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ABSTRACT

The hypergraph unreliability problem asks for the probability that

a hypergraph gets disconnected when every hyperedge fails inde-

pendently with a given probability. For graphs, the unreliability

problem has been studied over many decades, and multiple fully

polynomial-time approximation schemes are known starting with

the work of Karger (STOC 1995). In contrast, prior to this work, no

non-trivial result was known for hypergraphs (of arbitrary rank).

In this paper, we give quasi-polynomial time approximation

schemes for the hypergraph unreliability problem. For any �xed

Y ∈ (0, 1), we �rst give a (1 + Y)-approximation algorithm that runs

in<$ (log=) time on an<-hyperedge, =-vertex hypergraph. Then,

we improve the running time to< · =$ (log2 =) with an additional

exponentially small additive term in the approximation.
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Networks → Network reliability.
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1 INTRODUCTION

In the hypergraph unreliability problem,we are given an unweighted

hypergraph � = (+ , �) and a failure probability 0 < ? < 1. The

goal is to compute the probability that the hypergraph disconnects1

when every hyperedge is independently deleted with probability

? . The probability of disconnection is called the unreliability of

the hypergraph � and is denoted D� (?). The hypergraph unrelia-

bility problem is a natural generalization of network unreliability

which is identically de�ned but on graphs (i.e., hypergraphs of

1A hypergraph is said to disconnect due to the failure of a subset of hyperedges when
there is a bi-partition of the vertices such that every surviving hyperedge is entirely
contained on either side of the bi-partition. Equivalently, the failed hyperedges must
contain all hyperedges in some cut of the hypergraph.
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rank2 2). The latter is a classical problem in the graph algorithms

literature that was shown to be #P-hard by Valiant [21] and its

algorithmic study dates back to at least the 1980s [1, 19]. By now,

several fully polynomial-time approximation schemes achieving

a (1 + Y)-approximation are known for the network unreliability

problem [3, 13, 15–18]. In contrast, to the best of our knowledge, no

non-trivial approximation was known for the unreliability problem

on hypergraphs of arbitrary rank prior to this work.

Reliability problems are at the heart of analyzing the robust-

ness of networks to random failures. (This can be contrasted with

minimum cut problems that analyze the robustness to worst-case

failures.) Since real world networks often exhibit random failures,

there is much practical interest in reliability algorithms with entire

books devoted to the topic [4, 8]. However, many basic questions

remain unanswered from a theoretical perspective. One bright spot

from a theoretical standpoint is the network unreliability problem,

for which the �rst FPTAS was given by Karger in STOC 1995 [15].

Since then, many other FPTAS have been discovered with ever-

improving running times [3, 13, 16–18], the current record being

a recent $̃ (< + =1.5)-time algorithm (for a �xed Y) due to Cen et

al. [3]. (Throughout the paper, < and = respectively denote the

number of (hyper)edges and vertices in the (hyper)graph.) At the

heart of these algorithms is the well-known fact that a graph has

a polynomial number of near-minimum cuts – cuts whose value

exceeds that of the minimum cut by at most a constant factor [14].

This polynomial bound extends to hypergraphs of rank at most

$ (log=) [20] and as a result, the FPTAS for network unreliability

also apply to such hypergraphs. However, this approach fails for

hypergraphs of arbitrary rank. In general, a hypergraph of rank A

can have as many as Ω(< · 2A ) near-minimum cuts (see Kogan and

Krauthgamer [20] for an example), which rules out an enumeration

of the near-minimum cuts in polynomial time for hypergraphs of

large rank. This presents the main technical challenge in obtaining

an approximation algorithm for hypergraph unreliability, and the

main barrier that we overcome in this paper.

In addition to being a natural and well-studied generalization

of graphs in the combinatorics literature, hypergraphs have also

gained prominence in recent years as a modeling tool for real world

networks. While graphs are traditionally used to model networks

with point-to-point connections, more complex “higher-order” in-

teractions in modern networks are better captured by hypergraphs

as observed by many authors in di�erent domains (see, e.g., the

many examples in the recent survey of higher order networks

by Bick et al. [2]). Indeed, the use of random hypergraphs as a

modeling tool for real world phenomena has also been observed

previously [12]. Therefore, we believe that the study of reliability

in hypergraphs is a natural tool for understanding the connectivity

2The rank of a hypergraph is the maximum rank of any hyperedge in it, where the
rank of a hyperedge is the number of vertices in it.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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properties of such real world networks subject to random failures.

We initiate this line of research in this paper and hope that this will

be further expanded in the future.

1.1 Our Results

We give two algorithms for hypergraph unreliability. The �rst al-

gorithm is simpler and achieves the following result:

Theorem 1.1. For any �xed Y ∈ (0, 1), there is a randomized

Monte Carlo algorithm for the hypergraph unreliability problem that

runs in<$ (log=) time on an<-hyperedge, =-vertex hypergraph and

returns an estimator - that satis�es - ∈ (1 ± Y)D� (?) whp.3

The running time of the algorithm in the theorem above (and also

that in the next theorem) is inversely polynomial in the accuracy

parameter Y. For brevity, we assume that Y is �xed throughout the

paper and do not explicitly state this dependence in our running

time bounds.

Note that the number of hyperedges in a hypergraph can be

exponential in =. This makes a quasi-polynomial-time hypergraph

algorithm that has a running time of poly(<) · =poly log= quali-

tatively superior to one that has a running time of <poly log(=) .
(Contrast this to graphs where the two bounds are qualitatively

equivalent because< = $ (=2).) To this end, we give a second (more

involved) algorithm that achieves this sharper bound on the run-

ning time incurring a small additive error in the approximation

guarantee.

Theorem 1.2. For any �xed Y ∈ (0, 1) and any X ∈ (0, 1), there is
a randomized Monte Carlo algorithm for the hypergraph unreliability

problem that runs in< ·=$ (log=·log log(1/X ) ) time on an<-hyperedge,

=-vertex hypergraph and returns an estimator - that satis�es - ∈
(1 ± Y)D� (?) ± X whp.

To interpret this result, set X = exp(−=). Then, we get an algo-

rithm that runs in< · =$ (log2 =) time and returns an estimator -

that satis�es - ∈ (1 + Y)D� (?) ± exp(−=) whp. In other words,

we obtain the sharper running time bound that we were hoping

for in exchange for an exponentially small additive error in the

approximation. We may also note that in general, a simple Monte

Carlo simulation of the hypergraph disconnection event also gives

an estimator for D� (?) with an additive error. But, this additive

error would be exponentially larger than the one in Theorem 1.2;

in particular, in order to ensure that - ∈ (1 ± Y)D� (?) + exp(−=)
whp, we would need to run the Monte Carlo simulation exp(=)
times, thereby giving an exponential time algorithm as against the

quasi-polynomial running time in Theorem 1.2.

1.2 Our Techniques

We now give a description of the main technical ideas that are used

in our algorithms. Let us start with a rough (polynomial) approxi-

mation to D� (?). In graphs, this is easy. Let _ denote the value of a

minimum cut. Since there is at least 1 and at most $ (=2) minimum

cuts [10], their collective contribution to D� (?) is between ?_ and

$ (=2) · ?_ . Now, since the number of cuts of value ≤ U_ is at most

3whp = with high probability. Throughout the paper, we say that a property holds
with high probability if it fails with probability bounded by an inverse polynomial in
=.

=$ (U ) [14], the collective contribution of all other cuts to D� (?) is
also at most $ (=2) · ?_ (for su�ciently small ? , else we can just

use Monte Carlo sampling). The bound of $ (=2) on the number of

minimum cuts continues to hold in hypergraphs (see [6, 11]; this

is implicitly shown in [9]). So, their collective contribution is still

between ?_ and $ (=2) · ?_ . But, the number of cuts of value ≤ U_

can be exponential in the rank A , and therefore exponential in = for

A = Ω(=) [20]. Therefore, a naïve union bound over these cuts only

gives a trivial exponential approximation to D� (?).
Our �rst technical contribution is to show that somewhat sur-

prisingly, the upper bound of $ (=2) · ?_ on the value of D� (?)
continues to hold for hypergraphs of arbitrary rank. As described

above, we can’t simply use a union bound over cuts, but must go

deeper into the interactions between di�erent cuts. To this end,

we consider an alternative view4 of the random failure of hyper-

edges. For each hyperedge, we generate an independent exponential

variable (at unit rate) and superpose the corresponding Poisson

processes on a single timeline. We contract each hyperedge as it

appears on this timeline; then, the disconnection event corresponds

to having ≥ 2 vertices in the contracted hypergraph at time ln(1/?).
As hyperedges contract, the vertices (which we call supervertices)

of the contracted hypergraph represent a partition of the vertices

of the original hypergraph; we assign leaders to the subsets in this

partition in a way that we can argue that any two vertices survive

as leaders till time ln(1/?) with probability at most ?_ . This allows

us to recover the$ (=2) ·?_ bound on the value ofD� (?) by a union
bound on all vertex pairs.

