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On hypergraphs with m hyperedges and n vertices, where p denotes the total size of the hyperedges, we
provide the following results:

o We give an algorithm that runs in O(mn?K=2) time for finding a minimum k-cut in hypergraphs of
arbitrary rank. This algorithm betters the previous best running time for the minimum k-cut problem,
for k > 2.

o We give an algorithm that runs in O(n }) time for finding a minimum k-cut in hypergraphs
of constant rank r. This algorithm betters the previous best running times for both the minimum cut
and minimum k-cut problems for dense hypergraphs.

max{r,2k—2

Both of our algorithms are Monte Carlo, i.e., they return a minimum k-cut (or minimum cut) with high
probability. These algorithms are obtained as instantiations of a generic branching randomized contraction
technique on hypergraphs, which extends the celebrated work of Karger and Stein on recursive contractions
in graphs. Our techniques and results also extend to the problems of minimum hedge-cut and minimum
hedge-k-cut on hedgegraphs, which generalize hypergraphs.
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1 INTRODUCTION

In this article, we design a randomized branching framework for finding minimum cut and mini-
mum k-cut in hypergraphs, leading to improvements in randomized algorithms for these problems
over recent results of Ghaffari et al. [12] and Chandrasekaran et al. [6]. Our algorithms can be
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thought of as the natural analog in hypergraphs of the celebrated recursive contraction algorithm
of Karger and Stein [20] for finding minimum cut and minimum k-cut in graphs.

1.1 Randomized Contractions in Graphs

Consider an undirected graph with m edges on n vertices. A minimum cut (or min-cut) of the
graph is a minimum weight set of edges whose removal partitions the vertices into two connected
components. More generally, a minimum k-cut (or min-k-cut) is a minimum weight set of edges
whose removal partitions the vertices into at least k connected components; a min-cut is simply
a min-k-cut for k = 2. Min-cut and min-k-cut are fundamental problems in combinatorial opti-
mization and network reliability, and an impressive body of work has been devoted to designing
algorithms for these problems. Perhaps the simplest, and one of the most elegant, among them is
the randomized contraction algorithm of Karger [18]. For min-cut, this algorithm selects edges at
random with probability proportional to their weight (uniformly, if the graph is unweighted) and
unifies their endpoints (called edge contraction) until only two vertices remain. The edges that
survive at this stage are then output by the algorithm. Karger argues that the algorithm returns a
min-cut with probability Q(1/n?), which implies that a min-cut can be found with high probability
by running O(n? log n) independent instances of the algorithm.! For min-k-cut, the algorithm is
exactly identical, except that it terminates when k vertices are left, and outputs all the surviving
edges. In this case, the probability of returning a min-cut is Q(1/n%~2), which can be similarly
boosted by running O(n?*~? log n) independent instances of the algorithm.

Unfortunately, performing these independent runs can take Q(n*) time for the min-cut algo-
rithm and Q(n?*) time for min-k-cut, since the number of edges m can be Q(n?). In a later work,
Karger and Stein [20] proposed a branching approach called recursive contraction to significantly
speed up this scheme. This algorithm exploits the fact that the probability of contracting a min-cut
edge is rather small initially, and only increases in the later stages of the contraction algorithm. So,
they proposed to run a single branch of the contraction algorithm until [1n/V2] vertices remain,
at which stage two identical copies of the partially contracted graph are created and independent
recursive runs of the branching algorithm are performed on these copies. While it does take time
to create and work with these extra copies, the total number of edges in the graph decreases fast
enough that the branching algorithm runs in O(n? log n) time and returns a min-cut with probabil-
ity Q(1/log n). Using O(log® n) independent runs, one can now obtain a total running time of only
O(n?log® n). With slight modifications, this algorithm can instead return a min-k-cut with high
probability in O(n?*~2log® n) time, and this min-k-cut algorithm remains the fastest one known
for any constant k > 2 when the edges have arbitrary weights.

1.2 Randomized Contractions in Hypergraphs

A hypergraph H consists of a vertex set V and a set of hyperedges E. Each hyperedge e € E is
itself an arbitrary subset of vertices. The size of a hyperedge e is |e|, the cardinality of its vertex
set. The weight of a hyperedge e is denoted w(e). For a subset of hyperedges S, let w(S) denote the
total weight of hyperedges in the subset. The rank r of the hypergraph H is the maximum size of
a hyperedge, i.e., r = max.cr |e]. A graph is simply a hypergraph of rank 2. Accordingly, we may
say a hyperedge e is incident to a vertex v if v € e. We generally use the notation p = ). g le|
to denote the total size of all hyperedges in H. Finally, we define the order of H as the number of
vertices |V|. As before, a minimum cut (or min-cut) is a minimum weight set of hyperedges whose
removal partitions the vertices into at least two connected components, and a minimum k-cut (or
min-k-cut) is a minimum weight set of hyperedges whose removal partitions the vertices into at
least k connected components.

1We say an event occurs with high probability if it occurs with probability at least 1 — 1/n%(1),

ACM Transactions on Algorithms, Vol. 19, No. 2, Article 13. Publication date: April 2023.



Minimum Cut and Minimum k-Cut in Hypergraphs via Branching Contractions 13:3

A natural approach for computing min-cuts and min-k-cuts in hypergraphs is to try applying
the (non-branching) randomized contraction approach of Karger [18] described above. We let H/e
denote the contraction of hyperedge e in hypergraph H, accomplished by unifying e’s endpoints
and removing hyperedges that now have size 1. Unfortunately, even if hyperedges are unweighted,
contracting a hyperedge chosen uniformly at random may destroy a min-cut with fairly high prob-
ability when the hyperedges have variable sizes. Indeed, Kogan and Krauthgamer [24] show that
this natural strategy finds a min-cut with probability exponentially small in the rank r. Recently,
Ghaffari, Karger, and Panigrahi [12] showed how to achieve Karger’s Q(1/n?) probability of suc-
cess by biasing the selection of hyperedges away from those of large size. Chandrasekaran, Xu, and
Yu [6] refined this strategy and generalized it to work for k-cuts as well. This leads to randomized
algorithms for min-cut and min-k-cut that run in O(pn?®log® n) and O(pn**~!logn) time, respec-
tively. This latter result was the first polynomial time algorithm for minimum k-cut in hypergraphs
for arbitrary constant k, and it remains the fastest result to date. In particular, no polynomial time
deterministic algorithm is known for any k > 3.In contrast, there are deterministic O(pn+n®log n)
time algorithms for the min-cut problem in arbitrary hypergraphs [23, 25] and an O(pmn®) time
algorithm for k = 3 [32] using other techniques.

Hence, it is reasonable to ask whether we can generalize the branching contraction approach of
Karger and Stein [20] to hypergraphs as well, to yield faster randomized algorithms for the min-cut
and min-k-cut problems. There appear to be two major barriers to doing so.

First, the analysis of Karger and Stein’s algorithm depends upon the branching occurring at
precisely chosen moments determined by the number of vertices in the partially contracted graph.
If one branches too early, then there are too many large graphs in the recursive calls, and the
running time increases. If one branches too late, then it decreases the probability of a min-cut
surviving beyond the branching point and to the end of a run of the algorithm. When attempting to
run the branching algorithm on a hypergraph, there is a risk of contracting a very large hyperedge
and skipping right past one or more of these carefully selected branching points. Thus, it appears
we cannot select the branching orders in advance of our randomized contractions, and we need a
smoother procedure that performs branches based on which hyperedges we are contracting.

