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Minimum Cut and Minimum k-Cut in Hypergraphs via
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On hypergraphs with m hyperedges and n vertices, where p denotes the total size of the hyperedges, we

provide the following results:

• We give an algorithm that runs in Õ (mn2k−2) time for finding a minimum k-cut in hypergraphs of

arbitrary rank. This algorithm betters the previous best running time for the minimum k-cut problem,

for k > 2.

• We give an algorithm that runs in Õ (nmax{r,2k−2} ) time for finding a minimum k-cut in hypergraphs

of constant rank r . This algorithm betters the previous best running times for both the minimum cut

and minimum k-cut problems for dense hypergraphs.

Both of our algorithms are Monte Carlo, i.e., they return a minimum k-cut (or minimum cut) with high

probability. These algorithms are obtained as instantiations of a generic branching randomized contraction

technique on hypergraphs, which extends the celebrated work of Karger and Stein on recursive contractions

in graphs. Our techniques and results also extend to the problems of minimum hedge-cut and minimum

hedge-k-cut on hedgegraphs, which generalize hypergraphs.
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1 INTRODUCTION

In this article, we design a randomized branching framework for finding minimum cut and mini-

mum k-cut in hypergraphs, leading to improvements in randomized algorithms for these problems

over recent results of Ghaffari et al. [12] and Chandrasekaran et al. [6]. Our algorithms can be
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thought of as the natural analog in hypergraphs of the celebrated recursive contraction algorithm

of Karger and Stein [20] for finding minimum cut and minimum k-cut in graphs.

1.1 Randomized Contractions in Graphs

Consider an undirected graph withm edges on n vertices. A minimum cut (or min-cut) of the

graph is a minimum weight set of edges whose removal partitions the vertices into two connected

components. More generally, aminimum k-cut (or min-k-cut) is a minimum weight set of edges

whose removal partitions the vertices into at least k connected components; a min-cut is simply

a min-k-cut for k = 2. Min-cut and min-k-cut are fundamental problems in combinatorial opti-

mization and network reliability, and an impressive body of work has been devoted to designing

algorithms for these problems. Perhaps the simplest, and one of the most elegant, among them is

the randomized contraction algorithm of Karger [18]. For min-cut, this algorithm selects edges at

random with probability proportional to their weight (uniformly, if the graph is unweighted) and

unifies their endpoints (called edge contraction) until only two vertices remain. The edges that

survive at this stage are then output by the algorithm. Karger argues that the algorithm returns a

min-cut with probability Ω(1/n2), which implies that a min-cut can be found with high probability

by running O (n2 logn) independent instances of the algorithm.1 For min-k-cut, the algorithm is

exactly identical, except that it terminates when k vertices are left, and outputs all the surviving

edges. In this case, the probability of returning a min-cut is Ω(1/n2k−2), which can be similarly

boosted by running O (n2k−2 logn) independent instances of the algorithm.

Unfortunately, performing these independent runs can take Ω(n4) time for the min-cut algo-

rithm and Ω(n2k ) time for min-k-cut, since the number of edgesm can be Ω(n2). In a later work,

Karger and Stein [20] proposed a branching approach called recursive contraction to significantly

speed up this scheme. This algorithm exploits the fact that the probability of contracting a min-cut

edge is rather small initially, and only increases in the later stages of the contraction algorithm. So,

they proposed to run a single branch of the contraction algorithm until �n/
√
2� vertices remain,

at which stage two identical copies of the partially contracted graph are created and independent

recursive runs of the branching algorithm are performed on these copies. While it does take time

to create and work with these extra copies, the total number of edges in the graph decreases fast

enough that the branching algorithm runs inO (n2 logn) time and returns a min-cut with probabil-

ity Ω(1/ logn). UsingO (log2 n) independent runs, one can now obtain a total running time of only

O (n2 log3 n). With slight modifications, this algorithm can instead return a min-k-cut with high

probability in O (n2k−2 log3 n) time, and this min-k-cut algorithm remains the fastest one known

for any constant k > 2 when the edges have arbitrary weights.

1.2 Randomized Contractions in Hypergraphs

A hypergraph H consists of a vertex set V and a set of hyperedges E. Each hyperedge e ∈ E is

itself an arbitrary subset of vertices. The size of a hyperedge e is |e |, the cardinality of its vertex

set. Theweight of a hyperedge e is denotedw (e ). For a subset of hyperedges S , letw (S ) denote the
total weight of hyperedges in the subset. The rank r of the hypergraph H is the maximum size of

a hyperedge, i.e., r = maxe ∈E |e |. A graph is simply a hypergraph of rank 2. Accordingly, we may

say a hyperedge e is incident to a vertex v if v ∈ e . We generally use the notation p =
∑

e ∈E |e |
to denote the total size of all hyperedges in H . Finally, we define the order of H as the number of

vertices |V |. As before, aminimum cut (or min-cut) is a minimum weight set of hyperedges whose

removal partitions the vertices into at least two connected components, and a minimum k-cut (or
min-k-cut) is a minimum weight set of hyperedges whose removal partitions the vertices into at

least k connected components.

1We say an event occurs with high probability if it occurs with probability at least 1 − 1/nΩ(1) .
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A natural approach for computing min-cuts and min-k-cuts in hypergraphs is to try applying

the (non-branching) randomized contraction approach of Karger [18] described above. We let H/e
denote the contraction of hyperedge e in hypergraph H , accomplished by unifying e’s endpoints
and removing hyperedges that now have size 1. Unfortunately, even if hyperedges are unweighted,

contracting a hyperedge chosen uniformly at randommay destroy a min-cut with fairly high prob-

ability when the hyperedges have variable sizes. Indeed, Kogan and Krauthgamer [24] show that

this natural strategy finds a min-cut with probability exponentially small in the rank r . Recently,
Ghaffari, Karger, and Panigrahi [12] showed how to achieve Karger’s Ω(1/n2) probability of suc-

cess by biasing the selection of hyperedges away from those of large size. Chandrasekaran, Xu, and

Yu [6] refined this strategy and generalized it to work for k-cuts as well. This leads to randomized

algorithms for min-cut and min-k-cut that run in O (pn2 log2 n) and O (pn2k−1 logn) time, respec-

tively. This latter result was the first polynomial time algorithm for minimumk-cut in hypergraphs
for arbitrary constant k , and it remains the fastest result to date. In particular, no polynomial time

deterministic algorithm is known for anyk > 3. In contrast, there are deterministicO (pn+n2 logn)
time algorithms for the min-cut problem in arbitrary hypergraphs [23, 25] and an O (pmn3) time

algorithm for k = 3 [32] using other techniques.

Hence, it is reasonable to ask whether we can generalize the branching contraction approach of

Karger and Stein [20] to hypergraphs as well, to yield faster randomized algorithms for the min-cut

and min-k-cut problems. There appear to be two major barriers to doing so.

First, the analysis of Karger and Stein’s algorithm depends upon the branching occurring at

precisely chosen moments determined by the number of vertices in the partially contracted graph.

If one branches too early, then there are too many large graphs in the recursive calls, and the

running time increases. If one branches too late, then it decreases the probability of a min-cut

surviving beyond the branching point and to the end of a run of the algorithm.When attempting to

run the branching algorithm on a hypergraph, there is a risk of contracting a very large hyperedge

and skipping right past one or more of these carefully selected branching points. Thus, it appears

we cannot select the branching orders in advance of our randomized contractions, and we need a

smoother procedure that performs branches based on which hyperedges we are contracting.

The second barrier to generalizing Karger and Stein’s algorithm concerns the total size p of

hyperedges in an arbitrary hypergraph. While we can easily see p = O (nr ) in hypergraphs of rank

r , the total size could be much larger when the rank is not fixed. Any generalization of Karger

and Stein’s algorithm to hypergraphs must be careful to minimize the time spent interacting with

hyperedges during contractions, especially in later stages of the algorithm when the number of

hypergraph copies is large.

1.3 Our Results

We present a new randomized branching framework for hypergraphs, where instead of branching

at fixed graph orders, we probabilistically decide whether to branch before each contraction based

on the size of the hyperedge we (randomly) select to contract. Our framework allows us to derive

new randomized algorithms for computing min-cuts and min-k-cuts in hypergraphs.

For hypergraphs of arbitrarily rank, we show the following result:

Theorem 1.1. There exists an algorithm that with high probability computes a minimum k-cut of
a weighted hypergraph with n vertices andm hyperedges in O (mn2k−2 log2 n) time for all k ≥ 3. For

the special case of minimum cut (k = 2), our algorithm runs in O (mn2 log3 n) time.

