Preliminaries

In the WEIGHTED k-SERVER problem on the uniform metric, we are given a set of n points
V ={1,...,n}, such that d(v,v’) = 1 for each v # v'. There are k servers, labeled 1,...,k,
with server i having weight w; > 0. The input specifies a request sequence (o1,...,07)
of length T, with each request o; arriving at time t being a point in V. A solution
f:[k] x{0,...,T} — V specifies the position of each server at each time ¢ € [T] (where the
initial positions f(i,0) are specified as part of the problem statement) such that for each
time ¢ there exists some server i; such that f(i;,t) = o¢. The cost of the solution f is the

171

172

173

174

175

176

177

178

179

180

181

182

183

Py
000
o

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

A. Gupta, A. Kumar and D. Panigrahi

total weighted distance travelled by the servers, i.e.,

k T
2w Y A[fG0) # S0t = 1)),

The goal is to find a solution with the minimum cost. We say that an instance has ¢ weight
classes if the set {wy,...,w;} has cardinality ¢. For an instance with ¢ different weight
classes, we denote the distinct weights by Wi,...,W,, and let k; denote the number of
servers of weight W;, with) j k; = k. For such an instance and a parameter c > 1, we say
that the algorithm uses c-resource augmentation if it uses |ck;] servers of weight W; for each
ji=1,...,¢

We now describe the natural LP relaxation for WEIGHTED k-SERVER. It has a variable
x(v,j,t) for each request time ¢, weight class j € [f] and vertex v € V; it denotes the
fractional mass of servers of weight W; that are present at point v at time ¢. Let o; denote
the vertex requested at time ¢. It is easy to verify that this is a valid relaxation.

minl/2 Y Wi N [z — 2] (LP)

JEld] t veV
> e <k Vt,j € [{] (1)
veV

D Toge>1 vt (2)
Jel]
Tyt >0 Vt,v e V,j €[]

2 An Integrality Gap for the Natural Linear Program

In this section, we show that the relaxation LP for WEIGHTED k-SERVER has a large
integrality gap, unless we allow for a resource augmentation of almost ¢, the number of
distinct server weights.

Recall that the ¢ weights are denoted Wy > --- > W,, and there are k; servers of weight
W;. Our theorem is the following:

» Theorem 2 (Integrality Gap). For any constant € > 0, the integrality gap of the relazation LP
for WEIGHTED k-SERVER is unbounded, even with (¢ — €)-resource augmentation.

An Instance for Two Classes. To gain some intuition, we first consider the special
case of £ = 2, and prove the result without giving any resource augmentation. There are 7/2

servers of weight W and 7/4 servers of weight 1, thereby giving a total of k = 3n/4 servers.

The input is given in “phases”. Each phase is specified by a distinct subset S of V', where
|S| = »/2. During the phase corresponding to a subset S, we cycle through all subsets S’ of
S with |S’| = I8l/2 = n/4. Given such a subset S’ of S, we send requests which cycle through
the points in S’ for L times, where L is large enough.

One fractional solution for such a sequence is defined as follows: we assign 1/2 unit of
weight-TW server at each of the n locations. During the phase for a subset S, we assign 1/2
unit of server of unit weight at each of the locations in S. The cost of the fractional solution
is at most Z := (n%) -n/4 (not accounting for the initial movement of the servers). However,
an integral solution either moves at least one heavy server, or else pays at least L during one
of the phases, thereby must pay at least min(W, L). Assuming W, L > Z gives an arbitrarily
large integrality gap. (We can account for the initial movement of the fractional servers by

12:5

APPROX/RANDOM 2023

12:6

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224
225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

repeating the process some M times: the integral solution would pay at least min(WW, L)
in each such iteration and the fractional solution would pay at most Z, so that the initial
movement cost would get amortized away.)

The Instance for ¢ Classes. We extend this construction to larger values of ¢ by
defining phases in a recursive manner on a nested sequence of subsets of V', with each phase
containing several repetitions of the same sequence. Instead of decreasing by a factor 2,
the number of servers of each weight class now goes down by a factor of C' > ¢. This
allows the integrality gap result to hold even when the integral solution is allowed a resource
augmentation of nearly ¢.

For some r < ¢ — 1, we call a tuple (So,...,S,) valid if (i) Sy =V and each S; C S;_1,
and (ii) |S;| = [Sj—1|/C = n/ci. The request sequence is generated by calling Algorithm 1
with the trivial valid sequence (Sp = V). Given a valid tuple (Sy,...,S;), the procedure
cycles through all subsets S C S, of size |S,|/C and recursively calls Generate(Sy, ..., Sy, S);
this process is repeated L, times. Finally, in the base case when r = ¢ — 1, it cycles through
all the locations in Sy for Ly_; times. For a suitably large choice of M, we define for each
r € [0

L,:=M" and W, :=M"". (3)

Finally, the number of servers of weight W,. is given by k, :=
Algorithm 1 Procedure Generate(So, S1,...,Sr).

1.1 Input: A valid tuple (So, S1,...,S,)

1.2 repeat

1.3 if r is equal to £ — 1 then
1.4 L Send a request at each location in Sy_1.

_n__
Cr—1-

1.5 else

1.6 for each subset S of S, with |S| = l%f' do

1.7 // Move 1/¢ mass of servers of weight W, 5 to S
L Call Generate(Sy,...,S;,S).

1.8

1.9 until L, iterations have occurred

2.1 Analyzing the Integrality Gap

We bound the cost of the optimal fractional solution for the above input sequence.

» Lemma 5. There is a fractional solution of total cost O(f(n)M*=2) for the input sequence
constructed by Algorithm 1, where f(n) is a function solely of n.

