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Abstract
Anormal variety X is called H -spherical for the action of the complex reductive group
H if it contains a dense orbit of some Borel subgroup of H . We resolve a conjecture of
Hodges–Yong by showing that their spherical permutations are characterized by per-
mutation pattern avoidance. Together with results of Gao–Hodges–Yong this implies
that the sphericality of a Schubert variety Xw with respect to the largest possible Levi
subgroup is characterized by this same pattern avoidance condition.
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1 Introduction

1.1 Spherical varieties

Following [3, 11], a normal variety X is called H -spherical for the action of the com-
plex reductive group H if it contains a dense orbit of some Borel subgroup of H .
Important examples of spherical varieties include projective and affine toric varieties,
complexifications of symmetric spaces, and flag varieties (see Perrin’s survey [13]).
Producing families of examples of and classifying spherical varieties is of significant
interest [10]. In this paper we resolve a conjecture of Hodges–Yong [7], thereby clas-
sifying (maximally) spherical Schubert varieties by a permutation pattern avoidance
condition.
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1.2 Schubert varieties and pattern avoidance

Let G be a complex reductive algebraic group and B be a Borel subgroup. The Bruhat
decomposition decomposes G as

G =
∐

w∈W
BwB,

where W denotes the Weyl group of G. The closures

Xw = BwB/B

of the images of these strata in the flag variety G/B are the Schubert varieties, of
fundamental importance in algebraic geometry and representation theory.

In the case G = GLn(C), the Weyl groupW is the symmetric group Sn . Beginning
with the groundbreaking result of Lakshmibai–Sandhya [9] characterizing smooth
Schubert varieties, it has been found that many important geometric and combinatorial
properties (see, for example [8, 17]) of Xw are determined by permutation pattern
avoidance conditions on w. Let w = w1 · · ·wn ∈ Sn be a permutation written in
one-line notation, and let p ∈ Sk be another permutation. Then w is said to have an
occurrence of the pattern p at positions 1 ≤ i1 < · · · < ik ≤ n if wi1 . . . wik are in
the same relative order as p1 . . . pk . If w does not contain any occurrences of p, then
w is said to avoid p.

Under the natural left action of G on G/B, the stabilizer of Xw is the parabolic
subgroup PJ (w) ⊂ G corresponding to the left descent set J (w) of w. The parabolic
subgroup PJ (w) is not reductive, but contains the Levi subgroup L J (w) as a maximal
reductive subgroup. Following [7], we say Xw is maximally spherical if it is L J (w)-
spherical for the induced action of L J (w). Since all Schubert varieties are known to be
normal by the work of DeConcini–Lakshmibai [4] and Ramanan–Ramanathan [14],
this is equivalent to the existence of a dense orbit inside Xw of a Borel subgroup of
L J (w).

1.3 Hodges andYong’s conjecture

We consider the symmetric group Sn as a Coxeter group with simple generating set
I = {s1, . . . , sn−1}, where si is the adjacent transposition (i i +1), and we write J (w)

for the left descent set of w ∈ Sn . See Sect. 2 for background and basic definitions.

Definition 1.1 (Hodges and Yong [7]) A permutation w ∈ Sn is spherical if it has a
reduced word si1 · · · si�(w)

such that:

(S.1) |{t | sit = s j }| ≤ 1 for s j ∈ I \ J (w), and
(S.2) |{t | sit ∈ C}| ≤ �(w0(C))+|C | for any connected component C of the induced

subgraph of the Dynkin diagram on J (w).

Remark Hodges andYong consider amore general class of spherical elements in finite
Coxeter groups. Definition 1.1 is the special case which is relevant to Conjecture 1.3
(J (w)-spherical elements in Sn).
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Spherical permutations were defined because of Conjecture 1.2, whichwas recently
proven [6] by Gao–Hodges–Yong.

Conjecture 1.2 (Conjectured by Hodges and Yong [7]; proof by Gao–Hodges–Yong
[6]) The Schubert variety Xw is maximally spherical if and only if w is spherical.

This geometric property is linked to permutation pattern avoidance by Conjec-
ture 1.3.

Conjecture 1.3 (Hodges and Yong [7]) A permutation w is spherical if and only if it
avoids the twenty one patterns in P:

P = {24531, 25314, 25341, 34512, 34521, 35412, 35421, 42531, 45123,
45213, 45231, 45312, 52314, 52341, 53124, 53142, 53412,

53421, 54123, 54213, 54231}.

Our main result resolves Conjecture 1.3:

Theorem 1.4 A permutation w is spherical if and only if it avoids the patterns in P.

Combining this result with Gao–Hodges–Yong’s proof of Conjecture 1.2, we thus
obtain a characterization of maximally spherical Schubert varieties in terms of pattern
avoidance.

