Adaptively-Sound Succinct Arguments for NP
from Indistinguishability Obfuscation

Brent Waters David J. Wu
UT Austin and NTT Research UT Austin
bwaters@cs.utexas.edu dwud@cs.utexas.edu
Abstract

A succinct non-interactive argument (SNARG) for NP allows a prover to convince a verifier that an
NP statement x is true with a proof of size o(|x| + |w|), where w is the associated NP witness. A SNARG
satisfies adaptive soundness if the malicious prover can choose the statement to prove after seeing the
scheme parameters. In this work, we provide the first adaptively-sound SNARG for NP in the plain model
assuming sub-exponentially-hard indistinguishability obfuscation, sub-exponentially-hard one-way
functions, and either the (polynomial) hardness of the discrete log assumption or the (polynomial)
hardness of factoring. This gives the first adaptively-sound SNARG for NP from falsifiable assumptions.
All previous SNARGsS for NP in the plain model either relied on non-falsifiable cryptographic assumptions
or satisfied a weak notion of non-adaptive soundness (where the adversary has to choose the statement
it proves before seeing the scheme parameters).

1 Introduction

A succinct non-interactive argument (SNARG) for NP allows a (computationally-bounded) prover to
convince a verifier that an NP statement x is true with a proof whose size scales with o(|x| + |w|), where w
is the associated NP witness. While succinct arguments for NP can be constructed unconditionally in the
random oracle model [Kil92, Mic94], the same is not true in the plain model. In the plain model, we assume
the prover and the verifier have access to a common reference string (CRS). SNARGs for NP that do not
have a common reference string are unlikely to exist [BP04, Wee05].

Existing constructions of SNARGsS in the plain model either rely on strong, non-falsifiable cryptographic
assumptions [Gro10, BCCT12, DFH12, Lip13, GGPR13, BCI*13, BCPR14, BISW17, BCC*17, BISW18, ACL*22,
CLM23] or only support subsets of NP [KR09, KP16, BHK17, KPY19, JKKZ21, KVZ21, CJJ21a, CJJ21b, WW22,
JJ22, KLV23, BBK"23, CGJ*23]. To date, the only exception is the construction of Sahai and Waters of
a SNARG for NP from indistinguishability obfuscation (i0) and one-way functions [SW14]. While the
existence of i0 is itself not a falsifiable assumption, recent work has shown how to base iO on a collection
of falsifiable assumptions [JLS21, JLS22]. However, the Sahai-Waters construction only achieves a weak
notion of non-adaptive soundness, where soundness only holds against an adversary that declares its false
statement before seeing the common reference string. The more natural notion of security is adaptive
soundness which allows the adversary to choose its statement after seeing the scheme parameters. Achieving
adaptively-sound SNARGs for NP from standard falsifiable cryptographic assumptions has proven to be an
elusive goal and any such construction must overcome black-box separations [GW11, CGKS23].

mailto:bwaters@cs.utexas.edu
mailto:dwu4@cs.utexas.edu

This work. In this work, we construct the first adaptively-sound SNARG for NP assuming the existence
of a sub-exponentially-hard iO scheme,' a sub-exponentially-hard one-way function, and polynomial
hardness of a standard number-theoretic assumption (e.g., the hardness of discrete log or the hardness of
factoring). In conjunction with the results basing iO on falsifiable assumptions [JLS21, JLS22], this yields
the first adaptively-sound SNARG for NP from falsifiable assumptions. We summarize our construction
below and provide a technical overview of our construction in Section 1.1.

Theorem 1.1 (Informal). Assuming (1) either the polynomial hardness of computing discrete logs in a
prime-order group or the polynomial hardness of factoring, (2) the existence of a sub-exponentially-secure
indistinguishability obfuscation scheme for Boolean circuits, and (3) the existence of a sub-exponentially-secure
one-way function, there exists an adaptively-sound SNARG for NP. Specifically, we construct a SNARG for NP
with the following properties:

« Preprocessing SNARG: Similar to [SW14], we work in the preprocessing model where there is a large
CRS that depends on the Boolean circuit C: {0,1}" x {0,1}" — {0, 1} that computes the NP relation
(i.e., n is the statement length and h is the witness length for the NP relation). The size of the common
reference string is poly(A + |C|), where A denotes a security parameter.

« Proof size: The size of the proof is poly(1).

Moreover, the SNARG satisfies perfect zero-knowledge.

