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Abstract

The undirected Bruhat graph T (u, v) has the elements of the Bruhat interval [u, v] as vertices,
with edges given by multiplication by a reflection. Famously, I"(e, v) is regular if and only
if the Schubert variety X, is smooth, and this condition on v is characterized by pattern
avoidance. In this work, we classify when I" (e, v) is vertex-transitive; surprisingly this class
of permutations is also characterized by pattern avoidance and sits nicely between the classes
of smooth permutations and self-dual permutations. This leads us to a general investigation
of automorphisms of I"(u, v) in the course of which we show that special matchings, which
originally appeared in the theory of Kazhdan—Lusztig polynomials, can be characterized,
for the symmetric and right-angled groups, as certain I'(u, v)-automorphisms which are
conjecturally sufficient to generate the orbit of e under Aut(I"(e, v)).

1 Introduction

The (directed) Bruhat graph T of a Coxeter group W is the directed graph with vertex set W
and directed edges w — wt whenever £(wt) > £(w) and ¢ is a reflection. We write f(u, v)
for its restriction to a Bruhat interval [u, v] C W, and simply F(v) for its restriction to [e, v].
These graphs appear ubiquitously in the combinatorics of Coxeter groups and Bruhat order
[12], the topology of flag, Schubert, and Richardson varieties as the GKM-graph for the
natural torus action [16, 17], and in the geometry of these varieties and related algebra, for
example in the context of Kazhdan-Lusztig polynomials [4, 9, 11, 13].

In all of these contexts, the directions of the edges, and sometimes additional edge labels,
are centrally important. In this work, however, we study the associated undirected graphs
I'(u,v) and I'(v) := I'(e, v). In particular, from the perspective of the undirected graph, it
is very natural to study graph automorphisms (in contrast, the directed Bruhat graph T has
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very few automorphisms [25]), and these automorphisms end up having close connections
to previous work on smooth Schubert varieties [18, 20], self-dual Bruhat intervals [10],
Billey—Postnikov decompositions [2, 22], and special matchings [6].

1.1 Regular, vertex-transitive, and self-dual Bruhat graphs

The following well-known theorem, combining results of Lakshmibai—Sandhya [20] and
Carrell-Peterson [18], helped establish the fundamentality of both the Bruhat graph and
pattern avoidance conditions in the combinatorial and geometric study of Schubert varieties.

Theorem 1.1 (Lakshmibai—Sandhya [20], Carrell-Peterson [18]) The following are equiva-
lent for a permutation w in the symmetric group S,:

(S1) the undirected Bruhat graph T (w) is a regular graph,
(S2) the permutation w avoids the patterns 3412 and 4231,
(S3) the poset [e, w] is rank-symmetric, and

(S4) the Schubert variety X, is smooth.

In light of (S3), it is natural to ask whether [e, w] is in fact self-dual as a poset when X,
is smooth. This turns out to not always be the case, but the smaller class of self-dual intervals
also admits a nice characterization by pattern avoidance:

Theorem 1.2 (G.—G. [10]) The following are equivalent for a permutation w € S,,:

(SD1) the Bruhat interval [e, w] is self-dual as a poset, and
(SD2) the permutation w avoids the patterns 3412 and 4231 as well as 34521, 54123, 45321,
and 54312.

In our first main theorem here, we characterize by pattern avoidance those permutations
w such that I (w) is vertex-transitive; this characterization implies that this class of permu-
tations sits nicely between the classes of self-dual permutations (Theorem 1.2) and smooth
permutations (Theorem 1.1).

Theorem 1.3 The following are equivalent for a permutation w € &,:

(VT1) the undirected Bruhat graph I" (w) is a vertex-transitive graph,
(VT2) the permutation w avoids the patterns 3412 and 4231 as well as 34521 and 54123.

Since vertex-transitive graphs are necessarily regular, it is clear that the permutations from
Theorem 1.3 are a subset of those from Theorem 1.1, and this is borne out by comparing
conditions (S2) and (VT2). It is not at all conceptually clear, however, why the self-dual
permutations of Theorem 1.2 should in turn be a subset of those from Theorem 1.3, even
though this fact is easily seen by comparing conditions (VT2) and (SD2). A conceptual bridge
between these two classes of permutations is provided by Conjecture 1.4.

Conjecture 1.4 Let w € S, and let O = {¢p(e) | ¢ € Aut(I'(w))} be the orbit of the identity
under graph automorphisms of T (w), then

O = e, v]

for some v < w.
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Indeed, if [e, w] is self-dual, then w € O, and so if Conjecture 1.4 holds we must have
O = [e, w]. That is, I'(w) must be vertex-transitive.

In the course of the proof of Theorem 1.3 (Sect. 3) and the refinement of Conjecture 1.4
in Sect. 4, we are led to consider certain automorphisms of I'(u, v) arising from perfect
matchings on the Hasse diagram of [u, v]. That these automorphisms are the same thing as
the previously well-studied special matchings on [u, v] is the subject of our second main
theorem.

1.2 Special matchings and Bruhat automorphisms

Special matchings (see the definition in Sect. 2.4) on Bruhat intervals were introduced [5,
6] because they can be used to define a recurrence for Kazhdan—Lusztig R-polynomials [19]
which allows for the resolution of the Combinatorial Invariance Conjecture in the case of
lower intervals [e, w]. These matchings are intended to generalize many of the combinatorial
properties of the matching on W induced by multiplication by a simple reflection s. Special
matchings on Bruhat intervals and related posets have since found several other combinatorial
and topological applications and been generalized in several ways [1, 14, 21], and special
matchings on lower Bruhat intervals have been completely classified [8].

In Theorem 1.5 and Conjecture 1.6 below we give a new characterization of special match-
ings of Bruhat intervals [u, v] in terms of automorphisms of I'(u, v). This characterization
is notable because it expresses the special matching condition, originally formulated as a
condition only on Bruhat covers, as a condition on the global structure of the undirected
Bruhat graph.

A Coxeter group W is called right-angled if every pair of simple generators either com-
mutes or generates an infinite dihedral group.

Theorem 1.5 Let W be a right-angled Coxeter group or the symmetric group and letu < v be
elements of W. Then a perfect matching of the Hasse diagram of [u, v] is a special matching
if and only if it is an automorphism of I (u, v).

Conjecture 1.6 Theorem 1.5 holds for arbitrary Coxeter groups W.

1.3 Outline

In Sect. 2, we cover background and definitions relating to Coxeter groups, Bruhat order
and Bruhat graphs, Billey—Postnikov decompositions, and special matchings. In Sect. 3 we
prove Theorem 1.3, classifying vertex-transitive intervals [e, w]. In Sect. 4 we give a more
precise version of Conjecture 1.4 in terms of almost reducible decompositions and some
partial results towards resolving the conjecture. Section 5 proves Theorem 1.5. The proof of
Theorem 1.5 relies on a structural property of Bruhat order, the existence of upper bounds of
butterflies, which may be of independent interest. This property is discussed and proven for
the symmetric group and right-angled Coxeter groups in Sect. 6.

