
All-Pairs Max-Flow is no Harder than Single-Pair
Max-Flow: Gomory-Hu Trees in Almost-Linear

Time
Amir Abboud

Weizmann Institute of Science
amir.abboud@weizmann.ac.il

Jason Li
University of California, Berkeley

jmli@cs.cmu.edu

Debmalya Panigrahi
Duke University

debmalya@cs.duke.edu

Thatchaphol Saranurak
University of Michigan, Ann Arbor

thsa@umich.edu

Abstract—A Gomory-Hu tree (also called a cut tree) succinctly
represents (s, t) min-cuts (and therefore, (s, t) max-flow values)
of all pairs of vertices s, t in an undirected graph. In this paper,
we give an m1+o(1)-time algorithm for constructing a Gomory-
Hu tree for a graph with m edges. This shows that the all-pairs
max-flows problem has the same running time as the single-pair
max-flow problem, up to a subpolynomial factor. Prior to our
work, the best known Gomory-Hu tree algorithm was obtained
in recent work by Abboud et al. (FOCS 2022) and requires Õ(n2)
time for a graph with n vertices. Our result marks a natural
culmination of over 60 years of research into the all-pairs max-
flows problem that started with Gomory and Hu’s pathbreaking
result introducing the Gomory-Hu tree in 1961.

Index Terms—Gomory-Hu trees, Graph algorithms, All-pairs
maximum flows

I. INTRODUCTION

Let G = (V,E) be an undirected graph on n vertices and
m edges with nonnegative edge weights w(e) for e ∈ E. (We
will assume throughout that the edge weights w(e) are integers
that are polynomially bounded in n.)1 The all-pairs minimum
cuts (APMC) problem asks for the values2 of minimum (s, t)-
cuts for all pairs of vertices s, t ∈ V . By the classical
maxflow-mincut theorem, this is equivalent to the all-pairs
maximum flows (APMF) problem that asks for the values3 of
the maximum (s, t)-flows. A naı̈ve solution for these problems
is obtained by running an (s, t)-maxflow algorithm separately

AA is supported by an Alon scholarship and a research grant from the
Center for New Scientists at the Weizmann Institute of Science. This work
is part of the project CONJEXITY that has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon Europe
research and innovation programme (grant agreement No. 101078482). DP
is supported by NSF Awards CCF-1750140 (CAREER) and CCF-1955703,
and ARO Award W911NF2110230. TS is supported by NSF CAREER grant
2238138.

1The assumption of polynomially-bounded integer edge weights is not
a crucial one. For general edge weights, we incur an additional factor of
poly logW in the running time, where W is the ratio of the maximum-to-
minimum edge weight. In this extended abstract, for simplicity, we make the
polynomially-bounded assumption.

2The value of a cut is the sum of weights of edges in the cut.
3The value of a flow is the net flow exiting the source, or equivalently, the

net flow entering the sink.

for each pair of vertices s, t ∈ V . This incurs a running time
equivalent to

(
n
2

)
= Θ(n2) calls to any maxflow subroutine. In

a remarkable result in 1961 [GH61], Gomory and Hu showed
that one can do much better: the problem can be solved using
just n−1 = Θ(n) maxflow calls instead of Θ(n2) calls. Their
algorithm constructs a tree T = (V,ET) on the same set of
vertices V such that for every pair of vertices s, t ∈ V , an
(s, t)-mincut in the tree T is also an (s, t)-mincut in the graph
G and these two cuts have the same value. This tree T is called
a cut tree or a Gomory-Hu tree (GHTREE).

The 60 years that followed established the Gomory-Hu
result as truly pioneering. In particular, the concept of a
sparse representation that preserves interesting properties of
a graph has developed into an entire field, and their novel
use of submodular minimization in graphs is now ubiquitous.
Notably, theirs was also the first non-trivial algorithm for
global min-cut, a problem that subsequently became one of
the most well-studied in the literature. Moreover, GHTREE
algorithms are featured in standard textbooks in combinatorial
optimization (e.g., [AMO93], [CCPS97], [Sch03]) and have
found several diverse applications. Because of these reasons,
and the fundamental nature of the APMC and APMF prob-
lems, substantial effort has gone into obtaining faster GHTREE
algorithms. More than a dozen different algorithms were
designed for the problem, achieving faster running times in
restricted settings (see Table I and the survey [Pan16]). Much
progress was made in the last few years in the special case of
simple (unweighted) graphs [AKT21c], [AKT21a], [LPS21],
[Zha22], [AKT22]. But, Gomory and Hu’s result stood as the
best algorithm for general weighted graphs until a recent result
by Abboud et al. [AKL+22] broke this longstanding barrier
and obtained a GHTREE algorithm that runs in Õ(n2) time.
This raised the possibility of finally bridging the gap between
the running times of finding a single (s, t)-maxflow (or (s, t)-
mincut) and all-pairs maxflows (all-pairs mincuts), thereby
bringing this long history of the study of GHTREE algorithms
to a natural conclusion. In this paper, we achieve this goal
by obtaining an almost optimal algorithm for the GHTREE

problem that runs in m1+o(1) time on general weighted graphs.

Theorem I.1. There is a randomized Monte Carlo algorithm
for the GHTREE (and APMF/ APMC) problem that runs in
m1+o(1) time in general weighted graphs.

This result also settles a basic question in data structures,
where a problem is considered considered easy if it can be
solved in (almost) linear time preprocessing and (almost)
constant query time. Such solutions have long been known for
the most basic problems such as connectivity and single-source
shortest paths; while strong conditional lower bounds rule out
such results for more complex problems such as reachability
and (unrestricted) shortest paths. Up until this work it was
unclear whether min-cut and max-flow should be classified as
easy or hard when viewed through this lens (lower bounds had
only been obtained in the dynamic setting [AW14], [HKNS15],
[AVY15], [Dah16]).

Corollary I.2 (See [AKT20]). There is a data structure that
preprocesses a graph in randomized m1+o(1) time and can
return the max-flow or min-cut value for any given pair of
nodes in Õ(1) time. Moreover, it can return the edges of a
min-cut in amortized Õ(1) time per edge.

To prove Theorem I.1, our algorithm makes (s, t)-maxflow
calls on graphs that add up to at most Õ(m) edges and Õ(n)
vertices. The running time bound of the overall algorithm then
follows by using the recent breakthrough m1+o(1)-time (s, t)-
maxflow algorithm due to Chen et al. [CKL+22]. In fact,
the runing time of the algorithm outside the (s, t)-maxflow
calls is only an additive Õ(m) + n1+o(1) which means that
in moderately-dense graphs we can use the (s, t)-maxflow
algorithm due to van den Brand et al. [vdBLL+21] to get near-
linear Õ(m + n1.5) time, improving the result of [AKL+22]
even in unweighted graphs.

