

Spherical Schubert varieties and pattern avoidance

Christian Gaetz¹

Accepted: 4 January 2022 / Published online: 31 January 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract

A normal variety X is called H -spherical for the action of the complex reductive group H if it contains a dense orbit of some Borel subgroup of H . We resolve a conjecture of Hodges–Yong by showing that their *spherical permutations* are characterized by permutation pattern avoidance. Together with results of Gao–Hodges–Yong this implies that the sphericality of a Schubert variety X_w with respect to the largest possible Levi subgroup is characterized by this same pattern avoidance condition.

Keywords Spherical variety · Schubert variety · Permutation pattern avoidance

Mathematics Subject Classification 05E14 · 14M15 · 05A05

1 Introduction

1.1 Spherical varieties

Following [3, 11], a normal variety X is called H -spherical for the action of the complex reductive group H if it contains a dense orbit of some Borel subgroup of H . Important examples of spherical varieties include projective and affine toric varieties, complexifications of symmetric spaces, and flag varieties (see Perrin’s survey [13]). Producing families of examples of and classifying spherical varieties is of significant interest [10]. In this paper we resolve a conjecture of Hodges–Yong [7], thereby classifying (maximally) spherical Schubert varieties by a permutation pattern avoidance condition.

The author was supported by a National Science Foundation Graduate Research Fellowship under Grant No. 1122374.

✉ Christian Gaetz
gaetz@math.harvard.edu

¹ Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

1.2 Schubert varieties and pattern avoidance

Let G be a complex reductive algebraic group and B be a Borel subgroup. The Bruhat decomposition decomposes G as

$$G = \coprod_{w \in W} BwB,$$

where W denotes the Weyl group of G . The closures

$$X_w = \overline{BwB/B}$$

of the images of these strata in the flag variety G/B are the *Schubert varieties*, of fundamental importance in algebraic geometry and representation theory.

In the case $G = GL_n(\mathbb{C})$, the Weyl group W is the symmetric group S_n . Beginning with the groundbreaking result of Lakshmibai–Sandhya [9] characterizing smooth Schubert varieties, it has been found that many important geometric and combinatorial properties (see, for example [8, 17]) of X_w are determined by *permutation pattern avoidance* conditions on w . Let $w = w_1 \cdots w_n \in S_n$ be a permutation written in one-line notation, and let $p \in S_k$ be another permutation. Then w is said to have an *occurrence* of the pattern p at positions $1 \leq i_1 < \cdots < i_k \leq n$ if $w_{i_1} \dots w_{i_k}$ are in the same relative order as $p_1 \dots p_k$. If w does not contain any occurrences of p , then w is said to *avoid* p .

Under the natural left action of G on G/B , the stabilizer of X_w is the parabolic subgroup $P_{J(w)} \subset G$ corresponding to the left descent set $J(w)$ of w . The parabolic subgroup $P_{J(w)}$ is not reductive, but contains the *Levi subgroup* $L_{J(w)}$ as a maximal reductive subgroup. Following [7], we say X_w is *maximally spherical* if it is $L_{J(w)}$ -spherical for the induced action of $L_{J(w)}$. Since all Schubert varieties are known to be normal by the work of DeConcini–Lakshmibai [4] and Ramanan–Ramanathan [14], this is equivalent to the existence of a dense orbit inside X_w of a Borel subgroup of $L_{J(w)}$.

1.3 Hodges and Yong's conjecture

We consider the symmetric group S_n as a Coxeter group with simple generating set $I = \{s_1, \dots, s_{n-1}\}$, where s_i is the adjacent transposition $(i \ i+1)$, and we write $J(w)$ for the left descent set of $w \in S_n$. See Sect. 2 for background and basic definitions.

Definition 1.1 (Hodges and Yong [7]) A permutation $w \in S_n$ is *spherical* if it has a reduced word $s_{i_1} \cdots s_{i_{\ell(w)}}$ such that:

- (S.1) $|\{t \mid s_{i_t} = s_j\}| \leq 1$ for $s_j \in I \setminus J(w)$, and
- (S.2) $|\{t \mid s_{i_t} \in C\}| \leq \ell(w_0(C)) + |C|$ for any connected component C of the induced subgraph of the Dynkin diagram on $J(w)$.

