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Abstract

A normal variety X is called H-spherical for the action of the complex reductive group
H if it contains a dense orbit of some Borel subgroup of H. We resolve a conjecture of
Hodges—Yong by showing that their spherical permutations are characterized by per-
mutation pattern avoidance. Together with results of Gao—Hodges—Yong this implies
that the sphericality of a Schubert variety X,, with respect to the largest possible Levi
subgroup is characterized by this same pattern avoidance condition.
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1 Introduction
1.1 Spherical varieties

Following [3, 11], a normal variety X is called H-spherical for the action of the com-
plex reductive group H if it contains a dense orbit of some Borel subgroup of H.
Important examples of spherical varieties include projective and affine toric varieties,
complexifications of symmetric spaces, and flag varieties (see Perrin’s survey [13]).
Producing families of examples of and classifying spherical varieties is of significant
interest [10]. In this paper we resolve a conjecture of Hodges—Yong [7], thereby clas-
sifying (maximally) spherical Schubert varieties by a permutation pattern avoidance
condition.

The author was supported by a National Science Foundation Graduate Research Fellowship under Grant
No. 1122374.

B Christian Gaetz
gaetz@math.harvard.edu

1 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

) Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00029-022-00760-8&domain=pdf

44 Page2of9 C. Gaetz

1.2 Schubert varieties and pattern avoidance

Let G be a complex reductive algebraic group and B be a Borel subgroup. The Bruhat
decomposition decomposes G as

G = ]_[ BwaB,

weW

where W denotes the Weyl group of G. The closures
Xw=BwB/B

of the images of these strata in the flag variety G/B are the Schubert varieties, of
fundamental importance in algebraic geometry and representation theory.

In the case G = G L, (C), the Weyl group W is the symmetric group S,,. Beginning
with the groundbreaking result of Lakshmibai—-Sandhya [9] characterizing smooth
Schubert varieties, it has been found that many important geometric and combinatorial
properties (see, for example [8, 17]) of X, are determined by permutation pattern
avoidance conditions on w. Let w = wy---w, € S, be a permutation written in
one-line notation, and let p € S; be another permutation. Then w is said to have an
occurrence of the pattern p at positions 1 < i} < -+ < iy < nif w; ... w; arein
the same relative order as pj ... pi. If w does not contain any occurrences of p, then
w is said to avoid p.

Under the natural left action of G on G/B, the stabilizer of X,, is the parabolic
subgroup P,y C G corresponding to the left descent set J(w) of w. The parabolic
subgroup Py (y,) is not reductive, but contains the Levi subgroup L ;) as a maximal
reductive subgroup. Following [7], we say X, is maximally spherical if it is L -
spherical for the induced action of L ;. Since all Schubert varieties are known to be
normal by the work of DeConcini-Lakshmibai [4] and Ramanan—Ramanathan [14],
this is equivalent to the existence of a dense orbit inside X, of a Borel subgroup of
L jw).

1.3 Hodges and Yong’s conjecture

We consider the symmetric group S, as a Coxeter group with simple generating set

I = {s1,...,8,—1}, where s; is the adjacent transposition (i i + 1), and we write J (w)

for the left descent set of w € S,,. See Sect. 2 for background and basic definitions.

Definition 1.1 (Hodges and Yong [7]) A permutation w € S, is spherical if it has a

reduced word s;, - - - s, such that:

(S.1) |{t|s;, =s;}| <1lfors; eI\ J(w),and

(S.2) I{t]si, € C}| < £€(wo(C))+ |C] for any connected component C of the induced
subgraph of the Dynkin diagram on J(w).

Remark Hodges and Yong consider a more general class of spherical elements in finite
Coxeter groups. Definition 1.1 is the special case which is relevant to Conjecture 1.3
(J (w)-spherical elements in S,,).
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Spherical permutations were defined because of Conjecture 1.2, which was recently
proven [6] by Gao—Hodges—Yong.

Conjecture 1.2 (Conjectured by Hodges and Yong [7]; proof by Gao—Hodges—Yong
[6]) The Schubert variety X, is maximally spherical if and only if w is spherical.

This geometric property is linked to permutation pattern avoidance by Conjec-
ture 1.3.

Conjecture 1.3 (Hodges and Yong [7]) A permutation w is spherical if and only if it

avoids the twenty one patterns in P:

P = {24531, 25314, 25341, 34512, 34521, 35412, 35421, 42531, 45123,
45213,45231, 45312, 52314, 52341, 53124, 53142, 53412,
53421, 54123, 54213, 54231}.