2 Background and definitions
2.1 Coxeter groups and reflections

We refer the reader to [3] for basic definitions and background for Coxeter groups.
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For a Coxeter group W with simple generators S = {sy, ..., s} and an element w € W,
an expression w = s;, - - - 5, is a reduced word of w if it is of minimal length, and in this case
£ = £(w) is the length of w. The reflections T are the W-conjugates of the simple reflections.
The (left) inversion set of w is

Tr(w):={teT |L(tw) < (w)},

and the (left) descent set of w is Dy (w) := S N Tr(w). Right inversion and descent sets
Tr(w), D (w) are defined analogously, using instead right multiplication by ¢. It is not hard
to see that £(w) = |TL(w)| = |Tr(w)].

Given J C S, the parabolic subgroup W is the subgroup of W generated by J, viewed
as a Coxeter group with simple generators J. Each coset wW; for W; in W contains a
unique element w’ of minimal length, and this determines a decomposition w = w’ wy
with wy € Wy and £(w) = €(w’) + €(wy). The set W/ := {w’ | w € W} is the parabolic
quotient of W with respect to J, and has the following alternative description:

W' ={uew|Drw)nJ =0}

If W is finite, it contains a unique element wo of maximum length, and the image w({ of
wo in any parabolic quotient is the unique longest element of W*. We write wo(J) for the
longest element of the parabolic subgroup W .

2.2 Bruhat graphs and Bruhat order

The directed Bruhat graph T of W is the directed graph with vertex set W and directed
edges w — wt whenever ¢ is a reflection with ¢(wt) > £(w). Note that, since T is closed
under conjugation, the “left" and “right" versions of T in fact coincide. The (undirected)
Bruhat graph T is the associated simple undirected graph. The directed graph T' is much
more commonly considered in the literature, and often called “the Bruhat graph" but, since
our focus in this work is on the undirected graph I', when directedness is not specified we
mean the undirected graph.

The (strong) Bruhat order (W, <) is the partial order on W obtained by taking the transitive
closure of the relation determined by T'. We write [u, v]fortheinterval {w € W | u < w < v}
in Bruhat order. For u < v, we write F(u, v) and I"(u, v) for the restrictions of F, I" to the
vertex set [u, v]; when u is the identity element e, we sometimes write simply F(v) and I"(v).

The following fundamental properties of Bruhat order will be of use throughout the paper.

Proposition 2.1 (Exchange Property) Letw € W andt € T be such that £(wt) < £(w), and
let s;, - - - 5, be any (not-necessarily-reduced) expression for w, then for some j we have

W= iy« Si; " Sig-

Proposition 2.2 (Subword Property) Let u,v € W, then u < v if and only if some (equiva-
lently, every) reduced word for v contains a reduced word for u as a subword.

For w € W, we write Supp(w) for the support of w: the set of simple reflections appear-
ing in some (equivalently, every) reduced word for w. We say the element w € W has a
disjoint support decomposition if it may be expressed as a nontrivial product w = w’w” with
Supp(w’) N Supp(w”) = @ (note that, in this case, we have w’ = w’ and w” = wy with
J = Supp(w”)).
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Proposition 2.3 Let w = w'w” be a disjoint support decomposition, then:
Tw) =T (w) x T(w"),
C(w) =T (w') x T(w"),

le, w] = [e, w'] x [e, w"].
In each case, the isomorphism is given by group multiplication.

Proof The latter two assertions follow from the first. The first assertion can be easily
seen by choosing a reduced word w = s;, - - - 8, Siy,, - - - Si, such that s;; ---s;, = w’ and
Sigs1 - - - 8ip = w” and applying the Subword Property and Exchange Property. |

Proposition 2.3 implies in particular that when w = w’w” is a disjoint support decompo-
sition, I'(w), I'(w), and [e, w] have automorphisms induced by automorphisms for w’, w”.

Proposition 2.4 (Lifting Property) Let u < v. If s € Dp(v) \ Dr(u), then su < v and
u < sv; analogously, if s € Dr(v) \ Dr(u), then us < v and u < vs.

Proposition 2.5 Letu < v, then for any J < S we have ul <.

2.3 Billey-Postnikov decompositions

Definition 2.6 (Billey—Postnikov [2], Richmond-Slofstra [22]) Let W be a Coxeter group
and J C S, the parabolic decomposition w = w” w; of w is a Billey—Postnikov decomposi-
tion or BP-decomposition if

Supp(w’)NJ € Dy (wy).

BP-decompositions were introduced by Billey and Postnikov in [2] in the course of their
study of pattern avoidance criteria for smoothness of Schubert varieties in all finite types.
The following characterizations of BP-decompositions will be useful to us.

Proposition 2.7 (Richmond-Slofstra [22]) For w € W and J C S, the following are equiv-
alent:

(1) w=w’wy is a BP-decomposition,
(2) the multiplication map ([e, w’1N WJ) X [e, wy] — [e, w] is a bijection,
(3) wy is the maximal element of Wy N [e, w].

2.4 Special matchings

The Hasse diagram, denoted H (P), of a poset P is the undirected graph with vertex set P
and edges (x, y) whenever x <p y is a cover relation in P. Note that the Hasse diagram
H (W) of Bruhat order on W is a (non-induced) subgraph of I', as the two graphs share the
vertex set W, but H (W) contains only those edges (x, y) of I" such that |[¢(x) — £(y)| = 1.
A perfect matching of a graph G is a fixed-point-free involution M : G — G such that
(x, M(x)) is an edge of G for all x € G.

Definition 2.8 (Brenti [5], Brenti—Caselli-Marietti [6]) A perfect matching M on the Hasse
diagram of a poset P is a special matching if, for every cover relation x < p y, either M (x) = y
or M(x) <p M(y).
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For u < v € W itis not hard to check, using the Lifting Property, that for s € Dy (v) \
Dy (u) (resp. s € Dr(v) \ Dg(u)) left (resp. right) multiplication by s determines a special
matching of the Hasse diagram H ([u, v]). In fact, this motivated the definition of special
matching [5]. Proposition 2.9 below, a special case of the classification by Caselli and Marietti
[7, 8] of special matchings of lower Bruhat interval, observes that middle multiplication is
also a special matching for lower intervals.

Proposition 2.9 (Special case of Theorem 5.1 in [7]) Suppose w = w’wy is a BP-

decomposition of w and in addition we have Supp(w] ) N Supp(wy) = {s}, then the middle
multiplication map

¢:x x7sx Js
is a special matching of [e, w].
Proof The hypotheses on w imply that the parabolic decomposition with respect to J is

induced by a left system in the sense of Definition 4.1 of [7], so that ¢ is a special matching
by Theorem 5.1 of [7]. O

2.5 From special matchings to Bruhat automorphisms

The following result of Waterhouse shows that T has no nontrivial automorphisms as a
directed graph.

Theorem 2.10 (Waterhouse [25]) Let W be an irreducible Coxeter group which is not dihe-
dral, then Aut((W, <)) (equivalently, Aut(I")) is generated by the graph automorphisms of
the Dynkin diagram of W and the group inversion map on W.

In this paper we study the much richer sets of automorphisms of I" and particularly of its
subgraphs I (u, v). Although it is stated only for lower intervals [e, v], the proof of Theorem
10.3 in [6] also applies to general intervals [u, v] and yields Theorem 2.11 below:

Theorem 2.11 (Theorem 10.3 of [6]) Let u < v be elements of a Coxeter group W. Any
special matching M of the Hasse diagram H ([u, v]) is an automorphism of I (u, v).