Remark Hodges and Yong consider a more general class of spherical elements in finite Coxeter groups. Definition 1.1 is the special case which is relevant to Conjecture 1.3 ($J(w)$ -spherical elements in S_n).

Spherical permutations were defined because of Conjecture 1.2, which was recently proven [6] by Gao–Hodges–Yong.

Conjecture 1.2 (Conjectured by Hodges and Yong [7]; proof by Gao–Hodges–Yong [6]) The Schubert variety X_w is maximally spherical if and only if w is spherical.

This geometric property is linked to permutation pattern avoidance by Conjecture 1.3.

Conjecture 1.3 (Hodges and Yong [7]) A permutation w is spherical if and only if it avoids the twenty one patterns in P :

$$P = \{24531, 25314, 25341, 34512, 34521, 35412, 35421, 42531, 45123, 45213, 45231, 45312, 52314, 52341, 53124, 53142, 53412, 53421, 54123, 54213, 54231\}.$$

Our main result resolves Conjecture 1.3:

Theorem 1.4 *A permutation w is spherical if and only if it avoids the patterns in P .*

Combining this result with Gao–Hodges–Yong’s proof of Conjecture 1.2, we thus obtain a characterization of maximally spherical Schubert varieties in terms of pattern avoidance.

Corollary 1.5 *The Schubert variety X_w is maximally spherical if and only if w avoids the patterns from P .*

The following result, an immediate consequence of Theorem 1.4, was conjectured in [7] and proven in [2] using probabilistic methods.

Corollary 1.6

$$\lim_{n \rightarrow \infty} |\{\text{spherical permutations } w \in S_n\}|/n! = 0.$$

Proof The Stanley–Wilf Conjecture, now a theorem of Marcus and Tardos [12], says that the number of permutations in S_n avoiding any fixed set Q of patterns is bounded above by C^n for some constant C . Thus Theorem 1.4 implies that

$$|\{\text{spherical permutations } w \in S_n\}|$$

grows at most exponentially. □

1.4 Outline

Section 2 recalls some basic definitions and facts about Bruhat order as well as a result of Tenner [15] characterizing Boolean intervals in Bruhat order. In Sect. 3 we introduce the notion of *divisible pairs* of permutations and connect these to Boolean permutations and spherical permutations. Divisible pairs, along with a helpful decomposition of the set P of patterns, are applied in Sect. 4 to prove Theorem 1.4.

2 Background

2.1 Bruhat order

For $i = 1, \dots, n$, let s_i denote the adjacent transposition $(i \ i + 1)$ in the symmetric group S_n ; the symmetric group is a Coxeter group with respect to the generating set s_1, \dots, s_{n-1} (see [1] for background on Coxeter groups). For $w \in S_n$, and expression

$$w = s_{i_1} \cdots s_{i_\ell}$$

of minimum length is a *reduced word* for w , and in this case $\ell = \ell(w)$ is the *length* of w .

The (*right*) *weak order* is the partial order \leq_R on S_n with cover relations $w \lessdot_R ws_i$ whenever $\ell(ws_i) = \ell(w) + 1$. The *Bruhat order* is the partial order \leq on S_n with cover relations $w \lessdot wt$ for t a 2-cycle such that $\ell(wt) = \ell(w) + 1$. Both posets have the identity permutation e as their unique minimal element.

For a permutation $w = w_1 \dots w_n \in S_n$ and integers $1 \leq a \leq b \leq n$, we write $w[a, b]$ for the set $\{w_a, w_{a+1}, \dots, w_b\}$. For two k -subsets A, B of $[n] := \{1, \dots, n\}$ write $A \preceq B$ if $a_1 \leq b_1, \dots, a_k \leq b_k$, where $A = \{a_1, \dots, a_k\}$ and $B = \{b_1, \dots, b_k\}$ with $a_1 < \dots < a_k$ and $b_1 < \dots < b_k$. The following well-known property of Bruhat order will be useful:

Proposition 2.1 (Ehresmann [5]) *Let $v, w \in S_n$, then $v \leq w$ if and only if*

$$v[1, i] \preceq w[1, i]$$

for all $i = 1, \dots, n$.