Theorem I.3. There is a randomized Monte Carlo algorithm
for the GHTREE (and APMF/ APMC) problem that runs in
Õ(m) + n1+o(1) time in general weighted graphs and addi-
tionally makes a set of calls to any (s, t)-maxflow algorithm
on graphs that cumulatively contain Õ(m) edges and Õ(n)
vertices.

A. Related Work

Before the recent work of Abboud et al. [AKL+22],
the time complexity of constructing a Gomory-Hu tree in
general graphs improved over the years as a by-product of
improvements in max-flow algorithms. The Õ(n2)-time Monte
Carlo algorithm of Abboud et al. [AKL+22] is fundamentally
different from (and faster than) Gomory and Hu’s algorithm.
They also further improved the running time for unweighted
graphs to m1+o(1). In this work, we match (and even improve)
the unweighted running time of Abboud et al. but for general
weighted graphs.

Besides the algorithms in Table I there has also been
practice-oriented papers proposing faster algorithms for the

problem [AIS+16], [Kol22b]; see [Kol22a] for a recent com-
parative study (and [GT01] for an older one). The applications
of GHTREE include social network analysis [AIS+16], com-
puter vision [WL93], telecommunications [Hu74], and even in
algorithms for the b-matching problem [PR82], [AV20].

Proving a conditional lower bound for GHTREE has been
a well-known open question in fine-grained complexity since
the early days of this field. This was only accomplished for
closely-related but harder variants, such as APMF in directed
graphs [KT18], [AGI+19] or undirected graphs with vertex
weights [AKT21b]. These settings are fundamentally harder
since Gomory–Hu trees may not even exist [May62], [Jel63],
[HL07]. In particular, SETH gives an n3−o(1) lower bound for
weighted directed graphs even when m = Õ(n) [KT18]; thus,
in sparse graphs, our m1+o(1) algorithm provides a quadratic
separation between the directed and undirected setting.

II. TECHNICAL OVERVIEW

We now introduce the main technical ideas in our work.
a) Notation.: In this paper, a graph G is an undirected

graph G = (V,E,w) with edge weights w(e) ∈ {1, 2, . . . ,W}
for all e ∈ E. If w(e) = 1 for all e ∈ E, we say that G is
unweighted. The total weight of an edge set E′ ⊆ E is defined
as w(E′) =

∑
e∈E′ w(e). For a cut (S, V \ S), we also refer

to a side S of this cut as a cut. The value of cut S is denoted
δ(S) = w(E(S, V \ S)). For any two vertices a, b, we say
that S is an (a, b)-cut if |S ∩ {a, b}| = 1. An (a, b)-mincut is
an (a, b)-cut of minimum value, and we denote its value by
λ(a, b). Let G[S] denote the subgraph of G induced by S.

A. From Gomory-Hu Tree to Steiner Tree Packing

Recently, Abboud et al. [AKL+22] gave the first improve-
ment over the classical algorithm of Gomory and Hu [GH61]
for the GHTREE problem. Their algorithm takes Õ(n2) time,
which improves on the Gomory-Hu bound of n− 1 max-flow
computations. At a high level, our algorithm also uses the
same template as [AKL+22], so we describe this first.

a) Reduction to Single Source Problem.: The first step
is to reduce the GHTREE problem to a restricted version
of the single-source min-cuts problem. We define this latter
problem first. Let U ⊆ V be a set of terminal vertices. The U -
Steiner connectivity/mincut is λ(U) = mina,b∈U λ(a, b). The
restricted single-source problem is defined below.

Problem II.1 (Single-Source Terminal Mincuts with Promise).
The input is a graph G = (V,E,w), a terminal set U ⊆ V
and a source terminal s ∈ U with the promise that for all
t ∈ U \ {s}, we have λ(U) ≤ λ(s, t) ≤ 1.1λ(U). The goal is
to determine the value of λ(s, t) for each terminal t ∈ U \{s}.

The following lemma from [AKL+22] states the reduction
from GHTREE to the above problem.

Lemma II.2 (Reduction to Single-Source Terminal Mincuts,
Lemma 6 in [AKL+22]). There is a randomized algorithm
that computes a GHTREE of an input graph by making calls
to max-flow and single-source terminal mincuts (with the
promise, i.e., Problem II.1) on graphs with a total of Õ(n)

Restriction Running time Reference
General (n− 1) · T (n,m) Gomory and Hu [GH61]

General (n− 1) · T (n,m) Gusfield [Gus90]

Bounded Treewidth* Õ(n) Arikati, Chaudhuri, and Zaroliagis [ACZ98]
Unweighted Õ(mn) Karger and Levine [KL15]
Unweighted Õ(mn) Bhalgat, Hariharan, Kavitha, and Panigrahi [BHKP07]
Planar Õ(n) Borradaile, Sankowski, and Wulff-Nilsen [BSW15]
Bounded Genus Õ(n) Borradaile, Eppstein, Nayyeri, and Wulff-Nilsen [BENW16]
Unweighted Õ(

√
m) · T (n,m) Abboud, Krauthgamer, and Trabelsi [AKT21b]

(1 + ϵ)-Approx* Õ(n2) Abboud, Krauthgamer, and Trabelsi [AKT20]
Bounded Treewidth Õ(n) Abboud, Krauthgamer, and Trabelsi [AKT20]
Simple Õ(n2.5) Abboud, Krauthgamer, and Trabelsi [AKT21c]
(1 + ϵ)-Approx polylog(n) · T (n,m) Li and Panigrahi [LP21]
Simple Õ(n2) † Abboud, Krauthgamer, and Trabelsi [AKT21a]
Simple Õ(n2) † Li, Panigrahi, and Saranurak [LPS21]
Simple Õ(n2 1

8) † Zhang [Zha22]
Simple Õ(m+ n1.9) Abboud, Krauthgamer, and Trabelsi [AKT22]

General Õ(n2) # Abboud et al. [AKL+22]

Unweighted m1+o(1) + polylog(n) · T (n,m) Abboud et al. [AKL+22]

General Õ(n2) # Zhang [Zha21]

General n1+o(1) + polylog(n) · T (n,m) Theorem I.3 (this paper)

TABLE I: Algorithms for constructing a data-structure that answers s, t-min-cut queries in Õ(1) time (listed chronologically).
Except for those marked with *, they all also produce a Gomory-Hu tree. T (n,m) denotes the time to compute s, t-max-flow in
an undirected graph, which using Chen et al. [CKL+22] is m1+o(1). The three results marked with † were obtained concurrently
and independently of each other. The two results marked with # are not independent. The first version of [AKL+22] gave
an Õ(n2.875) upper bound; an additional observation in the second version brought the bound down to Õ(n2). The latter
improvement was discovered independently by Zhang [Zha21].

vertices and Õ(m) edges, and runs for Õ(m) time outside of
these calls.

b) Guide Trees.: Next, to solve single-source terminal
mincuts (Problem II.1), [AKL+22] introduces the notion of
guide trees, defined below. A tree T is called a U -Steiner tree
if it is a subgraph that spans all terminals in U .