We now use this rough$ (=2) approximation to D� (?) in design-

ing a recursive algorithm. We generate a random hypergraph � by

contracting hyperedges in � with probability 1 − @ for some @ > ? .

(See [3, 16–18] for the use of random contraction in network unreli-

ability.) The intuition is that by coupling, these edges will survive if

the failure probability is ? ; hence, contracting them does not a�ect

the disconnection event. The algorithm now makes a recursive call

on � with the conditional failure probability ?/@ and obtains an

estimator for D� (?/@). But, how do we bound the variance due

to the randomness of �? This is where the $ (=2)-approximation

comes in handy – it bounds the range of D� (?/@) to$ (=2) · (?/@)_ ,
thereby giving a bound of =2 · @−_ on the (relative) variance of the

overall estimator.5 Thus, if we select @ such that @−_ = poly(=),
then we only need a polynomial number of random trials.

For this plan to work, we need to we make progress in the

recursion, i.e., make recursive calls on subgraphs that are smaller

by a constant factor. Unfortunately, we are unable to ensure this

in hypergraphs of arbitrarily large rank. To see this, consider a

hypergraph containing = hyperedges of rank =− 1, i.e., _ = =− 1. In

this case, we have =2 · @−=+1 trials and the probability of each trial

returning the input hypergraph is @= (if none of the = hyperedges

is contracted). So, ≥ 1 recursive calls (in expectation) will run on

the input hypergraph itself, which defeats the recursion. However,

we show that this is really an extreme scenario and we can make

su�cient progress in all hypergraphswith rank at most=/2 –we call
these universally small and the rest existentially large hypergraphs.

4See [18] for a di�erent use of this alternative view.
5The relative variance of a random variable - is de�ned as Var[- ]/E2 [- ].
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We are now left to handle existentially large hypergraphs. This is

where the two algorithms (Theorem 1.1 and Theorem 1.2) di�er. The

�rst algorithm (Theorem 1.1) simply enumerates over all outcomes

(survival/failure) of the large hyperedges, i.e., those of rank > =/2.
To do this e�ciently, it orders the large hyperedges and creates a

new recursive instance based on the �rst large hyperedge that is

contracted in this order. This generates ℓ ≤ < subproblems, where

ℓ denotes the number of large hyperedges. In the last subproblem,

all the ℓ large hyperedges fail (i.e., none of them is contracted) and

we are left with a universally small hypergraph. In all the other

subproblems, at least one large hyperedge is contracted and we

are left with a hypergraph containing at most =/2 vertices. So, we
make progress in either case.

The second algorithm (Theorem 1.2) cannot a�ord to enumerate

over all large hyperedges. Instead, it partitions the set of hyper-

edges in � into the large and small hyperedges and creates two

hypergraphs,�large and�small. Now, for� to be disconnected, both

�small and�large must be disconnected (but not vice-versa!). Recall

that earlier, we ran into a problem where our naïve sampling pro-

cess could not make progress in terms of reducing the size of the

hypergraph when sampling large hyperedges. This was epitomized

by a hypergraph containing = hyperedges of rank = − 1 each. But, if

we think of this instance in isolation, then it is actually quite easy

to estimate D� (?) in this hypergraph. This is because whenever

the hypergraph disconnects, it does so at a degree cut6 of a vertex.

So, there are only = cuts that we need to enumerate over. In fact,

this property is true for the hypergraph �large obtained from any

hypergraph � ; since every pair of large hyperedges share at least

one vertex, any disconnected sub-hypergraph must have an isolated

vertex. We exploit this property by writing a DNF formula for all the

degree cuts of �large (where each variable denotes survival/failure

of a large hyperedge) and use the classical importance sampling

technique of Karp, Luby, and Madras [19] to generate a sample of

�large conditioned on it being disconnected.

How do we augment this sample in �small? We have two cases.

To understand the distinction, let us informally imagine that the

minimum cuts of �large and �small coincide, and they form the

minimum cut of � . (Of course, this is not true in general!) The two

cases are de�ned based on the relative values of the minimum cuts

in�large and�small. If�large contributes most of the hyperedges to

the mincut (we call this the full revelation case), then the probability

that�small gets disconnected is quite high (recall that D� (?) ≥ ?_).

In this case, it su�ces to do Monte Carlo sampling in �small to

augment the sample obtained from �large. The other case is when

�small contributes a sizeable number of hyperedges to the minimum

cut (we call this the partial revelation case). Note that the extreme

example of this second case is when �large is empty, i.e., when the

hypergraph is universally small. This suggests generalizing the use

of random contraction from universally small hypergraphs to this

case, i.e., failing hyperedges at a higher probability of @ > ? in a

recursive step. But, to synchronize the sample across �large and

�small, wemust use the same value@ in�large aswell. Unfortunately,

as we observed earlier, the algorithm might not make progress in

terms of the size of the hypergraph in this case. To overcome this,

we introduce a second recursive parameter, that of the value of

6A degree cut is a cut that separates one vertex from the rest of hypergraph.

the failure probability itself. This second recursive parameter now

requires us to de�ne a new base case when the probability of failure

is very small (denote the threshold by a parameter X) – this is

where we incur the additive loss of X in the approximation. The

overall running time is now given by the fact that each subproblem

branches into polynomially many subproblems, and the depth of

the recursion is bounded by log= log log(1/X) where the �rst term
comes from the recursion on size and the second term from that

on the failure probability.

Organization. We give some preliminary de�nitions and termi-

nology in Section 2. We then establish Theorem 1.1 in Section 3.

Finally, we establish Theorem 1.2 in Section 4. We give some con-

cluding thoughts in Section 5. We note that all missing proofs are

deferred to the full version of the paper.

2 PRELIMINARIES

Hypergraphs. We start with some basic notations for hyper-

graphs. A hypergraph � = (+ , �) comprises a set of vertices + and

set of hyperedges �, where each hyperedge 4 ∈ � is a non-empty

subset of the vertices, i.e., ∅ ⊂ 4 ⊆ + . The rank of a hyperedge 4 is

|4 |; the rank of a hypergraph � , denoted A� , is the maximum rank

of a hyperedge in � .

For any hypergraph � = (+ , �) and subset of hyperedges � ⊆ �,

denote � − � := (+ , � \ � ) to be the hypergraph after deleting the

hyperedges in � from � . A cut in a hypergraph is de�ned as a set

of edges � such that � −� is disconnected. The value of a cut � is

the number of hyperedges in � . A minimum cut of a hypergraph

is a cut of minimum value. We denote the value of a minimum cut

in a hypergraph � by _� . The following is a known result (follows

from Theorem 4 in [5] using the maximum �ow algorithm in [7]):

Theorem 2.1. The minimum cut of a hypergraph can be computed

in (∑4 |4 |)1+> (1) time.

In this paper, we often make use of hyperedge contractions.

Contracting a hyperedge 4 in a hypergraph � replaces the ver-

tices in 4 by a single vertex to form a new hypergraph denoted

�/4 := (+ /4, �/4). Note that there is a natural surjective map

q : + → + /4 that maps vertices in 4 to the contracted super-

vertex in + /4 , and maps vertices outside 4 to themselves. Each

hyperedge 4 ∈ � is replaced in �/4 by an element-wise mapped

set {D ∈ 4 : q (D)}. By extension, contracting a set of hyperedges

� = {41, 42, . . .} is equivalent to contracting all hyperedges in � in

arbitrary order: we write �/� := (((�/41)/42) . . .)/4: . � is called

a contracted hypergraph of � = (+ , �) if � = �/� for some � ⊆ �.

For distinction between the uncontracted vertices in � and the

contracted vertices in � , we usually call the former vertices and the

latter supervertices.

