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Abstract7

Online allocation is a broad class of problems where items arriving online have to be allocated to8

agents who have a fixed utility/cost for each assigned item so to maximize/minimize some objective.9

This framework captures a broad range of fundamental problems such as the Santa Claus problem10

(maximizing minimum utility), Nash welfare maximization (maximizing geometric mean of utilities),11

makespan minimization (minimizing maximum cost), minimization of `p-norms, and so on. We focus12

on divisible items (i.e., fractional allocations) in this paper. Even for divisible items, these problems13

are characterized by strong super-constant lower bounds in the classical worst-case online model.14

In this paper, we study online allocations in the learning-augmented setting, i.e., where the15

algorithm has access to some additional (machine-learned) information about the problem instance.16

We introduce a general algorithmic framework for learning-augmented online allocation that produces17

nearly optimal solutions for this broad range of maximization and minimization objectives using18

only a single learned parameter for every agent. As corollaries of our general framework, we improve19

prior results of Lattanzi et al. (SODA 2020) and Li and Xian (ICML 2021) for learning-augmented20

makespan minimization, and obtain the first learning-augmented nearly-optimal algorithms for the21

other objectives such as Santa Claus, Nash welfare, `p-minimization, etc. We also give tight bounds22

on the resilience of our algorithms to errors in the learned parameters, and study the learnability of23

these parameters.24
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1 Introduction33

Recent research has focused on obtaining learning-augmented algorithms for many online34

problems to overcome pessimistic lower bounds in competitive analysis. In this paper,35

we consider the online allocation framework in the learning-augmented setting. In this36

framework, a set of (divisible) items have to be allocated online among a set of agents, where37

each agent has a non-negative utility/cost for each item. This framework captures a broad38

range of classic problems depending on the objective one seeks to optimize. In load balancing39

(also called makespan minimization), the goal is to minimize the maximum (MinMax) cost40

of any agent. A more general goal is to minimize the `p-norm of the cost vector defined on41

the agents, for some p ≥ 1. Both makespan minimization (which is `∞-minimization) and42

`p-minimization are classic problems in scheduling theory and have been extensively studied43

in competitive analysis. In a different vein, the online allocation framework also applies to44
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50:2 A General Framework for Learning-Augmented Online Allocation

maximization problems, where the allocation of an item obtains some utility for the receiving45

agent. This includes the famous Santa Claus problem, where the goal is to maximize the46

minimum (MaxMin) utility of any agent, or the maximization of Nash welfare which is47

defined as the geometric mean of the agents’ utilities. These maximization objectives have48

also been been extensively studied, particularly because of their connection to fairness in49

allocations.50

Learning-Augmented Online Allocation. In this paper, we consider the online allocation51

framework in the learning-augmented setting. Typically, online allocation problems are52

characterized by strong super-constant lower bounds in competitive analysis, e.g., Ω(logm)53

for load balancing [7], Ω(p) for `p-minimization [4] and Ω(m) for both Santa Claus (folklore)54

and Nash welfare [9]. A natural question, then, is whether some additional (machine-learned)55

information about the problem instance (we call these learned parameters) can help overcome56

these lower bounds and obtain a near-optimal solution. In this paper, we answer this57

question in the affirmative. In particular, we give a simple, unified framework for obtaining58

near-optimal (fractional) allocations using a single learned parameter for every agent. Our59

result holds for both maximization and minimization problems, and applies to all objective60

functions that satisfy two mild technical conditions that we define below. Indeed, the most61

interesting aspect of our techniques and results is this generality: prior work for online62

allocation problems, both in competitive analysis and beyond worst-case algorithms, has63

typically been specific to the objective at hand, and the techniques for maximization and64

minimization objectives bear no similarity. In contrast, our techniques surprisingly handles65

not only a broad range of objectives but applies both to maximization and minimization66

problems simultaneously. We hope that the generality of our methods will cast a new light67

on what is one of the most important classes of problems in combinatorial optimization.68

Before proceeding further, we define the two technical conditions that the objective69

function of the online allocation problem needs to satisfy for our results to apply. Let70

f : Rm>0 → R>0 be the objective function defined on the vector of costs/utilities of the agents.71

Then, the conditions are:72

Monotonicity: f is said to be monotone if the following holds: for any `, `′ ∈ Rm>0 such73

that `i ≥ `′i for all i ∈ [m], we have f(`) ≥ f(`′).74

Homogeneity: f is said to be homogeneous if the following holds: for any `, `′ ∈ Rm>0 such75

that `′i = α · `i for all i ∈ [m], then we have f(`′) = α · f(`).76

We say an objective function is well-behaved if it is both monotone and homogeneous. All77

online allocation objectives studied previously that we are aware of are well-behaved, including78

the examples given above.79

1.1 Our Results80

We now state our main result below:81

I Theorem 1 (Informal). Fix any ε > 0. For any online allocation problem with a well-behaved82

objective, there is an algorithm that achieves a competitive ratio of 1− ε for maximization83

problems or 1 + ε for minimization problems using a single learned parameter for every agent.84

We remark that the role of ε in the above theorem is to ensure that the learned parameter85

vector is of bounded precision.86

Comparison to Prior Work. Lattanzi et al. [17] were the first to consider online allocation87

in a learning-augmented setting. They considered a special case of the load balancing problem88
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called restricted assignment, and showed the surprising result that a single (learned) parameter89

for each agent is sufficient to bypass the lower bound and obtain a nearly optimal (fractional)90

allocation. This result was further generalized by Li and Xian [20] to the full generality91

of the load balancing problem, but instead of a single parameter, they now required two92

parameters for every agent. At a high level, their algorithm first uses one set of parameters93

to restrict the set of agents who can receive an item, and then solves the resulting restricted94

assignment problem using the second set of parameters. A a corollary of Theorem 1, we95

improve this result by obtaining a near-optimal solution using a single learned parameter96

for every agent. In both these papers, as well as in our paper, the (fractional) allocation97

uses proportional allocation. In the setting of online optimization, proportional allocations98

were used earlier by Agrawal et al. [1] for the (weighted) b-matching problem. As in our99

paper, they also gave an iterative algorithm for computing the parameters of the allocation.100

However, because the two problems are structurally very different (e.g., matching is a packing101

problem while our allocation problems are covering problems), the iterative algorithm in the102

Agrawal et al. paper is different from ours. To the best of our knowledge, our results for the103

other problems, namely Santa Claus, Nash welfare maximization, `p-norm minimization, and104

other objectives that can be defined in the online allocation framework are the first results105

in learning-augmented algorithms for these problems.106

We now state our additional results.107

Resilience to Prediction Error. A key desiderata of learning-augmented online algorithms108

is resilience to errors in the learned parameters. In other words, one desires that the109

competitive ratio of the algorithm should gracefully degrade when the learned parameters110

used in the algorithm deviate from their optimal values. For well-behaved objectives for111

both minimization and maximization problems, we give an error-resilient algorithm whose112

competitive ratio degrades gracefully with prediction error:113

I Theorem 2 (Informal). For any online allocation problem with a well-behaved objective,114

there is an (learning-augmented) algorithm that achieves a competitive ratio of O(α) when the115

learned parameter input to the algorithm is within a multiplicative factor of α of the optimal116

learned parameter for every agent. This holds for both minimization and maximization117

objectives.118

The above theorem is asymptotically tight for the MaxMin objective. But, interestingly,119

for the MinMax objective we can do better:120

I Theorem 3 (Informal). For the load balancing problem (MinMax objective), there is an121