Definition II.3 (Guide Trees). For a graph G and set of
terminals U ⊆ V with a source s ∈ U , a collection of U -
Steiner trees T1, . . . , Th is called a k-respecting set of guide
trees, or in short guide trees, if for every t ∈ U \ {s}, at least
one tree Ti k-respects some (s, t)-mincut in G.

Here, a guide tree is said to k-respect a cut if the fol-
lowing property holds (which traces back to the work of
Karger [Kar00] on the global min-cut problem).

Definition II.4 (k-respecting). Let A ⊆ V be a cut in G =
(V,E,w). Let T be a tree on (some subset of) vertices in V
that is not necessarily a subgraph of G. We say that the tree
T k-respects the cut A (and vice versa) if T contains at most
k edges with exactly one endpoint in A.

The overall plan now comprises two steps. First, obtain a
small number of guide trees with the property that for every
t ∈ U \{s} satisfying the promise in Problem II.1 some (s, t)-
mincut k-respects at least one of the guide trees, for some
constant k. Second, design an algorithm that reveals, for every
t ∈ U \ {s}, the value of the (s, t)-mincut if it k-respects a

fixed guide tree. Clearly, put together, these two steps solve
Problem II.1, and therefore, by Lemma II.2, give an algorithm
for the GHTREE problem.

For the second step, [AKL+22] already gives an algorithm
that runs in nearly max-flow time.

Theorem II.5 (Single-Source Mincuts given a Guide Tree,
Theorem 10 in [AKL+22]). Let G = (V,E,w) be a weighted
graph, let T be a tree defined on (some subset of) vertices in
V , and let s be a vertex in T . For any fixed integer k ≥ 2, there
is a Monte-Carlo algorithm that finds, for each vertex t ̸= s
in T , a value λ̃(t) ≥ λ(s, t) such that: if T is k-respecting
an (s, t)-mincut then λ̃(t) = λ(s, t) with high probability. The
algorithm runs in time Õ(TMF (n,m)) where TMF (n,m) is
the time of single-pair max-flow on n-node m-edge graphs.

This leaves the question of finding a small set of guide
trees such that some (s, t)-mincut k-respects at least one of
these trees, for every t ∈ U \ {s} that satisfies the promise of
Problem II.1.

c) Constructing Guide Trees: A New Algorithm.: The
natural approach (that is analogous to Karger’s work where
he finds 2-respecting spanning trees [Kar00] as opposed to
Steiner trees) is to pack a large number of U -Steiner trees
in the input graph and then sample some of them. Using
standard techniques, one can show that there exists a set
of λ(U)/2 edge-disjoint U -Steiner trees in the input graph.
For any (s, t)-cut there will be at least one edge crossing it;
thus, on average, only ≤ 2.2 edges cross the (s, t)-mincut

whose value is assumed to be at most 1.1λ(U). The goal now
becomes to obtain such a packing of U -Steiner trees. Finding
an optimal packing is NP-hard, but an approximately optimal
packing of λ(U)/(4+ ϵ) trees can be computed efficiently (as
we discuss next). Sampling O(log n) trees from this packing
produces the desired set of guide trees with the k-respecting
property for k = 4 with high probability.

The main contribution of this paper is a faster algorithm
for Steiner tree packing, defined as follows. A subgraph H
of G is said to be a U -Steiner subgraph if all the terminals
are connected in H .4 A U -Steiner-subgraph packing P is a
collection of U -Steiner subgraphs H1, . . . ,Hk, where each
subgraph Hi is assigned a value val(Hi) > 0. The value of
the packing P is the total value of all its Steiner subgraphs,
denoted val(P) =

∑
H∈P val(H). We say that P is feasible

if
∀e ∈ E,

∑
H∈P:e∈E(H)

val(H) ≤ w(e).

The main theorem of this paper computes a U -
Steiner-subgraph packing in m1+o(1) time. This strengthens
Lemma 22 of [AKL+22] that could only compute such a pack-
ing in Õ(n2) time in weighted graphs. They also obtained an
m1+o(1)-time algorithm for unweighted graphs. For multiple
reasons that we will see in this discussion, unweighted graphs
are substantially easier in this context. Fundamentally, with
edge weights, our packing is required to be implicit (in a
sense that will be formalized in the next theorem) because
in some cases the output must contain Ω(m) subgraphs of
size Ω(m) each. This is not the case in [AKL+22] since in an
unweighted graph, each edge can only be part of one subgraph
in the packing, which means that the packing is of size m and
can be explicitly maintained. Indeed, in the weighted case, the
algorithm in [AKL+22] runs in Õ(m2) time, which gives the
Õ(n2) bound when applied on a (1 + ϵ)-cut-sparsifier (e.g.,
[BK15]).

Denote by pack(U) the maximum value of a feasible U -
Steiner-subgraph packing in G. Our main theorem is the
following.

Theorem II.6 (Packing U -Steiner subgraphs). For every fixed
ϵ ∈ (0, 1/2), there is a randomized algorithm that, given
a graph G = (V,E,w) with m edges and a terminal
set U ⊆ V , returns whp an implicit U -Steiner-subgraph
packing P of value val(P) ≥ pack(U)/(2 + ϵ) in m1+o(1)

time. More precisely, if H1, . . . ,Hk are the implicitly com-
puted U -Steiner-subgraphs, then the algorithm returns the
list val(H1), . . . , val(Hk) and a data structure which returns,
given a query i ∈ [k], the U -Steiner-subgraph Hi in m1+o(1)

time.

As mentioned previously, by standard techniques, we know
that pack(U) ≥ λ(U)/2. Therefore, to obtain our set of
guide trees from Theorem II.6, we sample O(log n) U -Steiner

4The switch from Steiner trees to Steiner subgraphs is a technicality; for
intuitive purposes, it is sufficient for the reader to consider a Steiner tree
packing.

subgraphs independently at random from the packing P where
subgraph H is sampled with probability val(H)/val(P). For
each sampled subgraph H , we take any spanning tree on the
vertices of H to obtain the set of guide trees. Finally, to
improve the bound from m1+o(1) to n1+o(1), we observe (as
in [AKL+22]) that the packing may as well be done on a
sparsifier.