A key operation in our algorithm is uniform random hyperedge

contraction. We use � ∼ � (@) for some @ ∈ (0, 1) to denote the

distribution of a random contracted hypergraph � obtained from

� by contracting each hyperedge independently with probability

1−@. The next lemma states that D� (?/@) is an unbiased estimator

of D� (?):

Lemma 2.2. Suppose � ∼ � (@) and @ ≥ ? . Then, E[D� (?/@)] =
D� (?).
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Random Variables. Next, we give some basic facts about ran-

dom variables that we will use in this paper. All random variables

considered in the paper are non-negative.

The relative variance of a random variable - is

[ [- ] = Var[- ]
(E[- ])2

=
E[- 2]
(E[- ])2

− 1.

Since we use a biased estimator in Theorem 1.2, we need a non-

standard (capped) version of relative variance. We de�ne it and

state its properties below.

De�nition 2.3 (Capped relative variance). The (X-)capped relative

variance of random variable - is

[X [- ] = Var[- ]
max{(E[- ])2, X2}

.

We state some basic facts about capped relative variance. Note

that relative variance is a special case of capped relative variance

when X = 0. Therefore, these facts also hold for relative variance as

a special case.

Fact 2.4. The average of" independent samples of - has capped

relative variance
[X [- ]
" .

Fact 2.5. Suppose. is an unbiased estimator of G , and conditioned

on a �xed . , / is a biased estimator of . with bias in [−X, 0] and
capped relative variance [X [/ |. ] ≤ ℎ. Then

[X [/ ] ≤ 4 · ([ [. ] + 1) · (ℎ + 1) .
In particular, when X = 0 (i.e. for relative variance of unbiased

estimator / ), there is a stronger bound

[ [/ ] ≤ ([ [. ] + 1) · (ℎ + 1) − 1.

Fact 2.6. Suppose - and / are independent random variables

with expectation in (0, 1), and X ∈ [0, 1]. Then
[X [-/ ] ≤ [X [- ] · [X [/ ] + [X [- ] + [X [/ ] .

Lemma 2.7. The median-of-average of
[X [- ]
Y2

independent samples

of - is a (1 ± Y, X)-approximation of E[- ].
The next two facts are for relative variance:

Fact 2.8. If- is a convex combination of independent non-negative

random variables -1, . . . , -: , i.e., - =
∑
8≤: U8-8 for U8 ≥ 0 and∑

8≤: U8 = 1, then [ [- ] ≤ max8≤: [ [-8 ].
Fact 2.9. If a non-negative random variable - is upper bounded

by" , then [ [- ] ≤ "
E[- ] − 1.

Exponential distribution. Recall that the exponential distribution

of rate A gives a continuous random variable - ≥ 0 satisfying

Pr[- ≥ C] = 4−AC for all C ≥ 0. We state some standard properties

of the exponential variables:

Fact 2.10 (Moment generating function). Let - follow expo-

nential distribution of rate A . Then for any C < A , E[4C- ] = 1/(1− C
A ).

Fact 2.11 (Memoryless property). Let - follow exponentail

distribution. Then for any B, C ≥ 0, Pr[- > B + C |- > B] = Pr[- > C].
Fact 2.12. Let -1, -2, . . . , -: be independent random variables

with exponential distribution of rate A , and - = min8≤: {-8 }. Then,
- follows exponential distribution of rate :A . Moreover, - = -8 for

every value of 8 with probability 1/: .

Monte Carlo sampling. Suppose we want to estimate the probabil-

ity ?� that an event � happens. (For D� (?), � is the event that the

hypergraph disconnects.) The Monte Carlo sampling algorithm �rst

draws a sample from the underlying space. (For D� (?), it deletes
each hyperedge independently with probability ? .) The estimator

returns 1 if � happens, and 0 otherwise. The following is a standard

property of this estimator:

Lemma 2.13. Monte Carlo sampling outputs an unbiased estima-

tor of ?� with relative variance at most 1
?�

and X-capped relative

variance at most min{ 1
?�

, 1
X
}.

Given Lemma 2.13, we can use Lemma 2.7 to obtain the following:

Lemma 2.14. We can obtain a (1 + Y)-approximation of ?� whp

via $
(
log=

Y2 ·?�

)
Monte Carlo samples and a (1 + Y, X)-approximation

whp via $
(
log=

Y2 ·X

)
Monte Carlo samples.

DNF probability. In the DNF probability problem, we are given

a DNF formula � with # variables and" clauses and a value ? ∈
(0, 1). The goal is to estimate the probabilityD� (?) that � is satis�ed

when each variable is True with probability ? independently. This

problem is #P-hard even in the special case of ? =
1
2 [21]. In a

seminal work, Karp, Luby and Madras [19] provided an FPRAS in

$̃ (#") time.

Theorem 2.15 ([19]). The DNF probability problem can be (1±Y)-
approximated with success probability 1 − X in $ (#" ln(1/X)/Y2)
time.

Our algorithm will need an unbiased estimator for DNF proba-

bility. The estimator in Theorem 2.15 could be biased, but we can

get an unbiased estimator by using its primitive version, at the cost

of a slower running time. We state this in the next two lemmas;

these are essentially shown in [19].

Lemma 2.16. An unbiased estimator of D� (?) with relative vari-

ance at most 1 can be computed in time $ (#"2).

Lemma 2.17 (DNF sampling). There exists an algorithm that

draws a sample of values in time $ (#"2) according to the follow-
ing distribution: Each variable independently takes value True with

probability ? and False with probability 1 − ? , conditioned on the

fact that the values satisfy � .

3 THE ENUMERATION-BASED
UNRELIABILITY ALGORITHM

In this section, we design an<$ (log=) -time algorithm that outputs

an unbiased estimator of D� (?) with relative variance $ (1). It
follows by Lemma 2.7 that a (1±n)-approximation can be computed

in<$ (log=)Y−2 time, thereby establishing Theorem 1.1.

3.1 Algorithm Description

Overview. The algorithm is recursive. Before describing the al-

gorithm formally, we give some intuition for the recursive step.

The recursive case is divided into two sub-cases depending on the

maximum rank of the hyperedges. We call a hypergraph universally

small if all edge ranks are at most =/2; otherwise, it is said to be
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existentially large. If the hypergraph is universally small, the algo-

rithm runs a single recursive step of random hyperedge contraction,

and recursively estimates the unreliability of the contracted hy-

pergraph. This is repeated poly(=) times to reduce the variance

of the estimator, and the average of all estimates is taken as out-

put. If the hypergraph is existentially large, the algorithm lists all

large hyperedges of rank greater than =/2, enumerates the �rst

large hyperedge in the list that does not fail, and recursively esti-

mates the unreliability of the resulting subgraph. The algorithm

also handles the case that all large hyperedges fail by recursing on

the (universally small) sub-hypergraph formed by deleting all large

edges.

Now, we describe the algorithm formally.

Base cases. There are three base cases:

(1) � is disconnected. In this case, we output 1.

(2) ? is larger than =−10/_ . In this case, we use Monte Carlo

sampling (Lemma 2.13) and take average of =10 samples.

(3) The number of vertices = is a constant. In this case, we merge

all parallel hyperedges to form weighted hyperedges. We

need to estimate D� (?) when each weighted hyperedge 4 is

removed with probability ?F (4 ) , whereF (4) is the weight
of 4 . We enumerate over all possible subsets of weighted

hyperedges that are deleted, and compute D� (?) exactly.
The �rst step takes $ (<) time; the rest is $ (1) time. We

have established the following lemma:

Lemma 3.1. When = = $ (1), D� (?) can be exactly computed

in $ (<) time.

Recursive case. We start by classifying hypergraphs as follows:

De�nition 3.2 (universally small, existentially large hypergraphs).

A hypergraph is universally small if all hyperedges are of rank

at most =/2. A hypergraph is existentially large if there exists a

hyperedge of rank greater than =/2.
Recursive algorithm for universally small hypergraphs. The al-

gorithm repeats a random contraction step independently 2=12

times. In the 8-th random contraction step, the algorithm samples

�8 ∼ � (@) by contracting each edge with probability 1 − @ inde-

pendently, where @ = =−10/_ . Note that @ ≥ ? , otherwise we are

in a base case. Then, the algorithm recursively estimates D�8
(?/@).

We will show later that D�8
(?/@) is an unbiased estimator of D� (?)

with bounded relative variance. After all 2=12 recursive calls, the

algorithm takes the average of the estimators returned by these

recursive calls to be the output.