Proof. Our fractional solution maintains the invariant: when the procedure Generate(Sy, ..., S;)
is called, we have 1/¢ fractional mass of servers of weight W7, ..., W, respectively at each
location in S,.. For the base case r = 0, we place 1/¢ server mass at each location in Sy = V;
recall that k; = n/e. For the inductive step, suppose this invariant is satisfied for a certain
value of r where 0 < r < £—1; we need to show that it is satisfied for »r+1 as well. Indeed, the
induction hypothesis implies that we have /¢ amount of server mass of weight Wy, ..., W;.41
at each location in S, and hence at each location in S,4;1. Moreover, as line 1.7 indicates,
we move 1/¢ fractional mass of servers of weight W,.1o to each location in S,y to satisfy
the invariant condition. This costs W, s k,2/¢; moreover, this is feasible because the total

number of servers of weight W, o needed is IS%\ = gor7r = kry2. Finally, when r = ¢ —1,

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

2

N
[N

273

274

275
276

277

278

2

N

9

A. Gupta, A. Kumar and D. Panigrahi

the invariant shows that 1 unit of server mass is present at each of the locations in .Sy, and
hence the requests generated in line 1.4 can be served without any additional movement of
servers.

We now account for the movement cost. The total server movement cost during
Generate(Sp, ..., Sr) (not counting the movement costs in the recursive calls) is at most
O(Ly ki1 Wyyo) = O(kyy1 M*~2). Since k.41 < n and the number of calls to Generate is a
function only of n, the overall movement cost can be expressed as O(f(n) - M*~2). (Again,
by repeating the entire process multiple times we can amortize away the initial movement
cost; we avoid this step for the sake of clarity.) |

The next lemma shows that any integral solution must have much higher cost.

» Lemma 6. Let e > 0 be a small enough constant. Assume that the integral solution is
allowed (€ — e)k, servers of weight W,. for each r € [{]. Any integral solution for the input
sequence generated by Algorithm 1 (with C = ¢/) has movement cost at least M*~1.

We defer the proof to Appendix B; combining Lemma 5 and Lemma 6 proves Theorem 2.

3 An Offline Algorithm via LP Rounding

We now show an algorithm for the offline setting, that rounds any fractional solution to the
LP relaxation (LP), and achieves the following guarantee:

» Theorem 3 (Offline Algorithm). Let I be an instance of WEIGHTED k-SERVER with k;
servers of weight W, for all j € [€]. For any € € (0,1), there is a polynomial time algorithm
for I that uses at most 2(1 +€)l - k; servers of weights W; for each j € [{] and has server
movement cost at most O(1/e) times the optimal cost of T.

Instead of working with the relaxation (LP), we work with an equivalent relaxation which
turns out to be easier to interpret. For each vertex v € V, index j € [¢] and time interval I,
we have a variable ¥, ; 1, which denotes the fractional mass of server of weight W; residing
at v during the entire time interval I. The variable x,, ;; used in (LP) can be expressed as
follows:

LTy, j,t = Z Yv,5,1- (4)

I:tel

Let I denote the set of all intervals during the request timeline. The new linear program
relaxation for WEIGHTED k-SERVER is the following:

min 1/2 Z W; Z Zyv,j,l (LP2)

J€4] Iel veV
SEY D> Yo > 1 Vit (5)
jele Iitel
Z Z Yo, 1 < kj vt,j €[] (6)
veV I:tel
Yo, 0 = 0 Vi, j € [€],veV.

Note that the covering constraint (5) enforces having at least one unit of (fractional) server
mass at the location o; requested for each time ¢. The packing constraint (6) enforces that
the total (fractional) server mass of weight T; used at any time ¢ is at most the number of

12:7

APPROX/RANDOM 2023

12:8

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

Algorithm 2 Procedure ScaleRound(z, y, v, Wj).

2.1 Input: A fractional solution (v, .1, %y, ;) to LP2, a location v and a weight W
2.2 Initialize variables 7, ; ; to 0 for all intervals I.
2.3 (Scale): Define 4, ;1 = (2+¢/2) (- y, ;.1 and therefore,
Tyt = D pper Yogl = (2+¢/2) -2y 54 for each I € I.
2.4 (Round): for h=1,2,....¢ do

2.5 Initialize LastEvent = DOWN, LastTime = 0.

2.6 repeat

2.7 if LastEvent = UP then

2.8 Let ¢ be the first DOWN after LastEvent

2.9 Update LastEvent = DOWN, LastTime = ¢.
2.10 else
2.11 (LastEvent = DOWN) Let ¢ be the first UP after LastEvent
2.12 Add I = [LastTime, t) to I, j(h) and increase 7, ; ; by 1.
2.13 Update LastEvent = DOWN, LastTime = ¢.
2.14 until we have reached the end of the timeline [0,T]

servers of this weight, namely k;. Given a solution y, jr to LP2, the variables z, ;+ defined
using (4) define a feasible solution to LP of the same cost.

Fix any constant € € (0,1). We now prove Theorem 3 by rounding an optimal fractional
solution y, ;. to LP2. The rounding algorithm has two stages. The first stage scales and
discretizes the LP variables to integers such that
1. the packing constraints are satisfied up to a factor of (2 + ¢)¢,

2. the covering constraints are satisfied with a scaled covering requirement of ¢ instead of 1,

Le, 22D rier Youg,1 = ¢, for all times ¢, and

3. the cost of the fractional solution increases by a factor of O(¢/e).
In the second stage, we remove the packing constraints from the LP; this results in the
resulting interval covering LP being integral. Next, we scale the solution from the first stage
down by £, getting a feasible fractional solution to the standard LP relaxation for the interval
covering problem. Finally, we use the integrality of the interval covering LP relaxation to
obtain an integral solution for LP2. We present these two stages in the next two sections.

