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—— Abstract

Online allocation is a broad class of problems where items arriving online have to be allocated to
agents who have a fixed utility/cost for each assigned item so to maximize/minimize some objective.
This framework captures a broad range of fundamental problems such as the Santa Claus problem
(maximizing minimum utility), Nash welfare maximization (maximizing geometric mean of utilities),
makespan minimization (minimizing maximum cost), minimization of £,-norms, and so on. We focus
on divisible items (i.e., fractional allocations) in this paper. Even for divisible items, these problems
are characterized by strong super-constant lower bounds in the classical worst-case online model.

In this paper, we study online allocations in the learning-augmented setting, i.e., where the
algorithm has access to some additional (machine-learned) information about the problem instance.
We introduce a general algorithmic framework for learning-augmented online allocation that produces
nearly optimal solutions for this broad range of maximization and minimization objectives using
only a single learned parameter for every agent. As corollaries of our general framework, we improve
prior results of Lattanzi et al. (SODA 2020) and Li and Xian (ICML 2021) for learning-augmented
makespan minimization, and obtain the first learning-augmented nearly-optimal algorithms for the
other objectives such as Santa Claus, Nash welfare, ¢,-minimization, etc. We also give tight bounds
on the resilience of our algorithms to errors in the learned parameters, and study the learnability of
these parameters.
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1 Introduction

Recent research has focused on obtaining learning-augmented algorithms for many online
problems to overcome pessimistic lower bounds in competitive analysis. In this paper,
we consider the online allocation framework in the learning-augmented setting. In this
framework, a set of (divisible) items have to be allocated online among a set of agents, where
each agent has a non-negative utility/cost for each item. This framework captures a broad
range of classic problems depending on the objective one seeks to optimize. In load balancing
(also called makespan minimization), the goal is to minimize the maximum (MINMAX) cost
of any agent. A more general goal is to minimize the £,-norm of the cost vector defined on
the agents, for some p > 1. Both makespan minimization (which is £..-minimization) and
{,-minimization are classic problems in scheduling theory and have been extensively studied
in competitive analysis. In a different vein, the online allocation framework also applies to
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maximization problems, where the allocation of an item obtains some utility for the receiving
agent. This includes the famous Santa Claus problem, where the goal is to maximize the
minimum (MAXMIN) utility of any agent, or the maximization of Nash welfare which is
defined as the geometric mean of the agents’ utilities. These maximization objectives have
also been been extensively studied, particularly because of their connection to fairness in
allocations.

Learning-Augmented Online Allocation. In this paper, we consider the online allocation
framework in the learning-augmented setting. Typically, online allocation problems are
characterized by strong super-constant lower bounds in competitive analysis, e.g., Q(logm)
for load balancing [7], Q(p) for £,-minimization [4] and Q(m) for both Santa Claus (folklore)
and Nash welfare [9]. A natural question, then, is whether some additional (machine-learned)
information about the problem instance (we call these learned parameters) can help overcome
these lower bounds and obtain a near-optimal solution. In this paper, we answer this
question in the affirmative. In particular, we give a simple, unified framework for obtaining
near-optimal (fractional) allocations using a single learned parameter for every agent. Our
result holds for both maximization and minimization problems, and applies to all objective
functions that satisfy two mild technical conditions that we define below. Indeed, the most
interesting aspect of our techniques and results is this generality: prior work for online
allocation problems, both in competitive analysis and beyond worst-case algorithms, has
typically been specific to the objective at hand, and the techniques for maximization and
minimization objectives bear no similarity. In contrast, our techniques surprisingly handles
not only a broad range of objectives but applies both to maximization and minimization
problems simultaneously. We hope that the generality of our methods will cast a new light
on what is one of the most important classes of problems in combinatorial optimization.

Before proceeding further, we define the two technical conditions that the objective
function of the online allocation problem needs to satisfy for our results to apply. Let
[+ RZy — Ry be the objective function defined on the vector of costs/utilities of the agents.
Then, the conditions are:

Monotonicity: f is said to be monotone if the following holds: for any ¢,¢" € R, such
that ¢; > £} for all i € [m], we have f(£) > f(¢').

Homogeneity: f is said to be homogeneous if the following holds: for any ¢, ¢’ € RZ such
that ¢, = « - ¢; for all i € [m], then we have f({') =« - f().

We say an objective function is well-behaved if it is both monotone and homogeneous. All
online allocation objectives studied previously that we are aware of are well-behaved, including
the examples given above.

1.1 Our Results

‘We now state our main result below:

» Theorem 1 (Informal). Fiz any e > 0. For any online allocation problem with o well-behaved
objective, there is an algorithm that achieves a competitive ratio of 1 — € for maximization
problems or 1+ € for minimization problems using a single learned parameter for every agent.

We remark that the role of € in the above theorem is to ensure that the learned parameter
vector is of bounded precision.

Comparison to Prior Work. Lattanzi et al. [17] were the first to consider online allocation
in a learning-augmented setting. They considered a special case of the load balancing problem
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called restricted assignment, and showed the surprising result that a single (learned) parameter
for each agent is sufficient to bypass the lower bound and obtain a nearly optimal (fractional)
allocation. This result was further generalized by Li and Xian [20] to the full generality
of the load balancing problem, but instead of a single parameter, they now required two
parameters for every agent. At a high level, their algorithm first uses one set of parameters
to restrict the set of agents who can receive an item, and then solves the resulting restricted
assignment problem using the second set of parameters. A a corollary of Theorem 1, we
improve this result by obtaining a near-optimal solution using a single learned parameter
for every agent. In both these papers, as well as in our paper, the (fractional) allocation
uses proportional allocation. In the setting of online optimization, proportional allocations
were used earlier by Agrawal et al. [1] for the (weighted) b-matching problem. As in our
paper, they also gave an iterative algorithm for computing the parameters of the allocation.
However, because the two problems are structurally very different (e.g., matching is a packing
problem while our allocation problems are covering problems), the iterative algorithm in the
Agrawal et al. paper is different from ours. To the best of our knowledge, our results for the
other problems, namely Santa Claus, Nash welfare maximization, £,-norm minimization, and
other objectives that can be defined in the online allocation framework are the first results
in learning-augmented algorithms for these problems.

We now state our additional results.