Recursive algorithm for existentially large hypergraphs. Suppose

there are ℓ large hyperedges, ordered arbitrarily as 41, 42, . . . , 4ℓ .

Let �8 be the subset of �rst 8 hyperedges in the list; in particular,

�0 = ∅. We divide the event of hypergraph disconnection into

ℓ + 1 disjoint events by enumerating the �rst hyperedge in the list

that does not fail. Formally, for 8 = 0, 1, . . . , ℓ − 1, let �8 be the

event that �rst 8 hyperedges in the list all fail, but the (8 + 1)-th
hyperedge survives; Let �ℓ be the event that all ℓ hyperedges fail.

Then Pr[�8 ] = ?8 (1−?) for 8 ≤ ℓ −1 and Pr[�ℓ ] = ?ℓ . Conditioned

on each event �8 , we can remove the failed hyperedges in �8 and

contract the �rst surviving hyperedge 48+1 to form a subgraph �8 .

Formally, let�8 = (�−�8 )/48+1 for 8 = 0, 1, . . . , ℓ−1, and�ℓ = �−�ℓ .

The event that� disconnects conditioned on �8 is equivalent to �8

disconnecting when each hyperedge is removed with probability ?

independently. We have

D� (?) =

ℓ∑

8=0

Pr[�8 ] · Pr[� disconnects|�8 ]

= ?ℓ · D�ℓ
(?) +

ℓ−1∑

8=0

?8 (1 − ?) · D�8
(?) (1)

The algorithm runs ℓ + 1 = $ (<) recursive calls on each �8 to get

unbiased estimators -8 of D�8
(?). The overall estimator - of D� (?)

is then given by - = ?ℓ · -ℓ +
∑ℓ−1
8=0 ?8 (1 − ?) · -8 . Equation (1)

shows that - is an unbiased estimator of D� (?).
The subproblems are easier because of the following reason: in

�8 for 8 ≤ ℓ − 1, we contracted a large hyperedge from � , so the

number of vertices decreases by at least a half; In �ℓ , we removed

all large hyperedges from � , so �ℓ is universally small.

In the rest of the paper, we call this the enumeration-based algo-

rithm.

3.2 Correctness

In this section, we prove the following lemma that establishes

correctness of the algorithm.

Lemma 3.3. The enumeration-based algorithm outputs an unbi-

ased estimator with relative variance at most 1.

Note that the base cases of disconnected� and constant size out-

put exact value ofD� (?), and the base case of Monte Carlo sampling

outputs an unbiased estimator of D� (?). Also, an enumeration step

in the existentially large case does not introduce variance. So, we

only need to bound the relative variance introduced in the univer-

sally small case. To do so, we �rst analyze the variance introduced

in a random contraction step.

The key to bounding relative variance of a random contraction

step is the following property of a random subgraph which we will

prove later.

Lemma 3.4. ?_ ≤ D� (?) ≤ =2?_ .

Lemma 3.4 provides an upper bound on the relative variance of

random contraction:

Lemma 3.5. Suppose � ∼ � (@) and @ ≥ ? . Then, the relative

variance of D� (?/@) is at most =2@−_ − 1.

Proof. Because� is constructed by contraction from� , its min-

cut value _� is at least the min-cut value _ in � . By Lemma 3.4,

D� (?/@) ≤ |+ (� ) |2 (?/@)_� ≤ =2 (?/@)_ (2)

because |+ (� ) | ≤ =, _� ≥ _, and @ ≥ ? .

D� (?/@) is an unbiased estimator of D� (?) by Lemma 2.2. Next

we bound its relative variance [ [D� (?/@)]. By Fact 2.9, the rel-

ative variance is upper bounded by
max� D� (?/@)

D� (? ) − 1. We have

max� D� (?/@) ≤ =2 (?/@)_ by Equation (2), and D� (?) ≥ ?_ by

Lemma 3.4. Therefore,

[ [D� (?/@)] ≤ =2 (?/@)_

?_
− 1 = =2@−_ − 1. □
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We are now prepared to prove Lemma 3.3.

Proof of Lemma 3.3. We will prove the lemma by induction on

number of vertices =, number of hyperedges<, as well as the value

of
⌈
< ln 1

?

⌉
. The base case of = = $ (1) is given by Lemma 3.1. The

base case of < = 0 is handled by the disconnected case in the

algorithm. These two base cases output the exact value of D� (?).
For the induction on

⌈
< ln 1

?

⌉
, notice that this value is a positive

integer because ? ∈ (0, 1) in all recursive calls. The base case⌈
< ln 1

?

⌉
≤ 10< ln=

_
implies ?_ ≥ =−10. Hence, it is handled by

Monte Carlo sampling in the algorithm, which outputs an unbiased

estimator of D� (?) with relative variance at most 1
D� (? ) ≤ 1

?_
≤

=10 by Lemma 2.13. After taking average of =10 samples, the relative

variance is reduced to at most 1 by Fact 2.4.

For the inductive step, there are two cases. We �rst consider a

random contraction step when the hypergraph is universally small.

This step generates 2=12 random subgraphs �8 ∼ � (@), where @_ =

=−10. Lemma 2.2 gives that D�8
(?/@) is an unbiased estimator of

D� (?). Lemma 3.5 gives thatD�8
(?/@) has relative variance at most

=2@−_ − 1 = =12 − 1. By the inductive hypothesis, each subproblem

returns an unbiased estimator-8 ofD�8
(?/@) with relative variance

at most 1. By Fact 2.5, -8 is an unbiased estimator of D� (?) with
relative variance at most =12 (1+ 1) − 1 ≤ 2=12. Taking average over

all 2=12 estimators, -8 gives an unbiased estimator of D� (?) with
relative variance at most 1 by Fact 2.4.

Next, we consider a large hyperedge enumeration step when the

input hypergraph is existentially large. The algorithm computes an

estimator - = ?ℓ ·-ℓ +
∑ℓ
8=1 ?

8 (1− ?) ·-8 , where -8 ’s are returned
by recursive calls on �8 . By the inductive hypothesis, the recursive

calls give unbiased estimators, i.e. E[-8 ] = D�8
(?). We have

E[- ] = ?ℓ · E[-ℓ ] +
ℓ∑

8=1

?8 (1 − ?) · E[-8 ]

= ?ℓ · D�ℓ
(?) +

ℓ−1∑

8=0

?8 (1 − ?) · D�8
(?) (1)

= D� (?).

- is a convex combination of independent recursive estimators

-8 , which have relative variance at most 1 by the inductive hypoth-

esis. Hence, - also has relative variance at most 1 by Fact 2.8.

Finally, we argue that the induction is valid, i.e., that we always

make progress on one of the inductive parameters in every recursive

call. Whenever a hyperedge is contracted or deleted, we decrease =

or<. It is possible that a random contraction step does not change

the hypergraph. In that case, notice that ? is changed to ?/@ in

the subproblem. So, < ln 1
? decreases by < ln 1

@ =
10< ln=

_
≥ 10.

Therefore, we also decrease
⌈
< ln 1

?

⌉
, and the induction is valid. □

In the rest of this subsection, we give a proof of our main techni-

cal lemma, Lemma 3.4.

Proof of Lemma 3.4. The lower bound of ?_ in Lemma 3.4 holds

because a minimum cut fails with probability ?_ . The rest of the

proof is devoted to the upper bound of =2?_ .

We �rst assume that in the hypergraph � , the hyperedges are

partitioned into pairs of parallel hyperedges. This is w.l.o.g. because

we can replace each hyperedge by two copies and change the failure

probability ? to
√
? .

We introduce some de�nitions that are used only in the anal-

ysis (i.e., the algorithm does not need to compute them). For any

contracted hypergraph of� , we choose an orientation of the hyper-

edges in the sense that in each hyperedge, one vertex is designated

the head and all other vertices are tails. We require the orientation

to satisfy the property that any pair of parallel hyperedges (in the

partition of hyperedges into pairs) have di�erent heads. This is

always possible because the rank of each hyperedge is at least 2.

Besides this property, the choice of heads are arbitrary. The orien-

tation is chosen in a consistent way. That is, any �xed contracted

hypergraph always chooses the same orientation throughout the

analysis.

The orientation is used to de�ne representatives of contracted

supervertices. Each contracted supervertex during the contraction

process will be assigned a representative vertex, which is an original

vertex contracted into the supervertex. Initially, each vertex is its

own representative. Whenever a hyperedge 4 is contracted, we

assign the representative of the head of 4 to be the representative

of the new contracted supervertex.