The second barrier to generalizing Karger and Stein’s algorithm concerns the total size p of
hyperedges in an arbitrary hypergraph. While we can easily see p = O(n") in hypergraphs of rank
r, the total size could be much larger when the rank is not fixed. Any generalization of Karger
and Stein’s algorithm to hypergraphs must be careful to minimize the time spent interacting with
hyperedges during contractions, especially in later stages of the algorithm when the number of
hypergraph copies is large.

1.3 Our Results

We present a new randomized branching framework for hypergraphs, where instead of branching
at fixed graph orders, we probabilistically decide whether to branch before each contraction based
on the size of the hyperedge we (randomly) select to contract. Our framework allows us to derive
new randomized algorithms for computing min-cuts and min-k-cuts in hypergraphs.

For hypergraphs of arbitrarily rank, we show the following result:

THEOREM 1.1. There exists an algorithm that with high probability computes a minimum k-cut of

a weighted hypergraph with n vertices and m hyperedges in O(mn®**=2log? n) time for all k > 3. For
the special case of minimum cut (k = 2), our algorithm runs in O(mn? log® n) time.

This result improves upon the best randomized running times for both problems due to Chan-
drasekaran et al. [6] by a factor of Q(pn/m), which is at least Q(n) and at most O(n?).? For k > 2,

2We use O notation to hide polylog factors when they are either too onerous to write or the exact exponents on the polylog
are unclear.
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this yields the fastest algorithm for the min-k-cut problem to date. (For k = 2, i.e., the min-cut
problem, the best running time is O(pn + n?logn) [23, 25] due to deterministic algorithms. See
Section 1.6 for more details.)

Dense Hypergraphs. Since the number of hyperedges m can be Q(n"), the above result yields
running times of O(n"*?log® n) for min-cut and O(n"*?~2log? n) for min-k-cut (k > 3) for dense
hypergraphs of constant rank r. We improve on these results by the showing that for any constant
rank r:

THEOREM 1.2. There exists an algorithm that with high probability computes a minimum k-cut of a
weighted hypergraph with n vertices, constant rank r, and total hyperedge size p in O(p+n?~2log® n)
time ifr = 2k — 2 or O(p + n™{"2k=2} |og? 1) time otherwise. For the special case of minimum cut
(k = 2) with r > 2, our algorithm runs in O(p + n” log? n) time.

For both minimum cut and minimum k-cut, these time bounds improve upon the best ones
known for sufficiently dense hypergraphs of rank r > 2.

1.4 Extension to Hedgegraphs

Along with studying randomized contractions for hypergraph min-cut, Ghaffari, Karger, and
Panigrahi [12] also initiated the study of minimum hedge-cuts. A hedgegraph H = (V,E) con-
sists of a collection of vertices V and a collection of disjoint hedges E, each of which is a subset
of edges over the vertex set V. A hedge-cut is a collection of hedges whose removal separates H
into at least two components; a hedge-k-cut is a hedge-cut that separates H into at least k com-
ponents. A min-hedge-cut or min-hedge-k-cut is one of minimum total hedge weight. Ghaffari,
Karger, and Panigrahi [12] provide a randomized polynomial time approximation scheme and an
exact quasi-polynomial time algorithm for computing a min-hedge-cut. The span of a hedge is the
number of connected components in the subgraph induced by its edge set. The randomized con-
traction result of Chandrasekaran, Xu, and Yu [6] for hypergraph k-cut is actually a special case
of a randomized algorithm they give for hedgegraphs, where every hedge has span bounded by a
constant s. (Note that a hypergraph is simply a hedgegraph of unit span.) Their general algorithm
runs in O(mpn*s+*=s log n) time where m denotes the number of hedges and p their total size.
Our results for computing min-cuts and min-k-cuts in hypergraphs extend to hedgegraphs of
bounded span. With high probability, we can find a min-hedge-cut in O(m?n**! log® n) time and a
min-hedge-k-cut in O(m?n+V%*-1 Jog? 1) time, improving upon known results for all k > 2 and
s > 2. Let the rank of a hedgegraph be the maximum number of vertices incident to edges in
any one hedge. For constant rank r, we can find a min-hedge-k-cut with high probability in O(p +
nGDKE=1 1063 n) time if r = (s + 1)(k — 1) or O(p + n™>{"+DE=D} 002 1) time otherwise.

1.5 Techniques and Organization

As mentioned above, our algorithm relies on probabilistic branching instead of branching at fixed
graph orders like in the original method of Karger and Stein [20]. Instead of explicitly biasing
away from larger hyperedges like in previous work [6, 12], we pick hyperedges to contract with
probability proportional to their weight. Before contraction, however, we branch with a probability
that is dependent on the size of the hyperedge we just selected. These probabilities are carefully
selected so that the total probability of branching is at least as high as the probability of contracting
an edge in the min-cut. Intuitively, the expected number of min-cuts discovered by our algorithm at
the bottom of its branches ends up being at least 1. Through a relatively straightforward inductive
argument, we prove that any one run of our algorithm returns a min-cut with probability at least
Q(1/logn). In fact, the analysis of our algorithm is arguably simpler than that given for Karger
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and Stein’s [20], and we give a probability bound that is actually tight for min-cut in graphs. Our
high-level algorithm and the analysis bounding its probability of success appear in Section 2.

To give our specific running time bounds, we need to perform hyperedge contractions efficiently.
We first consider arbitrary rank hypergraphs. In earlier work [6, 12], the contraction of a hyperedge
e involved going through the incidence list of each vertex in e so that all the incidences could be
replaced with a single vertex representing the contracted edge e. This process takes ©(m - |e|)
time in the worst case, so the running time of contraction increases with |e|. Unfortunately, our
algorithm is also more likely to branch when |e| is large, increasing our chances of performing
another expensive contraction in the future. Therefore, instead of spending ©(m-|e|) time checking
incidences, we essentially make brand new copies of what remains of each edge after contraction
in O(m(n — |e| + 1)) time so contractions that are more likely to cause branching are also cheaper
to perform. We describe the implementation for arbitrary rank hypergraphs in Section 3.

For hypergraphs of constant rank r, we only make copies of the hypergraph when branching,
and we otherwise perform contractions using a similar procedure as that given by Karger and
Stein [20] for graphs. Specifically, we explicitly merge new parallel hyperedges after every con-
traction to guarantee we never store more than O(n") hyperedges at a time. We also generalize
their edge selection procedure to select and contract a hyperedge in O(n"~!) time. Our implemen-
tation for constant rank hypergraphs appears in Section 4.

For hedgegraphs, randomly contracting a hedge incident to x vertices induces a branch with
the same probability as contracting a hyperedge of size x. The key difference increasing the run-
ning time for hedgegraphs is that we might create more branches overall, because a hedgegraph
only shrinks by x — s vertices if the contracted hedge has span s. Note that s can be as large as
x/2 in general, thus guaranteeing a reduction of only x/2 vertices, whereas shrinking a hyperedge
of size x reduces the number of vertices by x — 1. In addition, we need to maintain information
about how the components of hedges share vertices to perform fast hedge contractions, and main-
taining this information incurs additional running time. For simplicity, we stick to hypergraph
min-cut and min-k-cut in most of the article before giving the necessary details for our extensions
to hedgegraphs in Section 5.

