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In mesophotic coral ecosystems, reef-building corals and their photosynthetic
symbionts can survive with less than 1% of surface irradiance. How depth-
specialist corals rely upon autotrophically and heterotrophically derived
energy sources across the mesophotic zone remains unclear. We analysed
the stable carbon (δ13C) and nitrogen (δ15N) isotope values of a Leptoseris com-
munity from the ‘Au‘au Channel, Maui, Hawai‘i (65–125 m) including four
coral host species living symbiotically with three algal haplotypes. We charac-
terized the isotope values of hosts and symbionts across species and depth to
compare trophic strategies. Symbiont δ13C was consistently 0.5‰ higher than
host δ13C at all depths. Mean colony host and symbiont δ15N differed by up to
3.7‰ at shallow depths and converged at deeper depths. These results suggest
that both heterotrophy and autotrophy remained integral to colony survival
across depth. The increasing similarity between host and symbiont δ15N at
deeper depths suggests that nitrogen is more efficiently shared between meso-
photic coral hosts and their algal symbionts to sustain autotrophy. Isotopic
trends across depth did not generally vary by host species or algal haplotype,
suggesting that photosynthesis remains essential to Leptoseris survival and
growth despite low light availability in the mesophotic zone.
1. Introduction
For photosynthetic organisms, resource competition theory suggests that niches
are differentiated by the use of limiting resources, such as nutrients and light,
across a heterogeneous habitat [1,2]. Niche differentiation in reef corals can be
driven by species-specific patterns in depth zonation [3], colony morphology
[4,5] and nutrient acquisition [6–8]. Most shallow reef-forming corals depend
on photosynthetic algal endosymbionts (family Symbiodiniaceae [9]) for
energy from autotrophy [10]. To acquire nutrients, corals can also consume
seston heterotrophically, including detritus and zooplankton, through oral open-
ings in modular units called polyps [6,11,12]. The mutualisms between corals and
their algal symbionts can develop distinct, mixotrophic niches in reef ecosystems
defined by reliance on autotrophic versus heterotrophic energy sources [6].
These niches enable reef-building corals to construct the most biologically
diverse marine ecosystems on the planet, supporting tens of millions of people
worldwide with food, coastal protection and other ecosystem services [13].

Comparisons of stable carbon (δ13C) and nitrogen (δ15N) isotopes between
host tissue and algal symbionts have been used to assess coral trophic strategies
[3,4,12,14,15]. For corals reliant on autotrophy, host δ13C and δ15N closely
follow those of the symbionts because carbon and nitrogen are translocated

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2023.1534&domain=pdf&date_stamp=2024-02-21
mailto:callumhb@uw.edu
mailto:lisa.rodrigues@villanova.edu
https://doi.org/10.6084/m9.figshare.c.7055923
https://doi.org/10.6084/m9.figshare.c.7055923
http://orcid.org/
http://orcid.org/0000-0002-5058-8207
http://orcid.org/0000-0003-0478-9953
https://orcid.org/0000-0003-2325-6159
https://orcid.org/0000-0001-7389-5982
https://orcid.org/0000-0002-5794-8973
https://orcid.org/0000-0002-0973-0451


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

291:20231534

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 F

eb
ru

ar
y 

20
24

 

to the host following photosynthesis [3,12,16]. During hetero-
trophy, corals may rely on seston more than symbiont
photosynthates [17]. When seston isotopic values differ
from Symbiodiniaceae values, increases in heterotrophy and
decreases in autotrophy cause host δ13C and δ15N to deviate
from symbiont values [3,6,12,14,15,18,19]. Muscatine et al.
[12] reported increasing differences between host and sym-
biont δ13C with depth (1–50 m), hypothesizing that, as
depth increases, symbiotic corals rely relatively less on auto-
trophy and more on heterotrophy for carbon. However, little
is known about how trophic dynamics vary among commu-
nities of depth-specialist corals, particularly at depths greater
than 60 m [3,7].

Mesophotic coral ecosystems are characterized by
communities of corals and other organisms living from
approximately 30 m to more than 150 m in depth [20].
Despite limited light availability and changing spectral com-
position with depth, photosynthetic corals are crucial
members of the mesophotic community [15], surviving
with less than 1% of surface irradiance [3,21]. Mesophotic
corals have adapted to form vast reefs at low light levels
through flattened colony morphologies [4,21,22], specialized
skeletal micro-morphologies [5,23,24] and pigment concen-
trations [3,25]. While these photoadaptations may enhance
autotrophy in mesophotic environments, numerous studies
have hypothesized that mesophotic corals adjust trophic
strategies between autotrophy and heterotrophy to inhabit
deeper depths [3,7,8,15,21,26,27]. However, the extent that
mesophotic reef corals rely on heterotrophy versus auto-
trophy with increasing depth is debated [16,27,28]. Recent
evidence of anthropogenic impacts on mesophotic reefs,
including elevated temperatures [29] and nutrient pollution
[30], emphasize the need to conserve these vast ecosystems.
Effective management strategies will require a better
understanding of energy uptake, allocation and niche
differentiation in mesophotic corals.