Claim 3.6. For any pair of supervertices D ≠ E in a contracted

hypergraph of � , there are at least _ hyperedges that contain at least

one of D or E as a tail.

We now proceed to prove the upper bound.

Exponential contraction process. For the sake of analysis, consider

the following continuous time random process called the exponen-

tial contraction process. Let each hyperedge 4 independently arrive

at a time .4 following the exponential distribution of rate 1. Then,

the probability that a hyperedge does not arrive before time ln 1
@ is

4
− ln 1

@ = @. Therefore, contracting hyperedges that arrive before

time ln 1
@ produces the same distribution as � ∼ � (@).

In the contraction process, if the hypergraph is not contracted

into a single supervertex at time ln 1
? (which happens with prob-

ability D� (?)), there are at least two supervertices. Consequently,

at least two vertices survive as representatives. We will show that

the probability that any pair of vertices B, C both survive is at most

?_ . By union bounding over all
(=
2

)
≤ =2 pairs of vertices, we have

D� (?) ≤ =2?_ which completes the proof.

To bound the probability that any pair of vertices B, C both survive,

we choose a set of critical edges during the contraction process

as follows. When B and C are in di�erent supervertices B̃ and C̃ ,

we choose _ hyperedges that contain at least one of B̃ or C̃ as a

tail guaranteed by Claim 3.6; otherwise, we choose _ arbitrary

edges. (The critical edges may change after each contraction.) Note

that whenever a critical edge arrives, one of B or C is no longer a

representative. Hence, if B, C both survive as representatives after

the contraction process, then no critical edge arrives during the

contraction process. By Lemma 3.7, this happens with probability

at most 4
−_ ln 1

? = ?_ .

Lemma 3.7. Suppose during the exponential contraction process

from time 0 to ) , we maintain a subset of uncontracted hyperedges

called the critical edges. The critical edges could change immediately

after each arrival of an uncontracted hyperedge, but do not change
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between two arrivals. Suppose that there are always at least _ critical

edges. Then, the probability that no critical edge arrives up to time )

is at most 4−_) .

Proof. The proof is by induction on the number of uncontracted

hyperedges<. The base case is< = _, where the set of critical edges

cannot change, and the probability that no critical edge arrives is

4−_) .
For the inductive case, let<crit ≥ _ be the current number of

critical edges. We bound the probability that no critical edge arrives

up to time ) (denoted ?� () )) by integrating over the earliest time

C that a hyperedge 48 arrives. By Fact 2.12, C follows the exponential

distribution of rate<, and 48 is not a critical edgewith probability 1−
<crit
< . After the earliest hyperedge 48 arrives, we apply the inductive

hypothesis on hypergraph �/48 and remaining time ) − C .

?� () ) =
∫ )

0
<4−<CdC ·

(
1 − <crit

<

)
?�/48 () − C) +

∫ ∞

)
<4−<CdC

≤ 4−<) +
∫ )

0
<4−<CdC ·

(
1 − _

<

)
· 4−_ ()−C )

= 4−<) + 4−_)
∫ )

0
(< − _)4−(<−_)CdC

= 4−<) + 4−_) (1 − 4−(<−_)) ) = 4−_) ,

which completes the inductive case. □

3.3 Running Time

In this section, we prove the following lemma of running time of

the algorithm.

Lemma 3.8. The expected running time of the enumeration-based

algorithm is<$ (log=) .

Size decrease bound. In order to bound the size of the recursion

tree, we ideally want each random contraction step to reduce the

number of supervertices by a constant factor, so that the recursion

tree has depth $ (log=). This does not generally hold with high

probability when some hyperedge’s rank is large. As an extreme

example, consider the hypergraph that consists of = distinct hy-

peredges of rank = − 1. The probability to contract nothing is @= ,

while the contraction step is repeated =2@−_ = =2@−(=−1) times, so

we expect to see at least one bad subproblem where the number

of vertices does not decrease. If this happens, then the size of the

recursion tree would be unbounded.

This is where the maximum rank assumption in the universally

small case becomes useful: we can control the probability to get a

bad subproblem to be small enough, which is crucial in bounding

the size of the recursion tree.

Lemma 3.9. Fix constants � > � > 1. Suppose that all hyperedges

have rank at most ' = =/�, and = is larger than some constant

depending on�. Let=∗ = ⌈�'⌉, and let� ∼ � (@). Then, Pr[|+ (� ) | ≥
=∗ + 1] < =�

2/�@�_ .

Proof. De�ne C (�) to be the stopping time in the contraction

process when the vertex size of the contracted hypergraph de-

creases to at most =∗. By de�nition

Pr[|+ (� ) | > =∗] = Pr

[
C (�) > ln

1

@

]
.

By Markov’s inequality,

Pr

[
C (�) > ln

1

@

]
= Pr[4�_ ·C (� )

> @−�_] ≤ E[4
�_ ·C (� ) ]
@−�_

.

By choosing the same parameters �, � in Lemma 3.11 (which we

will prove later),

Pr

[
C (�) > ln

1

@

]
≤ E[4�_ ·C (� ) ]@�_ ≤

(4=
=∗

)� ln=
@�_

≤ (�4/�)� ln=@�_ ≤ =�(1+ln �
� )@�_ ≤ =�

2/�@�_,

where the last inequality uses that 1 + lnG ≤ G for all G ≥ 0. □

In Lemma 3.9, we set � = 2 and � = 1.5 to get:

Corollary 3.10. Assume that all hyperedges have rank at most

=/2 and = is larger than a suitable constant. Let � ∼ � (@). Then,
Pr[|+ (� ) | ≥ 0.8=] ≤ =2.7@1.5_ .

Lemma 3.11. Fix constants� > � > 1. Suppose the maximum rank

is upper bounded by' and' is larger than some constant depending on

�. For any hypergraph �̃ formed by contraction from � , de�ne C (�̃)
to be the following stopping time: In a contraction process starting at

�̃ , the vertex size of the contracted hypergraph decreases to at most

=∗ = ⌈�'⌉. Suppose |+ (�̃) | ≤ # , where# = �'. Let _̃ be the min-cut

value in �̃ . Then,

E

[
4�_̃ ·C (�̃ )

]
≤ max




(
|+ (�̃) |
=∗/4

)� ln#

, 1



.

Proof. Our proof is by induction on =̃ = |+ (�̃) |. As the base
case, when =̃ ≤ =∗, by de�nition C (�̃) = 0 and 4�_̃ ·C (�̃ )

= 1, so the

statement holds.

Next consider the inductive step where =̃ > =∗. Let Ā be the

average rank in �̃ , i.e., Ā = 1
<̃

∑
4∈� (�̃ ) A (4), where <̃ = |� (�̃) |.

Let g = min
4∈� (�̃ ) -4 be the earliest arrival time of a hyperedge

in �̃ . Because the -4 ’s are sampled from i.i.d. exponential distri-

butions of rate 1, the random variable g follows the exponential

distribution of rate <̃ by Fact 2.12. Note that any degree cut in �̃ has

value at least the min-cut value _̃ in �̃ . By summing over degrees

of all vertices, we have

=̃_̃ ≤
∑

4∈� (�̃ )
A (4) = <̃Ā =⇒ <̃ ≥ =̃_̃

Ā
.

Denote rate(·) to be the rate of a exponential distributed random

variable. Because =̃ > =∗ and Ā ≤ ', we have rate(g) = <̃ ≥ =̃_̃
Ā >

=∗_̃
' ≥ �_̃.

By the moment generating function of the exponential distribu-

tion in Fact 2.10,

E

[
4�_̃g

]
=

1

1 − �_̃
rate(g )

≤ 1

1 − �_̃

=̃_̃/Ā

=
1

1 − �Ā
=̃

(3)

Now, consider the distribution of C (�̃) after revealing g . To de-
crease size from =̃ > =∗ to below the threshold =∗, at least one
hyperedge needs to be contracted; so C (�̃) ≥ g . Moreover, by the

memoryless property of the exponential distribution in Fact 2.11, g
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and C (�̃) − g are independent. If we further reveal the information

that the hyperedge that arrives the earliest is 48 , then we know the

random process after the earliest arrival is equivalent to running

the contraction process starting from �̃/48 . Thus, C (�̃) − g follows

the same distribution as C (�̃/48 ) conditioned on 48 arrives �rst. Be-

cause the hyperedges follow i.i.d. exponential distribution, they are

equally likely to arrive the earliest. Therefore, unconditionally we

have that C (�̃) − g follows distribution of C (�̃/48 ) for each 48 with

probability 1
<̃
. Formally,

E

[
4�_̃ ·C (�̃ )

]
= E

[
4�_̃g

]
· E

[
4�_̃ (C (�̃ )−g )

]

= E

[
4�_̃g

] ∑

48 ∈� (�̃ )

1

<̃
E

[
4�_̃ ·C (�̃/48 )

]
(4)

Note that the min-cut value _8 in �̃/48 is at least _̃ because a con-

traction cannot decrease the min-cut value. So,

E

[
4�_̃ ·C (�̃/48 )

]
≤ E

[
4�_8 ·C (�̃/48 )

]
.