Resilience to Prediction Error. A key desiderata of learning-augmented online algorithms
is resilience to errors in the learned parameters. In other words, one desires that the
competitive ratio of the algorithm should gracefully degrade when the learned parameters
used in the algorithm deviate from their optimal values. For well-behaved objectives for
both minimization and maximization problems, we give an error-resilient algorithm whose
competitive ratio degrades gracefully with prediction error:

» Theorem 2 (Informal). For any online allocation problem with a well-behaved objective,
there is an (learning-augmented) algorithm that achieves a competitive ratio of O(«) when the
learned parameter input to the algorithm is within a multiplicative factor of a of the optimal
learned parameter for every agent. This holds for both minimization and mazimization
objectives.

The above theorem is asymptotically tight for the MAXMIN objective. But, interestingly,
for the MINMAX objective we can do better:

» Theorem 3 (Informal). For the load balancing problem (MINMAX objective), there is an
(learning-augmented) algorithm that achieves a competitive ratio of O(log ) when the learned
parameter input to the algorithm is within a multiplicative factor of o of the optimal learned
parameter for every agent. Moreover, the dependence O(loga) in the above statement is
asymptotically tight.

50:3

An analogous statement was previously known only in the special case of restricted assignment [17].

» Remark 4. We use a multiplicative measure of error « similar to [17]. For both MINMAXx
and MAXMIN objectives, we may assume w.l.o.g. that e < m. This is because by standard
techniques, it is possible to achieve O(min(«, m)) and O(logmin(a,m)) competitiveness
for the MAXMIN and MINMAX objectives respectively. We also show that our bounds are
asymptotically tight as a function of «, in addition to matching existing lower bounds for
the two problems as a function of m.

ICALP 2023
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Learnability of Parameters. We also study the learnability of the parameters used in
our algorithm. Following [20] and [18], we adopt the PAC framework. We assume that each
item is drawn independently (but not necessarily identically) from a distribution, and show
a bound on the sample complexity of approximately learning the parameter vector under
this setting. For the MAXMIN and MINMAX objectives, we show the following:

» Theorem 5 (Informal). Fiz any € > 0. For the online allocation problem with MAXMIN or
MINMAX objectives, the sample complexity of learning a parameter vector that gives a 1 — €
(for MAXMIN) or 1 + € (for MINMAX) approzimation is O(g - 1og ).

We note that a similar result was previously known for the MINMAX objective (Li and
Xian [20]). We also generalize this result to all well-behaved objectives subject to a technical
condition of superadditivity for maximization or subadditivity for minimization. All the
objectives described earlier in the introduction satisfy these conditions.

1.2  Our Techniques

Our learning-augmented online algorithms for both minimization and maximization objectives
follow from a single, unified algorithmic framework that we develop in this paper. This is
quite surprising because in the worst-case setting, the online algorithms for the different
objectives do not share any similarity (indeed have different competitive ratios), particularly
between maximization and minimization problems. First, let us first consider the MiINMax
and MAXMIN objectives. To use common terminology across these problems, let us call
the cost/utility of an item j to an agent ¢ the weight of item j for agent ¢ and denote it
pi;- Our common algorithmic framework uses proportional allocation according to the
learned parameters of the agents. Let w; denote the parameter for agent ¢. Normally,
proportional allocation would entail that we allocate a fraction z;; of item j to agent i

wg’i’; . But, this is clearly not adequate, since it would produce the same
i Wil Pil 5

allocation for both the MAXMIN and MINMAX objectives. Specifically, if p; ; is large for a
pair %, j, then z; ; should be large for the MAXMIN objective and small for the MINMAX
objective respectively. To implement this intuition, we exponentiate the weight p; ; by a
fixed value « that depends on the objective (i.e., is different for MAXMIN and MINMAX) and

then allocate using fractions x; ; = % We call this an exponentiated proportional

ild

allocation (or EP-allocation in short), and call « the ezponentiation constant.

Let us fix any value of a. It is clear that for both the MINMAX and MAXMIN objectives,
an optimal allocation has uniform cumulative fractional weights (called load) across all agents.
(Note that otherwise, an infinitesimal fraction of an item can be repeatedly moved from the
most loaded to the least loaded agent to eventually improve the competitive ratio.) Following

where x; i =
,
DY

this intuition, we define a canonical allocation as one that sets learned parameters on the
agents in a way that equalizes the loads on all agents. We show that the canonical allocation
always exists and is unique. Indeed, this is true not only for all EP-allocation algorithms,
but for a much broader class of proportional allocation schemes that we called generalized
proportional allocations (or GP-allocations). In the latter class, we allow any transformation
of the weights p; ; before applying proportional allocation. Thus, EP-allocations represent
the subclass of GP-allocations where the transformation is exponentiation by the fixed value
a. We also give a simple iterative (Sinkhorn-like) algorithm for computing the optimal learned
parameters, and establish its convergence properties, for GP-allocations. GP-allocations give
an even larger palette of proportional allocation schemes to choose from than EP-allocations,
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and we hope it will be useful in future work for problem settings that are not covered in this
paper (e.g., non-linear utilities).

Finally, we need to set the value of « specifically for the MINMAX and MAXMIN
objectives. Intuitively, it is clear that we need to set a to a large positive value for the
MAXMIN objective and a large negative value for the MINMAX objective. Indeed, we show
that in the limit of & — oo and o — —oo, the canonical allocation defined above recovers
optimal allocations for the MAXMIN and MINMAX objectives respectively. We also show a
monotonicity property of the optimal objective (with the value of a) that can be used to
set « to a finite value (function of €) and obtain a 1 — € (resp., 1 + €) approximation for the
MAXMIN (resp., MINMAX) objective, for any € > 0.

Now that we have described the EP-allocation scheme for obtaining nearly optimal
algorithms for the MINMAX and MAXMIN objectives, we generalize to all well-behaved
objective functions. This is quite simple. The main advantage of the MINMAX and MAXMIN
objectives that is not shared by other objectives is the property that the optimal solution
has uniform load across all agents. Now, suppose for a maximization objective, the load of
agent ¢ in an optimal solution is s; (we call this the scaling parameter for agent 7). For now,
suppose these values s; are also provided offline as a second set of parameters. Then, we
can first scale the weights p; ; using these parameters to obtain a new instance ¢; ; = ps—;
Clearly, the optimal solution for the original instance has uniform load across all agents
for the transformed instance. Indeed, by the monotonicity of the maximization objective,
this solution for the transformed instance is also optimal for the MAXMIN objective. Using
the above analysis for the MAXMIN objective, we can now claim that there exist learned

o
Widij

parameters w; for i € [m] such that setting z; ; = S wn gives an optimal solution to
i Wirdyr
the original instance of the problem. Now, note that

Zij = Widi = (/57 )78 = L for w; = w;/s{".
T wedd ;o > (wir /sE)p i WD ' '
It follows that by using learned parameters w; in an EP-allocation on the original instance,
we can obtain an optimal solution for the original maximization objective. (The case for
a minimization objective is identical to the above argument, with the MAXMIN objective
being replaced by the MINMAX objective.) Finally, using the homogeneity of the objective
function, we can also set « to a finite value (function of €) and obtain a 1 — € (resp., 1 + €)
approximation for the maximization (resp., minimization) objective, for any ¢ > 0.