The Gentry-Wichs separation. A classic result of Gentry and Wichs [GW11] rules out adaptively-sound
SNARGs for NP whose security can be based on a black-box reduction to a falsifiable cryptographic assump-
tion (and in some settings, even with a CRS whose size grows with the size of the NP relation [CGKS23]).
A critical assumption in the Gentry-Wichs separation is that the running time of the SNARG security
reduction is insufficient to decide the associated NP language. The existing reductions of iO to falsifiable
assumptions [JLS21, JLS22] run in time that is exponential in the input length of the obfuscated program.
In our construction, the CRS contains obfuscated programs that take the statement and the witness as
input. Correspondingly, our security reduction runs in time that is sufficient to decide membership in the
underlying NP language. For this reason, the Gentry-Wichs separation does not apply to our construction.
As was noted in [JJ22], this caveat is also true for the original Sahai-Waters SNARG based on iO, so the
Gentry-Wichs separation also does not say anything about the Sahai-Waters construction.

One interpretation of the Gentry-Wichs separation is that to build adaptively-sound SNARGs for NP
from falsifiable assumptions, we need some form of sub-exponential hardness (and complexity leveraging).
In this case, either the size of the CRS or the size of the proof must grow with the size of the statement or
witness. The challenge then is to offload the complexity leveraging overhead in the construction entirely to
the CRS in order to keep the proofs succinct. This is precisely what our new approach achieves.

1.1 Technical Overview

We begin by describing a variant of the Sahai-Waters SNARG for NP based on indistinguishability obfusca-
tion (and one-way functions) [SW14]. We work with the language of Boolean circuit satisfiability, where
the Boolean circuit C: {0,1}" x {0, 1}* — {0, 1} is fixed ahead of time (i.e., as part of the CRS). A statement
is a string x € {0,1}" and the statement is true if there exists a witness w € {0, 1} such that C(x, w) = 1.

The notion of sub-exponential hardness we use in this work says that for a security parameter A, a polynomial-time adversary
cannot break the assumption except with probability at most 2=*° for some positive constant ¢ < 1.

In addition to iO, the Sahai-Waters construction requires a one-way function f: Y — Z and a
puncturable pseudorandom function (PRF) F with domain {0, 1}" and output space Y. A puncturable
PRF [BW13, KPTZ13, BGI14] is a pseudorandom function where the PRF key k can be “punctured” at an
input point x. We write k*) to denote a key punctured at input x. The punctured key can be used to
evaluate the PRF F(k, -) on all inputs x” # x (i.e., F(k,x") = F(k®), x") for all x’ # x). Moreover, the value
of the PRF F(k, x) should remain pseudorandom even given the punctured key k).

The Sahai-Waters construction. In the Sahai-Waters construction, the common reference string consists
of two obfuscated programs: a program Prove for generating proofs and a Verify program for validating
proofs. Here, we describe a variant where the Verify program is replaced by an “instance-generator” Genlnst,
which will be a useful stepping stone to our construction. The two programs are defined as follows:

Prove(x, w): Genlnst(x):

+ On input the statement x € {0, 1}" and the witness ||+ On input the statement x € {0, 1}", output f(F(k, x)).
w € {0,1}", if C(x, w) = 1, output 7 = F(k, x).
« Otherwise, output L.

The CRS contains obfuscations of the Prove and GenlInst programs. To construct a proof for a statement
x and witness w, the prover simply runs the (obfuscated) Prove program on input (x, w) and obtain a
proof 7. To check the proof 7 on statement x, the verifier runs the (obfuscated) Genlnst program on
input x to obtain a challenge z € Z. The verifier then checks that f(x) = z. In the original Sahai-Waters
construction [SW14, §5.5], the CRS contained a Verify program that combines Genlnst and the verification
check f(r) = z. We separate it out because it will be helpful for understanding our SNARG construction.