1.6 Related Work

We give a brief survey of what is known about computing minimum cuts and k-cuts beyond the ap-
proaches of Karger and Stein [18, 20]. Nagamochi and Ibaraki [27] gave the first min-cut algorithm
for graphs that does not perform repeated computations of minimum s, ¢-cuts. Their approach was
later refined to give O(mn + n*log n) deterministic algorithms for the problem, and this running
time remains the best known among deterministic algorithms [26, 29]. This running time can be
improved to O(m+An?) [26] in unweighted graphs with min-cut value A and to O(m log'? n) in sim-
ple unweighted graphs [22]. The randomized O(n? log® n) time algorithm of Karger and Stein [20]
improves upon the weighted edge result for graphs that are not too sparse. By applying other
techniques, Karger [19] further improved the best randomized running time to O(mlog> n).
When k is part of the input, the min-k-cut problem is NP-hard [13]. However, Goldschmidt and
Hochbaum [13] were still able to give a deterministic n°(*) time algorithm for the problem when
k is a constant. Their work was followed by a series of deterministic algorithms [16, 17, 31] that
led to an 5(n2k ) time algorithm due to Thorup [30]. In concurrent work to our own, Chekuri,
Quanrud, and Xu [8] improved this running time to 5(mn2k—3). This was further improved to
O(kOK) pRe/3+eM)k) by a recent work of Gupta, Lee, and Li [14], where o is the matrix mul-
tiplication constant. For small k, the result also gives a faster randomized algorithm in time
O(KOW) pk+L(k=2)/3]r+1+((k=2) mod 3) 1) " \where all weights are bounded by W. For unweighted
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graphs and k € [8,n°(], this improves upon the randomized O(n?*~?log® n) time algorithm of
Karger and Stein [20], while the latter still remains the state-of-the-art for weighted graphs.

The situation in hypergraphs is a bit different. Queyranne [28] gave the first non-trivial algo-
rithm for min-cut in hypergraphs, and it was later improved by Klimmek and Wagner [23] and
Mak and Wong [25] to run in O(np + n?logn) time. Chekuri and Xu [9] improved the running
time for unweighted hypergraphs with min-cut value A to O(p + An?). All of these algorithms
are deterministic. In fact, all the randomized algorithms mentioned above are actually slower at
computing min-cuts than these deterministic algorithms, with the aforementioned exception of
our O(p + n") time algorithm for sufficiently dense hypergraphs of constant rank.

For k = 3, there exists a deterministic O(pmn3) time min-k-cut algorithm due to Xiao [32, The-
orem 4.1]. Fukunaga gave a deterministic O(n"**0() time algorithm for any constant k and con-
stant rank r via a hypertree packing approach [11]. In these cases of k > 2, we see the randomized
algorithm of Chandrasekaran, Xu, and Yu [6] and our own results do provide improvements over
the deterministic algorithms, and the randomized approach is the only one known to work with
arbitrarily large hyperedges.

Based on the history above, it seems likely that randomized approaches will eventually lead to
even faster algorithms for both min-cut and min-k-cut in hypergraphs. We believe our work is a
natural and important step toward this end.

1.7 Subsequent Work

Subsequent to the the conference publication of our work [10], the hypergraph minimum cut and
related problems were studied in References [1-5, 7, 21]. Karger and Williamson [21] provided a
streamlined analysis of our algorithm in the case of graph minimum cut. Gupta, Lee, and Li show
that the Karger-Stein algorithm is optimal for graph k-cut [15]. Chandrasekaran and Chekuri [4]
gave the first deterministic polynomial-time algorithm for hypergraph k-cut, for fixed k. Their ap-
proach significantly differs from ours, as it is based on a divide-and-conquer procedure and does
not rely on (randomized) contractions. Beideman et al. [1] provided a faster algorithm for hyper-
graph minimum cut on low-rank simple hypergraphs. Beideman et al. [2, 3] study counting and
enumerating optimal hypergraph cuts. Chandrasekaran and Chekuri [5] considered the problem of
min-max hypergraph k-cut and gave a polynomial-time algorithm. Finally, Chekuri and Quanrud

[7] devised an O(~/pn(m + n)1-%) time algorithm for hypergraph min-cut.

2 BRANCHING CONTRACTIONS

In this section, we provide the high-level details of our branching randomized contraction algo-
rithm. Recall, a non-branching algorithm that simply selects hyperedges to contract proportional
to their weight will preserve a min-cut with probability exponentially small in the rank of the
given hypergraph [24]. Therefore, previous work biases edge selection away from large hyper-
edges [6, 12].

For our branching contraction algorithm, though, we must also use the size of hyperedges to
determine the number of branches we create. The min-cut includes every hyperedge except e. Be-
cause all the hyperedges have the same size and nearly the same weight, any randomized contrac-
tion procedure will preserve the min-cut after one contraction with probability only ©(1/n). Recall
that the goal of branching contractions is to preserve the min-cut with probability ©(1/ log n); we
clearly need Q(n/logn) branches at the very outset of the algorithm. Contrast this with graphs,
where the algorithm branches much slower, creating two branches after n(1 — 1/v2) edge con-
tractions. Since a hypergraph comprises hyperedges of non-uniform size, the number of branches
created therefore needs to vary with the size of the hyperedge chosen for contraction.
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Simultaneously biasing selection away from large hyperedges and deciding how often to branch
based on the size of selected hyperedges makes the analysis very complicated. Instead, we encode
the bias against large hyperedges into the probability of branching or not. More concretely, our
algorithm selects hyperedges to contract proportionally to their weight just as in graphs [19, 20],
but before contracting, it randomly decides to branch with the probability of branching being a
function of the selected hyperedge’s size. In other words, instead of biasing the hyperedge selected
for contraction away from large hyperedges, we branch with a higher probability if a large hyper-
edge is selected thereby creating a copy of the uncontracted graph and effectively increasing the
probability of preserving the min-cut.

Intuitively, a high probability of contracting leads to a large chance of destroying a min-cut.
However, a high probability of branching may give a large number of branches, resulting in pro-
hibitive time complexity. Our algorithm is designed to balance these two probabilities such that
in expectation, one copy of the min-cut survives either in the contracted graph or in the copy of
the uncontracted graph we create by branching, and yet the total number of branches can be well
controlled.

We begin by determining the probability that a random hyperedge, selected with probability
proportional to its weight, belongs to a given min-cut or min-k-cut. Recall, for a given hypergraph
H = (V,E) and set of hyperedges S C E, we use w(S) to denote the total weight of S. The following
lemma is essentially a restating of one by Chandrasekaran, Xu, and Yu [6, Lemma 3.1] for the case
of hypergraph min-k-cut.

LEmMA 2.1. Let C be a minimum k-cut in a hypergraph H = (V,E). We have

0 15 o[ -00)

W(E) W(E) ecE (kr,ll)

Proor. Fix a subset A = {aj,...,ar_1} of k — 1 vertices. Subset A induces a k-cut C’ =
({a1}, ..., {ag-1}, V \ A) of weight at least w(C). Each hyperedge e € E that includes at least one

member of A contributes weight w(e) to C’. There are (kill) such subsets A total, and each hyper-
edge e contributes weight to the cuts of (k'_ll) - ("k__lfl) of them, 50 Y .cp w(e) ((kr_'l) - ("k__lf‘)) >
(k'11>w(C). Multiplying both sides of the inequality by 1/ (W(E) (kfl)) proves the lemma. O

Because the expression will arise often throughout the remainder of this article, we define

_ () - ()
zn(e) = (kr—ll)

We call z,,(e) the redo probability of contracting hyperedge e in a hypergraph of order n. If our
branching algorithm randomly selects hyperedge e for contraction, then it will branch with proba-
bility precisely z,(e). Observe % < ﬁ > ece w(e) - zn(e). Therefore, as we select a hyperedge
to contract proportionally to its weight, our algorithm branches with the same probability that we
contract a hyperedge in a min-cut or min-k-cut.

