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Abstract

We propose a simple boundary condition regularization strategy to reduce error propagation in pressure field reconstruc-
tion from corrupted image velocimetry data. The core idea is to replace the canonical Neumann boundary conditions with
Dirichlet ones obtained by integrating the tangential part of the pressure gradient along the boundaries. Rigorous analysis
and numerical experiments justify the effectiveness of this regularization.

1 Background and statement
of the problem

Solving the pressure Poisson equation (PPE) is one popular
approach to pressure field reconstruction from image veloci-
metry data (Van Oudheusden, 2013). Techniques such as
particle image velocimetry (PIV) and Lagrangian particle
tracking (LPT) provide a non-intrusive estimate of the pres-
sure gradient Vp = gw) = —u, — (u - Vyu + Re™!V2uin the
domain and on the boundary via the momentum equations,
where g is a function of the velocity field u, and Re is the
Reynolds number.
Applying the divergence to Vp yields the PPE:

P 1
V2p=f(u)=—V-(a—l;+(u~V)u—§V2u), )

where fis the data of the Poisson equation. To solve (1),
boundary conditions are required. Commonly used boundary
conditions are (i) Dirichlet boundary conditions

p=h onoQ, )

which define the value of the pressure on the boundaries
and are often measured by pressure transducers and/or esti-
mated using Bernoulli’s principle in irrotational regions of
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the domain (De Kat and Van Oudheusden, 2012); as well as
(i) Neumann boundary conditions

n-Vp=g, onoQ, 3)

which define the pressure gradient normal to the bound-
ary (n is the outward pointing unit normal vector on the
boundary d€2), and are often derived from the momentum
equations.

While the Poisson equation benefits from the well-pos-
edness of elliptic equations, superior numerical stability,
ease of implementation, and high computational efficiency,
experimentation (Charonko et al. (2010); Sperotto et al.
(2022); Zhang et al. (2022)) has shown that pressure field
reconstruction on a domain with long Neumann boundaries
may suffer from excessive error propagation due to contami-
nated image velocimetry data. This observation is expected
and supported analytically for two reasons: (i) Locally, the
error in the data near a Neumann boundary is amplified and
‘diffuses’ further into the interior of the domain (Faiella
et al., 2021); and (ii) globally, long Neumann boundaries
result in a larger Poincare constant for the Laplacian opera-
tor, and thus, the error in the data may be further intensified
when compared to a domain with Dirichlet conditions of
the same length. For these reasons, and despite being avail-
able everywhere, Neumann boundary conditions should be
avoided if possible (Pan et al., 2016). Alternatively, Dirichlet
conditions are favorable for taming error propagation, but
they are not always easily accessible in practice.

This renders a fundamental dilemma that inhibits the
performance of the PPE for pressure field reconstruction
from noisy velocimetry data. In an attempt to break this
bottleneck, one idea is to replace the Neumann boundary
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conditions with derived Dirichlet ones. In this letter, we
introduce a simple regularization strategy of this type to
address the boundary condition dilemma, and provide a
rigorous analysis and validation to show that this specific
regularization can improve the quality of the pressure field
reconstruction.

2 Boundary condition regularization

In addition to the natural choice of the canonical Neumann
boundary conditions (denoted as cNBC hereafter) in (3),
the momentum equations also provide the pressure gradient
tangential to the boundary:

t-Vp=g, onoQ, 4

where g is the pressure gradient projected on 7, the unit
vector tangential to the boundary in the counterclockwise
direction. Assigning a reference pressure p, at a location
&, on the boundary and integrating (4) directly gives the
value of the pressure which is a derived Dirichlet boundary
condition (dDBC):

13 ¢
M@=%=/1”Wﬁ+m=/gﬂﬁmomMQ
& &
5)

Using this dDBC to replace the cNBC for the Poisson equa-
tion yields a Dirichlet problem.