Our main result resolves Conjecture 1.3:
Theorem 1.4 A permutation w is spherical if and only if it avoids the patterns in P.

Combining this result with Gao—Hodges—Yong’s proof of Conjecture 1.2, we thus
obtain a characterization of maximally spherical Schubert varieties in terms of pattern
avoidance.

Corollary 1.5 The Schubert variety X, is maximally spherical if and only if w avoids
the patterns from P.

The following result, an immediate consequence of Theorem 1.4, was conjectured
in [7] and proven in [2] using probabilistic methods.

Corollary 1.6

lim |{spherical permutations w € S,}|/n! = 0.
n—o0

Proof The Stanley—Wilf Conjecture, now a theorem of Marcus and Tardos [12], says
that the number of permutations in S, avoiding any fixed set Q of patterns is bounded
above by C" for some constant C. Thus Theorem 1.4 implies that

|{spherical permutations w € S, }|

grows at most exponentially. O

1.4 Outline

Section 2 recalls some basic definitions and facts about Bruhat order as well as a result
of Tenner [15] characterizing Boolean intervals in Bruhat order. In Sect. 3 we introduce
the notion of divisible pairs of permutations and connect these to Boolean permutations
and spherical permutations. Divisible pairs, along with a helpful decomposition of the
set P of patterns, are applied in Sect. 4 to prove Theorem 1.4.



44 Page4of9 C. Gaetz

2 Background

2.1 Bruhat order

Fori = 1,...,n, lets; denote the adjacent transposition (i i + 1) in the symmetric

group S, ; the symmetric group is a Coxeter group with respect to the generating set

S1,-..,8,—1 (see [1] for background on Coxeter groups). For w € §,,, and expression
w = Si * S

of minimum length is a reduced word for w, and in this case £ = £(w) is the length
of w.

The (right) weak order is the partial order <g on S,, with cover relations w < ws;
whenever £(ws;) = £(w) + 1. The Bruhat order is the partial order < on §,, with
cover relations w < wt for ¢ a 2-cycle such that £(wt) = £(w) + 1. Both posets have
the identity permutation e as their unique minimal element.

For a permutation w = wj...w, € S, and integers | < a < b < n, we write
wla, b] for the set {w,, wy41, ..., wp}. For two k-subsets A, B of [n] := {1, ...,n}
write A < Bifa; <by,...,ar < by, where A ={ay,...,ar}and B = {by, ..., by}

witha; < --- < arand by < --- < bg. The following well-known property of Bruhat
order will be useful:

Proposition 2.1 (Ehresmann [5]) Let v, w € S, then v < w if and only if
v[l,i] < wll, ]

foralli =1,...,n.

A generator s; is a (left) descent of wif £(s;w) < £(w) (equivalently,if w=!(i+1) <
w~L(i)). We write J (w) for the set of descents of w. For any J C {sy,...,Sp—1}, we
write wo (J) for the unique permutation of maximum length lying in the subgroup of S,
generated by J. Explicitly, the one-line notation for wg(J) is an increasing sequence
of consecutive decreasing runs, where decreasing run consists of i +d,i+d—1, --- ,i
whenever s;, Si41, ..., Sitda—1 € J while s;_1, si+q ¢ J.

2.2 Boolean permutations

Theorem 2.2 (Tenner [15]) The following are equivalent for a permutation w € Sy,:

(1) The interval [e, w] in Bruhat order is isomorphic to a Boolean lattice,
(2) No simple generator s; appears more than once in a reduced word for w,
(3) w avoids the patterns 321 and 3412.

We will call a permutation satisfying the equivalent conditions of Theorem 2.2 a
Boolean permutation. Theorem 2.3 suggests a connection between Boolean permuta-
tions and spherical varieties.

Theorem 2.3 (Karuppuchamy [8]) The Schubert variety X, is a toric variety if and
only if w is a Boolean permutation.
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3 Divisible pairs of permutations

Definition 3.1 Given a pair (v, w) of permutations from S,, we say that (v, w) is
divisible after position i if

W, ilNwl[l,i]] <i -2,
and divisible at position i if v; = w; and
[o[l,i]Nw[l,i]] <i-—1.

We say simply that (v, w) is divisible if there exists 1 < i < n such that (v, w) is
divisible at or after position i.

The term “divisible” is meant to refer to the fact that if (v, w) is divisible after
position i, then if the one-line notation for v is written on top of that for w, a vertical
line drawn after position i will divide the occurrences (on the left side of the line) of
at least two values in v from the occurrences (on the right side of the line) of these
values in w.