1.3 Related Work

50:5

Learning-augmented online algorithms were pioneered by the work of Lykouris and Vassilvikskii [21]

for the caching problem, and has become a very popular research area in the last few years.
The basic idea of this framework is to augment an online algorithm with (machine-learned)
predictions about the future, which helps overcome pessimistic worst case lower bounds
in competitive analysis. Many online allocation problems have been considered in this
framework in scheduling [27, 5, 6, 8, 15, 24], online matching [2, 13, 16], ad delivery [22, 19],
etc. The reader is referred to the survey by Mitzenmacher and Vassilvitskii [25, 26] for
further examples of online learning-augmented algorithms. The papers specifically related to
our work are those of Lattanzi et al. [17] and Li and Xian [20] that we described above, and
that of Lavastida et al. [18] that focuses on the learnability of the parameters for the same
problem. As mentioned earlier, Agrawal et al. [1] used the proportional allocation framework
earlier for the online (weighted) b-matching problem, and gave an iterative algorithm for
computing the parameters of the allocation.

ICALP 2023
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23 We now give a brief summary of online allocation in the worst-case model. For
2+ minimization problems, two classic objectives are makespan (i.e., {o norm) and ¢, norm
»s minimization for p > 1. The former was studied in several works (e.g., [7, 3]), eventually
26 leading to an asymptotically tight bound of ©(logm). This was later generalized to arbitrary
21 £, norms, and a tight bound of ©(p) was obtained for this case [4, 12]. For maximization
»s  objectives, there are (m) lower bounds for many natural objectives such as MAXMIN (see,
2 e.g., [14]) and Nash welfare [9]. Some recent work has focused on overcoming these lower
20 bounds using additional information such as monopolist values for the agents [9, 10]. While
2 this improves the competitive ratio to sub-linear in m, lower bounds continue to rule out
22 near-optimal solutions (or even constant factor approximations) that we seek in this paper.

23 Organization. For most of the paper, we only consider the MINMAX and MAXMIN
2 objectives. We establish the notation in Section 2 and give an overview of the results.
25 Then, we prove these results by showing properties of GP-allocations in Section 3 and of
26 EP-allocations in Section 4. Next, we give noise resilient algorithms in Section 5 and discuss
237 learnability of the parameters in Section 6. Finally, in Section 7, we extend our results to
28 all well-behaved objective functions via simple reductions to the MAXMIN and MINMAX
239 objectives.

w2 Preliminaries and Results

. 2.1 Problem Definition

22 We have n (divisible) items that arrive online and have to be (fractionally) allocated to m
23 agents. The weight of item j € [n] for agent ¢ € [m] is denoted p; ; and is revealed when item
24 7 arrives. We denote the weight matriz

P11 - Pin
25 P = where all p; ; > 0 for all ¢ € [m],] S [n]l
m,1 oo DPmon
26 A feasible allocation is given by an assignment matriz
x1,1 e T1,n m
wr X = : where z; ; € [0,1] for all i € [m], j € [n] and Zm” =1 for all j € [n].
Tm,1 o Tmon =1
28 Note that every item has to be fully allocated among all the agents. We use X to denote

29 the set of feasible solutions. The total weight of an agent 7 corresponding to an allocation X
0 (we call this the load of ) is given by

251 éz(P,X) = Z Li5 - Pigs
jeln]
2 and the vector of loads of all the agents is denoted £(P, X).

253 The load balancing problem is now defined as

s  min {T L 4;(P,X) < T foralli [m]},
XeXx

»s  while the Santa Claus problem is defined as

256 2 > ) .
max {T (P, X)>Tforallie [m]}
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2.2 Exponentiated and Generalized Proportional Allocations

Our algorithmic framework is simple: when allocating item j, we first exponentiate the
weights p; ; to pf; for some fixed a (called the exponentiation constant) that only depends
on the objective being optimized. Next, we perform proportional allocation weighted by the
learned parameters w; for agents i € [m]:

a .
_ Dby wi
Tij = <= -

- )
E , Pir5 - Wi

i/ €[m]

We call this an exponentiated proportional allocation or EP-allocation in short.
Our main theorem is the following:

» Theorem 6. For the load balancing and Santa Claus problems, there are EP-allocations
that achieve a competitive ratio of 1 + € and 1 — € respectively, for any e > 0.

The Canonical Allocation. In order to define an EP-allocation and establish Theorem 6,
we need to specify two things: the vector of learned parameters w € RY, and the
exponentiation constant «. First, we focus on the learned parameters. For any fixed
a and a weight matrix P, we use learned parameters w € RZ that result in equal load for
every agent. We call this the canonical allocation. The corresponding learned parameters
and the load of every agent are respectively called the canonical parameters (denoted w*)
and the canonical load (denoted £*).

Apriori, it is not clear that a canonical allocation should even exist, and even if it
does, that it is unique. Interestingly, we show this existence and uniqueness not just from
EP-allocations but for the much broader class of proportional allocations where any function
f:Rsp — Ry (called the transformation function) can be used to transform the weights
rather than just an exponential function. I.e.,

s — f(pi,j) - W;
6J = :
> flpiry) - ws
i'€[m)]

We call this a generalized proportional allocation or GP-allocation in short.
We show the following theorem for GP-allocations:

» Theorem 7. For any weight matriz P € RT;"™ and any transformation function f : Rso —
R<q, the canonical load for a GP-allocation exists and is unique. Moreover, it is attained by
a unique (up to scaling) set of canonical parameters.

We prove Theorem 7 algorithmically by giving a simple iterative (offline) algorithm that
converges to the set of canonical parameters (see Algorithm 1). We will show later that
the canonical allocations produced by appropriately setting the value of the exponentiation
constant « are respectively optimal (fractional) solutions for the Santa Claus and the load
balancing problems. Therefore, an interesting consequence of the iterative convergence of this
algorithm to the canonical allocation is that it gives a simple alternative offfine algorithm
for computing an optimal fractional solution for these two problems. To the best of our
knowledge, this was not explicitly known before our work.