3 Analysis and error estimate

We consider a simple example to see how the regularization
strategy proposed in Sect. 2 can improve the performance of
the pressure field reconstruction based on a PPE with only a
single-point Dirichlet condition provided on the boundary.
The error-contaminated problem for a domain with cNBC
can be described as

Vip=f in Q (6a)

n-Vp=3g, on 0Q, (6b)

where p =p+e¢,, f =f +¢,and g, = g, + ¢, are the con-

taminated pressure, data, and cNBC, respectively; and €ps €1
and e, are the corresponding error. Comparing (6) with (3)
and (1) leads to a new Poisson equation with respect to the

error in the pressure field:

Vi, =¢ inQ (7a)

n-Ve =¢

p =€, ONOoL, (7b)
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For the error propagation problem of (7), if we measure €,

with a space-averaged error (|[€, |l;2q) = 4 /f eﬁdQ/IQl),

the techniques in Pan et al. (2016) provide an estimate for
the error in the pressure field which we present here for
convenience:

lle,ll2@) < Cyllerlla) + Dylleg 2 o0) (8

where Dy = 4/CyCypl0R2|/|Q| is the coefficient corre-

sponding to the error contribution from the boundary. Cy
and C,j are the Poincare constants for the problem, inde-
pendent of the image velocimetry technique, solver imple-
mentation, and spatial resolution. These constants are solely
determined by the geometry (i.e., shape, size, and dimen-
sion) of the domain and the setup of the boundary condi-
tions. |0Q2| and | Q| represent the size (length, area, or volume,
depending on the dimension of the problem) of the boundary
and the domain.

If we apply the boundary regularization strategy
described in Sect. 2, the error-contaminated dDBC and the
corresponding error are:

p=h;  onoQ (9a)
€, = €, on 0L, (9b)

where ¢, is the error in the dDBC. Replacing (6b) with
(9a), the Poisson problem (6) is regularized, and the cor-
responding error propagation can be modeled by replacing
(7b) with (9b) in (7). Similar techniques in Pan et al. (2016)
provide an error estimate of the reconstructed pressure for
a Dirichlet problem:

llepll2@) < Collesll iz + llen, lle oo (10)

where Cj, is the corresponding Poincare constant. Noting
4

that g, | < féo le, 1dS < [0Qlle, Il 200y, by the

Cauchy—Schwarz inequality, |[¢, [l «q) in (10) can be

estimated as

”ehd”Lm(aQ) < |aQ|”€gT”L2(()Q)' (11)
Combining (10) and (11), we arrive at
llep 2@y < Collerll o) + 10€2lleg 11200, (12)

which is an estimate of the error in the reconstructed pres-
sure field when the regularization described in (5) is applied.
For a domain with a given geometry, the Poincare constant
(Cp in (12)) is almost always smaller than that of the origi-
nal Neumann problem (Cy, in (8)). This suggests that the
proposed regularization in (5) can improve the accuracy of
the pressure reconstruction, especially for large domains.
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Letting Q=L XL be a two-dimensional domain,
a concrete example is presented to demonstrate the
effectiveness of the proposed regularization. For the problem
equipped with cNBC, (8) becomes:

I? 4
el 2y < ;”%‘”U(Q) + MLHG 200 (13)

where Cy = L? /7%, Cyp = 4L,|Q| = L%, and |0Q| = 4L. For
the regularized problem on the same domain with dDBC,
(12) turns into

L2
||€p||L2(Q) < ﬁ”%‘”[}(g) +4L|le T”[}(ag)a (14)

where Cj, = L? /2z?. Comparing (13) against (14), it is obvi-
ous that the proposed regularization can produce a more
accurate pressure reconstruction. For a square domain, Cj,
is half of Cy, and an elongated rectangular domain reduces
this factor again, further taming error propagation. This
is achieved at the potential cost of slightly increasing the
impact of the error in the pressure gradient on the boundary
(the constant 4L /7%/? in front of lle, 290, in (13) is smaller
than the constant 4L in front of ||€, ||;2(5q) in (14)). Thus,
for experiments with high uncertainty in a sufficiently large
domain, the boundary regularization is expected to be effec-
tive in reducing the error in the reconstructed pressure field.
For example, letting the right hand side of (13) be greater
than that of (14) and rearranging leads to a rough criterion
dictating when the regularization in (5) is beneficial:

Sle,

| |€g1 | |L2(ag) - ; | |L2(aQ)

L>L* =8x”

; s)
||€f||L2(Q)

where L* is the critical length scale.

