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This article presents universal algorithms for clustering problems, including the widely studied k-median,
k-means, and k-center objectives. The input is a metric space containing all potential client locations. The
algorithm must select k cluster centers such that they are a good solution for any subset of clients that
actually realize. Specifically, we aim for low regret, defined as the maximum over all subsets of the difference
between the cost of the algorithm’s solution and that of an optimal solution. A universal algorithm’s solution
sol for a clustering problem is said to be an (α , β )-approximation if for all subsets of clients C ′, it satisfies
sol(C ′) ≤ α · opt(C ′) + β · mr, where opt(C ′) is the cost of the optimal solution for clients C ′ and mr is the
minimum regret achievable by any solution.

Our main results are universal algorithms for the standard clustering objectives of k-median, k-means,
and k-center that achieve (O (1),O (1))-approximations. These results are obtained via a novel framework
for universal algorithms using linear programming (LP) relaxations. These results generalize to other �p -
objectives and the setting where some subset of the clients are fixed. We also give hardness results showing
that (α , β )-approximation is NP-hard if α or β is at most a certain constant, even for the widely studied special
case of Euclidean metric spaces. This shows that in some sense, (O (1),O (1))-approximation is the strongest
type of guarantee obtainable for universal clustering.
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1 INTRODUCTION

In universal1 approximation (e.g., References [9, 10, 12, 22, 26, 31, 36, 49, 50]), the algorithm is
presented with a set of potential input points and must produce a solution. After seeing the so-
lution, an adversary selects some subset of the points as the actual realization of the input, and
the cost of the solution is based on this realization. The goal of a universal algorithm is to obtain
a solution that is near-optimal for every possible input realization. For example, suppose that a
network-based-service provider can afford to deploy servers at k locations around the world and
hopes to minimize latency between clients and servers. The service provider does not know in ad-
vance which clients will request service but knows where clients are located. A universal solution
provides guarantees on the quality of the solution regardless of which clients ultimately request
service. As another example, suppose that a program committee chair wishes to invite k people
to serve on the committee. The chair knows the areas of expertise of each person who is qualified
to serve. Based on past iterations of the conference, the chair also knows about many possible
topics that might be addressed by submissions. The chair could use a universal algorithm to select
a committee that will cover the topics well, regardless of the topics of the papers that are submit-
ted. The situation also arises in targeting advertising campaigns to client demographics. Suppose a
campaign can spend for k advertisements, each targeted to a specific client type. While the entire
set of client types that are potentially interested in a new product is known, the exact subset of
clients that will watch the ads, or eventually purchase the product, is unknown to the advertiser.
How does the advertiser target her k advertisements to address the interests of any realized subset
of clients?
Motivated by these sorts of applications, this article presents the first universal algorithms for

clustering problems, including the classic k-median, k-means, and k-center problems. The input
to these algorithms is a metric space containing all locations of clients and cluster centers. The
algorithm must select k cluster centers such that this is a good solution for any subset of clients
that actually realize.
It is tempting to imagine that, in general, for some large-enough value of α , one can find a so-

lution sol such that for all realizations (i.e., subsets of clients) C ′, sol(C ′) ≤ α · opt(C ′), where
sol(C ′) denotes sol’s cost in realization C ′ and opt(C ′) denotes the optimal cost in realization
C ′. But this turns out to be impossible for many problems, including the clustering problems we
study, and indeed this difficulty may have limited the study of universal algorithms. For example,
suppose that the input for the k-median problem is a uniform metric on k + 1 points, each with
a cluster center and client. In this case, for any solution sol with k cluster centers, there is some
realization C ′ consisting of a single client that is not co-located with any of the k cluster centers
in sol. Then, sol(C ′) > 0 but opt(C ′) = 0. Since it is not possible to provide a strict multiplicative
approximation guarantee for every realization, we could instead consider an additive approxima-
tion. That is, we could instead seek to minimize the regret, defined as the maximum difference
between the cost of the algorithm’s solution and the optimal cost across all realizations. Infor-
mally, the regret is the additional cost incurred due to not knowing the realization ahead of time.
The solution that minimizes regret is called the minimum regret solution, or mrs for short, and its
regret is termedminimum regret or mr. More formally, mr = minsol maxC ′[sol(C ′)−opt(C ′)]. We
now seek a solution sol that achieves, for all input realizations C ′, sol(C ′) − opt(C ′) ≤ mr, i.e.,
sol(C ′) ≤ opt(C ′)+mr. But obtaining such a solution turns out to beNP-hard for many problems,
and furthermore obtaining a solution that achieves approximately minimum regret (that is, it has

1In the context of clustering, universal facility location sometimes refers to facility location where facility costs scale with
the number of clients assigned to them. This problem is unrelated to the notion of universal algorithms studied in this
article.
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regret at most c ·mr for some c) is also NP-hard in general (see Section 8 for more details). In turn,
one has to settle for approximation on both opt and mr. That is, we settle for seeking sol such
that sol(C ′) ≤ α ·opt(C ′)+β ·mr for allC ′. An algorithm generating such a solution is then called
an (α , β )-approximate universal algorithm for the problem. Note that in the aforementioned ex-
ample with k + 1 points, any solution must pay mr (the distance between any two points) in some
realization where opt(C ′) = 0 and only one client appears (in which case paying mr might sound
avoidable or undesirable). This example demonstrates that stricter notions of regret and approxi-
mation than (α , β )-approximation are infeasible in general, suggesting that (α , β )-approximation
is the least relaxed guarantee possible for universal clustering.

1.1 Problem Definitions and Results

We are now ready to formally define our problems and state our results. In all the clustering prob-
lems that we consider in this article, the input is a metric space on all the potential client locations
C and cluster centers F .2, 3 Let ci j denote the metric distance between points i and j. The solution
produced by the algorithm comprises k cluster centers in F ; let us denote this set by sol. Now,
suppose a subset of clients C ′ ⊆ C realizes in the actual input. Then, the cost of each client j ∈ C ′
is given as the distance from the client to its closest cluster center, i.e., cost(j, sol) = mini ∈sol ci j .
The clustering problems differ in how these costs are combined into the overall minimization ob-
jective. The respective objectives are as follows:

• k-median (e.g., Reference [6, 13, 17, 34, 44]): sum of client costs, i.e., sol(C ′) =∑
j ∈C ′ cost(j, sol).

• k-center (e.g., Reference [21, 32, 33, 40, 47]): maximum client cost, i.e., sol(C ′) =
maxj ∈C ′ cost(j, sol).
• k-means (e.g., Reference [1, 30, 37, 43, 45]): �2-norm of client costs, i.e., sol(C ′) =√∑

j ∈C ′ cost(j, sol)2.

We also consider �p-clustering (e.g., Reference [30]), which generalizes all these individual clus-
tering objectives. In �p -clustering, the objective is the �p -norm of the client costs for a given value
p ≥ 1, i.e.,

sol(C ′) = ���
∑
j ∈C ′

cost(j, sol)p���
1/p

.

Note that k-median and k-means are special cases of �p -clustering for p = 1 and p = 2, respectively.
k-center can also be defined in the �p -clustering framework as the limit of the objective for p → ∞;
moreover, it is well known that �p -norms only differ by constants for p > logn (see Appendix A),
thereby allowing the k-center objective to be approximated within a constant by �p -clustering for
p = logn.

Our main result is to obtain (O (1),O (1))-approximate universal algorithms for k-median, k-
center, and k-means. We also generalize these results to the �p -clustering problem.

2We only consider finiteC in this article. IfC is infinite (e.g.,C = Rd ), then the minimum regret will usually also be infinite.
If one restricts to realizations where, say, at most m clients appear, then it suffices to consider realizations that placem
clients at one of finitely many points, letting us reduce to universal k-center with finite C .
3The special case where F = C has also been studied in the clustering literature, e.g., in References [17, 32], although
the more common setting (as in our work) is to not make this assumption. Of course, all results (including ours) without
this assumption also apply to the special case. If F = C , then the constants in our bounds improve, but the results are
qualitatively the same. We note that some sources refer to the k-center problem when F � C as the k-supplier problem
instead, and use k-center to refer exclusively to the case where F = C .
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Theorem 1.1. There are (O (1),O (1))-approximate universal algorithms for the k-median, k-
means, and k-center problems. More generally, there are (O (p),O (p2))-approximate universal algo-
rithms for �p -clustering problems for any p ≥ 1.

Remark. The bound for k-means is by setting p = 2 in �p -clustering. For k-median and k-center,
we use separate algorithms to obtain improved bounds than those provided by the �p -clustering
result. This is particularly noteworthy fork-centerwhere �p -clustering only gives poly-logarithmic
approximation.

Universal Clustering with Fixed Clients. We also consider a more general setting where some
of the clients are fixed, i.e., are there in any realization, but the remaining clients may or may not
realize as in the previous case. (Of course, if no client is fixed, then we get back the previous setting
as a special case.) This more general model is inspired by settings where a set of clients is already
present but the remaining clients are mere predictions. This surprisingly creates new technical
challenges, that we overcome to get the following:

Theorem 1.2. There are (O (1),O (1))-approximate universal algorithms for the k-median, k-
means, andk-center problems with fixed clients. More generally, there are (O (p2),O (p2))-approximate
universal algorithms for �p -clustering problems, for any p ≥ 1.

Hardness Results. Next, we study the limits of approximation for universal clustering. In par-
ticular, we show that the universal clustering problems for all the objectives considered in this
article areNP-hard in a rather strong sense. Specifically, we show that both α and β are separately
bounded away from 1, irrespective of the value of the other parameter, showing the necessity of
both α and β in our approximation bounds. Similar lower bounds continue to hold for univer-
sal clustering in Euclidean metrics, even when PTASes are known in the offline (non-universal)
setting [1, 5, 41, 43, 47].

Theorem 1.3. In universal �p -clustering for any p ≥ 1, obtaining α < 3 or β < 2 isNP-hard. Even
for Euclidean metrics, obtaining α < 1.8 or β ≤ 1 is NP-hard. The lower bounds on α (respectively,
β) are independent of the value of β (respectively, α ).

Interestingly, our lower bounds rely on realizations where sometimes as few as one client ap-
pears. This suggests that, e.g., redefining regret to be some function of the number of clients that
appear (rather than just their cost) cannot subvert these lower bounds.

1.2 Techniques

Before discussing our techniques, we discusswhy standard approximations for clustering problems
are insufficient. It is known that the optimal solution for the realization that includes all clients
gives a (1, 2)-approximation for universal k-median (this is a corollary of a more general result
in Reference [38]; we do not know if their analysis can be extended to, e.g., k-means), giving
universal algorithms for “easy” cases of k-median such as tree metrics. But the clustering problems
we consider in this article are NP-hard in general; so, the best we can hope for in polynomial
time is to obtain optimal fractional solutions, or approximate integer solutions. Unfortunately, the
proof of Reference [38] does not generalize to any regret guarantee for the optimal fractional
solution. Furthermore, for all problems considered in this article, even (1+ϵ )-approximate (integer)
solutions for the “all clients” instance are not guaranteed to be (α , β )-approximations for any finite
α , β (see the example in Appendix B). These observations fundamentally distinguish universal
approximations for NP-hard problems like the clustering problems in this article from those in P,
and require us to develop new techniques for universal approximations.
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In this article, we develop a general framework for universal approximation based on linear pro-
gramming (lp) relaxations that forms the basis of our results on k-median, k-means, and k-center
(Theorem 1.1) as well as the extension to universal clustering with fixed clients (Theorem 1.2).

The first step in our framework is to write an lp relaxation of the regret minimization problem.
In this formulation, we introduce a new regret variable that we seek to minimize and is constrained
to be at least the difference between the (fractional) solution obtained by the lp and the optimal
integer solution for every realizable instance. Abstractly, if the lp relaxation of the optimization
problem is given by min{c · x : x ∈ P }, then the new regret minimization lp4 is given by

min{r : x ∈ P ; c(I )·x ≤ opt(I ) + r, ∀I }.

Here, I ranges over all realizable instances of the problem. Hence, the lp is exponential in size,
and we need to invoke the ellipsoid method via a separation oracle to obtain an optimal fractional
solution. We first note that the constraints x ∈ P can be handled using a separation oracle for the
optimization problem itself. So, our focus is on designing a separation oracle for the new set of
constraints c(I )·x ≤ opt(I )+r, ∀I . This amounts to determining the regret of a fixed solution given
by x, which unfortunately, is NP-hard for our clustering problems. So, we settle for designing an
approximate separation oracle, i.e., approximating the regret of a given solution. For k-median, we
reduce this to a submodular maximization problem subject to a cardinality constraint, which can
then be (approximately) solved via standard greedy algorithms. For k-means, and more generally
�p -clustering, the situation is more complex. Similarly to k-median, maximizing regret for a fixed
solution can be reduced to a set of submodular maximization problems, but deriving the func-
tional value for a given set now requires solving the NP-hard knapsack problem. We overcome
this difficulty by showing that we can use fractional knapsack solutions as surrogates for the opti-
mal integer knapsack solution in this reduction, thereby restoring polynomial running time of the
submodular maximization oracle. Finally, in the presence of fixed clients, we need to run the sub-
modular maximization algorithm over a set of combinatorial objects called independence systems.
In this case, the resulting separation oracle only gives a bicriteria guarantee, i.e., the solutions it
considers feasible are only guaranteed to satisfy ∀I : c(I )·x ≤ α · opt(I ) + β · r for constants α and
β . Note that the bi-criteria guarantee suffices for our purposes since these constants are absorbed
in the overall approximation bounds.
The next step in our framework is to round these fractional solutions to integer solutions for

the regret minimization lp. Typically, in clustering problems such as k-median, lp rounding al-
gorithms give average guarantees, i.e., although the overall objective in the integer solution is
bounded against that of the fractional solution, individual connection costs of clients are not (de-
terministically) preserved in the rounding. But average guarantees are too weak for our purpose:
in a realized instance, an adversary may only select the clients whose connection costs increase
by a large factor in the rounding thereby causing a large regret. Ideally, we would like to ensure
that the connection cost of every individual client is preserved up to a constant in the rounding.
However, this may be impossible in general, i.e., no integer solution might satisfy this requirement.
Consider a uniform metric over k + 1 points. One fractional solution is to make k

k+1 fraction of
each point a cluster center. Then, each client has connection cost 1

k+1 in the fractional solution
since it needs to connect 1

k+1 fraction to a remote point. However, in any integer solution, since
there are only k cluster centers but k +1 points overall, there is one client that has connection cost
of 1, which is k + 1 times its fractional connection cost.

4For problems like k-means with non-linear objectives, the constraint c(I ) ·x ≤ opt(I ) + r cannot be replaced with a
constraint that is simultaneously linear in x, r. However, for a fixed value of r, the corresponding non-linear constraints
still give a convex feasible region, and so the techniques we discuss in this section can still be used.
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To overcome this difficulty, we allow for a uniform additive increase in the connection cost of
every client. We show that such a rounding also preserves the regret guarantee of our fractional
solution within constant factors. The clustering problem we now solve has a modified objective:
for every client, the distance to the closest cluster center is now discounted by the additive al-
lowance, with the caveat that the connection cost is 0 if this difference is negative. This variant is
a generalization of a problem appearing in Reference [25], and we call it clustering with discounts
(e.g., for k-median, we call this problem k-median with discounts.) Our main tool in the rounding
then becomes an approximation algorithm to clustering problems with discounts. For k-median,
we use a Lagrangian relaxation of this problem to the classic facility location problem to design
such an approximation. For k-means and �p -clustering, the same general concept applies, but we
need an additional ingredient called a virtual solution that acts as a surrogate between the regret
of the (rounded) integer solution and that of the fractional solution obtained above. For k-center,
we give a purely combinatorial (greedy) algorithm.

1.3 Related Work

For all previous universal algorithms, the approximation factor corresponds to our parameter α ,
i.e., these algorithms are (α , 0)-approximate. The notion of regret was not considered. As we have
explained, however, it is not possible to obtain such results for universal clustering. Furthermore,
it may be possible to trade off some of the large values of α in the results below, e.g., Ω(

√
n) for set

cover, by allowing β > 0.
Universal algorithms have been of large interest in part because of their applications as online

algorithms where all the computation is performed ahead of time. Much of the work on univer-
sal algorithms has focused on TSP. For Euclidean TSP in the plane, Platzman and Bartholdi [49]
gave an O (logn)-approximate universal algorithm. Hajiaghayi et al. [31] generalized this result
to an O (log2 n)-approximation for minor-free metrics, and Schalekamp and Shmoys [50] gave
an O (logn)-approximation for tree metrics. For arbitrary metrics, Jia et al. [35] presented an
O (log4 n/ log logn)-approximation, which improves to an O (logn)-approximation for doubling
metrics. The approximation factor for arbitrary metrics was improved to O (log2 n) by Gupta
et al. [26]. It is also known that these logarithmic bounds are essentially tight for universal
TSP [9, 10, 22, 31]. For the metric Steiner tree problem, Jia et al. [35] adapted their own TSP al-
gorithm to provide an O (log4 n/ log logn)-approximate universal algorithm, which is also tight

up to the exponent of the log [2, 10, 35]. Busch et al. [12] present an O (2
√
logn )-approximation

for universal Steiner tree on general graphs and an O (polylog(n))-approximation for minor-free
graphs. Finally, for universal (weighted) set cover, Jia et al. [35] (see also Reference [23]) provide
an O (

√
n logn)-approximate universal algorithm and an almost matching lower bound.