An interesting direction for future research would be to explore other natural classes of
transformation functions, other than the exponential functions considered in this paper. Since
Theorem 7 holds for any transformation function, they also admit a canonical allocation,

50:7
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and it is conceivable that such canonical allocations would optimize objective functions
other than the MINMAX and MAXMIN functions considered here. For example, one natural
open problem is following: are there a transformation functions whose canonical allocations
correspond to maximizing Nash Social Welfare or minimizing p-norms of loads?

Monotonicity and Convergence of EP-allocations. Now that we have defined the
learned parameters in Theorem 6 as the corresponding canonical parameters, we are left to
define the values of the exponentiation constant « for the MAXMIN and MINMAX problems
respectively. We show two key properties of canonical loads of EP-allocations. First, we show
that the canonical load is monotone nondecreasing with the value of a. This immediately
suggests that we should choose the largest possible value of a for the MAXMIN problem
since it is a maximization problem, and the smallest possible value of o for the MINMAX
problem since it is a minimization problem. Indeed, the second property that we show is
that in the limit of & — oo, the canonical load converges to the optimal objective for the
Santa Claus problem (we denote this optimal value £SNT) and in the limit of & — —oo, the
canonical load converges to the optimal objective for the load balancing problem (we denote
this optimal value (MXS),

For a fixed «a, let X (P, a,w) denote the assignment matrix and £(P,«,w) the load
vector for a learned parameter vector w. Let £*(P, ) denote the corresponding canonical
load. We show the following properties of canonical EP-allocations:

» Theorem 8. For any weight matriz P € RT;"™, the following properties hold for canonical
EP-allocations:

The monotonicity property: For ai,as € R such that oy > g, we have {*(P,ay) >
0* (P7 Otg).

The convergence property: lim £*(P,a) = ¢SNT(P) and lim ¢*(P,a) = (MES(p).

li
a—r 00 a—r — 00

Clearly, Theorem 8 implies Theorem 6 as a corollary when « is set sufficiently large for
the Santa Claus problem and sufficiently small for the load balancing problem.

In the rest of the paper, we will prove Theorem 7 and Theorem 8.

3 Canonical Properties of Generalized Proportional Allocations

In this section, we prove Theorem 7. For notational convenience, we define a transformation
matrix G € RZ;" where G(i,j) = f(pi,;) for the transformation function f. Using this
notation, we denote by z; ;(G,w) the fractional allocation of item j to agent ¢, and by
¢;(P,G,w) the load of agent i (we use £(P,G,w) to denote the vector of agent loads) under
the GP-allocation corresponding to the transformation matrix G and learned parameters w.

We say two sets of learned parameters w, w’ are equivalent (denoted w = w') if there
exists some constant ¢ > 0 such that w} = ¢ - w; for every agent i € [m]. The following
is a simple observation from the GP-allocation scheme that two equivalent sets of learned
parameters produce the same allocation:

» Observation 9. For any G € RZ;™", if w = w' € RY,, then z; ;(G,w) = z; ;(G,w’) for
all i, 7.

We also note that GP-allocations are monotone in the sense that if one agent’s parameter
decreases while the rest increase, then the allocation on this agent decreases as well.

T, such that

» Observation 10. Consider any G € RZ;"™ and any nonzero vector € € RY
—wi, < € <0 for some k € [m] and ¢, > 0 for all i # k. Then, zx ;(G,w') <z ;(G,w) for

all j € [n], where w' = w + € and w' # w.
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Our first nontrivial property is that the load vector uniquely determines the learned
parameters up to equivalence of the parameters.

» Lemma 11. For any P,G € RT;", {;(P,G,w) = {;(P,G,w') for all i € [m] if and only
ifw=w.

Proof. In one direction, if w = w’, the loads are identical because the allocations are identical
(by Observation 9).
w;

We now show the lemma in the opposite direction. Let k = argmin; 77 and ¢ = .
3 k

g

Let us define w = ¢- w’. Then, W, = wg, and 0, = (mini %) ~wl, < wy for all ¢ # k.
Now, if w and w' are not equivalent, then there exists some i e [m] such that Wy < wy.
Therefore, by Observation 10, xy ;(G, W) > xy ; (G, w) for all j € [n]. But, by Observation 9,
z, (G, W) =z ;(G,w') for all j € [n]. Thus, zx ;(G,w’) >z ;(G,w) for all j € [n], which

contradicts fx (P, G, w') = £(P, G, w). <

Similarly, we show that if the canonical load exists (i.e., a load vector where all loads
are identical), it must be unique.

» Lemma 12. For any P,G € RZ;", if there exist w,w' € R such that (;(P,G,w) ={
and £;(P,G,w') =10 for alli € [m], then £ =1'.

Proof. Assume for the purpose of contradiction that there exist w, w’ € RZ, such that for
all i € [m], £;(P,G,w) = { and {;(P,G,w") = ¢ but £ > {'. Let k = argmin; 7+ and ¢ = =¥,
) k

and let w = ¢- w’. We have
0 =0, (P,G,wW") = £,(P,G,W) > {,,(P,G,w) = £, which is a contradiction.
Here, the second equality is by Observation 9, and the inequality is by Observation 10, since

W = wg, and W; < w; for i € [m). <

3.1 Convergence of Algorithm 1

The rest of this section focuses on showing the existence of a canonical allocation for GP-
allocations. We do so by showing convergence of the following simple iterative algorithm
(Algorithm 1):

Algorithm 1 The iterative algorithm showing the existence of a canonical allocation for
GP-allocations.

Initialize: w(® « 1™

Iteration r:

Compute £(7) as EZ(-T) — L;(P,G,wm), for all i € [m], where £;(P,G,w()) is the load of

agent ¢ under the GP-allocation with transformation matrix G' and learned parameters
(r)

wir),

)
Set w1 as w1

Q) -4 for all i € [m].

w

Here, 7(") € Ry is a scaling factor whose value does not affect the load (by
Observation 9). But, by using, e.g., A1) = €Y), we can ensure that the algorithm
terminates with a single set of learned parameters instead of repeatedly finding
equivalent sets of parameters after it has converged.
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Note that Algorithm 1 ensures that if the loads of all agents are uniform at any stage,
then the iterative process has converged and the algorithm terminates. So, it remains to
show that for any P,G € RT ", this iterative process reaches a set of parameters w* € RZ,
such that £;(P,G,w*) = £y (P,G,W*) for all 4,7’ € [m].