We now apply the inductive hypothesis to bound this term.

E

[
4�_8 ·C (�̃/48 )

]
≤ max

{(
=̃ − A (48 ) + 1

=∗/4

)� ln#

, 1

}

=
(max{=̃ − A (48 ) + 1, =∗/4})� ln#

(=∗/4)� ln#

≤ (max{=̃ − A (48 ) + 1, =̃/4})� ln#

=̃� ln#
·
(
4=̃

=∗

)� ln#

= max

{(
1 − A (48 ) − 1

=̃

)� ln#

, # −�
}
·
(
4=̃

=∗

)� ln#

Next, we prove thatmax{(1− A−1
=̃

)� ln# , # −�} ≤ 1− �A
=̃

for all

A ∈ [2, ']. For the second term, we have # −�
<

1
# , while

1 − �A

=̃
≥ 1 − �'

=̃
≥ 1 − =∗

=∗ + 1
=

1

=∗ + 1
≥ 1

#
.

For the �rst term, de�ne G =
A (48 )−1

=̃
in terms of A (48 ), which

satis�es G ∈ [ 1
=̃
, '−1

=̃
]. Then, A (48 ) = =̃G + 1. We want to bound

(1 − A−1
=̃

)� ln# ≤ 1 − �A
=̃

for all A ∈ [2, '], which is equivalent to

(1 − G)� ln# ≤ 1 − �G − �

=̃
. (5)

Note that the LHS is convex on (0, 1) when � ln# ≥ 2, and the

RHS is linear. So we only need to prove (5) for the two endpoints

G =
1
=̃
and G =

'−1
=̃

. For G =
1
=̃
, we have

(
1 − 1

=̃

)� ln#

≤ 4−� ln# /=̃ ≤ 1 − � ln#

2=̃
≤ 1 − 2�

=̃

Here, the second inequality is by 4−G ≤ 1 − G
2 for G ∈ [0, 1] or

� ln# /=̃ ≤ 1, which holds when # is larger than some constant

(depending on �). The last inequality holds when ln# ≥ 4.

Next, we consider the second endpoint G =
'−1
=̃

. The assumption

# = �' ≥ =̃ implies '
=̃
≥ 1

� . So, we have

(
1 − ' − 1

=̃

)� ln#

≤
(
1 − 1

�
+ 1

=̃

)� ln#

≤ 1

#

Figure 1: A depiction of a portion of the computation tree.

The failed recursive calls are shown in dashed red, while

the successful ones are shown in solid black. Lemma 3.12

analyzes the expected size of the recursion tree.

Here, the last inequality is equivalent to 1 − 1
� + 1

=̃
≤ 4−1/� , which

holds when =̃ > 3�2 and � > 1.

Now, we have

E

[
4�_̃ ·C (�̃ )

] (4)
= E

[
4�_̃g

]
· 1

<̃

∑

48 ∈� (�̃ )
E

[
4�_̃ ·C (�̃/4 )

]

(3)
≤ 1

1 − �Ā
=̃

· 1

<̃

∑

48 ∈� (�̃ )
E

[
4�_̃ ·C (�̃/4 )

]

≤ 1

1 − �Ā
=̃

· 1

<̃

∑

48

(
1 − �A (48 )

=̃

)
·
(
4=̃

=∗

)� ln#

≤
(
4=̃

=∗

)� ln#

which establishes the inductive case. □

Proof of Lemma 3.8. We color each recursive call as black or red.

Intuitively, they represent a “success” or “failure” in recursive calls

respectively. A call is black if it decreases size by a constant factor,

more precisely when |+ (� ) | ≤ 0.8=. Otherwise, the call is red.

The recursion tree has the following properties:

(1) Each subproblem makes at most" =<$ (1) recursive calls.
This is guaranteed by the algorithm.

(2) The algorithm reaches base case after $ (log=) black recur-

sive calls. This is because each black recursive call decreases

= by a constant factor, and $ (log=) black calls reduces = to

a constant, which is a base case.

(3) For each subproblem, the expected number of red recursive

calls is at most 1/2. This is because in random contraction, we

have$ (=2@−_) recursive calls, and each call fails (to get size

decrease) with probability at most=2.7@1.5_ by Corollary 3.10.

The expected number of red calls is their product, which is

upper bounded by =4.7@0.5_ = > (1) when @_ = =−10.

Lemma 3.12 below shows that these properties give a upper

bound of<$ (log=) on the number of recursive calls. If we charge

the time of sampling a random contracted hypergraph to the sub-

problem on the contracted hypergraph, then each subproblem

spends $ (=<) time outside the recursive calls. Therefore, the over-

all expected running time is<$ (log=) . This concludes the proof of
Lemma 3.8.
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Lemma 3.12. Suppose in a randomly growing tree, each node D is

either a leaf, or has" (D) ≤ " children, where" = Ω(=) is a param-

eter. Each edge from D to its children is colored red with probability

5 (D) such that" (D) 5 (D) ≤ \ =
1
2 , and black otherwise. The di�erent

children at a parent node are independent (including independence

betwen the parent-child edges); Also, a subtree is independent of ev-

erything outside the subtree. Moreover, on any path from root to leaf,

there can be at most ! black edges. Then, the expected number of

nodes in the tree is at most"$ (!) .

Proof. We say a node F is a red descendant of node D if D is

an ancestor ofF , and the path from D toF is formed by red edges

only. See Figure 1 for an illustration.

Let  be the number of red descendants of some node D. Let  8
be the number of red descendants ofD that are 8 steps deeper thanD,

so that  =
∑
8≥1  8 . We have E[ 1] = " (D) 5 (D) ≤ \ . Inductively,

suppose at level 8 , there are  8 red descendants {D1, . . . , D:8 }. By
de�nition, the red descendants in level 8 + 1 must be children of red

descendants in level 8 . Each D 9 will generate at most \ red edges

in expectation. So, E[ 8+1] ≤ \ · E[ 8 ]. By induction, E[ 8 ] ≤ \8 .

Note that the sum
∑
8≥1 \

8
=

\
1−\ ≤ 1 converges and  8 ’s are

nonnegative, so we can apply Fubini’s theorem to get

E[ ] = E
[∑

8≥1
 8

]
=

∑

8≥1
E[ 8 ] ≤

∑

8≥1
\8 ≤ 1.

Let +8 be the set of nodes that have : black edges from the

root. We prove by induction that E[|+: |] ≤ 2(2"): . It follows
that the expected number of nodes is E[∑!

:=0
|+: |] = $ ((2")!) =

"$ (!) . The base case for : = 0 is the expected number of red

descendants of the root, as well as the root itself, which is at most

1 + 1 = 2 = 2(2")0. Next consider the inductive step. For any node

F ∈ +:+1, let (D, E) be the black edge closest toF on the path from

root to F . Then, D ∈ +: , and F is either a red descendent of E or

E itself. Each node D in +: generates " (D) children E , and each

E generates at most 1 red descendants in expectation. Therefore,

E[|+:+1 |] ≤ E[|+: |] ·" · (1 + 1) ≤ 2(2":+1). □

4 THE SAMPLING-BASED UNRELIABILITY
ALGORITHM

In this section, we strengthen the previous algorithm to obtain

a running time of< · =$ (log=·log log 1
X ) , at the cost of an additive

error of X , i.e. the output estimator is within (1 ± Y)D� (?) ± X

whp (Theorem 1.2). When X = 2−poly(=) , the running time of the

algorithm is < · =$ (log2 =) . We show that the algorithm outputs

an estimator of D� (?) with bias at most X and X-capped relative

variance $ (1). Theorem 1.2 then follows by Lemma 2.7.