Corollary 2.12 Letw € W. Ifs € Dy (w) (resp. Dg(w)) then left (resp. right) multiplication
by s is an automorphism of T'(w). If w = w” wy is a BP-decomposition of w with Supp(w” )N
Supp(wy) = {s}, then middle multiplication by s is an automorphism of T (w).

Theorem 2.11 provides one direction of Theorem 1.5 and Conjecture 1.6 for arbitrary
Coxeter groups. This implies that special matchings on Bruhat intervals, although defined
by a local condition (that is, a condition on cover relations), respect the global structure of
Bruhat graphs. The reverse direction is the subject of Sect. 5.

3 Vertex transitive Bruhat graphs

To prove Theorem 1.3, we introduce another condition:
(VT3) the element w is almost-polished,
and show its equivalence to (VT1) and (VT2).
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Definition 3.1 Let (W, S) be a finite Coxeter system. An element w € W is almost-polished

if there exist pairwise disjoint subsets Si, ..., S¢ C S such that each S; is a connected subset
of the Dynkin diagram and coverings S; = J; U J/ withi = 1, ..., k so that
k

w = [Twotnwo(Ji 0 J)wo ().
i=1
Note that if we reorder the S;’s, a possibly different almost-polished element can be obtained.
Unlike polished elements [10], for almost-polished elements, we do not require that J; N Jl/

is totally disconnected.
We then prove Theorem 1.3 via (VT1)=(VT2)=(VT3)=(VT1).

3.1 (VT1)=(VT2)

For a simple graph G and v € V(G), let N;(v) be the set of vertices with distance exactly d
from v. In particular, No(v) = {v} and for the Bruhat graph I"'(w), N1 (w) = {wt;; | w(i) >
w(j)} where #;; is the transposition (i j) withi < j. For ¢ € Aut(G), it is clear that if
o(u) = v, then ¢(Ng(u)) = Ng(v) foralld = 1,2, .. ..

We start with a simple lemma concerning Aut(I"(w)), which intuitively says that ¢ €
Aut(I"(w)) “preserves triangles" in N1 (w) and N (e).

Lemma 3.2 Let ¢ € Aut(I"(w)) such that p(w) = e.
() Ifi < j <kand w(i) > w(j) > w(k), then for some a < b < c with w > t,,
o({wtij, wtix, wtjk}) = {tabs tacs o}
Q) Ifa <b < cand w > ty, then for somei < j <k and w(i) > w(j) > w(k),
0 ({tabs tac: toe}) = (wiij, wiix, wtji ).

Proof Recall that fora < b < ¢, tye > typ and tye > tpe.

For (1), we notice that the three elements wt;;, wt;x, wtj; € Ni(w) have two common
neighbors in wt;jtjx = wtitij, wtjrtij = wiiktjx € No(w). In order for p(wt;;) = tyy,,
@(Wtix) = ty,y, and (wtjr) = tyy, to have two common neighbors in Na(e), {x1, y1},
{x2, y2}, {x3, ¥3} must pairwise intersect, so they must be {a, b}, {a, c}, {b, c} in some order,
for some a < b < c. For (2), the exact same reasoning works by analysing N2 (w). O

Proof (Proof of implication (VT1)=(VT2)) Assume I"(w) is vertex-transitive. In particular,
it is a regular graph so Theorem 1.1 implies that w avoids 3412 and 4231. The other two
patterns 34521 and 54123 are inverse to each other. Since I"'(w) and F(w_]) are isomorphic,
it suffices to show that w avoids 34521. Now for the sake of contradiction, let w contain the
pattern 34521 at indices a; < --- < as, and let ¢ € Aut(I"(w)) such that (w) = e.

Let ¢(wtyq5) = txy where x < y. Note that w contains the pattern 321 at indices
a; < a4 < as fori = 1,2,3. By Lemma 3.2, let o({wtg;q,, Wts;a5, Wlasas}) be the three
transpositions with indices in x, y and ¢;. We now view the indices a1, a3, a3 and c1, ¢2, 3
with symmetric roles and divide into the following cases.

Case 1: x < ¢ < ¢ < y.Since w > fyy, > Iy, by Lemma 3.2(2),
0 {teer s trens teyen ) = {Wtij, wiig, wt i} for some i < j < k. We know that ¢~ (ty¢,) =
Wiy a4 OF Wy a5 and ! (txc,) = Wlayq, OF Wigpas - In order for them to have common indices,
we must have either (i, j, k) = (a1, az, as) or (i, j, k) = (a1, a2, as). But wt,, 5, > wisnot
a vertex in I, resulting in a contradiction.
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Fig. 1 Analyzing the structure of C1 ®
smooth permutations
(6] C [}
. R
[ ]
Cte
L

Case 2: x < ¢1 < y < c2. The positioning of ¢, implies w > ty, > fteje,. By
Lemma 3.2(2), (p_l {terys terers tyer ) = {wt;j, wtig, wtji} for some i < j < k. We know
that go’l (Te1y) = Wig qy OF Wiy qs and <p’1 (tye,) = Wigyqy OF Wigyas - This leads to the same
contradiction as above due to wtg, 4, > w.

By symmetry, Case 1 and Case 2 together cover all the situations where one of {c, ¢2, c3}
lie in the open interval (x, y). We can then assume that¢; < x or¢; > y fori = 1,2, 3. By
symmetry and the pigeonhole principle, we can assume that at least two of {cy, c2, c3} are
greater than y.

Case 3: x < y < c¢1 < c2. Again, we have w > ty.,. By Lemma 3.2(2), we consider
the indices y < ¢; < ¢ and apply the exact same arguments as in Case 1 and Case 2 to
go’l({tcly, tyers teyea ) = (Wi, wtig, wt i} to derive a contradiction. O

3.2 (VT2)=(VT3)

Throughout this section, assume w € &, avoids the four permutations, 3412,4231,34521 and
54123, in (VT2). We view permutations as their permutation matrix, with indices increasing
from left to right and from top to bottom. We apply the standard decomposition techniques of
smooth permutations, as in [15, 23] and especially Section 3.2 of [10], of which we follow the
notations. Our goal is to write w as a product of wo(K)’s, for subsets K C S = {s1, ..., Sy—1},
via induction.

Consider the top-left corner region

C={aw@)l <a<w (), 1 <w@) < w()

which is rectangle formed by (1, w(1)) and (w= (D), 1). Let C = {Cc1, w(cr)), ..., (¢,
w(cy))} wherecyp < -+ < ¢;.Let Ky = {s1,...,s,_1}. Since w avoids 4231, w(cy) > --- >
w(c;). Also consider the rectangle to the right of C and on the bottom of C:

R ={(a, w(a))|l <a < w_l(l), w(a) > w(l)},
L ={(a, w(a))|l <w(a) <w(), a > w_l(l)}.

The positioning of these regions can be seen in Fig. 1.