(learning-augmented) algorithm that achieves a competitive ratio of O(logα) when the learned122

parameter input to the algorithm is within a multiplicative factor of α of the optimal learned123

parameter for every agent. Moreover, the dependence O(logα) in the above statement is124

asymptotically tight.125

An analogous statement was previously known only in the special case of restricted assignment [17].126

127

I Remark 4. We use a multiplicative measure of error α similar to [17]. For both MinMax128

and MaxMin objectives, we may assume w.l.o.g. that α ≤ m. This is because by standard129

techniques, it is possible to achieve O(min(α,m)) and O(log min(α,m)) competitiveness130

for the MaxMin and MinMax objectives respectively. We also show that our bounds are131

asymptotically tight as a function of α, in addition to matching existing lower bounds for132

the two problems as a function of m.133
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50:4 A General Framework for Learning-Augmented Online Allocation

Learnability of Parameters. We also study the learnability of the parameters used in134

our algorithm. Following [20] and [18], we adopt the PAC framework. We assume that each135

item is drawn independently (but not necessarily identically) from a distribution, and show136

a bound on the sample complexity of approximately learning the parameter vector under137

this setting. For the MaxMin and MinMax objectives, we show the following:138

I Theorem 5 (Informal). Fix any ε > 0. For the online allocation problem with MaxMin or139

MinMax objectives, the sample complexity of learning a parameter vector that gives a 1− ε140

(for MaxMin) or 1 + ε (for MinMax) approximation is O( m
logm · log m

ε ).141

We note that a similar result was previously known for the MinMax objective (Li and142

Xian [20]). We also generalize this result to all well-behaved objectives subject to a technical143

condition of superadditivity for maximization or subadditivity for minimization. All the144

objectives described earlier in the introduction satisfy these conditions.145

1.2 Our Techniques146

Our learning-augmented online algorithms for both minimization and maximization objectives147

follow from a single, unified algorithmic framework that we develop in this paper. This is148

quite surprising because in the worst-case setting, the online algorithms for the different149

objectives do not share any similarity (indeed have different competitive ratios), particularly150

between maximization and minimization problems. First, let us first consider the MinMax151

and MaxMin objectives. To use common terminology across these problems, let us call152

the cost/utility of an item j to an agent i the weight of item j for agent i and denote it153

pi,j . Our common algorithmic framework uses proportional allocation according to the154

learned parameters of the agents. Let wi denote the parameter for agent i. Normally,155

proportional allocation would entail that we allocate a fraction xi,j of item j to agent i156

where xi,j = wipi,j∑
i′
wi′pi′,j

. But, this is clearly not adequate, since it would produce the same157

allocation for both the MaxMin and MinMax objectives. Specifically, if pi,j is large for a158

pair i, j, then xi,j should be large for the MaxMin objective and small for the MinMax159

objective respectively. To implement this intuition, we exponentiate the weight pi,j by a160

fixed value α that depends on the objective (i.e., is different for MaxMin and MinMax) and161

then allocate using fractions xi,j = wip
α
i,j∑

i′
wi′p

α
i′,j

. We call this an exponentiated proportional162

allocation (or EP-allocation in short), and call α the exponentiation constant.163

Let us fix any value of α. It is clear that for both the MinMax and MaxMin objectives,164

an optimal allocation has uniform cumulative fractional weights (called load) across all agents.165

(Note that otherwise, an infinitesimal fraction of an item can be repeatedly moved from the166

most loaded to the least loaded agent to eventually improve the competitive ratio.) Following167

this intuition, we define a canonical allocation as one that sets learned parameters on the168

agents in a way that equalizes the loads on all agents. We show that the canonical allocation169

always exists and is unique. Indeed, this is true not only for all EP-allocation algorithms,170

but for a much broader class of proportional allocation schemes that we called generalized171

proportional allocations (or GP-allocations). In the latter class, we allow any transformation172

of the weights pi,j before applying proportional allocation. Thus, EP-allocations represent173

the subclass of GP-allocations where the transformation is exponentiation by the fixed value174

α. We also give a simple iterative (Sinkhorn-like) algorithm for computing the optimal learned175

parameters, and establish its convergence properties, for GP-allocations. GP-allocations give176

an even larger palette of proportional allocation schemes to choose from than EP-allocations,177
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and we hope it will be useful in future work for problem settings that are not covered in this178

paper (e.g., non-linear utilities).179

Finally, we need to set the value of α specifically for the MinMax and MaxMin180

objectives. Intuitively, it is clear that we need to set α to a large positive value for the181

MaxMin objective and a large negative value for the MinMax objective. Indeed, we show182

that in the limit of α→∞ and α→ −∞, the canonical allocation defined above recovers183

optimal allocations for the MaxMin and MinMax objectives respectively. We also show a184

monotonicity property of the optimal objective (with the value of α) that can be used to185

set α to a finite value (function of ε) and obtain a 1− ε (resp., 1 + ε) approximation for the186

MaxMin (resp., MinMax) objective, for any ε > 0.187

Now that we have described the EP-allocation scheme for obtaining nearly optimal188

algorithms for the MinMax and MaxMin objectives, we generalize to all well-behaved189

objective functions. This is quite simple. The main advantage of the MinMax and MaxMin190

objectives that is not shared by other objectives is the property that the optimal solution191

has uniform load across all agents. Now, suppose for a maximization objective, the load of192

agent i in an optimal solution is si (we call this the scaling parameter for agent i). For now,193

suppose these values si are also provided offline as a second set of parameters. Then, we194

can first scale the weights pi,j using these parameters to obtain a new instance qi,j = pi,j
si

.195

Clearly, the optimal solution for the original instance has uniform load across all agents196

for the transformed instance. Indeed, by the monotonicity of the maximization objective,197

this solution for the transformed instance is also optimal for the MaxMin objective. Using198

the above analysis for the MaxMin objective, we can now claim that there exist learned199

parameters wi for i ∈ [m] such that setting xi,j = wiq
α
i,j∑

i′
wi′q

α
i′,j

gives an optimal solution to200

the original instance of the problem. Now, note that201

xi,j =
wiq

α
i,j∑

i′ wi′q
α
i′,j

=
(wi/sαi )pαi,j∑
i′(wi′/sαi′)pαi′,j

=
w′ip

α
i,j∑

i′ w
′
i′p

α
i′,j

for w′i = wi/s
α
i .202

It follows that by using learned parameters w′i in an EP-allocation on the original instance,203

we can obtain an optimal solution for the original maximization objective. (The case for204

a minimization objective is identical to the above argument, with the MaxMin objective205

being replaced by the MinMax objective.) Finally, using the homogeneity of the objective206

function, we can also set α to a finite value (function of ε) and obtain a 1− ε (resp., 1 + ε)207

approximation for the maximization (resp., minimization) objective, for any ε > 0.208

1.3 Related Work209

Learning-augmented online algorithms were pioneered by the work of Lykouris and Vassilvikskii [21]210

for the caching problem, and has become a very popular research area in the last few years.211