Proposition 3.2 A pair (v, w) of permutations from Sy, is divisible if and only if v~'w
is not Boolean.

Proof 1t is clear from the definition that (v, w) is divisible if and only if (uv, uw) is
divisible for all u € S,, so it suffices to prove the case v = e.

Suppose that w is not Boolean, so that w contains a pattern p € {321, 3412}
by Theorem 2.2. If p = 3412 occurs as w;, w;, w;;w;, then (e, w) is divisible after
position iz, since {w;,, w;,} € w[l, iz] while e[1,i>] = {1, ..., i>} must contain w;,
and wj, if it contains either w;, or w;,. If p = 321 occurs as w;, w;, w;;, consider three
cases: If w;, = i> then (e, w) is divisible at i, since w;, > iz ¢ e[l, i2]; If w;, < ip,
then (e, w) is divisible after i, — 1, since w;,, w;; both lie in ¢[1, i — 1] but not in
w1, ip — 1]; Similarly, if w;, > i, then (e, w) is divisible after i», since w;, , w;, both
lie in w[1, i2] but not in e[1, iz ].

Conversely suppose that w is divisible. If w is divisible after position i, then there are
two elements a < b € w[l,i] which are notine[l,i] = {1, ..., i} and therefore also
twoelementsc, d € wli+1, n]withe <d € {1, ..., i}.Eitherw™!(a) < w™!(b) and
w~1(¢) < w™!(d) in which case w contains 3412 or at least one of these statements
fails and w contains 321; in either case w is not Boolean. If w is divisible at position i,
then w; = ¢; = i and thereissomea > i inw[l,i —1]andsome b < i inw[i +1, n];
then the values a, i, b form a 321 pattern in w, so w is not Boolean. O

Remark The anonymous referee has helpfully pointed out that Proposition 3.2 is
closely related to Theorem 2.2 of [16].

Proposition 3.3 (Gao—Hodges—Yong [6]) A permutation w € S, is spherical if and
only if wo(J (w))w is a Boolean permutation.

The following characterization of spherical permutations will be convenient for our
arguments in Sect. 4.
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Corollary 3.4 A permutation w € S, is spherical if and only if (wo(J (w)), w) is not
divisible.

Proof By Proposition 3.3, w is spherical if and only if wo(J(w))w is Boolean.
Since wo(J(w)) is an involution, Proposition 3.2 implies that this is equivalent to
(wo(J (w)), w) not being divisible. O

4 Proof of Theorem 1.4

The following decomposition of the set P of twenty one patterns will be crucial to the
proof of Theorem 1.4: P = P32l y p3412 \where

p32 — {24531, 25314, 25341, 42531, 45231, 45312, 52314, 52341,
53124, 53142, 53412}
={p € P | wo(J(p))p contains the pattern 321},

and

p3z _ {34512, 34521, 35412, 35421, 45123, 45213, 45231, 53412, 53421,
54123, 54213, 54231}
= {p € P | wo(J(p))p contains the pattern 3412}.

Notice that 45231 and 53412 lie in both P32! and P3#!2. A simple check shows that
P32! and P3*12 are also characterized by the following properties:

PP =(peSsip G <p '@ <p i), p '@ ¢p S, p' 3,

p '@ ¢ p'3). p (DI, (1
P2 = {peSs| max(p~'(4), p1(5)) < min(p~' (1), p~' (),
p ') ¢lp '@, p . 2)

The following proposition is obvious from the definitions, but will be useful to keep
in mind throughout the proofs of Lemmas 4.2 and 4.3.

Proposition 4.1 For w € Sy, let v = wo(J(w)) and 1 <a < b < n. Then v~ (b) <
v Ha) if and only ifw_l(b) <wlb-1)<- - <wka).

Lemma4.2 If w € S, avoids the patterns from P then w is spherical.

Proof We reformulate using Corollary 3.4 and prove the contrapositive: if (wo(J (w)),
w) is divisible, then w contains a pattern from P.

Case 1: Write v for wo(J(w)) and suppose that (v, w) is divisible after i, and
furthermore that i is the smallest index for which this is true. Then we have:
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v[l,i]\ w[l,i] = {a, b},
w[l,i]\ v[1,i] = {c, d},

where we may assume without loss of generality that a < b and ¢ < d. We have
v <g w, so in particular v < w in Bruhat order; thus by Proposition 2.1 we must
have a < c and b < d. Suppose that ¢ < b + 1; if ¢ < b, then, since ¢ appears after
b in v, it must be that b, ¢ lie in the same decreasing run of v, but by Proposition 4.1
this implies that b appears before ¢ in w, a contradiction. If ¢ = b 4 1, then s, is
a left descent of w, so ¢ appears before b in v, again a contradiction. Thus we have
a<b<b+1<c<d.