Since w avoids 3412, atleast one of R and L is empty. If both are empty, we say that w is of
type n with parameter K. If R is nonempty, we say that w is of type r; and if L is nonempty,
we say that w is of type 1. Notice that if w is of type n, w’ := w - wo(K1) = wo(K;) - w
also avoids the four patterns in (VT2), with Supp(w’) C S\ K. We call w’ the one-step
reduction of w and we can then straightforwardly deduce that w is almost-polished by w’
being almost-polished. We will come back to this later.
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ol Ry=0 R
o b _T=0 SR F
Lo Rl | e ’
A R0 R B A
0 R 1 |
L=0 g

Fig.2 The permutation w on the left and its one-step reduction w’ on the right, with type rl and parameters
Ky ={s1,...,s5.}, I1 = {54, 55}

The case of type 1 and type r are dual to each other by taking inverses. So for now, we assume
that w is of type r, i.e. L = ), and further study its structure. Divide R = Ry LU --- U R,
where R; = {(a, w(a)) |ci <a <cj+1}. If Ry =--- = R, = (J, then R, # () and we
say that w is of type rQ with parameter K| and let w’ = wo (K1) - w be the one-step reduction
of w.

Here we use the condition that w avoids 34521 and 54123. Since w avoids 34521, the
coordinates in Ry U - - - U R;_» must be decreasing, i.e. from top right to bottom left. At the
same time, since w avoids 4231, we have that at most one of Ry, ..., R;_» is nonempty. If
R, #W,letly ={p+1,p+2,...,t—1} C K; and say that w is of type r1 with parameter
(K1, I). Then let w' = wo(I})wo(K1)w be the one-step reduction of w. Also note that
within R,_; (which can be empty or nonempty), there are no coordinates to the left of any
coordinates in R, since w avoids 4231. A visualization is shown in Fig. 2.

As a summary, the types of w can be n, 10, 11, r0 or r1.

Lemma 3.3 Let w avoid 3412, 4231, 34521 and 54123 as above. Then the one-step reduction
w’ of w also avoids these four patterns.

Proof We first deal with the critical case where w is of type rl (or 11) with parameters
Ki={s1,....,8_1, I ={p+1,...,t — 1} as above. Since w'(1) = 1, ..., w'(p) = p,
these indices cannot be involved in any of the four patterns of interest. At the same time, w’
restricted to the last n — p indices equals w restricted to the same indices, which avoids these
four patterns. As a result, w’ avoid these patterns as well. The cases n, r0 and 10 follow from
the same arguments. O

The one-step reduction w’ lives in a strictly smaller parabolic subgroup of &,. And
Lemma 3.3 allows us to continue the reduction. In particular, if w is of type n, 10 or 10, then
Supp(w’) C S\ K1, and the next step of reduction can then be analyzed from scratch.

Lemma 3.4 Let w be of type rl with one-step reduction w’ and parameters K and I;. Then
w’ can be of type n, 10, r0 with parameter K», or 11 with parameters K, and I, where
I) = K| N Ky and there are no edges between I and I, in the Dynkin diagram of &,,.

Proof Keep the notation from above and let Ky = {s1, ..., s;,—1}and I1 = {sp41,...,5—1}.
Let |R,| = g > 0, then by construction, K = {sp41, ..., S/—14¢} S0 we immediately have
K; N Ky = I,. For the new permutation w’, if it is of type r, then it is of type r0 since the
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Fig.3 The intervals in the reduction process

/

: /
new regions R}, ..., R,+q7p72,

be empty. See Fig. 2.
The permutation w’ can be of type n or L. If it is of type 1, by dividing L’ into L} L --- LI

which are subsets of Ry, ..., Rp_1, Rpy1,..., Ry_2, must

L;+q_p_1 analogously as before, we seethat L} = - -+ = L;_p_] = {J because these regions
belong to L = ¢J. By construction, this means ¢ ¢ I5 so the consecutive intervals /1 and I,
do not have edges between them. O

We are now ready to fully decompose w and show that it is almost-polished.

Proof (Proof of implication (VT2)=(VT3)) Let w € &,, avoid the four patterns of interest
and keep the notations in this section. We use induction where the base cases n = 1,2
are vacuously true. Let w() = w and continue to do one-step reduction of w to obtain
w*D until w™ is of type n, 10 or 10 whose one-step reduction equals w™*1 . Note that
this is possible because the one-step reduction of type rl or 11 never equals the identity. By
Lemma 3.4, as i increases from 1 to m — 1, w® alternates between type rl and type 11.
Let w® have parameters K; and /; as above and let S| = K1 U K U --- U K,,,. Here, the
K;’s and I]s are consecutive intervals ordered from left to right, respectively. Moreover by
Lemma 3.4, K; N K; 1 = I; and the smallest index in /; ;| is at least 2 bigger than the largest
index in I;. See Fig. 3 for an example of these intervals.

Since w™ is of type n or rl or 11, w™ ) = ww(K,,) or w™ wy(K,,) and also
Supp(w™*D) ¢ §\ S;. Without loss of generality, assume w = w is of type 1, then we
have

w D = (- wo(I3)wo(K3)wo (I wo (K Dwwo(K2)wo(I2)wo(K4)wo(1s) -+ - )wo (Kpm)
or
w D = wo(Kp) (- wo(13)wo (K3)wo (11 wo (K1) wwo(K2)wo(l2)wo(Ka)wo(ls) - -+ ).

Unpacking, we have the following cases:

- wo (Km—2)wo(In—2) (W™ D wo (K ) wo (Ln—1) wo(Kpm—1) - - -
- wo (Km—2)wo(In—2) (wo (Kp)w ™ ™y wo (L~ 1) wo (K1) - - -
< wo (K1) won—1) (W T wo (K ) wo (In—2) wo(Km—2) - - -
e wO(Km—l)wo(Im—l)(WO(Km)w(m+1))w0(1m—2)w0(Km—2) ce

As w™tD) commutes with wo(K;) and wo(l;) where i < m — 1, in all of the cases above,
we can move w1 all the way to the left or all the way to the right. Moreover, wo(/;)
commutes with wo(K ;) if j # i, 7+ 1. Thus, in all of the cases above, we can move wq(/;)’s
towards the middle, forming wo(/; U b U --- U I,;_1).

LetJ; = KiUK3U--- andJl/ =KoUK4U--- Wehave N, =1LUDLU---Ul,_1,
wo(J1) = wo(K)wo(K3) -+, wo(Jl’) = wo(K2)wo(Ky) - - - . The above four cases can then
be written as
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wo(JD)wo(J1 N J)wo(J)w™+D
w™ Do (J)wo (1 N I wo(J))
wo(JDwo(J1 N I wo(J)w+D
w Do (I wo(Jy N I wo(Jr)

As Supp(w™+D) ¢ S\ S| where §; = J;UJ {, by induction on the almost-polished element
w™tD or continuing such decomposition into factors of the form wo (J;)wo (J; N Jl.’) wo (Jl.’),
we exactly recover the definition of almost-polished elements (Definition 3.1). O

3.3 (VT3)=(VT1)

The following lemma is straightforward, and its proof is omitted.

Lemma 3.5 If G| and G, are two simple graphs that are vertex-transitive, then G1 x G is
vertex-transitive.