The basic idea of this framework is to augment an online algorithm with (machine-learned)212

predictions about the future, which helps overcome pessimistic worst case lower bounds213

in competitive analysis. Many online allocation problems have been considered in this214

framework in scheduling [27, 5, 6, 8, 15, 24], online matching [2, 13, 16], ad delivery [22, 19],215

etc. The reader is referred to the survey by Mitzenmacher and Vassilvitskii [25, 26] for216

further examples of online learning-augmented algorithms. The papers specifically related to217

our work are those of Lattanzi et al. [17] and Li and Xian [20] that we described above, and218

that of Lavastida et al. [18] that focuses on the learnability of the parameters for the same219

problem. As mentioned earlier, Agrawal et al. [1] used the proportional allocation framework220

earlier for the online (weighted) b-matching problem, and gave an iterative algorithm for221

computing the parameters of the allocation.222
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50:6 A General Framework for Learning-Augmented Online Allocation

We now give a brief summary of online allocation in the worst-case model. For223

minimization problems, two classic objectives are makespan (i.e., `∞ norm) and `p norm224

minimization for p > 1. The former was studied in several works (e.g., [7, 3]), eventually225

leading to an asymptotically tight bound of Θ(logm). This was later generalized to arbitrary226

`p norms, and a tight bound of Θ(p) was obtained for this case [4, 12]. For maximization227

objectives, there are Ω(m) lower bounds for many natural objectives such as MaxMin (see,228

e.g., [14]) and Nash welfare [9]. Some recent work has focused on overcoming these lower229

bounds using additional information such as monopolist values for the agents [9, 10]. While230

this improves the competitive ratio to sub-linear in m, lower bounds continue to rule out231

near-optimal solutions (or even constant factor approximations) that we seek in this paper.232

Organization. For most of the paper, we only consider the MinMax and MaxMin233

objectives. We establish the notation in Section 2 and give an overview of the results.234

Then, we prove these results by showing properties of GP-allocations in Section 3 and of235

EP-allocations in Section 4. Next, we give noise resilient algorithms in Section 5 and discuss236

learnability of the parameters in Section 6. Finally, in Section 7, we extend our results to237

all well-behaved objective functions via simple reductions to the MaxMin and MinMax238

objectives.239

2 Preliminaries and Results240

2.1 Problem Definition241

We have n (divisible) items that arrive online and have to be (fractionally) allocated to m242

agents. The weight of item j ∈ [n] for agent i ∈ [m] is denoted pi,j and is revealed when item243

j arrives. We denote the weight matrix244

P =

 p1,1 . . . p1,n
...

. . .
...

pm,1 . . . pm,n

 where all pi,j > 0 for all i ∈ [m], j ∈ [n].1245

A feasible allocation is given by an assignment matrix246

X =

x1,1 . . . x1,n
...

. . .
...

xm,1 . . . xm,n

 where xi,j ∈ [0, 1] for all i ∈ [m], j ∈ [n] and
m∑
i=1

xi,j = 1 for all j ∈ [n].247

Note that every item has to be fully allocated among all the agents. We use X to denote248

the set of feasible solutions. The total weight of an agent i corresponding to an allocation X249

(we call this the load of i) is given by250

`i(P,X) =
∑
j∈[n]

xi,j · pi,j ,251

and the vector of loads of all the agents is denoted `(P,X).252

The load balancing problem is now defined as253

min
X∈X

{
T : `i(P,X) ≤ T for all i ∈ [m]

}
,254

while the Santa Claus problem is defined as255

max
X∈X

{
T : `i(P,X) ≥ T for all i ∈ [m]

}
.256
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2.2 Exponentiated and Generalized Proportional Allocations257

Our algorithmic framework is simple: when allocating item j, we first exponentiate the258

weights pi,j to pαi,j for some fixed α (called the exponentiation constant) that only depends259

on the objective being optimized. Next, we perform proportional allocation weighted by the260

learned parameters wi for agents i ∈ [m]:261

xi,j =
pαi,j · wi∑

i′∈[m]

pαi′,j · wi′
.262

We call this an exponentiated proportional allocation or EP-allocation in short.263

Our main theorem is the following:264

I Theorem 6. For the load balancing and Santa Claus problems, there are EP-allocations265

that achieve a competitive ratio of 1 + ε and 1− ε respectively, for any ε > 0.266

The Canonical Allocation. In order to define an EP-allocation and establish Theorem 6,267

we need to specify two things: the vector of learned parameters w ∈ Rm>0 and the268

exponentiation constant α. First, we focus on the learned parameters. For any fixed269

α and a weight matrix P , we use learned parameters w ∈ Rm>0 that result in equal load for270

every agent. We call this the canonical allocation. The corresponding learned parameters271

and the load of every agent are respectively called the canonical parameters (denoted w∗)272

and the canonical load (denoted `∗).273

Apriori, it is not clear that a canonical allocation should even exist, and even if it274

does, that it is unique. Interestingly, we show this existence and uniqueness not just from275

EP-allocations but for the much broader class of proportional allocations where any function276

f : R>0 → R>0 (called the transformation function) can be used to transform the weights277

rather than just an exponential function. I.e.,278

xi,j = f(pi,j) · wi∑
i′∈[m]

f(pi′,j) · wi′
.279

We call this a generalized proportional allocation or GP-allocation in short.280

We show the following theorem for GP-allocations:281

I Theorem 7. For any weight matrix P ∈ Rm×n>0 and any transformation function f : R>0 →282

R>0, the canonical load for a GP-allocation exists and is unique. Moreover, it is attained by283

a unique (up to scaling) set of canonical parameters.284

We prove Theorem 7 algorithmically by giving a simple iterative (offline) algorithm that285

converges to the set of canonical parameters (see Algorithm 1). We will show later that286

the canonical allocations produced by appropriately setting the value of the exponentiation287

constant α are respectively optimal (fractional) solutions for the Santa Claus and the load288

balancing problems. Therefore, an interesting consequence of the iterative convergence of this289

algorithm to the canonical allocation is that it gives a simple alternative offline algorithm290

for computing an optimal fractional solution for these two problems. To the best of our291

knowledge, this was not explicitly known before our work.292

An interesting direction for future research would be to explore other natural classes of293

transformation functions, other than the exponential functions considered in this paper. Since294

Theorem 7 holds for any transformation function, they also admit a canonical allocation,295
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50:8 A General Framework for Learning-Augmented Online Allocation

and it is conceivable that such canonical allocations would optimize objective functions296

other than the MinMax and MaxMin functions considered here. For example, one natural297

open problem is following: are there a transformation functions whose canonical allocations298

correspond to maximizing Nash Social Welfare or minimizing p-norms of loads?299

Monotonicity and Convergence of EP-allocations. Now that we have defined the300

learned parameters in Theorem 6 as the corresponding canonical parameters, we are left to301

define the values of the exponentiation constant α for the MaxMin and MinMax problems302

respectively. We show two key properties of canonical loads of EP-allocations. First, we show303

that the canonical load is monotone nondecreasing with the value of α. This immediately304

suggests that we should choose the largest possible value of α for the MaxMin problem305

since it is a maximization problem, and the smallest possible value of α for the MinMax306

problem since it is a minimization problem. Indeed, the second property that we show is307

that in the limit of α → ∞, the canonical load converges to the optimal objective for the308

Santa Claus problem (we denote this optimal value `SNT) and in the limit of α→ −∞, the309

canonical load converges to the optimal objective for the load balancing problem (we denote310

this optimal value `MKS).311

For a fixed α, let X(P, α,w) denote the assignment matrix and `(P, α,w) the load312

vector for a learned parameter vector w. Let `∗(P, α) denote the corresponding canonical313

load. We show the following properties of canonical EP-allocations:314

I Theorem 8. For any weight matrix P ∈ Rm×n>0 , the following properties hold for canonical315

