Check for
Updates

Hypergraph Unreliability in Quasi-Polynomial Time

Ruoxu Cen Jason Li Debmalya Panigrahi
Duke University Carnegie Mellon University Duke University
Durham, USA Pittsburgh, USA Durham, USA
ruoxu.cen@duke.edu jmli@cs.cmu.edu debmalya@cs.duke.edu

ABSTRACT

The hypergraph unreliability problem asks for the probability that
a hypergraph gets disconnected when every hyperedge fails inde-
pendently with a given probability. For graphs, the unreliability
problem has been studied over many decades, and multiple fully
polynomial-time approximation schemes are known starting with
the work of Karger (STOC 1995). In contrast, prior to this work, no
non-trivial result was known for hypergraphs (of arbitrary rank).
In this paper, we give quasi-polynomial time approximation
schemes for the hypergraph unreliability problem. For any fixed
€ € (0,1), we first give a (1 + ¢)-approximation algorithm that runs
in m©(1°8") time on an m-hyperedge, n-vertex hypergraph. Then,
we improve the running time to m - nOUog" 1) with an additional
exponentially small additive term in the approximation.

CCS CONCEPTS

« Theory of computation — Graph algorithms analysis; «
Networks — Network reliability.

KEYWORDS
Network reliability, Hypergraphs

ACM Reference Format:

Ruoxu Cen, Jason Li, and Debmalya Panigrahi. 2024. Hypergraph Unreli-
ability in Quasi-Polynomial Time. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing (STOC ’24), June 24-28, 2024, Vancouver,
BC, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3618260.3649753

1 INTRODUCTION

In the hypergraph unreliability problem, we are given an unweighted
hypergraph G = (V, E) and a failure probability 0 < p < 1. The

goal is to compute the probability that the hypergraph disconnects!

when every hyperedge is independently deleted with probability
p. The probability of disconnection is called the unreliability of
the hypergraph G and is denoted ug (p). The hypergraph unrelia-
bility problem is a natural generalization of network unreliability
which is identically defined but on graphs (i.e., hypergraphs of

!A hypergraph is said to disconnect due to the failure of a subset of hyperedges when
there is a bi-partition of the vertices such that every surviving hyperedge is entirely
contained on either side of the bi-partition. Equivalently, the failed hyperedges must
contain all hyperedges in some cut of the hypergraph.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

STOC °24, June 24-28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649753

1700

rank? 2). The latter is a classical problem in the graph algorithms
literature that was shown to be #P-hard by Valiant [21] and its
algorithmic study dates back to at least the 1980s [1, 19]. By now,
several fully polynomial-time approximation schemes achieving
a (1 + ¢)-approximation are known for the network unreliability
problem [3, 13, 15-18]. In contrast, to the best of our knowledge, no
non-trivial approximation was known for the unreliability problem
on hypergraphs of arbitrary rank prior to this work.

Reliability problems are at the heart of analyzing the robust-
ness of networks to random failures. (This can be contrasted with
minimum cut problems that analyze the robustness to worst-case
failures.) Since real world networks often exhibit random failures,
there is much practical interest in reliability algorithms with entire
books devoted to the topic [4, 8]. However, many basic questions
remain unanswered from a theoretical perspective. One bright spot
from a theoretical standpoint is the network unreliability problem,
for which the first FPTAS was given by Karger in STOC 1995 [15].
Since then, many other FPTAS have been discovered with ever-
improving running times [3, 13, 16—18], the current record being
a recent O(m + n!-%)-time algorithm (for a fixed ¢) due to Cen et
al. [3]. (Throughout the paper, m and n respectively denote the
number of (hyper)edges and vertices in the (hyper)graph.) At the
heart of these algorithms is the well-known fact that a graph has
a polynomial number of near-minimum cuts — cuts whose value
exceeds that of the minimum cut by at most a constant factor [14].
This polynomial bound extends to hypergraphs of rank at most
O(logn) [20] and as a result, the FPTAS for network unreliability
also apply to such hypergraphs. However, this approach fails for
hypergraphs of arbitrary rank. In general, a hypergraph of rank r
can have as many as Q(m - 2") near-minimum cuts (see Kogan and
Krauthgamer [20] for an example), which rules out an enumeration
of the near-minimum cuts in polynomial time for hypergraphs of
large rank. This presents the main technical challenge in obtaining
an approximation algorithm for hypergraph unreliability, and the
main barrier that we overcome in this paper.

In addition to being a natural and well-studied generalization
of graphs in the combinatorics literature, hypergraphs have also
gained prominence in recent years as a modeling tool for real world
networks. While graphs are traditionally used to model networks
with point-to-point connections, more complex “higher-order” in-
teractions in modern networks are better captured by hypergraphs
as observed by many authors in different domains (see, e.g., the
many examples in the recent survey of higher order networks
by Bick et al. [2]). Indeed, the use of random hypergraphs as a
modeling tool for real world phenomena has also been observed
previously [12]. Therefore, we believe that the study of reliability
in hypergraphs is a natural tool for understanding the connectivity

2The rank of a hypergraph is the maximum rank of any hyperedge in it, where the
rank of a hyperedge is the number of vertices in it.

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0007-3900-2344
https://orcid.org/0000-0003-3644-0879
https://orcid.org/0000-0003-1799-6660
https://doi.org/10.1145/3618260.3649753
https://doi.org/10.1145/3618260.3649753
https://doi.org/10.1145/3618260.3649753
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649753&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

properties of such real world networks subject to random failures.
We initiate this line of research in this paper and hope that this will
be further expanded in the future.

1.1 Our Results

We give two algorithms for hypergraph unreliability. The first al-
gorithm is simpler and achieves the following result:

THEOREM 1.1. For any fixed ¢ € (0,1), there is a randomized
Monte Carlo algorithm for the hypergraph unreliability problem that
runs in mCU98") time on an m-hyperedge, n-vertex hypergraph and
returns an estimator X that satisfies X € (1 % £)ug (p) whp.®

The running time of the algorithm in the theorem above (and also
that in the next theorem) is inversely polynomial in the accuracy
parameter ¢. For brevity, we assume that ¢ is fixed throughout the
paper and do not explicitly state this dependence in our running
time bounds.

Note that the number of hyperedges in a hypergraph can be
exponential in n. This makes a quasi-polynomial-time hypergraph
algorithm that has a running time of poly(m) - nPPY 198" quali-
tatively superior to one that has a running time of mPy108(n),
(Contrast this to graphs where the two bounds are qualitatively
equivalent because m = O(n?).) To this end, we give a second (more
involved) algorithm that achieves this sharper bound on the run-
ning time incurring a small additive error in the approximation
guarantee.

THEOREM 1.2. For any fixed ¢ € (0,1) and any é € (0,1), there is
a randomized Monte Carlo algorithm for the hypergraph unreliability
problem that runs in m-n© (108 10g108(1/9)) time on an m-hyperedge,
n-vertex hypergraph and returns an estimator X that satisfies X €
(1 +e)ug(p) =8 whp.

To interpret this result, set § = exp(—n). Then, we get an algo-
rithm that runs in m - n°0°2° ") time and returns an estimator X
that satisfies X € (1 + €)ug(p) + exp(—n) whp. In other words,
we obtain the sharper running time bound that we were hoping
for in exchange for an exponentially small additive error in the
approximation. We may also note that in general, a simple Monte
Carlo simulation of the hypergraph disconnection event also gives
an estimator for ug(p) with an additive error. But, this additive
error would be exponentially larger than the one in Theorem 1.2;
in particular, in order to ensure that X € (1 £ ¢)ug(p) + exp(—n)
whp, we would need to run the Monte Carlo simulation exp(n)
times, thereby giving an exponential time algorithm as against the
quasi-polynomial running time in Theorem 1.2.

1.2 Our Techniques

We now give a description of the main technical ideas that are used
in our algorithms. Let us start with a rough (polynomial) approxi-
mation to ug(p). In graphs, this is easy. Let A denote the value of a
minimum cut. Since there is at least 1 and at most O(n?) minimum
cuts [10], their collective contribution to ug(p) is between p’1 and
0(n?) ~p)‘. Now, since the number of cuts of value < aA is at most
3whp = with high probability. Throughout the paper, we say that a property holds

with high probability if it fails with probability bounded by an inverse polynomial in
n.

1701

Ruoxu Cen, Jason Li, and Debmalya Panigrahi

n9(@) [14], the collective contribution of all other cuts to ug (p) is
also at most O(n?) - p’1 (for sufficiently small p, else we can just
use Monte Carlo sampling). The bound of O(n?) on the number of
minimum cuts continues to hold in hypergraphs (see [6, 11]; this
is implicitly shown in [9]). So, their collective contribution is still
between p’l and O(n?) -p’l. But, the number of cuts of value < al
can be exponential in the rank r, and therefore exponential in n for
r = Q(n) [20]. Therefore, a naive union bound over these cuts only
gives a trivial exponential approximation to ug(p).