This result improves upon the best randomized running times for both problems due to Chan-

drasekaran et al. [6] by a factor of Ω̃(pn/m), which is at least Ω̃(n) and at most Õ (n2).2 For k > 2,

2We use Õ notation to hide polylog factors when they are either too onerous to write or the exact exponents on the polylog

are unclear.
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this yields the fastest algorithm for the min-k-cut problem to date. (For k = 2, i.e., the min-cut

problem, the best running time is O (pn + n2 logn) [23, 25] due to deterministic algorithms. See

Section 1.6 for more details.)

Dense Hypergraphs. Since the number of hyperedges m can be Ω(nr ), the above result yields

running times of O (nr+2 log3 n) for min-cut and O (nr+2k−2 log2 n) for min-k-cut (k ≥ 3) for dense

hypergraphs of constant rank r . We improve on these results by the showing that for any constant

rank r :

Theorem 1.2. There exists an algorithm that with high probability computes aminimumk-cut of a
weighted hypergraph withn vertices, constant rank r , and total hyperedge sizep inO (p+n2k−2 log3 n)
time if r = 2k − 2 or O (p + nmax{r,2k−2} log2 n) time otherwise. For the special case of minimum cut

(k = 2) with r > 2, our algorithm runs in O (p + nr log2 n) time.

For both minimum cut and minimum k-cut, these time bounds improve upon the best ones

known for sufficiently dense hypergraphs of rank r > 2.

1.4 Extension to Hedgegraphs

Along with studying randomized contractions for hypergraph min-cut, Ghaffari, Karger, and

Panigrahi [12] also initiated the study of minimum hedge-cuts. A hedgegraph H = (V ,E) con-
sists of a collection of vertices V and a collection of disjoint hedges E, each of which is a subset

of edges over the vertex set V . A hedge-cut is a collection of hedges whose removal separates H
into at least two components; a hedge-k-cut is a hedge-cut that separates H into at least k com-

ponents. A min-hedge-cut or min-hedge-k-cut is one of minimum total hedge weight. Ghaffari,

Karger, and Panigrahi [12] provide a randomized polynomial time approximation scheme and an

exact quasi-polynomial time algorithm for computing a min-hedge-cut. The span of a hedge is the

number of connected components in the subgraph induced by its edge set. The randomized con-

traction result of Chandrasekaran, Xu, and Yu [6] for hypergraph k-cut is actually a special case

of a randomized algorithm they give for hedgegraphs, where every hedge has span bounded by a

constant s . (Note that a hypergraph is simply a hedgegraph of unit span.) Their general algorithm

runs in O (mpnks+k−s logn) time wherem denotes the number of hedges and p their total size.

Our results for computing min-cuts and min-k-cuts in hypergraphs extend to hedgegraphs of

bounded span. With high probability, we can find a min-hedge-cut inO (m2ns+1 log2 n) time and a

min-hedge-k-cut in O (m2n(s+1)(k−1) log2 n) time, improving upon known results for all k ≥ 2 and

s ≥ 2. Let the rank of a hedgegraph be the maximum number of vertices incident to edges in

any one hedge. For constant rank r , we can find a min-hedge-k-cut with high probability inO (p +
n(s+1)(k−1) log3 n) time if r = (s + 1) (k − 1) or O (p + nmax{r, (s+1)(k−1) } log2 n) time otherwise.

1.5 Techniques and Organization

As mentioned above, our algorithm relies on probabilistic branching instead of branching at fixed

graph orders like in the original method of Karger and Stein [20]. Instead of explicitly biasing

away from larger hyperedges like in previous work [6, 12], we pick hyperedges to contract with

probability proportional to their weight. Before contraction, however, we branchwith a probability

that is dependent on the size of the hyperedge we just selected. These probabilities are carefully

selected so that the total probability of branching is at least as high as the probability of contracting

an edge in the min-cut. Intuitively, the expected number of min-cuts discovered by our algorithm at

the bottom of its branches ends up being at least 1. Through a relatively straightforward inductive

argument, we prove that any one run of our algorithm returns a min-cut with probability at least

Ω(1/ logn). In fact, the analysis of our algorithm is arguably simpler than that given for Karger
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and Stein’s [20], and we give a probability bound that is actually tight for min-cut in graphs. Our

high-level algorithm and the analysis bounding its probability of success appear in Section 2.

To give our specific running time bounds, we need to perform hyperedge contractions efficiently.

We first consider arbitrary rank hypergraphs. In earlier work [6, 12], the contraction of a hyperedge

e involved going through the incidence list of each vertex in e so that all the incidences could be

replaced with a single vertex representing the contracted edge e . This process takes Θ(m · |e |)
time in the worst case, so the running time of contraction increases with |e |. Unfortunately, our
algorithm is also more likely to branch when |e | is large, increasing our chances of performing

another expensive contraction in the future. Therefore, instead of spendingΘ(m · |e |) time checking

incidences, we essentially make brand new copies of what remains of each edge after contraction

inO (m(n − |e | + 1)) time so contractions that are more likely to cause branching are also cheaper

to perform. We describe the implementation for arbitrary rank hypergraphs in Section 3.

For hypergraphs of constant rank r , we only make copies of the hypergraph when branching,

and we otherwise perform contractions using a similar procedure as that given by Karger and

Stein [20] for graphs. Specifically, we explicitly merge new parallel hyperedges after every con-

traction to guarantee we never store more than O (nr ) hyperedges at a time. We also generalize

their edge selection procedure to select and contract a hyperedge inO (nr−1) time. Our implemen-

tation for constant rank hypergraphs appears in Section 4.

For hedgegraphs, randomly contracting a hedge incident to x vertices induces a branch with

the same probability as contracting a hyperedge of size x . The key difference increasing the run-

ning time for hedgegraphs is that we might create more branches overall, because a hedgegraph

only shrinks by x − s vertices if the contracted hedge has span s . Note that s can be as large as

x/2 in general, thus guaranteeing a reduction of only x/2 vertices, whereas shrinking a hyperedge
of size x reduces the number of vertices by x − 1. In addition, we need to maintain information

about how the components of hedges share vertices to perform fast hedge contractions, and main-

taining this information incurs additional running time. For simplicity, we stick to hypergraph

min-cut and min-k-cut in most of the article before giving the necessary details for our extensions

to hedgegraphs in Section 5.

1.6 Related Work

We give a brief survey of what is known about computing minimum cuts and k-cuts beyond the ap-
proaches of Karger and Stein [18, 20]. Nagamochi and Ibaraki [27] gave the first min-cut algorithm

for graphs that does not perform repeated computations of minimum s, t-cuts. Their approach was
later refined to give O (mn + n2 logn) deterministic algorithms for the problem, and this running

time remains the best known among deterministic algorithms [26, 29]. This running time can be

improved toO (m+λn2) [26] in unweighted graphs with min-cut value λ and toO (m log12 n) in sim-

ple unweighted graphs [22]. The randomizedO (n2 log3 n) time algorithm of Karger and Stein [20]

improves upon the weighted edge result for graphs that are not too sparse. By applying other

techniques, Karger [19] further improved the best randomized running time to O (m log3 n).
When k is part of the input, the min-k-cut problem is NP-hard [13]. However, Goldschmidt and

Hochbaum [13] were still able to give a deterministic nO (k2 ) time algorithm for the problem when

k is a constant. Their work was followed by a series of deterministic algorithms [16, 17, 31] that

led to an Õ (n2k ) time algorithm due to Thorup [30]. In concurrent work to our own, Chekuri,

Quanrud, and Xu [8] improved this running time to Õ (mn2k−3). This was further improved to

O (kO (k )n(2ω/3+o (1))k ) by a recent work of Gupta, Lee, and Li [14], where ω is the matrix mul-

tiplication constant. For small k , the result also gives a faster randomized algorithm in time

Õ (kO (k )nk+ �(k−2)/3	ω+1+((k−2) mod 3)W ), where all weights are bounded by W . For unweighted
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graphs and k ∈ [8,no (1)], this improves upon the randomized O (n2k−2 log3 n) time algorithm of

Karger and Stein [20], while the latter still remains the state-of-the-art for weighted graphs.

The situation in hypergraphs is a bit different. Queyranne [28] gave the first non-trivial algo-

rithm for min-cut in hypergraphs, and it was later improved by Klimmek and Wagner [23] and

Mak and Wong [25] to run in O (np + n2 logn) time. Chekuri and Xu [9] improved the running

time for unweighted hypergraphs with min-cut value λ to O (p + λn2). All of these algorithms

are deterministic. In fact, all the randomized algorithms mentioned above are actually slower at

computing min-cuts than these deterministic algorithms, with the aforementioned exception of

our O (p + nr ) time algorithm for sufficiently dense hypergraphs of constant rank.