EP-allocations:316

The monotonicity property: For α1, α2 ∈ R such that α1 ≥ α2, we have `∗(P, α1) ≥317

`∗(P, α2).318

The convergence property: lim
α→∞

`∗(P, α) = `SNT(P ) and lim
α→−∞

`∗(P, α) = `MKS(P ).319

Clearly, Theorem 8 implies Theorem 6 as a corollary when α is set sufficiently large for320

the Santa Claus problem and sufficiently small for the load balancing problem.321

In the rest of the paper, we will prove Theorem 7 and Theorem 8.322

3 Canonical Properties of Generalized Proportional Allocations323

In this section, we prove Theorem 7. For notational convenience, we define a transformation324

matrix G ∈ Rm×n>0 where G(i, j) = f(pi,j) for the transformation function f . Using this325

notation, we denote by xi,j(G,w) the fractional allocation of item j to agent i, and by326

`i(P,G,w) the load of agent i (we use `(P,G,w) to denote the vector of agent loads) under327

the GP-allocation corresponding to the transformation matrix G and learned parameters w.328

We say two sets of learned parameters w,w′ are equivalent (denoted w ≡ w′) if there329

exists some constant c > 0 such that w′i = c · wi for every agent i ∈ [m]. The following330

is a simple observation from the GP-allocation scheme that two equivalent sets of learned331

parameters produce the same allocation:332

I Observation 9. For any G ∈ Rm×n>0 , if w ≡ w′ ∈ Rm>0, then xi,j(G,w) = xi,j(G,w′) for333

all i, j.334

We also note that GP-allocations are monotone in the sense that if one agent’s parameter335

decreases while the rest increase, then the allocation on this agent decreases as well.336

I Observation 10. Consider any G ∈ Rm×n>0 and any nonzero vector ε ∈ Rm≥0 such that337

−wk < εk ≤ 0 for some k ∈ [m] and εi ≥ 0 for all i 6= k. Then, xk,j(G,w′) < xk,j(G,w) for338

all j ∈ [n], where w′ = w + ε and w′ 6= w.339
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Our first nontrivial property is that the load vector uniquely determines the learned340

parameters up to equivalence of the parameters.341

I Lemma 11. For any P,G ∈ Rm×n>0 , `i(P,G,w) = `i(P,G,w′) for all i ∈ [m] if and only342

if w ≡ w′.343

Proof. In one direction, if w ≡ w′, the loads are identical because the allocations are identical344

(by Observation 9).345

We now show the lemma in the opposite direction. Let k = arg mini wiw′
i
and c = wk

w′
k
.346

Let us define ŵ = c ·w′. Then, ŵk = wk, and ŵi′ =
(

mini wiw′
i

)
· w′i′ ≤ wi′ for all i′ 6= k.347

Now, if w and w′ are not equivalent, then there exists some i′ ∈ [m] such that ŵi′ < wi′ .348

Therefore, by Observation 10, xk,j(G, ŵ) > xk,j(G,w) for all j ∈ [n]. But, by Observation 9,349

xk,j(G, ŵ) = xk,j(G,w′) for all j ∈ [n]. Thus, xk,j(G,w′) > xk,j(G,w) for all j ∈ [n], which350

contradicts `k(P,G,w′) = `k(P,G,w). J351

Similarly, we show that if the canonical load exists (i.e., a load vector where all loads352

are identical), it must be unique.353

I Lemma 12. For any P,G ∈ Rm×n>0 , if there exist w,w′ ∈ Rm>0 such that `i(P,G,w) = `354

and `i(P,G,w′) = `′ for all i ∈ [m], then ` = `′.355

Proof. Assume for the purpose of contradiction that there exist w,w′ ∈ Rm>0 such that for
all i ∈ [m], `i(P,G,w) = ` and `i(P,G,w′) = `′ but ` > `′. Let k = arg mini wiw′

i
and c = wk

w′
k
,

and let ŵ = c ·w′. We have

`′ = `k(P,G,w′) = `k(P,G, ŵ) ≥ `k(P,G,w) = `,which is a contradiction.

Here, the second equality is by Observation 9, and the inequality is by Observation 10, since356

ŵk = wk, and ŵi ≤ wi for i ∈ [m]. J357

3.1 Convergence of Algorithm 1358

The rest of this section focuses on showing the existence of a canonical allocation for GP-359

allocations. We do so by showing convergence of the following simple iterative algorithm360

(Algorithm 1):361

Algorithm 1 The iterative algorithm showing the existence of a canonical allocation for
GP-allocations.

Initialize: w(0) ← 1m

Iteration r:

Compute `(r) as `(r)
i ← `i(P,G,w(r)), for all i ∈ [m], where `i(P,G,w(r)) is the load of

agent i under the GP-allocation with transformation matrix G and learned parameters
w(r).
Set w(r+1) as w(r+1)

i ← w
(r)
i

`
(r)
i

· γ(r), for all i ∈ [m].

Here, γ(r) ∈ R>0 is a scaling factor whose value does not affect the load (by
Observation 9). But, by using, e.g., γ(r) = `

(r)
1 , we can ensure that the algorithm

terminates with a single set of learned parameters instead of repeatedly finding
equivalent sets of parameters after it has converged.
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Note that Algorithm 1 ensures that if the loads of all agents are uniform at any stage,362

then the iterative process has converged and the algorithm terminates. So, it remains to363

show that for any P,G ∈ Rm×n>0 , this iterative process reaches a set of parameters w∗ ∈ Rm>0364

such that `i(P,G,w∗) = `i′(P,G,w∗) for all i, i′ ∈ [m].365

Our proof has two parts. The first part shows that the maximum and minimum loads366

are (weakly) monotone over the course of the iterative process. For this, we focus on a367

single iteration. For a vector ` ∈ Rm>0, let `max = maxi∈[m] `i and `min = mini∈[m] `i be the368

maximum and minimum coordinates of `. We will show that if `(r)
max and `(r)

min are not equal369

at the beginning of an iteration, then `(r)
max can only decrease (or stay unchanged) and `(r)

min370

can only increase (or stay unchanged) in a single iteration.371

I Lemma 13. Consider any P,G ∈ Rm×n>0 , γ > 0. Let w,w′, `, `′ ∈ Rm>0 such that `i =372

`i(P,G,w), `′i = `i(P,G,w′) and w′i = wi
`i
· γ and let p̃i =

∑
j pi,j. Then, we have `′i ≥373

`min/
(

1− `i−`min
p̃i

)
and `′i ≤ `max/

(
1+ `max−`i

p̃i

)
374

In the second part, we show that the ratio `(r)
max
`

(r)
min

is strictly decreasing after a finite375

number of iterations. The proof of this stronger property requires the per-iteration weak376

monotonicity property that we establish in the first part of the proof.377

I Lemma 14. Let P,G ∈ Rm×n>0 be given fixed matrices. Fix an iteration r in Algorithm 1378

where `(r)
max > `

(r)
min. Let `(r)

max ≥ (1 + ε) · `(r)
min for some ε ∈ (0, 1]. Then, in the next iteration,379

we have `(r+1)
min ≥ (1 + c · ε) · `(r)

min for some constant c > 0 that only depends on P and G.380

Using Lemma 13 and Lemma 14, we complete the proof of Theorem 7.381

Proof of Theorem 7. We are given fixed matrices P,G ∈ Rm×n>0 . Let `(r)
max, `

(r)
min denote the382

maximum and the minimum load respectively in iteration r of Algorithm 1. Let c > 0 be the383

constant (that depends only on P,G) in Lemma 14.384

For a non-negative integer a, let ra be defined recursively as follows:385

ra = ra−1 +
⌈

log(1 + 2−a+1)
log (1 + c · 2−a)