Clarifying the relative trophic contributions to corals at
mesophotic depths could explain how they survive in light-
limited environments. Most studies characterizing trophic
dynamics in mesophotic corals have described their hetero-
trophic and autotrophic capacity relative to shallow reef
counterparts [4,5,7,8,12,15]. While most isotopic studies sup-
port that heterotrophy supplants autotrophy in corals at
increasing depths [27], variability in host–symbiont carbon
exchange and symbiont type can obscure trophic trends
across depth and light gradients [3,16,28]. Isotopic studies
reveal conflicting trends across mesophotic depths, suggesting
that some Caribbean and Red Sea corals may not increase rates
of heterotrophy or reduce reliance on autotrophy from 5 m to
at least 60 m [4,14,31]. δ15N values can decrease with increas-
ing depth for both hosts and symbionts assessed separately
[11], contrary to trophic increases in host δ15N expected
under increased heterotrophy [6]. Some studies reported no
change in host δ15N and symbiont δ15N across the mesophotic
zone [4,15]. Prior studies have identified several hypotheses
to explain changes in δ15N with depth. Variations in light
quality/availability [32,33], nitrogenous waste exchange
between host and symbiont cells [4,15,19], and nitrogen-
specific rates of symbiont growth [11] impact the retention or
excretion of 15N and 14N and resulting δ15N values. However,
it remains unclear how the acquisition and/or exchange
of nitrogen and carbon contribute to the trophic strategies of
mesophotic corals.
Assessing trophic status across mesophotic depths is com-
plicated by various genotypic combinations of host species
and algal symbionts. Depth zonation within mesophotic
coral communities occurs based on host species [23,34,35]
and algal symbiont diversity [8,25,35]. While some coral
species maintain one haplotype of algal symbionts across
mesophotic depths [25], others associate with multiple
haplotypes across depths [3,35]. Variable combinations of
host species and symbiont haplotypes may create divergent
photophysiological and trophic strategies across the
mesophotic zone.

The Hawaiian Archipelago’s Leptoseris communities
create the most spatially extensive mesophotic coral ecosys-
tems on record, dominating from 60 to 160 m [36,37] with
up to 100% live coral cover at some depths [34,38]. Phylo-
genetic analyses of the Leptoseris community (65–150 m)
have identified six host species (L. hawaiiensis, L. yabei,
L. papyracea, L. scabra, L. tubulifera and Leptoseris sp. 1)
[23,35] and three algal haplotypes of the genus Cladocopium
[35]. Depth partitioning of Leptoseris species has been
linked to different photoacclimatization strategies including
increases in chlorophyll a, symbiont density and dark-
adapted yield in species persisting through deeper depths,
which could sustain autotrophy at depth [3].

We investigated how trophic strategies influence niche
partitioning across depth in a Leptoseris mesophotic reef com-
munity in the ‘Au‘au Channel off Maui, Hawai‘i (65–125 m).
We analysed mesophotic Leptoseris colonies representing four
host species living symbiotically with three algal haplotypes
([35]; electronic supplementary material, figure S1A). The six
combinations of host species and algal haplotypes varied in dis-
tribution across depth ([35]; electronic supplementary material,
figure S1B). While Padilla-Gamiño et al. [3] reported stable
isotope values from a Leptoseris sample set collected from the
‘Au‘au Channel in 2009–2010, the coral and algal genotypes
were unknown. Here, we measured the δ13C and δ15N of
hosts and symbionts across genotype and depth collected
from a separate cruise in February–March 2011 to assess
differences in trophic strategies among Leptoseris species.
2. Methods
(a) Colony collection and genetic identification
Fragments of cryptic Leptoseris spp. colonies (n = 47) were col-
lected from depths of 65–125 m from the ‘Au‘au Channel
offshore of Olowalu, West Maui from 27 February to 3 March
2011 by submersible (Pisces IV and Pisces V). Irradiance was
approximately 5–75 µmol photons m−2 s−1 [3]. Collections are
described in Pochon et al. [35] and Padilla-Gamiño et al. [3].
Briefly, coral fragments (approx. 5–8 cm plates) were collected
haphazardly from the centre of Leptoseris reefs across depth; colo-
nies at the same depth were interspaced by at least 10 m.
Collected samples were processed and frozen at −80°C within
3–9 h of ascent aboard the R/V Ka‘imikai-O-Kanaloa. Leptoseris
colonies analysed in this study were identified by host species
and symbiont haplotype in Pochon et al. [35]. Pochon et al. ident-
ified each colony by host species using COX1–1-rRNA introns
and by symbiont haplotype using algal symbiont COI mitochon-
drial markers, distinguished by ITS2 community sequence
profiles [3,35]. We referred to COI sequence types because we
lacked the samples required to reanalyse colony fragments for
individual ITS profiles. Since COI sequence types represented
distinct genetic groups of symbionts (i.e. haplotypes, with



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

291:20

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 F

eb
ru

ar
y 

20
24

 

some overlap in ITS2 assemblages) within Cladocopium [35], we
labelled colonies by COI haplotype 1–3. We studied the subset
of the colonies in Pochon et al. [35] with remaining tissue
available for stable isotope analyses.