For k = 3, there exists a deterministic O (pmn3) time min-k-cut algorithm due to Xiao [32, The-

orem 4.1]. Fukunaga gave a deterministic O (nrk+O (1) ) time algorithm for any constant k and con-

stant rank r via a hypertree packing approach [11]. In these cases of k > 2, we see the randomized

algorithm of Chandrasekaran, Xu, and Yu [6] and our own results do provide improvements over

the deterministic algorithms, and the randomized approach is the only one known to work with

arbitrarily large hyperedges.

Based on the history above, it seems likely that randomized approaches will eventually lead to

even faster algorithms for both min-cut and min-k-cut in hypergraphs. We believe our work is a

natural and important step toward this end.

1.7 Subsequent Work

Subsequent to the the conference publication of our work [10], the hypergraph minimum cut and

related problems were studied in References [1–5, 7, 21]. Karger and Williamson [21] provided a

streamlined analysis of our algorithm in the case of graph minimum cut. Gupta, Lee, and Li show

that the Karger-Stein algorithm is optimal for graph k-cut [15]. Chandrasekaran and Chekuri [4]

gave the first deterministic polynomial-time algorithm for hypergraph k-cut, for fixed k . Their ap-
proach significantly differs from ours, as it is based on a divide-and-conquer procedure and does

not rely on (randomized) contractions. Beideman et al. [1] provided a faster algorithm for hyper-

graph minimum cut on low-rank simple hypergraphs. Beideman et al. [2, 3] study counting and

enumerating optimal hypergraph cuts. Chandrasekaran and Chekuri [5] considered the problem of

min-max hypergraph k-cut and gave a polynomial-time algorithm. Finally, Chekuri and Quanrud

[7] devised an Õ (
√
pn(m + n)1.5) time algorithm for hypergraph min-cut.

2 BRANCHING CONTRACTIONS

In this section, we provide the high-level details of our branching randomized contraction algo-

rithm. Recall, a non-branching algorithm that simply selects hyperedges to contract proportional

to their weight will preserve a min-cut with probability exponentially small in the rank of the

given hypergraph [24]. Therefore, previous work biases edge selection away from large hyper-

edges [6, 12].

For our branching contraction algorithm, though, we must also use the size of hyperedges to

determine the number of branches we create. The min-cut includes every hyperedge except e . Be-
cause all the hyperedges have the same size and nearly the same weight, any randomized contrac-

tion procedure will preserve the min-cut after one contraction with probability onlyΘ(1/n). Recall
that the goal of branching contractions is to preserve the min-cut with probability Θ(1/ logn); we
clearly need Ω(n/ logn) branches at the very outset of the algorithm. Contrast this with graphs,

where the algorithm branches much slower, creating two branches after n(1 − 1/
√
2) edge con-

tractions. Since a hypergraph comprises hyperedges of non-uniform size, the number of branches

created therefore needs to vary with the size of the hyperedge chosen for contraction.
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Simultaneously biasing selection away from large hyperedges and deciding how often to branch

based on the size of selected hyperedges makes the analysis very complicated. Instead, we encode

the bias against large hyperedges into the probability of branching or not. More concretely, our

algorithm selects hyperedges to contract proportionally to their weight just as in graphs [19, 20],

but before contracting, it randomly decides to branch with the probability of branching being a

function of the selected hyperedge’s size. In other words, instead of biasing the hyperedge selected

for contraction away from large hyperedges, we branch with a higher probability if a large hyper-

edge is selected thereby creating a copy of the uncontracted graph and effectively increasing the

probability of preserving the min-cut.

Intuitively, a high probability of contracting leads to a large chance of destroying a min-cut.

However, a high probability of branching may give a large number of branches, resulting in pro-

hibitive time complexity. Our algorithm is designed to balance these two probabilities such that

in expectation, one copy of the min-cut survives either in the contracted graph or in the copy of

the uncontracted graph we create by branching, and yet the total number of branches can be well

controlled.

We begin by determining the probability that a random hyperedge, selected with probability

proportional to its weight, belongs to a given min-cut or min-k-cut. Recall, for a given hypergraph

H = (V ,E) and set of hyperedges S ⊆ E, we usew (S ) to denote the total weight of S . The following
lemma is essentially a restating of one by Chandrasekaran, Xu, and Yu [6, Lemma 3.1] for the case

of hypergraph min-k-cut.

Lemma 2.1. Let C be a minimum k-cut in a hypergraph H = (V ,E). We have

w (C )

w (E)
≤ 1

w (E)

∑
e ∈E

w (e ) ���
(
n

k−1

)
−
(
n−|e |
k−1

)
(
n

k−1

) ��� .
Proof. Fix a subset A = {a1, . . . ,ak−1} of k − 1 vertices. Subset A induces a k-cut C ′ =

({a1}, . . . , {ak−1},V \ A) of weight at least w (C ). Each hyperedge e ∈ E that includes at least one

member of A contributes weightw (e ) to C ′. There are
(
n

k−1

)
such subsets A total, and each hyper-

edge e contributes weight to the cuts of
(
n

k−1

)
−
(
n−|e |
k−1

)
of them, so

∑
e ∈E w (e )

((
n

k−1

)
−
(
n−|e |
k−1

))
≥(

n

k−1

)
w (C ). Multiplying both sides of the inequality by 1/

(
w (E)

(
n

k−1

))
proves the lemma. �

Because the expression will arise often throughout the remainder of this article, we define

zn (e ) =

(
n

k−1

)
−
(
n−|e |
k−1

)
(
n

k−1

) for any hyperedge e ∈ E.

We call zn (e ) the redo probability of contracting hyperedge e in a hypergraph of order n. If our
branching algorithm randomly selects hyperedge e for contraction, then it will branch with proba-

bility precisely zn (e ). Observe
w (C )
w (E ) ≤

1
w (E )

∑
e ∈E w (e ) · zn (e ). Therefore, as we select a hyperedge

to contract proportionally to its weight, our algorithm branches with the same probability that we

contract a hyperedge in a min-cut or min-k-cut.
Before giving the full details of our branching algorithm, as an aside, we reinterpret the algo-

rithm of Chandrasekaran, Xu, and Yu [6] in our framework. Suppose we select a hyperedge e to

contract proportional to its weight and, instead of branching with probability zn (e ), we redo the

random hyperedge selection with probability zn (e ). In other words, if we branch, then we ignore

the originally selected hyperedge e and only pay attention to what happens in the new branch.

In this case, the probability that we select a hyperedge e and perform its contraction instead of
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branching is proportional to w (e ) · (1 − zn (e )) =
w (e ) (n−|e |

k−1 )
( n

k−1)
, which is exactly proportional to the

(non-uniform) probability of contraction of hyperedge e in the algorithm of Chandrasekaran, Xu,

and Yu [6]. Indeed, this view gives a very short analysis for their algorithm (see Appendix A).

2.1 Algorithm Details

We now give the details for our branching contraction algorithm for min-k-cut in a hypergraph

H = (V ,E) of order n. The algorithm for min-cut is the special case for k = 2. As we show, a single

run of our algorithm has (within constant factors) the same probability of finding a min-k-cut as
in the branching algorithm of Karger and Stein [20] for graphs.

We say a hyperedge e is k-spanning if it contains at least n − k + 2 vertices, implying it spans

every k-cut. We maintain a collection S ⊆ E of hyperedges that we believe belong to the min-

k-cut based on earlier randomized contractions. Initially, every k-spanning hyperedge is added

to S . Then, we sample a random hyperedge e with probability proportional to its weight (or

uniformly at random if the hypergraph is unweighted). We contract the hyperedge e to create

the hypergraph H/e , and recursively call our algorithm on H/e . With probability zn (e ), we also
branch, meaning we recursively call our algorithm on the same hypergraph H . If we branched,

then we return the smaller of the cuts returned for H/e and our second run on H . Otherwise,

we return the cut found for H/e . The algorithm is given in pseudo-code below as the procedure

BranchingContract(H , S ). It initially takes the empty set as its second parameter.