The problem of minimizing regret has been studied in the context of robust optimization. The
robust 1-median problem was introduced for tree metrics by Kouvelis and Yu [42] and several
faster algorithms and for general metrics were developed in the following years (e.g., see Refer-
ence [8]). For robust k-center, Averbakh and Berman [8] gave a reduction to a linear number of
ordinary k-center problems, and thus for classes of instances where the ordinary k-center prob-
lem is polynomial time solvable (e.g., instances with constant k or on tree metrics) this problem is
also polynomial time solvable [7]. A different notion of robust algorithms is one where a set S of
possible scenarios is provided as part of the input to the problem. This model was originally con-
sidered for network design problems (see the survey by Chekuri [18]). Anthony et al. [3] gave an
O (logn+ log |S |)-approximation algorithm for solving k-median and a variety of related problems
in this model (see also Reference [11]) on an n-point metric space. However, note that |S | can be
exponential in |C | in general.
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Another popular model for uncertainty is two-stage optimization (e.g., References [16, 19, 20,
27–29, 39, 51–53]). Here, the first stage presents a set of realizable instances (or a distribution
over them) and the second stage chooses one of those realizations. The algorithm is free to make
choices at either stage but those choices come at a higher cost in the second stage when it has more
information about the input. Because of the different costs, results in this model have no bearing
on our setting.

Roadmap. We present the constant approximation algorithms (Theorem 1.1) for universal k-
median, �p -clustering (k-means is a special case), and k-center in Sections 2, 3, and 4, respec-
tively. In describing these algorithms, we defer the clustering with discounts algorithms used in
the rounding to Appendix C. We also give the extensions to universal clustering with fixed clients
for k-median, k-means/�p -clustering, and k-center (Theorem 1.2) in Sections 5, 6, and 7. Finally, the
hardness results for general metrics and for Euclidean metrics (Theorem 1.3) appear in Sections 8
and 9, respectively.

2 UNIVERSAL k-MEDIAN

In this section, we prove the following theorem:

Theorem 2.1. There exists a (27, 49)-approximate universal algorithm for the k-median problem.

We follow the recipe described in Section 1.2. Namely, the algorithm has two components. The
first component is a separation oracle for the regret minimization lp based on submodular maxi-
mization, which we define below.

Submodular Maximization with Cardinality Constraints. A (non-negative) function f : 2E → R+0
is said to be submodular if for all S ⊆ T ⊆ E and x ∈ E, we have f (T ∪ {x }) − f (T ) ≤ f (S ∪ {x }) −
f (S ). It is said to be monotone if for all S ⊆ T ⊆ E, we have f (T ) ≥ f (S ). The following theorem
for maximizing monotone submodular functions subject to a cardinality constraint is well known.

Theorem 2.2 (Nemhauser et al. [48]). For the problem of finding S ⊆ E that maximizes a
monotone submodular function f : 2E → R+0 , the natural greedy algorithm that starts with S = ∅
and repeatedly adds x ∈ E that maximizes f (S ∪ {x }) until |S | = k , is a e

e−1 ≈ 1.58-approximation.

We give the reduction from the separation oracle to submodular maximization in Section 2.1 and
then employ the above theorem. The second component of our framework is a rounding algorithm
that employs the k-median with discounts problem, which we define below.

k-median with Discounts. In the k-median with discounts problem, we are given a k-median
instance but where each client j has an additional (non-negative) parameter r j called its discount.
Just as in the k-median problem, our goal is to place k cluster centers that minimize the total
connection costs of all clients. But the connection cost for client j can now be discounted by up to
r j , i.e., client j with connection cost c j contributes (c j − r j )+ := max{0, c j − r j } to the objective of
the solution.
Let opt be the cost of an optimal solution to the k-median with discounts problem. We say an

algorithm alg that outputs a solution with connection cost c j for client j is a (γ ,σ )-approximation
if ∑

j ∈C
(c j − γ · r j )+ ≤ σ · opt.

That is, a (γ ,σ )-approximate algorithm outputs a solution whose objective function when com-
puted using discounts γ · r j for all j is at most σ times the optimal objective using discounts r j . In
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15:8 A. Ganesh et al.

the case where all r j are equal, Reference [25] gave a (9, 6)-approximation algorithm for this prob-
lem based on the classic primal-dual algorithm for k-median. The following lemma generalizes
their result to the setting where the r j may differ:

Lemma 2.3. There exists a (deterministic) polynomial-time (9, 6)-approximation algorithm for the
k-median with discounts problem.

We give details of the algorithm and the proof of this lemma in Appendix C. We note that when
all r j are equal, the constants in Reference [25] can be improved (see, e.g., Reference [15]); we do not
know of any similar improvement when the r j may differ. In Section 2.2, we give the reduction from
rounding the fractional solution for universal k-median to the k-median with discounts problem
and then employ the above lemma.

2.1 Universal k-median: Fractional Algorithm

The standard k-median polytope (see, e.g., Reference [34]) is given by

P =
⎧⎪⎨⎪⎩(x ,y) :

∑
i

xi ≤ k ;∀i, j : yi j ≤ xi ;∀j :
∑
i

yi j ≥ 1;∀i, j : xi ,yi j ∈ [0, 1]
⎫⎪⎬⎪⎭ .

Here xi represents whether point i is chosen as a cluster center, and yi j represents whether client
j connects to i as its cluster center. Now, consider the following lp formulation for minimizing
regret r :

min
⎧⎪⎪⎨⎪⎪⎩r : (x ,y) ∈ P ;∀C

′ ⊆ C :
∑
j ∈C ′

∑
i

ci jyi j − opt(C ′) ≤ r
⎫⎪⎪⎬⎪⎪⎭ , (1)

where opt(C ′) is the cost of the (integral) optimal solution in realization C ′. Note that the new
constraints, ∀C ′ ⊆ C :

∑
j ∈C ′
∑

i ci jyi j − opt(C ′) ≤ r (we call it the regret constraint set), require
that the regret is at most r in all realizations.
To solve lp (1), we need a separation oracle for the regret constraint set. Note that there are

exponentially many constraints corresponding to realizations C ′; moreover, even for a single re-
alization C ′, computing opt(C ′) is NP-hard. So we resort to designing an approximate separation
oracle. Fix some fractional solution (x ,y, r ). Overloading notation, let S (C ′) denote the cost of
the solution with cluster centers S in realization C ′. By definition, opt(C ′) = minS ⊆F , |S |=k S (C ′).
Then designing a separation oracle for the regret constraint set is equivalent to determining if the
following inequality holds:

max
C ′ ⊆C

max
S ⊆F , |S |=k

⎡⎢⎢⎢⎢⎢⎣
∑
j ∈C ′

∑
i

ci jyi j − S (C ′)
⎤⎥⎥⎥⎥⎥⎦ ≤ r .

We flip the order of the two maximizations and define fy (S ) as follows:

fy (S ) = max
C ′ ⊆C

⎡⎢⎢⎢⎢⎢⎣
∑
j ∈C ′

∑
i

ci jyi j − S (C ′)
⎤⎥⎥⎥⎥⎥⎦ .

Then designing a separation oracle is equivalent to maximizing fy (S ) for S ⊆ F subject to |S | = k .
The rest of the proof consists of showing that this function ismonotone, submodular, and efficiently
computable.

Lemma 2.4. Fixy. Then, fy (S ) is amonotone submodular function in S . Moreover, fy (S ) is efficiently
computable for a fixed S .
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Proof. Letd (j, S ) := mini′ ∈S ci′j denote the distance from client j to the nearest cluster center in
S . If S = ∅, then we say d (j, S ) := ∞. The value ofC ′ that defines fy (S ) is the set of all clients closer
to S than to the fractional solution y, i.e.,

∑
i ci jyi j > mini′ ∈S ci′j . This immediately establishes

efficient computability of fy (S ). Moreover, we can equivalently write fy (S ) as follows:

fy (S ) =
∑
j ∈C

��
∑
i

ci jyi j − d (j, S )��
+

.

A sum of monotone submodular functions is a monotone submodular function, so it suffices
to show that for all clients j, the new function дy, j (S ) := (

∑
i ci jyi j − d (j, S ))+ is monotone

submodular.

• дy, j is monotone: For S ⊆ T , d (j,T ) ≤ d (j, S ), and thus (
∑

i ci jyi j − d (j, S ))+ ≤ (
∑

i ci jyi j −
d (j,T ))+.
• дy, j is submodular if

∀S ⊆ T ⊆ F ,∀x ∈ F : дy, j (S ∪ {x }) − дy, j (S ) ≥ дy, j (T ∪ {x }) − дy, j (T ).

Fix S , T , and x . Assume дy, j (T ∪ {x }) − дy, j (T ) is positive (if it is zero, by monotonicity the
above inequality trivially holds). This implies that x is closer to client j than any cluster
center in T (and hence S , too), i.e., d (j,x ) ≤ d (j,T ) ≤ d (j, S ). Thus, d (j,x ) = d (j, S ∪ {x }) =
d (j,T ∪ {x }), which implies that дy, j (S ∪ {x }) = дy, j (T ∪ {x }). Then we just need to show
that дy, j (S ) ≤ дy, j (T ), but this holds by monotonicity. �

By standard results (see, e.g., GLS [24]), we get an (α , β )-approximate fractional solution for
universal k-median via the ellipsoid method if we have an approximate separation oracle for lp (1)
that given a fractional solution (x ,y, r ) does either of the following:

• declares (x ,y, r ) feasible, in which case (x ,y) has cost at most α · opt(I) + β · r in all realiza-
tions or
• putputs an inequality violated by (x ,y, r ) in lp (1).

The approximate separation oracle does the following for the regret constraint set (all other
constraints can be checked exactly): Given a solution (x ,y, r ), find an e−1

e
-approximate maximizer

S of fy via Lemma 2.4 and Theorem 2.2. Let C ′ be the set of clients closer to S than the fractional
solution y (i.e., the realization that maximizes fy (S )). If fy (S ) > r , then the separation oracle
returns the violated inequality

∑
j ∈C ′
∑

i ci jyi j − S (C ′) ≤ r ; else, it declares the solution feasible.
Whenever the actual regret of (x ,y) is at least e

e−1 · r , this oracle will find S such that fy (S ) > r
and output a violated inequality. Hence, we get the following lemma:

Lemma 2.5. There exists a deterministic algorithm that in polynomial time computes a fractional
e

e−1 ≈ 1.58-approximate solution for lp (1) representing the universal k-median problem.

2.2 Universal k-Median: Rounding Algorithm

Let frac denote the e
e−1 -approximate fractional solution to the universal k-median problem pro-

vided by Lemma 2.5. We will use the following property of k-median, shown by Archer et al. [4].

Lemma 2.6 ([4]). The integrality gap of the natural lp relaxation of the k-median problem is at
most 3.

Lemmas 2.5 and 2.6 imply that that for any set of clients C ′,

1

3
· opt(C ′) ≤ frac(C ′) ≤ opt(C ′) +

e

e − 1 · mr. (2)

ACM Transactions on Algorithms, Vol. 19, No. 2, Article 15. Publication date: March 2023.
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Our overall goal is to obtain a solution sol that minimizes maxC ′ ⊆C [sol(C ′) − opt(C ′)]. But in-
stead of optimizing over the exponentially many different opt(C ′) solutions, we use the surro-
gate 3 · frac(C ′), which has the advantage of being defined by a fixed solution frac but still
3-approximates opt(C ′) by Equation (2). This suggests minimizing the following objective instead:
maxC ′[sol(C ′) − 3 · frac(C ′)]. For a given solution sol, the set of clients C ′ that maximizes the
new expression are the clients whose connection costs in sol (denoted c j ) exceeds 3 times their
cost in frac (denoted fj ):

max
C ′

[sol(C ′) − 3 · frac(C ′)] =
∑
j ∈C

(c j − 3fj )+.

But minimizing this objective is precisely the aim of the k-median with discounts problem, where
the discount for client j is 3fj . This allows us to invoke Lemma 2.3 for the k-median with discounts
problem.
Thus, our overall algorithm is as follows. First, use Lemma 2.5 to find a fractional solution frac =

(x ,y, r ). Let fj :=
∑

i ci jyi j be the connection cost of client j in frac. Then, construct a k-median
with discounts instance where client j has discount 3fj , and use Lemma 2.3 on this instance to
obtain the final solution to the universal k-median problem.
We now complete the proof of Theorem 2.1 using the above lemmas.

Proof of Theorem 2.1. Letmj be the connection cost of mrs to client j. Then,

mr = max
C ′ ⊆C

[mrs(C ′) − opt(C ′)] ≥ max
C ′ ⊆C

[mrs(C ′) − 3 · frac(C ′)] (by Equation (2))

=
∑

j ∈C :mj>3fj

(mj − 3fj ) =
∑
j ∈C

(mj − 3fj )+.

Thus, mr upper bounds the optimal objective in the k-median with discounts instance that we
construct. Let c j be the connection cost of client j in the solution output by the algorithm. Then,
by Lemma 2.3, we get that∑

j ∈C
(c j − 27fj )+ ≤ 6 ·

∑
j ∈C

(mj − 3fj )+ ≤ 6 · mr. (3)

As a consequence, we have

∀C ′ ⊆ C :
∑
j ∈C ′

c j =
∑
j ∈C ′

[27fj + (c j − 27fj )] ≤
∑
j ∈C ′

27fj +
∑
j ∈C ′

(c j − 27fj )+ ≤ 27 · frac(C ′) + 6 · mr,

where the last step uses the definition of f j and Equation (3). Now, using the bound on frac(C ′)
from Equation (2) in the inequality above, we have the desired bound on the cost of the algorithm,

∀C ′ ⊆ C :
∑
j ∈C ′

c j ≤ 27 ·frac(C ′)+6 ·mr ≤ 27
[
opt(C ′) +

e

e − 1 · mr
]
+6 ·mr ≤ 27 ·opt(C ′)+49 ·mr.

�

3 UNIVERSAL �p -CLUSTERING AND UNIVERSAL k-MEANS

In this section, we give universal algorithms for �p -clustering with the following guarantee:

Theorem 3.1. For all p ≥ 1, there exists a (54p, 103p2)-approximate universal algorithm for the
�p -clustering problem.

As a corollary, we obtain the following result for universal k-means (p = 2).

Corollary 3.2. There exists a (108, 412)-approximate universal algorithm for the k-means
problem.
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Before describing further details of the universal �p -clustering algorithm, we note a rather un-
usual feature of the universal clustering framework. Typically, in standard �p -clustering, the algo-
rithms effectively optimize the �pp objective (e.g., sum of squared distances for k-means) because
these are equivalent in the following sense: An α-approximation for the �p objective is equivalent
to an αp -approximation for the �pp objective. But this equivalence fails in the setting of universal

algorithms for reasons that we discuss below. Indeed, we first give a universal �pp -clustering algo-
rithm, which is a simple extension of thek-median algorithm, and then give universal �p -clustering
algorithms, which turns out to be much more challenging.

3.1 Universal �
p
p -Clustering

As in universalk-median, we canwrite an lp formulation for universal �pp -clustering, i.e., clustering
with the objective sol(C ′) =

∑
j ∈C ′ cost(j, sol)

p :

min
⎧⎪⎪⎨⎪⎪⎩r : (x ,y) ∈ P ;∀C

′ ⊆ C :
∑
j ∈C ′

∑
i

c
p
i jyi j − opt(C

′) ≤ r
⎫⎪⎪⎬⎪⎪⎭ , (4)

where P is still the k-median polytope defined in Section 2.1.
The main difficulty is that the �pp distances no longer form a metric, i.e., do not satisfy triangle

inequality. Nevertheless, the distances still have a metric connection that they are the pth power
of metric distances. We show that this connection is sufficient to prove the following result:

Theorem 3.3. For all p ≥ 1, there exists a (27p , 27p · e
e−1 +

2
3 · 9

p )-approximate algorithm for the

universal �
p
p clustering problem.

As in universal k-median, a key component in proving Theorem 3.3 is a rounding algorithm that
employs a bi-criteria approximation to the �pp -clustering with discounts problem. Indeed, this result
will also be useful in the next subsection, when we consider the universal �p -clustering problem.
So, we formally define �pp -clustering with discounts problem below and state our result for it.

�
p
p -clustering with Discounts. In this problem, are given a �pp -clustering instance but where each

client j has an additional (non-negative) parameter r j called its discount. Our goal is to place k
cluster centers that minimize the total connection costs of all clients. But the connection cost
for client j can now be discounted by up to r

p
j , i.e., client j with connection cost c j contributes

(c
p
j −r

p
j )
+ := max{0, cpj −r

p
j } to the objective of the solution. (Note that thek-median with discounts

problem that we described in the previous section is a special case of this problem for p = 1.)
Let opt be the cost of an optimal solution to the �pp -clustering with discounts problem. We

say an algorithm alg that outputs a solution with connection cost c j for client j is a (γ p ,σ )-
approximation5 if ∑

j ∈C
(c
p
j − γ

p · rpj )
+ ≤ σ · opt.

That is, a (γ p ,σ )-approximate algorithm outputs a solution whose objective function computed
using discounts γ · r j for all j is at most σ times the optimal objective using discounts r j . We give
the following result about the �pp -clustering with discounts problem (see Appendix C for details):

Lemma 3.4. There exists a (deterministic) polynomial-time (9p , 23 · 9
p )-approximation algorithm

for the �
p
p -clustering with discounts problem.

5We refer to this as a (γ p, σ )-approximation instead of a (γ , σ )-approximation to emphasize the difference between the
scaling factor for discounts γ and the loss in approximation factor γ p .
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We now employ this lemma in obtaining Theorem 3.3. Recall that the universal k-median result
in the previous section had three main ingredients:

• Lemma 2.5 to obtain an e
e−1 -approximate fractional solution. This continues to hold for the

�
p
p objective, since Lemma 2.5 does not use any metric property.

• An upper bound of 3 on the integrality gap of the natural lp relaxation of k-median from
Reference [4]. The same result now gives an upper bound of 3p on the integrality gap of
�
p
p -clustering.

