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Abstract

We propose a simple boundary condition regularization strategy to reduce error propagation in pressure field reconstruc-

tion from corrupted image velocimetry data. The core idea is to replace the canonical Neumann boundary conditions with 

Dirichlet ones obtained by integrating the tangential part of the pressure gradient along the boundaries. Rigorous analysis 

and numerical experiments justify the effectiveness of this regularization.

1  Background and statement 
of the problem

Solving the pressure Poisson equation (PPE) is one popular 

approach to pressure field reconstruction from image veloci-

metry data (Van Oudheusden, 2013). Techniques such as 

particle image velocimetry (PIV) and Lagrangian particle 

tracking (LPT) provide a non-intrusive estimate of the pres-

sure gradient ∇p = g(u) = −ut − (u ⋅ ∇)u + Re
−1∇2

u in the 

domain and on the boundary via the momentum equations, 

where g is a function of the velocity field u , and Re is the 

Reynolds number.

Applying the divergence to ∇p yields the PPE:

where f is the data of the Poisson equation. To solve (1), 

boundary conditions are required. Commonly used boundary 

conditions are (i) Dirichlet boundary conditions

which define the value of the pressure on the boundaries 

and are often measured by pressure transducers and/or esti-

mated using Bernoulli’s principle in irrotational regions of 

the domain (De Kat and Van Oudheusden, 2012); as well as 

(ii) Neumann boundary conditions

which define the pressure gradient normal to the bound-

ary ( n is the outward pointing unit normal vector on the 

boundary �Ω ), and are often derived from the momentum 

equations.

While the Poisson equation benefits from the well-pos-

edness of elliptic equations, superior numerical stability, 

ease of implementation, and high computational efficiency, 

experimentation (Charonko et al. (2010); Sperotto et al. 

(2022); Zhang et al. (2022)) has shown that pressure field 

reconstruction on a domain with long Neumann boundaries 

may suffer from excessive error propagation due to contami-

nated image velocimetry data. This observation is expected 

and supported analytically for two reasons: (i) Locally, the 

error in the data near a Neumann boundary is amplified and 

‘diffuses’ further into the interior of the domain (Faiella 

et al., 2021); and (ii) globally, long Neumann boundaries 

result in a larger Poincare constant for the Laplacian opera-

tor, and thus, the error in the data may be further intensified 

when compared to a domain with Dirichlet conditions of 

the same length. For these reasons, and despite being avail-

able everywhere, Neumann boundary conditions should be 

avoided if possible (Pan et al., 2016). Alternatively, Dirichlet 

conditions are favorable for taming error propagation, but 

they are not always easily accessible in practice.

This renders a fundamental dilemma that inhibits the 

performance of the PPE for pressure field reconstruction 

from noisy velocimetry data. In an attempt to break this 

bottleneck, one idea is to replace the Neumann boundary 

(1)∇2p = f (u) = −∇ ⋅

(

�u

�t
+ (u ⋅ ∇)u −

1

Re
∇2

u

)

,

(2)p = h on �Ω,

(3)n ⋅ ∇p = g
n

on �Ω,
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conditions with derived Dirichlet ones. In this letter, we 

introduce a simple regularization strategy of this type to 

address the boundary condition dilemma, and provide a 

rigorous analysis and validation to show that this specific 

regularization can improve the quality of the pressure field 

reconstruction.

2  Boundary condition regularization

In addition to the natural choice of the canonical Neumann 

boundary conditions (denoted as cNBC hereafter) in (3), 

the momentum equations also provide the pressure gradient 

tangential to the boundary:

where g
�
 is the pressure gradient projected on � , the unit 

vector tangential to the boundary in the counterclockwise 

direction. Assigning a reference pressure p
0
 at a location 

�
0
 on the boundary and integrating (4) directly gives the 

value of the pressure which is a derived Dirichlet boundary 

condition (dDBC):

Using this dDBC to replace the cNBC for the Poisson equa-

tion yields a Dirichlet problem.

3  Analysis and error estimate

We consider a simple example to see how the regularization 

strategy proposed in Sect. 2 can improve the performance of 

the pressure field reconstruction based on a PPE with only a 

single-point Dirichlet condition provided on the boundary. 