Our first technical contribution is to show that somewhat sur-
prisingly, the upper bound of O(n?) - p)L on the value of ug(p)
continues to hold for hypergraphs of arbitrary rank. As described
above, we can’t simply use a union bound over cuts, but must go
deeper into the interactions between different cuts. To this end,
we consider an alternative view* of the random failure of hyper-
edges. For each hyperedge, we generate an independent exponential
variable (at unit rate) and superpose the corresponding Poisson
processes on a single timeline. We contract each hyperedge as it
appears on this timeline; then, the disconnection event corresponds
to having > 2 vertices in the contracted hypergraph at time In(1/p).
As hyperedges contract, the vertices (which we call supervertices)
of the contracted hypergraph represent a partition of the vertices
of the original hypergraph; we assign leaders to the subsets in this
partition in a way that we can argue that any two vertices survive
as leaders till time In(1/p) with probability at most p’l. This allows
us to recover the O(n?) - p)L bound on the value of ug (p) by a union
bound on all vertex pairs.

We now use this rough O(n?) approximation to ug(p) in design-
ing a recursive algorithm. We generate a random hypergraph H by
contracting hyperedges in G with probability 1 — g for some q > p.
(See 3, 16—18] for the use of random contraction in network unreli-
ability.) The intuition is that by coupling, these edges will survive if
the failure probability is p; hence, contracting them does not affect
the disconnection event. The algorithm now makes a recursive call
on H with the conditional failure probability p/q and obtains an
estimator for ug(p/q). But, how do we bound the variance due
to the randomness of H? This is where the O(n?)-approximation
comes in handy - it bounds the range of uz; (p/q) to O(n?) - (_p/q)A,
thereby giving a bound of n? - ¢=% on the (relative) variance of the
overall estimator.’ Thus, if we select ¢ such that g™* = poly(n),
then we only need a polynomial number of random trials.

For this plan to work, we need to we make progress in the
recursion, i.e., make recursive calls on subgraphs that are smaller
by a constant factor. Unfortunately, we are unable to ensure this
in hypergraphs of arbitrarily large rank. To see this, consider a
hypergraph containing n hyperedges of rank n—1,ie, A =n—1.In
this case, we have n? - ¢~*! trials and the probability of each trial
returning the input hypergraph is ¢ (if none of the n hyperedges
is contracted). So, > 1 recursive calls (in expectation) will run on
the input hypergraph itself, which defeats the recursion. However,
we show that this is really an extreme scenario and we can make
sufficient progress in all hypergraphs with rank at mostn/2 — we call
these universally small and the rest existentially large hypergraphs.

4See [18] for a different use of this alternative view.
The relative variance of a random variable X is defined as Var[X]/E?[X].

Hypergraph Unreliability in Quasi-Polynomial Time

We are now left to handle existentially large hypergraphs. This is
where the two algorithms (Theorem 1.1 and Theorem 1.2) differ. The
first algorithm (Theorem 1.1) simply enumerates over all outcomes
(survival/failure) of the large hyperedges, i.e., those of rank > n/2.
To do this efficiently, it orders the large hyperedges and creates a
new recursive instance based on the first large hyperedge that is
contracted in this order. This generates £ < m subproblems, where
¢ denotes the number of large hyperedges. In the last subproblem,
all the ¢ large hyperedges fail (i.e., none of them is contracted) and
we are left with a universally small hypergraph. In all the other
subproblems, at least one large hyperedge is contracted and we
are left with a hypergraph containing at most n/2 vertices. So, we
make progress in either case.

The second algorithm (Theorem 1.2) cannot afford to enumerate
over all large hyperedges. Instead, it partitions the set of hyper-
edges in G into the large and small hyperedges and creates two
hypergraphs, Garge and Ggpayy. Now, for G to be disconnected, both
Gsmall @nd Giarge must be disconnected (but not vice-versa!). Recall
that earlier, we ran into a problem where our naive sampling pro-
cess could not make progress in terms of reducing the size of the
hypergraph when sampling large hyperedges. This was epitomized
by a hypergraph containing n hyperedges of rank n — 1 each. But, if
we think of this instance in isolation, then it is actually quite easy
to estimate ug(p) in this hypergraph. This is because whenever
the hypergraph disconnects, it does so at a degree cut® of a vertex.
So, there are only n cuts that we need to enumerate over. In fact,
this property is true for the hypergraph Giage obtained from any
hypergraph G; since every pair of large hyperedges share at least
one vertex, any disconnected sub-hypergraph must have an isolated
vertex. We exploit this property by writing a DNF formula for all the
degree cuts of Gyrge (Where each variable denotes survival/failure
of a large hyperedge) and use the classical importance sampling
technique of Karp, Luby, and Madras [19] to generate a sample of
Glarge conditioned on it being disconnected.

How do we augment this sample in Gg,,;1? We have two cases.
To understand the distinction, let us informally imagine that the
minimum cuts of Gjarge and Ggpay coincide, and they form the
minimum cut of G. (Of course, this is not true in general!) The two
cases are defined based on the relative values of the minimum cuts
in Glarge and Ggmal- If Giarge contributes most of the hyperedges to
the mincut (we call this the full revelation case), then the probability
that Ggpay1 gets disconnected is quite high (recall that ug(p) > p’l).
In this case, it suffices to do Monte Carlo sampling in Ggy, to
augment the sample obtained from Gjayge. The other case is when
Ggmall contributes a sizeable number of hyperedges to the minimum
cut (we call this the partial revelation case). Note that the extreme
example of this second case is when Gy is empty, ie., when the
hypergraph is universally small. This suggests generalizing the use
of random contraction from universally small hypergraphs to this
case, i.e., failing hyperedges at a higher probability of ¢ > p in a
recursive step. But, to synchronize the sample across Gjyrge and
Gsmall, we must use the same value g in Gyyge as well. Unfortunately,
as we observed earlier, the algorithm might not make progress in
terms of the size of the hypergraph in this case. To overcome this,
we introduce a second recursive parameter, that of the value of

©A degree cut is a cut that separates one vertex from the rest of hypergraph.

1702

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

the failure probability itself. This second recursive parameter now
requires us to define a new base case when the probability of failure
is very small (denote the threshold by a parameter §) — this is
where we incur the additive loss of § in the approximation. The
overall running time is now given by the fact that each subproblem
branches into polynomially many subproblems, and the depth of
the recursion is bounded by log nloglog(1/5) where the first term
comes from the recursion on size and the second term from that
on the failure probability.

Organization. We give some preliminary definitions and termi-
nology in Section 2. We then establish Theorem 1.1 in Section 3.
Finally, we establish Theorem 1.2 in Section 4. We give some con-
cluding thoughts in Section 5. We note that all missing proofs are
deferred to the full version of the paper.

2 PRELIMINARIES

Hypergraphs. We start with some basic notations for hyper-
graphs. A hypergraph G = (V, E) comprises a set of vertices V and
set of hyperedges E, where each hyperedge e € E is a non-empty
subset of the vertices, i.e.,) C e C V. The rank of a hyperedge e is
le|; the rank of a hypergraph G, denoted rg, is the maximum rank
of a hyperedge in G.

For any hypergraph G = (V, E) and subset of hyperedges F C E,
denote G — F := (V, E \ F) to be the hypergraph after deleting the
hyperedges in F from G. A cut in a hypergraph is defined as a set
of edges C such that G — C is disconnected. The value of a cut C is
the number of hyperedges in C. A minimum cut of a hypergraph
is a cut of minimum value. We denote the value of a minimum cut
in a hypergraph G by Ag. The following is a known result (follows
from Theorem 4 in [5] using the maximum flow algorithm in [7]):

THEOREM 2.1. The minimum cut of a hypergraph can be computed
in (X, le)1 D) time.

In this paper, we often make use of hyperedge contractions.
Contracting a hyperedge e in a hypergraph G replaces the ver-
tices in e by a single vertex to form a new hypergraph denoted
G/e := (V/e,E/e). Note that there is a natural surjective map
¢ : V. — V/e that maps vertices in e to the contracted super-
vertex in V/e, and maps vertices outside e to themselves. Each
hyperedge e € E is replaced in E/e by an element-wise mapped
set {u € e : ¢(u)}. By extension, contracting a set of hyperedges
F = {ey, ez,...} is equivalent to contracting all hyperedges in F in
arbitrary order: we write G/F := (((G/e1)/e2) ...)/ex. H is called
a contracted hypergraph of G = (V,E) if H = G/F for some F C E.
For distinction between the uncontracted vertices in G and the
contracted vertices in H, we usually call the former vertices and the
latter supervertices.