As presented in Pochon et al. [35], our samples represent four
Leptoseris host species (L. hawaiiensis, L. scabra, L. tubulifera and
Leptoseris sp. 1) and all three algal haplotypes (electronic sup-
plementary material, figure S1A). All colonies hosted only one
algal haplotype; several Leptoseris species can host the same algal
haplotype and different colonies of the same species can host
different algal haplotypes [35]. Eleven colonies were L. scabra
(65–99 m); ten hosted haplotype COI-2 and one hosted COI-3 (elec-
tronic supplementary material, figure S1B). Eleven colonies were
L. tubulifera (73–99 m), hosting haplotype COI-2. Fourteen
Leptoseris sp. 1 colonies were found across the widest depth
range (67–123 m); five hosted haplotype COI-2 (67–99 m) and
nine hosted COI-3 (67–123 m). Eleven L. hawaiiensis were found
only at the deepest depths of 123–125 m, all hosting haplotype
COI-1. Notably, all L. hawaiiensis and one Leptoseris sp. 1 colony
were collected past the depth of 1% surface irradiance [3] (112 m;
electronic supplementary material, figure S1B), traditionally
considered the depth limit of photosynthetic corals [21].
231534
(b) Stable isotopic analyses
For each fragment (approx. 5–8 cm), coral tissue was removed
from the skeleton using a pressurized airbrush and deionized
water spray. We separated each colony into host and symbiont
fractions prior to isotopic analyses [3,4,12,14,15]. The slurry was
ground in a tissue homogenizer and centrifuged at 2880 relative
centrifugal force (RCF) for 10 min to separate host and symbiont
cells into distinct layers [39]. Residual skeletal material pelleted
into its own layer below the symbionts during centrifugation.
Routine microscope checks of symbiont samples confirmed a
lack of skeletal contamination in the symbiont cells; to avoid alter-
ing the isotopic signatures, we did not acidify samples [40]. Host
and symbiont fractions were separated by microspatula and
pipetted into pre-weighed tin capsules, dried in an oven at 60°C
for at least 24 h [41], and reweighed. All capsules were folded
into compact cubes and combusted using an Elementar Pyrocube
elemental analyser; resulting CO2 and N2 gases were analysed
using an Elementar Isoprime100 isotope ratio mass spectrometer.
Host and symbiont δ13C values were reported relative to Vienna
Peedee belemnite (vPDB) limestone standard (δ13C = per mil devi-
ation of the ratio of stable carbon 13C : 12C relative to vPDB) and
δ15N values were reported relative to air (δ15N = per mil deviation
of the ratio of stable nitrogen 15N : 14N relative to air). Standards
were analysed, including B2150 (EA Consumables, LLC, Marlton,
NJ, USA), internal elk tissue, dogfish muscle reference material
(DORM), and bird feathers, with a precision of ± 0.1‰ for δ13C
and ± 0.3‰ for δ15N. Approximately 21% of host and symbiont
samples (n = 10 each) were analysed in duplicate.
(c) Statistical analysis
For statistical analyses of the Leptoseris community, similar to
Padilla-Gamiño et al. [3], we included all Leptoseris colonies
across the collection depth range (65–125 m). Our sampling
location enabled us to collect L. hawaiiensis only from 123 to
125 m; L. hawaiiensis was the only species collected past 100 m
except for one Leptoseris sp. 1 colony. Although L. hawaiiensis is
regarded as a depth specialist in the lower mesophotic zone
[3,35], its depth range (80–130 m; [23]) overlaps with the
other species. In addition, while our L. hawaiiensis were found
exclusively with haplotype COI-1, other Leptoseris colonies con-
taining haplotype COI-1 have been identified at depths as
shallow as 95 m [35]. Since the known habitat range of
L. hawaiiensis and its algal haplotype overlap with the other
study species, we included it in all community assessments
and statistically tested its influence on community trends.

To identify outliers, histogram distributions of all δ13C and
δ15N values were plotted by fraction type (host or symbiont) in
JMP Pro 14; residuals and Cook’s distances were used to confirm
outliers (electronic supplementary material, table S1). We
excluded outlier values that exceeded the interquartile range by
more than ±1.5 times (n = one δ13C from a host sample; one
δ13C from a symbiont sample; two δ15N from host samples and
two δ15N from symbiont samples were excluded).

To initially assess the trophic relationship between hosts and
symbionts across the Leptoseris community, we compared δ13C
and δ15N values using the Stable Isotope Bayesian Ellipses in R
(SIBER) package (R version 4.0.2) [42]. SIBER visualizes host
and symbiont isotopic niches to determine the trophic niche
overlap (i.e. extent of symbiotic resource sharing) between coral
hosts and their algal symbionts [6,27]. Since SIBER can only effec-
tively compare groups with the same or different sample sizes of
at least 20 samples each [43], we pooled samples (n = 47 colonies)
at the genus level [6] and used SIBER to assess broad trophic
trends across the community. We generated 4000 standard ellipse
areas corrected for sample size (SEAC) with the SEAC encompass-
ing 40% of the dataset variation [6]. We conducted a residual
permutation procedure of 100 000 permutations of the δ13C and
δ15N values to verify isotopic differences between the centroids
of host and symbiont datasets [6,27,44].