3.1 Stage I: Scaling and Discretization

The first stage of the rounding algorithm operates independently on each location v € V' and
for each server weight W;; the formal algorithm ScaleRound(z, y, v, W}) is given in Algorithm 2.
We work with both the y, ; r variables and the equivalent x, ;. variables defined in (4); this
representational flexibility makes it convenient to explain the algorithm. To begin, we scale
the LP variables y, j r by a factor (2 + ¢/2)¢ to obtain y, j; (we also define the auxiliary
variables T, ;; by scaling x, ;; similarly).

Discretization. Next we discretize the scaled variables y, ;r and 7, ;: to nonnegative
integers 7, ; ; and T, ;. respectively. To start, let us describe the discretization of 7, ; to
obtain Z, ;. Intuitively, we would like to define Z,, ;; as [Ty j], i.e., the largest step function
with unit step sizes entirely contained in Z,, ; ¢, but this can amplify small fluctuations around
integer values, and hence may increases the cost. To avoid this, we introduce hysteresis in
our discretization, by setting different thresholds for increasing and decreasing the value of

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

A. Gupta, A. Kumar and D. Panigrahi

Zy,j,t- We view T, j; as a time-varying profile and define horizontal slabs in it corresponding
to the restriction of the range of Z, j+ to [h, h+ 1) for some integer h. For each such slab, we
identify intervals I of width at most 1 and at least 1/2 and set the increase the corresponding
Ty, value by 1. In more detail, for each such level h, we identify a subset I, j(h) of intervals
for which the corresponding 7, ; ; variable is to be increased by 1. We identify an alternating
sequence of up and down events in the timeline [0, 7] as follows:

UP event: At time ¢, there is an UP event at level h if 7, ; ,- < h and 7, j; > h, and the
previous event at level h was a DOWN event.

DOWN event: At time ¢, there is a DOWN event at level h if the previous event at level
h was an UP, and 7, j ;- > h —¢/2 and Ty j; < h —¢/2, or t = T, the end of the timeline.
(The reader should think of ¢/2 as the “hysteresis gap” between the up and down events
at any level.)

To make the definition complete, we set T, j¢ to 0 at t =07 and at ¢ = T, and start with a
DOWN at time 0. Finally, we add intervals stretching from each UP to the next DOWN to
the set I, j(h) of intervals. By construction, these intervals are mutually disjoint. Finally,
whenever an interval I is added to such a set I, ;(h), we increment the corresponding variable
Uy, j,1- Thus we have:

Uyjr = {h: I €1, j(h)}|, and correspondingly, Z, j; = Z Yo i1
Itel

The next lemma shows that Z, ;+ can be thought of as a discretized form of Z, ; +:

» Lemma 7. The following holds for variables T, j.:
Tyt =1 < Toje < Toje+9/2 (7)

Proof. Suppose Z, ¢ € [r,7+1). Consider the for loop in line 2.4 in Algorithm 2 for a value
h <r. We claim that at time ¢, the value of the variable LastEvent must be UP. Suppose
not. Let ¢’ be the value of LastTime at time ¢ (i.e., ¢’ is the last time before and including ¢
when an UP or a DOWN occurred). Since a DOWN event happened at time ¢/, 2, ; + < h.
Since T, j; > h, an UP event must occur during (¢,], a contradiction. Therefore must have
added an interval containing time ¢ to I, j(h). Thus, Z, ;. gets increased during each such
iteration, i.e., Ty j1 > T > Ty j — 1. This proves the first inequality in (7).

We now prove the second inequality. Let h be an integer satisfying h > z,, ;. + ¢/2.
Consider the iteration of the for loop in Algorithm 2 for this particular value of h. We
claim that the value of the variable LastEvent at time ¢t must be DOWN. Suppose not, and
let ¢ denote the value of the variable LastTime. Then an UP happened at time t' and
SO Ty > h. Since Z, ;1 < h —¢/2, a DOWN event must have happened during (¢, 1],

a contradiction. Hence, we do not add any interval containing time t to the set I, ;(h).

Therefore, Z, ;1 < T, ;1 + ¢/2, which proves the second inequality in (7). <
The next lemma establishes the key properties of the variables 7, ; ; and Ty j 1.

» Lemma 8. The following properties hold the for the variables ¥, ; r:
(i) (Cost) The LP cost increases by at most O({/e) when the original variables y, ;1 are
replaced by the new variables g, ; ;-

Z Wi -0y 1 < O(¢/e) - Z Wi g1

v,5,1 v,3,1

12:9

APPROX/RANDOM 2023

12:10

347

348

W
g

9

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

(ii) (Covering) The variables T, ; ; satisfy the scaled covering constraints of (LP2)

> Gyt Y

g, I:tel

(iii) (Packing) The variables g, ; ; approvimately satisfy the packing constraints of (LP2):

> Togr < (2+e)k; Ve[l
v, [:tel

Proof. We first prove the cost bound: the cost of the solution 7, ; ; is the weight of all
intervals added to the sets I, ;(h) for all v, j, h. Le.,

Z Wj : gu,j,] = ZWJ : Z |IU7J(h)‘ (8)

v,j,1 hell)

Fix a vertex v and indices j, h. For a non-negative number x, and non-negative integer h,
define the h-level truncation of x to be truncy(x) := min(1, (x—h)™), where (a)™ := max(a, 0)
for any real a. Observe that x =), trunc,(x). In fact, for any two non-negative integers
x and y:

|z —y| = Z [truncy (z) — truncy (y)]- (9)
h'>0

Now let Iy = [s1,%1), ...,y = [Su,ty) be the intervals added to I, j(h) (in left to right order).
Define tg = 0. We know that for any 4 € [u], an UP happens at s, and a DOWN happens at
ty. Therefore, truncy(Z, s,) — truncy(Zy j¢, ,) > /2. Hence,

eW;/2- Ly (W) < Wy > [truncy (T j.s,) — truncy Ty je,)|

i=1

T
<Wj- Z |truncy, (Zy jt—1) — truncy (Tyj¢)|,
=1

where the last inequality follows from triangle inequality. Summing over all h and using (9),
we get

T
EW5/2 Toir W5+ D> |Fujie1) = Tl
t'=1

Summing over all vertices v and indices j € [¢], we see that the cost of the solution 7, ; ; is
at most 2/e times that of y, ; ;. Finally, the fact that g, ; ; are obtained by scaling v, ;1 by
a factor (2 +¢/2)¢, we get the desired bound on the cost of 7, ; ; solution.