4 Curl-free regularization on a closed
boundary

If the regularization proposed in (5) is employed on a closed
boundary, it may lead to a non-physical Dirichlet condition
when the error on the boundary (€,) is not curl-free. That
is, after the integration indicated in (5), the pressure value at
& = &, may not be continuous ( p(far ) # p(&;))- If integrated
along another direction starting from the same reference
point and reference pressure, a different pressure along the
boundary is expected. This should not be the case since Vp
is curl-free (including the path along the boundary), and
integration on Vp should be path-independent. To resolve
this issue, we construct a continuous function p(§) on the
boundary such that Vp(&) is an interpolant or regression of
g, subject to the constraint p(£7) = p(&;) = py.

In 2D, one way to explicitly achieve such a Dirichlet
boundary is by linear interpolation:

¢ ¢

P& =h,=(1-0) 1'-Vf7dS+9/ T - VpdS +po,
I Eo+loQ|

A / o /
g g

counter clockwise int. clockwise int.

(16)
where 0 = (¢ — &,)/|0Q| and &, < & < &, + |0Q|. Equation
(16) has an apparent physical meaning and can be thought
of as a weighted average of integration of Vp along two dif-
ferent directions, with 0 being a weighting parameter. For
0 = 0 or 1, the counterclockwise or the clockwise integral
starting from &, has not yet accumulated any error, and
thus, p(é‘g) =p(§5) = p,. When 0 € (0, 1), (16) is a linear
interpolation between the two integrals, and it is easy to
verify that p’(¢) = t - Vp = 2.. This modified regulariza-
tion guarantees that the resulting 7zd is continuous even if
the contaminated pressure gradient on the boundary is not
curl-free, and thus, this regularization can be considered as
a curl-free boundary correction. Note, (16) is one of the
simplest solutions, but not necessarily the only one or the
best one; nevertheless, its advantage will be demonstrated
in Sect. 5. Last, we want to emphasize that the core idea
behind the boundary regularization strategy in the current
work is to use (as accurate as possible) Dirichlet boundary
conditions to replace Neumann boundary conditions when-
ever possible. It should be noted that the specific method to
obtain the Dirichlet boundary condition is not limited to the
techniques we proposed (i.e., (5) and (16)). For example, Liu
and Moreto (2020) solved the PPE with full Dirichlet bound-
ary conditions generated using the omni-directional integra-
tion (ODI), showing that ODI-derived Dirichlet boundaries
can also improve the reconstruction accuracy. Despite this,
the dDBC generated by (5) or (16) is likely much cheaper
than the ODI.

5 Numerical experiments and validation

To validate the boundary regulation strategies proposed in
(5) and (16), a synthetic flow based on the Taylor vortex
contaminated by artificial error is considered numerically.
The pressure field of the Taylor vortex is

ik a 17
=- exp | —— ),
P a2 P\ T 2u a7

where H represents the angular moment of the vortex, v rep-
resents the kinematic viscosity of the fluid, p represents the
density of the fluid, 7 represents the time, and r represents
the distance from the origin in polar coordinates. We choose
the parameters so that the characteristic length scale of the
vortex is Ly = \/ﬂ = 1, and the leading coefficient pH?

64n2ve3
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as well as the amplitude of the characteristic pressure for
this flow is unity (P, = 1). In this numerical experiment,
the ground truth of the pressure field, the pressure gradients
(i.e., g, and g,), and the pressure Laplacian f are generated
from (17) with the vortex located at the center of an L X L
square domain. Bias error (i.e.,egn =1, €, = 1, and € = -1
was added to the true solution to generate the synthetic data.
This constant bias represents a global error with dominat-
ing low-frequency components and is typically challenging
(Faiella et al., 2021). Using these synthetic data, the PPE
was solved with the commonly used cNBC, the proposed
dDBC, and the improved curl-free dDBC while varying the
size of the domain. The reconstructed pressure was then
compared to the ground truth to evaluate the error associ-
ated with each numerical experiment and is illustrated in
Fig. 1. This test and the corresponding solver are similar
to those employed in Pan et al. (2016), where more details
were reported.