We compared ellipse overlap for all Leptoseris colonies against
a proposed spectrum of coral trophic strategies using percentage
cut-offs for heterotrophy (less than or equal to 10% overlap), mix-
otrophy (10–70% overlap) and autotrophy (greater than or equal
to 70% overlap) [6]. We calculated mean per cent overlap between
host and symbiont ellipses, with per cent overlap defined as the
overlapping isotopic area divided by the host ellipse area [6,27].
To evaluate the potential effect of collection depth on Leptoseris
host and symbiont isotope values, we replotted values pooled
into 5 m depth bins. Sample sizes among host species and sym-
biont haplotypes (electronic supplementary material, figure S2)
were insufficient to analyse independently by SIBER.

To investigate trophic relationships among Leptoseris host
species and symbiont haplotypes across depth, we conducted
simple linear regressions in JMP Pro 14. To investigate niche
partitioning in Leptoseris colonies across depth, we tested for sig-
nificant linear relationships between isotope values and depth
for each host species or symbiont haplotype. We tested for
linear relationships of host δ13C, symbiont δ13C and δ13Chost-
δ13Csymbiont versus depth by host species and symbiont haplo-
type. We repeated the same analyses for host δ15N, symbiont
δ15N and δ15Nhost-δ

15Nsymbiont versus depth (electronic sup-
plementary material, table S2). Sample distributions were
checked for normality and homoscedasticity when tested for stat-
istical significance at the two-sided α = 0.05 level. To test the
influence of L. hawaiiensis on community trends, we repeated
community-wide regressions excluding L. hawaiiensis (electronic
supplementary material, table S3).

We compared the slopes of significant regressions across
depth with one another by host species and algal haplotype
using a multi-variable regression analysis. To determine whether
there was a significant difference in the slope of isotope values
based on host species or symbiont haplotype, each model
included an interaction term between collection depth and
either host species or symbiont haplotype. The error rate for
the two-sided p-value for the interaction term was α = 0.10
accounting for multiple analyses on the same dataset. When
interaction term p < 0.10, the model was used to determine
whether there were significant differences among regression
slopes (two-sided α = 0.05) based on colony host species or
algal haplotype (electronic supplementary material, table S2).
The same multi-variable regression analysis was applied to the
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community dataset excluding L. hawaiiensis to determine whether
this deeper species had a notable effect on community trends
(electronic supplementary material, table S3).
3. Results and discussion
(a) Heterotrophy plays a dominant role in mesophotic

coral nutrition
For the Leptoseris community, host and symbiont isotopic
niche spaces were significantly different from one another
(residual permutation procedure p < 0.001), with 3.63% of
the SIBER host ellipses overlapping the symbiont ellipses
(figure 1a). A host–symbiont ellipse overlap less than or
equal to 10% of the host SEAC suggests a heterotrophy-domi-
nant strategy for this community [6], supporting that
heterotrophy is essential to mesophotic reef-building corals
including Leptoseris [3,4,7,8,31]. While heterotrophy is an
important energy source for mesophotic corals, deep-water
Leptoseris have been found with only vestigial tentacles that
cannot extend [24,45]. These corals might obtain hetero-
trophic nutrients from the environment by moving their
vestigial tentacles to circulate organic matter into their
polyps. A similar mechanism occurs in Leptoseris fragilis,
which lacks tentacles [21,26] and instead pumps water
through the mouth and out of epidermal pores. This mechan-
ism generates a flow-through filtration system for consuming
particulate organic matter (POM) and dissolved organic
matter (DOM) like a sponge [26]. Coral species such as Myce-
tophyllia reesi, which lacks tentacles, capture food particles
with mucus secretions [46]. Mucus channels can regulate
shared feeding across colony polyps [47] and may facilitate
feeding in Leptoseris corals. While the plating morphology
of Leptoseris is probably adapted to optimize light capture
at depth [11,14], plating may enhance passive feeding on
sinking particles of detritus that collect on colony surfaces [7].

While SIBER suggests that heterotrophy is a major energy
source for Leptoseris corals, various factors could have
obscured the contribution of autotrophy to colony survival
and growth. Our colonies were collected during the reduced
seasonal photoperiods of winter–early spring. As observed in
temperate symbiotic corals with seasonal variation in irradi-
ance and photosynthetic rate, corals in low irradiance can
still rely on autotrophic carbon for metabolic energy even
when irradiance is insufficient to sustain host growth [17].
Additionally, SIBER trophic strategy classifications were
based on shallow reef corals living at a maximum depth of
5 m [6] where up to 90% of carbon from photosynthates
may be translocated to the coral host [48]. At 5 m, trophic
niche overlaps of up to 94% indicate a high degree of resource
sharing through photosynthesis [6]. Photosynthetic rates that
facilitate coral growth at shallow depths are unlikely in low-
irradiance mesophotic environments. Red Sea Leptoseris
colonies (82–90 m) collected in autumn exhibited photo-
synthetic rates up to 10 times lower than most shallow
(10 m) symbiotic corals from the same reefs [7]. Photo-
synthetic rates were too low to sustain daily respiration
rates, which were supplemented by heterotrophy [7]. Trophic
classifications established by SIBER may not account for
photosynthetic contributions to metabolism required for
growth, or how autotrophic contributions to growth and
metabolism vary in the mesophotic zone [7,16,24,28].