A generator s_i is a (*left*) *descent* of w if $\ell(s_i w) < \ell(w)$ (equivalently, if $w^{-1}(i+1) < w^{-1}(i)$). We write $J(w)$ for the set of descents of w . For any $J \subseteq \{s_1, \dots, s_{n-1}\}$, we write $w_0(J)$ for the unique permutation of maximum length lying in the subgroup of S_n generated by J . Explicitly, the one-line notation for $w_0(J)$ is an increasing sequence of consecutive decreasing runs, where decreasing run consists of $i+d, i+d-1, \dots, i$ whenever $s_i, s_{i+1}, \dots, s_{i+d-1} \in J$ while $s_{i-1}, s_{i+d} \notin J$.

2.2 Boolean permutations

Theorem 2.2 (Tenner [15]) *The following are equivalent for a permutation $w \in S_n$:*

- (1) *The interval $[e, w]$ in Bruhat order is isomorphic to a Boolean lattice,*
- (2) *No simple generator s_i appears more than once in a reduced word for w ,*
- (3) *w avoids the patterns 321 and 3412.*

We will call a permutation satisfying the equivalent conditions of Theorem 2.2 a *Boolean permutation*. Theorem 2.3 suggests a connection between Boolean permutations and spherical varieties.

Theorem 2.3 (Karuppuchamy [8]) *The Schubert variety X_w is a toric variety if and only if w is a Boolean permutation.*

3 Divisible pairs of permutations

Definition 3.1 Given a pair (v, w) of permutations from S_n , we say that (v, w) is *divisible after position i* if

$$|v[1, i] \cap w[1, i]| \leq i - 2,$$

and *divisible at position i* if $v_i = w_i$ and

$$|v[1, i] \cap w[1, i]| \leq i - 1.$$

We say simply that (v, w) is *divisible* if there exists $1 \leq i \leq n$ such that (v, w) is divisible at or after position i .

The term “divisible” is meant to refer to the fact that if (v, w) is divisible after position i , then if the one-line notation for v is written on top of that for w , a vertical line drawn after position i will divide the occurrences (on the left side of the line) of at least two values in v from the occurrences (on the right side of the line) of these values in w .

Proposition 3.2 *A pair (v, w) of permutations from S_n is divisible if and only if $v^{-1}w$ is not Boolean.*

Proof It is clear from the definition that (v, w) is divisible if and only if (uv, uw) is divisible for all $u \in S_n$, so it suffices to prove the case $v = e$.

Suppose that w is not Boolean, so that w contains a pattern $p \in \{321, 3412\}$ by Theorem 2.2. If $p = 3412$ occurs as $w_{i_1} w_{i_2} w_{i_3} w_{i_4}$ then (e, w) is divisible after position i_2 , since $\{w_{i_1}, w_{i_2}\} \subseteq w[1, i_2]$ while $e[1, i_2] = \{1, \dots, i_2\}$ must contain w_{i_3} and w_{i_4} if it contains either w_{i_1} or w_{i_2} . If $p = 321$ occurs as $w_{i_1} w_{i_2} w_{i_3}$, consider three cases: If $w_{i_2} = i_2$ then (e, w) is divisible at i_2 , since $w_{i_1} > i_2 \notin e[1, i_2]$; If $w_{i_2} < i_2$, then (e, w) is divisible after $i_2 - 1$, since w_{i_2}, w_{i_3} both lie in $e[1, i_2 - 1]$ but not in $w[1, i_2 - 1]$; Similarly, if $w_{i_2} > i_2$, then (e, w) is divisible after i_2 , since w_{i_1}, w_{i_2} both lie in $w[1, i_2]$ but not in $e[1, i_2]$.