A key operation in our algorithm is uniform random hyperedge
contraction. We use H ~ G(q) for some g € (0, 1) to denote the
distribution of a random contracted hypergraph H obtained from
G by contracting each hyperedge independently with probability
1 — g. The next lemma states that ug; (p/q) is an unbiased estimator
of ug (p):

LEmMA 2.2. Suppose H ~ G(q) and q > p. Then, E[ug(p/q)] =
ug(p).

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Random Variables. Next, we give some basic facts about ran-
dom variables that we will use in this paper. All random variables
considered in the paper are non-negative.

The relative variance of a random variable X is

[X] = Var[X] E[X?]
T T @D T B

Since we use a biased estimator in Theorem 1.2, we need a non-
standard (capped) version of relative variance. We define it and
state its properties below.

Definition 2.3 (Capped relative variance). The (8-)capped relative
variance of random variable X is

B Var[X]

" max{(E[X])2 62}

We state some basic facts about capped relative variance. Note
that relative variance is a special case of capped relative variance
when & = 0. Therefore, these facts also hold for relative variance as
a special case.

ns[X]

FAcT 2.4. The average of M independent samples of X has capped

ns[X]
7ol

relative variance

FAcT 2.5. SupposeY is an unbiased estimator of x, and conditioned
on a fixed Y, Z is a biased estimator of Y with bias in [-§,0] and
capped relative variance ng[Z|Y] < h. Then

nslZ] <4-(n[Y]+1) - (h+1).

In particular, when § = 0 (i.e. for relative variance of unbiased
estimator Z), there is a stronger bound

nlzl < (p[Yl+1)-(h+1)-1.

FacT 2.6. Suppose X and Z are independent random variables
with expectation in (0, 1), and § € [0, 1]. Then

n5[XZ] < nslX] - nslZ] +ns[X] +ns(Z].

1s[X]
62

LEMMA 2.7. The median-of-average of
of X is a (1 % ¢, §)-approximation of B[X].

independent samples

The next two facts are for relative variance:

Fact 2.8. IfX is a convex combination of independent non-negative
random variables X1, ..., Xy, i.e, X = X< aiX;i for i > 0 and
Di<k o =1, then n[X] < max; < n[X;].

FacT 2.9. If a non-negative random variable X is upper bounded
by M, then n[X] <

=57 — 1.

E[X]

Exponential distribution. Recall that the exponential distribution
of rate r gives a continuous random variable X > 0 satisfying
Pr[X > t] = " for all t > 0. We state some standard properties
of the exponential variables:

FAcT 2.10 (MOMENT GENERATING FUNCTION). Let X follow expo-
nential distribution of rate r. Then for anyt < r,BE[e!X] = 1/(1- é)

FacT 2.11 (MEMORYLESS PROPERTY). Let X follow exponentail
distribution. Then for any s,t > 0, Pr[X > s+¢|X > s] = Pr[X > t].

Fact 2.12. Let X1, Xo, ..., Xy be independent random variables
with exponential distribution of rate r, and X = min; < {X;}. Then,
X follows exponential distribution of rate kr. Moreover, X = X; for
every value of i with probability 1/k.

1703

Ruoxu Cen, Jason Li, and Debmalya Panigrahi

Monte Carlo sampling. Suppose we want to estimate the probabil-
ity pp that an event D happens. (For ug (p), D is the event that the
hypergraph disconnects.) The Monte Carlo sampling algorithm first
draws a sample from the underlying space. (For ug(p), it deletes
each hyperedge independently with probability p.) The estimator
returns 1 if D happens, and 0 otherwise. The following is a standard
property of this estimator:

LEmMMA 2.13. Monte Carlo sampling outputs an unbiased estima-

. . . 1 .
tor of pp with relative variance at most 5 and §-capped relative

. 11
variance at most min{ P’ 3}.
Given Lemma 2.13, we can use Lemma 2.7 to obtain the following:

LEMMA 2.14. We can obtain a (1 + €)-approximation of pp whp

. (logn
viaO |

£pp

logn

&5

) Monte Carlo samples and a (1 + ¢, §)-approximation

whp via O () Monte Carlo samples.

DNF probability. In the DNF probability problem, we are given
a DNF formula F with N variables and M clauses and a value p €
(0, 1). The goal is to estimate the probability up(p) that F is satisfied
when each variable is TRUE with probability p independently. This
problem is #P-hard even in the special case of p = % [21].In a
seminal work, Karp, Luby and Madras [19] provided an FPRAS in
O(NM) time.

THEOREM 2.15 ([19]). The DNF probability problem can be (1 +¢)-
approximated with success probability 1 — § in O(NMIn(1/5)/?)
time.

Our algorithm will need an unbiased estimator for DNF proba-
bility. The estimator in Theorem 2.15 could be biased, but we can
get an unbiased estimator by using its primitive version, at the cost
of a slower running time. We state this in the next two lemmas;
these are essentially shown in [19].

LEMMA 2.16. An unbiased estimator of up(p) with relative vari-
ance at most 1 can be computed in time O(NM?).

LEMMA 2.17 (DNF saMPLING). There exists an algorithm that
draws a sample of values in time O(NM?) according to the follow-
ing distribution: Each variable independently takes value TRUE with
probability p and FALSE with probability 1 — p, conditioned on the
fact that the values satisfy F.

3 THE ENUMERATION-BASED
UNRELIABILITY ALGORITHM

In this section, we design an m©(°8")_time algorithm that outputs
an unbiased estimator of ug(p) with relative variance O(1). It
follows by Lemma 2.7 that a (1+¢€)-approximation can be computed
in mO(1081) ¢=2 time, thereby establishing Theorem 1.1.

3.1 Algorithm Description

Overview. The algorithm is recursive. Before describing the al-
gorithm formally, we give some intuition for the recursive step.
The recursive case is divided into two sub-cases depending on the
maximum rank of the hyperedges. We call a hypergraph universally
small if all edge ranks are at most n/2; otherwise, it is said to be

Hypergraph Unreliability in Quasi-Polynomial Time

existentially large. If the hypergraph is universally small, the algo-
rithm runs a single recursive step of random hyperedge contraction,
and recursively estimates the unreliability of the contracted hy-
pergraph. This is repeated poly(n) times to reduce the variance
of the estimator, and the average of all estimates is taken as out-
put. If the hypergraph is existentially large, the algorithm lists all
large hyperedges of rank greater than n/2, enumerates the first
large hyperedge in the list that does not fail, and recursively esti-
mates the unreliability of the resulting subgraph. The algorithm
also handles the case that all large hyperedges fail by recursing on
the (universally small) sub-hypergraph formed by deleting all large
edges.
Now, we describe the algorithm formally.

Base cases. There are three base cases:

(1) G is disconnected. In this case, we output 1.

(2) p is larger than n~10/2_In this case, we use Monte Carlo
sampling (Lemma 2.13) and take average of n'® samples.

(3) The number of vertices n is a constant. In this case, we merge
all parallel hyperedges to form weighted hyperedges. We
need to estimate ug(p) when each weighted hyperedge e is
removed with probability p*(¢), where w(e) is the weight
of e. We enumerate over all possible subsets of weighted
hyperedges that are deleted, and compute ug(p) exactly.
The first step takes O(m) time; the rest is O(1) time. We
have established the following lemma:

LEMMA 3.1. Whenn = O(1), ug(p) can be exactly computed
in O(m) time.

Recursive case. We start by classifying hypergraphs as follows:

Definition 3.2 (universally small, existentially large hypergraphs).
A hypergraph is universally small if all hyperedges are of rank
at most n/2. A hypergraph is existentially large if there exists a
hyperedge of rank greater than n/2.

Recursive algorithm for universally small hypergraphs. The al-
gorithm repeats a random contraction step independently 2n!2
times. In the i-th random contraction step, the algorithm samples
H; ~ G(q) by contracting each edge with probability 1 — g inde-
pendently, where g = n~10/4 Note that q > p, otherwise we are
in a base case. Then, the algorithm recursively estimates ug;, (p/q).
We will show later that ug, (p/q) is an unbiased estimator of ug (p)
with bounded relative variance. After all 2n'2 recursive calls, the
algorithm takes the average of the estimators returned by these
recursive calls to be the output.