Next, we prove the covering property. Since x, ;; is a feasible solution to LP2, we have
for any time ¢:

ngt7j¢ > 1, and therefore, ngft,j,t > (2 +¢/2)L.
J J

Using Lemma 7, we have Z,, j+ < Zs, j,t + 1, 50

Z (ZTo,,5t +1) > (24 ¢/2)¢, and therefore, Z To, 5t > L.
Jjet J

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

4

S
<

408

409
410

A. Gupta, A. Kumar and D. Panigrahi

Finally, we prove the packing property. Since z, j is a feasible solution to the LP, we
have for any j € [{] and time ¢,

va,j’t < kj, and therefore, wa»,t < (2 + ¢/2)lk;.
v v
Again Lemma 7 gives T, j+ > Ty j,+ — /2, which implies
D @oge—/2)" < (2+5/2)tk;. (10)
J
Since T, ;+ is a nonnegative integer,

- - Lemma 7 - _
Toji >0 = Typje 2177 =" Tojt > Toju—221-52

Since Y, Ty j¢ < kj, it follows that the number of locations v for which Z, j; > 0 is at most

15792 < 2k;, if ¢ < 1. Using this fact in Equation (10), we get
N Foji= Y, Teju= Y, Eeji—)+ Y,
D) Uiy 5,4 >0 VT 4,6 >0 V:Ty, 5t >0

< (B —/2) 4 2k5 - ¢/2 < (24 f2)lk; + ek;.

Since ¢ > 2 (otherwise, we have the unweighted problem), we get

va1j7t < (24—6)6[@ <

3.2 Stage Il: Weighted Interval Cover

In the second stage of the rounding algorithm, we first scale the (integer-valued) variables
Ty,j,1 down by a factor of £ to obtain new variables y; . ;:

Vo1 = Ty 51/t and therefore, o}, = Y yi i = Ty 1 /L. (11)
I:tel

Our goal is to round the fractional variables y; ; ; to {0,1} values. In fact, our rounding
will ensure that if the rounded value equals 1 then y; ; ; > 0. Since 7, ; ; is integral, the
packing property in Lemma 8 implies that for any time ¢, vertex v, and index j € [¢], there
are at most (2 + ¢)lk; intervals I > t for which g, ; ; > 0. The rounding property of our
algorithm will ensure that the final integral solution, which lies in the support of y; ; ;, will
also satisfy that there are at most (2 + ¢)¢k; intervals containing any time ¢. Since we are
allowed a resource augmentation of (2 + ¢)¢ factor in the number of servers of weight W;,
we can serve the requests with the set of available servers. Henceforth, we can ignore the
packing constraint (6) for our rounded solution. As a result, the relaxation LP2 decouples
into n independent relaxations, one for each location v € V.

In this decoupled instance, we get the following LP relaxation for each location v, where
for each class j € [¢], we define L, j := {I [y; ; ; > 0} as the set of intervals I with a nonzero
value of y; ; ; and R(v) as the set of times ¢ when v is requested:

min 1/2 Z Wj . Z Yo, 4,1 (LPU>

JE] I€l,,;
s.t. Z Z Yos,1 > 1 vVt € Ry
j I€l, jitel
Yv,5,1 > 0.

12:11

APPROX/RANDOM 2023

12:12

411
412
413
414
415
416
417
418
419

420

421

422

423

424
425
426

427

428
429
430
431

432

433

434
435
436

437

438
439

440

441
442

443

444

445
446
447
448
449
450
451

452

Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

By the covering property of Lemma 8, the variables y; % defined in (11) are feasible solutions
for (LP,) for all locations v. Furthermore, by the lemma’s cost property (and the scaling
down by £), the total cost >°, >°. W > vy is at most O(1/e) times the optimal cost of
(LP2).

Finally, the constraint matrix for (LP,) satisfies the consecutive-ones property: if the
constraints are ordered chronologically, then a variable ¥, ;; appears in the constraints
corresponding to times ¢t € I where o, = v, which is a contiguous subsequence of all times
t where o, = j. Constraint matrices with this property are totally unimodular (see, e.g.,
[18]). Therefore, each of the solutions {y; ; ; : j € [{],] € I, ;} for LP, can be rounded to a
feasible integral solution without any increase in cost, which proves Theorem 3.

4 Online Algorithm

In this section, we describe an efficient online algorithm for WEIGHTED k-SERVER and prove
the following result:

» Theorem 4 (Online Algorithm). Let T be an instance of WEIGHTED k-SERVER with k;
servers of weight W; for all j € [€]. There is a randomized (polynomial time) online algorithm
for I that uses at most 20k; servers of weights W; for each j € [¢] and has expected server
movement cost at most O(¢?log) times the optimal cost of T.