Before giving the full details of our branching algorithm, as an aside, we reinterpret the algo-
rithm of Chandrasekaran, Xu, and Yu [6] in our framework. Suppose we select a hyperedge e to
contract proportional to its weight and, instead of branching with probability z,(e), we redo the
random hyperedge selection with probability z,(e). In other words, if we branch, then we ignore
the originally selected hyperedge e and only pay attention to what happens in the new branch.
In this case, the probability that we select a hyperedge e and perform its contraction instead of

for any hyperedge e € E.
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n-|e|
branching is proportional to w(e) - (1 — z,(e)) = %, which is exactly proportional to the
k-1
(non-uniform) probability of contraction of hyperedge e in the algorithm of Chandrasekaran, Xu,

and Yu [6]. Indeed, this view gives a very short analysis for their algorithm (see Appendix A).

2.1 Algorithm Details

We now give the details for our branching contraction algorithm for min-k-cut in a hypergraph
H = (V,E) of order n. The algorithm for min-cut is the special case for k = 2. As we show, a single
run of our algorithm has (within constant factors) the same probability of finding a min-k-cut as
in the branching algorithm of Karger and Stein [20] for graphs.

We say a hyperedge e is k-spanning if it contains at least n — k + 2 vertices, implying it spans
every k-cut. We maintain a collection S C E of hyperedges that we believe belong to the min-
k-cut based on earlier randomized contractions. Initially, every k-spanning hyperedge is added
to S. Then, we sample a random hyperedge e with probability proportional to its weight (or
uniformly at random if the hypergraph is unweighted). We contract the hyperedge e to create
the hypergraph H/e, and recursively call our algorithm on H/e. With probability z,(e), we also
branch, meaning we recursively call our algorithm on the same hypergraph H. If we branched,
then we return the smaller of the cuts returned for H/e and our second run on H. Otherwise,
we return the cut found for H/e. The algorithm is given in pseudo-code below as the procedure
BRANCHINGCONTRACT(H, S). It initially takes the empty set as its second parameter.

BRANCHINGCONTRACT(H, S):
For each k-spanning hyperedge e, add e to S and remove e from H
If E = 0, then return S

Select a hyperedge e at random with probability proportional to w(e)
With probability z, (e),

return the smaller of the cuts BRANCHINGCONTRACT(H /e, S) and BRANCHINGCONTRACT(H, S)
Otherwise, return BRANCHINGCONTRACT(H /e, S)

2.2 Computation Tree

Consider a single run of BRANCHINGCONTRACT on a hypergraph H. We define the computation
tree of the run as follows. The computation tree contains as a node the input hypergraph H and
each hypergraph created by a contraction (including multiple nodes for identical hypergraphs
created by separate branched contractions). It also contains a special root node not associated with
any particular hypergraph. The parent of hypergraph H’ is the hypergraph from whose contraction
H’ was created, and the parent of input hypergraph H is the root node. Last, we remark that the
non-contracting branch does not create a new node.

A computation tree can be defined similarly for Karger and Stein’s [20] recursive contraction
algorithm; here the root node contains two children, one for each of the two independent runs on
the input graph. However, while this computation tree is deterministic in its structure and graph
orders of its nodes, the structure and hypergraph orders of our computation tree are themselves
randomized. In particular, BRANCHINGCONTRACT may not yield an isomorphic computation tree
to that of the algorithm of Karger and Stein when given a graph as input.

The following lemma bounds the number of hypergraphs of various orders in our computation
tree and will prove useful in the analysis of our implementations of BRANCHINGCONTRACT. Let
S(n, ng) denote the maximum expected number of nodes of order n, created in a computation tree
for some hypergraph H of order n, where the maximum is over all hypergraphs of order n.
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LEmMMA 2.2. Fix integer ny such thatk < ny < n. We have

n n—1 )
s D)2

(k—ol) ( k0—1 ) no
On graphs, this bound is met with equality.

Proor. We will prove the lemma using induction on n. For n = ng, we have S(n, ny) = 1, because
only the root’s single-child node has order n. The lemma follows.

Now, suppose n > ny. Fix a hypergraph H of order n. Let E” C E be the subset of hyperedges such
that |e| < n—ng + 1. Only contracting a hyperedge of E” can lead to a node of order ny. Given that
such a hyperedge is contracted, any given e € E’ is chosen with probability W((E )) And conditioned
on e being chosen, there will be in expectation at most S(n—|e|+1, ny) descendants of H of order n,
formed by calling BRANCHINGCONTRACT on H/e. Also, the algorithm will branch with probability

z,(e) and that branch will create at most S(n, ny) additional descendants in expectation. Thus

1
y w(e) (zn(e) - S(n,ng) +S(n—lel + 1,ny)) .
w(E’) ;
Solving for S(n, ny), using the definition of z, (e), and applying the inductive hypothesis, we find
1

1
S o) < 1- ﬁ Yecr w(e)zn(e) w(E) e%; wle) S(n = lel +1.m)

(&%)
) ﬁZeeEIiv:(e) (1) wE) ;}W(e) S(n—lel +1,n)

T s )
w(E’) Deerr wle) (n Iel) w(E) ecE’ (k 1) (rllco—_ll)
Finally, we observe ("_klfllﬂ) < (Z:i) and simplify to prove the lemma.
n n-1\ (n—|e| n n—-1
S(n, no) < (k—l) 1 Z w(e) ( (k—l)( k-1 )) _ (k—l) (k—1) O

iy Seer w(o) () wEY S\ () (e) ) () (i)

S(n,ng) <

2.3 Probability of Success

We now establish the probability of BRANCHINGCONTRACT returning a min-k-cut of hypergraph
H = (V,E). For any integer ¢t > k, let
t -2
. _ (,H) B (,H)

)

THEOREM 2.3. Fix a constant integer k > 2. Algorithm BRANCHINGCONTRACT returns a min-k-cut
with probability at least
1 1
Pk 2 logn

To see that 3}, z; = O(logn), notice that each term z; = ©(1/t), since the numerator is

O(tk=2) whereas the denominator is O(t*~!). Now to prove the theorem, we need the following
observation. In the proof of Theorem 2.3, we only apply it with w = 1, but the general statement
given below will be useful in the analysis of our hedgegraph cut algorithm.
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OBSERVATION 1. Fix integers k, n, w, and x such that2 <k <n-1,2 < x <n-k+ 2, and
1<w<x—1. We have

n n—x
(,H)—(,H) (x—l) C .
(= S oa
( n ) x—w/ _
k-1 t=n—x+w+1
with equality holding when w = 1 and x = 2.
Proor (oF OBSERVATION 1). We express the left-hand side as a telescoping sum and increase the
numerators in its terms:

(k:) B (Zj) (kril
(24)

IA

Now, observe that ( kil) - (t:zl) is increasing in t. We replace the smaller terms of the summation
with a multiple of the larger terms. More precisely, if the w — 1 smallest ones among the x — 1 terms
are taken out, the summation is left with x — w terms. Since they are larger than the w — 1 small
terms, multiplying them by a factor of (x — 1)/(x — w) suffices to maintain the inequality. Finally,
we reduce the denominators to finish the proof:

(k’il)_(rij) B (X_—l) Z": (kil

n
k—1 t=n—x+w+l

1l
—_—
2=

Ll

S|~
S—

_‘N

O

We are now ready to prove Theorem 2.3.