Recursive algorithm for existentially large hypergraphs. Suppose
there are ¢ large hyperedges, ordered arbitrarily as ey, ey, ..., ep.
Let E; be the subset of first i hyperedges in the list; in particular,
Ep = 0. We divide the event of hypergraph disconnection into
¢ + 1 disjoint events by enumerating the first hyperedge in the list
that does not fail. Formally, for i = 0,1,...,¢ — 1, let A; be the
event that first i hyperedges in the list all fail, but the (i + 1)-th
hyperedge survives; Let A, be the event that all £ hyperedges fail.
Then Pr[A;] = p'(1-p) fori < £—1and Pr[A,] = p’. Conditioned
on each event A;, we can remove the failed hyperedges in E; and
contract the first surviving hyperedge e;;1 to form a subgraph H;.
Formally, let H; = (G—E;)/ejs1 fori=0,1,...,¢—1,and Hp = G—E,.

1704

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

The event that G disconnects conditioned on A; is equivalent to H;
disconnecting when each hyperedge is removed with probability p
independently. We have

¢
ug(p) = ZPr[Ai] - Pr[G disconnects|A;]
i=0
-1
= ploug(p)+) p'(1=p) um(p) (1)
i=0

The algorithm runs £ + 1 = O(m) recursive calls on each H; to get
unbiased estimators X; of ug, (p). The overall estimator X of ug (p)
is then given by X = p¢ - X, + Zf:_ol p'(1 = p) - X;. Equation (1)
shows that X is an unbiased estimator of ug(p).

The subproblems are easier because of the following reason: in
H; for i < ¢ -1, we contracted a large hyperedge from G, so the
number of vertices decreases by at least a half; In Hp, we removed
all large hyperedges from G, so Hy is universally small.

In the rest of the paper, we call this the enumeration-based algo-
rithm.

3.2 Correctness

In this section, we prove the following lemma that establishes
correctness of the algorithm.

LEMMA 3.3. The enumeration-based algorithm outputs an unbi-
ased estimator with relative variance at most 1.

Note that the base cases of disconnected G and constant size out-
put exact value of ug (p), and the base case of Monte Carlo sampling
outputs an unbiased estimator of ug (p). Also, an enumeration step
in the existentially large case does not introduce variance. So, we
only need to bound the relative variance introduced in the univer-
sally small case. To do so, we first analyze the variance introduced
in a random contraction step.

The key to bounding relative variance of a random contraction
step is the following property of a random subgraph which we will
prove later.

Lemma 34. p < ug(p) < n?ph.

Lemma 3.4 provides an upper bound on the relative variance of
random contraction:

LEMMA 3.5. Suppose H ~ G(q) and q > p. Then, the relative
variance of ugr(p/q) is at most ng~* — 1.

ProOF. Because H is constructed by contraction from G, its min-
cut value Ay is at least the min-cut value A in G. By Lemma 3.4,

ur(p/q) < IVIE) 2 (p/9)* < n*(p/g)*)

because |V(H)| < n, Aiy > A, and q > p.
ugr(p/q) is an unbiased estimator of ug (p) by Lemma 2.2. Next
we bound its relative variance n[ug(p/q)]. By Fact 2.9, the rel-

maxy ug (p/q)
—uwl) 1. We have

maxg upg (p/q) < n?(p/q)* by Equation (2), and ug(p) > p* by
Lemma 3.4. Therefore,

ative variance is upper bounded by

P/t _
A

nlun(p/9)] <

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

We are now prepared to prove Lemma 3.3.

ProoF oF LEMMA 3.3. We will prove the lemma by induction on
number of vertices n, number of hyperedges m, as well as the value

of [mln %] The base case of n = O(1) is given by Lemma 3.1. The

base case of m = 0 is handled by the disconnected case in the
algorithm. These two base cases output the exact value of ug(p).

For the induction on [m In ’%-‘
integer because p € (0,1) in all recursive calls. The base case
[m In ﬂ
Monte Carlo sampling in the algorithm, which outputs an unbiased

estimator of ug(p) with relative variance at most ﬁ(m < 1% <

n'% by Lemma 2.13. After taking average of n'® samples, the relative
variance is reduced to at most 1 by Fact 2.4.

For the inductive step, there are two cases. We first consider a
random contraction step when the hypergraph is universally small.

notice that this value is a positive

<

% implies p* > n~'%. Hence, it is handled by

This step generates 2n'? random subgraphs H; ~ G(gq), where g{’1 =
n~10 Lemma 2.2 gives that up, (p/q) is an unbiased estimator of
uG(p). Lemma 3.5 gives that ug, (p/q) has relative variance at most
nzq’)L -1 = n'?2 - 1. By the inductive hypothesis, each subproblem
returns an unbiased estimator X; of ug, (p/q) with relative variance
at most 1. By Fact 2.5, X; is an unbiased estimator of ug(p) with
relative variance at most n'?(1+1) — 1 < 2n'2. Taking average over
all 2n'? estimators, X; gives an unbiased estimator of ug (p) with
relative variance at most 1 by Fact 2.4.

Next, we consider a large hyperedge enumeration step when the
input hypergraph is existentially large. The algorithm computes an
estimator X = p¢- X, + Zle p'(1=p) - X;, where X;’s are returned
by recursive calls on H;. By the inductive hypothesis, the recursive
calls give unbiased estimators, i.e. E[X;] = ug, (p). We have

£
E[X] = p' - B[X/] +) p'(1-p) - E[Xi]
i=1
-1)
=p"un, (p)+ Y p (1= p) - usr, (p)
i=0

(€))

= ug(p).

X is a convex combination of independent recursive estimators
Xi, which have relative variance at most 1 by the inductive hypoth-
esis. Hence, X also has relative variance at most 1 by Fact 2.8.

Finally, we argue that the induction is valid, i.e., that we always
make progress on one of the inductive parameters in every recursive
call. Whenever a hyperedge is contracted or deleted, we decrease n
or m. It is possible that a random contraction step does not change
the hypergraph. In that case, notice that p is changed to p/q in

1 1 _ 10mlan 10.
P q A

Therefore, we also decrease [m In 117-‘ and the induction is valid. O

the subproblem. So, mIn + decreases by m1In

In the rest of this subsection, we give a proof of our main techni-
cal lemma, Lemma 3.4.

Proof of Lemma 3.4. The lower bound ofp’1 in Lemma 3.4 holds
because a minimum cut fails with probability p/l. The rest of the
proof is devoted to the upper bound of nzpl.

We first assume that in the hypergraph G, the hyperedges are
partitioned into pairs of parallel hyperedges. This is w.l.o.g. because

1705

Ruoxu Cen, Jason Li, and Debmalya Panigrahi

we can replace each hyperedge by two copies and change the failure
probability p to /p.

We introduce some definitions that are used only in the anal-
ysis (i.e., the algorithm does not need to compute them). For any
contracted hypergraph of G, we choose an orientation of the hyper-
edges in the sense that in each hyperedge, one vertex is designated
the head and all other vertices are tails. We require the orientation
to satisfy the property that any pair of parallel hyperedges (in the
partition of hyperedges into pairs) have different heads. This is
always possible because the rank of each hyperedge is at least 2.
Besides this property, the choice of heads are arbitrary. The orien-
tation is chosen in a consistent way. That is, any fixed contracted
hypergraph always chooses the same orientation throughout the
analysis.

The orientation is used to define representatives of contracted
supervertices. Each contracted supervertex during the contraction
process will be assigned a representative vertex, which is an original
vertex contracted into the supervertex. Initially, each vertex is its
own representative. Whenever a hyperedge e is contracted, we
assign the representative of the head of e to be the representative
of the new contracted supervertex.

Cram 3.6. For any pair of supervertices u # v in a contracted
hypergraph of G, there are at least A hyperedges that contain at least
one of u orv as a tail.

We now proceed to prove the upper bound.

Exponential contraction process. For the sake of analysis, consider
the following continuous time random process called the exponen-
tial contraction process. Let each hyperedge e independently arrive
at a time Y, following the exponential distribution of rate 1. Then,
the probability that a hyperedge does not arrive before time In é is

-1
e

g = q. Therefore, contracting hyperedges that arrive before
time In % produces the same distribution as H ~ G(q).

In the contraction process, if the hypergraph is not contracted
into a single supervertex at time In % (which happens with prob-
ability ug(p)), there are at least two supervertices. Consequently,
at least two vertices survive as representatives. We will show that
the probability that any pair of vertices s, t both survive is at most
p’l. By union bounding over all (3) < n? pairs of vertices, we have

uG (p) < n®p” which completes the proof.