Conversely suppose that w is divisible. If w is divisible after position i , then there are two elements $a < b \in w[1, i]$ which are not in $e[1, i] = \{1, \dots, i\}$ and therefore also two elements $c, d \in w[i+1, n]$ with $c < d \in \{1, \dots, i\}$. Either $w^{-1}(a) < w^{-1}(b)$ and $w^{-1}(c) < w^{-1}(d)$ in which case w contains 3412 or at least one of these statements fails and w contains 321; in either case w is not Boolean. If w is divisible at position i , then $w_i = e_i = i$ and there is some $a > i$ in $w[1, i-1]$ and some $b < i$ in $w[i+1, n]$; then the values a, i, b form a 321 pattern in w , so w is not Boolean. \square

Remark The anonymous referee has helpfully pointed out that Proposition 3.2 is closely related to Theorem 2.2 of [16].

Proposition 3.3 (Gao–Hodges–Yong [6]) *A permutation $w \in S_n$ is spherical if and only if $w_0(J(w))w$ is a Boolean permutation.*

The following characterization of spherical permutations will be convenient for our arguments in Sect. 4.

Corollary 3.4 A permutation $w \in S_n$ is spherical if and only if $(w_0(J(w)), w)$ is not divisible.

Proof By Proposition 3.3, w is spherical if and only if $w_0(J(w))w$ is Boolean. Since $w_0(J(w))$ is an involution, Proposition 3.2 implies that this is equivalent to $(w_0(J(w)), w)$ not being divisible. \square

4 Proof of Theorem 1.4

The following decomposition of the set P of twenty one patterns will be crucial to the proof of Theorem 1.4: $P = P^{321} \cup P^{3412}$, where

$$\begin{aligned} P^{321} &= \{24531, 25314, 25341, 42531, 45231, 45312, 52314, 52341, \\ &\quad 53124, 53142, 53412\} \\ &= \{p \in P \mid w_0(J(p))p \text{ contains the pattern } 321\}, \end{aligned}$$

and

$$\begin{aligned} P^{3412} &= \{34512, 34521, 35412, 35421, 45123, 45213, 45231, 53412, 53421, \\ &\quad 54123, 54213, 54231\} \\ &= \{p \in P \mid w_0(J(p))p \text{ contains the pattern } 3412\}. \end{aligned}$$

Notice that 45231 and 53412 lie in both P^{321} and P^{3412} . A simple check shows that P^{321} and P^{3412} are also characterized by the following properties:

$$\begin{aligned} P^{321} &= \{p \in S_5 \mid p^{-1}(5) < p^{-1}(3) < p^{-1}(1), p^{-1}(4) \notin [p^{-1}(5), p^{-1}(3)], \\ &\quad p^{-1}(2) \notin [p^{-1}(3), p^{-1}(1)]\}, \end{aligned} \tag{1}$$

$$\begin{aligned} P^{3412} &= \{p \in S_5 \mid \max(p^{-1}(4), p^{-1}(5)) < \min(p^{-1}(1), p^{-1}(2)), \\ &\quad p^{-1}(3) \notin [p^{-1}(4), p^{-1}(2)]\}. \end{aligned} \tag{2}$$

The following proposition is obvious from the definitions, but will be useful to keep in mind throughout the proofs of Lemmas 4.2 and 4.3.

Proposition 4.1 For $w \in S_n$, let $v = w_0(J(w))$ and $1 \leq a < b \leq n$. Then $v^{-1}(b) < v^{-1}(a)$ if and only if $w^{-1}(b) < w^{-1}(b-1) < \dots < w^{-1}(a)$.

Lemma 4.2 If $w \in S_n$ avoids the patterns from P then w is spherical.

Proof We reformulate using Corollary 3.4 and prove the contrapositive: if $(w_0(J(w)), w)$ is divisible, then w contains a pattern from P .