Our proof has two parts. The first part shows that the maximum and minimum loads
are (weakly) monotone over the course of the iterative process. For this, we focus on a
single iteration. For a vector £ € RY, let fiyax = max;c(p) £i and lyin = mingepy,) £; be the
maximum and minimum coordinates of £. We will show that if Efﬁ;x and 4( 1) are not equal
at the beginning of an iteration, then (5 can only decrease (or stay unchanged) and (mm
can only increase (or stay unchanged) in a single iteration.

» Lemma 13. Consider any P,G € RT{™, v > 0. Let w,w',£,£' € RZ such that {; =
(PG, w), £ = L;(P,G,wW') and wi = 7+ -~ and let p; = iji,j. Then, we have £ >
sn (1= Stmin) and £] < b (1 max=te)

20
In the second part, we show that the ratio ﬁ is strictly decreasing after a finite

number of iterations. The proof of this stronger property requires the per-iteration weak
monotonicity property that we establish in the first part of the proof.

» Lemma 14. Let P,G € RT(™ be given fized matrices. Fixz an iteration r in Algorithm 1
where él(na >0 Let Er(nax >(1+¢)- o) for some € € (0,1]. Then, in the next iteration,

min - min

we have énﬁll (I+c-€)- fgm)n for some constant ¢ > 0 that only depends on P and G.

Using Lemma 13 and Lemma 14, we complete the proof of Theorem 7.
Proof of Theorem 7. We are given fixed matrices P,G € RZ;". Let Egix,ﬁ“ denote the

maximum and the minimum load respectively in iteration r of Algorithm 1. Let ¢ > 0 be the
constant (that depends only on P,G) in Lemma 14.

For a non-negative integer a, let 7, be defined recursively as follows:

log(1 4 27a+1) log (/%))
W=t |22y wh — | oA i) |y g
T Te—1+ Log (Itc-29) + 1, where rg log (1 +¢) +

We will show for any a, in any iteration 7 > r,, we have fuax/¢”) < 1+ 27, First, we prove
it for a = 0. If there exists some 7 < 7 such that £:x/e) < 2 then this also holds for

r > ro by Lemma 13. Otherwise, for all 7 < ry we have £2x/¢? > 2. Then, using Lemma 14

min

with € = 1, we get Eg:ll) >(1+c¢)- Egl)n Therefore, £70) > (1 + ¢)7 - Eg) (9 by our

min

choice of ryg. This contradicts Lemma 13, thereby showing that Zmax/e(” < 2 for any r > rg.

Now, we show the inductive case. Assume the inductive hypothesis that loni 1)/ef:;; V<
1+ 27D We will prove that £.& /e < 14 27(@) The proof is similar to the base
case of a = 0. If there exists some r < 7, such that £a/e) < 1+ 27% then this
inequality also holds for any r > r, by Lemma 13. Otherwise, for all » < r, we have
Ude/e) > 1427 Then, for all r,_; < r < r,, using Lemma 14 with e = 27%, we have
Efg:ll) >(1+c-279)- ESQH Therefore, 4;"11) >(1+c¢-27%)a T2 -El(l:i“n’l). By our choice

of r4, this 1mphes ore) 5 > (1427 (D). ng 2 By the induction hypothesis, this implies

min n

ngn > ngl But, this implies éfﬁgi > (5;2{; 1), which contradicts Lemma 13. Therefore,

lim £de/e) =1,
T—>00

and ¢*(P,G) = hm o)

e Moreover, by Lemma 12 this value is uniquely defined and attained
by a unique (up to bcahng) set of learned parameters.

<
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3.2 Weak Monotonicity of the Maximum and Minimum Loads in
Algorithm 1: Proof of Lemma 13

For ease of description, we assume that G and w are normalized in the following sense:
w =1 and ng =1.
J

This transformation is local to the current iteration, and only for the purpose of this proof.
First, we explain why this change of notation is w.l.o.g. Suppose G, W represent the actual
transformation matrix and learned parameters respectively. Now, we define G as follows:
i = Gi,j - Wi
1,] — ~ ~
Y irepm) 9.5 - Wi

and our new learned parameters is given by 1.

Note that the fractional allocation remains unchanged, i.e., z; ;(G,®) = z; j(G,1™) =
gi.;, and therefore the loads are also unchanged: ¢; = £;(P, G, W) = £;(P,G,1™) = > et Yi®
pi,j.- Assume w.lo.g. (by Observation 9) that v = ¢y, so @) = % - /1. In the normalized
notation, the new parameters are w; = %. Again, the allocation is unchanged whether we
use the original notation or the normalized one:

/
9i,j - W
. r
Zi’e[m] gir,j - Wy

.%i’j(é, W/) = 93'7;7]‘(G,W/) =

and we have, ¢}, = £;(P,G,w') = {;(P,G,w’).
The case of Two Agents. First, we consider the case of two agents here, i.e., m = 2.

Later, we will show the reduction from general m to m = 2.
We have

b = Zgl,j “P1, and by = Zgz,j “P2,5,
J J

and the parameter for the second agent after the update is given by: wh = o (note that

s
wy =1).
Accordingly, the loads after the update are given by:
/
g1,j / Wy - 92,5
L= p o — and 0 = N R
1 zg: Yt wh g ’ zg: Toggtwhgay

Assume w.l.o.g that ¢; < ¢5. First, note that, from monotonicity (Observation 10) we
have:
612 S 62 = Zmax/(l_}'_%).

Next, we have to show that
Oy < frnf (14 =t ) = 6/ (1422201 ). (1)

The proof of the lower bound on ¢} is similar and is omitted for brevity.
We use the following standard inequality:

» Fact 15 (Milne's Inequality [23]). For any a,b € R™, we have

Zaj'ij

aj - b; J€[n] JE[n]
St T Y (a4 b))
J€[n]

ICALP 2023
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In using this inequality, we set for any j € [n],

aj =p1,j and bj = py ;- (f]/ - ) where f; = g1; +ws - gaj = g1,; +wy - (1 —g1)-
2

First, we calculate each term in Milne’s inequality separately:

- 92,;')

a; - b; [ —ws 91, +wh - ga,j — wh g1 —wy - (1
iy g B 3 T - 5,
T e ! j€ln] ! j€ln] !

g1 — Wh - g1, 1 — wh
Zpl,j’]f—m_ ZPLJ 91,5 - TQ =01 - (1 —wy).
J / J€ln] ’
> 4 =h
Jj€ln]

1 /
Dobi=d b9 <w,—1) w712—£1_£2_,€1_€2 (1 —wj).

j€ln] j€ln] 2

J€[n]

Using Fact 15, we get

p1-bo
O (1—wl) < —2L "2 (1 — !
1 ( w2)_€2—€1+]51 ( wy)
By our assumption that ¢; < ¢5, and therefore w) < 1. We now get Equation (1) by
rearranging terms. This completes the proof for the lemma for the case of two agents.