To bound the probability that any pair of vertices s, t both survive,
we choose a set of critical edges during the contraction process
as follows. When s and ¢ are in different supervertices 5 and Z,
we choose A hyperedges that contain at least one of 5 or 7 as a
tail guaranteed by Claim 3.6; otherwise, we choose A arbitrary
edges. (The critical edges may change after each contraction.) Note
that whenever a critical edge arrives, one of s or t is no longer a
representative. Hence, if s, t both survive as representatives after
the contraction process, then no critical edge arrives during the
contraction process. By Lemma 3.7, this happens with probability

—Alnd
at most e Mnl’ :pl.

LEMMA 3.7. Suppose during the exponential contraction process
from time 0 to T, we maintain a subset of uncontracted hyperedges
called the critical edges. The critical edges could change immediately
after each arrival of an uncontracted hyperedge, but do not change

Hypergraph Unreliability in Quasi-Polynomial Time

between two arrivals. Suppose that there are always at least A critical
edges. Then, the probability that no critical edge arrives up to time T
is at most e =T .

Proor. The proof'is by induction on the number of uncontracted
hyperedges m. The base case is m = A, where the set of critical edges
cannot change, and the probability that no critical edge arrives is
e T,

For the inductive case, let mciy > A be the current number of
critical edges. We bound the probability that no critical edge arrives
up to time T (denoted pg(T)) by integrating over the earliest time
t that a hyperedge e; arrives. By Fact 2.12, t follows the exponential
distribution of rate m, and e; is not a critical edge with probability 1—
% After the earliest hyperedge e; arrives, we apply the inductive
hypothesis on hypergraph G/e; and remaining time T — t.

T oo
pc(T) =/ me_mtdt-()p Je (T = t)+/ me~ ™t d¢
0 T
T A
<e Ml +/ me~ ™ dt - () ce AT
0

1= =
T
T e AT / (m—A)e~(m=Mtq;
0

m
¢~ (m=NTy _ (=T

Merit

=e€

—-m

=e T+e_AT(1—

>

which completes the inductive case.

3.3 Running Time

In this section, we prove the following lemma of running time of
the algorithm.

LEmMA 3.8. The expected running time of the enumeration-based
algorithm is mO(ogn)

Size decrease bound. In order to bound the size of the recursion
tree, we ideally want each random contraction step to reduce the
number of supervertices by a constant factor, so that the recursion
tree has depth O(logn). This does not generally hold with high
probability when some hyperedge’s rank is large. As an extreme
example, consider the hypergraph that consists of n distinct hy-
peredges of rank n — 1. The probability to contract nothing is ¢",
while the contraction step is repeated nzq_’1 = nzq_(”_l) times, so
we expect to see at least one bad subproblem where the number
of vertices does not decrease. If this happens, then the size of the
recursion tree would be unbounded.

This is where the maximum rank assumption in the universally
small case becomes useful: we can control the probability to get a
bad subproblem to be small enough, which is crucial in bounding
the size of the recursion tree.

LEmMMA 3.9. Fix constants A > B > 1. Suppose that all hyperedges
have rank at most R = n/A, and n is larger than some constant
depending on A. Letn* = [BR], and let H ~ G(q). Then, Pr[|V(H)| >
n*+1] < nAZ/BqBA.

ProoFr. Define ¢(G) to be the stopping time in the contraction
process when the vertex size of the contracted hypergraph de-
creases to at most n*. By definition

Pr[|V(H)| > n*] =Pr [t(G) > lné} .

1706

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

By Markov’s inequality,
E [eBA» t(G)]

| _ b [.BAL(G) o -BA
Pr [t(G) > In a] =Prle >q 7 < 53

q
By choosing the same parameters A, B in Lemma 3.11 (which we
will prove later),

Al
Pr [t(G) > lnl] < E[eB/Lt(G)]qBA < (2) nan}L
q

n*

< (Ae/B)Alnan/l < pA(l+n g)qB,l < nAz/BqB)L’

where the last inequality uses that 1 + Inx < xforallx >0. O

In Lemma 3.9, we set A = 2 and B = 1.5 to get:

COROLLARY 3.10. Assume that all hyperedges have rank at most
n/2 and n is larger than a suitable constant. Let H ~ G(q). Then,
Pr[|V(H)| > 0.8n] < n®7¢"-54,

LEmMA 3.11. Fix constants A > B > 1. Suppose the maximum rank
is upper bounded by R and R is larger than some constant depending on
A. For any hypergraph G formed by contraction from G, define t(G)
to be the following stopping time: In a contraction process starting at
G, the vertex size of the contracted hypergraph decreases to at most
n* = |'BR] Suppose [V(G)| < N, whereN = AR. Let X be the min-cut
value in G. Then,

~ VAlnN
V(G

n*/e

) [eBI»t(é)] <

Proo¥r. Our proof is by induction on 1 = |V(G)| As the base

case, when i < n*, by definition t(G) = 0 and eB)L t(G) = =1, so the
statement holds.

Next consider the inductive step where n > n*. Let 7 be the
average rank in G, ie, 7= % ZeeE((}) r(e), where i = |E(G)|.

Let 7 = min X, be the earliest arrival time of a hyperedge

e€E(G)
in G. Because the X’s are sampled from i.i.d. exponential distri-
butions of rate 1, the random variable 7 follows the exponential
distribution of rate m by Fact 2.12. Note that any degree cut in G has
value at least the min-cut value A in G. By summing over degrees
of all vertices, we have

"|§J)

Al < Z rle)=mr = m >
eeE(G)
Denote rate(-) to be the rate of a exponential distributed rand~0m
variable. Because n > n* and 7 < R, we have rate(r) = m > @ >
%ﬁ > BA.
By the moment generating function of the exponential distribu-
tion in Fact 2.10,

1

B
rate(7)

<

E I:eBIT] — (3)

AAF
Now, consider the distribution of (G) after revealing 7. To de-
crease size from n > n* to below the threshold n*, at least one
hyperedge needs to be contracted; so t(é) > 7. Moreover, by the
memoryless property of the exponential distribution in Fact 2.11, 7

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

and t((~9) — 7 are independent. If we further reveal the information
that the hyperedge that arrives the earliest is e;, then we know the
random process after the earliest arrival is equivalent to running
the contraction process starting from G /ei. Thus, t(G) — 7 follows
the same distribution as t(a /ei) conditioned on e; arrives first. Be-
cause the hyperedges follow ii.d. exponential distribution, they are
equally likely to arrive the earliest. Therefore, unconditionally we
have that t((~}) — 7 follows distribution of t(G/ e;) for each e; with
probability % Formally,
) [eBI.t(é)] B [eBIT] E [eBI(t(é)—r)]
B, 1 BI»t(é/ei)]
E [e] Z ﬁ]E [e 4)

e;€E(G)

T

Note that the min-cut value A; in a/ei is at least A because a con-
traction cannot decrease the min-cut value. So,

E [eBI.t(é/ei)] <E [eB/li't(G/e,-)] .

We now apply the inductive hypothesis to bound this term.

~ AlnN
E [eB’l”'t(G/e")] < max {() ,1}

*/e})AlnN

n—r(e)+1
n*/e

_ (max{n—r(e;)+1n

- (n*/e)AlnN

- (max{n —r(e;) + l,ﬁ/e})AlnN em\ AN
= FAINN A\
r(e;)) —1 en

*

_ max{(l)/“HN’NA} | (n)AlnN

Next, we prove that max{(1 - %)AIHN, N4}y <1- % for all
r € [2,R]. For the second term, we have N™4 < ﬁ while

n

Br BR n* 1 1
l-=21-—=2>1- = > —.
n n n*+1 n*+1 N
For the first term, define x = r(ei—ﬁ)_l in terms of r(e;), which

satisfies x € [%, I%] Then, r(e;) = nx + 1. We want to bound

(1- r;ﬁl)AlnN <1- % for all r € [2, R], which is equivalent to

B
(1-x)AlnN < 1-Br-=. (5)

Note that the LHS is convex on (0,1) when AInN > 2, and the
RHS is linear. So we only need to prove (5) for the two endpoints
x:%andx: %.Forx: L

|

Here, the second inequality is by e™ < 1 - % for x € [0,1] or
AlnN/n < 1, which holds when N is larger than some constant
(depending on A). The last inequality holds when In N > 4.

Next, we consider the second endpoint x = }%. The assumption

we have

1
1-=
n

< AN AN _ 28

AlnN
) 2n - n

N = AR > n implies R %. So, we have
n

R-1 AlnN

(-5 <

n

1 1
1——+=
A n

AlnN 1
< =
N

1707

Ruoxu Cen, Jason Li, and Debmalya Panigrahi

\

\

/k

[
(g

Figure 1: A depiction of a portion of the computation tree.
The failed recursive calls are shown in dashed red, while
the successful ones are shown in solid black. Lemma 3.12
analyzes the expected size of the recursion tree.