Proof (Proof of implication (VT3)=(VT1)) Let w be almost-polished (Definition 3.1). To
show that I" (w) is vertex-transitive, by Proposition 2.3 and Lemma 3.5, we can reduce to the
case where w = wo(J)wo(J N JHwo(J7).

We first show that (wo(J)wo(J N J')) - wo(J') is length-additive. It suffices to show
that wo(J)wo(J N J’) does not contain any right-descent in J’. This is because the simple
generators in J N J’ cannot be in Dg(wo(J)wo(J N J')) as they get canceled out after
multiplying wo(J) by wo(J N J’); and the simple generators in J’ \ J are not even in the
support of wo(J)wo(J N J'). As a result, Drp(w) D J', w! = wo(HHwo(J N J') and
wy = wo(J).

Forany u € T'(w), u < wsou’ < w’" < wo(J) and uy < wo(J’). Analogously,
Dy (w) D J.By Corollary 2.12, left multiplying by any element in W (J) and right multiply-
ing by any element in W (J) give automorphisms. Inparticular,uj e W(J)anduy € W(J')
sou=u’u s 1s in the same orbit as the identity element under Aut(I"(w)). This precisely
means that I (w) is vertex-transitive. ]

This completes the proof of Theorem 1.3.

4 Identity orbits in Bruhat graphs

In this section we describe a more precise version of Conjecture 1.4, taking into account
the automorphisms described in Sect. 2.5 and the classification of vertex-transitive Bruhat
graphs given in Sect. 3.

In light of Proposition 2.3, it is sufficient to consider permutations w € &, which have
full support and do not admit a disjoint support decomposition; we call such permutations
Bruhat irreducible.

Definition 4.1 A Bruhat irreducible permutation w € &, is almost reducible at (J, i) if

w=uwlw,is a BP-decomposition with Supp(wj) NJ ={s;}ands; ¢ Dy (w), Dr(w).

Proposition 4.2 If a Bruhat irreducible w € &, is almost reducible at (J,i), then J =
{1, siforfsis ..., sn—1}.
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Proof Let J = J ... 1 J® be a decomposition of J into connected components of
the Dynkin diagram such that s; € J(. If k > 2, then the parabolic decomposition of w
with respect to J® contradicts w being Bruhat irreducible, so k = 1 and J is a connected
interval. Similarly, if Supp(w”) has a connected component not adjacent to i, w cannot be

Bruhat irreducible. Moreover, J # {s;} since s; ¢ Dr(w). ]
Note that a Bruhat irreducible w € &,, is almost reducible at ({s;, ..., s,—1}, 1) if and
only if w™! is almost reducible at ({s{, ..., s;}, i).

Definition 4.3 A Bruhat irreducible permutation w € &, is right-almost-reducible at i if it is
almost reducible at ({s;, ..., S,—1}, i) and is left-almost-reducible at i if it is almost reducible

at ({s1, ..., s}, 0).
Proposition 4.4 If w € &, is right-almost-reducible at i, then

(1) max{w(l),...,wi@—D}=i+1,
2) wi)>i+1,and
(3) the elements of {1, ...,i + 1} \ {w(1), ..., w( — 1)} appear out of order in w.

Proof Consider the permutation wy, which fixes 1,...,i — 1, in one-line notation. By
definition, s; € Dy (wy) meaning that i + 1 appears before i in wy. Since w is Bruhat
irreducible, i € Supp(sjwy) so sjwy(i) # i and thus w;(i) > i + 1. Now w’ permutes

the values 1,2, ...,i + 1 of wy. This means that w(i) = wy (i) > i + 1. We clearly have
w(),...,w@i—1)e{l,...,i+1}.Sincei € Supp(wj), we necessarily have i + 1 among
inw(l), ..., w( — 1). The last item follows because i + 1 appears before i in w. ]

Corollary 4.5 If w € G, is almost reducible at (J, i), then s; commutes with the elements of
Dy (w) N Dgr(w).

Proof Assume without loss of generality that J = {s;, ..., s,—1}. By Proposition 4.4(1),
i + 1 appears before i +2 in w, so s;+1 ¢ Dr(w). By Proposition 4.4 (1) and (2), w(i — 1) <
i+1<w(@)sosi—1 ¢ Dr(w). ]

Corollary 4.6 If w € &, is right-almost-reducible at i and left-almost-reducible at j, then
i # jandsisj =sjsj.

Proof We first show thati # j. Assume the opposite that both w and w~! are right-almost-
reducible at i. By condition (3) of Proposition 4.4, assume i + 1 > w(a) > w(b) where
i <a < b,sincew(i) > i+ 1. By condition (1) on w~!, we know that w(i +1) <i — 1 s0
i + 11is one of a, b and it has to be a because a < b. However, w(b) < w(a) <i — 1 but
wlw®)=b>a=i+1, contradicting condition (1) on w~ L

To show that 5; and s; commute, we can assume to the contrary that j = i — I, since if
j =i+ 1, we may consider the same problem on w~!. Now w is right-almost-reducible at
i and left-almost-reducible at i — 1 so w™! is right-almost-reducible at i — 1. By condition
(2) of w, w(i) > i + 1 but by condition (1) of w~!, w(i) < i, a contradiction. ]

Definition 4.7 For a Bruhat irreducible permutation w € G,,, let
{iy < --- < ix} = {i | wisright-almost-reducible ati}
and define Ag(w) :=s;, - --s;,. Similarly, let {j; < --- < j;} be the set of j at which w is

left-almost-reducible and define Az (w) :=sj, ---5j,.
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Corollary 4.8 Let w be Bruhat irreducible. Then the following three elements commute pair-
wise:

Ar(w), AL (w), wo(Dr(w) N Dr(w)).
The following is a strengthened version of Conjecture 1.4.

Conjecture 4.9 Let w € &, be Bruhat irreducible and let O denote the orbit of e under
graph automorphisms of T (w). Define

v(w) := wo(Dr(w)) - Ar(w) - wo(Dr(w) N Dr(w)) - Ap(w) - wo(Dgr(w)),
then O = [e, v(w)].

Proposition 4.10 Let w € G,, be Bruhat irreducible and such that T (w) is vertex-transitive,
then v(w) = w, so Conjecture 4.9 holds in this case.

Proof If w is right-almost-reducible at i, then Proposition 4.4 and Definition 4.1 imply
that the values i,i + 1, w(i), a, b appear from left to right in the one-line notation for w
and form an occurrence of the pattern 34521, where a, b are the smallest two elements of
{1,...,i + 1} \ {w@), ..., w(@@ — 1)}. This is impossible by Theorem 1.3 since I"(w) is
assumed to be vertex transitive. Similarly, if w were left-almost-reducible at j, then w would
contain an occurrence of the pattern 54123, again violating Theorem 1.3. Thus Agr(w) =
Ap(w) = e, and v(w) = wo(Dr(w)) - wo(Dr(w) N Dr(w))wo(Dg(w)) which is the
expression for w as a Bruhat irreducible almost-polished element. Since I'(w) is vertex-
transitive, we have O = [e, w] = [e, v(w)]. m]

The following proposition shows that the element v(w) is indeed in the identity orbit of
I'(w). An automorphism of I (w) sending e to v(w) may be obtained by composing various
left, right, and middle multiplication automorphisms (see Sect. 2.5).