Lemma II.7 (Constructing Guide Trees). There is a random-
ized algorithm that, given a graph G = (V,E,w), a terminal
set U ⊆ V and a source terminal s ∈ U , with the guarantee
that for all t ∈ U \ {s}, λ(U) ≤ λ(s, t) ≤ 1.1λ(U), computes
a 4-respecting set of O(log n) guide trees. The algorithm runs
in n1+o(1) time and succeeds with high probability.

Combining Lemma II.7 with the above discussion yields
Theorem I.3 and the new GHTREE algorithm.

B. Previous Work: Steiner Tree Packing via MWU

So far we have established that the time to solve GHTREE
is m1+o(1) plus the time to solve the Steiner tree packing
problem (up to a constant approximation factor). Approximate
packing problems are well-studied (see e.g. [PST95]). The
common way to solve them that is employed also in this paper
(also in [AKL+22]) is by a Multiplicative Weights Update
(MWU) algorithm, e.g., based on [GK07], [Fle00], [AHK12].

Basically, the idea is the following: in each iteration, we
add a U -Steiner subgraph to the packing that (approximately)
minimizes the sum of edge lengths. Here, the length of an edge
e is an exponential function of the current congestion on the
edge, which in turn is defined as the fraction of the edge weight
w(e) that has already been used up in the partial packing (re-
call the feasibility condition

∑
H∈P:e∈E(H) val(H) ≤ w(e)).

The algorithm stops when the length of the minimum Steiner
subgraph goes above a certain threshold and one can prove that
the resulting packing is approximately optimal. Each iteration
thus involves computing a minimum Steiner subgraph and
updating the length of its edges, and the efficiency of the
algorithm is determined by the number of iterations and the
time per iteration.

To prove their Õ(m2) bound, Abboud et al. [AKL+22]
use Mehlhorn’s 2-approximation algorithm [Meh88] in each
iteration to solve the minimum Steiner subgraph problem in
Õ(m) time, and bound the total number of iterations by Õ(m).
The latter is because the length of the minimum-length edge
in the subgraph can only increase Õ(1) times.

Their m1+o(1) time algorithm for unweighted graphs is
much more involved and serves as the inspiration for this work.
The underlying observation (as in many other works, including
the recent m1+o(1) max-flow algorithm [CKL+22]) is that
the input to the minimum Steiner subgraph problem does not
change much from one iteration to another. Thus, a dynamic
data structure could potentially handle all Õ(m) iterations in
mo(1) amortized time per length-update. Indeed, [AKL+22]
successfully designs such an efficient dynamic algorithm for
the minimum Steiner subgraph problem (discussed later). The

m1+o(1) bound now follows from the observation that the total
number of length-updates in unweighted graphs is Õ(m).

In weighted graphs, however, this approach fundamentally
does not work because the number of edge-length updates
is already Ω(n2). This is for the same reason that the total
number of edges in an explicit subgraph packing can be Ω(n2),
even when m = O(n). This is sometimes referred to as
the flow decomposition barrier (see e.g. [GR98], [Mad10],
[BGS21]).

C. Part I: Steiner Tree Packing via Randomized MWU

The main conceptual contribution of this work is that we
step away from standard MWU (that insists on an explicit
packing and thus cannot go beyond Ω(n2)) and apply the
recently introduced randomized MWU [BGS21] instead. At
a very high level, Bernstein et al. [BGS21] employed this
technique to pack s, t-paths in a graph (leading to an approx-
imate max-flow algorithm) and we generalize it significantly
in order to pack Steiner trees.

The main idea in randomized MWU is to only update the
edge lengths of a randomly chosen subset of edges in every
iteration, and show that the resulting random edge lengths
stay sufficiently close to what the edge lengths would be
in a deterministic (standard) MWU algorithm. Importantly,
the probability that an edge is included in the subset is not
uniform; it depends on the weight of the edge in such a way
that the length of any edge is updated only Õ(1) times in
expectation. We give the precise details of this procedure in
the full version but for now let us focus on the most significant
technical obstacle towards realizing it.

a) Threshold Queries.: In standard MWU, one had to
compute a minimum Steiner subgraph in each iteration (and
then update the length of its edges). Now, we need to implicitly
compute a Steiner subgraph and then explicitly access a
randomly chosen subset of its edges (and update their lengths),
in time proportional to the number of accessed edges and not
to the size of the entire subgraph.

To be more concrete, each edge e now has a steadiness value
σ(e) that determines the probability of choosing the edge in
the random sample in any iteration. The steadiness of an edge
is unrelated to its length and remains fixed throughout the
algorithm; it is only a function of its weight. In each iteration
we consider the minimum length Steiner subgraph S and ask
for the set of all edges σ≤j(S) in S whose steadiness is below
a randomly chosen threshold j. The goal is to compute this
set in |σ≤j(S)| ·mo(1) time, in an amortized sense across all
iterations.

The main technical result of this paper is a new dynamic
algorithm for the minimum U -Steiner subgraph problem with
the following features: (1) it supports decremental updates
in the form of increase of edge lengths in mo(1) amortized
time per update, (2) it is deterministic and therefore works
in the adaptive adversary model (this is crucial for any form
of MWU), and (3) it supports the aforementioned threshold
queries that are critical for randomized MWU. We state the
main theorem summarizing the properties of the data structure.

Theorem II.8 (Informal). There is a deterministic, decre-
mental data-structure that, in no(1) update time, implicitly
maintains a (2 + ϵ)-approximate minimum length U -Steiner
subgraph S at all times. At any time, given a steadiness
index j, the data structure must return all edges of S whose
steadiness is at most j, denoted by the set σ≤j(S), in time
proportional to the output size.

b) From Minimum Steiner Subgraph to Shortest-Paths.:
The starting point of our new dynamic algorithm is the
algorithm of [AKL+22] that satisfies all the requirements
except the ability to answer threshold queries. Let us overview
it and explain why threshold queries are so challenging.

It is well-known that a 2-approximate minimum Steiner tree
S of a graph G can be computed by taking the MST of a
helper graph H in which each pair of terminals is connected
by an edge of weight equal to their shortest path distance in
G; the MST is expanded into a Steiner tree by taking the
paths in G that correspond to the edges in the MST of H .
Mehlhorn [Meh88] gives an Õ(m) algorithm by observing
that it suffices to find an MST of a different helper graph that
can be computed via single-source shortest paths as opposed
to (the more time-consuming) all-pairs shortest paths. Now
suppose that G is undergoing a decremental sequence of edge
updates; the natural approach is to (1) maintain the helper
graph H via single-source shortest paths computations, (2)
maintain an MST of H , and (3) maintain a Steiner subgraph
S by expanding the MST of H . Fortunately, very efficient
deterministic dynamic algorithms for MST [HdLT01] and
single-source shortest-paths [BGS21] already exist, and with
certain subtle modifications to Mehlhorn’s algorithm (such as
changing the definition of the helper graph) this approach can
be turned into an efficient dynamic algorithm [AKL+22].