1

I+ 1< e_l/A, which
n

Here, the last inequality is equivalent to 1 —
holds when 71 > 3A% and A > 1.

Now, we have

B [eBI.t(é)] O [eBIT]) ; Z) [eBI.t(c“;/e)]
" e;€E(G)
G 1 1 BA-t(G/e)
= = = Ele
- % " Eieg(a) []
Bre: ~\AInN ~\AInN
Se R SR

n

which establishes the inductive case. m]

Proof of Lemma 3.8. We color each recursive call as black or red.
Intuitively, they represent a “success” or “failure” in recursive calls
respectively. A call is black if it decreases size by a constant factor,
more precisely when |V (H)| < 0.8n. Otherwise, the call is red.

The recursion tree has the following properties:

(1) Each subproblem makes at most M = mOW recursive calls.
This is guaranteed by the algorithm.

(2) The algorithm reaches base case after O(log n) black recur-
sive calls. This is because each black recursive call decreases
n by a constant factor, and O(log n) black calls reduces n to
a constant, which is a base case.

(3) For each subproblem, the expected number of red recursive
calls is at most 1/2. This is because in random contraction, we
have O(n q_’l) recursive calls, and each call fails (to get size
decrease) with probability at most n27¢*-54 by Corollary 3.10.
The expected number of red calls is their product, which is
upper bounded by n4'7q0'5/1 =0(1) when g{)L =n"10

Lemma 3.12 below shows that these properties give a upper

bound of m®1°8") on the number of recursive calls. If we charge
the time of sampling a random contracted hypergraph to the sub-
problem on the contracted hypergraph, then each subproblem
spends O(nm) time outside the recursive calls. Therefore, the over-
all expected running time is mOUogn) This concludes the proof of
Lemma 3.8.

Hypergraph Unreliability in Quasi-Polynomial Time

LEMMA 3.12. Suppose in a randomly growing tree, each node u is
either a leaf, or has M(u) < M children, where M = Q(n) is a param-
eter. Each edge from u to its children is colored red with probability
f(u) such that M(u)f(u) < 0 = %, and black otherwise. The different
children at a parent node are independent (including independence
betwen the parent-child edges); Also, a subtree is independent of ev-
erything outside the subtree. Moreover, on any path from root to leaf,
there can be at most L black edges. Then, the expected number of
nodes in the tree is at most MO(L)

ProOOF. We say a node w is a red descendant of node u if u is
an ancestor of w, and the path from u to w is formed by red edges
only. See Figure 1 for an illustration.

Let K be the number of red descendants of some node u. Let K;
be the number of red descendants of u that are i steps deeper than u,
so that K = }};51 K;. We have E[K1] = M(u)f(u) < 6. Inductively,
suppose at level i, there are K; red descendants {uy, ..., u,}. By
definition, the red descendants in level i + 1 must be children of red
descendants in level i. Each u; will generate at most 6 red edges
in expectation. So, E[Ki+1] < 6 - E[K;]. By induction, E[K;] < 6.
Note that the sum ;5 6% = % < 1 converges and K;’s are
nonnegative, so we can apply Fubini’s theorem to get

DKl =D ElKl< Y o' <1

i>1 i>1 i>1

E[K] =E

Let V; be the set of nodes that have k black edges from the
root. We prove by induction that E[|V|] < 2(2M)¥ . Tt follows
that the expected number of nodes is E[Zizo [Viel] = O((2M)E) =

MOL) The base case for k = 0 is the expected number of red
descendants of the root, as well as the root itself, which is at most
1+1=2=2(2M)°. Next consider the inductive step. For any node
w € V41, let (u,0) be the black edge closest to w on the path from
root to w. Then, u € Vi, and w is either a red descendent of v or
v itself. Each node u in V. generates M(u) children v, and each
v generates at most 1 red descendants in expectation. Therefore,
E[[Visa|] < B[Vl - M- (1+1) < 2(2M"). o

4 THE SAMPLING-BASED UNRELIABILITY
ALGORITHM

In this section, we strengthen the previous algorithm to obtain
a running time of m - nO(logn-loglog é), at the cost of an additive
error of J, i.e. the output estimator is within (1 + e)ug(p) + 6
whp (Theorem 1.2). When & = 27 P°(") | the running time of the

algorithm is m - nOg"n) We show that the algorithm outputs
an estimator of ug(p) with bias at most 6 and §-capped relative
variance O(1). Theorem 1.2 then follows by Lemma 2.7.

We denote N = log, % We can assume wlog N > log, n, i.e.

d< % This is because we can run a simple Monte Carlo simulation

when § > % in O (IOgn

S5¢e?

. nm) = O(n?me=?%) time by Lemma 2.14.

4.1 Algorithm Description

The algorithm is recursive. We start by defining the simple base
cases. Then, we introduce the definition of large hyperedges, which
characterize the last base case. Finally, we define the recursive cases.

1708

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

4.1.1 Base Cases. There are four base cases, three of which are
the following:

(1) When the number of vertices n is a constant, we enumerate
all possible outcomes by brute force, which is identical to
Lemma 3.1.

(2) When the hypergraph is already disconnected, output 1.

(3) When p/’1 < 273N output 0.

These three base cases are deterministic. The algorithms for the
first two base cases return the exact value of ug(p). The third case
has an additive bias of ug (p), which is at most n®p? by Lemma 3.4.
We assumed N > log, n amdp’1 < 273N 50 nsz < (2N)2.273N <
2N <.

The fourth base case is called full revelation; it will be described
later in the section.

4.1.2 Large and Small Hyperedges. Before proceeding with the
formal description of the remaining algorithm, let us provide some
intuition. Recall from Section 3 that the large hyperedges are the bot-
tleneck in the random contraction algorithm: we branch m times to
halve the number of vertices, which leads to the mOlogn) running
time. However, if we ignore the small hyperedges and consider the
hypergraph with large hyperedges only, it turns out that the struc-
ture of cuts becomes much simpler. This motivates us to partition
the set of hyperedges E into two sets, Ejarge and Egp,))- Intuitively,
these are sets of hyperedges of large and small rank respectively,
but for technical reasons, the precise definition needs to be more
nuanced.

We now formally define the set Ej,rge. It depends on phase nodes
in the recursive computation tree, which we define first. Initially,
the root of the computation tree is a phase node. For any non-root
node w of the computation tree, let u be the closest ancestor node
of w that is a phase node (which exists because the root is a phase
node). w is a phase node if and only if the number of vertices n,, in
u and n,, in w satisfy n,, < 0.8n,. If w is not a phase node, such a
u is called the phase ancestor of w. Define a phase with phase node
u to be all computation nodes whose phase ancestor if u, as well as
u itself. See Figure 2 for an illustration.

Given the definition of phase nodes, we define Ej,g as follows:
In a phase node, Ejge is the set of all hyperedges of rank > n/2. In
a non-phase node w, Ejge is inherited from its phase ancestor u,
i.e. the set of all hyperedges of rank > ny, /2 in u. Let Gjyrge denote
the hypergraph (V(G), Ejarge). We let Egyay be the complement set
of hyperedges E \ Elarge. and Ggan = (V(G), Egman)-

4.1.3 The Last Base Case: Full Revelation. We are now ready to
describe the last base case that we call full revelation. Let f = A—-Ap,
where 4y, is the min-cut value in Gyge. The last base case is invoked
when f < A/N.

The algorithm samples a random subgraph H ~ G(p) condi-
tioned on the event that the contracted hyperedges in Ej,qe do
not contract the whole hypergraph into a singleton. This is done
in two steps. First, we write a DNF formula for the disconnection
event in Glurge, and apply Lemma 2.17 to contract each hyperedge
in Ejarge with probability 1 - p conditioned on the event that Garge
is not contracted into a single vertex. Second, we directly sample

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Figure 2: A depiction of phases in the computation tree. The
filled in nodes are phase nodes. The blue and green nodes
respectively root the blue and green phases. Each phase can
contain successful recursive steps, shown by solid black edges
and black nodes, and failed recursive steps, shown by dashed
red edges and red nodes. In a phase, every node has a phase
ancestor which is the root node of the phase; for instance,
u is the phase ancestor of v (and of every other node in the
blue phase).

the remaining uncontracted hyperedges in E,.j, that is we inde-
pendently contract each of those hyperedges with probability 1 — p.
The resulting hypergraph H follows the desired distribution.