BranchingContract(H ,S ):
For each k-spanning hyperedge e , add e to S and remove e from H
If E = ∅, then return S

Select a hyperedge e at random with probability proportional tow (e )
With probability zn (e ),

return the smaller of the cuts BranchingContract(H/e,S ) and BranchingContract(H ,S )
Otherwise, return BranchingContract(H/e,S )

2.2 Computation Tree

Consider a single run of BranchingContract on a hypergraph H . We define the computation

tree of the run as follows. The computation tree contains as a node the input hypergraph H and

each hypergraph created by a contraction (including multiple nodes for identical hypergraphs

created by separate branched contractions). It also contains a special root node not associated with

any particular hypergraph. The parent of hypergraphH ′ is the hypergraph fromwhose contraction

H ′ was created, and the parent of input hypergraph H is the root node. Last, we remark that the

non-contracting branch does not create a new node.

A computation tree can be defined similarly for Karger and Stein’s [20] recursive contraction

algorithm; here the root node contains two children, one for each of the two independent runs on

the input graph. However, while this computation tree is deterministic in its structure and graph

orders of its nodes, the structure and hypergraph orders of our computation tree are themselves

randomized. In particular, BranchingContract may not yield an isomorphic computation tree

to that of the algorithm of Karger and Stein when given a graph as input.

The following lemma bounds the number of hypergraphs of various orders in our computation

tree and will prove useful in the analysis of our implementations of BranchingContract. Let

S (n,n0) denote the maximum expected number of nodes of order n0 created in a computation tree

for some hypergraph H of order n, where the maximum is over all hypergraphs of order n.
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Lemma 2.2. Fix integer n0 such that k ≤ n0 ≤ n. We have

S (n,n0) ≤

(
n

k−1

) (
n−1
k−1

)
(
n0

k−1

) (
n0−1
k−1

) = O ��
(
n

n0

)2k−2�� .
On graphs, this bound is met with equality.

Proof. Wewill prove the lemma using induction onn. Forn = n0, we have S (n,n0) = 1, because

only the root’s single-child node has order n. The lemma follows.

Now, supposen > n0. Fix a hypergraphH of ordern. Let E ′ ⊆ E be the subset of hyperedges such

that |e | ≤ n −n0 + 1. Only contracting a hyperedge of E ′ can lead to a node of order n0. Given that

such a hyperedge is contracted, any given e ∈ E ′ is chosen with probability w (e )
w (E′) . And conditioned

on e being chosen, there will be in expectation at most S (n−|e |+1,n0) descendants ofH of ordern0
formed by calling BranchingContract on H/e . Also, the algorithm will branch with probability

zn (e ) and that branch will create at most S (n,n0) additional descendants in expectation. Thus

S (n,n0) ≤
1

w (E ′)

∑
e ∈E′

w (e ) (zn (e ) · S (n,n0) + S (n − |e | + 1,n0)) .

Solving for S (n,n0), using the definition of zn (e ), and applying the inductive hypothesis, we find

S (n,n0) ≤
1

1 − 1
w (E′)

∑
e ∈E′w (e )zn (e )

· 1

w (E ′)

∑
e ∈E′

w (e ) S (n − |e | + 1,n0)

=

(
n

k−1

)
1

w (E′)

∑
e ∈E′w (e )

(
n−|e |
k−1

) · 1

w (E ′)

∑
e ∈E′

w (e ) S (n − |e | + 1,n0)

≤

(
n

k−1

)
1

w (E′)

∑
e ∈E′w (e )

(
n−|e |
k−1

) · 1

w (E ′)

∑
e ∈E′

w (e ) ���
(
n−|e |+1
k−1

) (
n−|e |
k−1

)
(
n0

k−1

) (
n0−1
k−1

) ��� .
Finally, we observe

(
n−|e |+1
k−1

)
≤
(
n−1
k−1

)
and simplify to prove the lemma.

S (n,n0) ≤

(
n

k−1

)
1

w (E′)

∑
e ∈E′w (e )

(
n−|e |
k−1

) · 1

w (E ′)

∑
e ∈E′

w (e ) ���
(
n−1
k−1

) (
n−|e |
k−1

)
(
n0

k−1

) (
n0−1
k−1

) ��� =
(
n

k−1

) (
n−1
k−1

)
(
n0

k−1

) (
n0−1
k−1

) . �

2.3 Probability of Success

We now establish the probability of BranchingContract returning a min-k-cut of hypergraph
H = (V ,E). For any integer t ≥ k , let

z∗t =

(
t

k−1

)
−
(
t−2
k−1

)
(

t

k−1

) .

Theorem 2.3. Fix a constant integer k ≥ 2. Algorithm BranchingContract returns a min-k-cut
with probability at least

1∑
n

t=k
z∗
t

= Ω

(
1

logn

)
.

To see that
∑

n

t=k
z∗
t
= O (logn), notice that each term z∗

t
= Θ(1/t ), since the numerator is

O (tk−2) whereas the denominator is O (tk−1). Now to prove the theorem, we need the following

observation. In the proof of Theorem 2.3, we only apply it with w = 1, but the general statement

given below will be useful in the analysis of our hedgegraph cut algorithm.
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Observation 1. Fix integers k , n, w , and x such that 2 ≤ k ≤ n − 1, 2 ≤ x ≤ n − k + 2, and

1 ≤ w ≤ x − 1. We have (
n

k−1

)
−
(
n−x
k−1

)
(
n

k−1

) ≤
( x − 1
x −w

) n∑
t=n−x+w+1

z∗t ,

with equality holding whenw = 1 and x = 2.

Proof (of Observation 1). We express the left-hand side as a telescoping sum and increase the

numerators in its terms:(
n

k−1

)
−
(
n−x
k−1

)
(
n

k−1

) =

(
n

k−1

)
−
(
n−2
k−1

)
(
n

k−1

) +

n−1∑
t=n−x+2

(
t−1
k−1

)
−
(
t−2
k−1

)
(
n

k−1

)

≤

(
n

k−1

)
−
(
n−2
k−1

)
(
n

k−1

) +

n−1∑
t=n−x+2

(
t

k−1

)
−
(
t−2
k−1

)
(
n

k−1

)

=

n∑
t=n−x+2

(
t

k−1

)
−
(
t−2
k−1

)
(
n

k−1

) .

Now, observe that
(

t

k−1

)
−
(
t−2
k−1

)
is increasing in t . We replace the smaller terms of the summation

with a multiple of the larger terms. More precisely, if thew−1 smallest ones among the x −1 terms

are taken out, the summation is left with x −w terms. Since they are larger than the w − 1 small

terms, multiplying them by a factor of (x − 1)/(x −w ) suffices to maintain the inequality. Finally,

we reduce the denominators to finish the proof:(
n

k−1

)
−
(
n−x
k−1

)
(
n

k−1

) ≤
( x − 1
x −w

) n∑
t=n−x+w+1

(
t

k−1

)
−
(
t−2
k−1

)
(
n

k−1

)

≤
( x − 1
x −w

) n∑
t=n−x+w+1

(
t

k−1

)
−
(
t−2
k−1

)
(

t

k−1

)

=

( x − 1
x −w

) n∑
t=n−x+w+1

z∗t . �

We are now ready to prove Theorem 2.3.

Proof (of Theorem 2.3). For anyn-vertex hypergraphsH , letZH be a indicator random variable

on whether BranchingContract returns a min-k-cut. Let qn = minH Pr(ZH = 1) denote the

minimum probability over all n-vertex hypergraphs of BranchingContract returning a min-

k-cut. We will use induction over n to prove that qn ≥ 1∑
n

t=k
z∗
t

. For the base case, qk = 1 =

1/((k − 0)/k ).
We now establish a recurrence for qn . Fix the hypergraph H = (V ,E), where H ∈

argmin
H
Pr(ZH = 1), and a min-k-cut C in H . The algorithm is correct to add all k-spanning

hyperedges to S and eventually return them, because every k-spanning hyperedge crosses every

k-cut. For simplicity, we assume E has no k-spanning hyperedges from here on.We further assume

a min-k-cut is returned for H with probability at most 1∑
n

t=k
z∗
t

. If this assumption does not hold,

then the theorem is already true for hypergraph H .