The main issue, however, is how to expand an MST of
H into a Steiner subgraph of G (item (3) in the previous
paragraph) in mo(1) output-sensitive time, i.e. only spend
x · mo(1) time if the output has size x. At a high level,
this is difficult because each edge e ∈ E(H) in MST (H)
corresponds to a shortest path π(e) ⊆ E(G) in G that
was computed by the dynamic single-source shortest-paths
algorithm; a single edge e ∈ E(G) in G could appear in a
large number of such paths π(e1), . . . , π(ep) corresponding
to different edges e1, . . . , ep ∈ MST (H) in the MST where
p = nΩ(1). Thus, even if the dynamic shortest paths algorithm
can return the path in constant time per edge, a single edge
in the Steiner subgraph we output may incur an overhead of
nΩ(1) time.

In [AKL+22], this issue is resolved by a careful expansion
process that uses the ability of the shortest path algorithm
to return a short prefix of the path. Adapting their approach
to our setting where we need to support threshold queries,
fails for a subtle but fatal reason: the Steiner subgraph that
results in their expansion would depend on the (randomly
chosen) steadiness threshold j. This breaks the analysis of
the randomized MWU framework where we insist that there
is an implicit but fixed Steiner subgraph in each iteration

that is independent of the threshold we choose. Given this
fundamental bottleneck to using the previous ideas, we take a
completely different approach in this paper.

Our idea for resolving the main issue of expanding the
MST into a Steiner subgraph is to let the dynamic shortest
paths algorithm do it for us. Given the MST, we know the
set of pairs (s, y) that we are going to query for shortest
path, where s is the fixed source and y is in a set of targets
Y ⊆ V (G). So we would like a decremental algorithm that
can (implicitly) maintain a single-source subset spanner, i.e.
a shortest path “tree” rooted at s and “only spanning” the
targets Y , in the sense that its total size is proportional to
the distances to the targets in Y , with the ability to answer
threshold queries efficiently. The technical core of the paper
is the implementation of such a single-source multiple-target
algorithm, which can be of independent interest.

Theorem II.9 (Informal). There is a deterministic, decre-
mental data structure that, in no(1) update time, explicitly
maintains the following:

• (1 + ϵ)-approximate distances estimates for all vertices
in V from a fixed source vertex s, and a shortest paths
tree realizing these estimates.

In addition, it can maintain a target set Y ⊆ V , with
no(1) update time per insertion or deletion, with the following
guarantees:

• The data structure implicitly maintains a subgraph H
spanning Y ∪ {s} whose total length is at most (1 +
ϵ)
∑

v∈Y dist(s, v).
• Given a steadiness index j, the data structure returns

σ≤j(H) in no(1) output-sensitive time.

This completes the overview of our new GHTREE algo-
rithm, whose details appear in the full version.

D. Part II: Decremental Single-Source Multiple-Target Short-
est Paths with Threshold-Queries

The more conceptual ideas overviewed above let us reduce
the GHTREE problem to designing a (variant of a) dynamic
shortest paths algorithm. What remains is an implementation
of the dynamic data structure in Theorem II.9. Our starting
point is the decremental algorithm for single-source shortest-
paths without threshold-queries by Bernstein, Gutenberg, and
Saranurak [BGS21]. This is a rather involved algorithm that
builds on several breakthroughs in dynamic shortest path
algorithms (e.g. [HKN14], [CS21a]). Fortunately, we do not
need to change their algorithm; we only augment it with
additional data structures that handle the threshold queries.
Still, one has to design such an augmentation for each one of
its components and with new ideas in each case.

a) High-level description and comparison with
[BGS21].: The authors of [BGS21] have already achieved
the desired augmentation for supporting threshold queries, in
the special case of single-source single-target shortest path.
That is, their dynamic algorithm has one target y ∈ V and
a threshold j, and returns the set of edges with steadiness
below j in the shortest s, y-path (that is maintained by the

base algorithm without threshold queries). Our setting is
a strict generalization and comes with significantly more
challenges: our dynamic algorithm maintains a subset of
targets Y ⊆ V and a threshold j and must handle all targets
“simultaneously” (without returning each edge more than
no(1) times). For this reason, our algorithm uses essentially
all ideas in the data structures of [BGS21] for threshold
queries, but introduces several additional ideas on top. Let us
begin with an overview of their algorithm, then discuss some
of the challenges that arise in the multi-target setting; finally,
we will present one new ingredient that we find particularly
interesting: decremental expander routing.

The decremental shortest paths algorithm of [BGS21] is
based on the classical Even-Shiloach trees [SE81], whose
running time depends on the depth of the tree. Thus, it is
important to maintain such trees on emulators with small
diameter. These emulators “compress” the distances in the
graph by encoding subsets of vertices into single new vertices
called cores. The algorithm has three components that call
each other recursively (on smaller distance scales):

1) For each core, we maintain an approximate shortest
paths tree, up to some small diameter, rooted at the core.
This is called APXTREE in the full version of the paper.

2) An efficient algorithm for connecting any pair of nodes
within a core by a short path. This is called CORETREE
in the full version of the paper.

3) A way to cover the graph with cores (and balls around
them) without much overlap.

The last component is structural and does not need to be
changed in our setting. The other two, however, must be
augmented. In [BGS21] these algorithms know a specific
source-target pair whose shortest path they might need to
report. To support this, they employ several tricks, e.g. ar-
tificially including the edge with minimal steadiness on the
path (without increasing its length by too much): this has the
advantage that it is easy to determine if there are any edges
on the path with steadiness below a given threshold j by only
monitoring the edge with minimal steadiness. Our setting is
more difficult because we have multiple targets and the tricks
employed by [BGS21] no longer work. Next, we describe a
more conceptually interesting challenge related to finding short
paths in expanders that arises when augmenting the second
item above.

b) Decremental Expander Routing.: At the heart of
[BGS21], and perhaps the single most important idea for
making the above approach work, is to make sure that each
core is approximately an expander graph, and that it remains
so throughout the sequence of (decremental) updates using
a certain expander pruning subroutine. Roughly speaking, ex-
panders are important for threshold queries and more generally
for data structures that can report paths in output-sensitive
time, because we can find a short path between any pair of
nodes in the expander. The algorithm of [BGS21] uses such a
short path oracle for decremental expanders due to Chuzhoy
and Saranurak [CS21b]. In our new context, however, we
would like to exploit expanders even further. We will need

to specify a set of pairs and get a short path between every
pair in a way that no edge is used too many times in the set
of paths. That is, we need to be able to find an embedding of
any (constant degree) graph inside a decremental expander.