Proor (oF THEOREM 2.3). For any n-vertex hypergraphs H, let Z be a indicator random variable
on whether BRANCHINGCONTRACT returns a min-k-cut. Let ¢, = ming Pr(Zy = 1) denote the
minimum probability over all n-vertex hypergraphs of BRANCHINGCONTRACT returning a min-

k-cut. We will use induction over n to prove that g, > zn;z For the base case, g = 1 =
t=k ~t
1/((k = 0)/k).
We now establish a recurrence for g¢,. Fix the hypergraph H = (V,E), where H €

argming Pr(Zy = 1), and a min-k-cut C in H. The algorithm is correct to add all k-spanning
hyperedges to S and eventually return them, because every k-spanning hyperedge crosses every
k-cut. For simplicity, we assume E has no k-spanning hyperedges from here on. We further assume
a min-k-cut is returned for H with probability at most ﬁ If this assumption does not hold,
then the theorem is already true for hypergraph H. )

Recall that when our algorithm selects a hyperedge e to contract, it also branches with prob-
ability exactly z,(e). The edge to contract is chosen with probability proportional to its weight,
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so the probability of branching is exactly ﬁ > ecg w(e) - zy(e). Conditioned on the branch
being performed, the branched call to BRANCHINGCONTRACT(H, S) will then succeed in find-
ing a min-k-cut with probability at least g,. Taken together, we see with probability at least
(ﬁ Yece w(e) - zn(€))qn, the algorithm BRANCHINGCONTRACT(H, S) branches and then finds
a min-k-cut during the recursive call to BRANCHINGCONTRACT(H, S). Let E’ € (E \ C) be the
subset of hyperedges that do not belong to some min-k-cut. By Lemma 2.1, there is at least
a(1- (ﬁ Yece W(e) - zn(e))) probability that the selected hyperedge belongs to E’, implying
at least one min-k-cut exists in H/e. Conditioned on the event, there is a w(e)/w(E’) proba-
bility of any particular hyperedge e € E’ being chosen. Finally, given that e € E’ is chosen,
using our assumption that BRANCHINGCONTRACT returns a min-k-cut with probability at most
ﬁ, we have at least a (1 —z,(e )(Z" ))qn le|+1 probability that a min-k-cut is returned
by BRANCHINGCONTRACT(H /e, S) but no min-k-cut is also returned during a branching call to
BrANCHINGCONTRACT(H, S). Taking everything together, we see

n ( E)Zw@ zn<e>)qn

ecE

1 1
+ (1 - (@ ;EW(E) zn(e ))) w(E) e; w(e) (1 — zp(e) (m)) Gn—le|+1-

Solving for g, and rearranging some terms, we see

1
w(E ) e;; ( —zn(e) ( ?:k z )) qn—le|+1
E ) Z ( *) ((Z Z?) - Zn(e)> dn-le|+1-
ecF’ f k%t t=k

For each e € E’, we use the definition of z,(e) and apply Observation 1 with w = 1 and x = |e|:

w6 - ()
qn = w(E’) ‘; ( r kz;) (;Zt) (kil) Gn—lel+1
> w(E ) EEZE w(e) ( 2 kzt) (; Zj)_(t:n_zkg“gzj))qn_leHI

ecE’

1 n—|e|+1 .
) 2 ( tkzt) Zf)q"‘e'“'

Finally, we apply induction and simplify to finish the proof:

n—le|+1
qn W(E)eEZE’ ()( tkzt)( tz Z)( ;lllce|+lzj)
w(E)e;, (e)( iz )

A

\%

\%

ACM Transactions on Algorithms, Vol. 19, No. 2, Article 13. Publication date: April 2023.



13:12 K. Fox et al.

Suppose H is an unweighted cycle graph and k = 2, and let C be a minimum cut in H. Assuming
BrRANCHINGCONTRACT breaks ties in C’s favor, it returns C with exactly the probability given in
Theorem 2.3.

So far, we have established that the branching randomized contraction algorithm for finding
min-cuts and min-k-cuts has an Q(1/logn) probability of success when given a hypergraph of
order n. In the next two sections, we give efficient implementations of the algorithm for arbitrary
and low-rank hypergraphs. It would be natural to boost this probability of success by repeated
runs of the algorithm, but this process needs some care, because the running time of our algo-
rithm is also randomized and the length of individual runs can be correlated with the success of
the algorithm. This is in contrast with the algorithm of Karger and Stein [20] whose runtime is
deterministic. In this case, they may simply run ©(log? n) independent copies of the branching
contraction algorithm and returns the smallest cut found.

Our solution is the following. Suppose we implement our branching contraction algorithm to
run in T time in expectation. We can find a minimum cut or k-cut with high probability in worst
case O(T log? n) time by subtly modifying Karger and Stein’s approach. We say that a batch is
a set of clogn runs of our algorithm for some sufficiently large constant c. We perform a batch
of independent runs by doing the runs sequentially until either all clogn runs are complete or
4¢T log n units of time have passed. (For example, if the first run takes longer than 4¢T log n units of
time, then no other run in the batch is executed.) The result of the batch is nothing if the 4cT logn
time units have passed or the smallest cut found otherwise. Our overall minimum cut or k-cut
algorithm then returns the smallest cut found over ¢’ log n independent batches for some constant
c.

We now prove the following lemma.

LEMMA 2.4. Let H be a hypergraph of order n, and suppose BRANCHINGCONTRACT is implemented
torun in T time on H in expectation. Then, there is an algorithm that runs in worst case O(T log® n)
time, and returns a min-k-cut of H with high probability.

Proor. The running time bound follows immediately, so we concentrate on the probability
bound. Consider a single batch of runs, and suppose we let them all run to completion. The prob-
ability that all ¢ log n runs fail to find a min-k-cut is at most

1 clogn
1_(1_Q(logn)) < 1/4,

when c is sufficiently large. By Markov’s inequality, our algorithm stops a batch for spending
too much time with probability at most 1/4. Therefore, by union bound, there is at most a 1/2
probability that our algorithm fails to return a min-k-cut during a single batch. Finally, ¢’ logn
batches all fail to return a min-k-cut with probability at most

1—(1/2)°8" = 1 —1/n*".
for some constant ¢”’. o

3 ALGORITHM FOR HYPERGRAPHS OF ARBITRARY RANK

We now present our O(mn?~2) time algorithm for hypergraphs of arbitrary rank. We represent a

hypergraph H = (V, E) as a list of hyperedges as well as pointers between vertices and incident
hypergedges.

To select a hyperedge for contraction, we keep an explicit list of every hyperedge in the hyper-
graph. We check their weights and select a hyperedge proportional to its weight in O(m) time.
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Now, suppose we select a hyperedge e for contraction. Previous work [6, 12] and our own imple-
mentation for constant rank hypergraphs (Section 4) involves finding all hyperedges sharing a
vertex with e and modifying those hyperedges to the newly contracted hypergraph. When |[e| is
large, such a procedure is rather slow. Instead, we essentially create a new copy of the hypergraph
during the contraction. However, we ensure that we only spend time proportional to the total size
of the contracted hypergraph.

We contract e to create H/e = (V’, E’) using the following procedure. We initially set V' := V'\ e
and E’ := E\ {e} by creating copies of the individual vertices and hyperedges. However, we do not
(yet) copy over the incidence lists for the vertices and hyperedges. For each vertex v € V” and for
each hyperedge e’ € E’ that is incident to v in H, we add v to the incidence list for the copy of
e’ in H \ e and vice-versa. We remove any hyperedges e’ € E’ that have no incidences, because
they will all have size 1 after contraction. Next, we add an additional vertex v, to V' representing
the contraction of e. Any hyperedge e’ € E’ that is incident to fewer vertices in H/e than in H
must have been incident to a vertex of e itself. Therefore, we add v, to the incidence lists of those
hyperedges and vice-versa. We spend constant time per hyperedge and incidence in H/e, so the
entire procedure takes O(m(n — |e| + 1)) time.