Proposition 4.11 Let w € &, be Bruhat irreducible and let O be the orbit of e under graph
automorphisms of T'(w), then v(w) € O.

Proof By Corollary 2.12 we may compose left (or right) multiplication automorphisms to
send e to wo(Dp(w) N Dgr(w)). Then, for each i such that w is right-almost-reducible
at i, by Corollary 2.12 we may apply the automorphism of middle multiplication by s;,
doing so in the order iy > ix—1 > --- > i, and similarly for indices j; < --- < J;
at which w is left-almost-reducible. Since all of these s; and 5; commute with each other
and with the simple generators in Dy (w) N Dg(w) by Corollaries 4.5 and 4.6, the middle
multiplication is equivalent to left multiplication at each stage, and the resulting product is
equal to Ag(w)wo(Dr(w) N Dr(w))A (w). Finally, applying left and right multiplication
by wo(Dr (w)) and wo(D g (w)) respectively, we obtain an automorphism sending e to v(w).

O

5 From Bruhat automorphisms to special matchings
In Theorem 5.1 below we give a converse to Theorem 2.11 for certain Coxeter groups.
Theorem 2.11 and Theorem 5.1 together imply Theorem 1.5.

Theorem 5.1 Let u < v be elements of a Coxeter group W which is right-angled or a
symmetric group, then any perfect matching of H ([u, v]) which is an automorphism of
I'(u, v) is a special matching.
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The proof of Theorem 5.1 relies on the following structural property of Bruhat order,
Lemma 5.3, whose proof is contained in Sect. 6.

Definition 5.2 We say that elements x1, x2, y1, y2 of a Coxeter group W form a butterfly if
X1 < y1, y2 and x3 < yp, y2.

The butterfly structures are essential to the analysis of Bruhat automorphisms and special
matchings, and are of interest on their own. We will explore more about butterflies in Sect. 6.

Lemma5.3 Let W be a Coxeter group which is right-angled or the symmetric group, let
u < v, and suppose that x1, x3, y1, y2 € [u, v] form a butterfly. Then there is an element
z € [u, v] with y1, y» < z.

Proof of Theorem 5.1 Let u < v be elements of a Coxeter group W which is right-angled or
the symmetric group, and let M be a perfect matching of H ([u, v]) which is an automorphism
of I"(u, v). Suppose that M is not a special matching; since M is a I" (u, v)-automorphism, the
violation of the special matching property must consist of elements x <y with M (y) <M (x).
Choose x, y so that y has maximal length among all such violations in [u, v].

Now, note that x, M (y), y, M (x) form a butterfly, so by Lemma 5.3 there exists an element
7 € [u, v] with y, M (x) < z. We must have M (z) > z, for otherwise each of y, M (x), and
M (z) would each cover both x and M (y), but this substructure cannot occur in Bruhat order
of a Coxeter group (see Theorem 3.2 of [6]). Since height-two intervals in Bruhat order are
diamonds (see Chapter 2 of [3]), there exists an element w # z with y < w < M(2).

Suppose that M (w) < w, then since M is an automorphism of the Bruhat graph we must
have M (w) < z and M (y) < M(w). Now, since y < z, we know M(y) — M(z) in F(u, v),
but the height-three interval [M (y), M (z)] contains at least three elements—y, M (w), and
M (x) at height one, contradicting Proposition 3.3 of [12].

We conclude that w < M (w). However this too is a contradiction, since w < M(z) is a
violation of the special matching condition with £(M (z)) > €(y). Thus M must be a special
matching. O

We conjecture that a slight weakening of Lemma 5.3 holds for arbitrary Coxeter groups.

Conjecture 5.4 Let W be any Coxeter group, let u < v € W, and suppose that the elements
X1, X2, V1, Y2 € [u, v] form a butterfly. Then there is an element z € [u, v] with y, y» <z or
with 7 < x1, x2.

Remark 5.5 The weakening of Lemma 5.3 conjectured for general Coxeter groups in Con-
jecture 5.4 is necessary even for finite Coxeter groups. For example, the finite Coxeter group
of type Fy has a butterfly:

X| = §2535485253515253545352535152535152
X2 = §352535453525351525354525351525352
V1 = $25351525354535253515253545253515253

Y2 = 8§352535453525351525354525351528535152

which has a lower bound z = §2535452535152535453525351528352 < X1, X2 but no upper bound
y1, y2 < 7'. See Fig. 4 for a Bruhat interval that contains z < x1, X2 < y1, y2.
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Fig.4 A butterfly in F4 which
does not admit an upper bound

6 Covers of butterflies in Bruhat order

6.1 Butterflies in finite Weyl groups

Recall that a butterfly consists of four elements with x, x < y1, y2 in Bruhat order. We first
do some general analysis on butterflies in finite Weyl groups.

Consider the reflections #,, = xa’lyb where a, b € {1,2}. Then #1111 = t12t22. By
Lemma 3.1 of [12], W' = (t11, t12, t21, t22) is a dihedral reflection subgroup of W. We say
that this butterfly x1, x2, y1, y2 is of fype A, if W’ is isomorphic to the Coxeter group of type
Ay, and same with type B> and G,. By Theorem 1.4 of [12], the subposet (and the directed
subgraph) on x; W’ of W is isomorphic to that of a rank 2 Coxeter group of this type. This
means that W’ cannot be of type A; x Aj, because a butterfly cannot be embedded in the
Bruhat order of the type A; x A Coxeter group. In finite classical types, only type A, and
type B, butterflies exist.

Moreover, if this butterfly is of type A, we must have that x; W’ consists of u < x, xp <
y1,y2 < z with edges from u to x, x, and edges from y;, y» to z in the Bruhat graph.
Similarly in the case of type By, we must have that x; W’ consists of u < aj, ay < by, by <
c1, ¢ < z with edges in the Bruhat graph u — aj,a> — b1,by — c1,cp — z where
{x1, x2} = {a1, a2}, {y1, y2} = {b1, b2} or {x1, x2} = {b1, b2}, {y1, y2} = {c1, 2}

Let ® C E be aroot system for the finite Weyl group W, where E is the ambient vector
space with an inner product (—, —), with a chosen set of positive roots ®* and simple roots
A.For o € &1, write s, € T be the reflection across «. Recall that the inversion set is
Invp(w) = {o € T | wa € ®7} so that Tr(w) = {s¢ | @ € Invg(w)}.

We say that a butterfly in a finite Weyl group W is generated by o, B € ®% if 5, and sg
generate the subgroup W’ and if « and B8 form a set of simple roots in the root subsystem
d restricted to the 2-dimensional vector space spanned by o and . Note that the generators
{o, B} of a butterfly are uniquely determined. To analyze butterflies, we start with a simple
lemma on Bruhat covers.

Lemma 6.1 In a finite Weyl group, w < wsy if and only if o ¢ Invg(w) and there does not
exist B1, Po € Invgp(w) such that Bo = —sq B1. Moreover, if w < wsy and B € O satisfies
SaB € 7, then B € Invg(w) if and only if B € Invg(wsy).

Proof Consider the following partition of ®* with respect to o € @

(1) the root « itself;
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(2) roots y € ®* such that sy = y;
(3) roots y € ®% such that suy € &+ but sy # y;
(4) roots B € ®T such that s, 8 € ®~.