⌉
+ 1, where r0 =

⌈
log
(
`(0)

max/`(0)
min

)
log (1 + c)

⌉
+ 1.386

We will show for any a, in any iteration r ≥ ra, we have `(r)
max/`(r)

min ≤ 1 + 2−a. First, we prove387

it for a = 0. If there exists some r ≤ r0 such that `(r)
max/`(r)

min ≤ 2, then this also holds for388

r ≥ r0 by Lemma 13. Otherwise, for all r ≤ r0 we have `(r)
max/`(r)

min > 2. Then, using Lemma 14389

with ε = 1, we get `(r+1)
min ≥ (1 + c) · `(r)

min. Therefore, `(r0)
min ≥ (1 + c)r0 · `(0)

min > `
(0)
max by our390

choice of r0. This contradicts Lemma 13, thereby showing that `(r)
max/`(r)

min ≤ 2 for any r ≥ r0.391

Now, we show the inductive case. Assume the inductive hypothesis that `
(ra−1)
max /`(ra−1)

min ≤
1 + 2−(a−1). We will prove that `(ra)

max/`(ra)
min ≤ 1 + 2−(a). The proof is similar to the base

case of a = 0. If there exists some r ≤ ra such that `(r)
max/`(r)

min ≤ 1 + 2−a, then this
inequality also holds for any r ≥ ra by Lemma 13. Otherwise, for all r ≤ ra we have
`(r)

max/`(r)
min > 1 + 2−a. Then, for all ra−1 ≤ r ≤ ra, using Lemma 14 with ε = 2−a, we have

`
(r+1)
min ≥ (1 + c · 2−a) · `(r)

min. Therefore, `(ra)
min ≥ (1 + c · 2−a)ra−ra−1 · `(ra−1)

min . By our choice
of ra, this implies `(ra)

min > (1 + 2−(a−1)) · `(ra−1)
min . By the induction hypothesis, this implies

`
(ra)
min > `

(ra−1)
max . But, this implies `(ra)

max > `
(ra−1)
max , which contradicts Lemma 13. Therefore,

lim
r→∞

`(r)
max/`(r)

min = 1,

and `∗(P,G) = lim
r→∞

`(r)
max. Moreover, by Lemma 12 this value is uniquely defined and attained392

by a unique (up to scaling) set of learned parameters.393

J394



I.R. Cohen and D. Panigrahi 50:11

3.2 Weak Monotonicity of the Maximum and Minimum Loads in395

Algorithm 1: Proof of Lemma 13396

For ease of description, we assume that G and w are normalized in the following sense:397

w = 1m and
∑
j

gi,j = 1.398

This transformation is local to the current iteration, and only for the purpose of this proof.
First, we explain why this change of notation is w.l.o.g. Suppose Ĝ, ŵ represent the actual
transformation matrix and learned parameters respectively. Now, we define G as follows:

gi,j = ĝi,j · ŵi∑
i′∈[m] ĝi′,j · ŵi′

,

and our new learned parameters is given by 1m.399

Note that the fractional allocation remains unchanged, i.e., xi,j(Ĝ, ŵ) = xi,j(G,1m) =400

gi,j , and therefore the loads are also unchanged: `i = `i(P, Ĝ, ŵ) = `i(P,G,1m) =
∑
j∈[n] gi,j ·401

pi,j . Assume w.l.o.g. (by Observation 9) that γ = `1, so ŵ′i = ŵi
`i
· `1. In the normalized402

notation, the new parameters are w′i = `1
`i
. Again, the allocation is unchanged whether we403

use the original notation or the normalized one:404

xi,j(Ĝ, ŵ′) = xi,j(G,w′) = gi,j · w′i∑
i′∈[m] gi′,j · w′i′

,405

and we have, `′i = `i(P, Ĝ, ŵ′) = `i(P,G,w′).406

The case of Two Agents. First, we consider the case of two agents here, i.e., m = 2.407

Later, we will show the reduction from general m to m = 2.408

We have409

`1 =
∑
j

g1,j · p1,j and `2 =
∑
j

g2,j · p2,j ,410

411

and the parameter for the second agent after the update is given by: w′2 = `1
`2

(note that412

w′1 = 1).413

Accordingly, the loads after the update are given by:414

`′1 =
∑
j

p1,j ·
g1,j

g1,j + w′2 · g2,j
and `′2 =

∑
j

p2,j ·
w′2 · g2,j

g1,j + w′2 · g2,j
.415

416

Assume w.l.o.g that `1 < `2. First, note that, from monotonicity (Observation 10) we
have:

`′2 ≤ `2 = `max/
(

1+ `max−`2
p̃1

)
.

Next, we have to show that417

`′1 ≤ `max/
(

1+ `max−`1
p̃1

)
= `2/

(
1+ `2−`1

p̃1

)
. (1)418

The proof of the lower bound on `′1 is similar and is omitted for brevity.419

We use the following standard inequality:420

I Fact 15 (Milne’s Inequality [23]). For any a, b ∈ Rn, we have

∑
j∈[n]

aj · bj
aj + bj

≤

∑
j∈[n]

aj ·
∑
j∈[n]

bj∑
j∈[n]

(aj + bj)
.
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In using this inequality, we set for any j ∈ [n],421

aj = p1,j and bj = p1,j ·
(
fj
w′2
− 1
)

where fj = g1,j + w′2 · g2,j = g1,j + w′2 · (1− g1,j).422

First, we calculate each term in Milne’s inequality separately:423 ∑
j∈[n]

aj · bj
aj + bj

=
∑
j∈[n]

p1,j ·
fj − w′2
fj

=
∑
j∈[n]

p1,j ·
g1,j + w′2 · g2,j − w′2

fj
=
∑
j∈[n]

p1,j ·
g1,j − w′2 · (1− g2,j)

fj
424

=
∑
j∈[n]

p1,j ·
g1,j − w′2 · g1,j

fj
=
∑
j∈[n]

p1,j · g1,j ·
1− w′2
fj

= `′1 · (1− w′2).425

∑
j∈[n]

aj = p̃1.426

∑
j∈[n]

bj =
∑
j∈[n]

p1,j · g1,j ·
(

1
w′2
− 1
)

= `1

w′2
− `1 = `2 − `1 = `2 · (1− w′2).427

428

Using Fact 15, we get429

`′1 · (1− w′2) ≤ p̃1 · `2

`2 − `1 + p̃1
· (1− w′2)430

By our assumption that `1 < `2, and therefore w′2 < 1. We now get Equation (1) by431

rearranging terms. This completes the proof for the lemma for the case of two agents.432

4 Monotonicity and Convergence of Exponentiated Proportional433

Allocations434

In this section, we prove the monotonicity and convergence of EP-allocations (Theorem 8).435