Grouping by 5 m collection depth bins indicates that δ13C
values for both fractions decreased with depth (65–125 m),
with the mean difference between host and symbiont frac-
tions varying by 0.3–0.9‰ (figure 1b; electronic
supplementary material, table S4). Host and symbiont δ15N
converged with deeper depths, as the mean difference
between host and symbiont decreased by 2.5‰ from 65 to
125 m (figure 1b; electronic supplementary material, table
S4). SIBER analyses of shallow (5 m) corals indicated that
δ15N was a stronger determinant of trophic niche overlap
than δ13C, which can have high overlap despite distinct
host and symbiont ellipse areas [6]. SIBER could not be
used to assess the effect of depth or host/symbiont genotype
on isotopic data due to insufficient sample size (electronic
supplementary material, figure S2). To compare the trophic
profile of each genotypic division in the Leptoseris community
across its depth range and to contextualize changes in metab-
olism [16,24], we characterized the independent relationships
of δ13C and δ15N values across depth.

(b) Autotrophy remains integral to colony survival
across mesophotic depths

Host and symbiont δ13C decreased with increasing depth
for the Leptoseris community (figure 2a,b; electronic
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isotopic difference between host and symbiont fractions.
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supplementary material, table S2), as observed in other meso-
photic corals [4,12,14,15]. However, host and symbiont δ13C
did not diverge [27]; instead, host δ13C was consistently
approximately 0.5‰ lower than symbiont δ13C across
depth (figure 2c). Decreases in δ13C of suspended POM
across depth associated with bacterial remineralization are
expected to decrease host δ13C via heterotrophy at deeper
depths [12,49]. As symbionts primarily obtain carbon from
the host (e.g. via metabolites including CO2), the decrease
in symbiont δ13C across depth is probably linked to the
decrease in host δ13C [12,14]. Across depth, heterotrophy pro-
vides additional carbon to the host that is not shared with the
symbionts, explaining why host δ13C remains more negative
than symbiont δ13C [3,12,27]. However, the consistent
relationship between host and symbiont δ13C suggests no
relative change in photosynthates translocated from sym-
bionts to hosts across depth [12,16,27]. Grouping by host
species (figure 2d–f ) and symbiont haplotypes (figure 2g–i)
displayed a consistent trend of decreasing host and symbiont
δ13C values with depth (electronic supplementary material,
table S2). Leptoseris hawaiiensis and COI-1 were only found
from 123 to 125 m (figure 2d–f,g–i); omitting L. hawaiiensis
from our regressions of δ13C versus depth across coral hosts
and algal haplotypes increased the steepness of host and
symbiont slopes by 33% and 34%, respectively (electronic
supplementary material, table S3). However, the slopes exhib-
ited across coral hosts and algal haplotypes remained
statistically similar to one another without L. hawaiiensis
(model F = 16.7, model p < 0.0001, slope interaction p = 0.71).
The only exception to the trends in δ13C across depth was
that the negative δ13Chost-δ

13Csymbiont values decreased with
increasing depth in COI-2 colonies (figure 2i; electronic
supplementary material, table S2). The increasing difference
in δ13C between COI-2 fractions across depth suggest a
haplotype-specific trophic shift for COI-2 colonies towards
increased reliance on heterotrophy [27]. Lower dark-adapted
photosynthetic yield in some species harbouring COI-2 sym-
bionts (70–100 m) relative to COI-1 at the deepest depths
(110–120 m) may indicate a reduced capacity for autotrophy
[3], possibly explaining why COI-2 colonies were not found
below 100 m. The negative isotopic shift of approximately
1‰ difference for this haplotype between 65 and 100 m is
notably less than the negative shift in δ13Chost-δ

13Csymbiont

reported (approx. 2–8‰) for other mesophotic corals
[12,14,15,27]. For the rest of the community, the similarity
in slope for hosts and symbionts (electronic supplementary
material, table S2), despite drastic decreases in available
light, suggests that autotrophy remains crucial for Leptoseris
across depth [12,15]. Differences between host and symbiont
δ13C for this Leptoseris community (figure 2c,f,i; mean
(δ13Chost-δ

13Csymbiont) ± s.e. =−0.5 ± 0.1‰ across depths) are
similar to those reported for some shallow reef corals at just
5 m (mean (δ13Chost-δ