One thing to note about the above procedure is that we make no modifications to H itself.
Therefore, we do not need to spend any time copying H when we decide to branch. We can
discover k-spanning hyperedges as they are created during contractions, so doing so adds no
overhead to the running time. Our overall algorithm consists of running this implementation of
BraNcHINGCONTRACT O(log? n) times to boost the probability of success as in Lemma 2.4.

Given Lemma 2.2, it it straightforward to analyze our algorithm.

LEMMA 3.1. The expected running time of BRANCHINGCONTRACT using our implementation for
arbitrary hyperedge sizes is O(mn? log n) ifk = 2 or O(mn**~2) ifk > 3.

Proor. The main bottleneck of the algorithm is the time taken to create recursive subproblems.
It takes O(mny) time to do these operations to create a subproblem of order ny. By Lemma 2.2, the
expected running time is therefore at most

n n 2k-2 - n 1

n(]:k n(]:k 0
If k = 2, then the summation comes to O(log n). Otherwise, it converges to a constant. O
We apply Lemma 2.4 and obtain our main result for hypergraphs of arbitrary rank.

THEOREM 3.2 (RESTATEMENT OF THEOREM 1.1). There exists an algorithm that with high prob-
ability computes a minimum k-cut of a weighted hypergraph with n vertices and m hyperedges in
O(mn?log® n) time ifk = 2 or O(mn®*~% log® n) time ifk > 3.

4 ALGORITHM FOR LOW-RANK HYPERGRAPHS

We now present our O(n") time algorithm for finding min-cuts and min-k-cuts in hypergraphs
of rank r. Throughout, we assume r is a constant independent of n. We again represent the hy-
pergraph H = (V,E) as a list of hyperedges as well as pointers between vertices and incident hy-
peredges. By merging parallel hyperedges, we can guarantee that our representation takes O(n")
space even as contractions are performed.

Our algorithm begins with an O(m + n") time preprocessing step that removes duplicate hyper-
edges by sorting hyperedges lexicographically and replacing identical hyperedges with a single
hyperedge of their summed weight. Overloading notation, let H = (V, E) also denote the hyper-
graph after preprocessing.
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After preprocessing, we run BRANCHINGCONTRACT O(log® n) times as in Lemma 2.4. When we
need to branch, we copy the entire hypergraph we are working with. Hyperedge selection and
contraction is performed using the O(n"~!) time procedure given in the next section, and we find
k-spanning hyperedges as they are created during contractions with no addition to the overall
running time.

4.1 Edge Selection and Contraction

Our algorithm needs to perform hyperedge selections and contractions in O(n"~!) time each. Sim-
ilar to Karger and Stein [20], we rely on some simple data structures to aid in our hyperedge
selections instead of naively enumerating all edges and randomly selecting from them. We store
a value D(v) on each vertex v, which is equal to the sum of the weights of all hyperedges of size
exactly r containing v. We also maintain w(E), the total sum of hyperedge weights.

To select a hyperedge for contraction, we enumerate all O(n” 1) hyperedges of size at most r — 1.
Let ey, ..., e be this list of hyperedges. With probability

Zf:] W(ei)
w(E)
we pick one of ey, . . ., e; with probability proportional to its weight. If we do not pick one of these
hyperedges, then we pick a vertex v with probability proportional to D(v), and then pick one of the
O(n"~') hyperedges of size r containing v with probability proportional to its weight. The running

time of this procedure is dominated by the time it takes to enumerate the hyperedges involved in
a single probabilistic choice. There are at most O(n""!) such edges in each case.

LEmMA 4.1. The above procedure picks a hyperedge of H with probability proportional to its weight.
Proor. The probability that the procedure picks a fixed hyperedge e; of size at most r — 1 is
exactly
i wle) — wle)  wie)
w(E)  Xiwle)  wE)
Now let e = {vy,...,v,} be a hyperedge of size r. The probability of picking hyperedge e is

w(E) — Xi_, w(e) D(v) w(e)] 1Y ev D) 1 _ w(e)
RS [zv/evD(w $ 5] R e W IR M §

veEe

]
We now turn to contractions. Suppose our algorithm needs to contract hyperedge e =

{v1,...,0)e)}. We will contract e to one of its vertices, say, v; € e. First, we list all Oo(n" 1) hy-
peredges that are incident to any vertex of e. Then remove members of e — v; from the hyperedges
and add v; to each hyperedge it does not already appear in. We remove each hyperedge in the
list that consists entirely of v;. Next, we sort the hyperedges of the list as before, and combine
identical hyperedges of the list, summing their weights. Finally, we recompute D(v;) by summing
the weights of all remaining hyperedges in the list. The entire contraction procedure takes O(n" ")
time.

4.2 Running Time Analysis

Now, we turn to analyzing our implementation of BRANCHINGCONTRACT for hypergraphs of con-
stant rank r. As we will see, the total time spent performing contractions is easily determined
using the above discussion and Lemma 2.2’s bound on the number of hypergraphs of different
orders in the computation tree. The only other operation we have yet to analyze is the time spent
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making copies of hypergraphs while branching. In particular, if there is a hypergraph H’ in the
computation tree with ¢ children, then we need to create t — 1 copies of H’.

LEMMA 4.2. Suppose the computation tree contains a hypergraph H' of order ny. Node H' has
1+ O(1/ny) children in expectation. In particular, we spend an expected O(n"~) time creating copies
ofH'.

Proor. Lett* be the expected number of children of node H’. Because, |e| < r for any hyperedge
G)-GED

G
number of children for node H’ as a decreasing geometric series:

e in H’, we branch with probability at most ) . Therefore, we can bound the total expected

1) O W 1 B ) el 1 S (4)
N B = R n
k-1
The lemma now follows from the fact that H” has total hyperedge size at most O(n"). O

LEMMA 4.3. The expected running time of BRANCHINGCONTRACT using our implementation for
constant rank r is O(n**~%log n) if r = 2k — 2 or O(n™!7-2k=2}) otherwise.

Proor. Fix any integer ny such that k < ny < n, and let H,,, denote the set of hypergraphs of
order ny. Consider an arbitrary hypergraph H’ € H,,,. An ith copy of H” appears in the computa-
tion tree with some probability pgr ;. Conditioned on that copy appearing, we see from Lemma 4.2
that the expected time spent making copies of H’ and performing contractions on H” and its copies
is O(ng_l). Recall, S(n, ng) denotes the maximum expected number of nodes of order n, created in
a computation tree for some hypergraph H of order n. Lemma 2.2 implies the total expected time
spent making copies and doing contractions for nodes from H,,, is given by

2k-2
> w0 1)<s<nno>0(”)SO<(%) )O(né 1)=O<"2"‘2>'O(nzk5—l>'
. 0

H' eHpy,i>1

We finish the proof by summing the above expression over all possible ny. If r < 2k — 2, then

2k—r—-12>2,and
- 1 -
E 0O(n*2) -O( py— 1) <O(n**7?) g = 0(n*7?),

no=k no=k 0
Ifr=2k—-2,then2k—-r—-1=1,and

n
_ 1 .
§ O(n?-2y. o( — 1) = 0(n2*?) Z P O(n**%log n).
no=k

no=k
Finally, if r > 2k — 2, thenr — 2k + 1 > 0, and

Z O(nZk 2) O( —— 1) ( 2k—- 2) Z n6—2k+1 — O(nr) O

no= k n0=k

By applying our analysis for boosting the probability of success (Lemma 2.4), we obtain our
main results for constant rank hypergraphs.