We wish to conclude that w contains a pattern from P. If any value x € {b+1,b+
2,...,c — 1} does not lie between b and ¢ in w, then we are done by (2), since the
values {a, b, ¢, d, x} form a pattern from P3*!2 in w. Otherwise, all of these values
appear between b and ¢ in w. Suppose that they do not appear in decreasing order, so
w b+ j) <w ' b+ j+1) forsome j + 1 < ¢ — b. Then the values {c, d, b +
Jj,b+ j+1,a, b} either contain a pattern from P32 or appear in w in the order
c,b+j,d,a,b+j+1,b.Inthislastcasec, b+ j, a, b+ j+1, b forms an occurrence
of the pattern 53142 from P32!. Finally, suppose that {b+1,b+2, ..., ¢ — 1} appear
in decreasing order in w between b and c; then by Proposition 4.1 ¢ appears before b
in v, a contradiction. Thus in all cases w contains a pattern from P.

Case 2: Write v for wo(J (w)) and suppose that (v, w) is divisible at 7, and further-
more that i is the smallest index at or after which (v, w) is divisible. Then we have
Vi = w; and

o[l,i — 11\ w[l,i — 1] = {a},
wl,i — 11\ v[1,i — 1] = {c},

with a < ¢ by Proposition 2.1. We claim that a is the minimal element in a decreasing
run of v. Indeed, otherwise a — 1 appears immediately after a in v, and thus @ — 1 also
appears after @ in w. Butthena — 1 € v[1, ]\ w[1, i], contradicting the minimality
of i, thus a is the minimal element in a decreasing run, and is smaller than all values
appearing after it in v. Similarly, c is the maximal element in a decreasing run of v
and is larger than all values appearing before it in v. Also note that a < v; — 1 and
c>vi+ 1, forifa=v;—lthenw @+ 1) <w l@butv@+1) > v (),
contradicting Proposition 4.1, and similarly for c.

We will now see that c, v;, a participate in an occurrence in w of some pattern
p € P.Suppose first that all valuesc — 1, ¢ —2, ..., v; + 1 lie in between ¢ and v; in
w. If these occur in decreasing order, then ¢ and v; must occur in the same decreasing
run of v, but this is not the case since ¢ appears at the beginning of its run, but after v;
in v. Thus there is some j < ¢ —v; —2suchthatw™!(c—j—1) < w™!(c— ). Inthis
casec,c — j —1,c — j, vi, a form an occurrence in w of the pattern 53421 € p3412,

Similarly, if all values v; — 1, v; —2,...,a + 1 lie in between v; and @ in w, then w
contains an occurrence in w of the pattern 54231 € P.
In the only remaining case, there is some x € {c — 1,c — 2, ..., v; + 1} not lying

between ¢ and v; in w and some y € {v; — 1, v; — 2, ..., a4+ 1} not lying between v;
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and a in w. Then the values {c, v;, a, x, y} form a pattern p from P32 inw by (1), with
¢, v;, a corresponding to the values 5, 3, 1 in p respectively and x, y corresponding
to 4, 2. 0O

Lemma4.3 Ifw € S, is spherical then w avoids the patterns from P.

Proof We will apply Proposition 3.3 and prove the contrapositive: if w contains a
pattern p from P, then vw is not Boolean, where v = wq(J (w)).

Suppose first that w contains a pattern p from P32! and that w;, w;, wg with
i < j < k correspond to the values 5, 3, 1 in p respectively. Since the 2 and 4 in the
pattern p do not lie between w;, wy and w;, w; respectively, Proposition 4.1 implies
that v(w;) > v(w;) > v(wy) since v = v~L. Thus vw contains the pattern 321 and is
not Boolean by Theorem 2.2.

Suppose now that w contains a pattern p from P32 Let w;, w j» W, we With
i < j < k < £ correspond to the values {1, 2,4, 5} from p (thus one of w;, w;
corresponds to 4 and the other to 5, while one of wy, w¢ corresponds to 1 and the other
2). Since the 3 in the pattern p does not lie between the 2 and the 4, Proposition 4.1
implies that min(v(w;), v(w;)) > max(v(wg), v(we)). Thus either vw contains the
pattern 3412 in these positions or contains a 321 pattern in some subset of them. In
either case vw is not Boolean. O

Lemmas 4.2 and 4.3 together yield Theorem 1.4.
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