Definition II.10 (Embedding). Let W,D be two graphs with
V (D) ⊆ V (W). A set P of paths in W is called an embedding
of D into W if, for every edge e = (u, v) ∈ E(D), there is a
path path(u, v) ∈ P such that path(u, v) is a u–v path in W .
The dilation of the embedding P is l if the length of every
path in P is at most l, and the congestion of the embedding
is η if every edge of W participates in at most η paths in P .

Indeed, we generalize the proof of [CS21b] from the single-
pair setting to the multi-pair setting. Our new decremental
expander routing is of independent interest and we believe
it is likely to have further applications in dynamic graph
algorithms. Let us now state it more formally and then
discuss how it fits in the larger context of expander routing
subroutines.

Recall the following notation on expander graphs. For any
graph G = (V,E) and a vertex set S ⊆ V , the volume of S
is volG(S) =

∑
u∈S degG(u) the sum of degree of vertices

in S. We say that G is a φ-expander if, for any vertex set
S ⊂ V , we have that |EG(S,V \S)|

min{volG(S),volG(V \S)} ≥ φ. In words,
for any cut in G, at least a φ-fraction of edges incident to the
smaller side of the cut are crossing the cut.

Roughly speaking, our new subroutine does the following.
Given an expander W that undergoes edge deletions, we
maintain a subgraph X of W and a subgraph X ′ of X , such
that: (1) even the smaller subgraph X ′ is large (contains half
the nodes of W), and (2) we can efficiently route any given
demand graph on X ′ inside X . Specifically, let D = (X ′, ED)
be a graph with bounded maximum degree where each edge
of D represents a demand pair. The algorithm can return an
embedding of D into W [X] with congestion and dilation at
most no(1) in |ED|no(1) time.

The formal statement is described below and the proof is
in the full version of the paper.

Lemma II.11 (Decremental Expander Routing). Let CEMBED >
0 be a large enough constant, and let constant CROUTE > 0 de-
pend on CEMBED. Define γEMBED = 2CEMBED log3/4 n and hROUTE =
2CROUTE log

7/8 n. There is an algorithm PRUNEROUTER(W) with
the following guarantee.

• (input): Given an unweighted multi-graph W = (V,E)
with maximum degree O(log n) that is initially a γEMBED-
expander which undergoes at most |V (W)|/hROUTE edge
deletions,

• (maintain): the algorithm maintains two decremental sets
X ⊆ V and X ′ ⊆ X using O(mhROUTE) total update time
such that

– W [X] is a Ω(γEMBED)-expander at any point of time,
– volW (V \X) ≤ O(i/γEMBED) after i updates, and
– |X ′| ≥ |V |/2.

• (query): At any time, given a demand graph D =
(X ′, ED) with maximum degree O(1), the algorithm

returns an embedding of D into W [X] with congestion
and dilation at most hROUTE in O(|ED|hROUTE) time.

Efficient algorithms for routing in expanders lie at the core
of several recent breakthroughs in graph algorithms. Previous
work has studied the following three versions.

1) Static routing: Given an expander W and given a de-
mand graph D, route D inside W in near-linear time.
This is the weakest notion and already has celebrated
applications; namely, it is a key subroutine in the almost-
linear time max-flow algorithm [CKL+22].

2) Static routing queries: Preprocess an expander W such
that given any demand graph D we can route it in W
in time that is near-linear in the size of D. This clearly
strengthens static routing and is the non-dynamic version
of our result with X ′ = X = V (W). It has been
used extensively in distributed algorithms [GKS17],
[CS20], for example, for listing subgraphs [CPSZ21],
[CHCGL21], [CHLV22].

3) Decremental single-pair routing: Maintain an expander
W under edge deletions in near-linear time, and given
a demand pair s, t return an s, t-path in near-constant
time. This version strengthens static routing as well
via simple greedy process. The aforementioned result
by [CS21b] has accomplished this version and quickly
found several applications to shortest paths [BGS20],
[Chu21], [BGS21], [CKL+22].

The latter two versions strengthen static routing in two dif-
ferent ways. Our algorithm achieves the best of both worlds: it
allows for arbitrary demand graph queries and it also supports
decremental updates to the expander. We are convinced that it
will have more applications.

E. Conclusion: Our Main Contributions

We conclude this overview by summarizing the three main
contributions of this work:

• The introduction of the randomized MWU framework
into the GHTREE problem in order to compute a near-
optimal packing of Steiner trees in a graph. Previously
it was only used to compute a packing of paths (in the
context of single-pair max-flow) [BGS21].

• Executing numerous technical modifications to previous
work in order to apply our approach. In particular, (1)
when replacing MWU with randomized MWU inside
the Steiner tree packing algorithm of [AKL+22], the
minimum Steiner subgraph gadget (that relies on a reduc-
tion to single-source multiple-target shortest-paths) has
to be augmented to support threshold-queries, and (2)
when adapting the single-pair shortest-paths algorithm of
[BGS21] that supports threshold-queries into the single-
source multiple-target setting, the entire algorithm has to
be revisited and generalized.

• In order to execute the latter, we have designed a new
decremental expander routing algorithm that is likely to
find more applications in dynamic graph algorithms.

III. FUTURE WORK

Our work brings the line of research started by the pio-
neering work of Gomory and Hu to its logical conclusion
by showing that the all-pairs minimum cuts or maximum
flow problems (APMC and APMF) are equivalent, up to
subpolynomial terms in the running time, to their single-
pair versions. Nevertheless, several interesting directions of
research remain open.

First, there is the question of deterministic algorithms.
Almost all of the recent literature that makes progress on
APMF relies heavily on the use of randomization. The best
deterministic algorithm for this problem, or indeed for simpler
problems such as partitioning the vertices of a graph into k-
connected components, remains the 60-year old algorithm of
Gomory and Hu. Can we design fast deterministic algorithms
for APMF?

Second is the question of generalization. There are several
directions one can hope to generalize undirected graphs to.
Perhaps the most natural is to directed graphs. Here, the
nonexistence of Gomory-Hu trees is well-known [Ben95], but
there are other data structures (e.g., [CH91]) that capture
(symmetric) all-pairs MC. How fast can we compute such
a data structure? One can ask similar questions for other
generalizations of undirected graph connectivity – e.g., vertex
connectivity, element connectivity, hypergraph connectivity,
etc. An (m1+o(1))-time construction of the Gomory-Hu tree
for element connectivity is very interesting as it would also
imply a near optimal algorithm for computing all-pair vertex
connectivity in m2+o(1) time which is tight with a conditional
lower bound [HLSW22].

Finally, there is the question of aesthetics. The reductions of
Gomory and Hu and Abboud, Krauthgamer, and Trabelsi from
the all-pairs problem to n single-pair computations or O(log n)
single-source computations are short, combinatorially elegant
proofs. In contrast, the reduction to no(1) single-pair computa-
tions given in the current paper is highly technical and requires
several heavy hammers and over 50 pages to describe. An
intriguing question is whether we can replicate the elegance
of these prior works in an almost-linear-time algorithm for
APMF.