THEOREM 4.4 (RESTATEMENT OF THEOREM 1.2). There exists an algorithm that with high prob-
ability computes a minimum k-cut of a weighted hypergraph with n vertices, constant rank r, and
total hyperedge size p in O(p + n**2log® n) time if r = 2k — 2 or O(p + n™*"-2k=2} [og? 1) time
otherwise.
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5 EXTENSION TO HEDGE GRAPHS

Let H = (V, E) be a hedgegraph. To be consistent with Chandrasekaran, Xu, and Yu [6], we let s(e)
denote the span of a hedge e € E and r(e) (for rank) denote the number of vertices incident to the
edges in e. Let s be the span of H, defined as the maximum span over all hedges. Throughout this
section, we assume that s is a constant.

We modify the branching random contraction algorithm (BRANCHINGCONTRACT) for hyper-
graphs to create a new algorithm HEDGEBRANCHINGCONTRACT. We contract a hedge e by uni-
fying the vertices within each connected component of e separately and removing all hedges that
then have no non-loop edges. Contracting a hedge e reduces the number of vertices from n to n —
r(e)+s(e). Similar to before, we call hedge e a k-spanning hedge if r(e) > n—k+ 2. Unfortunately,
the existence of hedges with span greater than 1 means we may have some k-spanning hedges that
do not cross any minimum k-cut. Fortunately, contracting any such hedge leaves a hedgegraph of
constant size that can be checked for minimum k-cuts by brute force. Similar to before, let

() - ()
()

We now define HEDGEBRANCHINGCONTRACT. As before, the parameter S is empty for the initial
call.

zn(e) =

HEDGEBRANCHINGCONTRACT(H, S):
If n < k + s — 1, then compute a min-k-cut C by brute force and return CU S

For each k-spanning hedge e with n — r(e) + s(e) < k, add e to S and remove e from H

LetCp =E

For each k-spanning hedge e, set C, to the smaller of Cj, and HEDGEBRANCHINGCONTRACT(H /e, S)
Add all k-spanning hedges e to S and remove them from H

Select a hedge e at random with probability proportional to w(e)
With probability z, (e),
return the smallest of the cuts HEDGEBRANCHINGCONTRACT(H /e, S),
HEDGEBRANCHINGCONTRACT(H, S), and Cp,
Otherwise, return the smaller of HEDGEBRANCHINGCONTRACT(H /e, S) and Cy,

We proceed by analyzing the success probability of the branching contraction algorithm. Again,
for any integer t > k, let
t t-2
. _ (k—l) B (k—l)

()

THEOREM 5.1. Algorithm HEDGEBRANCHINGCONTRACT returns a minimum hedge-k-cut of a
(weighted) hedgegraph with probability at least

L
2y" , z; \logn)’
Notice that this bound matches the one for hypergraphs (span-1 hedgegraphs) up to constant
factors.

Proor. Let g, denote the minimum probability over all n-vertex hedgegraphs of HEDGE-
BRANCHINGCONTRACT returning a fixed min-k-cut. We use induction over n to show g, > s~i—

2y w5
For the base case, g = 1 > 1/(2(k — 0)/k).
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If contracting a hedge leaves fewer than k vertices, then it must belong to every k-cut and it is
correct to include it in S. We check every other k-spanning hedge e to see if any one of them can
be excluded from the min-k-cut. Cut Cy, is the best of these checks. If Cj, is not a min-k-cut, then
it is correct to include every hedge e with r(e) > n — k + 2 in the cut returned by the algorithm.
From here on, we assume there are no hedges e with r(e) > n — k + 2.

The probability of destroying a min-k-cut with a single contraction remains the same
(Lemma 2.1). However, n —r(e) + s(e) vertices remain after contracting a hedge e. Therefore, simi-
lar to the proof for hypergraphs, it now remains to solve the following recurrence relation where
E’ C E is the subset of hedges that do not belong to some min-k-cut:

1
Gn 2 (@ ;ww) : zn<e>)qn
1
+( ( B Z w(e) - zn(e))) wE) Z w(e) (1 —zp(e) (m)) Gn-r(e)is(e)-

Solving for g, and rearranging some terms, we see

Z (1 - z,,(e) (2 Z B = )) dn-r(e)+s(e)

ecE’

SRR ¥ s

t=k

E)

For each e € E’, we use the definition of z,(e) and apply Observation 1 with w = s(e) and

x =r(e):
n (k'il)—(";iﬁ”))
2 2| T T~ |9n-r(e)+s(e
Z ol ) e

N * r(e) -1 1 ;
w(E') Z ( ik Zt) ((2 ; Z[) B ((r(e) - s(e)) t:n—r(ez);rs(e)ﬂ Zf)) qn—r(e)+s(e)-

Observe that s(e) < |r(e)/2] for any hedge e € E’. We apply this observation, use induction,
and simplify to finish the proof:

1 1 S C
R DIl owwed (ZZZ?)- DI | [
W(E ) ecE’ zzt:k 2t t=n-r(e)+s(e)+1
1 1 n— r(e)+s(e)
= ;‘/w(e) ( > 2;) In-r(e)+s(e)
(e)+S(e)
1 1 n-r
> -
> ) g;’w(e)(z ?:kzj) )( n— r(e)+s(e) ?)
1 1
> w(e) (—)
W(E') ‘;, 22?:k Zy
22?—k zy
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We now bound the size of the computation tree for hedgegraphs. Let S(n, ng) denote the maxi-
mum expected number of nodes of order ny created in a computation tree for some hedgegraph H
of order n.

LEMMA 5.2. Fix an integer ny such that k < ny < n. We have
LD ) o))
=0(— .
() (i) - () o
Proor. We will prove the lemma using induction on n. For n = ng, we have S(n, ny) = 1, because
only the root’s single-child node has order n.

As before, let E’ C E be the subset of hedges that may be randomly contracted to leave at least
ng vertices. It now remains to solve the following recurrence relation:

! Z w(e) (zn(e) - S(n,ng) + S(n —r(e) +s(e), ny)) -

w EI) ecE’

S(n,ng) <

S(n,ng) <

Solving for S(n, ng) and applying the inductive hypothesis, we find
(krfll) 1
— - w(e) S(n—r(e) + s(e), ng)
#E’) ZEEE’ W(@) ( k—(l )) W(E ) e;:;’
(%)
7175 Deer wie) (

Since r(e) > s(e) + 1 and s > s(e) forall e € E,

S(n,ng) <

k-1 k-1

' 1 Z W(e) (n—r(kez-;s(e)) (n—r(e)+s(e)—1) . (n—r(e)+s(e)—s)
) wE () (25) - (6)

() 1 (=) G2) -+~ G2) - ()
S(n’ nO) < 1 n—r(e) ' E’ Z W(e) n no—1 no—s
W) Zeer W) ( k-1 ) wiE) (k—ol)(ko—l)"'(ko—l)
() D
(kn—ol) (rllco:ll) o (rllc():ls>

We now discuss implementations of HEDGEBRANCHINGCONTRACT to get concrete running times.
First, suppose the rank of H is arbitrary. We observe that for a subset of vertices S C V, contracting
a hedge e will destroy the cut (S,V \ S) if and only if at least one of e’s connected components
contains vertices from both S and V \ S. Therefore, we do not worry about the specific edges
included in e and instead store e as a collection of disjoint vertex subsets, similar to a hyperedge.
We assume there are pointers between vertices and these components and vice versa.