Corollary 1.5 The Schubert variety Xw is maximally spherical if and only if w avoids
the patterns from P.

The following result, an immediate consequence of Theorem 1.4, was conjectured
in [7] and proven in [2] using probabilistic methods.

Corollary 1.6

lim
n→∞ |{spherical permutations w ∈ Sn}|/n! = 0.

Proof The Stanley–Wilf Conjecture, now a theorem of Marcus and Tardos [12], says
that the number of permutations in Sn avoiding any fixed set Q of patterns is bounded
above by Cn for some constant C . Thus Theorem 1.4 implies that

|{spherical permutations w ∈ Sn}|

grows at most exponentially. ��

1.4 Outline

Section 2 recalls some basic definitions and facts about Bruhat order as well as a result
of Tenner [15] characterizingBoolean intervals in Bruhat order. In Sect. 3we introduce
the notion of divisible pairs of permutations and connect these toBoolean permutations
and spherical permutations. Divisible pairs, along with a helpful decomposition of the
set P of patterns, are applied in Sect. 4 to prove Theorem 1.4.
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2 Background

2.1 Bruhat order

For i = 1, . . . , n, let si denote the adjacent transposition (i i + 1) in the symmetric
group Sn ; the symmetric group is a Coxeter group with respect to the generating set
s1, . . . , sn−1 (see [1] for background on Coxeter groups). Forw ∈ Sn , and expression

w = si1 · · · si�
of minimum length is a reduced word for w, and in this case � = �(w) is the length
of w.

The (right) weak order is the partial order ≤R on Sn with cover relations w �R wsi
whenever �(wsi ) = �(w) + 1. The Bruhat order is the partial order ≤ on Sn with
cover relations w � wt for t a 2-cycle such that �(wt) = �(w) + 1. Both posets have
the identity permutation e as their unique minimal element.

For a permutation w = w1 . . . wn ∈ Sn and integers 1 ≤ a ≤ b ≤ n, we write
w[a, b] for the set {wa, wa+1, . . . , wb}. For two k-subsets A, B of [n] := {1, . . . , n}
write A 	 B if a1 ≤ b1, . . . , ak ≤ bk , where A = {a1, . . . , ak} and B = {b1, . . . , bk}
with a1 < · · · < ak and b1 < · · · < bk . The following well-known property of Bruhat
order will be useful:

Proposition 2.1 (Ehresmann [5]) Let v,w ∈ Sn, then v ≤ w if and only if

v[1, i] 	 w[1, i]

for all i = 1, . . . , n.

Agenerator si is a (left) descent ofw if �(siw) < �(w) (equivalently, ifw−1(i+1) <

w−1(i)). We write J (w) for the set of descents of w. For any J ⊆ {s1, . . . , sn−1}, we
writew0(J ) for the unique permutation ofmaximum length lying in the subgroup of Sn
generated by J . Explicitly, the one-line notation for w0(J ) is an increasing sequence
of consecutive decreasing runs, where decreasing run consists of i+d, i+d−1, · · · , i
whenever si , si+1, . . . , si+d−1 ∈ J while si−1, si+d /∈ J .

2.2 Boolean permutations

Theorem 2.2 (Tenner [15]) The following are equivalent for a permutation w ∈ Sn:

(1) The interval [e, w] in Bruhat order is isomorphic to a Boolean lattice,
(2) No simple generator si appears more than once in a reduced word for w,
(3) w avoids the patterns 321 and 3412.

We will call a permutation satisfying the equivalent conditions of Theorem 2.2 a
Boolean permutation. Theorem 2.3 suggests a connection between Boolean permuta-
tions and spherical varieties.

Theorem 2.3 (Karuppuchamy [8]) The Schubert variety Xw is a toric variety if and
only if w is a Boolean permutation.
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3 Divisible pairs of permutations

Definition 3.1 Given a pair (v,w) of permutations from Sn , we say that (v,w) is
divisible after position i if

|v[1, i] ∩ w[1, i]| ≤ i − 2,

and divisible at position i if vi = wi and

|v[1, i] ∩ w[1, i]| ≤ i − 1.

We say simply that (v,w) is divisible if there exists 1 ≤ i ≤ n such that (v,w) is
divisible at or after position i .

The term “divisible” is meant to refer to the fact that if (v,w) is divisible after
position i , then if the one-line notation for v is written on top of that for w, a vertical
line drawn after position i will divide the occurrences (on the left side of the line) of
at least two values in v from the occurrences (on the right side of the line) of these
values in w.

Proposition 3.2 A pair (v,w) of permutations from Sn is divisible if and only if v−1w

is not Boolean.