At a high-level, we can view the Genlnst as generating a challenge (for the one-way function) for each
statement x and the Prove program as generating solutions to those challenges. Informally, soundness
follows from the fact that the Prove program only solves instances associated with the true statements
x € L, where we define L = {x €{0,1}" | 3w € {0, 1} : C(x, w) = 1}. In order to construct a proof for a
false statement x* ¢ L, the adversary essentially has to invert the one-way function f on a (pseudorandom)
input F(k, x*), which should be hard. This is formalized via the following hybrid argument:

+ In the non-adaptive soundness game, the adversary first commits to the false statement x* ¢ L.
Now, we can construct an equivalent pair of programs that use a punctured key k*") in place of k.
In the case of the Prove program, since x* ¢ L, the program never needs to evaluate F(k, x*). Thus,
we can replace the obfuscated programs in the CRS with obfuscations of the following programs
(which compute identical functionality as the previous programs):

Prove(x, w): Genlnst(x, x):
- IfC(x,w) = 1, output 7 = F(k*), x). - Ifx* = x output f(F(k,x")).
— Otherwise, output L. - If x* # x, output f(F(k**'), x)).

+ By puncturing security of the PRF, the value of F(k, x*) is pseudorandom even given the punctured
key k*"). More precisely, the distribution of f(F(k,x*)) is computationally indistinguishable from
the distribution of z = f(y) where y <~ Y is a uniformly-random string sampled from the codomain
of the PRF. This means that the following two programs are computationally indistinguishable:

Prove(x, w): Genlnst(x, x):
- If C(x,w) = 1, output 7 = F(k™*"), x). - Ifx* = x, output z.
- Otherwise, output L. - If x* # x, output f(F(k®"), x)).

In this experiment, the only way the adversary produces a valid proof for the statement x* is by
outputting a & such that f () = z. Thus, to come up with a valid proof for x*, the adversary must
invert f at a random z = f(y). This is computationally infeasible by security of the one-way function,
and so we conclude that an efficient adversary is unable to produce a valid proof for x*.

The challenge of adaptivity. The reduction strategy described above critically relies on knowing the
false statement x* € {0, 1}" in advance. Indeed, the first step in the security reduction is to replace the PRF
key k with a key punctured at x*. Puncturing the PRF at x* enables us to program a random challenge (for
the one-way function) at x*. This ensures that any successful adversary that comes up with a proof for x*
must be able to invert the one-way function. This strategy breaks down if the statement x™ is not known in
advance (i.e., the setting of adaptive soundness). Notably, it is not clear where to puncture the PRF key and
embed the challenge for the one-way function.

Why not complexity leverage? One possible way to argue adaptive soundness is to complexity leverage
and guess the statement x™ and rely on sub-exponential hardness. Here, the security reduction would guess
a random statement x* <~ {0, 1}" and then apply the previous reduction as if the adversary had committed
to x*. The security reduction succeeds if the guess was correct, which occurs with probability 1/2". In
turn, we rely on sub-exponential hardness of the underlying cryptographic primitives and assume that the
advantage of any computationally-bounded adversary breaking each primitive should be much smaller than
even 1/2". In particular, this means that the probability that an efficient adversary succeeds in inverting
the one-way function f must also be smaller than 1/2". But this means the length of the preimage of the
one-way function must be at least n, which is the statement size (otherwise, the preimage can be guessed
with probability better than 1/2"). Since the proof is precisely the preimage, this means the proof size
is now at least Q(n). Thus, while the standard complexity-leveraging strategy suffices to prove adaptive
soundness, the resulting proof system is no longer succinct.?

Starting point: embedding a second challenge. To build an adaptively-sound SNARG, we will need
a different proof technique (and construction). Our starting point is to modify the Sahai-Waters variant
described above by having the Genlnst program output two independent challenges (zy,o, zx,1) for each
statement x € {0, 1}". In the modified scheme, the verifier accepts if the prover solves either challenge:
namely, a proof 7 = (b,y) is valid if b € {0,1} and f(y) = z,;. The critical property is that the Prove
program will only output a solution to one of the challenges. In more detail, we consider three different
(puncturable) PRFs: Fq|, Fo, and F;. The selector PRF Fg takes as input a statement x € {0, 1}" and outputs
a selection bit b € {0, 1}. The PRFs Fy and F; takes as input a statement x € {0, 1}" and outputs a value
y € Y in the domain of the one-way function. We now define the Prove and Genlnst programs as follows:

Prove(x, w): Genlnst(x):

« If C(x,w) = 1, compute b = Fse (ksel, x) and output ||« Compute yy; = Fp(kp, x)) for b € {0, 1}.

7 = (b, Fy(kp, x)). + Output (2x,0, zx,1) = (f (Yx.0)s f (Yx.1))-
+ Otherwise, output L.