The error-contaminated problem for a domain with cNBC 

can be described as 

 where p̃ = p + 𝜖
p
 , f̃ = f + 𝜖f  , and g̃

n
= g

n
+ 𝜖

g
n

 are the con-

taminated pressure, data, and cNBC, respectively; and �
p
 , �f  , 

and �
g

n

 are the corresponding error. Comparing (6) with (3) 

and (1) leads to a new Poisson equation with respect to the 

error in the pressure field: 

(4)� ⋅ ∇p = g
�

on �Ω,

(5)

p(�) = hd = ∫
�

�
0

� ⋅ ∇pdS + p
0
= ∫

�

�
0

g�dS + p
0

on �Ω.

(6a)∇
2p̃ = f̃ in Ω

(6b)n ⋅ ∇p̃ = g̃
n

on 𝜕Ω,

(7a)∇
2
�p = �f in Ω

(7b)n ⋅ ∇�
p
= �

g
n

on �Ω,

 For the error propagation problem of (7), if we measure �
p
 

with a space-averaged error ( ‖�p‖L2(Ω) =
�

∫ �
2

p
dΩ∕�Ω� ), 

the techniques in Pan et al. (2016) provide an estimate for 

the error in the pressure field which we present here for 

convenience:

where D
N
=
√

C
N

C
NB
��Ω�∕�Ω� is the coefficient corre-

sponding to the error contribution from the boundary. C
N

 

and C
NB

 are the Poincare constants for the problem, inde-

pendent of the image velocimetry technique, solver imple-

mentation, and spatial resolution. These constants are solely 

determined by the geometry (i.e., shape, size, and dimen-

sion) of the domain and the setup of the boundary condi-

tions. |�Ω| and |Ω| represent the size (length, area, or volume, 

depending on the dimension of the problem) of the boundary 

and the domain.

If we apply the boundary regularization strategy 

described in Sect. 2, the error-contaminated dDBC and the 

corresponding error are: 

 where �
h

d
 is the error in the dDBC. Replacing (6b) with 

(9a), the Poisson problem (6) is regularized, and the cor-

responding error propagation can be modeled by replacing 

(7b) with (9b) in (7). Similar techniques in Pan et al. (2016) 

provide an error estimate of the reconstructed pressure for 

a Dirichlet problem:

where C
D

 is the corresponding Poincare constant. Noting 

t h a t  ��hd
� ≤ ∫ �

�
0

��g�
�dS ≤ ��Ω�‖�g�

‖L2(�Ω)  ,  b y  t h e 

Cauchy–Schwarz inequality, ‖�
h

d
‖

L∞(�Ω) in (10) can be 

estimated as

Combining (10) and (11), we arrive at

which is an estimate of the error in the reconstructed pres-

sure field when the regularization described in (5) is applied. 

For a domain with a given geometry, the Poincare constant 

( C
D
 in (12)) is almost always smaller than that of the origi-

nal Neumann problem ( C
N

 in (8)). This suggests that the 

proposed regularization in (5) can improve the accuracy of 

the pressure reconstruction, especially for large domains.

(8)‖�p‖L2(Ω) ≤ CN‖�f‖L2(Ω) + DN‖�gn
‖L2(�Ω),

(9a)p̃ = h̃d on 𝜕Ω

(9b)�p = �hd
on �Ω,

(10)‖�p‖L2(Ω) ≤ CD‖�f‖L2(Ω) + ‖�hd
‖L∞(�Ω),

(11)‖�hd
‖L∞(�Ω) ≤ ��Ω�‖�g

�

‖L2(�Ω).

(12)‖�p‖L2(Ω) ≤ CD‖�f‖L2(Ω) + ��Ω�‖�g
�

‖L2(�Ω),
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Letting Ω = L × L be a two-dimensional domain, 

a concrete example is presented to demonstrate the 

effectiveness of the proposed regularization. For the problem 

equipped with cNBC, (8) becomes:

where C
N
= L

2∕�2 , C
NB

= 4L , |Ω| = L
2 , and |�Ω| = 4L . For 

the regularized problem on the same domain with dDBC, 

(12) turns into

where C
D
= L

2∕2�
2 . Comparing (13) against (14), it is obvi-

ous that the proposed regularization can produce a more 

accurate pressure reconstruction. For a square domain, C
D
 

is half of C
N

 , and an elongated rectangular domain reduces 

this factor again, further taming error propagation. This 

is achieved at the potential cost of slightly increasing the 

impact of the error in the pressure gradient on the boundary 

(the constant 4L∕�3∕2 in front of ‖�gn
‖L2(�Ω) in (13) is smaller 

than the constant 4L in front of ‖�g
�

‖L2(�Ω) in (14)). Thus, 

for experiments with high uncertainty in a sufficiently large 

domain, the boundary regularization is expected to be effec-

tive in reducing the error in the reconstructed pressure field. 