Proof It is clear from the definition that (v,w) is divisible if and only if (uv, uw) is
divisible for all u ∈ Sn , so it suffices to prove the case v = e.

Suppose that w is not Boolean, so that w contains a pattern p ∈ {321, 3412}
by Theorem 2.2. If p = 3412 occurs as wi1wi2wi3wi4 then (e, w) is divisible after
position i2, since {wi1 , wi2} ⊆ w[1, i2] while e[1, i2] = {1, . . . , i2} must contain wi3
andwi4 if it contains eitherwi1 orwi2 . If p = 321 occurs aswi1wi2wi3 , consider three
cases: If wi2 = i2 then (e, w) is divisible at i2, since wi1 > i2 /∈ e[1, i2]; If wi2 < i2,
then (e, w) is divisible after i2 − 1, since wi2 , wi3 both lie in e[1, i2 − 1] but not in
w[1, i2 −1]; Similarly, ifwi2 > i2, then (e, w) is divisible after i2, sincewi1, wi2 both
lie in w[1, i2] but not in e[1, i2].

Conversely suppose thatw is divisible. Ifw is divisible after position i , then there are
two elements a < b ∈ w[1, i] which are not in e[1, i] = {1, . . . , i} and therefore also
two elements c, d ∈ w[i+1, n]with c < d ∈ {1, . . . , i}. Eitherw−1(a) < w−1(b) and
w−1(c) < w−1(d) in which case w contains 3412 or at least one of these statements
fails andw contains 321; in either casew is not Boolean. Ifw is divisible at position i ,
thenwi = ei = i and there is some a > i inw[1, i −1] and some b < i inw[i+1, n];
then the values a, i, b form a 321 pattern in w, so w is not Boolean. ��
Remark The anonymous referee has helpfully pointed out that Proposition 3.2 is
closely related to Theorem 2.2 of [16].

Proposition 3.3 (Gao–Hodges–Yong [6]) A permutation w ∈ Sn is spherical if and
only if w0(J (w))w is a Boolean permutation.

The following characterization of spherical permutations will be convenient for our
arguments in Sect. 4.



44 Page 6 of 9 C. Gaetz

Corollary 3.4 A permutation w ∈ Sn is spherical if and only if (w0(J (w)),w) is not
divisible.

Proof By Proposition 3.3, w is spherical if and only if w0(J (w))w is Boolean.
Since w0(J (w)) is an involution, Proposition 3.2 implies that this is equivalent to
(w0(J (w)),w) not being divisible. ��

4 Proof of Theorem 1.4

The following decomposition of the set P of twenty one patterns will be crucial to the
proof of Theorem 1.4: P = P321 ∪ P3412, where

P321 = {24531, 25314, 25341, 42531, 45231, 45312, 52314, 52341,
53124, 53142, 53412}

= {p ∈ P | w0(J (p))p contains the pattern 321},

and

P3412 = {34512, 34521, 35412, 35421, 45123, 45213, 45231, 53412, 53421,
54123, 54213, 54231}

= {p ∈ P | w0(J (p))p contains the pattern 3412}.

Notice that 45231 and 53412 lie in both P321 and P3412. A simple check shows that
P321 and P3412 are also characterized by the following properties:

P321 = {p ∈ S5 | p−1(5) < p−1(3) < p−1(1), p−1(4) /∈ [p−1(5), p−1(3)],
p−1(2) /∈ [p−1(3), p−1(1)]}, (1)

P3412 = {p ∈ S5 | max(p−1(4), p−1(5)) < min(p−1(1), p−1(2)),

p−1(3) /∈ [p−1(4), p−1(2)]}. (2)

The following proposition is obvious from the definitions, but will be useful to keep
in mind throughout the proofs of Lemmas 4.2 and 4.3.

Proposition 4.1 For w ∈ Sn, let v = w0(J (w)) and 1 ≤ a < b ≤ n. Then v−1(b) <

v−1(a) if and only if w−1(b) < w−1(b − 1) < · · · < w−1(a).

Lemma 4.2 If w ∈ Sn avoids the patterns from P then w is spherical.

Proof We reformulate using Corollary 3.4 and prove the contrapositive: if (w0(J (w)),

w) is divisible, then w contains a pattern from P .

Case 1: Write v for w0(J (w)) and suppose that (v,w) is divisible after i , and
furthermore that i is the smallest index for which this is true. Then we have:
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v[1, i] \ w[1, i] = {a, b},
w[1, i] \ v[1, i] = {c, d},

where we may assume without loss of generality that a < b and c < d. We have
v ≤R w, so in particular v ≤ w in Bruhat order; thus by Proposition 2.1 we must
have a < c and b < d. Suppose that c ≤ b + 1; if c < b, then, since c appears after
b in v, it must be that b, c lie in the same decreasing run of v, but by Proposition 4.1
this implies that b appears before c in w, a contradiction. If c = b + 1, then sc is
a left descent of w, so c appears before b in v, again a contradiction. Thus we have
a < b < b + 1 < c < d.