13Csymbiont) approximately 0.4–0.6‰
for three species, [6]). Differences in trophic strategy among
those shallow-reef species were determined by differences
in δ15N between host and symbiont fractions [6]. Therefore,
nitrogen must be considered with δ13C to substantiate and
contextualize relative trophic rates for mesophotic Leptoseris.
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Figure 3. Host δ15N and symbiont δ15N converge across depth, providing further evidence for sustained autotrophic reliance through the mesophotic zone. δ15N (‰) of
(a) host, (b) symbionts and (c) differences between host and symbiont isotopic values for the Leptoseris community across depth (m). Points indicate means ± s.e., binned by
collection depth and jittered for clarity. Solid lines show significant linear regressions ( p < 0.05; electronic supplementary material, table S2). Dashed lines in a and b represent
the overlayed regressions for symbionts and hosts, respectively. The red shaded area indicates the difference between host and symbiont δ15N values plotted in c. Trend lines in a
and b show that host δ15N decreased and symbiont δ15N increased across depths, converging at approximately 4‰ at 125 m. The same data by (d–f ) host species or
(g–i) symbiont haplotype show host and symbiont δ15N and the difference between them. Re-categorizing points changed some of their values and total counts across
plots. Dashed lines in d,e and g,h indicate the community trends shown in a and b, respectively. Solid lines show significant linear regressions for host species (d–f ) and
algal haplotype (g–i) ( p < 0.05; electronic supplementary material, table S2). Zero-lines (grey) in c, f, and i indicate no isotopic difference between host and symbiont fractions.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

291:20231534

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 F

eb
ru

ar
y 

20
24

 

δ15N values across depth suggest nitrogenous resources are
shared between Leptoseris hosts and their algal symbionts
through the mesophotic zone. Unlike previous studies,
where host and symbiont δ15N diverged [3] or remained con-
stant [4,15] with increasing depth, we found that host and
symbiont δ15N converged through the mesophotic zone
(figure 3a,b; electronic supplementary material, table S2). For
the Leptoseris community, host δ15N decreased with depth
(figure 3a), while symbiont δ15N increased with depth
(figure 3b). Consequently, the difference between host and
symbiont δ15N decreased with increasing depth, approaching
zero (figure 3c) and causing host and symbiont δ15N to con-
verge at an average of approximately 4‰ for both fractions
at 125 m (figure 3a,b). Like δ13C, host and symbiont δ15N
trends across depth were well-conserved across species and
haplotypes. While not all colony host species/algal haplotypes
produced significant regressions for δ15N across depth, all sig-
nificant regressions matched the community trends, and all
non-significant relationships conformed to the overall pattern
(figure 3d–i; electronic supplementary material, table S2).
Omitting L. hawaiiensis did not change the statistical signifi-
cance of the trends for δ15N regressions across coral hosts
and algal haplotypes across depth, and host and symbiont
δ15N regressions containing all other species/haplotypes com-
bined maintained negative and positive slopes across depth,
respectively (electronic supplementary material, table S3).

Our δ15N results contradict any expected shift to hetero-
trophic dependence at depth. SIBER analyses suggested
that heterotrophy is the primary nutritional source for our
Leptoseris community; however, if Leptoseris colonies relied
more on heterotrophy relative to autotrophy with increasing
depth, δ15N values of hosts and symbionts should become
more distinct. Nitrogenous resources acquired heterotrophi-
cally by the host are expected to decouple host and
symbiont δ15N values as autotrophic contributions from the
symbionts to the host decrease [6,18,19]. The δ15N of both
suspended and sinking POM are expected to increase
across depth as a function of processes including 14N-pre-
ferred bacterial degradation [49,50]. This degradation
probably contributed to δ15N increases of 1‰ in coral skel-
etons observed from 5 to 105 m in Palau, mirroring
increases in the δ15N of suspended POM [49]. Around
Maui, increases in mean macroalgal δ15N from shallow (0–
30 m; 2.4‰) to mesophotic depths (30–117 m; 2.9‰) were
attributed to submarine groundwater discharge potentially
linked to anthropogenic nutrient pollution [30]. All such
environmental increases in source δ15N and hypothesized
increases in heterotrophy through the mesophotic zone [27]
should increase host δ15N alone or increase both host and
symbiont δ15N across depth. Yet, in our Leptoseris community,
host δ15N did not increase for any genotype across mesopho-
tic depths (figure 3a,d,g). Along with δ13C, these δ15N
findings suggest that relative rates of heterotrophy are not
increasing or replacing autotrophy as depth increases. If het-
erotrophy decreased relative to autotrophy, δ13C values
between fractions should have become more similar across
depth. Instead, both δ13C and δ15N regressions reveal a
consistent reliance on autotrophy across depth.
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These δ13C and δ15N trends across depth differed from
Padilla-Gamiño et al. [3], which found that Leptoseris host
and symbiont regressions for both stable isotopes diverged
with increasing depth, supporting increased heterotrophy at
depth. In that study, Leptoseris stable isotope samples were col-
lected earlier, in January–April 2009–2010, and may have
included any of the six Leptoseris species from the mesophotic
zone of the ‘Au‘au Channel, including L. yabei and L. papyracea.
Both were absent from our samples collected in February–
March 2011. Seasonal variability in the environment at collec-
tion time may add to isotopic differences between studies.
Over half (approx. 54%) of isotopic samples from the prior
study [3] were collected in April when subsurface current
speed can increase in Hawaiian mesophotic habitats approxi-
mately 50 m deep [38]. This current can increase mixing of
zooplankton and detritus across mesophotic depths [27,51],
potentially increasing heterotrophy relative to our winter col-
lections. Differences among submersible collection sites and
microhabitats in the ‘Au‘au Channel between years may
have compounded trophic differences between these two dis-
tinct collections due to spatial variations in submarine
groundwater discharge [30] and thermal variability [16].