Case 1: Write v for $w_0(J(w))$ and suppose that (v, w) is divisible after i , and furthermore that i is the smallest index for which this is true. Then we have:

$$v[1, i] \setminus w[1, i] = \{a, b\},$$

$$w[1, i] \setminus v[1, i] = \{c, d\},$$

where we may assume without loss of generality that $a < b$ and $c < d$. We have $v \leq_R w$, so in particular $v \leq w$ in Bruhat order; thus by Proposition 2.1 we must have $a < c$ and $b < d$. Suppose that $c \leq b + 1$; if $c < b$, then, since c appears after b in v , it must be that b, c lie in the same decreasing run of v , but by Proposition 4.1 this implies that b appears before c in w , a contradiction. If $c = b + 1$, then s_c is a left descent of w , so c appears before b in v , again a contradiction. Thus we have $a < b < b + 1 < c < d$.

We wish to conclude that w contains a pattern from P . If any value $x \in \{b + 1, b + 2, \dots, c - 1\}$ does not lie between b and c in w , then we are done by (2), since the values $\{a, b, c, d, x\}$ form a pattern from P^{3412} in w . Otherwise, all of these values appear between b and c in w . Suppose that they do not appear in decreasing order, so $w^{-1}(b + j) < w^{-1}(b + j + 1)$ for some $j + 1 < c - b$. Then the values $\{c, d, b + j, b + j + 1, a, b\}$ either contain a pattern from P^{3412} , or appear in w in the order $c, b + j, d, a, b + j + 1, b$. In this last case $c, b + j, a, b + j + 1, b$ forms an occurrence of the pattern 53142 from P^{321} . Finally, suppose that $\{b + 1, b + 2, \dots, c - 1\}$ appear in decreasing order in w between b and c ; then by Proposition 4.1 c appears before b in v , a contradiction. Thus in all cases w contains a pattern from P .

Case 2: Write v for $w_0(J(w))$ and suppose that (v, w) is divisible at i , and furthermore that i is the smallest index at or after which (v, w) is divisible. Then we have $v_i = w_i$ and

$$v[1, i - 1] \setminus w[1, i - 1] = \{a\},$$

$$w[1, i - 1] \setminus v[1, i - 1] = \{c\},$$

with $a < c$ by Proposition 2.1. We claim that a is the minimal element in a decreasing run of v . Indeed, otherwise $a - 1$ appears immediately after a in v , and thus $a - 1$ also appears after a in w . But then $a - 1 \in v[1, i] \setminus w[1, i]$, contradicting the minimality of i , thus a is the minimal element in a decreasing run, and is smaller than all values appearing after it in v . Similarly, c is the maximal element in a decreasing run of v and is larger than all values appearing before it in v . Also note that $a < v_i - 1$ and $c > v_i + 1$, for if $a = v_i - 1$ then $w^{-1}(a + 1) < w^{-1}(a)$ but $v^{-1}(a + 1) > v^{-1}(a)$, contradicting Proposition 4.1, and similarly for c .

We will now see that c, v_i, a participate in an occurrence in w of some pattern $p \in P$. Suppose first that all values $c - 1, c - 2, \dots, v_i + 1$ lie in between c and v_i in w . If these occur in decreasing order, then c and v_i must occur in the same decreasing run of v , but this is not the case since c appears at the beginning of its run, but after v_i in v . Thus there is some $j \leq c - v_i - 2$ such that $w^{-1}(c - j - 1) < w^{-1}(c - j)$. In this case $c, c - j - 1, c - j, v_i, a$ form an occurrence in w of the pattern 53421 $\in P^{3412}$. Similarly, if all values $v_i - 1, v_i - 2, \dots, a + 1$ lie in between v_i and a in w , then w contains an occurrence in w of the pattern 54231 $\in P$.

In the only remaining case, there is some $x \in \{c - 1, c - 2, \dots, v_i + 1\}$ not lying between c and v_i in w and some $y \in \{v_i - 1, v_i - 2, \dots, a + 1\}$ not lying between v_i

and a in w . Then the values $\{c, v_i, a, x, y\}$ form a pattern p from P^{321} in w by (1), with c, v_i, a corresponding to the values 5, 3, 1 in p respectively and x, y corresponding to 4, 2. \square

Lemma 4.3 *If $w \in S_n$ is spherical then w avoids the patterns from P .*

Proof We will apply Proposition 3.3 and prove the contrapositive: if w contains a pattern p from P , then vw is not Boolean, where $v = w_0(J(w))$.