Recall that when our algorithm selects a hyperedge e to contract, it also branches with prob-

ability exactly zn (e ). The edge to contract is chosen with probability proportional to its weight,
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so the probability of branching is exactly 1
w (E )

∑
e ∈E w (e ) · zn (e ). Conditioned on the branch

being performed, the branched call to BranchingContract(H , S ) will then succeed in find-

ing a min-k-cut with probability at least qn . Taken together, we see with probability at least

( 1
w (E )

∑
e ∈E w (e ) · zn (e ))qn , the algorithm BranchingContract(H , S ) branches and then finds

a min-k-cut during the recursive call to BranchingContract(H , S ). Let E ′ ⊆ (E \ C ) be the

subset of hyperedges that do not belong to some min-k-cut. By Lemma 2.1, there is at least

a (1 − ( 1
w (E )

∑
e ∈E w (e ) · zn (e ))) probability that the selected hyperedge belongs to E ′, implying

at least one min-k-cut exists in H/e . Conditioned on the event, there is a w (e )/w (E ′) proba-

bility of any particular hyperedge e ∈ E ′ being chosen. Finally, given that e ∈ E ′ is chosen,

using our assumption that BranchingContract returns a min-k-cut with probability at most
1∑

n

t=k
z∗
t

, we have at least a (1 − zn (e ) ( 1∑
n

t=k
z∗
t

))qn−|e |+1 probability that a min-k-cut is returned

by BranchingContract(H/e, S ) but no min-k-cut is also returned during a branching call to

BranchingContract(H , S ). Taking everything together, we see

qn ≥ �� 1

w (E)

∑
e ∈E

w (e ) · zn (e )��qn
+ ��1 − �� 1

w (E)

∑
e ∈E

w (e ) · zn (e )���� 1

w (E ′)

∑
e ∈E′

w (e )

(
1 − zn (e )

(
1∑

n

t=k
z∗
t

))
qn−|e |+1.

Solving for qn and rearranging some terms, we see

qn ≥
1

w (E ′)

∑
e ∈E′

w (e )

(
1 − zn (e )

(
1∑

n

t=k
z∗
t

))
qn−|e |+1

≥ 1

w (E ′)

∑
e ∈E′

w (e )

(
1∑

n

t=k
z∗
t

) ����
n∑
t=k

z∗t �� − zn (e )��qn−|e |+1.
For each e ∈ E ′, we use the definition of zn (e ) and apply Observation 1 withw = 1 and x = |e |:

qn ≥
1

w (E ′)

∑
e ∈E′

w (e )

(
1∑

n

t=k
z∗
t

) �����
n∑
t=k

z∗t �� −
(
n

k−1

)
−
(
n−|e |
k−1

)
(
n

k−1

) ���qn−|e |+1
≥ 1

w (E ′)

∑
e ∈E′

w (e )

(
1∑

n

t=k
z∗
t

) �����
n∑
t=k

z∗t �� − ���
n∑

t=n−|e |+2
z∗t
���
���qn−|e |+1

=
1

w (E ′)

∑
e ∈E′

w (e )

(
1∑

n

t=k
z∗
t

) ���
n−|e |+1∑
t=k

z∗t
���qn−|e |+1.

Finally, we apply induction and simplify to finish the proof:

qn ≥ 1

w (E ′)

∑
e ∈E′

w (e )

(
1∑

n

t=k
z∗
t

) ���
n−|e |+1∑
t=k

z∗t
��� ��

1∑n−|e |+1
t=k

z∗
t

��
≥ 1

w (E ′)

∑
e ∈E′

w (e )

(
1∑

n

t=k
z∗
t

)

=
1∑

n

t=k
z∗
t

. �
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Suppose H is an unweighted cycle graph and k = 2, and let C be a minimum cut in H . Assuming

BranchingContract breaks ties in C’s favor, it returns C with exactly the probability given in

Theorem 2.3.

So far, we have established that the branching randomized contraction algorithm for finding

min-cuts and min-k-cuts has an Ω(1/ logn) probability of success when given a hypergraph of

order n. In the next two sections, we give efficient implementations of the algorithm for arbitrary

and low-rank hypergraphs. It would be natural to boost this probability of success by repeated

runs of the algorithm, but this process needs some care, because the running time of our algo-

rithm is also randomized and the length of individual runs can be correlated with the success of

the algorithm. This is in contrast with the algorithm of Karger and Stein [20] whose runtime is

deterministic. In this case, they may simply run Θ(log2 n) independent copies of the branching

contraction algorithm and returns the smallest cut found.

Our solution is the following. Suppose we implement our branching contraction algorithm to

run in T time in expectation. We can find a minimum cut or k-cut with high probability in worst

case O (T log2 n) time by subtly modifying Karger and Stein’s approach. We say that a batch is

a set of c logn runs of our algorithm for some sufficiently large constant c . We perform a batch

of independent runs by doing the runs sequentially until either all c logn runs are complete or

4cT logn units of time have passed. (For example, if the first run takes longer than 4cT logn units of
time, then no other run in the batch is executed.) The result of the batch is nothing if the 4cT logn
time units have passed or the smallest cut found otherwise. Our overall minimum cut or k-cut
algorithm then returns the smallest cut found over c ′ logn independent batches for some constant

c ′.
We now prove the following lemma.

Lemma 2.4. Let H be a hypergraph of order n, and suppose BranchingContract is implemented

to run inT time on H in expectation. Then, there is an algorithm that runs in worst caseO (T log2 n)
time, and returns a min-k-cut of H with high probability.

Proof. The running time bound follows immediately, so we concentrate on the probability

bound. Consider a single batch of runs, and suppose we let them all run to completion. The prob-

ability that all c logn runs fail to find a min-k-cut is at most

1 −
(
1 − Ω

(
1

logn

))c logn
≤ 1/4,

when c is sufficiently large. By Markov’s inequality, our algorithm stops a batch for spending

too much time with probability at most 1/4. Therefore, by union bound, there is at most a 1/2
probability that our algorithm fails to return a min-k-cut during a single batch. Finally, c ′ logn
batches all fail to return a min-k-cut with probability at most

1 − (1/2)c
′ logn = 1 − 1/nc ′′ .

for some constant c ′′. �

3 ALGORITHM FOR HYPERGRAPHS OF ARBITRARY RANK

We now present our Õ (mn2k−2) time algorithm for hypergraphs of arbitrary rank. We represent a

hypergraph H = (V ,E) as a list of hyperedges as well as pointers between vertices and incident

hypergedges.

To select a hyperedge for contraction, we keep an explicit list of every hyperedge in the hyper-

graph. We check their weights and select a hyperedge proportional to its weight in O (m) time.
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Now, suppose we select a hyperedge e for contraction. Previous work [6, 12] and our own imple-

mentation for constant rank hypergraphs (Section 4) involves finding all hyperedges sharing a

vertex with e and modifying those hyperedges to the newly contracted hypergraph. When |e | is
large, such a procedure is rather slow. Instead, we essentially create a new copy of the hypergraph

during the contraction. However, we ensure that we only spend time proportional to the total size

of the contracted hypergraph.

We contract e to createH/e = (V ′,E ′) using the following procedure. We initially setV ′ := V \e
and E ′ := E \ {e} by creating copies of the individual vertices and hyperedges. However, we do not
(yet) copy over the incidence lists for the vertices and hyperedges. For each vertex v ∈ V ′ and for

each hyperedge e ′ ∈ E ′ that is incident to v in H , we add v to the incidence list for the copy of

e ′ in H \ e and vice-versa. We remove any hyperedges e ′ ∈ E ′ that have no incidences, because

they will all have size 1 after contraction. Next, we add an additional vertex ve toV
′ representing

the contraction of e . Any hyperedge e ′ ∈ E ′ that is incident to fewer vertices in H/e than in H
must have been incident to a vertex of e itself. Therefore, we add ve to the incidence lists of those
hyperedges and vice-versa. We spend constant time per hyperedge and incidence in H/e , so the

entire procedure takes O (m(n − |e | + 1)) time.

One thing to note about the above procedure is that we make no modifications to H itself.

Therefore, we do not need to spend any time copying H when we decide to branch. We can

discover k-spanning hyperedges as they are created during contractions, so doing so adds no

overhead to the running time. Our overall algorithm consists of running this implementation of

BranchingContract O (log2 n) times to boost the probability of success as in Lemma 2.4.

Given Lemma 2.2, it it straightforward to analyze our algorithm.

Lemma 3.1. The expected running time of BranchingContract using our implementation for

arbitrary hyperedge sizes is O (mn2 logn) if k = 2 or O (mn2k−2) if k ≥ 3.

Proof. The main bottleneck of the algorithm is the time taken to create recursive subproblems.

It takesO (mn0) time to do these operations to create a subproblem of order n0. By Lemma 2.2, the

expected running time is therefore at most

n∑
n0=k

O ��
(
n

n0

)2k−2�� ·O (mn0) = O (mn2k−2) ·
n∑

n0=k

O �� 1

n2k−30

�� .
If k = 2, then the summation comes to O (logn). Otherwise, it converges to a constant. �

We apply Lemma 2.4 and obtain our main result for hypergraphs of arbitrary rank.