• Lemma 2.3 to obtain an approximation guarantee for the k-median with discounts problem.
This is where themetric property of the connection costs in thek-median problemwas being
used. Nevertheless, Lemma 3.4 above gives a generalization of Lemma 2.3 to the �pp -clustering
with discounts problem.

Theorem 3.3 now follows from these three observations using exactly the same steps as Theo-
rem 2.1 in the previous section; we omit these steps for brevity. �

The rest of this section is dedicated to the universal �p -clustering problem. As for k-median, we
have two stages, the fractional algorithm and the rounding algorithm, which we present in the
next two subsections.

3.2 Universal �p -Clustering: Fractional Algorithm

Let us start by describing the fractional relaxation of the universal �p -clustering problem6 (again,
P is the k-median polytope defined as in Section 2.1),

min
⎧⎪⎪⎨⎪⎪⎩r : (x ,y) ∈ P ;∀C

′ ⊆ C : ���
∑
j ∈C ′

∑
i

c
p
i jyi j

���
1/p

− opt(C ′) ≤ r
⎫⎪⎪⎬⎪⎪⎭ , (5)

As described earlier, when minimizing regret, the �p and �
p
p objectives are no longer equivalent.

For instance, recall that one of the key steps in Lemma 2.5 was to establish the submodularity of
the function fy (S ) denoting the maximum regret caused by any realization when comparing two
given solutions: a fractional solutiony and an integer solution S . Indeed, the worst-case realization
had a simple structure: Choose all clients that have a smaller connection cost for S than for y. This
observation continues to hold for the �pp objective because of the linearity of fy (S ) as a function of
the realized clients once y and S are fixed. But the �p objective is not linear even after fixing the
solutions, and as a consequence, we lose both the simple structure of the maximizing realization
as well as the submodularity of the overall function fy (S ). For instance, consider two clients: one
at distances 1 and 0 and another at distances 1 + ϵ and 1 from y and S , respectively. Using the �p
objective, the regret with both clients is (2 + ϵ )1/p − 1, whereas with just the first client the regret
is 1, which is larger for p ≥ 2.
The above observation results in two related difficulties: first, that fy (S ) is not submodular and

hence standard submodular maximization techniques do not apply, but also that given y and S ,
we cannot even compute the function fy (S ) efficiently. To overcome this difficulty, we further
refine the function fy (S ) to a collection of functions fy,Y (S ) by also fixing the cost of the fractional
solutiony to at most a given valueY . As we will soon see, this allows us to relate the �p objective to
the �pp objective but under an additional “knapsack”-like packing constraint. It is still not immediate

6The constraints are not simultaneously linear in y and r , although fixing r , we can write these constraints as∑
j∈C′
∑
i c

p
i jyi j ≤ (opt(C′) + r )p , which is linear in y . In turn, to solve this program we bisection search over r , us-

ing the ellipsoid method to determine if there is a feasible point for each fixed r .
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that fy,Y is efficiently computable because of the knapsack constraint that we have introduced. Our
second observation is that relaxing the (NP-hard) integer knapsack problem to the corresponding
(poly-time) fractional knapsack problem does not affect the optimal value of fy,Y (S ) (i.e., allowing
fractional clients does not increasey’s regret), whilemaking the function efficiently computable. As
a bonus, the relaxation to fractional knapsack also restores submodularity of the function, allowing
us to use standard maximization tools as earlier. We describe these steps in detail below.
To relate the regret in the �p and �

p
p objectives, let fracqp (C

′) and Sqp (C
′) denote the �p objective

to the qth power for y and S , respectively, in realization C ′ (and let fracp (C ′), Sp (C ′) denote the
corresponding �p objectives). Assume that y’s regret against S is non-zero. Then

max
C ′ ⊆C

[
fracp (C

′) − Sp (C ′)
]
= max

C ′ ⊆C

⎡⎢⎢⎢⎢⎢⎣
fracpp (C

′) − Spp (C ′)∑p−1
q=0 frac

q
p (C

′)S
p−1−q
p (C ′)

⎤⎥⎥⎥⎥⎥⎦
�p max

C ′ ⊆C

⎡⎢⎢⎢⎢⎣
fracpp (C

′) − Spp (C ′)

fracp−1p (C ′)

⎤⎥⎥⎥⎥⎦
= max

Y
max

C ′ ⊆C :frac
p
p (C

′)≤Y

⎡⎢⎢⎢⎢⎣
fracpp (C

′) − Spp (C ′)
Y 1−1/p

⎤⎥⎥⎥⎥⎦
= max

Y

⎡⎢⎢⎢⎢⎢⎣
maxC ′ ⊆C,fracpp (C ′)≤Y [frac

p
p (C

′) − Spp (C ′)]

Y 1−1/p

⎤⎥⎥⎥⎥⎥⎦ .
The�p denotes equality towithin a factor ofp and uses the fact that if the regret is non-zero; then

for everyC ′ such that fracp (C ′) > Sp (C
′) (one of which is always the maximizer of all expressions

in this equation), every term in the sum in the denominator is upper bounded by fracp−1p (C ′).
We would like to argue that the numerator,

max{fracpp (C ′) − S
p
p (C

′) : C ′ ⊆ C, fracpp (C
′) ≤ Y },

is a submodular function of S . If we did this, then we could find an adversary and realization of
clients that (approximately) maximizes the regret of y by iterating over all (discretized) values of
Y . But, as described above, it is easier to work with its fractional analog because of the knapsack
constraint,

fy,Y (S ) := max{fracpp (I) − S
p
p (I) : I ∈ [0, 1]C , frac

p
p (I) ≤ Y }.

Here, fracpp (I) :=
∑

j ∈C dj ·
∑

i ∈F c
p
i jyi j and S

p
p (I) :=

∑
j ∈C dj ·mini ∈S c

p
i j are the natural extensions

of the �pp objective to fractional clients, where dj is the fraction of client j that is included in I. The
next lemma shows that allowing fractional clients does not affect the maximum regret:

Lemma 3.5. For any two solutions y, S , there exists a global maximum of fracp (I) − Sp (I) over

I ∈ [0, 1]C where all the clients are integral, i.e., I ∈ {0, 1}C . Therefore,

max
I∈[0,1]C

[
fracp (I) − Sp (I)

]
= max

C ′ ⊆C

[
fracp (C

′) − Sp (C ′)
]
.

We remark that, unlike for the �pp objective, integrality of the maximizer is not immediate for
the �p objective because the regret of y compared to S is not a linear function of I.

Proof. We will show that the derivative of fracp (I)−Sp (I) when fracp (I) > Sp (I) with respect
to a fixed dj is either always positive or always negative for dj ∈ (0, 1) or negative while 0 <
dj < d ′ and then positive afterwards. This gives that any I with a fractional coordinate where
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fracp (I) > Sp (I) (which is necessary for a fractional I to be a global maximum but not the integral
all-zeroes vector) cannot be a local maximum, giving the lemma.
To show this property of the derivative, letting I−j denote I with dj = 0, we have fracp (I) −

Sp (I) = (fracpp (I−j )+c1dj )
1/p − (Spp (I−j )+c2dj )1/p , where c1, c2 are the �

p
p distance from j to frac, S

respectively. For positive dj , the derivative with respect to dj is well defined and equals

1

p

����
c1(

fracpp (I−j ) + c1dj
)1−1/p − c2(

S
p
p (I−j ) + c2dj

)1−1/p ���� .
The derivative is positive if the following inequality holds:

S
p
p (I−j ) + c2dj

fracpp (I−j ) + c1dj
>

(
c2
c1

) p
p−1
.

We first focus on the case where c1 > c2. The left-hand side starts at Spp (I−j )/frac
p
p (I−j ) and

monotonically and asymptotically approaches c2/c1 as dj increases. This implies that either it is
always at least c2/c1 or it is increasing and approaching c2/c1, i.e., at least (c2/c1)p/(p−1) for dj > 0
or less than (c2/c1)

p/(p−1) for all dj < d ′ for some d ′ and then greater than (c2/c1)
p/(p−1) for all

dj > d ′ (here, we are using the fact that c1 > c2 and so (c2/c1)
p/(p−1) < c2/c1). In turn, the desired

property of the derivative holds.
In the case where c1 ≤ c2, at any optimum S

p
p (I−j ) + c2dj < fracpp (I−j ) + c1dj (otherwise

fracpp (I) < S
p
p (I) and so I cannot be a maximum because the all zeroes vector achieves a better

objective) and so the derivative is always negative in this case as desired. �

It turns out that relaxing to fractional clients not only helps in efficient computability of the
function fy,Y (S ) but also simplifies the proof of submodularity of the function.

Lemma 3.6. The function fy,Y (S ) as defined above is submodular.

Proof. Fix a universal clustering instance, fractional solution y, and value Y . Consider any S ⊆
T ⊆ F and x ∈ F . fy,Y (T ∪ {x }) − fy,Y (T ) ≤ fy,Y (S ∪ {x }) − fy,Y (S ). fy,Y (S ) is the optimum
of a fractional knapsack instance where each client is an item with value equal to the difference
between its contribution to fracpp (I) −S

p
p (I) and weight equal to its contribution to fracpp (I), with

the knapsack having total weight Y . For simplicity, we can assume there is a dummy item with
value 0 and weight Y in the knapsack instance as well (a value 0 item cannot affect the optimum).
Note that the weights are fixed for any S , and the values increase monotonically with S . We will
refer to the latter fact as monotonicity of values. The optimum of a fractional knapsack instance is
given by sorting the items in decreasing ratio of value to weight and taking the (fractional) prefix
of the items sorted this way that has total weight Y . We will refer to this fact as the prefix property.
We will show that we can construct a fractional knapsack solution that when using cluster centers
S ∪ {x } has value at least fy,Y (S ) + fy,Y (T ∪ {x }) − fy,Y (T ), proving the lemma. For brevity, we will
refer to fractions of clients that may be in the knapsack as if they were integral clients.
Consider fy,Y (T ∪ {x }) − fy,Y (T ). We can split this difference into four cases as follows:

(1) A client in the optimal knapsack for S , T , and T ∪ {x }.
(2) A client in the optimal knapsack for S and T ∪ {x } but not for T .
(3) A client in the optimal knapsack for T and T ∪ {x } but not for S .
(4) A client in the optimal knapsack for T ∪ {x } but not for S or T .

In every case, the client’s value must have increased (otherwise, it cannot contribute to the differ-
ence in cases 1 and 3, or it must also be inT ’s knapsack in cases 2 and 4), i.e., x is the closest cluster
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center to the client inT ∪ {x } (and thus S ∪ {x }). Letw1,w2,w3,w4 be the total weight of clients in
each case. The total weight of clients in T ’s knapsack but not T ∪ {x } is w2 +w4. We will refer to
these clients as replaced clients. The increase in value due to cases 2 and 4 can be thought of as re-
placing the replaced clients with case 2 and 4 clients. In particular, wewill think of the case 2 clients
as replacing the replaced clients of weight w2 with the smallest total value for T , and the case 4
clients as replacing the remaining replaced clients (i.e., those with the largest total value for T ).
Without loss of generality, we assume there are no case 1 clients. By the prefix property, any of

the knapsack instances for S,T ,T ∪ {x } (and also S ∪ {x } by monotonicity of values and the prefix
property) has optimal value equal to the total value of case 1 clients plus the optimal value of a
smaller knapsack instance with total weight Y −w1 and all clients except case 1 clients available.
The value of case 1 clients for S ∪ {x } and T ∪ {x } is the same (since the values are determined
by x ), and can only be smaller for S than T by monotonicity of values. In turn, we just need to
construct a knapsack for S ∪ {x } for the smaller instance with no case 1 clients whose value is at
least that of S plus the contribution to fy,Y (T ∪ {x }) − fy,Y (T ) from cases 2–4.
To build the desired knapsack for S ∪ {x }, we start with the knapsack for S . The case 2 clients

in S’s knapsack by the prefix property have less value for S than for T by monotonicity of values.
By the prefix property, for T the case 2 clients have less value than the replaced clients of total
weightw2 with the smallest total value forT (since the former are not in the optimal knapsack for
T , and the latter are). So, the increase in value of the case 2 clients in S’s knapsack is at least the
contribution to fy,Y (T ∪ {x }) − fy,Y (T ) due to replacing clients inT ’s knapsack with case 2 clients.

To account for the case 4 clients, we take the clients in S’s knapsack that are not case 2 clients
with weight w4 and the least total value for T and replace them with the case 4 clients. These
clients are among the clients of total weight w2 + w4 with the lowest value-to-weight ratios
(for T ) in S’s knapsack (they are not necessarily the clients of total weight w4 with the lowest
value-to-weight ratios, because we chose not to include case 2 clients in this set). However, the
replaced clients in T ’s knapsack all have value-to-weight ratios for T greater than at least w2

weight of other clients in T ’s knapsack (those replaced by the case 2 clients). So by monotonicity
of values and the prefix property, the clients we replace in S’s knapsack with case 4 clients have
lower value for S than the clients being replaced by case 4 clients do forT , and so we increase the
value of our knapsack by more than the contribution to fy,Y (T ∪{x })− fy,Y (T ) due to case 4 clients.

Last, we take any clients in S’s knapsack that are not inT ’s knapsack or case 2 or case 4 clients
with total weight w3 and replace them with the case 3 clients. Since these clients are not in T ’s
knapsack, their value for T (and thus their value for S by monotonicity of values) is less than the
case 3 clients’ value for T by the prefix property. In turn, this replacement increases the value of
our knapsack by more than the contribution to fy,Y (T ∪ {x }) − fy,Y (T ) due to case 3 clients. �

This lemma allows us to now give an approximate separation oracle for fractional solutions of
universal �p -clustering by trying all guesses for Y (�p -SepOracle in Figure 1).
One complication of using the above as a separation oracle in the ellipsoid algorithm is that

it outputs linear constraints, whereas the actual constraints in the fractional relaxation given in
Equation (5) are non-linear. So, in the following lemma, we need some additional work to show that
violation of the linear constraints output by �p -SepOracle also implies violation of the non-linear
constraints in Equation (5).

Lemma 3.7. For any p ≥ 1, ϵ > 0 there exists an algorithm that finds a ( e
e−1 ·p +ϵ )-approximation

to the lp for the universal �p -clustering problem.

Proof. The algorithm is to use the ellipsoid method with �p -SepOracle as the separation or-
acle. We note that fy,Y (S ) can be evaluated in polynomial time by computing optimal fractional
knapsacks as discussed in the proof of Lemma 3.6. In addition, there are polynomially values of Y
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Fig. 1. Separation Oracle for �p -clustering.

that are iterated over, since �log1+ϵ ′ cmax/cmin� isO (p logn/ϵ ′) times the number of bits needed to
describe the largest value of ci j . So each call to �p -SepOracle takes polynomial time.

By Lemma 3.5 and the observation that fracpp (I) − S
p
p (I) ≤ p · fracp−1p (I) (fracp (I) − Sp (I)) if

fracp (I)−Sp (I) > 0, thenwe get that �p -SepOracle cannot output a violated inequality if the input
solution is feasible to Equation (5). So we just need to show that if fracp (C ′)−Sp (C ′) ≥ ( e

e−1p+ϵ )r
for some S,C ′, then �p -SepOracle outputs a violated inequality, i.e., does not output “Feasible.”
Let Y ′ be the smallest value of Y iterated over by �p -SepOracle that is at least fracpp (C

′), and

S ′ the e−1
e
-maximizer of fy,Y ′ found by �p -SepOracle. We have for the I′ found on Line 7 of �p -

SepOracle:

1

p (Y ′)1−1/p

[
fracpp (I

′) − S ′pp (I′)
]
≥ e − 1

pe (Y ′)1−1/p
max

S,I:frac
p
p (I)≤Y ′

[
fracpp (I

′) − Spp (I′)
]

(i )
≥ e − 1

pe (Y ′)1−1/p
max

S,I:frac
p
p (I)≤frac

p
p (C

′)

[
fracpp (I) − S

p
p (I)

]
≥ e − 1

pe (Y ′)1−1/p

[
fracpp (C

′) − Spp (C ′)
]

≥ e − 1
pe (1 + ϵ ′)

fracpp (C
′) − Spp (C ′)

fracp−1p (C ′)
=

e − 1
pe (1 + ϵ ′)

[
fracp (C

′) − Sp (C ′)
]
> r .

In (i ), we use the fact that for a fixed S , max
I:frac

p
p (I)≤Y [frac

p
p (I
′) − Spp (I′)] is the solution to a

fractional knapsack problem with weight Y and that decreasing the weight allowed in a fractional
knapsack instance can only reduce the optimum. For the last inequality to hold, we just need to

choose ϵ ′ < ϵ (e−1)
pe

in �p -SepOracle for the desired ϵ . This shows that for Y ′, �p -SepOracle will
output a violated inequality as desired. �

3.3 Universal �p -Clustering: Rounding Algorithm

At a high level, we use the same strategy for rounding the fractional �p -clustering solution aswe did
with k-median. Namely, we solve a discounted version of the problem where the discount for each
client is equal to the (scaled) cost of the client in the fractional solution. However, if we apply this
directly to the �p objective, then we run into several problems. In particular, the linear discounts
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are incompatible with the non-linear objective defined over the clients. A more promising idea is
to use these discounts on the �pp objective, which in fact is defined as a linear combination over the
individual client’s objectives. But, for this to work, we will first need to relate the regret bound in
the �pp objective to that in the �p objective. This is clearly not true in general, i.e., for all realizations.
However, we show that the realization that maximizes the regret of an algorithm alg against a
fixed solution sol in both objectives is the same under the following “farness” condition: For every
client, either alg’s connection is smaller than sol’s or it is at least p times as large as sol’s. Given
any solution sol, it is easy to define a virtual solution s̃ol whose individual connection costs are
bounded by p times that in sol, and s̃ol satisfies the farness condition. This allows us to relate the
regret of alg against s̃ol (and thus against p times sol) in the �pp objective to its regret in the �p
objective.
We first state the technical lemma relating the �pp and �p objectives under the farness condition.