We pair up roots in (3) by (y, sq¥) and pair up roots in (4) by (8, —s«f)-

Assume o ¢ Invg(w) and compare Invg(w) with Invg(wsy). First, « ¢ Invg(w) and
o € Invg(wsy), and for each root y in (2), we have y € Invg(w) <& y € Invg(wsy).
Similarly, for y in (3), we have y € Invg(w) < sqy € Invg(wsy). Thus, roots in (1), (2)
and (3) each contribute 1 to the quantity [Invg(wsy)| — |Invg (w)|. We now examine (4).

Let B be a root in (4) and also write §; = B and By = —su 8. We have s 8 = B — ca,
where ¢ = 2(a, B)/{a, @) € Q-¢. As @ ¢ Invg(w), we know wa € ®F. So w(B1 + B2) =
cwa > (0, meaning that at most one of 81, B, belong to Invg (w). Moreover, 1 ¢ Invg(w) if
and only if B> € Invg(wsy). This means that if none of 81, B2 belong to Invg (w), then both
belong to Inv g (wsy), contributing 2 to |Invg (wsy)| — [Invg (w)|; and if one of them belongs
to Invg (w), then the same one belongs to Invg (wsy).

Note that w < ws,, is equivalent to |Invg (wsy)| — |Invg (w)| = 1. Considering the above
contributions from each category of roots, we obtain the desired result. O

Note that Lemma 6.1 is also equivalent to saying that ws, < w if and only if ¢ € Invg(w) and
there does not exist 81, B2 € Invg(w) such that 8y = —s4 1. In simply-laced types, assume
(o, ) = 2 for all roots o € P, then all inner products between different positive roots take
on values in {0, 1, —1}, and the condition 8, = —s, B is equivalent to 81 + B2 = «.

Lemma 6.2 Let W be a finite Weyl group of simply-laced type, and let x1, xo < y1, y» form
a butterfly. Then there exists u < x1,xp and z > y1, y2in W.

Proof Since W is simply-laced, this butterfly can only be of type A,. Let u < xq,x2 <
Y1, y2 < z be this type A; subposet. We will show that « is covered by x| and x,. By taking
the dual statement, we will have y1, y, < z as well.

Let this butterfly be generated by o, 8 € ®T and us, = x1, usg = X2, USqSg = ¥2,
usgsqe = y1. We have (o, ) = —1, @ + B = 548 = spa € ®T, and we also know that
in this Az, @ € Invg(x1), Invr(y2), Invr(2), B € Invg(x2), Invg(y1), Invr(2), « + B €
Invg(y1), Invg(y2), Invg(z). If xo does not cover u (or equivalently, x; does not cover u),
by Lemma 6.1, there exists y1, > € Invg(xp) such that y; + y» = B, or equivalently,
y2 = —spy. We have

(voa+B)+(y,a+p)=(B.a+p)=1

Since all inner products between different positive roots lie in {0, 1, —1}, we can without loss
of generality assume that (y;, @ + 8) = 0 and (y2, @ + B) = 1. Now sq4gy1 = y1. Since
y1 € Invg(x2) and y| = sq4px2, we have y; € Invg(y). Moreover, since (y2, a + ) = 1,
Satp2 =y2—(a@+pB) = —(x+y1) € ®".By Lemma6.1,as xo < y1, y» € Invg(y1). But
v1, ¥2 € Invg(y1) with sgy» = —y1, contradicting y; > yisg = xj. O

6.2 Butterflies in the symmetric group

For w € 6, define its rank-matrix to be w(i, j1 = [{a € [i]| w(a) > j}|, which can be
viewed as the number of dots weakly in the bottom left corner in the permutation matrix of
w, for all i, j € [n]. See Fig. 5.

The following lemma is immediate from observation.
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Fig.5 The rank-matrix (right) for 1 2 3 4 5 1
1

the permutation w = 35142
(left). We index permutation
matrices so that w(a) = b yields
a dot in the a-th column and b-th
row, and we index rank matrices
so that w[i, j]is in the i-th
column and j-th row

QUi O N =
®

QUi O N =
—_

Lemma6.3 Letw € &, and w' = w - (i, j). Then wla, b] = w'[a, b] for the coordinate
(a, b) outside, or on the top or right boundary, of the rectangle formed by (i, w(i)) and

(, w()).
The following characterization of the Bruhat order in &,, is well-known.

Lemma 6.4 (Theorem 2.1.5 of [3]) For w,v € &,, w < v ifand only if wli, j] < v[i, j] for
alli, j € [n].

We are now ready to prove Lemma 5.3 for the symmetric group.

Proof of Lemma 5.3 in the case of type A,—1 Let x1, xa <y, yp be a butterfly in [u, v]. By
Lemma 6.2, there exists z > y;, y2 soitsuffices to show that z < v. Suppose that y; = z-(i, j),
yv» =2z-(j,k)withi < j < k and z(i) > z(j) > z(k). There is no dot strictly inside the
rectangle formed by (i, z(i)) and (j, z(k)) in the permutation matrix of z, because otherwise
y2 would have inversions at some ¢, — e; and e; — e, contradicting y, > y - (i, j) by
Lemma 6.1. Likewise, we see that there is only one dot, (j, z(j)), in the interior rectangle
formed by (i, z(i)) and (k, z(k)) in the permutation matrix of z.

To show that z < v, by Lemma 6.4, it suffices to show that z[a, b] < v[a, b] for all
a,b € [n]. By Lemma 6.3, z[a, b] = yila, b] if (a, b) is not in the interior or on the left
or bottom boundary on the rectangle formed by (i, z(i)) and (j, z(j)); zla, b] = yla, b] if
(a, b) is not in the interior or the bottom left boundary of the rectangle (j, z(j)) and (k, z(k)).
Noticing that these regions are disjoint, we have z[a, b] = yi[a, b]or y2[a, b]. Butv > yi, y»
so vla, b] > max yi|a, b], y2la, b] > z[a, b], which gives z < v as desired.

6.3 Butterflies in right-angled Coxeter groups

Throughout this section, let W be a right-angled Coxeter group and let S be its generating
set. By definition, any two elements s;, s; € S either commute or have no relations. Recall a
well-known result of Tits [24] that says that all reduced expressions of w are connected by
moves of the form s;s; --- = s;s; - - - with m;; factors on each side, and in this case, only
m;j = 2 needs to be considered. In other words, any two reduced expressions of w € W are
connected by commutation moves.

Lemma 6.5 Letw = s;, - - -5;, be any reduced word of w. Then s € Dy (w) if and only if the
minimal j such that s;; = s commutes with s, ..., i, ,.

Proof First, if s commutes with s;,, ..., s; i1 then we can move it all the way to the left via
commutation moves to obtain a reduced word of w starting with s, which means s € Dy (w).
On the other hand, if s € Dy (w), then we use another reduced word of w that starts with s.
Keeping track of this s and applying commutation moves, we see that only s;’s commuting
with s can ever appear on the left of this s, which always stays as the first appearance of s
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in any reduced word. We are done because any two reduced words of w are connected via
commutation moves. O

Lemma 6.6 Ify covers two elements x1, x3 and s € Dy (x1), Dp(x2), thens € Dp(y).