4 Monotonicity and Convergence of Exponentiated Proportional
Allocations

In this section, we prove the monotonicity and convergence of EP-allocations (Theorem 8).

First, we establish monotonicity of EP-allocations (first part of Theorem 8). We compare
two EP-allocations with arbitrary learned parameters but different exponential constants.
We show that with a larger exponent, at least one agent’s load will be higher, regardless of
the parameters used.

» Lemma 16. Fiz a weight matriz P € RU;". Let a,a’ € R such that o > o/. Now, for
any two sets of learned parameters wo, Wqor € Ry, there exists an agent k € [m] such that

Ue(Pya, W) > U (P, war).

Proof. Let A denote the vector of differences of loads of the machines in the two allocations,
namely A; = £;(P,a,wy) — L;(P, o, wy). Our goal is to show that A has at least one
nonnegative coordinate.

To show this, we define a vector in the positive orthant ¢ € RZ as follows:

1

Wa,i s

¢ = <> , where p=a —a’ >0
Wa' i

and show that this vector ¢ has a nonnegative inner product with the vector A. Note that
this suffices since the inner product of a vector with all positive coordinates and one with all
negative coordinates cannot be nonnegative. In other words, we want to show the following:

> e (li(Poswe) — £i(Po/ ,war)) > 0. (2)

i1€[m]
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Let us denote the fractional allocation of an item j in the two cases by x; ; and = ;

J
respectively. Then, Equation (2) can be rewritten as
Do D pig (@i — i) 2 0.
i€[m)] j€[n]
Changing the order of the two summations, we rewrite further as
Do D cipiy (@i —aiy) | =0
j€[n] \i€[m]
We will prove this inequality separately for each item j € [n]. Namely, we will show that
Z ci - pij - (w55 — x5 ;) >0, for every j € [n]. (3)

1€[m]

Fix an item j. Since the item is fixed, we will drop j from the notation and define
u e R™ as

ui = pi - (i — 7).

So, we need to show that

c-u>0, ie, Zci-uiZO. (4)
i€[m]
‘We have
p? : wa,i p;‘ll : wa/,i
Ci * Us; = Ci; p . — n
zi: Y ZZ: o (Zi’piof * Wi Ei/pg 'wa’,i'>

1 ’ !
T Zci “Pi (p? *Wei <ZP3 'wa’,i’> — Py War (sz 'wa,i'>>
1: Z‘/ i,
where T = (Zploj' . wa/7i/> . <Zplof . U)a,i/> .
i’ v

Now, on the right hand side of the above equation, we replace a by o + p and w,,; by
Wqr; - ¢ for every ¢ € [m]. This gives us:

g Ci - U =
i
1 R A P ol e , ol P I
f Ci Pi Py "Dy Wai G Dir - War i b - Wa i Pir Dy s War i - C
7 i’ i’

= %Zb, <azbf (Zai/> — a; (Zaybﬁ>>,

’
where a; = wy; - pf and b; = p; - ¢;.

Rearranging the summations on the two terms on the right hand side, we get

S eiui = % (Zai'> 3 a bt _%, (Zai' .b§/> S

i

50:13

ICALP 2023



50:14

478

479

480

481
482
483
484
485
486

487

488
489

490
491

492
493
494

495

496

497
498
499
500

501

502

503
504
505
506
507
508
509
510
511

512

A General Framework for Learning-Augmented Online Allocation

Now, let z; = a2/2

TZCZ’U,Z

cand y; = a)/? - 67/*T? and 6 = ‘Zil.

(o) (Zen) - (Zoee) (Sos)
() () - (Somo) (o)

In the last equation, the first term follows directly from a; = z2 and a; - b’T" = 2. The
second term is more complicated. There are two cases. If p < 1, then a; -bf, = zil,H9 . yilfe and
a; -b; = zilfe . yz-He but if p > 1, then the roles get reversed and we get a; - bf, = zilfe . yil,”
and a; - b; = 20 .y =0

Now, note that 7" > 0. So, to establish ), ¢; - u; > 0, it suffices to show that the right
hard side of the equation is nonnegative. We do so by employing Callebaut’s inequality

which we state below:

Then, we have

» Fact 17 (Callebaut's Inequality [11]). For any y,z € R™ and 6 < 1, we have

() () 2 (e ) (o)

Note that we can apply Callebaut’s inequality because p > 0 implies that § < 1. This
completes the proof of the lemma.
<

» Lemma 18. Given any weight matriz P € RT;™ and any constant € > 0,

(a) there exists an « (think of a as a sufficiently large negative number) and a corresponding
set of parameters w,, such that £;(P,c,wy) < (1+ €) - (MES(P) for all i € [m).

(b) there exists an o’ (think of &' as a sufficiently large positive number) and a corresponding
set of parameters wor such that £;(P, o/, we) > (1 — €) - 65NT(P) for all i € [m].

Using Lemma 18, we complete the proof of Theorem 8.

Proof of Theorem 8. First by Lemma 11, there exists w}, and w7, such that, for all ¢ € [m],
l;(P,a,w}) = 0*(P,a) and ¢;(P, o/, w},) = *(P,a/). Now, if £*(P,a) < £*(P, ), it would
contradict Lemma 16. And combining Lemma 16 and Lemma 18, we completed the proof
the second part of Theorem 8.

<

5 Noise Resilience: Handling Predictions with Error

In this section, we show the noise resilience of our algorithms, namely that we can handle
errors in the learned parameters. First, we will show that for both objectives (MAXMIN and
MINMAX), an n-approximate set of learned parameters yields an online algorithm with a
competitive ratio of at least/at most 1. Second, for the MINMAX objective, we show that it is
possible to improve the competitive ratio further in the following sense: using a set of learned
parameters with a multiplicative error of 1 with respect to the optimal parameters, we can
obtain a O(log n)-competitive algorithm. (This was previously shown by Lattanzi et al. [17]
but only for the special case of restricted assignment.) We also rule out a similar guarantee
for the MAXMIN objective, i.e., we show that using n-approximate learned parameters, an
algorithm cannot hope to obtain a competitive ratio better than 7n/c for some constant c.
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Finally, we show that noise-resilient bounds can be obtained not just for the MINMAX and
MAXMIN objectives but also for any homogeneous monotone minimization or maximization
objective function.