As shown in Fig. 1, the results from the numerical experi-
ments match the error estimates derived in Sect. 3 well. For
the cNBC setup, the error estimate in (13) is relatively sharp,
while the upper bound in (14) is slightly more conservative
for the dDBC setup, meaning that the actual performance
of the pressure solver with dDBC regularization is even
better than expected. Both error estimates reveal the scal-
ing behavior of the error in the pressure with the length
scale of the domain L. For two-dimensional cases, when the
domain is large, the error in the domain (ef) dominates and
lepll 2 ~ L?; while for a small domain, error on the bound-
ary (e, or e, ) dominates and ||€,|[2q) ~ L'. The curl-free
dDBC proposed in Sect. 4 also performs as expected, result-
ing in even less error than the two aforementioned methods,
especially when the domain is small. This test showcases the

4 0o ¢NBC, num. exp. i
o dDBC, num. exp. slope = 2
1051 * dDBC (curl-free), num. exp.
c¢NBC, error est. 7@ @
———dDBC, error est. ®
= @®
& °
S slope = 1 i
N |
= 10%7 |
= 6 |
e} . '
. |
L] - i
.
10° : L.
102 10° 102 10*
L/Ly

Fig. 1 Error in the reconstructed pressure field (||e,||2q)/Po) scal-
ing with the length scale of the domain (L/L;). Symbols represent
the results from numerical experiments; the red and blue solid lines
illustrate the error estimates indicated in (13) and (14), respectively.
The arrowhead indicates the critical length scale derived in (15) cor-
responding to the intersection of the blue and red curves, larger than
which, the boundary regularization by (5) is likely beneficial.
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power of these simple regularization strategies and validates
the error estimates outlined in Sect. 3.

The proposed boundary regularization strategies are fur-
ther tested using synthetic data of a wake behind a cylin-
der with Re = 100, based on free stream velocity U = 1.
A cropped and down-sampled high-fidelity simulation of
the wake flow was used as the ground truth of the veloc-
ity and pressure fields. The cylinder of diameter D is cen-
tered at (x/D,y/D) = (0,0), and the cropped domain is
(x/D,y/D) € [2,6] X [-4,4]. The non-dimensional spa-
tial and temporal resolution of the down-sampled data is
dx/D = dy/D = 0.0625 and dtU_, /D = 0.1, respectively,
where d[-] denotes the resolution in time or space. Point-
wise Gaussian noise with a variance equal to 1% of the mag-
nitude of the free stream velocity was added to the ground
truth velocity to generate the synthetic data. We reconstruct
the pressure field with a second-order finite difference Pois-
son solver using the artificially contaminated velocity data
and one point reference pressure at the bottom left corner
of the domain (x/D,y/D) = (2,—4) while applying the
cNBC, dDBC, and curl-free dDBC. The reconstructed pres-
sure and the error in the pressure field were normalized by
Py = % pU go Five hundred independent tests were carried out
and depicted in Fig. 2.

