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Introduced by Kodama and Williams, Bruhat interval poly-
topes are generalized permutohedra closely connected to the 
study of torus orbit closures and total positivity in Schubert 
varieties. We show that the 1-skeleton posets of these poly-
topes are lattices and classify when the polytopes are simple, 
thereby resolving open problems and conjectures of Fraser, 
of Lee–Masuda, and of Lee–Masuda–Park. In particular, we 
classify when generic torus orbit closures in Schubert varieties 
are smooth.
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1. Introduction

1.1. Bruhat interval polytopes

For a permutation w in Sn, write w for the vector (w−1(1), . . . , w−1(n)) ∈ Rn. The 
Bruhat interval polytope Qw is defined as the convex hull:

Qw := Conv({u | u � w}) ⊂ Rn,
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Fig. 1. The Hasse diagram of the poset P3412. The facial structure of the polytope Q3412 may be seen by 
viewing the black vertices and edges as the “front” and the gray ones as the “back”.

where � denotes Bruhat order on Sn (see Section 2). Bruhat interval polytopes were 
introduced by Kodama and Williams in [20], where it is shown that they are the images 
under the moment map of the Schubert variety Xw in the flag variety, and also of the 
totally positive part X≥0

w of the Schubert variety. Therefore, the combinatorics of Qw

encodes information about the actions of the torus and positive torus on Xw and X≥0
w

respectively.
The combinatorics of Qw was studied further by Tsukerman and Williams [35], who 

showed that Qw is a generalized permutohedron in the sense of Postnikov [29] and the 
matroid polytope of a flag positroid. Additional connections to the geometry of matroids 
were made in [7], and Bruhat interval polytopes have also appeared [36] in the context 
of BCFW-bridge decompositions [1] from physics, and in the study [22–24,26] of generic 
torus orbit closures Yw in Xw.

1.2. The 1-skeleton of Qw as a lattice

Throughout this work, we study the 1-skeleton poset Pw of Qw, a partial order on the 
lower Bruhat interval [e, w] = {u | u � w}.

Definition 1.1. The poset (Pw, ≤w) has underlying set the Bruhat interval [e, w] and cover 
relations u �w v whenever Qw has an edge between vertices u and v and �(v) > �(u), 
where � denotes Coxeter length. See Fig. 1 for an example.

When w = w0 is the longest permutation, the polytope Qw is the permutohedron, 
a fundamental object in algebraic combinatorics, and the poset Pw is the very well-
studied right weak order (see Section 2). For general w, since edges of Qw must be 
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Bruhat covers by [35, Thm. 4.1], the order ≤w is intermediate in strength between right 
weak order and Bruhat order on [e, w].

Since the work of Björner [4, Thm. 8] it has been known that the weak order Pw0 on 
Sn is a lattice; in our first main theorem, we generalize this to all of the posets Pw.

Theorem A (Proven as Theorem 4.5). Let w ∈ Sn, then Pw is a lattice.

As we explain in the remainder of Section 1.2, special cases of this lattice structure 
confirm a conjecture of Fraser [13, Rmk. 3.7], imply new properties of Qw, and suggest 
interesting directions for future work.

1.2.1. BCFW-bridge decompositions
In the last decade, there has been an explosion of work (see [1]) relating the physical 

theory of scattering amplitudes to the combinatorics and geometry of the totally non-
negative Grassmannian Gr(k, n)≥0 by way of the amplituhedron. In this setting, on-shell 
diagrams from physics correspond to reduced plabic graphs, which give parametrizations 
of an important cell decomposition of Gr(k, n)≥0 [28].

In [1, §3.2] it is shown that reduced plabic graphs for a given cell may be built up 
recursively using BCFW-bridge decompositions. In [36, Thm. 3.2], Williams showed that 
these decompositions of plabic graphs correspond to the maximal chains in Pv when 
v is a Grassmannian permutation, and that this is analogous to the fact that reduced 
words for the longest permutation w0 correspond to maximal chains in Pw0 (weak order). 
Since weak order is a lattice, Theorem A extends this analogy and implies new structure 
within the set of BCFW-bridge decompositions. That Pv is a lattice for Grassmannian 
permutations was conjectured by Fraser [13, Rmk. 3.7]. Fraser also conjectured that a 
larger class of posets, which are not necessarily the 1-skeleton posets of any polytope, 
are lattices; this problem remains open.

1.2.2. Quotients of weak order
Theorem A is proven by realizing Pw as a quotient of weak order Pw0 by an equivalence 

relation Θw which respects the weak order join operation (but does not respect the meet 
operation!) Thus Pw is a semilattice quotient of Pw0 but not a lattice quotient. There are 
families of very important lattice congruences on weak order [30,33] and lattice quotients 
and lattice homomorphisms of weak order have been classified [31,32]. This work thus 
suggests that semilattice quotients and homomorphisms of weak order are an intriguing 
topic for further study.

1.2.3. The parabolic map and the mixed meet
Let Sn(I) denote the Young subgroup of Sn generated by a subset I of the simple 

reflections. Billey, Fan, and Losonczy proved [3, Thm. 2.2] that for any w ∈ Sn the set 
Sn(I) ∩ [e, w] has a unique maximal element m(w, I) under Bruhat order; the map w �→
m(w, I) is called the parabolic map. Richmond and Slofstra [34, Thm. 3.3 & Prop. 4.2]
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showed that this element m(w, I) determines whether the projection of the Schubert va-
riety Xw ⊂ G/B to a partial flag variety G/P is a fiber bundle, and is thus important for 
understanding the singularities of Xw. We apply Theorem A to show in Theorem 4.7 that 
the element m(w, I) is just the join in Pw of the simple reflections from I, demonstrating 
the richness of the lattice structure on Pw.

A related operation of mixed meet was studied by Bump and Chetard in [10, Thm. 3]
in relation to certain intertwining operators of representations of reductive groups over 
nonarchimedean local fields. The mixed meet of u, v ∈ Sn is the unique Bruhat maximal 
permutation in [e, u]R ∩ [e, v]. In the language of Section 4, this element is botv(u), the 
unique minimal element under ≤R in the equivalence class of u under the equivalence 
relation Θv induced on Sn by the normal fan of Qv. This element is a translate of μv(u), 
where μv is the matroid map obtained by viewing [e, v] as a Coxeter matroid in the sense 
of [8].

1.2.4. The non-revisiting path property
A polytope Q has the non-revisiting path property if no shortest path in its 1-skeleton 

between two vertices returns to a face after having left it. This property has long been 
of interest in the field of combinatorial optimization. In [16], Hersh conjectures that any 
simple polytope whose 1-skeleton poset is a lattice has the non-revisiting path property, 
and proves several weaker properties satisfied by such polytopes. Thus, combining The-
orem A and the classification of simple Bruhat interval polytopes in Theorem B below, 
we obtain a rich new family of examples to which Hersh’s conjecture and results apply. 
Additionally, in Section 5 we observe that all polytopes Qw are directionally simple. It 
is thus natural to ask: can Hersh’s conjecture and results be extended to the class of 
directionally simple polytopes?