We denote # = log2
1
X
. We can assume wlog # ≥ log2 =, i.e.

X ≤ 1
= . This is because we can run a simple Monte Carlo simulation

when X ≥ 1
= in $

(
log=

XY2
· =<

)
= $̃ (=2<Y−2) time by Lemma 2.14.

4.1 Algorithm Description

The algorithm is recursive. We start by de�ning the simple base

cases. Then, we introduce the de�nition of large hyperedges, which

characterize the last base case. Finally, we de�ne the recursive cases.

4.1.1 Base Cases. There are four base cases, three of which are

the following:

(1) When the number of vertices = is a constant, we enumerate

all possible outcomes by brute force, which is identical to

Lemma 3.1.

(2) When the hypergraph is already disconnected, output 1.

(3) When ?_ < 2−3# , output 0.

These three base cases are deterministic. The algorithms for the

�rst two base cases return the exact value of D� (?). The third case

has an additive bias of D� (?), which is at most =2?_ by Lemma 3.4.

We assumed # ≥ log2 = and ?_ < 2−3# , so =2?_ ≤ (2# )2 ·2−3# ≤
2−# ≤ X .

The fourth base case is called full revelation; it will be described

later in the section.

4.1.2 Large and Small Hyperedges. Before proceeding with the

formal description of the remaining algorithm, let us provide some

intuition. Recall from Section 3 that the large hyperedges are the bot-

tleneck in the random contraction algorithm: we branch< times to

halve the number of vertices, which leads to the<$ (log=) running
time. However, if we ignore the small hyperedges and consider the

hypergraph with large hyperedges only, it turns out that the struc-

ture of cuts becomes much simpler. This motivates us to partition

the set of hyperedges � into two sets, �large and �small. Intuitively,

these are sets of hyperedges of large and small rank respectively,

but for technical reasons, the precise de�nition needs to be more

nuanced.

We now formally de�ne the set �large. It depends on phase nodes

in the recursive computation tree, which we de�ne �rst. Initially,

the root of the computation tree is a phase node. For any non-root

nodeF of the computation tree, let D be the closest ancestor node

ofF that is a phase node (which exists because the root is a phase

node).F is a phase node if and only if the number of vertices =D in

D and =F inF satisfy =F ≤ 0.8=D . IfF is not a phase node, such a

D is called the phase ancestor ofF . De�ne a phase with phase node

D to be all computation nodes whose phase ancestor if D, as well as

D itself. See Figure 2 for an illustration.

Given the de�nition of phase nodes, we de�ne �large as follows:

In a phase node, �large is the set of all hyperedges of rank > =/2. In
a non-phase nodeF , �large is inherited from its phase ancestor D,

i.e. the set of all hyperedges of rank > =D/2 in D. Let �large denote

the hypergraph (+ (�), �large). We let �small be the complement set

of hyperedges � \ �large, and �small = (+ (�), �small).

4.1.3 The Last Base Case: Full Revelation. We are now ready to

describe the last base case that we call full revelation. Let V = _−_! ,
where _! is the min-cut value in�large. The last base case is invoked

when V < _/# .

The algorithm samples a random subgraph � ∼ � (?) condi-
tioned on the event that the contracted hyperedges in �large do

not contract the whole hypergraph into a singleton. This is done

in two steps. First, we write a DNF formula for the disconnection

event in�large, and apply Lemma 2.17 to contract each hyperedge

in �large with probability 1− ? conditioned on the event that�large

is not contracted into a single vertex. Second, we directly sample
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Figure 2: A depiction of phases in the computation tree. The

�lled in nodes are phase nodes. The blue and green nodes

respectively root the blue and green phases. Each phase can

contain successful recursive steps, shown by solid black edges

and black nodes, and failed recursive steps, shown by dashed

red edges and red nodes. In a phase, every node has a phase

ancestor which is the root node of the phase; for instance,

D is the phase ancestor of E (and of every other node in the

blue phase).

the remaining uncontracted hyperedges in �small, that is we inde-

pendently contract each of those hyperedges with probability 1− ? .

The resulting hypergraph � follows the desired distribution.

The algorithm repeats 8=2 independent samples of the above

process to obtain samples �8 , and estimates -8 = 0 if �8 is con-

tracted into a singleton, and -8 = 1 otherwise. Let - be the average

of all these estimators-8 . Next, we use the DNF counting algorithm

in Lemma 2.16 to get an unbiased estimator / of D�large
(?). The

product -/ is the estimator of D� (?) output by the algorithm.

We are now left to describe the recursive step of the algorithm.

For this purpose, we need to �rst establish some properties of large

edges:

4.1.4 Properties of Large Edges. The �rst property is that the as-

sociation of �large with large ranks and �small with small ranks is

approximately correct:

Fact 4.1. Any hyperedge in �large has rank at least 0.3=, and any

hyperedge in �small has rank at most 0.7=.

The algorithm only contracts non-trivial hyperedges during re-

cursion, i.e., hyperedges that are contracted into a singleton su-

pervertex are removed. We assert that all large hyperedges are

candidates for contraction:

Fact 4.2. SupposeF is a non-phase node and �large (F) is inherited
from the phase ancestor D ofF . Then, every hyperedge in �large (D)
still appears in �large (F), but may be partially contracted.

Finally, we come to the most important property, that of the

simple structure of cuts in �large. To explain this, let us introduce

the following property:

De�nition 4.3 (pairwise intersecting property). A set of hyper-

edges is pairwise intersecting if any two hyperedges in the set share

at least one vertex.

Note that in particular, any set of hyperedges of rank > =/2
satisfy the pairwise intersecting property because the sum of ranks

of any two hyperedges is more than =. We assert that this property

continues to hold with our modi�ed de�nition of large hyperedges:

Fact 4.4. The set of hyperedges �large satis�es the pairwise inter-

section property.

This allows us to conclude that �large gets disconnected if and

only if any degree cut fails.

Lemma 4.5. If a hypergraph � satis�es the pairwise intersecting

property, then � disconnects if and only if some degree cut fails. In

particular, by Fact 4.4, this is true for �large.

Now, the event of �large getting disconnected can be written

into a DNF formula � , where each variable represents the failure of

a hyperedge and each clause represents the failure of a degree cut

in �;0A64 as the logical AND of the failure of all hyperedges in the

cut. � has = clauses and< variables. Therefore, by Lemmas 2.16

and 2.17, we have the following:

Lemma 4.6. We can do the following in $ (=2<) time:

(1) Compute an unbiased estimator ofD�large
(?) with relative vari-

ance at most 1.

(2) Sample a contracted hypergraph� of�large where every hyper-

edge in�large is contracted with probability 1− ? , conditioned

on the event that � is not a singleton supervertex.

4.1.5 Recursive Cases. In universally small hypergraphs, the algo-

rithm is identical to the enumeration-based algorithm in Section 3.

We run random contraction with @_ = =−10, and repeat the step

16=12 times.

The algorithm for the existentially large case is now di�erent

because we cannot a�ord to enumerate< events. Recall that when

there exist large hyperedges, the algorithm divides into two cases

depending on the value of V = _ − _! , where _! is the min-cut

value in�large. When V < _/# , we get full revelation that we have

already described as the last base case.

We call the remaining case when V ≥ _/# partial revelation.

In that partial revelation case, the algorithm still runs a form of

random contraction, but only in a subspace of the entire probability

space. We use the parameter V to control the speed of random

contraction. By Lemma 4.5, _! = minD 3large (D), i.e., the minimum

degree of a vertex in �large. Intuitively, V is used to control the

number of small hyperedges in each degree cut, which measures

the speed of random contraction when no large hyperedges get

contracted. Note that 0 ≤ V ≤ _. Ideally, we want to decrease V to

as small as _/# , which reduces to the full revelation case. However,

V can be non-monotone as both _ and _! can increase because of

contraction during recursion. So, we de�ne another parameter W

that can be related to V to bound the depth of recursion in a phase.

Let W = ℓ −_! , where ℓ = |�large | is the number of large hyperedges.

We show that unlike V , W is monotone in a phase:

Lemma 4.7. Suppose E,F are nodes in the same phase. If F is a

descendant of E , then WE ≥ WF .
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Algorithm for partial revelation. The algorithm runs random

contraction at a more aggressive rate @V = =−700.7 This is done in
two steps. First, we write a DNF formula for the disconnection in

�large, and apply Lemma 4.6 to contract each hyperedge in �large
with probability 1−@ conditioned on�large not being contracted into

a singleton. Second, we independently contract each uncontracted

hyperedge in �small with probability 1−@. The resulting hypergraph
� follows the distribution of � ∼ � (@) conditioned on the event

that the contracted hyperedges in �large do not contract the whole

hypergraph into a singleton.