Theorem 3.2 (Restatement of Theorem 1.1). There exists an algorithm that with high prob-

ability computes a minimum k-cut of a weighted hypergraph with n vertices and m hyperedges in

O (mn2 log3 n) time if k = 2 or O (mn2k−2 log2 n) time if k ≥ 3.

4 ALGORITHM FOR LOW-RANK HYPERGRAPHS

We now present our Õ (nr ) time algorithm for finding min-cuts and min-k-cuts in hypergraphs

of rank r . Throughout, we assume r is a constant independent of n. We again represent the hy-

pergraph H = (V ,E) as a list of hyperedges as well as pointers between vertices and incident hy-

peredges. By merging parallel hyperedges, we can guarantee that our representation takes O (nr )
space even as contractions are performed.

Our algorithm begins with anO (m +nr ) time preprocessing step that removes duplicate hyper-

edges by sorting hyperedges lexicographically and replacing identical hyperedges with a single

hyperedge of their summed weight. Overloading notation, let H = (V ,E) also denote the hyper-

graph after preprocessing.
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After preprocessing, we run BranchingContract O (log2 n) times as in Lemma 2.4. When we

need to branch, we copy the entire hypergraph we are working with. Hyperedge selection and

contraction is performed using the O (nr−1) time procedure given in the next section, and we find

k-spanning hyperedges as they are created during contractions with no addition to the overall

running time.

4.1 Edge Selection and Contraction

Our algorithm needs to perform hyperedge selections and contractions inO (nr−1) time each. Sim-

ilar to Karger and Stein [20], we rely on some simple data structures to aid in our hyperedge

selections instead of naively enumerating all edges and randomly selecting from them. We store

a value D (v ) on each vertex v , which is equal to the sum of the weights of all hyperedges of size

exactly r containing v . We also maintainw (E), the total sum of hyperedge weights.

To select a hyperedge for contraction, we enumerate allO (nr−1) hyperedges of size at most r −1.
Let e1, . . . , et be this list of hyperedges. With probability∑

t

i=1w (ei )

w (E)
,

we pick one of e1, . . . , et with probability proportional to its weight. If we do not pick one of these

hyperedges, then we pick a vertexv with probability proportional toD (v ), and then pick one of the
O (nr−1) hyperedges of size r containingv with probability proportional to its weight. The running

time of this procedure is dominated by the time it takes to enumerate the hyperedges involved in

a single probabilistic choice. There are at most O (nr−1) such edges in each case.

Lemma 4.1. The above procedure picks a hyperedge ofH with probability proportional to its weight.

Proof. The probability that the procedure picks a fixed hyperedge ei of size at most r − 1 is

exactly ∑
t

i=1w (ei )

w (E)
· w (ei )∑

t

i=1w (ei )
=
w (ei )

w (E)
.

Now let e = {v1, . . . ,vr } be a hyperedge of size r . The probability of picking hyperedge e is

w (E) −∑t

i=1w (ei )

w (E)
·
∑
v ∈e

[
D (v )∑

v ′ ∈V D (v ′)
· w (e )

D (v )

]
=

1
r

∑
v ′ ∈V D (v ′)

w (E)
· 1∑

v ′ ∈V D (v ′)
·
∑
v ∈e

w (e ) =
w (e )

w (E)
.

�
We now turn to contractions. Suppose our algorithm needs to contract hyperedge e ={

v1, . . . ,v |e |
}
. We will contract e to one of its vertices, say, v1 ∈ e . First, we list all O (nr−1) hy-

peredges that are incident to any vertex of e . Then remove members of e −v1 from the hyperedges

and add v1 to each hyperedge it does not already appear in. We remove each hyperedge in the

list that consists entirely of v1. Next, we sort the hyperedges of the list as before, and combine

identical hyperedges of the list, summing their weights. Finally, we recompute D (v1) by summing

the weights of all remaining hyperedges in the list. The entire contraction procedure takesO (nr−1)
time.

4.2 Running Time Analysis

Now, we turn to analyzing our implementation of BranchingContract for hypergraphs of con-

stant rank r . As we will see, the total time spent performing contractions is easily determined

using the above discussion and Lemma 2.2’s bound on the number of hypergraphs of different

orders in the computation tree. The only other operation we have yet to analyze is the time spent
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making copies of hypergraphs while branching. In particular, if there is a hypergraph H ′ in the

computation tree with t children, then we need to create t − 1 copies of H ′.
Lemma 4.2. Suppose the computation tree contains a hypergraph H ′ of order n0. Node H ′ has

1+O (1/n0) children in expectation. In particular, we spend an expectedO (nr−1) time creating copies

of H ′.

Proof. Let t∗ be the expected number of children of nodeH ′. Because, |e | ≤ r for any hyperedge

e inH ′, we branch with probability at most
( n

k−1)−(
n−r
k−1)

( n

k−1)
. Therefore, we can bound the total expected

number of children for node H ′ as a decreasing geometric series:

t∗ ≤
∞∑
t=0

���
(
n

k−1

)
−
(
n−r
k−1

)
(
n

k−1

) ���
t

=
1

1 − ( n

k−1)−(
n−r
k−1)

( n

k−1)

=

(
n

k−1

)
(
n−r
k−1

) = 1 +

(
n

k−1

)
−
(
n−r
k−1

)
(
n−r
k−1

) = 1 +O
(
1

n

)
.

The lemma now follows from the fact that H ′ has total hyperedge size at most O (nr ). �

Lemma 4.3. The expected running time of BranchingContract using our implementation for

constant rank r is O (n2k−2 logn) if r = 2k − 2 or O (nmax{r,2k−2} ) otherwise.

Proof. Fix any integer n0 such that k ≤ n0 ≤ n, and let Hn0 denote the set of hypergraphs of

order n0. Consider an arbitrary hypergraph H ′ ∈ Hn0 . An ith copy of H ′ appears in the computa-

tion tree with some probability pH ′,i . Conditioned on that copy appearing, we see from Lemma 4.2

that the expected time spent making copies ofH ′ and performing contractions onH ′ and its copies
isO (nr−10 ). Recall, S (n,n0) denotes the maximum expected number of nodes of order n0 created in
a computation tree for some hypergraph H of order n. Lemma 2.2 implies the total expected time

spent making copies and doing contractions for nodes fromHn0 is given by

∑
H ′ ∈Hn0,i≥1

pH ′,i ·O
(
nr−10

)
≤ S (n,n0) ·O

(
nr−10

)
≤ O ��

(
n

n0

)2k−2�� ·O
(
nr−10

)
= O (n2k−2) ·O �� 1

n2k−r−10

�� .
We finish the proof by summing the above expression over all possible n0. If r < 2k − 2, then

2k − r − 1 ≥ 2, and
n∑

n0=k

O (n2k−2) ·O �� 1

n2k−r−10

�� ≤ O (n2k−2)
n∑

n0=k

1

n20
= O (n2k−2).

If r = 2k − 2, then 2k − r − 1 = 1, and
n∑

n0=k

O (n2k−2) ·O �� 1

n2k−r−10

�� = O (n2k−2)
n∑

n0=k

1

n0
= O (n2k−2 logn).

Finally, if r > 2k − 2, then r − 2k + 1 ≥ 0, and

n∑
n0=k

O (n2k−2) ·O �� 1

n2k−r−10

�� = O (n2k−2)
n∑

n0=k

nr−2k+10 = O (nr ). �

By applying our analysis for boosting the probability of success (Lemma 2.4), we obtain our

main results for constant rank hypergraphs.

Theorem 4.4 (Restatement of Theorem 1.2). There exists an algorithm that with high prob-

ability computes a minimum k-cut of a weighted hypergraph with n vertices, constant rank r , and
total hyperedge size p in O (p + n2k−2 log3 n) time if r = 2k − 2 or O (p + nmax{r,2k−2} log2 n) time

otherwise.
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5 EXTENSION TO HEDGE GRAPHS

LetH = (V ,E) be a hedgegraph. To be consistent with Chandrasekaran, Xu, and Yu [6], we let s (e )
denote the span of a hedge e ∈ E and r (e ) (for rank) denote the number of vertices incident to the

edges in e . Let s be the span of H , defined as the maximum span over all hedges. Throughout this

section, we assume that s is a constant.
We modify the branching random contraction algorithm (BranchingContract) for hyper-

graphs to create a new algorithm HedgeBranchingContract. We contract a hedge e by uni-

fying the vertices within each connected component of e separately and removing all hedges that

then have no non-loop edges. Contracting a hedge e reduces the number of vertices from n to n −
r (e )+s (e ). Similar to before, we call hedge e ak-spanning hedge if r (e ) ≥ n−k+2. Unfortunately,
the existence of hedges with span greater than 1 means wemay have some k-spanning hedges that
do not cross any minimum k-cut. Fortunately, contracting any such hedge leaves a hedgegraph of

constant size that can be checked for minimum k-cuts by brute force. Similar to before, let

zn (e ) =

(
n

k−1

)
−
(
n−r (e )
k−1

)
(
n

k−1

) .