1.3. Bruhat interval polytopes and generic torus orbit closures

1.3.1. Simple Bruhat interval polytopes and smooth torus orbit closures
Let G = GLn(C), let B denote the Borel subgroup of upper triangular matrices, and 

let T denote the maximal torus of diagonal matrices. The flag variety Fln = G/B and 
its Schubert subvarieties Xw := BwB/B are of fundamental importance in many areas 
of algebraic combinatorics, algebraic geometry, and representation theory. The torus T
acts naturally on G/B via left multiplication, and the fixed points (G/B)T are the points 
wB for w ∈ Sn, where we identify w with its permutation matrix. The fixed points of 
the Schubert variety Xw are {uB | u � w}.

Torus orbits in G/B and their closures are a rich family of varieties, studied since 
Klyachko [19] and Gelfand–Serganova [15] with close connections to matroids and Cox-
eter matroids [8]. One class of torus orbit closures has received considerable interest 
[22–24,26] of late: generic torus orbit closures in Schubert varieties. A torus orbit closure 
Y ⊂ Xw is called generic if Y T = XT

w ; we write Yw for any generic torus orbit closure in 
Xw.
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One of the main properties of interest for torus orbits in the flag variety has historically 
been their singularities [11,12] and in particular determining when they are smooth. For 
Schubert varieties themselves, smoothness was famously characterized by Lakshmibai–
Sandhya [21, Thm. 1] in terms of permutation pattern avoidance. In our next main 
theorem, we resolve a conjecture of Lee and Masuda [22, Conj. 7.17] by classifying when 
Yw is smooth.

Theorem B (Conj. 7.17 of Lee–Masuda [22]; Proven below as Corollary 6.3). Let w ∈ Sn, 
then Qw is a simple polytope if and only if it is simple at the vertex w; equivalently, Yw

is a smooth variety if and only if it is smooth at the point wB.

Theorem B is proven by showing (see Theorem 6.1) that the degree of a vertex of Qw

is an ordering preserving function of the poset Pw.
By [22, Cor. 7.13], the condition that Yw is smooth at wB can be checked combinato-

rially by determining whether a certain graph Γw(w) is a tree (see Section 3). This tree 
condition has in turn been characterized combinatorially in terms of pattern avoidance 
[9, Thm. 1.1], and shown [37, Prop. 2] to characterize when Xw is locally factorial. By 
work of Björner–Ekedahl [6, Thm. D] it is also equivalent to the vanishing of the coeffi-
cient of q in the associated Kazhdan–Lusztig polynomial [17] and thus [18] the vanishing 
of a certain middle intersection cohomology group of Xw. It would be fascinating to give 
a purely geometric explanation for the equivalence (by Theorem B) of the smoothness 
of Yw with these other geometric conditions on Xw.

While by Theorem B the smoothness of Yw is determined at the “top” torus fixed 
point wB, the smoothness of Xw is known to be determined at the “bottom” fixed point 
eB. It would also be interesting to give a geometrically natural explanation for this 
discrepancy.

1.3.2. Directionally simple polytopes and h-vectors
In Section 5 we show that, even when Qw is not a simple polytope, it is still direction-

ally simple (see Definition 5.1). This fact was also shown in [26, Prop. 4.5] by an involved 
calculation, but follows directly from our results realizing Pw as a quotient of weak order. 
This property of Qw implies that its h-vector has positive entries which count certain 
permutations according to their number of ascents. In Proposition 5.6 we resolve an open 
problem of Lee–Masuda–Park [25, Prob. 6.1] by showing that Yw is smooth if and only 
if this h-vector is palindromic.

1.3.3. Generalizations to other Bruhat intervals
Kodama and Williams [20] in fact defined Bruhat interval polytopes

Qw′,w := Conv({u | w′ � u � w}) ⊂ Rn,

for any w′ � w, generalizing the case w′ = e on which we focus in this work. It is natural 
to ask to what extent the results of this paper can be generalized. The lattice property 
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of Theorem A fails for Pw′,w with w′ = 12435 and w = 35142, and Theorem B also fails 
to generalize, even in S4. It is possible, though, that both results hold for the class of 
Qw′,w which are simple at w′ (this includes all Qw = Qe,w). This class of Bruhat interval 
polytopes is notable for its applications [2, Prop. 4.4] to the Combinatorial Invariance 
Conjecture for Kazhdan–Lusztig polynomials. It has been conjectured [24, Conj. 5.11]
that Qw′,w is simple whenever it is simple at w′ and at w.

1.4. Outline

Section 2 contains standard background material on the weak and strong Bruhat 
orders. In Section 3 we recall results from [22] relating edges of Qw to certain directed 
graphs Γw(u) and Γ̃w(u). We establish new combinatorial properties of these graphs, 
notably Proposition 3.6, which form the basis for the main results of the paper. In 
Section 4 we give several new characterizations of the poset Pw and prove Theorem A
and note several of its consequences. These results are then applied in Section 5 to 
reprove the directional simplicity of Qw and to resolve an open problem posed in [25]. 
Finally, in Section 6 we pull together all of our understanding of Γw(u) and Pw to prove 
a strengthened version of Theorem B.

An extended abstract describing part of this work appears in the proceedings of FP-
SAC 2023 [14].

2. Background on the weak and strong Bruhat orders

We refer the reader to [5] for basic definitions and results on Coxeter groups and the 
Bruhat and weak orders on them.

We view the symmetric group Sn as a Coxeter group with simple generators 
{s1, . . . , sn−1}, where si := (i i + 1) is an adjacent transposition. An expression 
w = si1 · · · si�

of minimal length is a reduced word for w and in this case the quan-
tity � = �(w) is the length of w. There are three important partial orders on Sn, each 
graded by length. The right weak order ≤R by definition has cover relations w �R ws

whenever s is a simple generator and �(ws) = �(w) + 1; the left weak order ≤L is defined 
analogously, but with left-multiplication by s. The (strong) Bruhat order � has cover 
relations w ≺· wt whenever �(wt) = �(w) + 1 and t lies in the set T of transpositions (ij). 
We write [v, w]R and [v, w] for the closed interval between v, w in right weak and Bruhat 
order respectively.