Suppose first that w contains a pattern p from P^{321} and that w_i, w_j, w_k with $i < j < k$ correspond to the values 5, 3, 1 in p respectively. Since the 2 and 4 in the pattern p do not lie between w_j, w_k and w_i, w_j respectively, Proposition 4.1 implies that $v(w_i) > v(w_j) > v(w_k)$ since $v = v^{-1}$. Thus vw contains the pattern 321 and is not Boolean by Theorem 2.2.

Suppose now that w contains a pattern p from P^{3412} . Let w_i, w_j, w_k, w_ℓ with $i < j < k < \ell$ correspond to the values $\{1, 2, 4, 5\}$ from p (thus one of w_i, w_j corresponds to 4 and the other to 5, while one of w_k, w_ℓ corresponds to 1 and the other 2). Since the 3 in the pattern p does not lie between the 2 and the 4, Proposition 4.1 implies that $\min(v(w_i), v(w_j)) > \max(v(w_k), v(w_\ell))$. Thus either vw contains the pattern 3412 in these positions or contains a 321 pattern in some subset of them. In either case vw is not Boolean. \square

Lemmas 4.2 and 4.3 together yield Theorem 1.4.

References

1. Björner, A., Brenti, F.: Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics. Springer, New York (2005)
2. Brewster, D., Hodges, R., Yong, A.: Proper permutations, Schubert geometry, and randomness. *J. Comb.* (2020). <https://arxiv.org/abs/2012.09749> [math.CO] (to appear)
3. Brion, M., Luna, D., Vust, T.: Espaces homogènes sphériques. *Invent. Math.* **84**(3), 617–632 (1986)
4. De Concini, C., Lakshmibai, V.: Arithmetic Cohen-Macaulayness and arithmetic normality for Schubert varieties. *Am. J. Math.* **103**(5), 835–850 (1981)
5. Ehresmann, C.: Sur la topologie de certains espaces homogènes. *Ann. of Math.* (2) **35**(2), 396–443 (1934)
6. Gao, Y., Hodges, R., Yong, A.: Classification of Levi-spherical Schubert varieties (2021). <https://arxiv.org/abs/2104.10101> [math.CO]
7. Hodges, R., Yong, A.: Coxeter combinatorics and spherical Schubert geometry. *J. Lie Theory* (2020). <https://arxiv.org/abs/2007.09238> [math.RT] (To appear)
8. Karuppuchamy, P.: On Schubert varieties. *Commun. Algebra* **41**(4), 1365–1368 (2013)
9. Lakshmibai, V., Sandhya, B.: Criterion for smoothness of Schubert varieties in $SL(n)/B$. *Proc. Indian Acad. Sci. Math. Sci.* **100**(1), 45–52 (1990)
10. Luna, D.: Variétés sphériques de type A . *Publ. Math. Inst. Hautes Études Sci.* (94), 161–226 (2001)
11. Luna, D., Vust, T.: Plongements d’espaces homogènes. *Comment. Math. Helv.* **58**(2), 186–245 (1983)
12. Marcus, A., Tardos, G.: Excluded permutation matrices and the Stanley–Wilf conjecture. *J. Combin. Theory Ser. A* **107**(1), 153–160 (2004)
13. Perrin, N.: On the geometry of spherical varieties. *Transform. Groups* **19**(1), 171–223 (2014)
14. Ramanan, S., Ramanathan, A.: Projective normality of flag varieties and Schubert varieties. *Invent. Math.* **79**(2), 217–224 (1985)
15. Tenner, B.E.: Pattern avoidance and the Bruhat order. *J. Combin. Theory Ser. A* **114**(5), 888–905 (2007)
16. Tenner, B.E.: The range of repetition in reduced decompositions. *Adv. Appl. Math.* **122**(102107), 16 (2021)

17. Woo, A., Yong, A.: When is a Schubert variety Gorenstein? *Adv. Math.* **207**(1), 205–220 (2006)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.