The algorithm repeats 32=704 independent samples�8 , and recur-

sively computes a (biased) estimator -8 of D�8
(?/@). Let - be the

average of all these estimators -8 . Next, we use the DNF counting

algorithm in Lemma 4.6 to get an unbiased estimator / ofD�large
(@).

The product -/ is the estimator of D� (?) output by the algorithm.

In the rest of the paper, we call this the sampling-based algorithm.

4.2 Bias of the Estimator

We �rst show that all base cases have bias at most X , and the re-

cursive steps are unbiased. Then, we prove by induction that the

recursion keeps the same bound X on bias.

We introduce some notations when �large and �small are uniquely

de�ned in context. Let� (?1, ?2) be the random subgraph formed by

independently contracting each hyperedge in�large with probability

1 − ?1, and each hyperedge in �small with probability 1 − ?2. Let

�! be the event that in some random contraction, the contracted

hyperedges in �large do not contract the whole hypergraph into a

singleton.

Base cases. The �rst base case of= = $ (1) outputs the exact value
of D� (?) by Lemma 3.1. The second base case of disconnected � is

trivial. In the third base case, the bias is 0 − D� (?) ∈ [−X, 0]. Next,
we prove that the algorithm in full revelation case is unbiased.

Lemma 4.8. The algorithm in the full revelation case outputs an

unbiased estimator of D� (?).

Recursive cases. A random contraction step in the universally

small case is unbiased by Lemma 2.2. So, we only need to show this

for the partial revelation case. We do this in two steps. First, we

assume that the inductive subproblems in this case return exact

estimators, and show that the resulting estimator after this step is

unbiased. Then, we use this fact to show that if the inductive sub-

problems return biased estimators, then the bias does not increase

after the partial revelation step.

De�ne a partial revelation step to be that of the algorithm in the

partial revelation case, except that we now directly use D�large
(@)

times average of D�8
(?/@) as the estimator instead of recursively

estimating them.

Lemma 4.9. A partial revelation step is an unbiased estimator of

D� (?).

We now prove the inductive claim on the bias of the estimator.

7The reason for this large polynomial in= is as follows. In the proof of Lemma 4.12, the

algorithm needs to repeat the random contraction$ (=4@−V ) times, and we will show

that each trial has failure probability =2@1.01V . We need their product$ (=6@0.01V ) to
be > (1) , hence the choice @V = =−700 .

Lemma 4.10. The sampling-based unreliability algorithm outputs

an estimator with negatively one-sided bias of at most X .

Proof. We prove by induction. In the base case of ?_ < 2−3# ,

the output is 0; so, the bias is negatively one-sided and upper

bounded by D� (?) ≤ =2?_ ≤ (2# )2 · 2−3# = 2−# = X . The

other base cases are unbiased.

In a random contraction step of universally small case, we take

the average - =
1
"

∑
8≤" -8 . By the inductive hypothesis, each -8

satis�es E[-8 |�8 ] − D�8
(?/@) ∈ [−X, 0]. Then,

E[- ] − D� (?) = 1

"

∑

8≤"
E[-8 ] − D� (?)

=
1

"

∑

8≤"
E�8

[E[-8 |�8 ]] − E�8
[D�8

(?/@)]

=
1

"

∑

8≤"
E�8

[E[-8 |�8 ] − D�8
(?/@)] ∈ [−X, 0] .

In the partial revelation case, / is the DNF sampling estima-

tor of D! = D�large
(@), which is unbiased and independent of - .

Next, we bound the bias of - compared to D� (?)/D! . We take av-

erage - =
1
"

∑
8≤" -8 , and each -8 is an estimator for D�8

(?/@)
with E[-8 |�8 ] − D�8

(?/@) ∈ [−X, 0] by the inductive hypothesis.

Note that here �8 is sampled from a di�erent distribution where

E[D� (?/@)] = D� (?)/D! by Lemma 4.9. Then,

E[- ] − D� (?)
D!

=
1

"

∑

8≤"
E[-8 ] −

D� (?)
D!

=
1

"

∑

8≤"
E�8

[E[-8 |�8 ]] − E�8
[D�8

(?/@)]

=
1

"

∑

8≤"
E�8

[E[-8 |�8 ] − D�8
(?/@)] ∈ [−X, 0] .

After scaling by E[/ ] = D! ≤ 1, the overall bias of partial revelation

case is

E[-/ ] − D� (?) = E[- ]E[/ ] − D� (?)

=

(
E[- ] − D� (?)

D!

)
· D! ∈ [−X, 0] . □

4.3 Capped Relative Variance of the Estimator

We sketch the steps of the analysis that bound the relative variance

of the estimator; the details are deferred to the full version. First,

consider the base cases. There are two non-trivial cases: full rev-

elation and when ?_ < 2−3# . (Other base cases are deterministic

and unbiased.) For the full revelation base case, we show that the

estimator (which is unbiased) has bounded relative variance:

Lemma 4.11. The algorithm for full revelation case outputs an

unbiased estimator of relative variance at most 3.

Finally, consider the base case when ?_ < 2−3# . Here, the com-

plication is that the estimator is biased. So, we bound its X-capped

relative variance (de�ned in Section 2) instead of the standard rela-

tive variance (recall that the bias of the estimator is bounded by X

by Lemma 4.10).
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Next, we consider the recursive calls. We show that the recursive

calls do not increase relative variance. First, consider the case of uni-

versally small hypergraphs. We have shown that a random contrac-

tion step has relative variance at most =2@−_ = =12 in Lemma 3.5.

Therefore, by repeating a su�ciently large number of times, this

recursive step does not increase the (capped) relative variance.

Next, consider the other recursive case of a partial revelation

step. By using the argument in Lemma 3.5 restricted to the case of

disconnection in large edges, we show that each estimatorD�8
(?/@)

has relative variance at most =4@−V = =704. So, by repeating a

su�ciently large number of times, this recursive step also does not

increase the (capped) relative variance.

Above, we argued the relative variance from a single recursive

step. We then use an induction similar to Lemma 3.3 to bound the

overall capped relative variance. The main di�erence here is that

we use Facts 2.5 and 2.6 to compose the capped relative variance

instead of the uncapped version. Finally, we get:

Lemma 4.12. The sampling-based unreliability algorithm outputs

an estimator - of D� (?) with X-capped relative variance [X [- ] ≤ 3.

4.4 Running Time

The argument is similar to Section 3.3; we give a sketch here and

defer the details to the full version. We color each recursive call

as black or red – intuitively, they represent “success” or “failure”.

For both the universally small and partial revelation cases, if the

child subproblem is a phase node, then the recursive call is marked

a success (i.e., a black node). This is the only type of success for

the universally small case, which we call type 1 success. For the

partial revelation case, we have an additional situation where we

declare type 2 success: when the parameter W decreases to 0.9W and

|ℓ − _ | ≤ 0.1V . All other recursive calls are failures.

Now, the recursion tree satis�es the following properties:

(1) Each subproblem makes =$ (1) recursive calls. This is clear
from the algorithm description.

(2) The algorithm reaches the base case after $ (log= · log# )
black recursive calls (interleaved with red recursive calls):

Lemma 4.13. There can be at most $ (log= · log# ) black re-
cursive calls from root to a base case.

(3) At each subproblem, the expected number of red recursive

calls is > (1). We prove this later in the section.

Lemma 3.12 shows that these properties give a upper bound of

=$ (log=·log# ) on the number of recursive calls. If we charge the

time of DNF sampling and random contraction to the subproblem on

the contracted hypergraph, then each subproblem spends $ (=2<)
time outside the recursive calls, where the bottlenecks are DNF

sampling and DNF probability estimation given by Lemma 4.6.

Therefore, the overall expected running time is< · =$ (log=·log# ) .

5 CONCLUSION

In this paper, we initiated the study of unreliability in hypergraphs

and provided quasi-polynomial time approximation schemes for

the problem. The immediate open question is whether there is a

PTAS (or even FPTAS) for this problem. More generally, we hope

that our work will inspire further exploration of the rich space of

reliability problems in hypergraphs.
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