First, we establish monotonicity of EP-allocations (first part of Theorem 8). We compare436

two EP-allocations with arbitrary learned parameters but different exponential constants.437

We show that with a larger exponent, at least one agent’s load will be higher, regardless of438

the parameters used.439

I Lemma 16. Fix a weight matrix P ∈ Rm×n>0 . Let α, α′ ∈ R such that α > α′. Now, for440

any two sets of learned parameters wα,wα′ ∈ Rm>0, there exists an agent k ∈ [m] such that441

`k(P, α,wα) ≥ `k(P, α′,wα′).442

Proof. Let ∆ denote the vector of differences of loads of the machines in the two allocations,443

namely ∆i = `i(P, α,wα) − `i(P, α′,wα′). Our goal is to show that ∆ has at least one444

nonnegative coordinate.445

To show this, we define a vector in the positive orthant c ∈ Rm>0 as follows:446

ci =
(
wα,i
wα′,i

) 1
ρ

, where ρ = α− α′ > 0447

and show that this vector c has a nonnegative inner product with the vector ∆. Note that448

this suffices since the inner product of a vector with all positive coordinates and one with all449

negative coordinates cannot be nonnegative. In other words, we want to show the following:450 ∑
i∈[m]

ci · (`i(P, α,wα)− `i(P, α′, wα′)) ≥ 0. (2)451
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Let us denote the fractional allocation of an item j in the two cases by xi,j and x′i,j452

respectively. Then, Equation (2) can be rewritten as453 ∑
i∈[m]

ci ·
∑
j∈[n]

pi,j · (xi,j − x′i,j) ≥ 0.454

Changing the order of the two summations, we rewrite further as455

∑
j∈[n]

∑
i∈[m]

ci · pi,j · (xi,j − x′i,j)

 ≥ 0.456

We will prove this inequality separately for each item j ∈ [n]. Namely, we will show that457 ∑
i∈[m]

ci · pi,j · (xi,j − x′i,j) ≥ 0, for every j ∈ [n]. (3)458

Fix an item j. Since the item is fixed, we will drop j from the notation and define459

u ∈ Rm as460

ui = pi · (xi − x′i).461

So, we need to show that462

c · u ≥ 0, i.e.,
∑
i∈[m]

ci · ui ≥ 0. (4)463

We have464 ∑
i

ci · ui =
∑
i

ci · pi ·

(
pαi · wα,i∑
i′ p

α
i′ · wα,i′

− pα
′

i · wα′,i∑
i′ p

α′
i′ · wα′,i′

)
465

= 1
T
·
∑
i

ci · pi ·

(
pαi · wα,i ·

(∑
i′

pα
′

i′ · wα′,i′
)
− pα

′

i · wα′,i ·

(∑
i′

pαi′ · wα,i′
))

466

where T =
(∑

i′

pα
′

i′ · wα′,i′
)
·

(∑
i′

pαi′ · wα,i′
)
.467

468

Now, on the right hand side of the above equation, we replace α by α′ + ρ and wα,i by469

wα′,i · cρi for every i ∈ [m]. This gives us:470 ∑
i

ci · ui =471

1
T

∑
i

ci · pi

(
pα
′

i · p
ρ
i · wα′,i · c

ρ
i

(∑
i′

pα
′

i′ · wα′,i′
)
− pα

′

i · wα′,i

(∑
i′

pα
′

i′ · p
ρ
i′ · wα′,i′ · c

ρ
i′

))
472

= 1
T

∑
i

bi

(
ai · bρi

(∑
i′

ai′

)
− ai

(∑
i′

ai′ · bρi′

))
,473

where ai = wα′,i · pα
′

i and bi = pi · ci.474475

Rearranging the summations on the two terms on the right hand side, we get476

∑
i

ci · ui = 1
T
·

(∑
i′

ai′

)
·
∑
i

ai · bρ+1
i − 1

T
·

(∑
i′

ai′ · bρi′

)
·
∑
i

ai · bi477
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Now, let zi = a
1/2
i , and yi = a

1/2
i · bρ/2+1/2

i , and θ = |ρ−1|
ρ+1 . Then, we have478

T ·
∑
i

ci · ui =
(∑

i′

ai′

)
·

(∑
i

ai · bρ+1
i

)
−

(∑
i′

ai′ · bρi′

)
·

(∑
i

ai · bi

)
479

=
(∑

i′

z2
i′

)
·

(∑
i

y2
i

)
−

(∑
i′

z1+θ
i′ · y1−θ

i′

)
·

(∑
i

z1−θ
i · y1+θ

i

)
.480

In the last equation, the first term follows directly from ai′ = z2
i′ and ai · b

ρ+1
i = y2

i . The481

second term is more complicated. There are two cases. If ρ ≤ 1, then ai′ ·bρi′ = z1+θ
i′ ·y

1−θ
i′ and482

ai · bi = z1−θ
i · y1+θ

i but if ρ > 1, then the roles get reversed and we get ai′ · bρi′ = z1−θ
i′ · y1+θ

i′483

and ai · bi = z1+θ
i · y1−θ

i .484

Now, note that T ≥ 0. So, to establish
∑
i ci · ui ≥ 0, it suffices to show that the right485

hard side of the equation is nonnegative. We do so by employing Callebaut’s inequality486

which we state below:487

I Fact 17 (Callebaut’s Inequality [11]). For any y, z ∈ Rn and θ ≤ 1, we have(∑
i′

z2
i′

)
·

(∑
i

y2
i

)
≥

(∑
i′

z1+θ
i′ · y1−θ

i′

)
·

(∑
i

z1−θ
i · y1+θ

i

)

Note that we can apply Callebaut’s inequality because ρ ≥ 0 implies that θ ≤ 1. This488

completes the proof of the lemma.489

J490

I Lemma 18. Given any weight matrix P ∈ Rm×n>0 and any constant ε > 0,491

(a) there exists an α (think of α as a sufficiently large negative number) and a corresponding492

set of parameters wα such that `i(P, α,wα) ≤ (1 + ε) · `MKS(P ) for all i ∈ [m].493

(b) there exists an α′ (think of α′ as a sufficiently large positive number) and a corresponding494

set of parameters wα′ such that `i(P, α′, wα′) ≥ (1− ε) · `SNT(P ) for all i ∈ [m].495

Using Lemma 18, we complete the proof of Theorem 8.496

Proof of Theorem 8. First by Lemma 11, there exists w∗α and w∗α′ , such that, for all i ∈ [m],497

`i(P, α,w∗α) = `∗(P, α) and `i(P, α′,w∗α′) = `∗(P, α′). Now, if `∗(P, α) < `∗(P, α′), it would498

contradict Lemma 16. And combining Lemma 16 and Lemma 18, we completed the proof499

the second part of Theorem 8.500

J501

5 Noise Resilience: Handling Predictions with Error502

In this section, we show the noise resilience of our algorithms, namely that we can handle503

errors in the learned parameters. First, we will show that for both objectives (MaxMin and504

MinMax), an η-approximate set of learned parameters yields an online algorithm with a505

competitive ratio of at least/at most η. Second, for the MinMax objective, we show that it is506

possible to improve the competitive ratio further in the following sense: using a set of learned507

parameters with a multiplicative error of η with respect to the optimal parameters, we can508

obtain a O(log η)-competitive algorithm. (This was previously shown by Lattanzi et al. [17]509

but only for the special case of restricted assignment.) We also rule out a similar guarantee510

for the MaxMin objective, i.e., we show that using η-approximate learned parameters, an511

algorithm cannot hope to obtain a competitive ratio better than η/c for some constant c.512