Informally, this lemma says that if we want to choose a realization maximizing the regret of alg
against sol in (an approximation of) the �p -objective, we should always include a client whose
distance to alg exceeds their distance to sol by a factor larger than p. This contrasts (and limits)
the example given at the beginning of this section, where we showed that including clients whose
distance to alg exceeds the distance to sol by a smaller factor can actually reduce the regret of alg
against sol. In turn, if all clients are closer to sol are closer by a factor of p, then the realization
that maximizes regret in the �p -objective is also the realization that maximizes regret in the �pp -
objective.

Lemma 3.8. Suppose alg and sol are two solutions to an �p -clustering instance, such that there is
a subset of clients C∗ with the following property: for every client in C∗, the connection cost in alg is
greater than p times the connection cost in sol, while for every client not inC∗, the connection cost in
sol is at least the connection cost in alg. Then, C∗ maximizes the following function:

f (C ′) :=
⎧⎪⎪⎨⎪⎪⎩
alg

p
p (C

′)−solpp (C ′)
alg

p−1
p (C ′)

alg
p
p (C

′) > 0

0 alg
p
p (C

′) = 0
.

Proof. Fix any subset of clients C ′ that does not include j. Let algqp (C
′) be alg’s �qp -objective

cost on this subset, solqp (C
′) be sol’s �qp -objective on this subset, a be alg’s connection cost for j

to the pth power, and s be sol’s connection cost for j to the pth power. To do this, we analyze a
continuous extension of f , evaluated at C ′ plus j in fractional amount x ,

f̃j (C
′,x ) =

algpp (C
′) + ax − solpp (C ′) − sx

(algpp (C ′) + ax ) (p−1)/p
.

When x = 0, this is f (C ′) (if f (C ′) is positive) and when x = 1, this is f (C ′ ∪ {j}) (if f (C ′ ∪ {j})
is positive). Its derivative with respect to x is as follows:

d

dx
f̃j (C

′,x ) =
(a − s ) (algpp (C ′) + ax ) (p−1)/p −

a (p−1)
p
· alg

p
p (C

′)+ax−solpp (C ′)−sx
(alg

p
p (C

′)+ax )1/p

(algpp (C ′) + ax )2(p−1)/p
,

which has the same sign as

(a − s ) − a(p − 1)
p

·
algpp (C

′) + ax − solpp (C ′) − sx
algpp (C ′) + ax

.

If algpp (C
′) + ax > solpp (C

′) + sx , i.e., f̃j (C ′,x ) is positive, then
d
dx

f̃j (C
′,x ) is negative if a ≤ s .

Consider any C ′ including a client j not in C∗. Suppose f (C ′) > 0. Then f̃j (C
′,x ) has a negative
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derivative on [0, 1] (since f̃j (C
′,x ) starts out positive and is increasing as x goes from 1 to 0, i.e., it

stays positive), so f (C ′ \ {j}) = f̃j (C
′, 0) > f̃j (C

′, 1) = f (C ′), and C ′ cannot be a maximizer of f .
If otherwise f (C ′) = 0, then C ′ clearly cannot be a maximizer of f unless C∗ is as well.
Similarly, observe that

(a − s ) − a(p − 1)
p

·
algpp (C

′) + ax − solpp (C ′) − sx
algpp (C ′) + ax

> (a − s ) − a(p − 1)
p

=
a

p
− s .

So d
dx

f̃j (C
′,x ) is positive if a > ps , which holds for all j ∈ C∗. Consider any C ′ not including

a client j in C∗. Suppose f (C ′) > 0. Then f̃j (C
′,x ) has a positive derivative on [0, 1], so f (C ′) =

f̃j (C
′, 0) < f̃j (C

′, 1) = f (C ′ ∪ {j}), andC ′ cannot be a maximizer of f . If otherwise f (C ′) = 0, then
C ′ clearly cannot be a maximizer of f unlessC∗ is as well. Since we have shown that everyC ′ � C∗

cannot be a maximizer of f unless C∗ is also a maximizer of f , we conclude that C∗ maximizes
f . �

Intuitively, this lemma connects the �p and �pp objectives as this subset of clients C∗ will also

be the set that maximizes the �pp regret of alg vs sol, and f (C ′) is (within a factor of p) equal

to the �p regret. We use this lemma along with the �pp -clustering with discounts approximation
in Lemma 3.4 to design the rounding algorithm for universal �p -clustering. As in the rounding
algorithm for universal k-median, let sol denote a (virtual) solution whose connection costs are
3 times that of the fractional solution frac for all clients. The rounding algorithm solves an �pp -
clustering with discounts instance, where the discounts are 2 times sol’s connection costs. (Recall
that in k-median, the discount was equal to sol’s connection cost. Now, we need the additional
factor of 2 for technical reasons.) Let alg be the solution output by the algorithm of Lemma 3.4
for this problem. We prove the following bound for alg:

Lemma 3.9. There exists an algorithm that, given any (α , β )-approximate fractional solution frac
for �p -clustering, outputs a (54pα , 54pβ + 18p1/p )-approximate integral solution.

Proof. Let sol denote a (virtual) solution whose connection costs are 3 times that of the frac-
tional solution frac for all clients. The rounding algorithm solves an �pp -clustering with discounts
instance, where the discounts are 2 times sol’s connection costs. Let alg be the solution output
by the algorithm of Lemma 3.4 for this problem. We also consider an additional virtual solution
s̃ol, whose connection costs are defined as follows: For clients j such that alg’s connection cost
is greater than 18 times sol’s but less than 18p times sol’s, we multiply sol’s connection costs by
p to obtain connection costs in s̃ol. For all other clients, the connection cost in s̃ol is the same as
that in sol. Now, alg and 18 · s̃ol satisfy the condition in Lemma 3.8 and 18 · s̃ol is a (54pα , 54pβ )-
approximation.
Our goal in the rest of the proof is to bound the regret of alg against (a constant times) s̃ol by

(a constant times) the minimum regret mr. Let us denote this regret as follows:

reg := max
C ′ ⊆C

[
algp (C

′) − 18 · s̃olp (C ′)
]
.

Note that if reg = 0 (it cannot be negative), then for all realizations C ′, algp (C ′) ≤ 18 · s̃olp (C ′).
In that case, the lemma follows immediately. So, we assume that reg > 0.
LetC1 = argmaxC ′ ⊆C [algp (C

′) − 18 · s̃olp (C ′)], i.e., the realization defining reg that maximizes
the regret for the �p objective. We need to relate reg to the regret in the �pp -objective for us to use

the approximation guarantees of �pp -clustering with discounts from Lemma 3.4. Lemma 3.8 gives
us this relation, since it tells us that C1 is exactly the set of clients for which alg’s closest cluster
center is at a distance of more than 18 times that of s̃ol’s closest cluster center. But this means that
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C1 also maximizes the regret for the �pp objective, i.e., C1 = argmaxC ′[alg
p
p (C

′) − 18p · s̃olpp (C ′)].
Then, we have the following:

reg =
maxC ′ ⊆C

[
algpp (C

′) − 18p · s̃olpp (C ′)
]

∑p−1
j=0 alg

j
p (C1) ·

(
18 · s̃olp (C1)

)p−1−j ≤
maxC ′ ⊆C

[
algpp (C

′) − 18p · s̃olpp (C ′)
]

algp−1p (C1)

≤
maxC ′ ⊆C

[
algpp (C

′) − 18p · solpp (C ′)
]

algp−1p (C1)
.

The last inequality follows since connection costs in s̃ol are at least those in sol. Note that the
numerator in this last expression is exactly the value of the objective for the �pp -clustering with
discounts problem from Lemma 3.4. Using this lemma, we can now bound the numerator by the
optimum for this problem, which in turn is bounded by the objective produced by the minimum
regret solution mrs for the �pp -clustering with discounts instance,

reg ≤
maxC ′ ⊆C

[
algpp (C

′) − 18p · solpp (C ′)
]

algp−1p (C1)
≤ 2

3
· 9p ·

maxC ′ ⊆C
[
mrspp (C

′) − 2p · solpp (C ′)
]

algp−1p (C1)
. (6)

First, we bound the numerator in the above expression. Let C2 := argmaxC ′ ⊆C [mrs
p
p (C

′)− 2p ·
solpp (C

′)] be the realization that maximizes this term. We now relate this term to mr (the first step
is by factorization and the second step holds because 2 · sol = 6 · frac exceeds the optimal integer
solution by to the upper bound of 3 on the integrality gap [4]),

max
C ′

[
mrspp (C

′) − 2p · solpp (C ′)
]
=
(
mrsp (C2) − 2 · solp (C2)

)

·
p−1∑
j=0

mrsjp (C2) · (2 · solp (C2))
p−1−j

≤ mr ·
p−1∑
j=0

mrsjp (C2) · (2 · solp (C2))
p−1−j .

Using the above bound in Equation (6), we get

reg ≤ 2

3
· 9p · mr ·

∑p−1
j=0 mrs

j
p (C2) · (2 · solp (C2))

p−1−j

algp−1p (C1)
. (7)

In the rest of proof, we obtain a bound on the last term in Equation (7). We consider two cases.

If algp (C1) ≥ 9p
1
p · mrsp (C2) (intuitively, the denominator is large compared to the numerator),

then ∑p−1
j=0 mrs

j
p (C2)2p−1−jsol

p−1−j
p (C2)

algp−1p (C1)
≤ p ·

mrsp−1p (C2)

algp−1p (C1)
≤ p · (9p

1
p )−p+1 = 9−p+1p1/p ,

The first step uses the fact that mrsp (C2) ≥ 2solp (C2), so the largest term in the sum is

mrsp−1p (C2). Combined with Equation (7), this reg ≤ 6p1/p · mr, giving the lemma statement.

If algp (C1) < 9p
1
p · mrsp (C2), then we cannot hope to meaningfully bound Equation (7). In

this case, however, reg is also bounded by mrsp (C2), which we will eventually bound by mr.
More formally, by our assumption that reg > 0, mrspp (C2) − 2p · solpp (C2) > 0 and we
have 2solp (C2) ≤ mrsp (C2) ≤ solp (C2) + mr. The first inequality is by our assumption that
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mrspp (C2) − 2p · solpp (C2) > 0, the second inequality is by definition of mrs,mr and the fact that
sol(C2) upper bounds opt(C2). In turn, solp (C2) ≤ mr, which gives mrsp (C2) ≤ 2mr and thus

reg ≤ algp (C1) ≤ 18p
1
p · mr. We note that for all p ≥ 1, p1/p ≤ e1/e ≤ 1.5. �

We note that the final step requires using discounts equal to twice sol’s connection costs instead
of just sol’s connection costs. If we did the latter, then we would have started with the inequality
solp (C2) ≤ mrsp (C2) ≤ solp (C2) + mr instead, which does not give us any useful bound on
sol(C2) or mrs(C2) in terms of just mr. We also note that we chose not to optimize the constants
in the final result of Lemma 3.9 in favor of simplifying the presentation.
Theorem 3.1 now follows by using the values of (α , β ) from Lemma 3.7 (and a sufficiently small

choice of the error parameter ϵ) in the statement of Lemma 3.9 above.

4 UNIVERSAL k-CENTER

In the previous section, we gave universal algorithms for general �p -clustering problems. Recall
that the k-center objective, defined as the maximum distance of a client from its closest cluster
center, can also be interpreted as the �∞-objective in the �p -clustering framework. Moreover, it is
well known that for any n-dimensional vector, its �logn and �∞ norms differ only a constant factor
(see Fact A.1 in Appendix A). Therefore, choosing p = logn in Theorem 3.3 gives poly-logarithmic
approximation bounds for the universalk-center problem. In this section, we give direct techniques
that improve these bounds to constants:

Theorem 4.1. There exists a (3, 3)-approximate algorithm for the universal k-center problem.

Recall that F is the set of all cluster centers, so mini ∈F ci j gives the smallest distance from client j
to any cluster center that can be opened. In turn, for every client j, its distance to the closest cluster
center in the minimum regret solution mrs, mini ∈mrs ci j , must be at most mrj := mini ∈F ci j + mr.
This is because in the realization where only j appears, the optimal solution has cost mini ∈F ci j ,
and the cost of mrs is just mini ∈mrs ci j . So, we design an algorithm alg that 3-approximates these
distances mrj , i.e., for every client j, its distance to the closest cluster center in alg is at most 3mrj .
Indeed, this algorithm satisfies a more general property: Given any value r , it produces a set of
cluster centers alg such that every client j is at a distance ≤ 3r j from its closest cluster center (that
is, mini ∈alg ci j ≤ 3r j ), where r j := mini ∈F ci j + r . Moreover, if r ≥ mr, then the number of cluster
centers selected by alg is at most k (for smaller values of r , alg might select more than k cluster
centers).
Our algorithm alg is a natural greedy algorithm. We order clients j in increasing order of r j ,

and if a client j does not have a cluster center within distance 3r j in the current solution, then we
add its closest cluster center in F to the solution.

Lemma 4.2. Given a value r , the greedy algorithm alg selects cluster centers that satisfy the fol-
lowing properties:

• every client j is within a distance of 3r j = 3(mini ∈F ci j + r ) from their closest cluster center.
• If r ≥ mr, then alg does not select more than k cluster centers, i.e., the solution produced by
alg is feasible for the k-center problem.

Proof. The first property follows from the definition of alg.
To show that alg does not pick more than k cluster centers, we map the cluster center i added

in alg by some client j to its closest cluster center i ′ in mrs. Now, we claim that no two cluster
centers i1, i2 in alg can be mapped to the same cluster center i ′ in mrs. Clearly, this proves the
lemma since mrs has only k cluster centers.
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Fig. 2. Two clients j1, j2 that are distance at most r j1 , r j2 respectively from the same cluster center i ′ in mrs

cannot cause alg to add two different cluster centers i1, i2.

Suppose i1, i2 are two cluster centers in alg mapped to the same cluster center i ′ in mrs. Assume
without loss of generality that i1 was added to alg before i2. Let j1, j2 be the clients that caused
i1, i2 to be added; since i2 was added later, we have r j1 ≤ r j2 . The distance from j2 to i1 is at most
the length of the path (j2, i

′, j1, i1) (see Figure 2), which is at most 2r j2 + r j1 ≤ 3r j2 . But in this case
j2 would not have added a new cluster center i2, thus arriving at a contradiction. �

We now use the above lemma to prove Theorem 4.1.

Proof of Theorem 4.1. In any realization C ′ ⊆ C , the optimal value of the k-center objective
is opt(C ′) ≥ maxj ∈C ′ mini ∈F ci j , whereas the solution produced by the algorithm alg given above
has objective value at most 3(maxj ∈C ′ mini ∈F ci j + r ). So, alg’s solution costs at most 3 ·opt(C ′) +
3 · r for all realizations C ′ ⊆ C . So, if we were able to choose r = mr, then we would prove the
theorem. But we do not know the value of mr (in fact, this is NP-hard). Instead, we increase the
value of r continuously until alg produces a solution with at most k clients. By Lemma 4.2, we are
guaranteed that this will happen for some r ≤ mr, which then proves the theorem.
Our final observation is that this algorithm can be implemented in polynomial time, since there

are only polynomially many possibilities for the k-center objective across all realizations (namely,
the set of all cluster center to client distances) and thus polynomially many possible values for mr
(the set of all differences between all possible solution costs). So, we only need to run alg for these
values of r in increasing order. �

Wenote that the greedy algorithm described above can be viewed as an extension of thek-center
algorithm in Reference [33] to a (3, 3)-approximation for the “k-center with discounts” problem,
where the discounts are the minimum distances mini ∈F ci j .

5 UNIVERSAL k-MEDIANWITH FIXED CLIENTS

In this section, we extend the techniques from Section 2 to prove the following theorem:

Theorem 5.1. If there exists a deterministic polynomial time γ -approximation algorithm for the
k-median problem, then for every ϵ > 0 there exists a (54γ + ϵ, 60)-approximate universal algorithm
for the universal k-median problem with fixed clients.
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By using the derandomized version of the (2.732+ ϵ )-approximation algorithm of Li and Svens-
son [44] for the k-median problem, and appropriate choice of both ϵ parameters, we obtain the
following corollary from Theorem 5.1.

Corollary 5.2. For every ϵ > 0, there exists a (148 + ϵ, 60)-approximate universal algorithm for
the k-median problem with fixed clients.

Our high level strategy comprises two steps. In Section 5.2, we show how to find a good frac-
tional solution by approximately solving a linear program. In Section 5.3, we then round the frac-
tional solution in amanner that preserves its regret guaranteewithin constant factors. As discussed
in Section 1.1, for simplicity our algorithm’s description and analysis will avoid the notion of de-
mands and instead equivalently view the input as specifying a set of fixed and unfixed clients, of
which multiple might exist at the same location.

5.1 Preliminaries

In addition to the preliminaries of Section 2, we will use the following tools:

Submodular Maximization over Independence Systems. An independence system comprises
a ground set E and a set of subsets (called independent sets) I ⊆ 2E with the property that ifA ⊆ B
and B ∈ I, then A ∈ I (the subset closed property). An independent set S in I is maximal if there
does not exist S ′ ⊃ S such that S ′ ∈ I. Note that one can define an independence system by spec-
ifying the set of maximal independent sets I′ only, since the subset closed property implies I is
simply all subsets of sets in I′. An independence system is a 1-independence system (or 1-system
in short) if all maximal independent sets are of the same size. The following result on maximiz-
ing submodular functions over 1-independence systems follows from a more general result given
implicitly in Reference [48] and more formally in Reference [14].