The algorithm repeats 8n? independent samples of the above
process to obtain samples H;, and estimates X; = 0 if H; is con-
tracted into a singleton, and X; = 1 otherwise. Let X be the average
of all these estimators X;. Next, we use the DNF counting algorithm
in Lemma 2.16 to get an unbiased estimator Z of UGqrge (p). The
product XZ is the estimator of ug (p) output by the algorithm.

We are now left to describe the recursive step of the algorithm.
For this purpose, we need to first establish some properties of large
edges:

4.1.4 Properties of Large Edges. The first property is that the as-
sociation of Ej,g. With large ranks and Egpyay with small ranks is
approximately correct:

Facr 4.1. Any hyperedge in Ejype has rank at least 0.3n, and any
hyperedge in Eg,.1 has rank at most 0.7n.

The algorithm only contracts non-trivial hyperedges during re-
cursion, i.e., hyperedges that are contracted into a singleton su-
pervertex are removed. We assert that all large hyperedges are
candidates for contraction:

Facr4.2. Supposew is a non-phase node and Ejyrge (W) is inherited
from the phase ancestor u of w. Then, every hyperedge in Ejypge (4)
still appears in Ejarge (W), but may be partially contracted.

Finally, we come to the most important property, that of the
simple structure of cuts in Gjarge. To explain this, let us introduce
the following property:

1709

Ruoxu Cen, Jason Li, and Debmalya Panigrahi

Definition 4.3 (pairwise intersecting property). A set of hyper-
edges is pairwise intersecting if any two hyperedges in the set share
at least one vertex.

Note that in particular, any set of hyperedges of rank > n/2
satisfy the pairwise intersecting property because the sum of ranks
of any two hyperedges is more than n. We assert that this property
continues to hold with our modified definition of large hyperedges:

Facr 4.4. The set of hyperedges Ejarge satisfies the pairwise inter-
section property.

This allows us to conclude that Gj,pg gets disconnected if and
only if any degree cut fails.

LEMMA 4.5. If a hypergraph G satisfies the pairwise intersecting
property, then G disconnects if and only if some degree cut fails. In
particular, by Fact 4.4, this is true for Gjarge.

Now, the event of Gjypge getting disconnected can be written
into a DNF formula F, where each variable represents the failure of
a hyperedge and each clause represents the failure of a degree cut
in Gygpge as the logical AND of the failure of all hyperedges in the
cut. F has n clauses and m variables. Therefore, by Lemmas 2.16
and 2.17, we have the following:

LEMMA 4.6. We can do the following in O(n?m) time:

(1) Compute an unbiased estimator oqularge (p) with relative vari-
ance at most 1.

(2) Sample a contracted hypergraph H of Giarge Where every hyper-
edge in Giarge is contracted with probability 1 - p, conditioned
on the event that H is not a singleton supervertex.

4.1.5 Recursive Cases. In universally small hypergraphs, the algo-
rithm is identical to the enumeration-based algorithm in Section 3.
We run random contraction with q)L = n710, and repeat the step
16n'2 times.

The algorithm for the existentially large case is now different
because we cannot afford to enumerate m events. Recall that when
there exist large hyperedges, the algorithm divides into two cases
depending on the value of f = A — Af, where Ap is the min-cut
value in Glarge- When < A/N, we get full revelation that we have
already described as the last base case.

We call the remaining case when > A/N partial revelation.
In that partial revelation case, the algorithm still runs a form of
random contraction, but only in a subspace of the entire probability
space. We use the parameter § to control the speed of random
contraction. By Lemma 4.5, Ay, = miny, djarge (1), i-€., the minimum
degree of a vertex in Giurge. Intuitively, § is used to control the
number of small hyperedges in each degree cut, which measures
the speed of random contraction when no large hyperedges get
contracted. Note that 0 < f < A. Ideally, we want to decrease f to
as small as A/N, which reduces to the full revelation case. However,
p can be non-monotone as both A and Ay can increase because of
contraction during recursion. So, we define another parameter y
that can be related to f to bound the depth of recursion in a phase.
Lety = £— A, where £ = |Ejyrge | is the number of large hyperedges.
We show that unlike f, y is monotone in a phase:

LEMMA 4.7. Suppose v, w are nodes in the same phase. If w is a
descendant of v, then yy > Y.

Hypergraph Unreliability in Quasi-Polynomial Time

Algorithm for partial revelation. The algorithm runs random
contraction at a more aggressive rate qﬁ =n~7% 7 This is done in
two steps. First, we write a DNF formula for the disconnection in
Glarge> and apply Lemma 4.6 to contract each hyperedge in Ejyrge
with probability 1—q conditioned on Gjyg not being contracted into
a singleton. Second, we independently contract each uncontracted
hyperedge in Eg,,;; with probability 1—gq. The resulting hypergraph
H follows the distribution of H ~ G(q) conditioned on the event
that the contracted hyperedges in Ej,yge do not contract the whole
hypergraph into a singleton.

The algorithm repeats 32n7%* independent samples H;, and recur-
sively computes a (biased) estimator X; of ug, (p/q). Let X be the
average of all these estimators X;. Next, we use the DNF counting
algorithm in Lemma 4.6 to get an unbiased estimator Z of UG qpge (9)-
The product XZ is the estimator of ug(p) output by the algorithm.

In the rest of the paper, we call this the sampling-based algorithm.

4.2 Bias of the Estimator

We first show that all base cases have bias at most &, and the re-
cursive steps are unbiased. Then, we prove by induction that the
recursion keeps the same bound ¢ on bias.

We introduce some notations when Ej,ge and Egpy,) are uniquely
defined in context. Let G(p1, p2) be the random subgraph formed by
independently contracting each hyperedge in Ej,g with probability
1 — p1, and each hyperedge in Eg,;; with probability 1 — p,. Let
Dy be the event that in some random contraction, the contracted
hyperedges in Ej,ge do not contract the whole hypergraph into a
singleton.

Base cases. The first base case of n = O(1) outputs the exact value
of ug(p) by Lemma 3.1. The second base case of disconnected G is
trivial. In the third base case, the bias is 0 — ug(p) € [-9, 0]. Next,
we prove that the algorithm in full revelation case is unbiased.

LEMMA 4.8. The algorithm in the full revelation case outputs an
unbiased estimator of ug (p).

Recursive cases. A random contraction step in the universally
small case is unbiased by Lemma 2.2. So, we only need to show this
for the partial revelation case. We do this in two steps. First, we
assume that the inductive subproblems in this case return exact
estimators, and show that the resulting estimator after this step is
unbiased. Then, we use this fact to show that if the inductive sub-
problems return biased estimators, then the bias does not increase
after the partial revelation step.

Define a partial revelation step to be that of the algorithm in the
partial revelation case, except that we now directly use UG e (q)
times average of ug, (p/q) as the estimator instead of recursively
estimating them.

LEMMA 4.9. A partial revelation step is an unbiased estimator of

ug(p).

We now prove the inductive claim on the bias of the estimator.

"The reason for this large polynomial in 7 is as follows. In the proof of Lemma 4.12, the
algorithm needs to repeat the random contraction O(nqq’/’) times, and we will show
that each trial has failure probability nqu'mﬁ. We need their product O(n(’qo'mﬁ) to
be 0(1), hence the choice g = n~7%,

1710

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

LEMMA 4.10. The sampling-based unreliability algorithm outputs
an estimator with negatively one-sided bias of at most é.

Proor. We prove by induction. In the base case of p* < 273N
the output is 0; so, the bias is negatively one-sided and upper
bounded by ug(p) < n?p? < (2N)2.273N = 27N = 5 The
other base cases are unbiased.

In a random contraction step of universally small case, we take
the average X = A—l,[2.i<m Xi. By the inductive hypothesis, each X;

satisfies E[X;|H;] — up, (p/q) € [-9,0]. Then,
BIXI - ua(p) = 3. > BIXl - ua(p)
i<M
== Z Ep, [ELX|Hi]] - En, [ug, (p/q)]
z<M
=— Z Ep, [BIXilHi] - un, (p/q)] € [=5,0].
z<M

In the partial revelation case, Z is the DNF sampling estima-
tor of up = UG qrge (q), which is unbiased and independent of X.
Next, we bound the bias of X compared to ug(p)/ur. We take av-
erage X = ﬁ Y.i<M Xi, and each X; is an estimator for ug, (p/q)
with E[X;|H;] — ug, (p/q) € [-6,0] by the inductive hypothesis.
Note that here H; is sampled from a different distribution where
Elurg(p/q)] = ug(p)/ur by Lemma 4.9. Then,

E[X] - uG(P) Z B[] - uG(P)
l<M
=— Z Ep, [E[Xi|Hi]] - Eg, [ug, (p/q)]
1<M
=— Z Ep, [EIXi|Hi] - up, (p/)] € [6,0].
1<M

After scaling by E[Z] = uy, < 1, the overall bias of partial revelation

case is
E[XZ] —uc(p) = E[X]E[Z] - uc(p)

uG(P)) Y

uL
4.3 Capped Relative Variance of the Estimator

= (E[X] - € [-5,0].