2Some works (e.g., [JJ22]) only require the size of the proof be sublinear in the length of the witness, and allow for a polynomial
dependence in the length of the statement. Under this weaker notion of succinctness, the Sahai-Waters construction would be
adaptively-sound via complexity leveraging. Our focus in this work is the more stringent and common notion of succinctness
that require the proof size to be sublinear in both the statement and the witness. This was the notion studied in [GW11].

Before proceeding, we provide some brief intuition for why having two challenges is beneficial for
arguing adaptive security. In the non-adaptive soundness analysis above, the adversary has to pre-commit
to the statement x* and the security reduction then embeds the one-way function challenge at x* in
the Genlnst program. When considering adaptive security, the security reduction does not know which
statement the adversary will choose so it is not clear where to embed the one-way function challenge (and
guessing does not work for the reasons outlined above).

One possible approach is to change Genlnst to output the one-way function challenge on every statement
x € {0,1}" in the security proof.’> Then, an adversary that outputs a proof for any false statement would
successfully invert the one-way function. However, this leads to a correctness issue: we still need to be able
to generate proofs for true statements (i.e., the Prove program needs to give out preimages for the challenges
associated with true statements). This is no longer possible if GenInst outputs a one-way function challenge
for which the Prove algorithm does not know a corresponding preimage on every input x € {0, 1}". Ideally,
we would only embed the challenge instances on inputs x ¢ L. However, Genlnst cannot decide the
language itself to determine whether it should output a challenge instance or one with a known preimage.

Our solution is to associate two challenges with every x. One of the challenges (as determined by
Fsel(ksel, x)) will be sampled with a known preimage while the other can be arbitrary (and will be used
to embed a challenge instance in the reduction). This way, the Prove program still has the capability to
produce a proof for every statement, while simultaneously ensuring that an adversary that succeeds on any
instance x breaks security of the one-way function. This is conceptually similar to other “two-challenge”
approaches used to argue adaptive security for digital signatures [KW03], broadcast encryption [GW09], or
registered attribute-based encryption [FWW?23], albeit in the random oracle model. In fact, as we discuss in
Remark 4.21, our techniques can be used to “instantiate” the random oracle in the Katz-Wang signature
scheme with an obfuscated PRF to obtain a provably-secure variant of their scheme in the plain model.

Proving adaptive security. Our proof of adaptive security proceeds in a sequence of hybrid experiments.
Our reduction still relies on complexity leveraging (and specifically, an exponential number of hybrids), but
the parameter blowup from complexity leveraging only factors into the CRS size, and not the proof size.
We now survey our main hybrids and refer to the proof of Theorem 4.3 for the full details.

+ Hyb,: This corresponds to the real adaptive soundness game. In this game, the adversary is considered
successful if it outputs a false statement x ¢ L along with a proof = = (b, y) where f(y) = z,p and
(2x,0, 2x,1) < Genlnst(x). Notably, there is no requirement on the value of b (i.e., the adversary wins
if it can invert f on either zy or zy.1).

+ Hyb,: This is the same experiment as before, except we consider the adversary successful only if it
outputs a false statement x ¢ L¢ and a proof & = (b, y) where b # Fye|(ksel, X).

We claim that this can only reduce the adversary’s advantage in winning the game by a factor of 2.
This is because for all x ¢ L¢, the value of Fse((ksel, x) is hidden from the adversary (i.e., never
computed by the Prove algorithm). If the adversary’s advantage decreased by more than a factor of 2
between Hyb, and Hyb,, then the adversary is able to predict the value of Fs|(ksel, X) With probability
better than 1/2, thereby breaking security of the PRF.

Formally, we argue this by considering 2" possible experiments (for each possible statement x € {0, 1}"
the adversary could output). By relying on (sub-exponential) security of iO and the puncturable
PRF, we can show that in each of these experiments, the adversary’s success probability is always

3Ignore for a moment that Genlnst is technically supposed to output independent values on each input x.

within a factor of 2 of the adversary’s success probability in Hyb,, (up to negligible differences). We
refer to Lemma 4.4 for the full details. Note that even though we rely on complexity leveraging and
sub-exponential-hardness, we are only complexity leveraging on the iO scheme and the puncturable
PREF, not on the security of the one-way function. This means the cost of complexity leveraging is
only incurred in the CRS size (now larger by a poly(n) factor), but not in the proof size (whose length
is governed by the preimage length for the one-way function).