We begin by re-writing the LP relaxation (LP2) in terms of the “anti-page” variables, as
in [4]. Recall that (LP2) has variables y, ;; representing the (fractional) weight W; server
mass present at location v during the interval I; instead we first rewrite it in terms of the
“page” variables z,_;+, which denote the total amount of weight W; server mass at location v
at time ¢, as given in (4). The objective of this LP in terms of z, ; is:

Z Wi Yo i1 = Z Wi (Tojt — Ty ju—) "

v,7,1 v,5,1
We can constrain any algorithm to values z, ; € [0, 1] for all v, j,¢ (since having multiple
servers at a location is not beneficial). This allows us to work with non-negative anti-page
variables z, j; = 1 — x, ;. The objective, now rewritten in terms of these new variables
Zy,jt, becomes:

Z W - (%,j,t - xv,j,t*)+ = Z W - (Zv,j,t* - Zv,j,t)+' (12)

v,5,1 v,3,1

We shall also maintain the following invariant for each server weight W; and time ¢:
Z Ty, 5t = kj <~ Z Zygt =N — kj V], t. (13)
v v
We write the covering constraint (5) (or equivalently (2)) in terms of z, ;. as:

> zo i <l—1 (14)
J

The algorithm follows the standard relax-and-round paradigm in the online setting. The first
step is to compute a feasible fractional solution to an LP consisting of objective (12) and
constraints (13) and (14), in an online setting. We show in §4.1 that we can find a fractional
solution that uses O({k;) servers of weight W, for each class j, and has a competitive ratio
of O(¢£?). The second step is to give an online rounding algorithm to convert this fractional
solution to an integral solution: our rounding algorithm given in §4.2 uses the standard
online rounding algorithm for the paging problem and increases the cost of the solution by a
constant factor.

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488
489

490

A. Gupta, A. Kumar and D. Panigrahi

4.1 Online Fractional Algorithm

In this section, we give an online algorithm for maintaining a fractional solution to the LP
involving z, ;+ variables. We obtain the following result:

» Theorem 9. There is a deterministic (polynomial time) online fractional algorithm that
maintains the condition that for every request time t, there exists an index j € [€] such that
there is unit server mass of weight W; at location o, at time t. The algorithm uses 2(k;
servers of weight W, for each j € [f], and whose cost is at most O(¢?log{) times that of an
optimal fractional solution.

Note that the condition in the theorem is stronger than (14), the feasibility condition for
(LP2), because we are using server from a single weight class to service this request.

Consider a time ¢, and the request arriving at location ;. We first set z,,;+ = 2, ;-
all v € V,j € £. Now the algorithm moves fractional server mass to o; until a relaxed version
of the covering constraint (14) for time t gets satisfied. The relaxed constraint is given by

for

1
3j € [¢] such that z,,;+ <1 — % (15)

Indeed, if the constraint is violated, then for each vertex v # o and each j € [¢], if v has
non-zero server mass of weight W; (i.e., 2, j+ < 1), then the algorithm moves server mass
of weight W; from v to o; using the following differential equation. (The derivative is with
respect to a variable s which starts from 0 and increases at uniform rate.)

1
Zpit=——=="(2p 54 +0 Vj € [f],Yv e S;. 16
v,J,t W,1S;] (20,5t) j €[] Jj (16)
Here, S; C V denotes the instantaneous set of locations (i.e., at the current value of the
variable s) that have z, j; < 1, not including the location o, and § > 0 is a parameter that
we shall fix later. Correspondingly, we reduce z,, ;+ by the total amount of server mass of
weight W; entering oy:

1
2oyt = — . Zuge+0) Vjeld. 17
Jst W]‘S]| vezsj< J,t) [] ()

Note that server mass is moved away other locations and into location oy only if 25, ;; > 1— i
for all j. Since z,, j+ <1 for all j, it follows that z, ;; € [1 — ﬁ, 1] for all j,¢. Hence,
1 . 30k; .

Zogt > 1— 2 forall j,t = |S;|>20k;—1> > > 3 for all j,t, (18)
since £ > 2,k; > 1.

To analyze the algorithm, we use a potential function ®. The potential function depends
on the offline (integral) optimal solution—Tlet us call it O, and let opt,, ; ,
variable for the location v containing a server of weight W; at time ¢. The potential at time
t is defined as follows:

be the indicator

Let cost(t) denote the algorithm’s server movement cost at time ¢ and cost®(¢) denote the
corresponding quantity for the optimum solution O@. Our goal is to show that:
cost(t)
40
The following properties of ®(t) can verified easily:

+®(t+1) — ®(t) <In(1 + /s) - cost(t). (19)

12:13

APPROX/RANDOM 2023

12:14

491
492

493

494
495
496
497
498

499

500

501

502
503
504

505

506

507

508
509

510

511

512

513
514
515
516
517
518
519
520
521
522
523
524

525
526

527

528

Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

Nonnegativity: ® is always nonnegative, since 2, ;; < 1.
Lipschitzness property: When the optimal solution moves a server of weight W; from
one location to another, the increase in ® is at most W; - In(1 + 1/s).

The Lipschitzness property implies that (19) holds when O serves the request at o;. It
remains the analyze the cost and change in potential when the algorithm changes its solution.
Consider the process when we transfer server mass to oy.

We first bound the online algorithm’s cost. Since all the weight classes incur the same
server movement cost while transferring to o, the movement cost is ¢ times the movement
cost incurred while transferring servers of a fixed class, say j*. The latter is at most

. (16) 1 S| +1— ki + 65+
Wi Z Zu,j*,t = S Z (zpjxt+90) = 155 S_J 19| <14+6. (20)
’UES]'* | j*| ’UESJ'* | j*|

Thus, the upper bound on the %te(t) term in the LHS of (19) is at most %5 < 1/3 provided
§ < 1s.