REFERENCES

[ACZ98] Srinivasa Rao Arikati, Shiva Chaudhuri, and Christos D. Zaro-
liagis. All-pairs min-cut in sparse networks. J. Algorithms,
29(1):82–110, 1998.

[AGI+19] Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert
Krauthgamer, Nikos Parotsidis, Ohad Trabelsi, Przemyslaw
Uznanski, and Daniel Wolleb-Graf. Faster Algorithms for All-
Pairs Bounded Min-Cuts. In 46th International Colloquium
on Automata, Languages, and Programming (ICALP 2019),
volume 132, pages 7:1–7:15, 2019.

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplica-
tive weights update method: a meta-algorithm and applications.
Theory of Computing, 8(1):121–164, 2012.

[AIS+16] Takuya Akiba, Yoichi Iwata, Yosuke Sameshima, Naoto
Mizuno, and Yosuke Yano. Cut tree construction from massive
graphs. In 2016 IEEE 16th International Conference on Data
Mining (ICDM), pages 775–780. IEEE, 2016.

[AKL+22] Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Pan-
igrahi, Thatchaphol Saranurak, and Ohad Trabelsi. Breaking
the cubic barrier for all-pairs max-flow: Gomory-hu tree in
nearly quadratic time. In 2022 IEEE 63rd Annual Symposium
on Foundations of Computer Science (FOCS). IEEE, 2022.

[AKT20] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Cut-
equivalent trees are optimal for min-cut queries. In 61st
IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, pages 105–118, 2020.

[AKT21a] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. APMF
< APSP? Gomory-Hu tree for unweighted graphs in almost-
quadratic time. Accepted to FOCS’21, 2021. arXiv:2106.02981.

[AKT21b] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. New
algorithms and lower bounds for all-pairs max-flow in undi-
rected graphs. Theory of Computing, 17(5):1–27, 2021.

[AKT21c] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Sub-
cubic algorithms for gomory–hu tree in unweighted graphs. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pages 1725–1737, 2021.

[AKT22] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi.
Friendly cut sparsifiers and faster Gomory-Hu trees. Accepted
to SODA’22, 2022. arXiv:2110.15891.

[AMO93] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows.
Prentice Hall, 1993.

[AV20] Nima Anari and Vijay V Vazirani. Planar graph perfect
matching is in NC. Journal of the ACM, 67(4):1–34, 2020.

[AVY15] Amir Abboud, Virginia Vassilevska Williams, and Huacheng
Yu. Matching triangles and basing hardness on an extremely
popular conjecture. In Proc. of 47th STOC, pages 41–50, 2015.

[AW14] Amir Abboud and Virginia Vassilevska Williams. Popular
conjectures imply strong lower bounds for dynamic problems.
In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, pages 434–443, 2014.

[Ben95] András A. Benczúr. Counterexamples for directed and node
capacitated cut-trees. SIAM J. Comput., 24(3):505–510, 1995.

[BENW16] Glencora Borradaile, David Eppstein, Amir Nayyeri, and Chris-
tian Wulff-Nilsen. All-pairs minimum cuts in near-linear time
for surface-embedded graphs. In 32nd International Symposium
on Computational Geometry, volume 51 of SoCG ’16, pages
22:1–22:16, 2016.

[BGS20] Aaron Bernstein, Maximilian Probst Gutenberg, and
Thatchaphol Saranurak. Deterministic decremental reachability,
scc, and shortest paths via directed expanders and congestion
balancing. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 1123–1134.
IEEE, 2020.

[BGS21] Aaron Bernstein, Maximilian Probst Gutenberg, and
Thatchaphol Saranurak. Deterministic decremental sssp
and approximate min-cost flow in almost-linear time. In
62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022,
pages 1000–1008. IEEE, 2021.

[BHKP07] Anand Bhalgat, Ramesh Hariharan, Telikepalli Kavitha, and
Debmalya Panigrahi. An Õ(mn) Gomory-Hu tree construc-
tion algorithm for unweighted graphs. In 39th Annual ACM
Symposium on Theory of Computing, STOC’07, pages 605–
614, 2007.

[BK15] András A. Benczúr and David R. Karger. Randomized approxi-
mation schemes for cuts and flows in capacitated graphs. SIAM
J. Comput., 44(2):290–319, 2015.

[BSW15] Glencora Borradaile, Piotr Sankowski, and Christian Wulff-
Nilsen. Min st-cut oracle for planar graphs with near-linear
preprocessing time. ACM Trans. Algorithms, 11(3), 2015.

[CCPS97] W.J. Cook, W.H. Cunningham, W.R Pulleybank, and A. Schri-
jver. Combinatorial Optimization. Wiley, 1997.

[CH91] Chung-Kuan Cheng and T. C. Hu. Ancestor tree for arbitrary
multi-terminal cut functions. Ann. Oper. Res., 33(3):199–213,
1991.

[CHCGL21] Keren Censor-Hillel, Yi-Jun Chang, François Le Gall, and Dean
Leitersdorf. Tight distributed listing of cliques. In Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2878–2891. SIAM, 2021.

[CHLV22] Keren Censor-Hillel, Dean Leitersdorf, and David Vulakh.
Deterministic near-optimal distributed listing of cliques. In

Proceedings of the 2022 ACM Symposium on Principles of
Distributed Computing, pages 271–280, 2022.

[Chu21] Julia Chuzhoy. Decremental all-pairs shortest paths in deter-
ministic near-linear time. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 626–
639, 2021.

[CKL+22] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maxi-
milian Probst Gutenberg, and Sushant Sachdeva. Maximum
flow and minimum-cost flow in almost-linear time. CoRR,
abs/2203.00671, 2022.

[CPSZ21] Yi-Jun Chang, Seth Pettie, Thatchaphol Saranurak, and Hengjie
Zhang. Near-optimal distributed triangle enumeration via ex-
pander decompositions. Journal of the ACM (JACM), 68(3):1–
36, 2021.

[CS20] Yi-Jun Chang and Thatchaphol Saranurak. Deterministic dis-
tributed expander decomposition and routing with applications
in distributed derandomization. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS),
pages 377–388. IEEE, 2020.

[CS21a] Julia Chuzhoy and Thatchaphol Saranurak. Deterministic algo-
rithms for decremental shortest paths via layered core decom-
position. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2478–2496. SIAM, 2021.

[CS21b] Julia Chuzhoy and Thatchaphol Saranurak. Deterministic algo-
rithms for decremental shortest paths via layered core decom-
position. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2478–2496. SIAM, 2021.