The left inversions of an element w ∈ Sn are the reflections TL(w) := {t ∈ T | �(tw) <
�(w)} and the left descents are DL(w) := TL(w) ∩ {s1, . . . , sn−1}; the right inversions
and right descents are defined analogously, using instead right multiplication by t. It is 
a well-known fact that weak order is characterized by containment of inversion sets:

Proposition 2.1 (Cor. 3.1.4 of [5]). Let v, w ∈ Sn, then v ≤L w if and only if TR(v) ⊆
TR(w) and v ≤R w if and only if TL(v) ⊆ TL(w).
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The (positive) root associated to the reflection (ab) with a < b is the vector ea − eb, 
where the ei are the standard basis vectors in Rn. We write Φ+ for the set {ei − ej | 1 ≤
i < j ≤ n} of all positive roots. A set A ⊆ Φ+ is called closed if α + β ∈ A whenever 
α, β ∈ A and α + β ∈ Φ+; it is coclosed if Φ+ \ A is closed, and biclosed if it is both 
closed and coclosed. The following well-known fact can be easily verified.

Proposition 2.2. A set T ′ ⊆ T of reflections is the inversion set of some permutation if 
and only if the associated set {ea − eb | (ab) ∈ T ′, a < b} is biclosed.

The Bruhat order has a useful characterization in terms of reduced words:

Proposition 2.3 (Thm. 2.2.2 of [5]). Let v, w ∈ Sn, then v � w if and only if every 
reduced word (equivalently, some reduced word) for w has a subword which is a reduced 
word for v.

Given a string v1 . . . vk where the vi are distinct numbers from [n], the flattening
fl(v1 . . . vk) is the permutation v′

1 · · · v′
k ∈ Sk where v′

i = m if vi is the m-th largest 
element of {v1, . . . , vk}.

Proposition 2.4 (follows from Thm. 2.6.3 of [5]). Suppose v, w ∈ Sn satisfy vi = wi for 
i /∈ A ⊆ [n]. Let vA and wA be the subsequences of v, w consisting of those numbers from 
A, then v � w if and only if fl(vA) � fl(wA).

The symmetric group contains a unique element w0 of maximum length, and w0 is the 
unique maximal element of Sn under each of ≤L, ≤R, and �. In fact, in the finite case, 
both left and right weak order are lattices [5, Thm. 3.2.1]: each pair v, w of elements has 
a unique greatest lower bound or meet x ∧L y (resp. x ∧R y) under ≤L (resp. ≤R) and a 
unique least upper bound or join x ∨L y (resp. x ∨R y).

3. The graphs Γ̃w and Γw

Definition 3.1 (Def. 7.1 of [22]). For u � w, the directed graph Γ̃w(u) has vertex set [n]
with directed edges (u(i), u(j)) whenever i < j, u(ij) � w, and |�(u(ij)) − �(u)| = 1. We 
write Ẽw(u) for this set of edges.

The transitive reduction of a directed graph G is a directed graph G′ on the same 
vertex set with as few edges as possible, subject to the condition that there is a directed 
path from v to w in G if and only if there is one in G′. The transitive reduction of a finite 
graph without directed cycles is unique. We define Γw(u) to be the transitive reduction 
of Γ̃w(u), with edge set Ew(u). See Example 3.3.

Proposition 3.2 (Prop. 7.7 of [22]). Two vertices u and v of Qw are connected by an 
edge of the polytope if and only if v = u(ij) where (u(i), u(j)) ∈ Ew(u).
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Fig. 2. The graphs Γ̃3412(3142) (top) and Γ3412(3142) (bottom).

Example 3.3. Let w = 3412 and u = 3142, then u(12), u(23), u(34), and u(14) each 
have length 2 or 4 and lie below w in Bruhat order. These correspond to the edges 
(3, 1), (1, 4), (4, 2), and (3, 2) in Γ̃w(u) (see Fig. 2). Of these, (3, 2) is not an edge of 
Γw(u), since the other three edges give another directed path from 3 to 2. The remaining 
edges (3, 1), (1, 4), and (4, 2) of Γw(u) imply by Proposition 3.2 that 3142 is connected 
by an edge of Qw to 1342, 3412, and 3124, in agreement with Fig. 1.

3.1. Basic properties

When the permutation w is understood, we write a u−→ b when (a, b) ∈ Ẽw(u) and 
a 

u��� b when there is a directed path from a to b in Γ̃w(u) (equivalently, in Γw(u)); we 
write a 

u=⇒ b when (a, b) ∈ Ew(u).

Proposition 3.4. Let u, w ∈ Sn with u � w, then:

(i) Γw(u) and Γ̃w(u) have no directed cycles, and
(ii) Γw(u) contains no triangles (of any orientation).

Proof. For any edge a u−→ b, we have by definition that u−1(a) < u−1(b), so Γ̃w(u)
and Γw(u) cannot contain directed cycles. Any other orientation of a triangle is not 
transitively reduced, so Γw(u) does not contain any triangles. �
Proposition 3.5. Let u, w ∈ Sn with u � w, and suppose (ab)u � w, where u−1(a) <

u−1(b), then a 
u��� b. In particular, if (ab) ∈ TL(u), then a 

u��� b.

Proof. If there is no i with u−1(a) < i < u−1(b) and min(a, b) < u(i) < max(a, b), then 
|�((ab)u) − �(u)| = 1, so a u−→ b. Otherwise, find the smallest such i, for which we clearly 
have a u−→ i. By induction on |�((ab)u) − �(u)|, we have that i u��� b, so a 

u��� b. �
3.2. Local changes

Throughout this section we suppose that u, v ∈ Sn satisfy u �w v = (ab)u, with a < b, 
which by Proposition 3.2 implies that (a, b) ∈ Ew(u) and (b, a) ∈ Ew(v). Our goal is to 
understand how the graphs Γ̃w(u) and Γ̃w(v) differ. The following proposition will be 
fundamental in the remainder of the paper.
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Proposition 3.6. Suppose that u, v ∈ Sn satisfy u �w v = (ab)u, then:

(i) If c < d and c 
v��� d, then c 

u��� d;
(ii) If c > d, c �= b, d �= a, and c 

v��� d, then c 
u��� d.

We will prove Proposition 3.6 after a series of lemmas.

Lemma 3.7. Suppose that u, v ∈ Sn satisfy u �w v = (ab)u, then:

(i) If c v−→ b then c 
u��� a;

(ii) If a v−→ d then b 
u��� d.

Proof. Since c v−→ b v−→ a, we have v = . . . c . . . b . . . a . . . and since u = (ab)v, we have 
u = . . . c . . . a . . . b . . .. The fact that c v−→ b implies by definition that (bc)v � w. Now, 
(bc)v = . . . b . . . c . . . a . . . while (ac)u = . . . a . . . c . . . b . . .. By Proposition 2.4 and since 
a < b we have (ac)u ≺ (bc)v � w. Finally, by Proposition 3.5 we get c 

u��� a. The proof 
of (ii) is exactly analogous. �
Lemma 3.8. Suppose that u, v ∈ Sn satisfy u �w v = (ab)u and that c v−→ a v−→ d, then 
c 

u��� d.