Next, we lower bound the rate of decrease of potential ®. We begin by bounding the rate
of decrease in potential due to because of server mass leaving all locations except oy:

_ W . (16) 1 Zy it + 0
A- = — LS N = _ . Zvds
Z PP Zv,j,t Z Zoji+0 1S,

je€lflv#oropt, ; , =0 vaS*op%J¢:0

{v € S; :opt, ;, = 0} (18) 1S;| — 2
_— g o(1-Z) = —r42
2) Rt SR)=
1)

Next, we bound the rate of increase in potential due to server classes j # j* because of server
mass entering o;:

Aar=S W W 3 Wj zujetd
Zoy i +0 0 Zopgt 0 [Si|W;

J#I* J#I*vES;

_y 2oves, (it +0) 3 (551 = k5 + (1 = 20, 5.t)) + 6 - ;|
2 TSilGonat) A 531 Crvaa +9)

(18) (|1Sj] = kj + Y2e) +06-1S;] (8 1—2/304 e+ 0

< J J J <

- Z [S;1(1 — Y/2¢ +6) - Z 1—120+46

S I 17
J#5* JF#I*
provided § = 1/2¢. Combining with (21), we see that the overall change in potential is
A~ + AT < —1/3. Consequently, we get that the change in potential pays for the increase
in the algorithm’s cost (divided by 4¢)—which shows (19)—when the fractional solution
changes.

This implies that we have an algorithm for maintaining z, ;; that satisfies (15). In terms
of the competitive ratio, the algorithm loses 4¢ in (19) and In(1 + 1/5) = O(log¥) in the
Lipschitzness of the potential function. Note that (15) implies that for all ¢, there exists j
such that z,, j; > ;. We scale the fractional variables to obtain Z, j,; := min(2lz, j,1);
then, for all ¢, there exists j such that z,, j; = 1. Note that this satisfies the condition in
Theorem 9. Equivalently, the corresponding “anti-page” variables z, j; := 1 — & ;¢ satisfy
the following condition for all ¢:

3j such that z,, j+ = 0. (22)

The last scaling step creates a resource augmentation of 2¢, and increases the competitive
ratio to O(¢2?log ¢). This completes the proof of Theorem 9.

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

562

563

565

566

567

568

569

570

571

572

A. Gupta, A. Kumar and D. Panigrahi

4.2 Rounding the Fractional Solution Online

We round the fractional solution for each weight class j separately. Let T} represent the
request times ¢ when (22) is satisfied by weight class j. Note that the solution Zz, ; for
weight class j represents a feasible fractional solution for an instance of the paging problem
with 2¢k; cache slots, where there is a page request for each time ¢ € T} at location o.

We now invoke the following known online rounding algorithm for the paging problem
separately in each weight class j to complete the proof of Theorem 4.

» Lemma 10. /9] There is a randomized (polynomial time) online algorithm that converts
any feasible fractional solution for an instance of the PAGING problem to an integral solution
using the same number of cache slots, and incurs constant times the cost of the fractional
solution.

5 Discussion

In this work, we have given the first efficient offline and online algorithms with non-trivial
guarantees for WEIGHTED k-SERVER. Several interesting problems remains open:

1. For the case of two distinct weight classes, we show in Appendix A that it is UG-Hard to
obtain an Q(N¢)-approximation algorithm for some constant ¢ > 0, even with (2 — ¢)-
resource augmentation. Can we extend such a hardness result to more weight classes?
For example, can we show that for three distinct weight classes, it is UG-Hard to obtain a
C-approximation algorithm for any constant C, even with (3 — £)-resource augmentation?
The principal reason why our hardness proof for £ = 2 does not extend here is because
one needs to recursively cycle through all subsets (of a certain size) of V' to create an
integrality gap instance for the natural LP relaxation. If the size of these subsets is large,
then the length of the input becomes very large. If the size of these subsets is small, then
it is not clear how to extend this to a hardness proof.

2. In Section 3, we give an offline constant approximation algorithm which requires slightly
more than 2¢-resource augmentation. Can we get a constant approximation algorithm
(or even an optimal algorithm) with exactly ¢-resource augmentation? We conjecture
that the integrality gap of LP is constant (or even 1) if the integral solution is allowed
{-resource augmentation.

3. In the online case, we give a O(¢? log £)-competitive algorithm with 2/-resource augment-
ation in Section 4. Can we get a constant-competitive algorithm with O(¢)-resource
augmentation, i.e., a result in the same vein as our offline algorithm?

—— References

1 Nikhil Ayyadevara and Ashish Chiplunkar. The randomized competitive ratio of weighted
k-server is at least exponential. In 29th Annual Furopean Symposium on Algorithms, volume
204 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 9, 11. Schloss Dagstuhl. Leibniz-Zent.
Inform., Wadern, 2021.

2 Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-
competitive algorithm for the k-server problem. J. ACM, 62(5):40:1-40:49, 2015. doi:
10.1145/2783434.

3 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Metrical task systems and the k-server
problem on HSTs. In Automata, languages and programming. Part I, volume 6198 of Lecture
Notes in Comput. Sci., pages 287-298. Springer, Berlin, 2010. URL: https://doi.org/10.
1007/978-3-642-14165-2_25, doi:10.1007/978-3-642-14165-2_25.

12:15

APPROX/RANDOM 2023

https://doi.org/10.1145/2783434
https://doi.org/10.1145/2783434
https://doi.org/10.1145/2783434
https://doi.org/10.1007/978-3-642-14165-2_25
https://doi.org/10.1007/978-3-642-14165-2_25
https://doi.org/10.1007/978-3-642-14165-2_25
https://doi.org/10.1007/978-3-642-14165-2_25

12:16

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

624

Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

10

11

12

13

14

15

16

17

18

19

20

21

Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algorithm for
weighted paging. J. ACM, 59(4):19, 2012.

Nikhil Bansal, Marek Elids, Lukasz Jez, and Grigorios Koumoutsos. The (h, k)-server
problem on bounded depth trees. ACM Trans. Algorithms, 15(2):28:1-28:26, 2019. doi:
10.1145/3301314.

Nikhil Bansal, Marek Elias, and Grigorios Koumoutsos. Weighted k-server bounds via
combinatorial dichotomies. In 58th Annual IEEE Symposium on Foundations of Computer
Science—FOCS 2017, pages 493-504. IEEE Computer Soc., Los Alamitos, CA, 2017. doi:
10.1109/F0CS.2017.52.