We now define HedgeBranchingContract. As before, the parameter S is empty for the initial

call.

HedgeBranchingContract(H ,S ):
If n ≤ k + s − 1, then compute a min-k-cut C by brute force and return C ∪ S

For each k-spanning hedge e with n − r (e ) + s (e ) < k , add e to S and remove e from H
Let Ch = E
For each k-spanning hedge e , set Ch to the smaller of Ch and HedgeBranchingContract(H/e,S )
Add all k-spanning hedges e to S and remove them from H

Select a hedge e at random with probability proportional tow (e )
With probability zn (e ),

return the smallest of the cuts HedgeBranchingContract(H/e,S ),
HedgeBranchingContract(H ,S ), and Ch

Otherwise, return the smaller of HedgeBranchingContract(H/e,S ) and Ch

We proceed by analyzing the success probability of the branching contraction algorithm. Again,

for any integer t ≥ k , let

z∗t =

(
t

k−1

)
−
(
t−2
k−1

)
(

t

k−1

) .

Theorem 5.1. Algorithm HedgeBranchingContract returns a minimum hedge-k-cut of a

(weighted) hedgegraph with probability at least

1

2
∑

n

t=k
z∗
t

= Ω

(
1

logn

)
.

Notice that this bound matches the one for hypergraphs (span-1 hedgegraphs) up to constant

factors.

Proof. Let qn denote the minimum probability over all n-vertex hedgegraphs of Hedge-

BranchingContract returning a fixed min-k-cut. We use induction overn to show qn ≥ 1
2
∑
n

t=k
z∗
t

.

For the base case, qk = 1 > 1/(2(k − 0)/k ).
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If contracting a hedge leaves fewer than k vertices, then it must belong to every k-cut and it is

correct to include it in S . We check every other k-spanning hedge e to see if any one of them can

be excluded from the min-k-cut. Cut Ch is the best of these checks. If Ch is not a min-k-cut, then
it is correct to include every hedge e with r (e ) ≥ n − k + 2 in the cut returned by the algorithm.

From here on, we assume there are no hedges e with r (e ) ≥ n − k + 2.
The probability of destroying a min-k-cut with a single contraction remains the same

(Lemma 2.1). However, n − r (e ) + s (e ) vertices remain after contracting a hedge e . Therefore, simi-

lar to the proof for hypergraphs, it now remains to solve the following recurrence relation where

E ′ ⊆ E is the subset of hedges that do not belong to some min-k-cut:

qn ≥ �� 1

w (E)

∑
e ∈E

w (e ) · zn (e )��qn
+ ��1 − �� 1

w (E)

∑
e ∈E

w (e ) · zn (e )���� 1

w (E ′)

∑
e ∈E′

w (e )

(
1 − zn (e )

(
1

2
∑

n

t=k
z∗
t

))
qn−r (e )+s (e ) .

Solving for qn and rearranging some terms, we see

qn ≥
1

w (E ′)

∑
e ∈E′

w (e )

(
1 − zn (e )

(
1

2
∑

n

t=k
z∗
t

))
qn−r (e )+s (e )

=
1

w (E ′)

∑
e ∈E′

w (e )

(
1

2
∑

n

t=k
z∗
t

) ����2
n∑
t=k

z∗t �� − zn (e )��qn−r (e )+s (e ) .
For each e ∈ E ′, we use the definition of zn (e ) and apply Observation 1 with w = s (e ) and

x = r (e ):

qn ≥
1

w (E ′)

∑
e ∈E′

w (e )

(
1

2
∑

n

t=k
z∗
t

) �����2
n∑
t=k

z∗t �� −
(
n

k−1

)
−
(
n−r (e )
k−1

)
(
n

k−1

) ���qn−r (e )+s (e )
≥ 1

w (E ′)

∑
e ∈E′

w (e )

(
1

2
∑

n

t=k
z∗
t

) �����2
n∑
t=k

z∗t �� − ���
(

r (e ) − 1
r (e ) − s (e )

) n∑
t=n−r (e )+s (e )+1

z∗t
���
���qn−r (e )+s (e ) .

Observe that s (e ) ≤ �r (e )/2	 for any hedge e ∈ E ′. We apply this observation, use induction,

and simplify to finish the proof:

qn ≥ 1

w (E ′)

∑
e ∈E′

w (e )

(
1

2
∑

n

t=k
z∗
t

) �����2
n∑
t=k

z∗t �� − ���2
n∑

t=n−r (e )+s (e )+1
z∗t
���
���qn−r (e )+s (e )

=
1

w (E ′)

∑
e ∈E′

w (e )

(
1

2
∑

n

t=k
z∗
t

) ���2
n−r (e )+s (e )∑

t=k

z∗t
���qn−r (e )+s (e )

≥ 1

w (E ′)

∑
e ∈E′

w (e )

(
1

2
∑

n

t=k
z∗
t

) ���2
n−r (e )+s (e )∑

t=k

z∗t
���
���

1

2
∑n−r (e )+s (e )

t=k
z∗
t

���
≥ 1

w (E ′)

∑
e ∈E′

w (e )

(
1

2
∑

n

t=k
z∗
t

)

=
1

2
∑

n

t=k
z∗
t

. �
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We now bound the size of the computation tree for hedgegraphs. Let S (n,n0) denote the maxi-

mum expected number of nodes of order n0 created in a computation tree for some hedgegraph H
of order n.

Lemma 5.2. Fix an integer n0 such that k ≤ n0 ≤ n. We have

S (n,n0) ≤

(
n

k−1

) (
n−1
k−1

)
· · ·
(
n−s
k−1

)
(
n0

k−1

) (
n0−1
k−1

)
· · ·
(
n0−s
k−1

) = O ��
(
n

n0

) (s+1)(k−1)�� .
Proof. Wewill prove the lemma using induction onn. Forn = n0, we have S (n,n0) = 1, because

only the root’s single-child node has order n.
As before, let E ′ ⊆ E be the subset of hedges that may be randomly contracted to leave at least

n0 vertices. It now remains to solve the following recurrence relation:

S (n,n0) ≤
1

w (E ′)

∑
e ∈E′

w (e ) (zn (e ) · S (n,n0) + S (n − r (e ) + s (e ),n0)) .

Solving for S (n,n0) and applying the inductive hypothesis, we find

S (n,n0) ≤

(
n

k−1

)
1

w (E′)

∑
e ∈E′ w (e )

(
n−r (e )
k−1

) · 1

w (E ′)

∑
e ∈E′

w (e ) S (n − r (e ) + s (e ),n0)

≤

(
n

k−1

)
1

w (E′)

∑
e ∈E′ w (e )

(
n−r (e )
k−1

) · 1

w (E ′)

∑
e ∈E′

w (e ) ���
(
n−r (e )+s (e )

k−1

) (
n−r (e )+s (e )−1

k−1

)
· · ·
(
n−r (e )+s (e )−s

k−1

)
(
n0

k−1

) (
n0−1
k−1

)
· · ·
(
n0−s
k−1

) ��� .
Since r (e ) ≥ s (e ) + 1 and s ≥ s (e ) for all e ∈ E,

S (n,n0) ≤

(
n

k−1

)
1

w (E′)

∑
e ∈E′w (e )

(
n−r (e )
k−1

) · 1

w (E ′)

∑
e ∈E′

w (e ) ���
(
n−1
k−1

) (
n−2
k−1

)
· · ·
(
n−s
k−1

)
·
(
n−r (e )
k−1

)
(
n0

k−1

) (
n0−1
k−1

)
· · ·
(
n0−s
k−1

) ���
=

(
n

k−1

) (
n−1
k−1

)
· · ·
(
n−s
k−1

)
(
n0

k−1

) (
n0−1
k−1

)
· · ·
(
n0−s
k−1

) . �

Wenowdiscuss implementations of HedgeBranchingContract to get concrete running times.