The statistical tests in Fig. 2 show the performance of the
three different boundary conditions with both the dDBCs
performing much better than the cNBC as expected. In
particular, the median error in the dDBC is reduced by
roughly a factor of 10 when compared to the cNBC, and
the curl-free dDBC reduces this error by an additional
factor of ~2. This is consistent with (i) the theory that an
elongated rectangular domain can reduce error propagation
even further when compared to a square domain as indicated
by (13) and (14); and (ii) that the error estimate in (12) is
rather conservative. In addition to greatly reducing the
expected error in pressure (i.e., the mean of ||€, || ;2(q, /Py in
Fig. 2e is 1.83, 0.17, and 0.11 for cNBC, dDBC, and curl-
free dDBC case, respectively), the variance of ||€, |l ;2(q)/Po
is also reduced by the boundary regularization (e.g., the
standard deviation of ||€,l;2q)/ Py is 1.27, 0.10, and 0.05
for cNBC, dDBC, and curl-free dDBC cases, respectively).
This means that the proposed boundary regularization
can improve both the accuracy and precision of pressure
reconstruction. The observation in this test can also be
explained from the numerical perspective: The resulting
discretized systems from the PPE (i.e., Lp =f, where
L is the discretized Laplacian with associated boundary
conditions) have 2-norm condition numbers of 1.1 x 10*
and 4.6 x 10° with and without regularization, respectively.
This means that the regularization improves the numerical
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Fig.2 Typical results and
statistical tests for pressure
reconstruction with and without
boundary regularization. a
Quiver plot of the velocity field
overlaid on the pressure field
ground truth; b—d reconstructed
pressure field with cNBC,
dDBC, and curl-free dDBC,
respectively; f—h error in the
reconstructed pressure field by
comparing (b—d) with (a). e
Box plot of error in the pressure
reconstruction from 500 inde-
pendent tests with the red, blue,
and green boxes corresponding
to the statistics of the error for
c¢NBC, dDBC, and curl-free
dDBC cases, respectively.
Horizontal bars in the middle
of the boxes show the median
while the upper and lower edges
of the box indicate the 25 and
75 percentiles. The upper and
lower whiskers bound the 95%
confidence intervals of the error
while the symbols within the
boxes mark where the corre-
sponding error shown in (f-h)
lie within the data
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llepl 220/ Po

-
o
N

-
i
N

conditioning of the problem, which is a measure of the
sensitivity of the solution to perturbations in the data. The
effectiveness of the boundary regularization is shown in
Fig. 2b—d and f-h, which shows a typical case out of the
500 tests. Without boundary regularization, high bias in the
reconstructed pressure (p) occurs due to the application of
long Neumann boundaries, except for the bottom left corner
where a transducer provides an accurate reference pressure
(see Fig. 2b and f). From Fig. 2c and g, it is obvious that
replacing long cNBC with dDBC can effectively tame the
error propagation; however, error accumulating along the
boundary due to the practice of the regularization of (5) in
the counterclockwise direction is propagated to the interior
of the domain (i.e., the ¢, is higher along the left edge of
the domain than that of the bottom edge). This artifact is
resolved by the curl-free dDBC regularization (see Fig. 2d
and h). This suggests that even the curl-free correction on
the boundary alone typically results in further reduction in¢,,
throughout the entire domain. We expect that any additional
regularization over the domain (e.g., using a divergence—curl
system (McClure and Yarusevych, 2019; Lin and Xu, 2023))
in addition to the (curl-free) boundary regularization could
provide even further error reduction at higher computational
cost and will be reserved for future studies.

(d) /Py
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0.5

-0.5
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2 4 6
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6 Concluding remarks and perspectives

This work portrays a simple yet overlooked idea to
regularize the velocity-based pressure field reconstruction:
replacing the Neumann boundary conditions with
the Dirichlet conditions derived from integrating the
tangential part of the pressure gradient on the boundary.
This simple practice can effectively improve the quality,
in terms of accuracy and robustness, of the pressure field
reconstruction from corrupted image velocimetry data,
which is analytically proved and validated by numerical
experiments. The corresponding error estimates provided
in this work are conservative, i.e., pessimistic, but still
dictate the general dynamics of error propagation.

The proposed regularization strategies are very simple
and can make Dirichlet conditions available everywhere
with low computational cost. This is attractive as
the derived Dirichlet conditions provide a ‘stronger’
type (Faiella et al., 2021) of information on the boundary
than ¢cNBC alone. This ‘additional’ information on
the boundary provides great flexibility and potential
for more sophisticated algorithms to further improve
the reconstruction. Our analysis is independent of the
dimension of the domain (2D or 3D), and the continuous
setting of the analysis indicates that the strategy works
for structured or unstructured data based on PIV or
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LPT. Beyond establishing this family of regularization
strategies, unlocking the full potential of this seemingly
unconventional yet effective idea will remain a subject for
future exploration.
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