Our results are supported by studies of CarribeanMontas-
traea cavernosa corals across a shallow-to-mesophotic gradient.
Mesophotic M. cavernosa grow flat, plating morphologies
[15,31] like Leptoseris optimizing incident irradiance at
depth [31]. Decreased host δ13C across depth (3–91 m) was
originally attributed to increased heterotrophy and reliance
on zooplankton [15,27]. Subsequent analyses found that rela-
tive compositions of heterotrophic sterol markers and
phytosterols from symbionts remained the same between
18–20 m and 55–60 m, indicating primary reliance on auto-
trophy to at least 60 m [31]. Similarly, while host and
symbiont δ13C decreased with depth in our Leptoseris com-
munity, relative differences between host and symbiont
δ13C did not change from 65 to 125 m (figure 2c).

Both skeletal microstructures that amplify scattered light
and low polyp density that lessens self-shading support
photoacclimatization of Leptoseris at extreme mesophotic
depths [5,21–24]. These adaptations may benefit mesophotic
corals relative to other coral morphotypes. While mounding
corals maximize theoretical gross primary productivity
across depth, integrated light scattering demonstrates that
plating species have higher photosynthetic potential across
bathymetric slopes into the mesophotic zone than mounding
or branching species [52]. Plating could optimize symbiont
photosystems within coral tissues at depth [53] and maximize
carbon translocation under low irradiance [17], enabling
autotrophic advantages over other morphotypes in these sys-
tems. Our results support that autotrophy persists in these
corals across depth, possibly facilitated by plating and other
morphological adaptations.

(c) Nitrogen exchange could sustain autotrophic
capacity at extreme mesophotic depths

The convergence between Leptoseris host and symbiont δ15N
values with increasing depth suggests that nitrogenous
resources are increasingly shared between partners at depth
(figure 4a–d), similar to Stylophora pistillata [4,19] and Favia
favus [4]. In coral symbiosis, hosts typically have a higher
δ15N relative to their symbionts as 14N-ammonium waste is
preferentially excreted or shared with symbionts (figure 4a)
[19,54]. At depths less than 90 m in the ‘Au‘au Channel, cur-
rent speeds of at least 10–15 cm s−1 occur during the winter
and may have coincided with our collections, exposing Lepto-
seris to abundant heterotrophic nitrogen (e.g. zooplankton/
detritus) [27,38,51]. Mean δ15N ± s.e. of Leptoseris host and
symbiont fractions across depth (4.5 ± 0.4‰ at 65 m, decreas-
ing to 3.4 ± 0.4‰ at 100 m; electronic supplementary
material, table S4) resemble the upper bound of 3–3.5‰ for
sinking POM at 100–150 m depth off the Hawaiian Islands
[50]. Leptoseris may also feed on suspended particulate nitro-
gen (PN) [49]; however, δ15NPN measured at the nearby
ALOHA station was much lower than host δ15N values
(mean δ15NPN =−0.3–2.2‰ from 43 to 175 m, respectively;
[50]). Mean host δ15N at 65 m (approx. 6.3‰) is in the trophic
range of 2.5–3.5‰ higher than sinking POM expected if these
corals acquire nitrogen heterotrophically [6,50,55,56]. There-
fore, nitrogen may be obtained at shallower depths by coral
hosts through heterotrophic feeding while carbon is still
obtained through photosynthesis, reflected in consistent
δ13Chost-δ

13Csymbiont across depth (figure 2). High hetero-
trophy on POM supplying abundant nitrogen at shallower
depths could occur with relatively high rates of autotrophy
requiring relatively low nitrogen exchange and producing
distinct host and symbiont δ15N values.