The key change from our implementation for hypergraphs is that we also store an smxsm hedge
component adjacency matrix as well where an entry is 1 if the hedge components corresponding
to its row and column share a vertex and is 0 otherwise. The adjacency matrix will prove useful
for helping us identify which vertices from a contracted hedge e belong to the other hedges.

We now describe how to contract a randomly selected hedge e to form hedgegraph H" = (V', E’)
in O(mny + m?) time, where ny is the order of H’. Like in hypergraphs, we initially set V/ := V \ e
and E’ := E\ {e} by copying vertices and hedges but not their incidence lists. For each vertex v € V'
and for each hedge e’ € E’ that is incident to v in H, we add v to the appropriate incidence list for
the copy of ¢’ in H and vice versa. We now add additional vertices ve 1, Ve 2, - - ., Ve, x Where x <'s
to represent the contraction of e’s x components. We add an incidence between v, ; and the jth
component of another hedge e’ if and only if the ith component of e and the jth component of e’
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shared a vertex before contraction. We then go through each hedge to find components that share
one of these contraction vertices to merge the component’s incidence lists. There are at most s
members in common per list, so we can do the merges in time linear in the total size of the lists.
We remove any hedges from E’ that have a single incident vertex. Finally, we go through each of
the contracted vertices to see if there are any new adjacencies between hedge components thanks
to these vertices. We spend constant time per hedge-vertex incidence in H’ as well as O(m?) time
checking for new hedge component adjacencies for O(mn, + m?®) time total.

When contracting a k-spanning hedge, we immediately end up in the base case. Therefore, we
do not bother to recompute the hedge component adjacency matrix during these contractions,
meaning we perform the contraction and handle the base case in O(m) time. During any one
call to HEDGEBRANCHINGCONTRACT, there are O(m) such contractions and brute force minimum
hedge-k-cut computations, so we spend O(m?) time total performing them. In total, we can charge
O(mny + m?) time to each node of the computation tree, accounting for both the time to create
that node and the time spent doing checks for the k-spanning hedges. Summing over the expected
number of hedgegraphs of each order ny (Lemma 5.2) for the running time, and applying our
boosting procedure (Lemma 2.4), we get the following theorem.

THEOREM 5.3. There exists an algorithm that with high probability computes a minimum
hedge-k-cut of a weighted hedgegraph with n vertices, m hedges, and constant span s > 2 in
O(m*nGDKE=1 1062 n) time.

For hedgegraphs of constant rank r, we need to modify HEDGEBRANCHINGCONTRACT so that
its base case occurs when there are at most k + r — 2 vertices remaining. Doing so guarantees
there are no k-spanning hedges to worry about, even though the base case can still be handled in
constant time. We no longer need the hedge component adjacency matrix. Like our algorithm for
hypergraphs, though, we do a prepossessing step of identify hedges with the same induced graph,
leading to a total hedgegraph size of O(n") (here, the big-Oh is hiding constants exponential in r).
Random selection and contraction of a hedge e can still be done in O(n"™!) time, because we only
need to modify the O(n"~!) hedges that share a vertex with e. When branching, we still copy the
entire hedgegraph in O(n") time, but in expectation we spend O(n{ ") doing these copies for any
node of order ny in the computation tree (see Lemma 4.2). We charge O(n ') to each computation
tree node of order ng, sum over the expected number of nodes of each order ny, and apply our
probability boosting procedure to get the following theorem.

THEOREM 5.4. There exists an algorithm that with high probability computes a minimum hedge-k-
cut of a weighted hedgegraph with n vertices, constant rank r, constant span s, and total hedge size p
in O(p +n*V D 1063 n) time ifr = (s + 1) (k = 1) or O(p + n™@{n(+D=DY [o62 n) time otherwise.

APPENDIX
A SIMPLE ANALYSIS FOR NON-BRANCHING ALGORITHMS

In this Appendix, we present a simple non-branching randomized contraction algorithm for min-
imum k-cut based on the idea of redoing hyperedge selections with a probability dependent on
their size. As before, let
—lel
(%) - ()

(%)

We say a hyperedge e is k-spanning if it contains at least n — k + 2 vertices, implying it spans
every k-cut.

zn(e) = for any hyperedge e € E.
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We formally describe the algorithm SimpLECONTRACT below. Procedure SIMPLECONTRACT ini-
tially takes the empty set as its second parameter.

SiMPLECONTRACT(H, S):
For each k-spanning hyperedge e, add e to S and remove e from H
If E = 0, then return S
Repeat
Select a hyperedge e at random proportional to its weight
With probability 1 — z, (e), return SIMPLECONTRACT(H /e, S)

As mentioned in Section 2, this algorithm is almost the same as the one by Chandrasekaran,
Xu, and Yu [6] when specialized to hypergraphs. In fact, the probabilities of contracting any given
hyperedge e are identical. We can use our interpretation of the algorithm to derive another proof
that it returns a fixed min-k-cut with decent probability.

THEOREM A.1. Algorithm SIMPLECONTRACT returns a fixed minimum k-cut of a (weighted) hyper-
graph with probability at least —~—r ) )( = Q(1/n?k-2).
k-1

Proor. Let g, denote the minimum probability over all n-vertex hypergraphs of
S1MPLECONTRACT returning a fixed min-k-cut. We use induction over n to show g, > T"(H)
k-1/\k-1

For the base case, qx = 1 = . Fix hypergraph H and minimum cut C. All spanning

k
()G
hyperedges must belong to C, so the algorithm is correct to add them to S and eventually return
them. For simplicity, we assume from here on that E and C already have their k-spanning edges
removed.

With probability at least (ﬁ Yiece w(e) - zn(e))qn, the algorithm StMmPLECONTRACT(H, S) ran-
domly selects a hyperedge e for contraction, decides not to contract e right away, and then finds
a min-k-cut afterward at some point in the future. Let E’ = E \ C. By Lemma 2.1, there is at
least a (1 — (ﬁ Yece w(e) - z,(e))) probability that the selected hyperedge belongs to E’, im-
plying C still exists in H/e. Conditioned on that event, there is a #E,) > ecr w(e) probability of
any particular hyperedge e € E’ being chosen. Finally, given that e € E’ is chosen, there is at
least a (1 —zp(e)) Gn—|ej+1 probability that SIMPLECONTRACT does contract e and C is returned
by BRANCHINGCONTRACT(H /e, S). Note that these two ways of returning C (redoing hyperedge
selection and going ahead with the contraction) are mutually exclusive events.

Taking everything together, we see

S

ecE
1 1
+ (1 - o ;w(e) : z,,(e)) iy ; w(e) - (1= zn(€)) - Gne|+1-
Solving for g,, we see
2 = 0 (e (1= 20(6) - oo
ecE’

We now apply induction, use the fact that |e| > 2, and simplify:
—lel
() k

iy
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n—|e|
> LS e () ¢
w(E") ZE: () NG ()

1 k
= ’ W(e) n n—1
= 2"\ )

ecE’ k-1
k

) .

Note that we can give a similarly short analysis for a non-branching algorithm for minimum
hedge-k-cuts. However, the algorithm itself is necessarily more complicated due to the hedgegraph
analogy of k-spanning hedges not necessarily appearing in all hedge-k-cuts. These issues are dis-
cussed in more detail in Section 5.
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