Yair Bartal, Avrim Blum, Carl Burch, and Andrew Tomkins. A polylog(n)-competitive
algorithm for metrical task systems. In STOC ’97 (El Paso, TX), pages 711-719. ACM, New
York, 1999.

S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power of randomiz-
ation in on-line algorithms. Algorithmica, 11(1):2-14, 1994. doi:10.1007/BF01294260.
Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging. In 40th Annual
Symposium on Foundations of Computer Science, FOCS 99, 17-18 October, 1999, New York,
NY, USA, pages 450-458. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814617.
Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, USA, 1998.

Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for metrical
task system. J. Assoc. Comput. Mach., 39(4):745-763, 1992. doi:10.1145/146585.146588.
Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin Tat Lee. Metrical task systems
on trees via mirror descent and unfair gluing. SIAM J. Comput., 50(3):909-923, 2021.
doi:10.1137/19M1237879.

Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry.
k-server via multiscale entropic regularization. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 3—16.
ACM, 2018. doi:10.1145/3188745.3188798.

Niv Buchbinder, Anupam Gupta, Marco Molinaro, and Joseph (Seffi) Naor. k-servers with
a smile: Online algorithms via projections. In Timothy M. Chan, editor, Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 98-116. STAM, 2019. doi:10.1137/1.
9781611975482.7.

Ashish Chiplunkar and Sundar Vishwanathan. Randomized memoryless algorithms for the
weighted and the generalized k-server problems. ACM Trans. Algorithms, 16(1):Art. 14, 28,
2020. doi:10.1145/3365002.

Christian Coester and James R. Lee. Pure entropic regularization for metrical task systems.
Theory Comput., 18:Paper No. 23, 24, 2022. doi:10.4086/toc.2022.v018a023.

Amos Fiat and Moty Ricklin. Competitive algorithms for the weighted server problem. Theoret.
Comput. Sci., 130(1):85-99, 1994. doi:10.1016/0304-3975(94)90154-6.

D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific Journal of
Mathematics, 15(3):835 — 855, 1965.

Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. In 36th Annual
Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October
1995, pages 214—221. IEEE Computer Society, 1995. doi:10.1109/SFCS.1995.492478.

Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. J. ACM,
42(5):971-983, 1995. doi:10.1145/210118.210128.

James R. Lee. Fusible hsts and the randomized k-server conjecture. In Mikkel Thorup, editor,
59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 438-449. IEEE Computer Society, 2018. doi:10.1109/F0CS.
2018.00049.

https://doi.org/10.1145/3301314
https://doi.org/10.1145/3301314
https://doi.org/10.1145/3301314
https://doi.org/10.1109/FOCS.2017.52
https://doi.org/10.1109/FOCS.2017.52
https://doi.org/10.1109/FOCS.2017.52
https://doi.org/10.1007/BF01294260
https://doi.org/10.1109/SFFCS.1999.814617
https://doi.org/10.1145/146585.146588
https://doi.org/10.1137/19M1237879
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1137/1.9781611975482.7
https://doi.org/10.1137/1.9781611975482.7
https://doi.org/10.1137/1.9781611975482.7
https://doi.org/10.1145/3365002
https://doi.org/10.4086/toc.2022.v018a023
https://doi.org/10.1016/0304-3975(94)90154-6
https://doi.org/10.1109/SFCS.1995.492478
https://doi.org/10.1145/210118.210128
https://doi.org/10.1109/FOCS.2018.00049
https://doi.org/10.1109/FOCS.2018.00049
https://doi.org/10.1109/FOCS.2018.00049

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

A. Gupta, A. Kumar and D. Panigrahi

22 Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algorithms for
server problems. J. Algorithms, 11(2):208-230, 1990. doi:10.1016/0196-6774(90)90003-W.

23 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Commaun. ACM, 28(2):202-208, 1985. doi:10.1145/2786.2793.

24 Neal E. Young. On-line caching as cache size varies. In Alok Aggarwal, editor, Proceedings of
the Second Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 28-80 January

1991, San Francisco, California, USA, pages 241-250. ACM/SIAM, 1991. URL: http://dl.

acm.org/citation.cfm?id=127787.127832.

Appendix
A The Unique Games Hardness

In this section, we consider the special case of WEIGHTED k-SERVER when there are only two
weight classes. Assume wlog that the two distinct weights are 1 and W, where W > 1. Our
first main result shows that getting a good approximation algorithm with (2 — &)-resource
augmentation for any constant € > 0 is as hard as getting a better-than-two approximation
for the vertex cover problem.

» Theorem 1 (Hardness). For any constant ¢ > 0, it is UG-hard to obtain an N'/*>7¢-
approximation algorithm for WEIGHTED k-SERVER with two weight classes, even when we
are allowed c-resource augmentation for any constant ¢ < 2. Here N represents the size of
the input (including the request sequence length).

Proof. We give a reduction from the VERTEX COVER problem. Let d = d(e) be a constant
to be fixed later, and let ¢ < 2 be a constant as in the statement of the theorem. Let
T = (G = (V,E),t) be an instance of the VERTEX COVER problem on n vertices. We know
that it is UG-hard to distinguish between the following two cases: (i) G has a vertex cover of
size at most t, or (ii) every vertex cover of G must have size strictly larger than ct.

We map Z to an instance Z' of WEIGHTED k-SERVER as follows: the set of points in Z’
is given by V U {vg}, where vg is a special vertex. There are ¢ servers of weight W = n¢ and
one server of unit weight. Let the edges in F be eq,...,e,. A subsequence of the request
sequence consists of m phases, where we have a phase for each edge e;. During phase ¢
corresponding to edge e; = (u;,v;), the request sequence toggles between u; and v; for W
times. Finally, the subsequence is repeated W times. In other words, it is the following
sequence

(U17U17U1,U17.-.,Ul,Ul,.--,Um,Uyn,Um,Um,--.7um7Um)

w times w times

We also have to specify the initial location of the servers. Assume that all servers are at
location vg in the beginning. This completes the description of the instance Z’. Observe that
N, the number of requests in instance Z’ is O(m - n?).