Proof. By Lemma 3.7(ii) we have b 
u��� d, so if c = b we are done. Thus assume c �= b; 

since b v−→ a, this leaves two possibilities for v, omitting the ellipses: v = cbad or v = bcad.
Consider first the case v = cbad, in which case u = cabd. If c > a, then c 

u��� a

by Proposition 3.5, so c 
u��� a u−→ b 

u��� d. Thus assume c < a. In this case, we have 
(ac)u = acbd ≺ w by Proposition 2.4 since c < a < b and (ac)v = abcd � w. Thus by 
Proposition 3.5 we have c 

u��� a u−→ b 
u��� d.

Consider now the case v = bcad and u = acbd. First suppose c < b, in this case we 
have b 

v��� c v−→ a, contradicting the fact that b 
v=⇒ a. Thus c > b so c 

u��� b 
u��� d. �

Lemma 3.9. Suppose that u, v ∈ Sn satisfy u �w v = (ab)u and that c v−→ b v−→ d, then 
c 

u��� d.

Proof. By Lemma 3.7(i) we have c 
u��� a, so if d = a we are done. Otherwise, there are 

two possibilities for v, omitting ellipses: v = cbad or v = cbda.
If v = cbad then u = cabd. Consider (bd)u = cadb: we have (bd)u ≺ cbda, and, if d < a

we have cbda ≺ v � w, so b 
u��� d by Proposition 3.5; if instead d > a then (bd)u ≺

cdab = (bd)v ≺ w, so again b 
u��� d. Thus in either case we have c 

u��� a u−→ b 
u��� d.

If v = cbda and u = cadb, then (ad)u = cdab ≺ cdba = (bd)v � w. Thus c 
u��� a 

u���
d. �
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Lemma 3.10. Suppose that u, v ∈ Sn satisfy u �w v = (ab)u and that

c
v−→ i1

v−→ · · · v−→ ik
v−→ d

with c, i1, . . . , ik, d /∈ {a, b}, then c 
u��� d.

Proof. It suffices to prove the case k = 0, since the relation 
u��� is transitive, so suppose 

c v−→ d with c, d /∈ {a, b}. By definition, we know v−1(c) < v−1(d), (cd)v � w, and 
|�((cd)v) − �(v)| = 1. Since c, d /∈ {a, b}, we know u−1(c) < u−1(d) and (cd)u � (cd)v �
w. If in addition we have |�((cd)u) − �(u)| = 1, then c u−→ d and we are done. Otherwise, 
it must be that the values a, b, c, d appear in u in the relative order acbd, with min(c, d) <
b < max(c, d) or in the relative order cadb with min(c, d) < a < max(c, d). In the first 
case we have c u−→ b u−→ d and in the second case we have c u−→ a u−→ d. �

We are now ready to give the proof of Proposition 3.6.

Proof of Proposition 3.6. Suppose that u, v ∈ Sn satisfy u �w v = (ab)u, with a < b, 
and suppose c 

v��� d. Suppose first that c, d /∈ {a, b} and consider a path in Γ̃w(v) from 
c to d. If the path does not pass through a nor b, then c 

u��� d by Lemma 3.10. If 
the path passes through a, so c 

v��� c′ v−→ a v−→ d′ v��� d, then applying Lemma 3.10
and Lemma 3.8 we get c 

u��� c′ u��� d′ u��� d. Similarly, if the path passes through b, 
or through both b and a using the edge b v−→ a, we can conclude c 

u��� d by applying 
Lemmas 3.7–3.10.

It only remains to consider the cases where {c, d} ∩ {a, b} �= ∅. We will cover the cases 
c = a or b, with the situation for d = a or b being symmetrical (note that if (c, d) = (b, a)
then neither part of Proposition 3.6 applies, and indeed we have d u−→ c instead).

If c = a v−→ d1
v−→ · · · v−→ dk = d, then we have c = a u−→ b 

u��� d1
u��� dk = d by 

Lemmas 3.7(ii) and 3.10. If c = b v−→ a v−→ d1
v−→ · · · v−→ dk = d, we have c = b 

u��� d1
u���

dk = d by Lemmas 3.7 and 3.10. If c = b v−→ d1
v−→ · · · v−→ dk = d and b > d, then neither 

case of the proposition applies.
Thus the last case to consider is c = b v−→ d1

v−→ · · · v−→ dk = d with b < d and a �= d1. 
If d1 > a and v−1(a) < v−1(d1), then (bd1)u ≺ (bd1)v � w, so b 

u��� d1
u��� dk by 

Proposition 3.5 and Lemma 3.10. If d1 > a and v−1(a) > v−1(d1) then b v−→ d1
v��� a, 

contradicting the assumption that b 
v=⇒ a. If d1 < a and v−1(a) < v−1(d1), then we have 

a 
v��� d1, so we may instead consider a path b v−→ a 

v��� d1
v−→ · · · v−→ dk and apply a 

previous case. Finally, if d1 < a and v−1(d1) < v−1(a), consider the smallest i such that 
v−1(di) > v−1(a) (this exists, since a < b < d, so we must have v−1(d) > v−1(a) to avoid 
contradicting b 

v=⇒ a). Then di−1 < a (otherwise b 
v��� di−1

v��� a would contradict 
b 

v=⇒ a) and so we must have di < a, since otherwise (di−1di) would not give a Bruhat 
cover of v. Thus a 

v��� di, so c = b 
u��� di

u��� d by Lemma 3.7 and Lemma 3.10. �
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4. The lattice property

4.1. Generalized permutohedra

The normal fan N(Q) of a polytope Q ⊂ Rn (see e.g. [38, Ex. 7.3]) is the fan in Rn

with a cone C(F ) for each nonempty face F of Q with

C(F ) = {x ∈ Rn | F ⊆ argmaxx′∈Q〈x, x′〉}.

The correspondence F �→ C(F ) is an order-reversing bijection from the poset of faces of 
Q under containment to the poset of cones of N(Q) under containment.

The normal fan of the permutohedron Permn = Qw0 is the fan determined by the 
braid arrangement, which has defining hyperplanes xi − xj = 0 for 1 ≤ i < j ≤ n. The 
top-dimensional cones Cw0(y) in this fan are naturally labelled by permutations y ∈ Sn

which give the relative order of the coordinates of a point (x1, . . . , xn) ∈ Cw0(y). In 
particular we have y ∈ Cw0(y).