Formally, a weight vector w is 7- approximate with respect to a weight vector to w*, if

for any two agents 4,1’ € [m], “i> < n- —i. First, we show a basic noise resilience property
that holds for both the MINMAX and MAXMIN objectives:

» Lemma 19. Fiz o weight matriz P € RU™ and a transformation matric G € RT; ™. For

any two parameter vectors w*, w € R7, such that w is n-approximate to w*, we have that
for any agent k:

ék(Pa Ga W*)

p <Up(P,G,w) <n-l(P,G,W").

Proof. Let y; ; = z; ;(G,w*) and z; ; = z; ;(G,w) be the respective fractional allocations
under proportional allocation using the transformation matrix G. For an agent i, let
T = w;/wy. Then for any two agents i, k, we have that 1/n < 7/7; < 1. We have,
25 =3 e im) = Yir,j- Therefore,

Zi,g

Yij Tyl 1 1

TR IECHTIED yE SHEE I SR R

g, Ti s n

i'e[m)] i’ €[m)] i’€[m]
;7]:2 yz,g_znng‘*ﬂ Zylj*n
©J i/ €[m] Ti i’ €[m]

Hence, y; j /1 < 2z;; < y;,; - 1. Finally, the lemma hold by summing over all items. |

The next theorem follows immediately by using a proportional allocation according to
the parameter vector w:

» Theorem 20. Fiz any P,G € RT[". Let w be a learned parameter vector that gives a
solution of value v for the MAXMIN (Tesp., MINMAX ) objective using proportional allocation.
Let w be n-approximate to w for some > 1. Then, there exists an online algorithm that
given W generates a solution with value at least Q(y/n) (resp., at most O(ny)).

In particular, if w is the optimal learned parameter vector in the above theorem and w
is an n-approximation to it, then we obtain a competitive ratio of Q(1/7).

The rest of this section focuses on the MINMAX objective for which we can obtain
an improved bound. In the next lemma, we establish an upper bound on the load, using
Lemma 19 and monotonicity.

» Lemma 21. Fiz a weight matriz P €
any two parameter vectors w*, w € R, such that there exists an agent k € [m] for which

RZS™ and a transformation matriz G € RZ;™. For

wi/2 < wy, < wi and for all other agents i # k, we have w; > w} /2, then the following
holds: £i(P,G,w) <2 {,(P,G,w").

Proof. Define w’ where wj, = wj (i.e., the maximum in its allowed range) and w; = w} /2 for
all i # k (i.e., the minimum in their allowed ranges). Now, by monotonicity (Observation 10),
we have zy, ;(G,w) < 23 ;(G,w'), and therefore, 0, (P,G,w) < £,,(P,G,w'). Note that for
w’, for any two agents i1, iz, wzl <2. . Therefore, by Lemma 19, we have (P, G, w') <

2 -, (P,G,w*). By combining the two 1nequaht1es we have {,(P,G,w) < {,(P,G,w')
2 -4 (P,G,w™), as required.

<
<
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Algorithm 2 The online algorithm with predictions.

Let W a prediction vector and 7T is the offline optimal objective for the MINMAX
problem.
Initialize: ¢; <— 0 and w; < 0, for all i € [m]
For each item j:
J(pij) Wi
> fpirg) -
i’€[m)]
Ui ¢, + Dij * T4, for all 7 € [m]
If exists i € [m], s.t. £, >2-T
Set Ez +~0
Update w; < w;/2

Compute z; ; =

Let us denote the predicted learned parameter vector that is given offline to the MINMAX
algorithm by w. We also assume that the algorithm knows the optimal objective value T
By scaling, we assume w.l.o.g that W is coordinate-wise larger than the optimal learned
parameter vector w. The algorithm uses a learned parameter vector w that is iteratively
refined, starting with w = w (see Algorithm 2). In each iteration, the current parameter
vector w is used to determine the assignment using proportional allocation until an agent’s
load in the current phase exceeds 27T. If this happens for any agent ¢, then the algorithm
halves the value of w;, starts a new phase for agent i, and continues doing proportional
allocation with the updated learned parameter vector w.

» Theorem 22. Fiz any P,G € RZ;". Let w be a learned parameter vector that gives
a fractional solution with mazimum load T wusing proportional allocation. Let W be an n-
approzimate prediction for w. Then there exists an online algorithm that given W generates
a fractional assignment of items to agents with mazimum load at most O(T logn).

Proof. By the algorithm’s definition, an agent’s total load is at most 27" times the number
of phases for the agent. We show that for any agent i, the parameter w; is always at least
w; /2. This immediately implies that the number of phases for machine i is O(logn), which
in turn establishes the theorem.

Suppose, for contradiction, in some phase for agent k, we have Wy, < wg/2. Moreover,
assume w.l.o.g. that agent k is the first agent for which this happens. Clearly, by the
algorithm definition, there is a preceding phase for agent k when @y < wy. Note that, in
this entire preceding phase, we have wy > Wy, > wy/2, and for all i # k, w; > w;/2 (by
our assumption that k is the first agent to have a violation). However, by Lemma 21, the
load of agent k in the preceding phase would be at most 27". This contradicts the fact that
the algorithm started a new phase for agent k& when its load exceeded 27T in the preceding
phase. |

In the full version of the paper, we show that the bounds obtained above for the MAXMIN
and MINMAX objectives are asymptotically tight.

6 Learnability of the Parameters

We consider the learning model introduced by [18], and show that under this model, the
parameter vector w can be learned efficiently from sampled instances. Specifically, we consider
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the following model: the jth item (i.e., the values of p; = (p; ; : @ € [m]) is independently
sampled from a (discrete) distribution D;. In other words, the matrix P of utilities is sampled
from D = x;D;.

We set up the model for the MAXMIN objective; the setup for the MINMAX objective
is very similar and is omitted for brevity. Let T = Ep.p[(SNT(P)] be the expected value

of the MAXMIN objective in the optimal solution for an instance /SNT(P) drawn from D.

Morally, we would like to say that we can obtain a vector w that gives a nearly optimal
solution (in expectation) using proportional allocation (i.e., a MAXMIN objective of (1 —¢€)-T
in expectation for some error parameter €) using a bounded (as a function of €) number of
samples. Similar to [18], we need the following assumption:

Small Items Assumption: Conceptually, this assumption states that each individual
item has a small utility compared to the overall utility of any agent in an optimal solution.