For example, letting the right hand side of (13) be greater 

than that of (14) and rearranging leads to a rough criterion 

dictating when the regularization in (5) is beneficial:

where L∗ is the critical length scale.

4  Curl‑free regularization on a closed 
boundary

If the regularization proposed in (5) is employed on a closed 

boundary, it may lead to a non-physical Dirichlet condition 

when the error on the boundary ( �
g
�

 ) is not curl-free. That 

is, after the integration indicated in (5), the pressure value at 

� = �
0
 may not be continuous ( p(�+

0
) ≠ p(�−

0
) ). If integrated 

along another direction starting from the same reference 

point and reference pressure, a different pressure along the 

boundary is expected. This should not be the case since ∇p 

is curl-free (including the path along the boundary), and 

integration on ∇p should be path-independent. To resolve 

this issue, we construct a continuous function p(�) on the 

boundary such that ∇p(�) is an interpolant or regression of 

g̃
𝜏
 , subject to the constraint p(�+

0
) = p(�−

0
) = p

0
.

(13)‖�p‖L2(Ω) ≤
L2

�2
‖�f‖L2(Ω) +

4

�3∕2
L‖�gn

‖L2(�Ω),

(14)‖�p‖L2(Ω) ≤
L2

2�2
‖�f‖L2(Ω) + 4L‖�g

�
‖L2(�Ω),

(15)L ≳ L∗ = 8𝜋2
||𝜖g𝜏

||L2(𝜕Ω) − 𝜋−3∕2||𝜖gn
||L2(𝜕Ω)

||𝜖f ||L2(Ω)

,

In 2D, one way to explicitly achieve such a Dirichlet 

boundary is by linear interpolation:

where � = (� − �
0
)∕|�Ω| and �

0
≤ � ≤ �

0
+ |�Ω| . Equation 

(16) has an apparent physical meaning and can be thought 

of as a weighted average of integration of ∇p̃ along two dif-

ferent directions, with � being a weighting parameter. For 

� = 0 or 1 , the counterclockwise or the clockwise integral 

starting from �
0
 has not yet accumulated any error, and 

thus, p(�+
0
) = p(�−

0
) = p

0
 . When � ∈ (0, 1) , (16) is a linear 

interpolation between the two integrals, and it is easy to 

verify that p
�(𝜉) = � ⋅ ∇p̃ = g̃𝜏 . This modified regulariza-

tion guarantees that the resulting h̃
d
 is continuous even if 

the contaminated pressure gradient on the boundary is not 

curl-free, and thus, this regularization can be considered as 

a curl-free boundary correction. Note, (16) is one of the 

simplest solutions, but not necessarily the only one or the 

best one; nevertheless, its advantage will be demonstrated 

in Sect. 5. Last, we want to emphasize that the core idea 

behind the boundary regularization strategy in the current 

work is to use (as accurate as possible) Dirichlet boundary 

conditions to replace Neumann boundary conditions when-

ever possible. It should be noted that the specific method to 

obtain the Dirichlet boundary condition is not limited to the 

techniques we proposed (i.e., (5) and (16)). For example, Liu 

and Moreto (2020) solved the PPE with full Dirichlet bound-

ary conditions generated using the omni-directional integra-

tion (ODI), showing that ODI-derived Dirichlet boundaries 

can also improve the reconstruction accuracy. Despite this, 

the dDBC generated by (5) or (16) is likely much cheaper 

than the ODI.

5  Numerical experiments and validation

To validate the boundary regulation strategies proposed in 

(5) and (16), a synthetic flow based on the Taylor vortex 

contaminated by artificial error is considered numerically. 

The pressure field of the Taylor vortex is

where H represents the angular moment of the vortex, � rep-

resents the kinematic viscosity of the fluid, � represents the 

density of the fluid, t represents the time, and r represents 

the distance from the origin in polar coordinates. We choose 

the parameters so that the characteristic length scale of the 

vortex is L
0
=

√

2�t = 1 , and the leading coefficient 
�H

2

64�2�t3
 

(16)

p(𝜉) = h̃d = (1 − 𝜃)∫
𝜉

𝜉0

� ⋅ ∇p̃dS

�������������������������
counter clockwise int.

+ 𝜃 ∫
𝜉

𝜉0+|𝜕Ω|

� ⋅ ∇p̃dS

�����������������������
clockwise int.