Following Postnikov [29], a polytope Q such that cones of N(Q) are unions of cones 
of N(Permn) is called a generalized permutohedron. Kodama–Williams [20, Cor. A.8]
showed that Bruhat interval polytopes are generalized permutohedra. Let Cw(u) denote 
the top-dimensional cone of N(Qw) corresponding to the vertex u ∈ Qw (where u ∈
[e, w]). Each Cw(u) is a union of some of the Cw0(y); viewing these as equivalence 
classes on the y, we obtain an equivalence relation Θw on Sn. We write [y]w for the 
equivalence class of y under Θw.

We say y ∈ Sn is a linear extension of Γw(u) (equivalently, of Γ̃w(u)) if y−1(i) < y−1(j)
whenever i u��� j. The following proposition is immediate from the construction of Γw(u)
in [22, §7] and the discussion of normal fans of generalized permutohedra in [27, §3].

Proposition 4.1. Let w ∈ Sn and u � w, then [u]w is exactly the set of linear extensions 
of Γw(u).

Somewhat surprisingly, the equivalence classes [x]w turn out to be intervals in right 
weak order. This result was established by other means in [22, Prop. 4.3].

Proposition 4.2. Let x, w ∈ Sn, then there exist elements botw(x) and topw(x) such that 
[x]w = [botw(x), topw(x)]R.

Proof. Let u be the unique element of [e, w] ∩ [x]w. By Proposition 4.1, the elements y
of [x]w are exactly the linear extensions of Γ̃w(u). Suppose that (ab) ∈ TL(u) with a < b, 
then by Proposition 3.5 we have b 

u��� a, so by Proposition 4.1 we have (ab) ∈ TL(y) for 
any y ∈ [x]w. Thus by Proposition 2.1 we have u ≤R y, so botw(x) = u.

The reflections occurring as left inversions of some linear extension of Γ̃w(u) are 
exactly those in
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I := {(ab) | a < b and a � u��� b}.

To see that a unique maximum topw(x) exists, we will demonstrate that R = {ea − eb |
(ab) ∈ I} is biclosed, so that topw(x) will be the unique permutation with left inversion 
set I.

First, note that if a 
u��� b and b 

u��� c, then a 
u��� c, so R is coclosed.

For closedness, let a < b < c and assume that a 
u��� c, which implies that u−1(a) <

u−1(c). If u−1(b) < u−1(a), then (ab) ∈ TL(u), so by Proposition 3.5 we have b 
u���

a 
u��� c, so b 

u��� c. If instead u−1(b) > u−1(c), then (bc) ∈ TL(u), so by Proposition 3.5
we have a 

u��� c 
u��� b, so a 

u��� b. Otherwise we have u−1(a) < u−1(b) < u−1(c). 
Consider a path a → a1 → · · · → ar → c1 → · · · → cs → c, where u−1(ai) ≤ u−1(b)
and u−1(b) < u−1(cj) for all i, j. If any ai > b, then a 

u��� ai
u��� b. If any cj < b, then 

b 
u��� cj

u��� c. Otherwise, since (ar c1)u covers u in Bruhat order, we must have ar = b, 
so a 

u��� b 
u��� c. In all cases, we see a 

u��� b or b 
u��� c, so R is closed. �

4.2. The poset structure

Write WeakR(Sn) for right weak order on Sn. The quotient WeakR(Sn)/Θw is the 
relation ≤Θw

defined by setting [x]w ≤Θw
[y]w whenever there exist x′ ∈ [x]w and 

y′ ∈ [y]w with x′ ≤R y′.

Theorem 4.3. Given w ∈ Sn, the map topw : Sn → Sn is order preserving with re-
spect to right weak order. That is, if x ≤R y then topw(x) ≤R topw(y). Furthermore, 
WeakR(Sn)/Θw is isomorphic to Pw via the map [x]w �→ botw(x).

Proof. Suppose that x �R y = xs = tx this implies that Cw0(x) and Cw0(y) share a 
facet along the hyperplane Ht fixed by the reflection t. Suppose further that [x]w �= [y]w
and let u = botw(x) and v = botw(y). Thus Cw(u) and Cw(u) share a facet along Ht, 
so there is an edge of Qw with vertices u and v. This implies that v = t′u for some 
t′ ∈ T and that Cw(u) and Cw(v) share a facet along Ht′ . Since the convex cones Cw(u)
and Cw(v) share at most one facet, we must have in fact that t = t′. We have u ≤R x

by Proposition 4.2 and we know that t /∈ TL(u) by Proposition 2.1 and the fact that 
t /∈ TL(x). Thus �(v) > �(u) and u �w v.

Now, by the proof of Proposition 4.2, we have for any z ∈ Sn that

TL(topw(z)) = {(cd) | c < d and c �
botw(z)
������� d}. (1)

Thus for any u′ �w v′ = (ab)u with a < b we have by Proposition 3.6(i) and (1) that

TL(topw(u′)) ⊂ TL(topw(v′)).

By Proposition 2.1 we see topw(u′) <R topw(v′).
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This establishes that Pw
∼= WeakR(Sn)/Θw, and establishes that topw is order pre-

serving after applying the second paragraph and that fact that topw(u) = topw(x) and 
topw(v) = topw(y). �
Corollary 4.4. Let w ∈ Sn, then the map topw is a poset isomorphism from Pw to 
(topw([e, w]), ≤R).

Proof. It is clear by definition that topw is injective on [e, w], since each equivalence class 
[x]w contains a unique element botw(x) of [e, w], thus it is a bijection onto its image. 
For u, v ∈ [e, w] with u ≤w v, by Theorem 4.3 there exist u′ ∈ [u]w and v′ ∈ [v]w with 
u′ ≤R v′. Then Theorem 4.3 gives that

topw(u) = topw(u′) ≤R topw(v′) = topw(v).

Note that for v ∈ [e, w] we have botw(topw(v)) = v and that Theorem 4.3 implies that 
botw sends right weak order relations to order relations under ≤w. Thus if topw(u) ≤R

topw(v) then u ≤w v. �
The fact that Pw is a lattice also follows easily from Theorem 4.3.

Theorem 4.5. For any w ∈ Sn, the poset Pw is a lattice, with join operation given by

u ∨w v = botw(topw(u) ∨R topw(v)).