First, suppose the rank ofH is arbitrary. We observe that for a subset of vertices S ⊆ V , contracting

a hedge e will destroy the cut (S,V \ S ) if and only if at least one of e’s connected components

contains vertices from both S and V \ S . Therefore, we do not worry about the specific edges

included in e and instead store e as a collection of disjoint vertex subsets, similar to a hyperedge.

We assume there are pointers between vertices and these components and vice versa.

The key change from our implementation for hypergraphs is that we also store an sm×sm hedge

component adjacencymatrix as well where an entry is 1 if the hedge components corresponding

to its row and column share a vertex and is 0 otherwise. The adjacency matrix will prove useful

for helping us identify which vertices from a contracted hedge e belong to the other hedges.

We now describe how to contract a randomly selected hedge e to form hedgegraphH ′ = (V ′,E ′)
inO (mn0 +m

2) time, where n0 is the order of H
′. Like in hypergraphs, we initially setV ′ := V \ e

and E ′ := E\{e} by copying vertices and hedges but not their incidence lists. For each vertexv ∈ V ′
and for each hedge e ′ ∈ E ′ that is incident to v in H , we add v to the appropriate incidence list for

the copy of e ′ in H ′ and vice versa. We now add additional verticesve,1,ve,2, . . . ,ve,x where x ≤ s
to represent the contraction of e’s x components. We add an incidence between ve,i and the jth
component of another hedge e ′ if and only if the ith component of e and the jth component of e ′
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shared a vertex before contraction. We then go through each hedge to find components that share

one of these contraction vertices to merge the component’s incidence lists. There are at most s
members in common per list, so we can do the merges in time linear in the total size of the lists.

We remove any hedges from E ′ that have a single incident vertex. Finally, we go through each of

the contracted vertices to see if there are any new adjacencies between hedge components thanks

to these vertices. We spend constant time per hedge-vertex incidence in H ′ as well as O (m2) time

checking for new hedge component adjacencies for O (mn0 +m
2) time total.

When contracting a k-spanning hedge, we immediately end up in the base case. Therefore, we

do not bother to recompute the hedge component adjacency matrix during these contractions,

meaning we perform the contraction and handle the base case in O (m) time. During any one

call to HedgeBranchingContract, there are O (m) such contractions and brute force minimum

hedge-k-cut computations, so we spendO (m2) time total performing them. In total, we can charge

O (mn0 +m
2) time to each node of the computation tree, accounting for both the time to create

that node and the time spent doing checks for the k-spanning hedges. Summing over the expected

number of hedgegraphs of each order n0 (Lemma 5.2) for the running time, and applying our

boosting procedure (Lemma 2.4), we get the following theorem.

Theorem 5.3. There exists an algorithm that with high probability computes a minimum

hedge-k-cut of a weighted hedgegraph with n vertices, m hedges, and constant span s ≥ 2 in

O (m2n(s+1)(k−1) log2 n) time.

For hedgegraphs of constant rank r , we need to modify HedgeBranchingContract so that

its base case occurs when there are at most k + r − 2 vertices remaining. Doing so guarantees

there are no k-spanning hedges to worry about, even though the base case can still be handled in

constant time. We no longer need the hedge component adjacency matrix. Like our algorithm for

hypergraphs, though, we do a prepossessing step of identify hedges with the same induced graph,

leading to a total hedgegraph size ofO (nr ) (here, the big-Oh is hiding constants exponential in r ).
Random selection and contraction of a hedge e can still be done in O (nr−1) time, because we only

need to modify the O (nr−1) hedges that share a vertex with e . When branching, we still copy the

entire hedgegraph in O (nr ) time, but in expectation we spend O (nr−10 ) doing these copies for any

node of order n0 in the computation tree (see Lemma 4.2). We chargeO (nr−10 ) to each computation

tree node of order n0, sum over the expected number of nodes of each order n0, and apply our

probability boosting procedure to get the following theorem.

Theorem 5.4. There exists an algorithm that with high probability computes a minimum hedge-k-
cut of a weighted hedgegraph with n vertices, constant rank r , constant span s , and total hedge size p
inO (p +n(s+1)(k−1) log3 n) time if r = (s + 1) (k − 1) orO (p +nmax{r, (s+1)(k−1) } log2 n) time otherwise.

APPENDIX

A SIMPLE ANALYSIS FOR NON-BRANCHING ALGORITHMS

In this Appendix, we present a simple non-branching randomized contraction algorithm for min-

imum k-cut based on the idea of redoing hyperedge selections with a probability dependent on

their size. As before, let

zn (e ) =

(
n

k−1

)
−
(
n−|e |
k−1

)
(
n

k−1

) for any hyperedge e ∈ E.

We say a hyperedge e is k-spanning if it contains at least n − k + 2 vertices, implying it spans

every k-cut.
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We formally describe the algorithm SimpleContract below. Procedure SimpleContract ini-

tially takes the empty set as its second parameter.

SimpleContract(H ,S ):
For each k-spanning hyperedge e , add e to S and remove e from H
If E = ∅, then return S
Repeat

Select a hyperedge e at random proportional to its weight

With probability 1 − zn (e ), return SimpleContract(H/e,S )

As mentioned in Section 2, this algorithm is almost the same as the one by Chandrasekaran,

Xu, and Yu [6] when specialized to hypergraphs. In fact, the probabilities of contracting any given

hyperedge e are identical. We can use our interpretation of the algorithm to derive another proof

that it returns a fixed min-k-cut with decent probability.

Theorem A.1. Algorithm SimpleContract returns a fixed minimum k-cut of a (weighted) hyper-
graph with probability at least k

( n

k−1) (
n−1
k−1)
= Ω(1/n2k−2).

Proof. Let qn denote the minimum probability over all n-vertex hypergraphs of

SimpleContract returning a fixed min-k-cut. We use induction over n to show qn ≥ k

( n

k−1) (
n−1
k−1)

.

For the base case, qk = 1 = k

( k

k−1) (
k−1
k−1)

. Fix hypergraph H and minimum cut C . All spanning

hyperedges must belong to C , so the algorithm is correct to add them to S and eventually return

them. For simplicity, we assume from here on that E and C already have their k-spanning edges

removed.

With probability at least ( 1
w (E )

∑
e ∈E w (e ) · zn (e ))qn , the algorithm SimpleContract(H , S ) ran-

domly selects a hyperedge e for contraction, decides not to contract e right away, and then finds

a min-k-cut afterward at some point in the future. Let E ′ = E \ C . By Lemma 2.1, there is at

least a (1 − ( 1
w (E )

∑
e ∈E w (e ) · zn (e ))) probability that the selected hyperedge belongs to E ′, im-

plying C still exists in H/e . Conditioned on that event, there is a 1
w (E′)

∑
e ∈E′w (e ) probability of

any particular hyperedge e ∈ E ′ being chosen. Finally, given that e ∈ E ′ is chosen, there is at

least a (1 − zn (e )) qn−|e |+1 probability that SimpleContract does contract e and C is returned

by BranchingContract(H/e, S ). Note that these two ways of returning C (redoing hyperedge

selection and going ahead with the contraction) are mutually exclusive events.

Taking everything together, we see

qn ≥ �� 1

w (E)

∑
e ∈E

w (e ) · zn (e )��qn
+ ��1 − 1

w (E)

∑
e ∈E

w (e ) · zn (e )�� 1

w (E ′)

∑
e ∈E′

w (e ) · (1 − zn (e )) · qn−|e |+1.

Solving for qn , we see

qn ≥
1

w (E ′)

∑
e ∈E′

w (e ) · (1 − zn (e )) · qn−|e |+1.

We now apply induction, use the fact that |e | ≥ 2, and simplify:

qn ≥
1

w (E ′)

∑
e ∈E′

w (e ) ���
(
n−|e |
k−1

)
(
n

k−1

) ���
���

k(
n−|e |+1
k−1

) (
n−|e |
k−1

) ���
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≥ 1

w (E ′)

∑
e ∈E′

w (e ) ���
(
n−|e |
k−1

)
(
n

k−1

) ���
���

k(
n−1
k−1

) (
n−|e |
k−1

) ���
=

1

w (E ′)

∑
e ∈E′

w (e ) ���
k(

n

k−1

) (
n−1
k−1

) ���
=

k(
n

k−1

) (
n−1
k−1

) . �

Note that we can give a similarly short analysis for a non-branching algorithm for minimum

hedge-k-cuts. However, the algorithm itself is necessarily more complicated due to the hedgegraph

analogy of k-spanning hedges not necessarily appearing in all hedge-k-cuts. These issues are dis-
cussed in more detail in Section 5.
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