+p0,

(17)p = −

�H2

64�2�t3
exp

(

−

r2

2�t

)

,
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as well as the amplitude of the characteristic pressure for 

this flow is unity ( P
0
= 1 ). In this numerical experiment, 

the ground truth of the pressure field, the pressure gradients 

(i.e., g
n
 and g

�
 ), and the pressure Laplacian f are generated 

from (17) with the vortex located at the center of an L × L 

square domain. Bias error (i.e., �
g

n

= 1 , �
g
�

= 1 , and �f = −1 ) 

was added to the true solution to generate the synthetic data. 

This constant bias represents a global error with dominat-

ing low-frequency components and is typically challenging 

(Faiella et al., 2021). Using these synthetic data, the PPE 

was solved with the commonly used cNBC, the proposed 

dDBC, and the improved curl-free dDBC while varying the 

size of the domain. The reconstructed pressure was then 

compared to the ground truth to evaluate the error associ-

ated with each numerical experiment and is illustrated in 

Fig. 1. This test and the corresponding solver are similar 

to those employed in Pan et al. (2016), where more details 

were reported.

As shown in Fig. 1, the results from the numerical experi-

ments match the error estimates derived in Sect. 3 well. For 

the cNBC setup, the error estimate in (13) is relatively sharp, 

while the upper bound in (14) is slightly more conservative 

for the dDBC setup, meaning that the actual performance 

of the pressure solver with dDBC regularization is even 

better than expected. Both error estimates reveal the scal-

ing behavior of the error in the pressure with the length 

scale of the domain L. For two-dimensional cases, when the 

domain is large, the error in the domain ( �f  ) dominates and 

‖�p‖L2(Ω) ∼ L2 ; while for a small domain, error on the bound-

ary ( �
g

n

 or �
g
�

 ) dominates and ‖�p‖L2(Ω) ∼ L1 . The curl-free 

dDBC proposed in Sect. 4 also performs as expected, result-

ing in even less error than the two aforementioned methods, 

especially when the domain is small. This test showcases the 

power of these simple regularization strategies and validates 

the error estimates outlined in Sect. 3.

The proposed boundary regularization strategies are fur-

ther tested using synthetic data of a wake behind a cylin-

der with Re = 100 , based on free stream velocity U
∞
= 1 . 

A cropped and down-sampled high-fidelity simulation of 

the wake flow was used as the ground truth of the veloc-

ity and pressure fields. The cylinder of diameter D is cen-

tered at (x∕D, y∕D) = (0, 0) , and the cropped domain is 

(x∕D, y∕D) ∈ [2, 6] × [−4, 4] . The non-dimensional spa-

tial and temporal resolution of the down-sampled data is 

dx∕D = dy∕D = 0.0625 and dtU∞∕D = 0.1 , respectively, 

where d[⋅] denotes the resolution in time or space. Point-

wise Gaussian noise with a variance equal to 1% of the mag-

nitude of the free stream velocity was added to the ground 

truth velocity to generate the synthetic data. We reconstruct 

the pressure field with a second-order finite difference Pois-

son solver using the artificially contaminated velocity data 

and one point reference pressure at the bottom left corner 

of the domain (x∕D, y∕D) = (2,−4) while applying the 

cNBC, dDBC, and curl-free dDBC. The reconstructed pres-

sure and the error in the pressure field were normalized by 

P
0
=

1

2
�U

2

∞
 . Five hundred independent tests were carried out 

and depicted in Fig. 2.

The statistical tests in Fig. 2 show the performance of the 

three different boundary conditions with both the dDBCs 

performing much better than the cNBC as expected. In 

particular, the median error in the dDBC is reduced by 

roughly a factor of 10 when compared to the cNBC, and 

the curl-free dDBC reduces this error by an additional 

factor of ∼ 2. This is consistent with (i) the theory that an 

elongated rectangular domain can reduce error propagation 

even further when compared to a square domain as indicated 

by (13) and (14); and (ii) that the error estimate in (12) is 

rather conservative. In addition to greatly reducing the 

expected error in pressure (i.e., the mean of ‖�p‖L2(Ω)∕P
0
 in 

Fig. 2e is 1.83, 0.17, and 0.11 for cNBC, dDBC, and curl-

free dDBC case, respectively), the variance of ‖�p‖L2(Ω)∕P
0
 

is also reduced by the boundary regularization (e.g., the 

standard deviation of ‖�p‖L2(Ω)∕P
0
 is 1.27, 0.10, and 0.05 

for cNBC, dDBC, and curl-free dDBC cases, respectively). 