[Dah16] Søren Dahlgaard. On the hardness of partially dynamic graph
problems and connections to diameter. In Ioannis Chatzi-
giannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, editors, 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, volume 55 of LIPIcs, pages 48:1–48:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[Fle00] Lisa K Fleischer. Approximating fractional multicommodity
flow independent of the number of commodities. SIAM Journal
on Discrete Mathematics, 13(4):505–520, 2000.

[GH61] Ralph E. Gomory and Te C. Hu. Multi-terminal network flows.
Journal of the Society for Industrial and Applied Mathematics,
9:551–570, 1961.

[GK07] Naveen Garg and Jochen Könemann. Faster and simpler algo-
rithms for multicommodity flow and other fractional packing
problems. SIAM Journal on Computing, 37(2):630–652, 2007.

[GKS17] Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed
mst and routing in almost mixing time. In Proceedings of
the ACM Symposium on Principles of Distributed Computing,
pages 131–140, 2017.

[GR98] Andrew V Goldberg and Satish Rao. Beyond the flow decom-
position barrier. Journal of the ACM (JACM), 45(5):783–797,
1998.

[GT01] Andrew V. Goldberg and Kostas Tsioutsiouliklis. Cut tree
algorithms: an experimental study. Journal of Algorithms,
38(1):51–83, 2001.

[Gus90] Dan Gusfield. Very simple methods for all pairs network flow
analysis. SIAM Journal on Computing, 19(1):143–155, 1990.

[HdLT01] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup.
Poly-logarithmic deterministic fully-dynamic algorithms for
connectivity, minimum spanning tree, 2-edge, and biconnec-
tivity. Journal of the ACM (JACM), 48(4):723–760, 2001.

[HKN14] Monika Henzinger, Sebastian Krinninger, and Danupon
Nanongkai. Decremental single-source shortest paths on undi-
rected graphs in near-linear total update time. In 2014 IEEE
55th Annual Symposium on Foundations of Computer Science,
pages 146–155. IEEE, 2014.

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai,
and Thatchaphol Saranurak. Unifying and strengthening hard-
ness for dynamic problems via the online matrix-vector multi-
plication conjecture. In Proc. of the 47th STOC, pages 21–30.
ACM, 2015.

[HL07] Refael Hassin and Asaf Levin. Flow trees for vertex-capacitated
networks. Discrete Appl. Math., 155(4):572–578, 2007.

[HLSW22] Zhiyi Huang, Yaowei Long, Thatchaphol Saranurak, and Benyu
Wang. Tight conditional lower bounds for vertex connectivity
problems. arXiv preprint arXiv:2212.00359, 2022.

[Hu74] Te C. Hu. Optimum communication spanning trees. SIAM
Journal on Computing, 3(3):188–195, 1974.

[Jel63] F. Jelinek. On the maximum number of different entries in the
terminal capacity matrix of oriented communication nets. IEEE
Transactions on Circuit Theory, 10(2):307–308, 1963.

[Kar00] David R. Karger. Minimum cuts in near-linear time. Journal
of the ACM, 47(1):46–76, 2000.

[KL15] David R. Karger and Matthew S. Levine. Fast augmenting paths
by random sampling from residual graphs. SIAM J. Comput.,
44(2):320–339, 2015.

[Kol22a] Vladimir Kolmogorov. A computational study of gomory-hu
tree construction algorithms. arXiv preprint arXiv:2204.10169
v3, 2022.

[Kol22b] Vladimir Kolmogorov. Orderedcuts: A new approach for
computing gomory-hu tree. arXiv preprint arXiv:2208.02000,
2022.

[KT18] Robert Krauthgamer and Ohad Trabelsi. Conditional lower
bounds for all-pairs max-flow. ACM Trans. Algorithms,
14(4):42:1–42:15, 2018.

[LP21] Jason Li and Debmalya Panigrahi. Approximate Gomory-Hu
tree is faster than n − 1 max-flows. In STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing,
pages 1738–1748. ACM, 2021.

[LPS21] Jason Li, Debmalya Panigrahi, and Thatchaphol Saranurak. A
nearly optimal all-pairs min-cuts algorithm in simple graphs.
Accepted to FOCS’21, 2021. arXiv:2106.02233.

[Mad10] Aleksander Madry. Faster approximation schemes for fractional
multicommodity flow problems via dynamic graph algorithms.
In Proceedings of the forty-second ACM symposium on Theory
of computing, pages 121–130, 2010.

[May62] W. Mayeda. On oriented communication nets. IRE Transactions
on Circuit Theory, 9(3):261–267, 1962.

[Meh88] Kurt Mehlhorn. A faster approximation algorithm for the
steiner problem in graphs. Information Processing Letters,
27(3):125–128, 1988.

[Pan16] Debmalya Panigrahi. Gomory-Hu trees. In Ming-Yang Kao,
editor, Encyclopedia of Algorithms, pages 858–861. Springer
New York, 2016.

[PR82] Manfred W Padberg and M Ram Rao. Odd minimum cut-
sets and b-matchings. Mathematics of Operations Research,
7(1):67–80, 1982.

[PST95] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast
approximation algorithms for fractional packing and covering
problems. Math. Oper. Res., 20(2):257–301, 1995.

[Sch03] A. Schrijver. Combinatorial Optimization. Springer, 2003.
[SE81] Yossi Shiloach and Shimon Even. An on-line edge-deletion

problem. Journal of the ACM (JACM), 28(1):1–4, 1981.
[vdBLL+21] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol

Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Minimum
cost flows, MDPs, and ℓ1-regression in nearly linear time for
dense instances. In 53rd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2021, page 859–869. ACM, 2021.

[WL93] Zhenyu Wu and Richard Leahy. An optimal graph theoretic
approach to data clustering: Theory and its application to
image segmentation. IEEE transactions on pattern analysis
and machine intelligence, 15(11):1101–1113, 1993.

[Zha21] Tianyi Zhang. Gomory-Hu trees in quadratic time. arXiv
preprint arXiv:2112.01042, 2021.

[Zha22] Tianyi Zhang. Faster Cut-Equivalent Trees in Simple Graphs.
In 49th International Colloquium on Automata, Languages,
and Programming (ICALP 2022), volume 229 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 109:1–
109:18, Dagstuhl, Germany, 2022.

	I Introduction
	I-A Related Work

	II Technical Overview
	II-A From Gomory-Hu Tree to Steiner Tree Packing
	II-B Previous Work: Steiner Tree Packing via MWU
	II-C Part I: Steiner Tree Packing via Randomized MWU
	II-D Part II: Decremental Single-Source Multiple-Target Shortest Paths with Threshold-Queries
	II-E Conclusion: Our Main Contributions

	III Future Work
	References