I.R. Cohen and D. Panigrahi 50:15

Finally, we show that noise-resilient bounds can be obtained not just for the MinMax and513

MaxMin objectives but also for any homogeneous monotone minimization or maximization514

objective function.515

Formally, a weight vector w is η-approximate with respect to a weight vector to w∗, if516

for any two agents i, i′ ∈ [m], wi′wi ≤ η ·
w∗
i′
w∗
i
. First, we show a basic noise resilience property517

that holds for both the MinMax and MaxMin objectives:518

I Lemma 19. Fix a weight matrix P ∈ Rm×n>0 and a transformation matrix G ∈ Rm×n>0 . For519

any two parameter vectors w∗,w ∈ Rm>0, such that w is η-approximate to w∗, we have that520

for any agent k:521

`k(P,G,w∗)
η

≤ `k(P,G,w) ≤ η · `k(P,G,w∗).522

Proof. Let yi,j = xi,j(G,w∗) and zi,j = xi,j(G,w) be the respective fractional allocations
under proportional allocation using the transformation matrix G. For an agent i, let
τi = wi/w

∗
i . Then for any two agents i, k, we have that 1/η ≤ τk/τi ≤ η. We have,

yi,j
zi,j

=
∑
i′∈[m]

τi′
τi
· yi′,j . Therefore,

yi,j
zi,j

=
∑
i′∈[m]

τi′

τi
· yi′,j ≥

∑
i′∈[m]

1
η
· yi′,j = 1

η
·
∑
i′∈[m]

yi′,j = 1
η
, and

yi,j
zi,j

=
∑
i′∈[m]

τi′

τi
· yi′,j ≤

∑
i′∈[m]

η · yi′,j = η ·
∑
i′∈[m]

yi′,j = η.

Hence, yi,j/η ≤ zi,j ≤ yi,j · η. Finally, the lemma hold by summing over all items. J523

The next theorem follows immediately by using a proportional allocation according to524

the parameter vector w̃:525

I Theorem 20. Fix any P,G ∈ Rm×n>0 . Let w be a learned parameter vector that gives a526

solution of value γ for the MaxMin (resp., MinMax) objective using proportional allocation.527

Let w̃ be η-approximate to w for some η > 1. Then, there exists an online algorithm that528

given w̃ generates a solution with value at least Ω(γ/η) (resp., at most O(ηγ)).529

In particular, if w is the optimal learned parameter vector in the above theorem and w̃530

is an η-approximation to it, then we obtain a competitive ratio of Ω(1/η).531

The rest of this section focuses on the MinMax objective for which we can obtain532

an improved bound. In the next lemma, we establish an upper bound on the load, using533

Lemma 19 and monotonicity.534

I Lemma 21. Fix a weight matrix P ∈ Rm×n>0 and a transformation matrix G ∈ Rm×n>0 . For535

any two parameter vectors w∗,w ∈ Rm>0 such that there exists an agent k ∈ [m] for which536

w∗k/2 ≤ wk ≤ w∗k and for all other agents i 6= k, we have wi ≥ w∗i /2, then the following537

holds: `k(P,G,w) ≤ 2 · `k(P,G,w∗).538

Proof. Define w′ where w′k = w∗k (i.e., the maximum in its allowed range) and w′i = w∗i /2 for539

all i 6= k (i.e., the minimum in their allowed ranges). Now, by monotonicity (Observation 10),540

we have xk,j(G,w) ≤ xk,j(G,w′), and therefore, `k(P,G,w) ≤ `k(P,G,w′). Note that for541

w′, for any two agents i1, i2,
wi1
wi2
≤ 2 · w

∗
i1

w∗
i2
. Therefore, by Lemma 19, we have `k(P,G,w′) ≤542

2 · `k(P,G,w∗). By combining the two inequalities, we have `k(P,G,w) ≤ `k(P,G,w′) ≤543

2 · `k(P,G,w∗), as required. J544
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Algorithm 2 The online algorithm with predictions.
Let ŵ a prediction vector and T is the offline optimal objective for the MinMax
problem.
Initialize: `i ← 0 and w̃i ← ŵi, for all i ∈ [m]

For each item j:

Compute xi,j = f(pi,j)·w̃i∑
i′∈[m]

f(pi′,j) · w̃i′

`i ← `i + pi.j · xi,j , for all i ∈ [m]
If exists i ∈ [m], s.t. `i > 2 · T

Set `i ← 0
Update w̃i ← w̃i/2

Let us denote the predicted learned parameter vector that is given offline to the MinMax545

algorithm by ŵ. We also assume that the algorithm knows the optimal objective value T .546

By scaling, we assume w.l.o.g that w̃ is coordinate-wise larger than the optimal learned547

parameter vector w. The algorithm uses a learned parameter vector ŵ that is iteratively548

refined, starting with ŵ = w̃ (see Algorithm 2). In each iteration, the current parameter549

vector ŵ is used to determine the assignment using proportional allocation until an agent’s550

load in the current phase exceeds 2T . If this happens for any agent i, then the algorithm551

halves the value of ŵi, starts a new phase for agent i, and continues doing proportional552

allocation with the updated learned parameter vector ŵ.553

I Theorem 22. Fix any P,G ∈ Rm×n>0 . Let w be a learned parameter vector that gives554

a fractional solution with maximum load T using proportional allocation. Let w̃ be an η-555

approximate prediction for w. Then there exists an online algorithm that given w̃ generates556

a fractional assignment of items to agents with maximum load at most O(T log η).557

Proof. By the algorithm’s definition, an agent’s total load is at most 2T times the number558

of phases for the agent. We show that for any agent i, the parameter w̃i is always at least559

wi/2. This immediately implies that the number of phases for machine i is O(log η), which560

in turn establishes the theorem.561

Suppose, for contradiction, in some phase for agent k, we have w̃k < wk/2. Moreover,562

assume w.l.o.g. that agent k is the first agent for which this happens. Clearly, by the563

algorithm definition, there is a preceding phase for agent k when w̃k < wk. Note that, in564

this entire preceding phase, we have wk > w̃k ≥ wk/2, and for all i 6= k, w̃i ≥ wi/2 (by565

our assumption that k is the first agent to have a violation). However, by Lemma 21, the566

load of agent k in the preceding phase would be at most 2T . This contradicts the fact that567

the algorithm started a new phase for agent k when its load exceeded 2T in the preceding568

phase. J569

In the full version of the paper, we show that the bounds obtained above for the MaxMin570

and MinMax objectives are asymptotically tight.571

6 Learnability of the Parameters572

We consider the learning model introduced by [18], and show that under this model, the573

parameter vector w can be learned efficiently from sampled instances. Specifically, we consider574
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the following model: the jth item (i.e., the values of pj = (pi,j : i ∈ [m]) is independently575

sampled from a (discrete) distribution Dj . In other words, the matrix P of utilities is sampled576

from D = ×jDj .577

We set up the model for the MaxMin objective; the setup for the MinMax objective578

is very similar and is omitted for brevity. Let T = EP∼D[`SNT(P )] be the expected value579

of the MaxMin objective in the optimal solution for an instance `SNT(P ) drawn from D.580