Theorem 5.3. There exists a polynomial time algorithm that given a 1-independence system (E,I)
and a non-negative monotone submodular function f : 2E → R+ defined over it, finds a 1

2 -maximizer

of f , i.e., finds S ′ ∈ I such that f (S ′) ≥ 1
2 maxS ∈I f (S ).

The algorithm in the above theorem is the natural greedy algorithm, which starts with S ′ = ∅
and repeatedly adds to S ′ the element u that maximizes f (S ′ ∪ {u}) while maintaining that S ′ ∪ {u}
is in I, until no such addition is possible.

Incremental �p-Clustering. We will also use the incremental �p -clustering problem that is de-
fined as follows: Given an �p -clustering instance and a subset of the cluster centers S (the “existing”
cluster centers), find the minimum cost solution to the �p -clustering instance with the additional
constraint that the solution must contain all cluster centers in S . When S = ∅, this is just the stan-
dard �p -clustering problem, and this problem is equivalent to the standard �p -clustering problem
by the following lemma:

Lemma 5.4. If there exists a γ -approximation algorithm for the �p -clustering problem, then there
exists a γ -approximation for the incremental �p -clustering problem.

Proof of Lemma 5.4. The γ -approximation for incremental �p -clustering is as follows: Given
an instance I of incremental �p -clustering with clients C and existing cluster centers S , create
a �p -clustering instance I ′ that has the same cluster centers and clients as the �p -clustering in-
stance except that at the location of every cluster center in S , we add a client with demand
γ |C |1/p maxi, j ci j + 1.

LetT ∗ be the solution that is a superset of S of size k that achieves the lowest cost of all such su-
persets in instance I . LetT be the output of running a γ -approximation algorithm for �p -clustering
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on I ′. Then we wish to show T is a superset of S and has cost at most γ times the cost of T ∗ in
instance I .
Any solution that buys all cluster centers in S has the same cost in I and I ′. Then we claim

it suffices to show that T is a superset of S . If T is a superset of S , then since both T and T ∗ are
supersets of S and since T is a γ -approximation in instance I ′, its cost in I ′ is at most γ times the
cost ofT ∗ in I ′. This in turn impliesT has cost at mostγ times the cost ofT ∗ in I , giving the Lemma.
Assume without loss of generality no two cluster centers are distance 0 away from each other.

To show thatT is a superset of S , note that in instance I ′ any solution that does not buy a superset
of S is thus at least distance 1 from the location of some cluster center in S and thus pays cost at
least γ |C |1/p maxi, j ci j + 1 due to one of the added clients. However, any solution that is a superset
of S is distance 0 from all the added clients and thus only has to pay connection costs on clients inC ,
which in turn means it has cost at most |C |1/p maxi, j ci j . SinceT is the output of aγ -approximation
algorithm, T thus has cost at most γ |C |1/p maxi, j ci j , which means T must be a superset of S . �

5.2 Obtaining a Fractional Solution for Universal k-Median with Fixed Clients

LetCf ⊆ C denote the set of fixed clients and for any realization of clientsC ′ satisfyingCf ⊆ C ′ ⊆
C , let opt(C ′) denote the cost of the optimal solution for C ′. The universal k-median LP is given
by

min r (r denotes maximum regret across all demand realizations)

s.t.
∑
i ∈F

xi ≤ k (xi = 1 if we open cluster center i)

∀i ∈ F , j ∈ C : yi j ≤ xi (yi j = 1 if cluster center i is serving client j)

∀j ∈ C :
∑
i ∈F

yi j ≥ 1

∀Cf ⊆ C ′ ⊆ C :
∑
j ∈C ′

∑
i ∈F

ci jyi j − opt(C ′) ≤ r (8)

∀i ∈ F , j ∈ C : xi ,yi j ∈ [0, 1].
Note that Equation (8) and the objective function distinguish this LP from the standard k-median
LP. We call Equation (8) the regret constraint set. For a fixed fractional solution x ,y, r , our goal is
to approximately separate the regret constraint set, since all other constraints can be separated
exactly. In the rest of this subsection, we describe our approximate separation oracle and give its
analysis.
Let S (C ′) denote the cost of the solution S ⊆ F in realizationC ′ (that is, S (C ′) =

∑
j ∈C ′ mini ∈S ci j ).

Since opt(C ′) = minS :S ⊆F , |S |=k S (C ′), separating the regret constraint set exactly is equivalent to
deciding if the following holds:

∀S : S ⊆ F , |S | = k : max
C ′:Cf ⊆C ′ ⊆C

⎡⎢⎢⎢⎢⎢⎣
∑
j ∈C ′

∑
i ∈F

ci jyi j − S (C ′)
⎤⎥⎥⎥⎥⎥⎦ ≤ r . (9)

By splitting the terms
∑

j ∈C ′
∑

i ∈F ci jyi j and S (C ′) into terms for Cf and C ′ \ Cf , we can rewrite
Equation (9) as follows:

max
Cf ⊆C ′ ⊆C,S ⊆F , |S |=k

∑
j ∈C ′

∑
i ∈F

ci jyi j − S (C ′) ≤ r

∀S ⊆ F , |S | = k : max
Cf ⊆C ′ ⊆C

∑
j ∈C ′

⎡⎢⎢⎢⎢⎣
∑
i ∈F

ci jyi j − S (C ′)
⎤⎥⎥⎥⎥⎦ ≤ r
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∀S ⊆ F , |S | = k : max
Cf ⊆C ′ ⊆C

∑
j ∈C ′\Cf

⎡⎢⎢⎢⎢⎢⎣
∑
i ∈F

ci jyi j +
∑
j ∈Cf

∑
i ∈F

ci jyi j − S (C ′ \Cf ) − S (Cf )

⎤⎥⎥⎥⎥⎥⎦ ≤ r

∀S ⊆ F , |S | = k : max
Cf ⊆C ′ ⊆C

⎡⎢⎢⎢⎢⎢⎣
∑

j ∈C ′\Cf

∑
i ∈F

ci jyi j − S (C ′ \Cf )

⎤⎥⎥⎥⎥⎥⎦ ≤ S (Cf ) −
∑
j ∈Cf

∑
i ∈F

ci jyi j + r

∀S ⊆ F , |S | = k : max
C∗ ⊆C\Cf

⎡⎢⎢⎢⎢⎢⎣
∑
j ∈C∗

∑
i ∈F

ci jyi j − S (C∗)
⎤⎥⎥⎥⎥⎥⎦ ≤ S (Cf ) −

∑
j ∈Cf

∑
i ∈F

ci jyi j + r .

For fractional solution y, let

fy (S ) = max
C∗:C∗ ⊆C\Cf

⎡⎢⎢⎢⎢⎢⎣
∑
j ∈C∗

∑
i ∈F

ci jyi j − S (C∗)
⎤⎥⎥⎥⎥⎥⎦ . (10)

Note thatwe can compute fy (S ) for any S easily since themaximizing value ofC∗ is the set of clients
j for which S has connection cost less than

∑
i ∈F ci jyi j . We already know fy (S ) is not submodular.

But the term S (Cf ) is not fixed with respect to S , so maximizing fy (S ) is not enough to separate
Equation (8). To overcome this difficulty, for every possible costM on the fixed clients, we replace
S (Cf ) withM and only maximize over solutions S for which S (Cf ) ≤ M (for convenience, we will
call any solution S for which S (Cf ) ≤ M anM-cheap solution):

∀M ∈
{
0, 1, . . . , |Cf |max

i, j
ci j

}
: max
S :S ⊆F , |S |=k,S (Cf )≤M

fy (S ) ≤ M −
∑
j ∈Cf

∑
i ∈F

ci jyi j + r . (11)

Note that this set of inequalities is equivalent to Equation (8), but it has the advantage that the left-
hand side is approximately maximizable and the right-hand side is fixed. Hence, these inequalities
can be approximately separated. However, there are exponentially many inequalities; so, for any
fixed ϵ > 0, we relax to the following polynomially large set of inequalities:

∀M ∈
{
0, 1, 1 + ϵ, . . . , (1 + ϵ ) �log1+ϵ ( |Cf |maxi, j ci j )�+1

}
:

max
S :S ⊆F , |S |=k,S (Cf )≤M

fy (S ) ≤ M −
∑
j ∈Cf

∑
i ∈F

ci jyi j + r . (12)

Separating inequality Equation (12) for a fixed M corresponds to submodular maximization of
fy (S ), but now subject to the constraints |S | = k and S (Cf ) ≤ M as opposed to just |S | = k . Let SM
be the set of all S ⊆ F such that |S | = k and S (Cf ) ≤ M . Since fy (S ) is monotone, maximizing fy (S )
over SM is equivalent to maximizing fy (S ) over the independence system (F ,IM ) with maximal
independent sets SM .

Then all that is needed to approximately separate Equation (12) corresponding to a fixed M is
an oracle for deciding membership in (F ,IM ). Recall that S ⊆ F is in (F ,IM ) if there exists a set
S ′ ⊇ S such that |S ′ | = k and S ′(Cf ) ≤ M . But even deciding membership of the empty set in
(F ,IM ) requires one to solve a k-median instance on the fixed clients, which is in general NP-hard.
More generally, we are required to solve an instance of the incremental k-median problem (see
Section 5.1) with existing cluster centers in S .
While exactly solving incremental k-median is NP-hard, we have a constant approximation

algorithm for it (call it A), by Lemma 5.4. So, we could define a new system (F ,I′M ) that contains
a set S ⊆ F if the output of A for the incremental k-median instance with existing cluster centers
S has cost at mostM . But (F ,I′M ) may no longer be a 1-system, or even an independence system.
To restore the subset closed property, the membership oracle needs to ensure that (a) if a subset
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Fig. 3. Modified greedy submodular maximization algorithm.

S ′ ⊆ S is determined to not be in (F ,I′M ), then S is not either, and (b) if a superset S ′ ⊇ S is
determined to be in (F ,I′M ), then so is S .
We now give the modified greedy maximization algorithm GreedyMax that we use to try to

separate one of the inequalities in Equation (12), which uses a built-in membership oracle that
ensures the above properties hold. Pseudocode is given in Figure 3, and we informally describe
it here. GreedyMax initializes S0 = ∅, F0 = F , and starts with a M-cheap k-median solution T0
(generated by running a γ -approximation on the k-median instance involving only fixed clients
Cf ). In iteration l , GreedyMax starts with a partial solution Sl−1 with l − 1 cluster centers, and it
is considering adding cluster centers in Fl−1 to Sl−1. For each cluster center i in Fl−1, GreedyMax
generates some k-median solution Tl,i containing Sl−1 ∪ {i} to determine if Sl−1 ∪ {i} is in the
independence system. If a previously generated solution,T0 orTl ′,i′ for any l ′, i ′, contains Sl−1∪{i}
and is M-cheap, then Tl,i is set to this solution. Otherwise, GreedyMax runs the incremental k-
median approximation algorithm on the instance with existing cluster centers in Sl−1∪{i}, the only
cluster centers in the instance are Fl−1, and the client set isCf . It setsTl,i to the solution generated
by the approximation algorithm.
After generating the set of solutions {Tl,i }i ∈Fl−1 , if one of these solutions contains Sl−1 ∪ {i} and

is M-cheap, then GreedyMax concludes that Sl−1 ∪ {i} is in the independence system. This, com-
bined with the fact that these solutions may be copied from previous iterations ensures property
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Fig. 4. Approximate separation oracle for universal k-median.

(b) holds (as the M-cheap solutions generated by GreedyMax are implicitly considered to be in
the independence system). Otherwise, since GreedyMax was unable to find anM-cheap superset
of Sl−1 ∪ {i}, it considers Sl−1 ∪ {i} to not be in the independence system. In accordance with these
beliefs, GreedyMax initializes Fl as a copy of Fl−1, and then removes any i such that it did not find
an M-cheap superset of Sl−1 ∪ {i} from Fl and thus from future consideration, ensuring property
(a) holds. It then greedily adds to Sl−1 the i in Fl that maximizes fy (Sl−1 ∪ {i}) as defined before to
create a new partial solution Sl . After the kth iteration, GreedyMax outputs the solution Sk .
Our approximate separation oracle, SepOracle, can then use GreedyMax as a subroutine.

Pseudocode is given in Figure 4, and we give an informal description of the algorithm here.
SepOracle checks all constraints except the regret constraint set, and then outputs any vio-
lated constraints it finds. If none are found, it then runs a k-median approximation algorithm
on the instance containing only the fixed clients to generate a solution T0. For each M that is 0
or a power of 1 + ϵ (as in Equation (12)), if T0 is M-cheap, it then invokes GreedyMax for this
value of M (otherwise, GreedyMax will consider the corresponding independence system to be
empty, so there is no point in running it), passingT0 to GreedyMax. It then checks the inequality∑

j ∈C ′
∑

i ci jyi j −S (C ′) ≤ M −∑j ∈Cf
∑

i ci jyi j + r for the solution S outputted by GreedyMax, and
outputs this inequality if it is violated.
This completes the intuition behind and description of the separation oracle. We now move on

to its analysis. First, we show that GreedyMax always finds a valid solution.

Lemma 5.5. GreedyMax always outputs a set Sk of size k when called by SepOracle.

Proof. Note that GreedyMax is only invoked if T0 is M-cheap. This implies some T1,i is M-
cheap since some T1,i will be initialized to T0. Then, it suffices to show that in the lth iteration,
there is some i that can be added to Sl . If this is true, then it implies Sk is of size k since k elements
are added across all k iterations.
This is true in iteration 1 because some T1,i is M-cheap and thus any element of T1,i is in F1

and can be added. Assume this is inductively true in iteration l , i.e., i is added to Sl in iteration
l because i is in some M-cheap Tl,i′ . Since Tl,i′ is M-cheap, no element of Tl,i′ is deleted from Fl .
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Then in iteration l + 1, for all i ′′ in Tl,i′ \ Sl (a set of size k − l , i.e., non-empty), Tl+1,i′′ can be
initialized to Tl,i′ . Then all such i ′′ can be added to Sl+1 because all such i ′′ satisfy that Tl+1,i′′ is
M-cheap and thus are in Fl+1. By induction, in all iterations, there is some i that can be added to
Sl , giving the Lemma. �

Then, the following lemma asserts that GreedyMax is indeed performing greedy submodular
maximization over some 1-system.

Lemma 5.6. Fix any run of GreedyMax. Consider the values of Sl ,Tl,i , Fl for all l , i (defined as in
Figure 3) at the end of this run. Let B be the set containing Sl−1 ∪ {i} for each l , i � Fl , i � Sl−1. Let
(F ,S) be the independence system for which the set of maximal independent sets Smax consists of all
size k subsets S of F such that no subset of S is in B, and S isM-cheap. Then the following properties
hold:
(1) For any l and any i � Fl , Sl−1 ∪ {i} is not in S
(2) For any l and any i ∈ Fl , Sl−1 ∪ {i} is in S
(3) (F ,S) is a 1-system

Proof.

Property 1. This property is immediate from the definition of B and S.
Property 2. Fix any l , i ∈ Fl . We want to show that Sl−1 ∪ {i} is in S. Since i ∈ Fl , there exists

some Tl,i′ such that Sl−1 ∪ {i} is a subset of Tl,i′ and Tl,i′ is M-cheap (otherwise, i would have been
deleted from Fl ). If we can show that Tl,i′ is in Smax , then we immediately get that Sl−1 ∪ {i} is in S.
Suppose not. Since Tl,i′ is M-cheap, this must be because some subset of Tl,i′ is of the form

Sl ′−1∪ {i ′′} for i ′′ � Fl ′, i ′′ � Sl ′−1. In particular, consider the smallest value l ′ for which this is true,
i.e., let l ′ be the iteration in which i ′′ was deleted from Fl ′ .

If l ′ < l , since i ′′was deleted from Fl ′ , then i ′′ cannot appear in anyM-cheap solution containing
Sl ′−1 generated by the incremental k-median approximation algorithm before the end of iteration
l ′ (otherwise, Tl ′,i′′ could be initialized to this solution, preventing i ′′ from being deleted). Since
i ′′ is not in Fl ′ (and thus not in Fl ′+1 . . . Fl ), in iterations l ′ + 1 to l the approximation algorithm is
not allowed to use i ′′. So no M-cheap solution is ever generated by the approximation algorithm
that is a superset of Sl ′−1 ∪ {i ′′}. ButTl,i′ is aM-cheap superset of Sl ′−1 ∪ {i ′′} that must have been
generated by the approximation algorithm at some point, a contradiction.
Thus we can assume l ′ ≥ l . However, recall thatTl,i′ is anM-cheap solution containing Sl ′ ∪{i ′′}.

If l ′ = l , then this prevents i ′′ from being deleted in iteration l ′, giving a contradiction. If l ′ > l ,
then Tl ′,i′′ can be initialized to a M-cheap superset of Sl ′ ∪ {i ′′}, since Tl,i′ is such a superset. This
also prevents i ′′ from being deleted in iteration l ′′, giving a contradiction.
In all cases assuming Tl,i′ is not in Smax leads to a contradiction, so Tl,i′ is in Smax and thus

Sl−1 ∪ {i} is in S.
Property 3. S is defined so that all maximal independent sets are of size k , giving the property.

�

Corollary 5.7. Any run of GreedyMax outputs anM-cheap, 1
2 -maximizer of fy (S ) over the sys-

tem (F ,S) as defined in Lemma 5.6.