We sketch the steps of the analysis that bound the relative variance
of the estimator; the details are deferred to the full version. First,
consider the base cases. There are two non-trivial cases: full rev-
elation and when p/1 < 273N _(Other base cases are deterministic
and unbiased.) For the full revelation base case, we show that the
estimator (which is unbiased) has bounded relative variance:

LEMMA 4.11. The algorithm for full revelation case outputs an
unbiased estimator of relative variance at most 3.

Finally, consider the base case when p)L < 273N, Here, the com-
plication is that the estimator is biased. So, we bound its §-capped
relative variance (defined in Section 2) instead of the standard rela-
tive variance (recall that the bias of the estimator is bounded by §
by Lemma 4.10).

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Next, we consider the recursive calls. We show that the recursive
calls do not increase relative variance. First, consider the case of uni-
versally small hypergraphs. We have shown that a random contrac-
tion step has relative variance at most nzq_/1 =n'% in Lemma 3.5.
Therefore, by repeating a sufficiently large number of times, this
recursive step does not increase the (capped) relative variance.

Next, consider the other recursive case of a partial revelation
step. By using the argument in Lemma 3.5 restricted to the case of
disconnection in large edges, we show that each estimator ug, (p/q)
has relative variance at most n4q_ﬁ = n’%, So, by repeating a
sufficiently large number of times, this recursive step also does not
increase the (capped) relative variance.

Above, we argued the relative variance from a single recursive
step. We then use an induction similar to Lemma 3.3 to bound the
overall capped relative variance. The main difference here is that
we use Facts 2.5 and 2.6 to compose the capped relative variance
instead of the uncapped version. Finally, we get:

LEMMA 4.12. The sampling-based unreliability algorithm outputs
an estimator X of ug (p) with 5-capped relative variance ns[X] < 3.

4.4 Running Time

The argument is similar to Section 3.3; we give a sketch here and
defer the details to the full version. We color each recursive call
as black or red - intuitively, they represent “success” or “failure”.
For both the universally small and partial revelation cases, if the
child subproblem is a phase node, then the recursive call is marked
a success (i.e., a black node). This is the only type of success for
the universally small case, which we call type 1 success. For the
partial revelation case, we have an additional situation where we
declare type 2 success: when the parameter y decreases to 0.9y and
[£ — Al < 0.18. All other recursive calls are failures.
Now, the recursion tree satisfies the following properties:

(1) Each subproblem makes n9W recursive calls. This is clear
from the algorithm description.

(2) The algorithm reaches the base case after O(logn - log N)
black recursive calls (interleaved with red recursive calls):

LEMMA 4.13. There can be at most O(logn - log N) black re-
cursive calls from root to a base case.

(3) At each subproblem, the expected number of red recursive
calls is 0(1). We prove this later in the section.

Lemma 3.12 shows that these properties give a upper bound of
nOUognlogN) o the number of recursive calls. If we charge the
time of DNF sampling and random contraction to the subproblem on
the contracted hypergraph, then each subproblem spends O(n%m)
time outside the recursive calls, where the bottlenecks are DNF
sampling and DNF probability estimation given by Lemma 4.6.

Therefore, the overall expected running time is m - n©(l0gnlogN)

5 CONCLUSION

In this paper, we initiated the study of unreliability in hypergraphs
and provided quasi-polynomial time approximation schemes for
the problem. The immediate open question is whether there is a
PTAS (or even FPTAS) for this problem. More generally, we hope
that our work will inspire further exploration of the rich space of
reliability problems in hypergraphs.

1711

Ruoxu Cen, Jason Li, and Debmalya Panigrahi

ACKNOWLEDGMENTS

RC and DP were supported in part by NSF grants CCF-1750140
(CAREER), CCF-1955703, and CCF-2329230. This research was done
at the Simons Institute, UC Berkeley under the aegis of the Fall
2023 semester program on Data Structures and Optimization for Fast
Algorithms. DP also wishes to acknowledge the support of Google
Research, where he held a part-time visiting appointment at the
time of this research. RC and DP would like to thank William He
and Davidson Zhu for useful discussions at the early stages of this
research.

REFERENCES

[1] Noga Alon, Alan M. Frieze, and Dominic Welsh. 1995. Polynomial Time Ran-
domized Approximation Schemes for Tutte-Gréthendieck Invariants: The Dense
Case. Random Struct. Algorithms 6, 4 (1995), 459-478.

Christian Bick, Elizabeth Gross, Heather A. Harrington, and Michael T. Schaub.
2023. What Are Higher-Order Networks? SIAM Rev. 65, 3 (2023), 686-731.
Ruoxu Cen, William He, Jason Li, and Debmalya Panigrahi. 2024. Beyond the
Quadratic Time Barrier for Network Unreliability. In 2024 ACM-SIAM Symposium
on Discrete Algorithms (SODA). 1542-1567.

Sanjay Kumar Chaturvedi. 2016. Network reliability: measures and evaluation.
John Wiley & Sons.

Chandra Chekuri and Kent Quanrud. 2021. Isolating Cuts, (Bi-)Submodularity,
and Faster Algorithms for Connectivity. In 48th International Colloquium on
Automata, Languages, and Programming (ICALP). 50:1-50:20.

Chandra Chekuri and Chao Xu. 2018. Minimum cuts and sparsification in hyper-
graphs. SIAM J. Comput. 47, 6 (2018), 2118-2156.

Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. 2022. Maximum flow and minimum-cost flow in almost-
linear time. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS). 612-623.

Charles J Colbourn. 1987. The combinatorics of network reliability. Oxford
University Press, Inc.

William H Cunningham. 1983. Decomposition of submodular functions. Combi-
natorica 3, 1 (1983), 53-68.

E.A. Dinitz, AV. Karzanov, and M.V. Lomonosov. 1976. On the structure of a
family of minimal weighted cuts in a graph. Studies in Discrete Optimization (in
Russian), (ed. A.A. Fridman), Nauka, Moscow (1976), 290-306.

Mohsen Ghaffari, David R Karger, and Debmalya Panigrahi. 2017. Random
contractions and sampling for hypergraph and hedge connectivity. In 2017 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 1101-1114.

Gourab Ghoshal, Vinko Zlatic, Guido Caldarelli, and M. E. J. Newman. 2009.
Random hypergraphs and their applications. Phys. Rev. E 79 (2009), 066118. Issue
6.

David G. Harris and Aravind Srinivasan. 2018. Improved bounds and algorithms
for graph cuts and network reliability. Random Structures & Algorithms 52, 1
(2018), 74-135.

David R. Karger. 1993. Global min-cuts in RNC, and other ramifications of a
simple min-cut algorithm. In Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 21-30.

David R. Karger. 1999. A Randomized Fully Polynomial Time Approximation
Scheme for the All-Terminal Network Reliability Problem. SIAM J. Comput. 29, 2
(1999), 492-514.

David R. Karger. 2016. A Fast and Simple Unbiased Estimator for Network
(Un)reliability. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS). 635-644.

David R. Karger. 2017. Faster (and Still Pretty Simple) Unbiased Estimators for
Network (Un)reliability. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS). 755-766.

David R. Karger. 2020. A Phase Transition and a Quadratic Time Unbiased
Estimator for Network Reliability. In 52nd Annual ACM SIGACT Symposium on
Theory of Computing (STOC). 485-495.

Richard M Karp, Michael Luby, and Neal Madras. 1989. Monte-Carlo approxi-
mation algorithms for enumeration problems. Journal of algorithms 10, 3 (1989),
429-448.

Dmitry Kogan and Robert Krauthgamer. 2015. Sketching Cuts in Graphs and
Hypergraphs. In 2015 Conference on Innovations in Theoretical Computer Science
(ITCS). 367-376.

Leslie G. Valiant. 1979. The Complexity of Enumeration and Reliability Problems.
SIAM J. Comput. 8, 3 (1979), 410-421.

[12

(13

[14

[16]

[17

[18

[19

IS
=

[21

Received 13-NOV-2023; accepted 2024-02-11

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	3 The Enumeration-based Unreliability Algorithm
	3.1 Algorithm Description
	3.2 Correctness
	3.3 Running Time

	4 The Sampling-based Unreliability Algorithm
	4.1 Algorithm Description
	4.2 Bias of the Estimator
	4.3 Capped Relative Variance of the Estimator
	4.4 Running Time

	5 Conclusion
	References