> Claim 11. Suppose G has a vertex cover of size at most . Then the cost of the optimal
solution for 7’ is at most 2mW.

Proof. Let V' C V be a vertex cover of size t. Consider the following solution: we move the ¢
heavy servers from vg to V' at the beginning. From now on, the heavy servers will not move at
all. During a phase corresponding to an edge e; = (u;, v;), we know that at least one of these
vertices will be occupied by a heavy server. If the other end-point, say v;, is not occupied by
a heavy server, we move the server of weight 1 to v;. Now we have two servers occupying u;

12:17

APPROX/RANDOM 2023

https://doi.org/10.1016/0196-6774(90)90003-W
https://doi.org/10.1145/2786.2793
http://dl.acm.org/citation.cfm?id=127787.127832
http://dl.acm.org/citation.cfm?id=127787.127832
http://dl.acm.org/citation.cfm?id=127787.127832

12:18

659
660

661

662

663

664
665
666
667
668
669
670
671

672

673
674
675

676

677

678
679

680

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

701

702

Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

and v; respectively until the end of this phase. The total movement cost is incurred either at
the beginning (which is tW overall), or at the beginning of each phase (when the cost is 1).
Since there are mW phases, the overall cost is at most tW + mW < 2mW. <

> Claim 12. Suppose every vertex cover in GG has size strictly larger than ct. Then cost of
the optimal solution for Z’, even with c-resource augmentation, is at least W?2.

Proof. Consider any solution for Z’. Recall that the input consists of W subsequences, call
these S1, ..., Sw, where each subsequence S; consists of m phases, one for each edge of G.
We claim that during each such subsequence .S;, the solution must pay movement cost of at
least W. Indeed, consider a subsequence S;. If the solution moves a heavy server during
S, then the claim follows directly. Else observe that the size of any vertex cover is strictly
larger than the number of heavy servers ct, so there is some edge e; = (u;,v;) not covered by
the heavy servers during S;. Now the phase for e; in S; would require the unit weight server
to toggle between w; and v; for W times. In either case, the cost of each subsequence is at
least W, and the overall cost of the solution is at least W?2. |

The above two results along with the UG-hardness result for VERTEX COVER impliy that
it is UG-hard to obtain a %—approximation for WEIGHTED k-SERVER with two weight
classes. This ratio is equal to g% > n9~2 > N'/27¢ assuming d is (1/c), which proves
Theorem 1. |

B Missing proofs from §2

» Lemma 6. Let ¢ > 0 be a small enough constant. Assume that the integral solution is
allowed (¢ — €)k, servers of weight W, for each r € [¢]. Any integral solution for the input
sequence generated by Algorithm 1 (with C = ¢/=) has movement cost at least M*~1.

Proof of Lemma 6. We prove the following more general statement by reverse induction on
r: any integral solution for the sequence generated by Generate(S,...,S,) for a valid tuple
(So, - ..,Sy) which does not use any server of weight class Wi,..., W, (at any location in
S,) has cost at least M*~!. Tt suffices to prove this statement, because the case when r = 0
implies the lemma.

Consider the base case when r = ¢ — 1. Consider the sequence generated by such a
procedure Generate(Sy, .. .,.S;) such that no server of weight W7y, ..., Wy_ is used for serving
the requests at Sy_1. Thus all requests generated by this procedure must be served by servers
of weight Wy. Now, |S;—1| = or=1, whereas the number of weight W, servers available to
the algorithm is (¢ — €)k; < m7=r. Therefore, during each iteration of the repeat-until loop
in lines 1.2-1.8 in Algorithm 1, at least one server of weight W, must move. So the overall
movement cost during this input sub-sequence is at least Wy - L,_; = M*~1. This proves the
base case.

The inductive case is proved in an analogous manner. Suppose the statement is true for
r 4 1, and now consider the sub-sequence generated by Gen(Sy,...,S,) for some valid tuple
(So,-..,Sy). Assume that no server of weight Wy, ..., W, is present at any node in .S, during
this time. We claim that the algorithm must incur movement cost of at least W,.,; during
each iteration of the repeat-until loop. Indeed, fix such an iteration. Two cases arise: (a)
The algorithm moves a server of weight W, then the claim follows trivially, or (b) No server
of weight W11 is moved during this period. Now observe that |S,.| = &=, and the number of
weight W, servers available to the algorithm is (¢ — &)k,41 = |Sy| — ekr1 = |Sr] (1 — %) .

Thus, there is a subset S;41 of S of size ‘SCT‘ =

ot Where no server of weight W, appears

703

704

705

706

707

708

709

A. Gupta, A. Kumar and D. Panigrahi

during this input sub-sequence. Consider the recursive call Generate(Sy,..., Sy, Sy41) in
line 1.8. The induction hypothesis implies that the movement cost during this recursive call
is at least M1 > W, 1.

Thus, we have shown that the movement cost during each iteration of the repeat-until

loop during Generate(Sp, ...,S,) is at least W,.;1. Since there are L, such iterations, the
overall movement cost is at least W,.1-L, = M ¢=1_This completes the proof of the induction
hypothesis, and implies the lemma. <

12:19

APPROX/RANDOM 2023

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Preliminaries

	2 An Integrality Gap for the Natural Linear Program
	2.1 Analyzing the Integrality Gap

	3 An Offline Algorithm via LP Rounding
	3.1 Stage I: Scaling and Discretization
	3.2 Stage II: Weighted Interval Cover

	4 Online Algorithm
	4.1 Online Fractional Algorithm
	4.2 Rounding the Fractional Solution Online

	5 Discussion
	A The Unique Games Hardness
	B Missing proofs from §2