Proof. Let z = botw(topw(u) ∨R topw(v)). Then

u ≤R topw(u) ≤R topw(u) ∨R topw(v),

so by Theorem 4.3 we have u ≤w z, and similarly v ≤w z. On the other hand, if 
y ≥w u, v, then by Theorem 4.3 we have topw(y) ≥ topw(u), topw(v) so topw(y) ≥
topw(u) ∨R topw(v). Thus y ≥w z and we see that z is the join of u, v in Pw. Since Pw is 
a finite poset with a join and a unique minimal element (namely e), it also has a meet 
and is thus a lattice. �
4.3. The Billey–Fan–Losonczy parabolic map

Let Sn(I) denote the Young subgroup of Sn generated by a subset I of the simple 
reflections. For w ∈ Sn let m(w, I) denote the unique maximal element of Sn(I) ∩ [e, w]
under Bruhat order [3, Thm. 2.2]; w �→ m(w, I) is called the parabolic map. See Richmond 
and Slofstra [34, Thm. 3.3 & Prop. 4.2] for the importance of the parabolic map in 
determining the fiber bundle structure of Schubert varieties.
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Proposition 4.6. Let w ∈ Sn, and let si1 , . . . , sik
be the simple reflections appearing in 

some (equivalently, any) reduced word for w, then:

si1 ∨w · · · ∨w sik
= w.

Proof. By Theorem 4.5 we have

si1 ∨w · · · ∨w sik
= botw(topw(si1) ∨R · · · ∨R topw(sik

)).

Now, topw(si1) ∨R · · ·∨R topw(sik
) ≥R si1 ∨R · · ·∨R sik

= w0(J) where J = {si1 , . . . , sik
}

and where w0(J) denotes the unique longest element of the subgroup of Sn generated 
by J (here we have used [5, Lem. 3.2.3] for the equality). Thus botw(topw(si1) ∨R · · · ∨R

topw(sik
)) ≥w botw(w0(J)) = w, where this last equality follows since w0(J) ≥R u for 

all u ∈ [e, w]. Since w is the maximal element of Pw, we get the desired equality. �
Theorem 4.7. Let w ∈ Sn, and let I be a set of simple generators, then:

m(w, I) =
∨
w

{si ∈ I | si � w}.

Proof. Let I ′ = {si ∈ I | si � w}; clearly any s ∈ I with s � w affects neither m(w, I)
nor the join, so we may reduce to the case I ′ = I. If I = {s1, . . . , ŝa, . . . , sn−1} is a 
maximal proper subset of the simple reflections, then the set of vertices u of Qw for 
u ∈ Sn(I) ∩ [e, w] can be cut out by the hyperplanes

{(x1, . . . , xn) ∈ Rn |
a∑

i=1
xi =

a∑
i=1

i}

and

{(x1, . . . , xn) ∈ Rn |
n∑

i=a+1
xi =

n∑
i=a+1

i}.

Since these are supporting hyperplanes of Qw, this set of vertices are the vertices of some 
face FI of Qw. If I is not maximal, we can obtain a face by intersecting faces for maximal 
subsets.

Since faces of Qw containing e are themselves of the form Qy by [35, Thm. 4.1], we 
see that m(w, I) = y exists. Now, Py is an interval of, and thus a sublattice of, Pw. Thus, 
since

∨
y

I = y = m(w, I)

by Proposition 4.6, we obtain the desired result. �
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5. Directionally simple polytopes

Given a polytope Q ⊂ Rd, say that a cost vector c ∈ Rd is generic if c is not orthogonal 
to any edge of Q. A generic cost vector induces an acyclic orientation on the 1-skeleton 
G(Q) by taking edges to be oriented in the direction of greater inner product with c; we 
write Gc(Q) for the resulting acyclic directed graph. It is clear that every face F of Q
contains a unique source minc(F ) and sink maxc(F ) with respect to this orientation.

Definition 5.1. We say that a polytope Q ⊂ Rd is directionally simple with respect to 
the generic cost vector c if for every vertex v of Q and every set E of edges of Gc(Q)
with source v there exists a face F of Q containing v whose set of edges incident to v is 
exactly E.

Since any subset of the edges incident to a vertex v in a simple polytope spans a face, 
the following fact is clear:

Proposition 5.2. A simple polytope Q ⊂ Rd is directionally simple with respect to any 
generic cost vector.

5.1. Qw is directionally simple

Theorem 5.3 was proven in [26, Prop. 4.5] by an involved direct computation; here we 
give a new proof using the results of Section 4.

Theorem 5.3. Let w ∈ Sn, then Qw is a directionally simple polytope with respect to the 
cost vector c = (n, n − 1, . . . , 1).

Proof. The vector c is chosen so that Gc(Qw) coincides with the Hasse diagram of Pw, 
with the outward edges from a vertex u corresponding to the upper covers of u in Pw. 
By Theorem 4.3 the set A = {z ∈ Sn | topw(u) �R z} of weak order upper covers of 
topw(u) is in bijection with the set B = {v ∈ Pw | u �w v} of upper covers of u in Pw, 
via the map z �→ botw(z). Since weak order is the 1-skeleton poset of the permutohedron 
Permn, and since Permn is a simple polytope, for any E ⊆ A, there is a face F of Permn

whose collection of edges incident to topw(u) are exactly those connecting topw(u) to 
z for z ∈ E. Since Qw is a generalized permutohedron, the set {botw(z) | z ∈ F} are 
the vertices of some face F ′ of Qw, witnessing the upper simplicity of Qw. �

Theorem 5.3 shows that Qw is always directionally simple, in Section 6 we will deter-
mine when Qw is in fact simple.
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5.2. h-vectors of directionally simple polytopes

The f-vector of a polytope Q ⊂ Rd is the tuple f(Q) = (f0, . . . , fd) where fi is the 
number of i-dimensional faces of Q. The h-vector h(Q) is defined by the equality of 
polynomials

d∑
i=0

fi(x − 1)i =
d∑

k=0

hkxk. (2)

Proposition 5.4. Let Q ⊂ Rd be directionally simple with respect to the generic cost vector 
c, with h-vector h(Q) = (h0, . . . , hd). Then for all k = 0, . . . , d the entry hk is the number 
of vertices of Q with out-degree exactly k in Gc(Q).

Proof. First note that, since the cost vector c is generic, each face of Q has a unique 
minimal vertex, that is, a vertex which is a source when we restrict the graph Gc(Q)
to the vertices from Q. Let gk be the number of vertices of Q with out-degree exactly 
k in Gc(Q). We can count i-faces according to their bottom vertex. Each vertex with 
out-degree k, by upper simplicity, is the bottom vertex of exactly 

(
k
i

)
faces. Thus we 

have:

d∑
i=0

fix
i =

d∑
k=0

gk(x + 1)k.

But this is just a reparametrization of (2), so gk = hk. �
Remark. One implication of Proposition 5.4 is that hi ≥ 0 for i = 0, . . . , d. This by itself 
is already a very special property of directionally simple polytopes; indeed h-vectors of 
non-simple polytopes are rarely considered, because they are rarely positive or otherwise 
interesting.