Proof. Properties 1 and 2 in Lemma 5.6 imply that at each step, GreedyMax adds the element to
its current solution that maximizes the objective fy (S ) while maintaining that the current solution
is in S. Thus GreedyMax is exactly the greedy algorithm in Theorem 5.3 for maximizing a mono-
tone submodular objective over an independence system. By Lemma 5.5, GreedyMax always finds
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a maximal independent set, and the definition of S guarantees that this maximal independent set
isM-cheap. Lemma 2.4 gives that fy (S ) is a monotone submodular function of S . Then, Property 3
combined with Theorem 5.3 implies the solution output by GreedyMax is a 1

2 -maximizer. �

Of course, maximizing over an arbitrary 1-system is of little use. In particular, we would like
to show that the 1-system Lemma 5.6 shows we are maximizing over approximates the 1-system
of subsets of solutions whose cost on the fixed clients is at most M . The next lemma shows that
while all such solutions may not be in this 1-system, all solutions that are M

γ
-cheap are.

Lemma 5.8. In any run of GreedyMax, let S be defined as in Lemma 5.6. For the value M passed

to GreedyMax in this run and any solution S that is M
γ
-cheap, S ∈ S.

Proof. Fix any such S . Let B be defined as in Lemma 5.6. For any element B of B, it must
be the case that running a γ -approximation on the incremental k-median instance with existing
cluster centers B produced a solution with cost greater than M . This implies that for any B in B,
the incremental k-median instance with existing cluster centers B has optimal solution with cost
greater than M

γ
. However, for any subset S ′ of S , the optimal solution to the incremental k-median

instance with existing cluster centers S ′ has cost at most M
γ

since S is a feasible solution to this

instance that is M
γ
-cheap. Thus no subset of S is in B, and hence S is in S. �

Last, we show that SepOracle never incorrectly outputs that a point is infeasible, i.e., that the
region SepOracle considers feasible strictly contains the region that is actually feasible in the
universal k-median LP.

Lemma 5.9. If x ,y, r is feasible for the universal k-median LP, then SepOracle outputs “Feasible.”

Proof. SepOracle can exactly check all constraints besides the regret constraint set, so assume
that if SepOracle outputs thatx ,y, r is not feasible, then it outputs that

∑
j ∈C ′
∑

i ∈F ci jyi j − S (C ′) ≤
M−∑j ∈Cf

∑
i ∈F ci jyi j +r is violated for someM, S . In particular, it only outputs that this constraint

is violated if it actually is violated. If this constraint is violated, then since by Corollary 5.7 S is
M-cheap, ∑

j ∈C ′

∑
i ∈F

ci jyi j − S (C ′) > M −
∑
j ∈Cf

∑
i ∈F

ci jyi j + r

∑
j ∈C ′

∑
i ∈F

ci jyi j +
∑
j ∈Cf

∑
i ∈F

ci jyi j > S (C ′) +M + r

∑
j ∈C ′∪Cf

∑
i ∈F

ci jyi j > S (C ′) +M + r

≥ S (C ′) + S (Cf ) + r = S (C ′ ∪Cf ) + r ≥ opt(C ′ ∪Cf ) + r ,

which implies the point x ,y, r is not feasible for the universal k-median LP. �

We now have all the tools to prove our overall claim:

Lemma 5.10. If there exists a deterministic polynomial-time γ -approximation algorithm for the k-
median problem, then for every ϵ > 0 there exists a deterministic algorithm that outputs a (2γ (1 +
ϵ ), 2)-approximate fractional solution to the universal k-median problem in polynomial time.

Proof. We use the ellipsoid method where SepOracle is used as the separation oracle. By
Lemma 5.9 since the minimum regret solution is a feasible solution to the universal k-median
LP, it is also considered feasible by SepOracle. Then, the solution x∗,y∗, r ∗ output by the ellipsoid
method satisfies r ∗ ≤ mr.
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Suppose the ellipsoid method outputs x∗,y∗, r ∗ such that x∗,y∗ are not a (2γ (1 + ϵ ), 2)-
approximate solution. This means there exists S,Cf ⊆ C ′ ⊆ C such that∑

j ∈C ′

∑
i ∈F

ci jy
∗
i j > 2γ (1 + ϵ )S (C ′) + 2 · mr

∑
j ∈C ′\Cf

∑
i ∈F

ci jy
∗
i j − S (C ′ \Cf ) > 2γ (1 + ϵ )S (Cf ) + (2γ (1 + ϵ ) − 1)S (C ′ \Cf )

−
∑
j ∈Cf

∑
i ∈F

ci jy
∗
i j + 2 · mr

≥ 2

⎡⎢⎢⎢⎢⎢⎣γ (1 + ϵ )S (Cf ) −
∑
j ∈Cf

∑
i ∈F

ci jy
∗
i j + mr

⎤⎥⎥⎥⎥⎥⎦ .
Thus, for the value ofM in the set {0, 1, 1+ ϵ, (1+ ϵ )2, . . . (1+ ϵ ) �log1+ϵ (γ |Cf |maxi, j ci j )�+1} contained
in the interval [γS (Cf ),γ (1 + ϵ )S (Cf )], we have

∑
j ∈C ′\Cf

∑
i ∈F

ci jy
∗
i j − S (C ′ \Cf ) ≥ 2

⎡⎢⎢⎢⎢⎢⎣M −
∑
j ∈Cf

∑
i ∈F

ci jy
∗
i j + mr

⎤⎥⎥⎥⎥⎥⎦ ≥ 2

⎡⎢⎢⎢⎢⎢⎣M −
∑
j ∈Cf

∑
i ∈F

ci jy
∗
i j + r

∗
⎤⎥⎥⎥⎥⎥⎦ .

The last inequality follows since r ∗ ≤ mr. Then, consider the iteration in SepOracle where it
runs GreedyMax for this value of M . Since M ≥ γS (Cf ), S is M

γ
-cheap. Thus by Lemma 5.8, S is

part of the independence system S specified in Lemma 5.6 that GreedyMax finds a maximizer for
in this iteration, and thus the maximum of the objective in this independence system is at least
2[M − ∑j ∈Cf

∑
i ci jy

∗
i j + r

∗]. By Corollary 5.7, SepOracle thus finds some S ′,C ′′ ⊆ C \ Cf such
that S ′ isM-cheap and for which

∑
j ∈C ′′
∑

i ci jy
∗
i j − S ′(C ′′) is at leastM −

∑
j ∈Cf
∑

i ci jy
∗
i j + r

∗. But
this means SepOracle will output that x∗,y∗, r ∗ is infeasible, which means the ellipsoid algorithm
cannot output this solution, a contradiction. �

5.3 Rounding the Fractional Solution for Universal k-Median with Fixed Clients

Proof of Theorem 5.1. The algorithm is as follows: Use the algorithm of Lemma 5.10with error
parameter ϵ

54γ to find a (2γ (1 + ϵ
54γ ), 2)-approximate fractional solution. Let fj be the connection

cost of this fractional solution for client j. Construct a k-median with discounts instance with
the same clients C and cluster centers F where client j has discount 0 if it was originally a fixed
client, and discount 3fj if it was originally a unfixed client. The solution to this instance given by
Lemma 2.3 is the solution for the universal k-median instance.
Again using the integrality gap upper bound of 3 for k-median, we have the following:

mr = max
C ′

[mrs(C ′) − opt(C ′)] ≥ max
C ′

⎡⎢⎢⎢⎢⎢⎣mrs(C
′) − 3

∑
j ∈C ′

fj

⎤⎥⎥⎥⎥⎥⎦ =
∑
j ∈Cf

(mj − 3fj ) +
∑

j ∈C\Cf

(mj − 3fj )+.

(13)
The cost of the minimum regret solution in the k-median with discounts instance is given by∑

j ∈Cf

mj +
∑

j ∈C\Cf

(mj − 3fj )+ =
∑
j ∈Cf

3fj +
∑
j ∈Cf

(mj − 3fj ) +
∑

j ∈C\Cf

(mj − 3fj )+

≤
∑
j ∈Cf

3fj + mr, by Equation (13). (14)
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Let c j be the connection cost of the algorithm’s solution for client j. Lemma 2.3 and Equation (14)
give

∑
j ∈Cf

c j +
∑

j ∈C\Cf

(c j − 9 · 3fj )+ ≤ 6

⎡⎢⎢⎢⎢⎢⎣
∑
j ∈Cf

3fj + mr

⎤⎥⎥⎥⎥⎥⎦∑
j ∈Cf

c j +
∑

j ∈C\Cf

(c j − 27fj )+ ≤
∑
j ∈Cf

18fj + 6 · mr

=⇒ max
C ′

⎡⎢⎢⎢⎢⎢⎣
∑
j ∈C ′

c j − 27
∑
j ∈C ′

fj

⎤⎥⎥⎥⎥⎥⎦ =
∑
j ∈Cf

(c j − 27fj ) +
∑

j ∈C\Cf

(c j − 27fj )+ ≤ 6 · mr.

(15)

Lemma 5.10 then gives that for any valid C ′,

frac(C ′) =
∑
j ∈C ′

fj ≤ 2γ

(
1 +

ϵ

54γ

)
· opt(C ′) + 2 · mr. (16)

Using Equations (15) and (16), we can then conclude that

∀Cf ⊆ C ′ ⊆ C :
∑
j ∈C ′

c j ≤ 27
∑
j ∈C ′

fj + 6 · mr ≤ (54γ + ϵ ) · opt(C ′) + 60 · mr. �

6 UNIVERSAL �p -CLUSTERINGWITH FIXED CLIENTS

In this section, we give the following theorem:

Theorem 6.1. For all p ≥ 1, if there exists a γ -approximation for �p -clustering, then for all ϵ > 0
there exists a (54pγ · 21/p + ϵ, 108p2 + 6p1/p + ϵ )-approximate universal algorithm for �p -clustering
with fixed clients.

In particular, we get from known results [1, 30]:

• A (162p2 · 21/p + ϵ, 108p2 + 18p1/p + ϵ )-approximate universal algorithm for �p -clustering
with fixed clients for all ϵ > 0, p ≥ 1.
• A (459, 458)-approximate universal algorithm for k-means with fixed clients.

The algorithm for universal �p -clustering with fixed clients follows by combining techniques
from �p -clustering and k-median with fixed clients.

6.1 Finding a Fractional Solution

We reuse the subroutine GreedyMax to do submodular maximization over an independence sys-
tem whose bases are M-cheap solutions (that is, solutions with �p -objective at most M on only
the fixed clients), and use the submodular function fy,Y with varying choices of Y as we did for
�p -clustering. We can extend Lemma 3.5 as follows:

Lemma 6.2. For any two solutions y, S , if the global maximum of fracp (I) − Sp (I) over 1Cf ×
[0, 1]C\Cf is positive, then there is a maximizer that is in 1Cf × {0, 1}C\Cf , i.e.,

max
I∈1Cf ×[0,1]C\Cf :

[
fracp (I) − Sp (I)

]
= max

Cs ⊆C ′ ⊆C

[
fracp (C

′) − Sp (C ′)
]
.

The proof follows exactly the same way as Lemma 3.5. In that proof, the property we use of hav-
ing no fixed clients is that if the global maximum is not the all zeroes vector, then it is positive and
so fracp (I) > Sp (I). In the statement of Lemma 6.2, we just assume positivity instead. This shows
that it is still fine to output separating hyperplanes based on fractional realizations of clients in the
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Fig. 5. Approximate separation oracle for universal �p -clustering with fixed clients. GreedyMax is the same

algorithm as presented in Figure 3 for k-median.

presence of fixed clients. The only time it is maybe not fine is in a fractional realization where if the
“regret” of frac is negative, but in this case we will not output a separating hyperplane anyway.

Lemma 6.3. If there exists a γ -approximation for �p -clustering, then for all ϵ > 0, α = 21/pγ (1 +
ϵ ), β = 2p (1 + ϵ ) there exists an algorithm that outputs an (α , β )-approximate universal fractional
solution for �p -clustering with fixed clients.

Proof. If Fixed-�p -SepOracle (given in Figure 5) ever outputs an inequality in the regret con-
straint set, for the corresponding Yf ,Y , I′, S , then let fracqp (I), sol

q
p (I) denote the �

q
p costs of the

fractional solution and S as before. Then we have by definition of Yf and the constraint that∑
j ∈C dj

∑
i ∈F c

p
i jyi j ≤ Y :

r <
1

p (Yf + Y )1−1/p

⎡⎢⎢⎢⎢⎢⎣
∑
j ∈C

d ′j

∑
i ∈F

c
p
i jyi j −

∑
j ∈C

d ′j min
i ∈S

c
p
i j

⎤⎥⎥⎥⎥⎥⎦
≤ 1∑p−1

j=0 frac
j
p (I
′)solp−1−jp (I′)

[
fracpp (I

′) − solpp (I′)
]
= fracp (I

′) − solp (I′).

The second inequality uses that Fixed-�p -SepOracle only outputs an inequality in the regret
constraint set such that fracp (I′) > solp (I′). We then have by Lemma 6.2 that for any feasible
fractional solution, the inequality output by Fixed-�p -SepOracle is satisfied.

Now, suppose there exists some I, sol such that fracp (I) > αsolp (I) + βr (for r ≥ 0). Consider
the values of Y ,M iterated over by Fixed-�p -SepOracle such that

∑
j ∈C\Cf dj

∑
i ∈F c

p
i jyi j ≤ Y ≤
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(1 + ϵ ) (
∑

j ∈C\Cf dj
∑

i ∈F c
p
i jyi j ) and γ solp (Cf ) ≤ M ≤ γ (1 + ϵ )solp (Cf ). Then,

���
∑
j ∈C ′

∑
i ∈F

c
p
i jyi j

���
1/p

> αsolp (C
′) + βr

���
∑
j ∈C ′

∑
i ∈F

c
p
i jyi j

���
1/p

− αsolp (C ′) > βr

∑
j ∈C ′
∑

i ∈F c
p
i jyi j − αpsol

p
p (C

′)(∑
j ∈C ′
∑

i ∈F c
p
i jyi j
)1−1/p > βr (i)

(1 + ϵ )
(∑

j ∈C ′
∑

i ∈F c
p
i jyi j − αpsol

p
p (C

′)
)

(
Yf + Y

)1−1/p > βr (ii)

∑
j ∈C ′

∑
i ∈F

c
p
i jyi j − α

psolpp (C
′) >

βr
(
Yf + Y

)1−1/p
1 + ϵ

∑
j ∈C ′\Cf

∑
i ∈F

c
p
i jyi j − α

psolpp (C
′ \Cf ) >

βr (Yf + Y )
1−1/p

1 + ϵ
+ αpsolpp (Cf ) −

∑
j ∈Cf

∑
i ∈F

c
p
i jyi j

∑
j ∈C ′\Cf

∑
i ∈F

c
p
i jyi j − α

psolpp (C
′ \Cf ) >

βr (Yf + Y )
1−1/p

1 + ϵ
+ αp

(
M

γ (1 + ϵ )

)p
−
∑
j ∈Cf

∑
i ∈F

c
p
i jyi j . (iii)

(i) follows from the fact that solp (C ′) >
∑

j ∈C ′
∑

i ∈F c
p
i j if a > b. (ii) follows from definitions of

Yf ,Y . (iii) follows from the choice of M . Let I′C ′ denote the vector whose jth element is I′j if j ∈ C ′
and 0 otherwise. By the analysis in Section 5.1, since sol is M/γ -cheap it is in the independence
system that GreedyMax finds a 1/2-maximizer for. That is, GreedyMax outputs some S and Fixed-
�p -Oracle finds some I′ such that S isM-cheap,

∑
j ∈C\Cf d

′
j

∑
i ∈F c

p
i jyi j ≤ Y , and such that

∑
j ∈C ′\Cf

d ′j

∑
i ∈F

c
p
i jyi j − α

pS
p
p (I
′
C\Cf ) >

1

2

⎡⎢⎢⎢⎢⎢⎣
βr (Yf + Y )

1−1/p

1 + ϵ
+ αp

(
M

γ (1 + ϵ )

)p
−
∑
j ∈Cf

∑
i ∈F

c
p
i jyi j

⎤⎥⎥⎥⎥⎥⎦∑
j ∈C ′\Cf

d ′j

∑
i ∈F

c
p
i jyi j − S

p
p (I
′
C\Cf ) >

1

2

⎡⎢⎢⎢⎢⎣
βr (Yf + Y )

1−1/p

1 + ϵ
+ αp

(
Sp (Cf )

γ (1 + ϵ )

)p⎤⎥⎥⎥⎥⎦ −
∑
j ∈Cf

d ′j

∑
i ∈F

c
p
i jyi j (iv)

∑
j ∈C ′\Cf

d ′j

∑
i ∈F

c
p
i jyi j − S

p
p (I
′
C\Cf ) >

βr (Yf + Y )
1−1/p

2(1 + ϵ )
+ S

p
p (Cf ) −

∑
j ∈Cf

d ′j

∑
i ∈F

c
p
i jyi j (v)

∑
j ∈C ′

d ′j

∑
i ∈F

c
p
i jyi j − S

p
p (I
′) >

βr (Yf + Y )
1−1/p

2(1 + ϵ )∑
j ∈C ′ d

′
j

∑
i ∈F c

p
i jyi j − S

p
p (I
′)

p (Yf + Y )1−1/p
>

βr

2p (1 + ϵ )∑
j ∈C ′ d

′
j

∑
i ∈F c

p
i jyi j − S

p
p (I
′)

p (Yf + Y )1−1/p
> r . (vi)
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(iv) follows the M-cheapness of S . (v) follows from the choice of α . (vi) follows from the choice of
β . So, Fixed-�p -SepOracle outputs an inequality as desired. �

6.2 Rounding the Fractional Solution

Again, we show how to generalize the approach for rounding fractional solutions for k-median
with fixed clients to round fractional solutions for �p clustering with fixed clients. We extend
Lemma 3.8 as follows:

Lemma 6.4. Suppose alg and sol are two (possibly virtual) solutions to an �p -clustering instance
with fixed clientsCf , such that there is a subset of clientsC

∗ ⊂ (C \Cf ) such that for every client inC
∗

alg’s connection cost is greater than p times sol’s connection cost, and for every client inC \Cf \C∗,
sol’s connection cost is at least alg’s connection cost. Then

f (C ′) :=
⎧⎪⎪⎨⎪⎪⎩
alg

p
p (C

′)−solpp (C ′)
alg

p−1
p (C ′)

alg
p
p (C

′) > 0

0 alg
p
p (C

′) = 0

is maximized by Cf ∪C∗.