By contrast, increased exchange of limited nitrogen could
explain the similarity in host and symbiont δ15N values in the
lower mesophotic zone (figure 4b). At depths greater than
90 m, ‘Au‘au Channel currents decrease to near-stagnant
levels throughout the year [38], potentially limiting nitrogen-
ous resources including POM [27,51]. Nitrogen limitation in
both hosts and symbionts has been observed in mesophotic
Stylophora pistillata (50 m) compared with shallower conspeci-
fics (5 m) [8]. Increased flow of nitrogen exchanged from
symbionts to the host should decrease host δ15N [18]. There-
fore, decreased excretion of nitrogen from the holobiont and
increased homogenization between symbionts and hosts
could explain the convergence of host and symbiont δ15N
values at depth (figure 3). Previous experimentation indi-
cated that symbionts of Red Sea Leptoseris spp. corals (82–
90 m) transferred at least 50% of N acquired from dissolved
inorganic nitrogen (DIN) to their hosts after an 8-hour incu-
bation period [7]. The capacity for Hawaiian Leptoseris to
increasingly exchange nitrogen [7,31] between host and sym-
biont compartments may enable autotrophy at deeper depths
despite reduced light availability. Lower rates of photosyn-
thetic electron transport at the deepest collection depths [3]
probably decrease photosynthate production compared
with shallower colonies, as observed for Red Sea Leptoseris
spp. [7]. Nitrogen limitation linked to reduced heterotrophy,
matched with a light-limited decrease in photosynthate pro-
duction, could explain how relative carbon exchange
between hosts and symbionts seems to remain consistent
while nitrogen exchange increases across depth (figures 2–4).
(d) Implications for mesophotic Hawaiian reefs
Reliance on photosynthesis at depth may contribute funda-
mentally to the skeletogenesis of mesophotic reefs.
Mesophotic colonies of Leptoseris fragilis from the Red Sea
have maximum growth rates of 0.8 mm yr−1, growing up to
8–10 cm in diameter [21]. Leptoseris colonies in Hawai‘i can
grow diameters greater than 1 m with growth rates of
1–2.5 cm yr−1, comparable to some shallow water corals



abundant N (mainly 14N) both
passed to symbionts and excreted   
(host �15N remains high)

low N-exchange, less 
N returned to host; 
symbiont �15N 
remains low

limited N (mainly 14N) increasingly
passed to symbionts and not excreted 
(host �15N decreases relative to 65 m)

more N-exchange, 
more N sent to host; 
symbiont �15N
increases relative 
to 65 m

nitrogen (high)
(strong currents and 

high POM)

(b)

nitrogen (low)
(weak currents 
and low POM)

100 m: low heterotrophy, low autotrophy, high nitrogen exchange

de
pt

h 
(m

)

N

host

Sym
CO2

14NH4
+

(a) 65 m: high heterotrophy, high autotrophy, low nitrogen exchange

70

80

90

100

110

120

130

C (PS)

C (PS)

N (PS)

N (PS)

Sym
14NH4

+

CO2

host

(c)

(d)

N

Figure 4. Together, δ13C and δ15N explain how nitrogen exchange supports autotrophy at depth. Schematic hypothesis for our results across collection depth.
Leptoseris hosts can obtain carbon and nitrogen heterotrophically, most likely from POM. Symbionts can supply carbon and nitrogen to hosts autotrophically by
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coincides with a proportional reduction in autotrophy, consistent with light limitation at depth. Leptoseris reefs from the ‘Au‘au Channel, Hawai‘i at (c) 86 m and (d )
100 m (submersible photographs courtesy of the Hawai‘i Undersea Research Laboratory).
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[3,38,57]. Hawaiian Leptoseris colonies probably invest heav-
ily in skeletal extension to increase lateral growth relative to
thickness due to the stable environment of their deep habitat
that is minimally impacted by wave action [38,45]. Low meta-
bolic demand for carbon resources [16,28], coupled with
increased nitrogen exchange, may enable Leptoseris to survive
and grow in light-limited conditions. High skeletal growth
rates observed in Hawaiian Leptoseris communities could be
maintained by conserving photosynthates required for
light-enhanced calcification [21,22,58,59]. Investment in skel-
etal microstructures that enhance scattering and amplify
light for symbionts [5,22] could enable skeletal growth to
synergistically fuel photosynthesis in a positive feedback
loop at mesophotic depths.

Based on our stable isotope analyses, trophic strategy
cannot explain any competitive advantage of one Leptoseris
species relative to others at least to 125 m in Hawaiian meso-
photic reefs. We did not find that depth partitioning of
Leptoseris corals in the ‘Au‘au Channel corresponded to niche
partitioning of trophic strategies. While heterotrophy may
serve as the main trophic input of carbon and nitrogen for Lep-
toseris across depths, the ability to photosynthesize under low-
light conditions may enable coral survival and growth
throughout the mesophotic zone. Although Leptoseris species
in this community share host macromorphologies [5,23,24],
niche diversity of their microbial communities, including
dark-adapted yields of algal symbionts [3,35] and nitrogen
fixation and exchange by bacteria [60], may drive the depth
partitioning of different Leptoseris genotypes [3]. Characteriz-
ing microbial diversity and function in corals across
mesophotic depths could help explain the sustained autotro-
phy extending across host species and algal haplotypes.

This study provides a novel example of isotopic data over
a wide mesophotic gradient [16,27,28] where examining
carbon and nitrogen, both independently and combined,
contributed to the understanding of trophic strategies that
sustain coral survival in light-limited environments. Conser-
vation strategies prioritizing water clarity by minimizing
shoreline run-off could bolster the autotrophic capacity of
Leptoseris colonies. An enhanced perspective of mesophotic
reefs as both exponentially light-limited and persistently
light-dependent coral communities could improve our ability
to understand and conserve the rich biodiversity and vast
extent of these largely unexplored ecosystems.
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the Department of Land and Natural Resources, State of Hawai‘i.
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