For u ∈ Sn, write asc(u) for the number n − 1 − |DR(u)| of right ascents of u. 
Corollary 5.5 below is an extension to Qw of the kind of interpretation for h-vectors of 
simple generalized permutohedra given by Postnikov–Reiner–Williams [27, Thm. 4.2].

Corollary 5.5. Let (h0, h1, . . .) be the h-vector of Qw, then for all k we have:

hk = |{z ∈ topw([e, w]) | asc(z) = k}| .

Proof. As explained in the proof of Theorem 5.3, the number of ascents of topw(u) is 
exactly the out-degree on u in Gc(Qw), so the result follows by Proposition 5.4. �

As explained in [26], the h-vector of Qw also gives the Poincaré polynomial of the 
toric variety Yw, so Corollary 5.5 gives a new formula for that invariant. We can also 
resolve an open problem raised in [25]:
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Proposition 5.6 (Resolves Problem 6.1 of [25]). The variety Yw is smooth if and only if 
its Poincaré polynomial is palindromic.

Proof. Suppose Qw is d-dimensional. Since Qw is directionally simple (see Theorem 5.3), 
by [26, Thm. 2.7] the Poincaré polynomial of Yw has coefficients h0, h1, . . . , hd. Suppose 
that this sequence is palindromic.

By (2) the number of vertices of Qw is f0 =
∑d

k=0 hk and the number of edges of Qw

is f1 =
∑d

k=0 k · hk. Since h is assumed to be palindromic, we in fact have:

f0 =

⎧⎨
⎩

2
∑ d−1

2
k=0 hk, d odd

2
∑ d

2 −1
k=0 hk + h d

2
, d even,

(3)

f1 =

⎧⎨
⎩

d
∑ d−1

2
k=0 hk, d odd

d
∑ d

2 −1
k=0 hk + d

2 h d
2
, d even.

(4)

In particular, we have f1 = d
2 f0. Since all vertices are incident to at least d edges in 

a d-dimensional polytope, this implies that in fact all vertices are incident to exactly d
edges, so Qw is in fact simple, which by [22, Thm. 1.2] implies that Yw is smooth. The 
converse is immediate, since if Yw is smooth its cohomology satisfies Poincaré duality. �
6. Vertex-degree monotonicity

In Section 4 we applied properties of the relation c 
u��� d to prove that Pw is a lattice. 

In this section we use more refined information about the relation c 
u=⇒ d (see Section 3.1) 

to prove that vertex-degrees of Qw are monotonic with respect to the partial order ≤w; 
as an application, we resolve a conjecture of Lee–Masuda [22, Conj. 7.17] characterizing 
smooth generic torus orbit closures in Schubert varieties.

Write degw(u) for the number of edges of Qw incident to the vertex u.

Theorem 6.1. Let w ∈ Sn. If u ≤w v then degw(u) ≤ degw(v).

Theorem 6.1 will follow from the stronger Theorem 6.4 below.

Corollary 6.2. Let w ∈ Sn, then the polytope Qw is simple if and only if it is simple at 
the vertex w.

Proof. It is clear from Proposition 3.2 and the definition of Ew(e) that Qw is always 
simple at the vertex e. Thus if Qw is also simple at w, Theorem 6.1 implies that it is 
simple at every vertex. �

Corollary 6.2 resolves Conjecture 7.17 of Lee–Masuda [22]. As described in [22, 
Cor. 7.13], Corollary 6.2 has the following geometric interpretation.
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Corollary 6.3. Let Yw be a generic torus orbit closure in the Schubert variety Xw :=
BwB/B, then Yw is smooth if and only if it is smooth at the torus fixed point wB.

Write c 
u⇐⇒ d if c 

u⇐= d or d 
u=⇒ c (note that we never have both c 

u⇐= d and d 
u=⇒ c).

Theorem 6.4. Let w ∈ Sn and suppose u �w v = tu with c 
u⇐⇒ d, then there is a unique 

edge �e of Ew(v) described by c 
v⇐⇒ d or t(c) v⇐⇒ t(d). Moreover, the map

ϕ : Ew(u) → Ew(v)

sending the edge c 
u⇐⇒ d to �e is an injection.

Theorem 6.1 follows from Theorem 6.4 since, by Proposition 3.2 we have degw(u) =
|Ew(u)| for all u � w.

6.1. Proof of Theorem 6.4

6.1.1. Injectivity

Lemma 6.5. In the setting of Theorem 6.4, at most one edge of Ew(v) is described by 
c 

v⇐⇒ d or t(c) v⇐⇒ t(d).

Proof. Write t = (ab) with a < b. If |{a, b} ∩ {c, d}| �= 1, then {c, d} = {t(c), t(d)} so the 
conditions c 

v⇐⇒ d and t(c) v⇐⇒ t(d) are the same, and clearly we can have c 
v=⇒ d or d 

v=⇒ c

but not both. If |{a, b} ∩ {c, d}| = 1, suppose for example that b = c, so t(c) = a and 
t(d) = d. Suppose we had both edges, then since u �w v = tu we would have

b
v=⇒ a = t(c) v⇐⇒ t(d) = d

v⇐⇒ c = b,

contradicting the fact that Γw(v) has no triangles by Proposition 3.4. The other cases 
are analogous. �

In Sections 6.1.3 and 6.1.2 below we show that an edge in Ew(v) described by c 
v⇐⇒ d

or t(c) v⇐⇒ t(d) does in fact exist, so that ϕ : Ew(u) → Ew(v) is well-defined. It remains 
to check that ϕ is injective.

Lemma 6.6. In the setting of Theorem 6.4, the map ϕ : Ew(u) → Ew(v) is injective.

Proof. Write t = (ab) with a < b. Suppose ϕ((c, d)) = ϕ((c′, d′)) = (i, j) ∈ Ew(v) with 
(c, d) �= (c′, d′). Without loss of generality we have

{c, d} = {i, j} = {t(c′), t(d′)}.
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Fig. 3. The possible 2-dimensional faces of a Bruhat interval polytope, according to Theorem 6.7; the re-
flections of these about a vertical line are also possible. The edge labels indicate the reflection which sends 
one endpoint to the other. For the square, we must have i < j < k < l; for the trapezoids, we must have 
i < j < k or k < j < i; for the hexagon, we must have i < j < k.

Since {t(c′), t(d′)} = {c, d} �= {c′, d′} we must have |{c′, d′} ∩ {a, b}| = 1. Assume for 
example that c′ = a (the other cases being analogous) which implies that t(c′) = b and 
t(d′) = d′. Then we have

a
u=⇒ b = t(c′) u⇐⇒ t(d′) = d′ u⇐⇒ c′ = a,

contradicting the fact that Γw(u) has no triangles by Proposition 3.4. �
6.1.2. Upward edges

When the edge in Theorem 6.4 is an upward edge c 
u=⇒ d with c < d, the result 

will follow from the following classification of 2-dimensional faces in Bruhat interval 
polytopes, due to Williams [36].