The proof follows exactly as that of Lemma 3.8.

Lemma 6.5. There exists an algorithm that given any (α , β )-approximate universal fractional so-
lution for �p -clustering with fixed clients, outputs a (54pα , 54pβ + 18p1/p )-approximate universal
integral solution.

Proof. Let sol be the virtual solution whose connection costs are 3 times the fractional so-
lution’s for all clients. The algorithm is to solve the �pp -clustering with discounts instance using
Lemma 3.4 where the discounts are 0 for fixed clients and 2 times sol’s connection costs for the re-
maining clients. Note that using these discounts, the �pp -clustering with discounts objective equals

maxCf ⊆C ′ ⊆C [alg
p
p (C

′) − 2p · solpp (C ′ \Cf )] instead of maxCf ⊆C ′ ⊆C [alg
p
p (C

′) − 2p · solpp (C ′)].
Let alg be the output solution. We will again bound alg’s cost against the virtual solution s̃ol

whose connection costs are sol’s connection costs times p for non-fixed clients j such that alg’s
connection cost to j is at least 18 times sol’s but less than 18p times 18 · sol’s, and the same as
sol’s for the remaining clients.
We use maxC ′ to denote maxCf ⊆C ′ ⊆C . If maxC ′[algp (C ′) − 18s̃ol(C ′)] ≤ 0, then alg’s cost is

always bounded by 18 times s̃ol’s cost andwe are done. So assumemax′C [algp (C
′)−18s̃olp (C ′)] >

0. Let C1 = argmaxC ′[algp (C
′) − 18s̃olp (C ′)] and C2 = argmaxC ′[mrs

p
p (C

′) − 2p · solpp (C ′)]. Like
in the proof of Lemma 3.9, via Lemma 6.4 we have

max
C ′

[
algp (C

′) − 18s̃olp (C ′)
]
=

maxC ′
[
algpp (C

′) − 18psolpp (C ′)
]

algp−1p (C1)

=
maxC ′

[
algpp (C

′) − 18psolpp (C ′ \Cf )
]
− 18psolpp (Cf )

algp−1p (C1)

≤ 2

3
· 9p

maxC ′
[
mrspp (C

′) − 2psolpp (C ′ \Cf )
]
− 18psolpp (Cf )

algp−1p (C1)

≤ 2

3
· 9p

maxC ′
[
mrspp (C

′) − 2psolpp (C ′)
]

algp−1p (C1)
.
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Using the same analysis as in Lemma 3.9 we can upper bound this final quantity by 18p1/p · mr,
proving the lemma. �

Theorem 6.1 follows from Lemmas 6.3 and 6.5.

7 UNIVERSAL k-CENTERWITH FIXED CLIENTS

In this section, we discuss how to extend the proof of Theorem 4.1 to prove the following theorem:

Theorem 7.1. There exists a (9, 3)-approximate algorithm for universal k-center with fixed clients.

Proof. To extend the proof of Theorem 4.1 to the case where fixed clients are present, let
apx(C ′) denote the cost of a 3-approximation to the k-center problem with client set C ′; it is well
known how to compute apx(C ′) in polynomial time [33]. A solution with regret r must be within
distance r j := apx(Cs ∪ {j}) + r of client j, otherwise in realizationCs ∪ {j} the solution has regret
larger than r due to client j. The same algorithm as in the proof of Theorem 4.1 using this defini-
tion of r j finds alg within distance 3r j = 3 · apx(Cs ∪ {j}) + 3 · mr ≤ 9 · opt(Cs ∪ {j}) + 3mr of
client j. opt(C ′) ≥ opt(Cs ∪ {j}) for any realization C ′ and any client j ∈ C ′, so this solution is a
(9, 3)-approximation. �

8 HARDNESS OF UNIVERSAL CLUSTERING FOR GENERAL METRICS

In this section, we give some hardness results to help contextualize the algorithmic results. Much
like the hardness results for k-median, all our reductions are based on the NP-hardness of approx-
imating set cover (or equivalently, dominating set) due to the natural relation between the two
types of problems. We state our hardness results in terms of �p -clustering. Setting p = 1 gives
hardness results for k-median, and setting p = ∞ (and using the convention 1/∞ = 0 in the proofs
as needed) gives hardness results for k-center.

8.1 Hardness of Approximating α

Theorem 8.1. For all p ≥ 1, finding an (α , β )-approximate solution for universal �p -clustering
where α < 3 is NP-hard.

Proof. We will show that given a deterministic (α , β )-approximate algorithm where α < 3, we
can design an algorithm (using the (α , β )-approximate algorithm as a subroutine) that solves the
set cover problem (i.e., finds a set cover of size k if one exists) giving the lemma by NP-hardness
of set cover. The algorithm is as follows: Given an instance of set cover, construct the following
instance of universal �p -clustering:

• For each element, there is a corresponding client in the universal �p -clustering instance.
• For each set S , there is a cluster center that is distance 1 from the clients corresponding to
elements in S and 3 from other all clients.

Then, we just run the universal �p -clustering algorithm on this instance, and output the sets
corresponding to cluster centers this algorithm buys.
Assume for the rest of the proof that a set cover of size k exists. Then the corresponding k cluster

centers are as close as possible to every client, and are always an optimal solution. This gives that
mr = 0 for this universal �p -clustering instance.
Now, suppose by contradiction that this algorithm does not solve the set cover problem. That is,

for some set cover instance we run an (α , β )-approximate algorithm where α < 3 on the produced
�p -clustering instance, and it produces a solution alg that does not choose cluster centers corre-
sponding to a set cover. This means it is distance 3 from some client j. For realizationC ′ = {j}, we
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have by the definition of (α , β )-approximation:

alg(C ′) ≤ α · opt(C ′) + β · mr =⇒ 3 ≤ α · 1 + β · 0 = α ,

which is a contradiction, giving the lemma. �

Note that for, e.g., k-median, we can classically get an approximation ratio of less than 3. So this
theorem shows that the universal version of the problem is harder, even if we are willing to use
arbitrary large β .

8.2 Hardness of Approximating β

We give the following result on the hardness of universal �p -clustering.

Theorem 8.2. For all p ≥ 1, finding an (α , β )-approximate solution for universal �p -clustering
where β < 2 is NP-hard.

Proof. We will show that given a deterministic (α , β )-approximate algorithm where β < 2,
we can design an algorithm (using the (α , β )-approximate algorithm as a subroutine) that solves
the dominating set problem (i.e., outputs at most k vertices that are a dominating set of size k if a
dominating set of size k exists) giving the lemma by NP-hardness of dominating set. The algorithm
is as follows: Given an instance of dominating set G = (V ,E), construct the following instance of
universal �p -clustering:

• For each vertex v ∈ V , there is a corresponding k-clique of clients in the universal �p -
clustering instance.
• For each (u,v ) ∈ E, connect all clients in u’s corresponding clique to all those in v’s.
• Impose the shortest path metric on the clients, where all edges are length 1.

Then, we just run the universal �p -clustering algorithm on this instance, and output the set of
vertices corresponding to cluster centers this algorithm buys.

Assume for the rest of the proof that a dominating set of size k exists in the dominating set
instance. Then, a dominating set of size k also exists in the constructed universal �p -clustering
instance (where the cliques this set resides in correspond to the vertices in the dominating set in
the original instance). Thus, there is a solution to the universal �p -clustering instance that covers
all clients at distance at most 1.
Wewill first show this dominating set solution is aminimum regret solution. Given a dominating

set solution, note that in any realization of the demands, opt can cover k locations at distance 0,
and must cover the rest of the clients at distance at least 1. Thus, to maximize the regret of a
dominating set solution, we pick any k clients covered at distance 1 by the dominating set, and
choose the realization including only these clients.
Now, consider any solution that is not a dominating set. For such a solution, there is some k-

clique covered at distance 2. We can make such a solution incur regret 2k1/p by including all k
clients in this clique, with the optimal solution being to buy all cluster centers in this clique at cost
0. Thus, the dominating set solution is a minimum regret solution, and mr = k1/p .
Now consider any (α , β )-approximation algorithm and suppose this algorithm when run on

the reduced dominating set instance does not produce a dominating set solution while one exists.
Consider the realization C ′ including only the clients in some k-clique covered at distance 2. By
definition of (α , β )-approximation we get

alg(C ′) ≤ α · opt(C ′) + β · mr
2k1/p ≤ 0 + βk1/p

2 ≤ β .

(17)
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If β < 2, then this is a contradiction, i.e., the algorithm will always output a dominating set of
size k if one exists. Thus an (α , β )-approximation algorithm where β < 2 can be used to solve the
dominating set problem, proving the theorem. �

9 HARDNESS OF UNIVERSAL CLUSTERING FOR EUCLIDEAN METRICS

9.1 Hardness of Approximating α

We can consider the special case of �p -clustering where the cluster center and client locations are
all points in Rd , and the metric is a �q-norm in Rd . One might hope that, e.g., for d = 2, α = 1 + ϵ
is achievable since for the classic Euclidean k-median problem, a PTAS exists [5]. We show that
there is still a lower bound on α even for �p -clustering in R2.

Theorem 9.1. For all p ≥ 1, finding an (α , β )-approximate solution for universal �p -clustering in

R
2 using the �q-norm where α < 1+

√
7

2 for q = 2 or α < 2 for q = 1,∞ is NP-hard.

Proof. The hardness is via reduction from the discrete k-center problem in R2. Section 3 of
Reference [46] shows how to reduce an instance of planar 3-SAT (which is NP-hard) to an instance
of Euclidean k-center in R2 using the �q norm as the metric such that:

• For every client, the distance to the nearest cluster center is 1.
• There exists a k-cluster center solution that is distance 1 from all clients if the planar 3-SAT
instance is satisfiable, and none exists if the instance is unsatisfiable.
• Any solution that is strictly less than distance α − ϵ away from all clients can be converted

in polynomial time to a solution within distance 1 of all clients for α = 1+
√
7

2 if q = 2, α = 2
if q = 1,∞.

We note that Reference [46]’s reduction is actually to the “continuous” version of the problem
where every point in R2 can be chosen as a cluster center, including the points clients are located
at. That is, if we use this reduction without modification, then the first property is not actually true
(since the minimum distance is 0). However, in the proof of correctness for this construction [46]
shows that (both for the optimal solution and any algorithmic solution) it suffices to only consider
cluster centers located at the centers of a set of �p discs of radius 1 chosen such that every client
lies on at least one of these discs and no client is contained within any of these discs. So, taking
this reduction and then restricting the choice of cluster centers to the centers of these discs, we
retrieve an instance with the desired properties.
Now, consider the corresponding instance as a universal �p -clustering instance. Like in the proof

of Theorem 8.1, if the planar 3-SAT instance reduced from is satisfiable, then there exists a clus-
tering solution that is as close as possible to every client, i.e., has regret 0. So mr = 0. Thus, an
(α , β )-approximate clustering solution is within distance α of every client (in the realization where
only client j appears, opt is 1 so anα-approximate solutionmust be within distanceα of this client).
In turn, using the properties of the reduced clustering instance, an (α , β )-approximation where α
is less than the lower bound given in Reference [46] can be converted into an algorithm that solves
planar 3-SAT. �

9.2 Hardness of Approximating β

We can also show that β = 1 is NP-hard in R2 using a similar reduction:

Theorem 9.2. For all p ≥ 1, finding an (α , β )-approximate solution for universal �p -clustering in

R
2 using the �q-norm where β = 1 for q = 1, 2,∞ is NP-hard.
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Proof. We again use a reduction from planar 3-SAT due to Reference [46]. This time, we use
the reductions in Section 4 of Reference [46] for simplicity, which has the properties that:

• Every client is distance 0 from a co-located cluster center, and the distance to the second-
closest cluster center is 1.
• There exists a k-cluster center solution that is distance 1 from all but k clients and distance
0 from k clients (the ones at the cluster centers) if the planar 3-SAT instance is satisfiable,
and none exists if the instance is unsatisfiable.

Consider any instance reduced from a satisfiable planar 3-SAT instance. The solution in the
resulting instance sol∗ with the second property above has regret k1/p (and in fact, this is mr):
by the first property above, no solution can be less than distance 1 away from any clients other
than the k clients co-located with its cluster centers. In turn, the regret of the sol∗ against any
adversarial sol is maximized by the realizationC ′ only including the clients co-located with the k
cluster centers in the sol. We then get sol∗ (C ′) − sol(C ′) = k1/p − 0 = k1/p .
Now consider an arbitrary (α , 1)-approximate universal solution alg in this instance. Consider

any set of k clientsC ′ not co-located with alg’s cluster centers. opt(C ′) = 0, so we get alg(C ′) ≤
α ·opt(C ′)+mr = mr ≤ k1/p . alg is distance at least 1 from all clients inC ′ by construction, so this
only holds if alg is distance 1 from all clients in C ′. This gives that alg is distance 1 from all but
k clients (those co-located with cluster centers in alg), and distance 0 from the remaining clients.
In turn, alg satisfies the property of a solution corresponding to a satisfying assignment to the
planar 3-SAT instance. This shows that an (α , 1)-approximate universal solution to �p -clustering
in R2 can be used to solve planar 3-SAT. �

10 FUTURE DIRECTIONS

In this article, we gave the first universal algorithms for clustering problems: k-median, k-means,
and k-center (and their generalization to �p -clustering). While we achieve constant approximation
guarantees for these problems, the actual constants are orders of magnitude larger than the best
(non-universal) approximations known for these problems. In part to ensure clarity of presenta-
tion, we did not attempt to optimize these constants. But it is unlikely that our techniques will
lead to small constants for the k-median and k-means problems (although, interestingly, we got
small constants for k-center). However, we show that in general it is NP-hard to find an (α , β )-
approximation algorithm for a universal clustering problem where α matches the approximation
factor for the standard clustering problem. Therefore, it is not entirely clear what one should ex-
pect: are there universal algorithms for clustering with approximation factors of the same order as the
classical (non-universal) bounds?
One possible approach to improving the constants is considering algorithms that use more than

k cluster centers. For example, our (9p , 23 · 9
p )-approximation for �pp -clustering with discounts

can easily be improved to an (3p , 3p )-approximation if it is allowed to use 2k − 1 cluster centers.
This immediately improves all constants in the article. For example, our (27, 49)-approximation for
universal k-median becomes a (9, 18)-approximation if it is allowed to use 2k − 1 cluster centers.
Unfortunately, our lower bounds on α , β apply even if the algorithm is allowed to use (1− ϵ )k lnn
cluster centers, but it is an interesting problem to show that, e.g., using (1+ϵ )k lnn cluster centers
allows one to beat either bound.
Another open research direction pertains to Euclidean clustering. Here, we showed that in Rd

for d ≥ 2, α needs to be bounded away from 1, which is in stark contrast to non-universal clus-
tering problems that admit PTASes in constant-dimension Euclidean space. But, for d = 1, i.e., for
universal clustering on a line, the picture is not as clear. On a line, the lower bounds on α are no
longer valid, which brings forth the possibility of (non-bicriteria) approximations of regret. Indeed,
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it is known that there is 2-approximation for universal k-median on a line [38], and even better,
an optimal algorithm for universal k-center on a line [7]. This raises the natural question: can we
design a PTAS for the universal k-median problem on a line?

APPENDICES

A RELATIONS BETWEEN VECTOR NORMS

For completeness, we give a proof of the following well-known fact that relates vector �p norms.

Fact A.1. For any 1 ≤ p ≤ q and x ∈ Rn , we have

| |x | |q ≤ ||x | |p ≤ n1/p−1/q | |x | |q .

Proof. For all p, repeatedly applying Minkowski’s inequality we have the following:

| |x | |p = ��
n∑
i=1

|x |p��
1/p

≤ ��
n−1∑
i=1

|x |p��
1/p

+ |xn | ≤ ��
n−2∑
i=1

|x |p��
1/p

+ |xn−1 | + |xn | ≤ · · · ≤
n∑
i=1

|xi | = | |x | |1.

Then we bound | |x | |q by | |x | |p as follows:

| |x | |q = ��
n∑
i=1

|x |q��
1/q

=
���
��

n∑
i=1

(|x |p )q/p��
p/q���

1/p

≤ ��
n∑
i=1

|x |p��
1/p

= | |x | |p .

The inequality is by applying | |x ′ | |q/p ≤ ||x ′| |1 to the vector x ′ with entries x ′i = |xi |p . To bound
| |x | |p by | |x | |q , we invoke Holder’s inequality as follows:

| |x | |pp =
n∑
i=1

|x |p =
n∑
i=1

|x |p · 1 ≤ ��
n∑
i=1

(|xi |p )q/p��
p/q ��

n∑
i=1

1q/(q−p )��
1−p/q

= | |x | |pq · n1−p/q .

Taking the pth root of this inequality gives the desired bound. �

The limiting behavior as q → ∞ shows that | |x | |∞ ≤ ||x | |c logn ≤ n1/c logn | |x | |∞ = 21/c | |x | |∞,
i.e., that the �∞-norm and �p -norm for p = Ω(logn) are within a constant factor.