Morally, we would like to say that we can obtain a vector w that gives a nearly optimal581

solution (in expectation) using proportional allocation (i.e., a MaxMin objective of (1− ε) ·T582

in expectation for some error parameter ε) using a bounded (as a function of ε) number of583

samples. Similar to [18], we need the following assumption:584

Small Items Assumption: Conceptually, this assumption states that each individual585

item has a small utility compared to the overall utility of any agent in an optimal solution.586

Precisely, we need pi,j ≤ T
ζ for every i ∈ [m], j ∈ [n] for some value ζ = Θ

(
logm
ε2

)
.587

Our main theorem in this section for the MaxMin and MinMax objectives are:588

I Theorem 23. Fix an ε > 0 for which the small items assumption holds. Then, there is an589

(learning) algorithm that samples O( m
logm · log m

ε ) independent instances from D and outputs590

(with high probability) a prediction vector w such that using w in the proportional allocation591

scheme gives a MaxMin objective of at least (1 − Ω(ε)) · T in expectation over instances592

P ∼ D.593

I Theorem 24. Fix an ε > 0 for which the small items assumption holds. Then, there594

is an (learning) algorithm that samples O( m
logm · log m

ε ) independent instances from D and595

outputs (with high probability) a prediction vector w such that using w in the proportional596

allocation scheme gives a MinMax objective of at most (1 + O(ε))T in expectation over597

instances P ∼ D.598

Importantly, the description of the entries of w in Theorem 23 and Theorem 24 are599

bounded. Specifically, let us define NET(m, ε) ⊆ Rm>0 as follows: (a) for the MaxMin600

objective, w ∈ NET(m, ε) if there exist vectors u, δ ∈ Rm>0 such that wi = δi
uα
i

and601

ui, δi ∈
{(

1
1−ε

)r
: r ∈ [K]

}
for some K = O(mε log m

ε ), and (b) for the MinMax objective,602

w ∈ NET′(m, ε) if there exist vectors u, δ ∈ Rm>0 such that wi = δi
uα
i

and ui, δi ∈603

{(1 + ε)r : r ∈ [K]} for some K = O(mε log m
ε ). The vectors w produced by the learning604

algorithm in Theorem 23 and Theorem 24 will satisfy w ∈ NET(m, ε) and w ∈ NET′(m, ε)605

in the respective cases.606

Proof Idea for Theorem 23 and Theorem 24. Recall that in PAC theory, the number607

of samples needed to learn a function from a family of N functions is about O(logN). Indeed,608

restricting w to be in the class NET(m, ε) or NET′(m, ε) serves this role of limiting the609

hypothesis class to a finite, bounded set since |NET(m, ε)| = |NET′(m, ε)| = K2m where610

K = O(mε log m
ε ). Using standard PAC theory, this implies that using about O(m logK) =611

O(m · log m
ε ) samples, we can learn the “best” vector in NET(m, ε) or NET′(m, ε) depending612

on whether we have the MaxMin or MinMax objective. Our main technical work is to613

show that this “best” vector produces an approximately optimal solution when used in614

proportional allocation. We state this lemma next:615

I Lemma 25. Fix any P . For the MaxMin objective, there exists a learned parameter616

vector w ∈ NET(m, ε) which when used in EP-allocation gives a 1− Ω(ε) approximation.617

For the MaxMin objective, there exists a learned parameter vector w′ ∈ NET′(m, ε) which618

when used in EP-allocation gives a 1 +O(ε) approximation.619
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7 Generalization to Well-Behaved Objectives620

We first generalize Theorem 6 to all well-behaved functions.621

I Theorem 26. Fix any instance of an online allocation problem with divisible items where622

the goal is to maximize or minimize a monotone homogeneous objective function. Then, there623

exists an online algorithm and a learned parameter vector in Rm>0 that achieves a competitive624

ratio of 1− ε (for maximization) or 1 + ε (for minimization).625

Proof. Fix an objection function f and a matrix P ∈ Rm×n>0 . Let `fi denote the load of agent626

i in an optimal solution for objective function f . Also, let xi,j denote the fraction of item j627

assigned to agent i in this optimal solution. Now, consider the matrix P̃ , where p̃i,j = pi,j

`f
i

.628

By the monotonicity property of f , the optimal objective value for P̃ is 1. Therefore, by629

Theorem 8, there exist α and w̃, such that using an EP-allocation, we get `∗(P̃ , α, w̃) ≥ 1− ε630

for maximization and `∗(P̃ , α, w̃) ≤ 1 + ε for minimization. Let x∗i,j be the fraction of item j631

assigned to agent i in this approximate solution. By the definition of EP-allocation, x∗i,j is632

proportional to p̃αi,j · w̃i =
(
pi,j

`f
i

)α
· w̃i = pαi,j · w̃i

(`f
i

)α
. Thus, if we define w such that wi = w̃i

(`f
i

)α
,633

then the corresponding EP-allocation gives a (1− ε)-approximate solution for maximization634

and (1 + ε)-approximate solution for minimization. J635

7.1 Noise Resilience636

Next, we consider noise resilience for well-behaved functions, i.e., we generalize Theorem 20637

to all well-behaved objective functions. This follows immediately from Lemma 19 and the638

observation that if all loads are scaled by η, then the objective value for a well-behaved639

objective is also scaled by η. We state this generalized theorem below:640

I Theorem 27. Fix any P,G ∈ Rm×n>0 and any monotone, homogeneous function f . Let w641

be a learned parameter vector that gives a solution of objective value γ using EP-allocation.642

Let w̃ be η-approximate to w for some η > 1. Then, the EP-allocation for w̃ gives a solution643

with value at least γ/η for maximization and at most ηγ for minimization.644

7.2 Learnability645

Finally, we consider learnability of parameters for well-behaved functions, i.e., we generalize646

Theorem 23 and by assuming additional property of the objective function:647

For a maximization objective f , we need superadditivity: f(
∑
r `r) ≥

∑
r f(`r).648

For a minimization objective f , we need subadditivity: f(
∑
r `r) ≤

∑
r f(`r).649

I Theorem 28. Let f be a well-behaved function. If f is superadditive, the following650

theorem holds for maximization of f , while if f is subadditive, the following theorem holds651

for minimization of f . Let T be the expectation of the maximum value of f over instances652

sampled from D. Fix an ε > 0 for which the small items assumption holds. Then, there is an653

(learning) algorithm that samples O( m
logm · log m

ε ) independent instances from D and outputs654

(with high probability) a prediction vector w such that using w in the EP-allocation gives655

a value of f that is at least (1− Ω(ε)) · T for maximization and at most (1 +O(ε)) · T for656

minimization, in expectation over instances P ∼ D.657
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8 Conclusion and Future Directions658

In this paper, we gave a unifying framework for designing near-optimal algorithm for fractional659

allocation problems for essentially all well-studied minimization and maximization objectives660

in the literature. The existence of this overarching framework is rather surprising because661

the corresponding worst-case problems exhibit a wide range of behavior in terms of the best662

competitive ratio achievable, as well as the techniques required to achieve those bounds.663

It would be interesting to gain further understanding of the optimal learned parameters664

introduced in this paper. One natural conjecture is that these are optimal dual variables665

for a suitably defined convex program (for instance, such convex programs are known for666

restricted assignment and b-matching [1]). Another interesting direction of future work would667

be to explore other polytopes beyond the simple assignment polytope considered in this668

paper, such as that corresponding to congestion minimization problems.669
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