Proof Lety =s;, ---s;, be areduced expression of y. By the Subword Property, assume that
X1 = Siy - Siy - Sip, X2 = Siy -+~ Siy - -+ 8i, witha < b. Let Si; = be the first appearance
of s in this reduced of y. The existence of j follows from s € Dy (x1), D (x2).

Case 1.: a < j < b. The prefixes of length j in y and x, are the same. By Lemma 6.5,
since s € Dy (x2), s commutes with s;,, ..., Sij_y- And by Lemma 6.5 again, s € Dy (y).

Case 2: j > b. The first appearance of s in x| must be at index j, meaning that s commutes
with s;, ..., s, ands;,_ (..., Sijy- The first appearance of s in x, must be after index a,
meaning that s commutes with s;, as well. Together, we see that s commutes with all the s;’s
before index j so s € Dr(y). O

We are now ready to provide a detailed analysis on the structures of butterflies in right-
angled Coxeter groups. For s, s’ € S that do not commute, define an element

AM (s, sy =ss'ss' e W
with m copies of s and s’ multiplied in an alternating way.

Lemma 6.7 Let x1, x2 < y1, y2 form a butterfly in a right-angled Coxeter group W. Then
we have the length-additive expressions: x| = u - Alm (s,8) v, x2 =u- A(’”)(s’, s) - v,
1, ya} = {u- AP0 (s ) v, u- AV ) - v) for somem > 1, u,v € Wands,s' € S
that do not commute.

Proof Use induction on £(x1). If x; and x, have a common left descent s, then all these four
elements have the same left descent s and we can instead consider the butterfly sx, sxy <
sy1, 8y2. Thus, assume that x; and x» do not have any common left descents, and similarly
do not have any common right descents.

Choose areduced word y; = s;, 54, - - - 5;, and by the Subword Property, let x, be obtained
from y; by deleting s;, and x1 be obtained from y; by deleting s;, with a < b. We must
have a = 1, since otherwise s;, is a common descent of x; and x;. Similarly b = k.
Moreover, s;; must be the unique descent of x| since any other potential descent s;, will be
a descent of x, by Lemma 6.5. Similarly, write y, = s; s, - -s; then we analogously have
"l{/H , slfz e s{k}. Ifx; = si’1 .. -slfki1 , then sl(l = s;, since x; has a unique left
descent, which means y, = slfl X2 = §;; X2 = y1, a contradiction. Thus, we have

I
X1,X) € {si1 .

o7 /
XL = SiySiy « Sy = 8,800 5,
o7 /
X2 = SigSis e Sy =S85, S,
and each one of x; and x, has a unique left descent and a unique right descents.
Lets = s;, and s' = slfl, which are different. We now use inductionon p = 1,...,k

to show that: Si,) -+ -8, has a single left descent at Sips slfps e slfk has a single left

i,p+1
descent at s{p and that s;, = s, slfp = s if p is odd, si, = s',s] = sif pis even. As for the
base case p = 1, we need to show that y; has a single left descent at s. Note that we already
know that x has a single left descent at s so the possibility that y; = x;s;, has another left
descent is that s;, commutes with x1, which is impossible as we also know that s;, cannot
get pass s;,_,. As a result, y; has a single left descent at s and analogously y, has a single
left descent at s'.

Si p+1
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For the inductive step, assume the claims are true for p — 1. By the induction hypothesis,
si; = sl(jﬂ and si’j = si;,, for j < p—2. This means that we have s;, | ---s;, | = slfp cee s lfk.
By the induction hypothesis, s;,,_, - - - 5, has a single left descentsos;, , - - -s;,_, has asingle
left descent at s, ,, which must equal s{p because of this equality. Similarly, s;, - - - s;, has

a single left descent at s;  which also gives s; = s/ . Thus, both the single descent
Ip—1 r Ip—1

statement and the exact values of s; ,, slfp go through.
As a result, we see that x; = A®~D(s,5), xp = AX=D(s', 5), while y; = A® (s, 5),
y2 = A® (s, 5). So we are done. O

The following lemma is then straightforward.

Lemma 6.8 Let x1, xo < y1, y2 form a butterfly in a right-angled Coxeter group W. If q €
Dr(y1) N Dr(y2), then g € Dy (x1) N Dp (x2).

Proof Write x1, x2, y1, y2 in the form as in Lemma 6.7. Pick any reduced word of y; com-
patible with the decomposition y; = u - AV (s, s") - v. If ¢ € Dy (u), then we clearly
have ¢ € Dy (x1) N Dr(x2). Similarly, if the first appearance of ¢ is inside v, meaning that
g commutes with the simple generators before it in v, and with s and s’, and with u, by
Lemma 6.5, then we have g € Dy (x1) and g € Dy (x3) as well. Lastly, if the first appearance
of ¢ in y; is inside A™*D (s, s"), meaning that ¢ = s and s does not appear in u, then g
cannot be a left descent of y, by Lemma 6.5, a contradiction. O

It is now clear that for a butterfly x1, xo < y1, y2 in a right-angled Coxeter group, y;
and y; have (at least, and in fact) two upper covers which are u - AMtD (5 sy - v and
u - AMtD (s 5) - v with notations as in Lemma 6.7. We are now ready to prove the main
theorem of this section, which resolves the right-angled case in Lemma 5.3.

Lemma 6.9 Let x1, x2 < yi1, y2 form a butterfly in a right-angled Coxeter group W. If w >
Y1, Y2, then there exists some z which cover both y1 and y, such that w > z.

Proof Use induction on £(x), and on top of that, use induction on £(w). Write x; = u -
AM (s s v, x0=u-AM(E s) v,y =u- A" (s ) v, o =u - AED( s) v
as in Lemma 6.7.

Take any left descentq € Dy (w).If g € Dr(y1) N D (y2), by Lemma6.8,q € D (x1)N
Dy (x2). This means that we can consider the butterfly gx, gx2 < gy, gy2, with gw >
qy1, gy2, via either the Subword Property or the Lifting Property of Bruhat order. By the
induction hypothesis, there exists ' > gy1, gyz such that gw > z'. Now, z = ¢z’ is what we
want. Similarly, if ¢ ¢ Dp(y1), Dr(y2), then gw > yj, y2 so by the induction hypothesis
on £(w), we have w > qw > z > yj, ¥, as desired.

For the critical case, assume g € Dy (y;) andg ¢ Dr (y2). Pick any reduced reduced word
of y; compatible with the decomposition y; = u - AMED (g sy - v, If the first (Ieftmost)
appearance of ¢ is in u, then ¢ € Dy (y»), a contradiction. If the first appearance of ¢ is in the
part of v, then g can be moved all the way past s and s” and u, meaning that ¢ € Dy (y2), a
contradiction. Thus, the first appearance of ¢ in yj is in the part of A?*1 (s, s'). This means
that ¢ = s, and that s commutes with u. Since w > y>, g € Dy (w), g ¢ Dy (y2), the Lifting
Property says that w > gy». At the same time,

gyr=s-u- A"V ) v =u- A" (s, 5) 0.

Let z = gy, and we see that w > z > yq, y; as desired. O
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