This means that the proposed boundary regularization 

can improve both the accuracy and precision of pressure 

reconstruction. The observation in this test can also be 

explained from the numerical perspective: The resulting 

discretized systems from the PPE (i.e., Lp = f  , where 

L is the discretized Laplacian with associated boundary 

conditions) have 2-norm condition numbers of 1.1 × 10
4 

and 4.6 × 105 with and without regularization, respectively. 

This means that the regularization improves the numerical 

Fig. 1  Error in the reconstructed pressure field ( ||�p||L2(Ω)∕P
0
 ) scal-

ing with the length scale of the domain ( L∕L
0
 ). Symbols represent 

the results from numerical experiments; the red and blue solid lines 

illustrate the error estimates indicated in (13) and (14), respectively. 

The arrowhead indicates the critical length scale derived in (15) cor-

responding to the intersection of the blue and red curves, larger than 

which, the boundary regularization by (5) is likely beneficial.
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conditioning of the problem, which is a measure of the 

sensitivity of the solution to perturbations in the data. The 

effectiveness of the boundary regularization is shown in 

Fig. 2b–d and f–h, which shows a typical case out of the 

500 tests. Without boundary regularization, high bias in the 

reconstructed pressure ( ̃p ) occurs due to the application of 

long Neumann boundaries, except for the bottom left corner 

where a transducer provides an accurate reference pressure 

(see Fig. 2b and f). From Fig. 2c and g, it is obvious that 

replacing long cNBC with dDBC can effectively tame the 

error propagation; however, error accumulating along the 

boundary due to the practice of the regularization of (5) in 

the counterclockwise direction is propagated to the interior 

of the domain (i.e., the �
p
 is higher along the left edge of 

the domain than that of the bottom edge). This artifact is 

resolved by the curl-free dDBC regularization (see Fig. 2d 

and h). This suggests that even the curl-free correction on 

the boundary alone typically results in further reduction in �
p
 

throughout the entire domain. We expect that any additional 

regularization over the domain (e.g., using a divergence–curl 

system (McClure and Yarusevych, 2019; Lin and Xu, 2023)) 

in addition to the (curl-free) boundary regularization could 

provide even further error reduction at higher computational 

cost and will be reserved for future studies.

6  Concluding remarks and perspectives

This work portrays a simple yet overlooked idea to 

regularize the velocity-based pressure field reconstruction: 

replacing the Neumann boundary conditions with 

the Dirichlet conditions derived from integrating the 

tangential part of the pressure gradient on the boundary. 

This simple practice can effectively improve the quality, 

in terms of accuracy and robustness, of the pressure field 

reconstruction from corrupted image velocimetry data, 

which is analytically proved and validated by numerical 

experiments. The corresponding error estimates provided 

in this work are conservative, i.e., pessimistic, but still 

dictate the general dynamics of error propagation.

The proposed regularization strategies are very simple 

and can make Dirichlet conditions available everywhere 

with low computational cost. This is attractive as 

the derived Dirichlet conditions provide a ‘stronger’ 

type (Faiella et al., 2021) of information on the boundary 

than cNBC alone. This ‘additional’ information on 

the boundary provides great flexibility and potential 

for more sophisticated algorithms to further improve 

the reconstruction. Our analysis is independent of the 

dimension of the domain (2D or 3D), and the continuous 

setting of the analysis indicates that the strategy works 

for structured or unstructured data based on PIV or 

Fig. 2  Typical results and 

statistical tests for pressure 

reconstruction with and without 

boundary regularization. a 

Quiver plot of the velocity field 

overlaid on the pressure field 

ground truth; b–d reconstructed 

pressure field with cNBC, 

dDBC, and curl-free dDBC, 

respectively; f–h error in the 

reconstructed pressure field by 

comparing (b–d) with (a). e 

Box plot of error in the pressure 

reconstruction from 500 inde-

pendent tests with the red, blue, 

and green boxes corresponding 

to the statistics of the error for 

cNBC, dDBC, and curl-free 

dDBC cases, respectively. 

Horizontal bars in the middle 

of the boxes show the median 

while the upper and lower edges 

of the box indicate the 25 and 

75 percentiles. The upper and 

lower whiskers bound the 95% 

confidence intervals of the error 

while the symbols within the 

boxes mark where the corre-

sponding error shown in (f–h) 

lie within the data
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LPT. Beyond establishing this family of regularization 

strategies, unlocking the full potential of this seemingly 

unconventional yet effective idea will remain a subject for 

future exploration.
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