B APPROXIMATIONS FOR ALL-CLIENTS INSTANCES ARE NOT UNIVERSAL

In this section, we demonstrate that even (1+ϵ )-approximate (integer) solutions for the “all clients”
instance for clustering problems are not guaranteed to be (α , β )-approximations for any finite
α , β . This is in sharp contrast to the optimal (integer) solution, which is known to be a (1, 2)-
approximation for a broad range of problems including the clustering problems considered in this
article [38].
Consider an instance of universal 1-median with clients c1, c2 and cluster centers f1, f2. Both the

cluster centers are at distance 1 from c1, and at distances 0 and ϵ respectively from c2 (see Figure 6).
f2 is a (1+ ϵ )-approximate solution for the realization containing both clients. In this instance, mr
is 0 and so f2 is not an (α , β )-approximation for any finite α , β due to the realization containing
only c2. The same example can be used for the �p -clustering objective for all p ≥ 1 since f2 has
approximation factor (1 + ϵp )1/p ≤ (1 + ϵ ) when all clients are present. In the case of k-center, f2
is an optimal solution when all clients are present.
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Fig. 6. Example where a (1+ ϵ)-approximation for all clients has no (α , β )-approximation guarantee, for any

�p -clustering objective including k-center.

C ALGORITHMS FOR k-MEDIAN AND �
p
p -CLUSTERINGWITH DISCOUNTS

In this section, we prove Lemma 3.4, which states that there exists a (9p , 23 ·9
p )-approximation algo-

rithm for the �pp -clustering with discounts problem. As a corollary, by setting p = 1, we will obtain
Lemma 2.3, which states that there exists a (9, 6)-approximation algorithm for the k-median with
discounts problem. To prove Lemma 3.4, we will first use a technique due to Jain and Vazirani [34]
to design a Lagrangian-preserving approximation for the �pp -facility location with discounts prob-

lem. �pp -facility location with discounts (FLD) is the same as �pp -clustering with discounts, except
rather than being restricted to buying k cluster centers, each cluster center has a cost fi associated
with buying it (discounts and cluster centers costs are not connected in any way).

C.1 Algorithm for �
p
p -Facility Location with Discounts

Since FLD is a special case of non-metric facility location, we can consider the standard linear
programming primal-dual formulation for the latter. The primal program is as follows:

min
∑
i ∈F

fixi +
∑

i ∈F , j ∈C
(c
p
i j − r

p
j )
+yi j

s.t. ∀j ∈ C :
∑
i ∈F

yi j ≥ 1

∀i ∈ F , j ∈ C : yi j ≤ xi
∀i ∈ F : xi ≥ 0
∀i ∈ F , j ∈ C : yi j ≥ 0.

The dual program is as follows:

max
∑
j ∈C

aj

s.t. ∀i ∈ F , j ∈ C : aj − (c
p
i j − r

p
j )
+ ≤ bi j

∀i ∈ F :
∑
j ∈C

bi j ≤ fi

∀j ∈ C : aj ≥ 0
∀i ∈ F , j ∈ C : bi j ≥ 0.

We design a primal-dual algorithm for the FLD problem. This FLD algorithm operates in two
phases. In both programs, all variables start out as 0.
In the first phase, we generate a dual solution. For each client j define a “time” variable tj , which

is initialized to 0. We grow the dual variables as follows: we increase the tj uniformly. We grow
the aj such that for any j, at all times aj = (tj − r

p
j )
+ (or equivalently, all aj start at 0, and we
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increase all aj at a uniform rate, but we only start growing aj at time rpj ). Each bi j is set to the

minimum feasible value, i.e., (aj − (c
p
i j − r

p
j )
+)+. If the constraint

∑
j ∈C bi j ≤ fi is tight, then we

stop increasing all tj ,aj for which bi j = aj − (c
p
i j − r

p
j )
+, i.e., for the clients j that contributed to

increasing the value
∑

j ∈C bi j (we say these clients put weight on this cluster center). We continue
this process until all tj stop growing. Note that at any time the dual solution grown is always
feasible.
In the second phase, consider a graph induced on the cluster centers whose constraints are tight,

where we place an edge between cluster centers i, i ′ if there exists some client j that put weight on
both cluster centers. Find a maximal independent set S of this graph and output this set of cluster
centers. Let π be a map from clients to cluster centers such that π (j ) is the cluster center that made
tj stop increasing in the first phase of the algorithm. If π (j ) ∈ S , then connect j to cluster center
π (j ); otherwise, connect j to one of π (j )’s neighbors in the graph arbitrarily.

We can equivalently think of the algorithm as generating an integral primal solution where
xi = 1 for all i ∈ S and xi = 0 otherwise, and yi j = 1 if j is connected to i and is yi j = 0 otherwise.
Based again on the technique of Reference [34], we can show the following Lemma holds:

Lemma C.1. Let x ,y be the primal solution and a,b be the dual solution generated by the above
FLD algorithm. x ,y satisfies∑

j ∈C

∑
i ∈F

(c
p
i j − 3

pr
p
j )
+yi j + 3

p
∑
i ∈F

fixi ≤ 3p
∑
j ∈C

aj .

Proof. LetC (1) be the set of clients in j such that π (j ) ∈ S andC (2) = C \C (1) . For any i ∈ S , let
Ci be the set of all clients j such that π (j ) = i . Note that∑

j ∈Ci
aj =

∑
j ∈Ci

[bi j + (ci j − rpj )
+] =

∑
j ∈Ci

(ci j − rpj )
+ + fi .

No client in C (1) contributes to the sum
∑

i ∈F bi j for multiple i in S (because S is an independent
set). This gives us∑

j ∈C (1)

∑
i ∈F

(c
p
i j − 3

pr
p
j )
+yi j +

∑
i ∈F

fixi ≤
∑
j ∈C (1)

∑
i ∈F

(c
p
i j − r

p
j )
+yi j +

∑
i ∈F

fixi

=
∑
i ∈S

⎡⎢⎢⎢⎢⎢⎣fi +
∑
j ∈Ci

(c
p
i j − r

p
j )
+

⎤⎥⎥⎥⎥⎥⎦
=
∑
i ∈S

∑
j ∈Ci

aj

=
∑
j ∈C (1)

aj . (18)

For each client j inC (2) , j is connected to one of π (j )’s neighbors i . Since π (j ) and i are neighbors,
there is some client j ′ that put weight on both π (j ) and i . Since j ′ put weight on π (j ) and thus π (j )
going tight would have stopped tj′ from increasing, tj′ stopped increasing before or when π (j )
went tight, which was when tj stopped growing. Since all tj start growing at the same time and
grow uniformly, tj′ ≤ tj . Since j put weight on π (j ), we know aj − (cπ (j )j − r

p
j )
+ > 0 and thus

(tj − rpj )+ − (cπ (j )j − rpj )+ > 0, implying tj ≥ c
p

π (j )j
. Similarly, tj′ ≥ c

p

i j′, c
p

π (j )j′
. Triangle inequality
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gives ci j ≤ ci j′ + cπ (j )j′ + cπ (j )j ≤ 3t1/pj . Then, we get∑
j ∈C (2)

∑
i ∈F

(c
p
i j − 3

pr
p
j )
+yi j ≤

∑
j ∈C (2)

(3ptj − 3prpj )
+ = 3p

∑
j ∈C (2)

(tj − rpj )
+ = 3p

∑
j ∈C (2)

aj . (19)

Adding 3p times Equation (18) to Equation (19) gives the Lemma. �

C.2 Algorithm for �
p
p -Clustering with Discounts

We now move on to finding an algorithm for �pp -clustering with discounts. We can represent the
problem as a primal/dual linear program pair as follows. The primal program is as follows:

min
∑

i ∈F , j ∈C
(c
p
i j − r

p
j )
+yi j

s.t. ∀j ∈ C :
∑
i ∈F

yi j ≥ 1

∀i ∈ F , j ∈ C : yi j ≤ xi∑
i ∈F

xi ≤ k

∀i ∈ F : xi ≥ 0
∀i ∈ F , j ∈ C : yi j ≥ 0.

The dual program is as follows:

max
∑
j ∈C

aj − kz

s.t. ∀i ∈ F , j ∈ C : aj − (c
p
i j − r

p
j )
+ ≤ bi j

∀i ∈ F :
∑
j ∈C

bi j ≤ z

∀j ∈ C : aj ≥ 0
∀i ∈ F , j ∈ C : bi j ≥ 0.

We now describe the algorithm we will use to prove Lemma 3.4, which uses the FLD algorithm
from Section C.1 as a subroutine. By taking our �p -clusteringwith discounts instance and assigning
all cluster centers the same cost z, we can produce a FLD instance. When z = 0, the FLD algorithm
will either buy more than k cluster centers, or find a set of at most k cluster centers, in which case
we can output that set. When z = |C |maxi, j ci j , the FLD algorithm will buy only one cluster center.
Thus, for any ϵ such that log 1

ϵ
= nO (1) , via bisection search using polynomially many runs of this

algorithm we can find a value of z such that this algorithm buys a set of cluster centers S1 of size
k1 ≥ k when cluster centers cost z and a set of cluster centers S2 of size k2 ≤ k cluster centers
when cluster centers cost z + ϵ (the bisection search starts with the range [0, |C |maxi, j ci j ] and
in each iteration, determines how many cluster centers are bought when z is the midpoint value
in its current range. It then recurses on the half [a,b] of its current range, which maintains the
invariant that when z = a, at least k cluster centers are bought and when z = b, at most k cluster
centers are bought).
If either k1 = k or k2 = k , then we output the corresponding cluster center set. Otherwise, we

will randomly choose a solution that is roughly a combination of S1 and S2 (we will describe how
to derandomize this process as is required to prove Lemma 2.3 later). Let ρ be the solution in [0, 1]
to ρk1 + (1 − ρ)k2 = k , i.e., ρ = k−k2

k1−k2 . Construct a set S
′
1 that consists of the closest cluster center

in S1 to each cluster center in S2. If the size of S ′1 is less than k2, then add arbitrary cluster centers
from S1 \ S ′1 to S ′1 until its size is k2. Then, with probability ρ, let S∗ = S ′1, otherwise let S

∗ = S2.
Then, sample a uniformly random subset of k −k2 elements from S1 \ S ′1 and add them to S∗. Then
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output S∗ (note that S1 \ S ′1 is of size k1 − k2 so every element in S1 \ S ′1 has probability ρ of being
chosen).

Proof of Lemma 3.4. Note that if the FLD algorithm ever outputs a solution that buys exactly
k cluster centers, then by Lemma C.1 we get that for the LP solution x ,y encoding this solution
and a dual solution a:∑

j ∈C

∑
i ∈F

(c
p
i j − 3

pr
p
j )
+yi j + 3

p
∑
i ∈F

fixi ≤ 3p
∑
j ∈C

aj

∑
j ∈C

∑
i ∈F

(c
p
i j − 3

pr
p
j )
+yi j + 3

pkz ≤ 3p
∑
j ∈C

aj

∑
j ∈C

∑
i ∈F

(c
p
i j − 3

pr
p
j )
+yi j+ ≤ 3p

⎡⎢⎢⎢⎢⎢⎣
∑
j ∈C

aj − kz
⎤⎥⎥⎥⎥⎥⎦ ,

which by duality means that this solution is also a (3p , 3p )-approximation for the �p -clustering
with discounts instance.

If bisection search never finds a solution with exactly k cluster centers, but instead a pair of
solutions S1, S2 where |S1 | > k, |S2 | < k , then the idea is that the algorithm constructs a “bi-point”
fractional solution from these solutions (i.e., constructs a fractional solution that is just a convex
combination of the two integral solutions) and then rounds it.
Consider the primal/dual solutions x (1),y (1),a (1) and x (2),y (2),a (2) corresponding to S1, S2. By

Lemma C.1 we get the following:∑
j ∈C

∑
i ∈F

(c
p
i j − 3

pr
p
j )
+y (1)

i j + 3
pk1z ≤ 3p

∑
j ∈C

a (1)j∑
j ∈C

∑
i ∈F

(c
p
i j − 3

pr
p
j )
+y (2)

i j + 3
pk2 (z + ϵ ) ≤ 3p

∑
j ∈C

a (2)j .

By combining the two inequalities and choosing ϵ appropriately we can get that

∑
j ∈C

∑
i ∈F

(c
p
i j − 3

pr
p
j )
+ (ρy (1)

i j + (1 − ρ)y (2)
i j ) ≤ (3p + ϵ ′)

⎡⎢⎢⎢⎢⎢⎣
∑
j ∈C

(ρa (1)j + (1 − ρ)a (2)j ) − kz
⎤⎥⎥⎥⎥⎥⎦

for an ϵ ′ we will fix later.
Note that ρ (x (1),y (1),a (1) ) + (1 − ρ) (x (2),y (2),a (2) ) and z form a feasible (fractional) primal/dual

solution pair for the �p -clustering with discounts problem, and by the above inequality the primal
solution is a (3p , 3p + ϵ ′)-approximation.
Then, we round the convex combination of the two solutions as described above. Let c j be the

connection cost of client j in the rounded solution, and c (1)j , c
(2)
j the connection cost of client j in

solutions S1, S2. Then since (3p + ϵ ′) (2 · 3p−1 − ϵ ′) < 2
3 · 9

p for ϵ ∈ [0, 1] to prove the lemma it
suffices to show that for each client j the expected contribution to the objective using discount 9r j
for client j is at most 2 ·3p−1−ϵ ′ times the contribution of client j to the primal solution’s objective
using discount 3r j . That is,

E

[(
c
p
j − 9

pr
p
j

)+]
≤ (2 · 3p−1 − ϵ ′)

[
ρ
(
c
(1)p
j − 3prpj

)+
+ (1 − ρ)

(
c
(2)p
j − 3prpj

)+]
.

Suppose client j’s nearest cluster center in S1 is in S ′1. Then with probability ρ, j is connected to

that cluster center at connection cost c (1)j , and with probability 1− ρ it is connected to the nearest
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cluster center in S2 at connection cost c (2)j . Then

E

[(
c
p
j − 9

pr
p
j

)+]
≤ E

[(
c
p
j − 3

pr
p
j

)+]
= ρ
(
c
(1)p
j − 3prpj

)+
+ (1 − ρ)

(
c
(2)p
j − 3rpj

)+
.

Suppose client j’s nearest cluster center in S1 (call it i1) is not in S ′1. Note that each cluster center
in S1 \S ′1 has probability ρ of being opened. Thus with probability ρ, we can upper bound c j by the
distance from j to i1. If this does not happen, then let i2 be j’s nearest cluster center in S2 and i ′1 be
the cluster center nearest to i2 in S1. One of i ′1, i2 must be opened, so we can bound j’s connection
cost by its connection cost to whichever is opened. Then one of three cases occurs:

• With probability ρ, j’s nearest cluster center in S1 is opened. Then c j is at most the distance

from j to i1, i.e., c
(1)
j .

• With probability (1−ρ)ρ, j’s nearest cluster center in S1 is not opened and S ′1 is opened. c j is
at most the distance from j to i ′1. Since i

′
1 is the cluster center closest to i2 in S1, the distance

from i ′1 to i2 is at most the distance from i1 to i2, which is at most c (1)j +c
(2)
j . Then by triangle

inequality, the distance from j to i ′1 is at most c (1)j + 2c (2)j . Using the AMGM inequality, we

get cp
i′1 j
≤ 3p−1 (c (1)pj + 2c (2)pj ).

• With probability (1 − ρ)2, j’s nearest cluster center in S1 is not opened and S2 is opened. c j
is at most the distance from j to i2, i.e., c

(2)
j .

Then we get

E

[(
c j − 9prpj

)+]
≤ ρ
(
c
(1)p
j − 9prpj

)+
+ (1 − ρ)2

(
c
(2)p
j − 9prpj

)+
+ (1 − ρ)ρ

(
3p−1
(
c (1)j + 2c

(2)
j

)
− 9prpj

)+
= ρ
(
c
(1)p
j − 9prpj

)+
+ (1 − ρ)2

(
c
(2)p
j − 9prpj

)+
+ 3p−1 (1 − ρ)ρ

(
c (1)j + 2c

(2)
j − 3 · 3

pr
p
j

)+
≤ ρ
(
c (1)j − 3

pr
p
j

)+
+ (1 − ρ)2

(
c (2)j − 3

pr
p
j

)+
+ 3p−1 (1 − ρ)ρ

(
c (1)j − 3

pr
p
j

)+
+ 2 · 3p−1 (1 − ρ)ρ

(
c (2)j − 3

pr
p
j

)+
= (3p−1 (1 − ρ) + 1)

[
ρ
(
c (1)j − 3

pr
p
j

)+]
+ (2 · 3p−1ρ + 1 − ρ)

[
(1 − ρ)

(
c (2)j − 3

pr
p
j

)+]
≤ (2 · 3p−1 −min{ρ, 1 − ρ})

[
ρ
(
c (1)j − 3

pr
p
j

)+
+ (1 − ρ)

(
c (2)j − 3

pr
p
j

)+]
≤ (2 · 3p−1 − ϵ ′)

[
ρ
(
c (1)j − 3

pr
p
j

)+
+ (1 − ρ)

(
c (2)j − 3

pr
p
j

)+]
.

Where the last step is given by choosing ϵ ′ to be at most 1
|F | , since p = k−k2

k1−k2 and 1 ≤ k2 <

k < k1 ≤ |F | and thus ρ and 1 − ρ are both at least 1
|F | . This gives the lemma, except that the

algorithm is randomized. However, the randomized rounding scheme can easily be derandomized:
first, we choose S∗ to be whichever of S ′1, S2 has a lower expected objective. Then, to choose the
remaining k −k2 cluster centers to add to S∗, we add cluster centers by one by one. When we have
c cluster centers left to add to S∗, we add the cluster center i from S1\S ′1 that minimizes the expected
objective achieved by S∗ ∪ {i} and c − 1 random cluster centers from (S1 \S ′1) \ (S∗ ∪ {i}). Each step
of the derandomization cannot increase the expected objective, so the derandomized algorithm
achieves the guarantee of Lemma 3.4. �

Again, we note that Lemma 2.3 is obtained as a corollary of Lemma 3.4, where we set p = 1.
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