Theorem 6.7 (Thm. 5.1 of [36]). A 2-dimensional face of a Bruhat interval polytope is 
either a square, trapezoid, or regular hexagon, with labels as in Fig. 3.

Indeed, in this case the two upward edges incident to u, coming from u �w v and 
c 

u=⇒ d span a 2-dimensional face of Qw, by Theorem 5.3. Then, viewing u as the bottom 
vertex of one of the faces in Fig. 3 and v as one of the vertices covering it, it is easy to 
verify that in each case Theorem 6.4 holds.

6.1.3. Downward edges
In the previous section we established the well-definedness of the map in Theorem 6.4

when the edge c 
u⇐⇒ d was an upward edge, meaning it points from a smaller index to a 

larger. In this section, we cover the downward edges; this requires a more careful analysis 
because it is no longer the case that there is some 2-dimensional face of Qw containing 
the edges under consideration.

Throughout this section, let w ∈ Sn and suppose that u �w v = (ab)u, with a < b.

Lemma 6.8. Suppose that c 
u=⇒ d where c < d and a, b, c, d are distinct. Then c 

v=⇒ d.

Proof. We have �((cd)v) = �(v) − 1, since no value between c and d occurs between 
them in v, for otherwise the same would be true in u. Thus c v−→ d, so if we are not to 
have c 

v=⇒ d, then there must be an index i with c 
v��� i v−→ d. We must have i ∈ {a, b}, 
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otherwise by Proposition 3.6 we would have c 
u��� i 

u��� d, contradicting c 
u=⇒ d. Consider 

two cases: i = a or i = b.
Suppose i = a, so i = a 

u��� d by Proposition 3.6. If c < a then we have c 
u��� a 

u��� d

by Proposition 3.6, a contradiction, so assume c > a. There are two possibilities for v
(omitting ellipses): v = bcad or v = cbad. If v = cbad then u = cabd so again c 

u���
a 

u��� d, so assume v = bcad and u = acbd. Since multiplication by (ab) and (cd) both 
give lower Bruhat covers of v, and since (cd) gives a lower cover of u, we must have 
a < b < d < c. But then we have c 

u��� b 
u��� d, both by Proposition 3.5. This again 

contradicts c 
u=⇒ d.

Suppose now that i = b, so c 
u��� b = i by Proposition 3.6. If b < d then we are 

done since c 
u��� b 

u��� d again by Proposition 3.6, so assume b > d. There are two 
possibilities for v (omitting ellipses): v = cbad or v = cbda. If v = cbad then u = cabd

so b 
u��� d, again a contradiction. Thus we must have v = cbda and u = cadb, and the 

known Bruhat covers of u, v imply that d < c < a < b. But then by Proposition 3.6
we have c 

u��� a (since c 
v��� b v−→ a) and we have a 

u��� d by Proposition 3.5, again 
contradicting c 

u=⇒ d. �
Lemma 6.9. Suppose that c 

u=⇒ a, with a < c, then c 
v=⇒ a or c 

v=⇒ b.

Proof. We have c 
u=⇒ a 

u=⇒ b, so (omitting ellipses) u = cab and v = cba.
Suppose first that c 

v��� b; if we are not to have c 
v=⇒ b, then it must be that c 

v���
i 

v��� b for some i. Thus v = ciba and u = ciab. By Proposition 3.6 we have c 
u��� i. If 

i > a, then by Proposition 3.5 we have i 
u��� a, contradicting c 

u=⇒ a, thus i < a. But 
i 

v��� b v−→ a, so by Proposition 3.6 we again obtain i 
u��� a.

Now assume c � v��� b; in particular, this means that c < b. We have c 
v��� a by 

Proposition 3.5 since c > a by assumption, so if we are not to have c 
v=⇒ a, it must be 

that c v−→ i 
v��� a for some i �= b. By Proposition 3.6 we have c 

u��� i. If i < a, then 
i 

u��� a by Proposition 3.6, contradicting c 
u=⇒ a. Thus i > a. There are two possibilities 

for v (omitting ellipses): v = cbia or v = ciba. If v = cbia, then min(c, i) > b since (ab)
is a Bruhat cover, c v−→ i, and i > a. This contradicts c < b above. Finally, if instead 
we have v = ciba and u = ciab, then c 

u��� i 
u��� a by Proposition 3.5, contradicting 

c 
u=⇒ a. �

Lemma 6.10. Suppose c 
u=⇒ b, with a < b < c, then c 

v=⇒ a.

Proof. There are two possibilities for u (omitting ellipses): u = acb or u = cab. The 
latter cannot occur, since by Proposition 3.5 we would have c 

u��� a 
u=⇒ b, contradicting 

c 
u=⇒ b, thus u = acb and v = bca.
We have c 

v��� a by Proposition 3.5, so if we are not to have c 
v=⇒ a, it must be that 

c 
v��� i 

v��� a for some i. Thus v = bcia and u = acib. By Proposition 3.6, we have 
c 

u��� i; we must have i < b, otherwise we would have i 
u��� b, contradicting c 

u=⇒ b. We 
cannot have a < i < b, since (ab) is a Bruhat cover, so i < a. But now Proposition 3.6
implies that i u��� a, impossible since u−1(a) < u−1(i). �
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Proof of Theorem 6.4. Let w ∈ Sn and suppose u �w v = (ab)u with a < b and that 
c 

u=⇒ d. We first argue that at least one edge described by c 
v⇐⇒ d or t(c) v⇐⇒ t(d) exists in 

Ew(v).
The case of an upward edge (c < d) was covered in Section 6.1.2, so suppose that 

c > d. There are five cases to consider:

(i) a, b, c, d are distinct,
(ii) d = a,
(iii) d = b,
(iv) c = a,
(v) c = b.

Conjugation by w0 is an automorphism of Bruhat order (see [5, Prop. 2.3.4]), it 
follows from the definitions that Γ̃w0ww0(w0uw0) and Γw0ww0(w0uw0) can be obtained 
from Γ̃w(u) and Γw(u) respectively by relabelling the vertices according to i �→ n + 1 − i

and then reversing all edge directions. Cases (ii) and (iii) correspond under this symmetry 
to (v) and (iv), respectively, so we only need consider (i), (ii), and (iii). These cases are 
covered by Lemmas 6.8, 6.9, and 6.10 respectively.

We have shown that at least one edge described by c 
v⇐⇒ d or t(c) v⇐⇒ t(d) exists in 

Ew(v). Lemma 6.5 implies that at most one exists. Together this means that the map 
ϕ : Ew(u) → Ew(v) is well-defined, and it is injective by Lemma 6.6. �
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