We wish to conclude that w contains a pattern from P . If any value x ∈ {b+1, b+
2, . . . , c − 1} does not lie between b and c in w, then we are done by (2), since the
values {a, b, c, d, x} form a pattern from P3412 in w. Otherwise, all of these values
appear between b and c in w. Suppose that they do not appear in decreasing order, so
w−1(b + j) < w−1(b + j + 1) for some j + 1 < c − b. Then the values {c, d, b +
j, b + j + 1, a, b} either contain a pattern from P3412, or appear in w in the order
c, b+ j, d, a, b+ j+1, b. In this last case c, b+ j, a, b+ j+1, b forms an occurrence
of the pattern 53142 from P321. Finally, suppose that {b+1, b+2, . . . , c−1} appear
in decreasing order in w between b and c; then by Proposition 4.1 c appears before b
in v, a contradiction. Thus in all cases w contains a pattern from P .

Case 2:Write v for w0(J (w)) and suppose that (v,w) is divisible at i , and further-
more that i is the smallest index at or after which (v,w) is divisible. Then we have
vi = wi and

v[1, i − 1] \ w[1, i − 1] = {a},
w[1, i − 1] \ v[1, i − 1] = {c},

with a < c by Proposition 2.1. We claim that a is the minimal element in a decreasing
run of v. Indeed, otherwise a−1 appears immediately after a in v, and thus a−1 also
appears after a in w. But then a − 1 ∈ v[1, i] \ w[1, i], contradicting the minimality
of i , thus a is the minimal element in a decreasing run, and is smaller than all values
appearing after it in v. Similarly, c is the maximal element in a decreasing run of v

and is larger than all values appearing before it in v. Also note that a < vi − 1 and
c > vi + 1, for if a = vi − 1 then w−1(a + 1) < w−1(a) but v−1(a + 1) > v−1(a),
contradicting Proposition 4.1, and similarly for c.

We will now see that c, vi , a participate in an occurrence in w of some pattern
p ∈ P . Suppose first that all values c− 1, c− 2, . . . , vi + 1 lie in between c and vi in
w. If these occur in decreasing order, then c and vi must occur in the same decreasing
run of v, but this is not the case since c appears at the beginning of its run, but after vi
in v. Thus there is some j ≤ c−vi −2 such thatw−1(c− j−1) < w−1(c− j). In this
case c, c − j − 1, c − j, vi , a form an occurrence in w of the pattern 53421 ∈ P3412.
Similarly, if all values vi − 1, vi − 2, . . . , a + 1 lie in between vi and a in w, then w

contains an occurrence in w of the pattern 54231 ∈ P .
In the only remaining case, there is some x ∈ {c − 1, c − 2, . . . , vi + 1} not lying

between c and vi in w and some y ∈ {vi − 1, vi − 2, . . . , a + 1} not lying between vi
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and a inw. Then the values {c, vi , a, x, y} form a pattern p from P321 inw by (1), with
c, vi , a corresponding to the values 5, 3, 1 in p respectively and x, y corresponding
to 4, 2. ��
Lemma 4.3 If w ∈ Sn is spherical then w avoids the patterns from P.

Proof We will apply Proposition 3.3 and prove the contrapositive: if w contains a
pattern p from P , then vw is not Boolean, where v = w0(J (w)).

Suppose first that w contains a pattern p from P321 and that wi , w j , wk with
i < j < k correspond to the values 5, 3, 1 in p respectively. Since the 2 and 4 in the
pattern p do not lie between w j , wk and wi , w j respectively, Proposition 4.1 implies
that v(wi ) > v(w j ) > v(wk) since v = v−1. Thus vw contains the pattern 321 and is
not Boolean by Theorem 2.2.

Suppose now that w contains a pattern p from P3412. Let wi , w j , wk, w� with
i < j < k < � correspond to the values {1, 2, 4, 5} from p (thus one of wi , w j

corresponds to 4 and the other to 5, while one ofwk, w� corresponds to 1 and the other
2). Since the 3 in the pattern p does not lie between the 2 and the 4, Proposition 4.1
implies that min(v(wi ), v(w j )) > max(v(wk), v(w�)). Thus either vw contains the
pattern 3412 in these positions or contains a 321 pattern in some subset of them. In
either case vw is not Boolean. ��

Lemmas 4.2 and 4.3 together yield Theorem 1.4.
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