Precisely, we need p; ; < % for every i € [m], j € [n] for some value ( = © <1°§2m).
Our main theorem in this section for the MAXMIN and MINMAX objectives are:

» Theorem 23. Fiz an ¢ > 0 for which the small items assumption holds. Then, there is an
10?7”
(with high probability) a prediction vector w such that using w in the proportional allocation

(learning) algorithm that samples O( -log ") independent instances from D and outputs
scheme gives a MAXMIN objective of at least (1 — Q(e)) - T in expectation over instances

P ~D.

» Theorem 24. Fix an ¢ > 0 for which the small items assumption holds. Then, there
is an (learning) algorithm that samples O(g% - log *) independent instances from D and
outputs (with high probability) a prediction vector w such that using w in the proportional
allocation scheme gives a MINMAX objective of at most (1 + O(e))T in expectation over

instances P ~ D.

Importantly, the description of the entries of w in Theorem 23 and Theorem 24 are

bounded. Specifically, let us define NET(m,e) C RZ; as follows: (a) for the MAXMIN

objective, w € NET(m,¢) if there exist vectors u,d € RT, such that w; = 3:; and

i

U, 0; € {<1i6)r S [K]} for some K = O(" log ), and (b) for the MINMAX objective,
¥,

w € NET'(m,¢) if there exist vectors u,d € R, such that w; = J& and w;,d; €
{(1+¢)": 7 € [K]} for some K = O(Z1log ). The vectors w produced by the learning
algorithm in Theorem 23 and Theorem 24 will satisfy w € NET(m, ¢) and w € NET'(m, €)

in the respective cases.

Proof Idea for Theorem 23 and Theorem 24. Recall that in PAC theory, the number
of samples needed to learn a function from a family of N functions is about O(log V). Indeed,

restricting w to be in the class NET(m,¢) or NET'(m, €) serves this role of limiting the
hypothesis class to a finite, bounded set since |[NET(m, €)| = [NET'(m, ¢)| = K?™ where
K = O("log ™). Using standard PAC theory, this implies that using about O(mlog K) =
O(m-log ™) samples, we can learn the “best” vector in NET(mn, €) or NET'(m, €) depending
on whether we have the MAXMIN or MINMAX objective. Our main technical work is to
show that this “best” vector produces an approximately optimal solution when used in
proportional allocation. We state this lemma next:

» Lemma 25. Fiz any P. For the MAXMIN objective, there exists a learned parameter
vector w € NET(m, ¢) which when used in EP-allocation gives a 1 — Q(€) approximation.
For the MAXMIN objective, there exists a learned parameter vector w' € NET (m,€) which
when used in EP-allocation gives a 1+ O(e) approximation.
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7 Generalization to Well-Behaved Objectives
We first generalize Theorem 6 to all well-behaved functions.

» Theorem 26. Fix any instance of an online allocation problem with divisible items where
the goal is to maximize or minimize a monotone homogeneous objective function. Then, there
exists an online algorithm and a learned parameter vector in RT that achieves a competitive
ratio of 1 — € (for mazimization) or 1+ € (for minimization).

Proof. Fix an objection function f and a matrix P € RZ{". Let élf denote the load of agent

7 in an optimal solution for objective function f. Also, let z;,; denote the fraction of item j
ng] .
By the monotonicity property of f, the optimal objective value for P is 1. Therefore, 1tl)y
Theorem 8, there exist o and W, such that using an EP-allocation, we get £*(P, o, W) > 1 —e¢
for maximization and £*(P, o, W) < 1+ ¢ for minimization. Let z} ; be the fraction of item j

assigned to agent ¢ in this approximate solution. By the deﬁmtlon of EP-allocation, z7 ; is

assigned to agent ¢ in this optimal solution. Now, consider the matrix P, where p;, =

«
proportional to pg'; - w; = (i}—/) =pf;- (Zf) Thus, if we define w such that w; = (Ef)a,
then the corresponding EP-allocation gives a (1 — €)-approximate solution for maximization
and (1 + €)-approximate solution for minimization. <

7.1 Noise Resilience

Next, we consider noise resilience for well-behaved functions, i.e., we generalize Theorem 20
to all well-behaved objective functions. This follows immediately from Lemma 19 and the
observation that if all loads are scaled by 7, then the objective value for a well-behaved
objective is also scaled by 1. We state this generalized theorem below:

» Theorem 27. Fiz any P,G € RU{" and any monotone, homogeneous function f. Let w
be a learned parameter vector that gives a solution of objective value v using EP-allocation.
Let w be n-approximate to w for some nn > 1. Then, the EP-allocation for W gives a solution
with value at least v/n for mazimization and at most 1y for minimization.

7.2 Learnability

Finally, we consider learnability of parameters for well-behaved functions, i.e., we generalize
Theorem 23 and by assuming additional property of the objective function:

For a maximization objective f, we need superadditivity: f(3_, 0r) > >, f(4y).
For a minimization objective f, we need subadditivity: (>, ¢,) <. f(¢).

» Theorem 28. Let f be a well-behaved function. If f is superadditive, the following
theorem holds for maximization of f, while if f is subadditive, the following theorem holds
for minimization of f. Let T be the expectation of the maximum value of f over instances
sampled from D. Fiz an € > 0 for which the small items assumption holds. Then, there is an
(learning) algorithm that samples O(i53% - log ') independent instances from D and outpuls
(with high probability) a prediction vector w such that using w in the EP-allocation gives
a value of f that is at least (1 — Q(¢)) - T for mazimization and at most (14 O(e)) - T for
minimization, in expectation over instances P ~ D.
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8 Conclusion and Future Directions

In this paper, we gave a unifying framework for designing near-optimal algorithm for fractional
allocation problems for essentially all well-studied minimization and maximization objectives
in the literature. The existence of this overarching framework is rather surprising because
the corresponding worst-case problems exhibit a wide range of behavior in terms of the best
competitive ratio achievable, as well as the techniques required to achieve those bounds.
It would be interesting to gain further understanding of the optimal learned parameters
introduced in this paper. One natural conjecture is that these are optimal dual variables
for a suitably defined convex program (for instance, such convex programs are known for
restricted assignment and b-matching [1]). Another interesting direction of future work would
be to explore other polytopes beyond the simple assignment polytope considered in this
paper, such as that corresponding to congestion minimization problems.
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