At this point in the proof, we are in a conceptually-similar end-point as in the non-adaptive soundness proof
of Sahai-Waters. In order to win, the adversary needs to invert the one-way function at a (pseudorandom)
point: to give a proof for x, the adversary needs to invert z 1 = f(F1-p, (k1-p,, x)) Where by = Fei(Kksel, X).
All we need is a way to plant a one-way function challenge instance at each z, 1_p_.

Rerandomizable one-way functions. To complete the proof, we want to argue that any adversary that
succeeds at inverting z,. ;_p, for any (false) statement x € {0, 1}" translates into one that inverts a one-way
function challenge z*. Moreover, the challenges z, ;_;_ for different x should look indistinguishable from
fresh challenges. Phrased differently, we require a way to derive fresh challenges z, ;_p,_ from z* such
that a solution y, where f(yyx) = zy1-p, for any x implies a solution y* where f(y*) = z*. We refer to
one-way functions with this property as rerandomizable one-way functions (see Section 3). Suppose we
have a rerandomizable one-way function. Then, we define the final hybrid Hyb, as follows:*

« Hyb,: In this experiment, the challenger first samples y* < Y and sets the challenge z* = f(y*).
The challenger also samples a new (puncturable) PRF key Feang that will be used for rerandomizing
the challenge z*. The CRS then consists of obfuscations of the following programs:

Prove(x, w): Genlnst(x):

- IfC(x,w) = 1, compute b = Fge|(ksel, x) and output || - Compute b = Fgel(ksel, X)-
7 = (b, Fp(kp, x)). — Compute yyp = Fp(kp, x)) and zxp = f(Yxp)-
— Otherwise, output L. Compute the rerandomized challenge z, -, =
Rerandomize(z*; Frerand (Krerands X)).
Output (2zx,0, 2x,1)-

To argue that the distributions of Hyb, and Hyb, are computationally indistinguishable, we again use
a sequence of 2" different hybrids, one for each value of x € {0,1}". In the i" hybrid, we change the
distribution of z; ;_j, from being a freshly-sampled challenge (as in Hyb,) to being a rerandomized
challenge derived from z* (as in Hyb,). Each of these intermediate transitions relies on security of
i0, security of the underlying puncturable PRFs, and the rerandomizability of the one-way function.
Since there are 2" hybrids, we require sub-exponential hardness of each of the underlying primitives.

An astute reader might observe that unlike the transition from Hyb, to Hyb,, the transition from Hyb,
to Hyb, does rely on security of the one-way function, specifically, the property that a rerandomized
instance is indistinguishable from a fresh instance. Thus it might seem like we need to increase
the parameters of the one-way function to achieve this. However, this need not be the case. By
considering algebraic one-way functions (e.g., based on discrete log or factoring), it is possible to
statistically rerandomize an instance so that the statistical distance between a fresh instance and a
rerandomized instance is at most 2~°(") even though the length of the instances is poly (1), where 1
is the security parameter (independent of the statement length n). Importantly, this hybrid transition

“In the technical section, we introduce an intermediate hybrid between Hyb, and Hyb, to simplify the technical exposition. We
elide this intermediate hybrid in this informal overview.

only relies on rerandomization and not security of the one-way function. This is the reason we are
able to consider an exponential number of hybrids without affecting the proof length. Thus, once
again, we are able to complexity leverage, but not incur any overhead in the length of the proof. We
provide the full details in Lemma 4.10.

In Hyb,, a successful prover succeeds only if it inverts the one-way function on the value z,;_;_ for
some x € {0,1}". But in Hyb,, the value of z, ;_;_ was derived by rerandomizing the instance z*. By the
rerandomization property of the one-way function, a preimage of z, ;_; can be used to recover a preimage
of z*. In other words, inverting z, ;-5 for any x is sufficient to invert z*. By security of the one-way
function, the advantage of the adversary in Hyb, must be negligible, and adaptive soundness holds. This is
the only step in the security proof where we rely on security of the one-way function. As such, polynomial
hardness of the one-way function suffices for the analysis. Since the proof is still just a preimage of the
one-way function, the size of the proof is poly(1), independent of the statement length n (or the witness
length). The overhead from the complexity leveraging only manifests in the CRS size and not the proof size.
We provide the formal description and analysis in Section 4.

Constructing rerandomizable one-way functions. The remaining ingredient we need to complete
the construction is a rerandomizable one-way function. We describe two constructions here based on the
hardness of computing discrete logs and the hardness of factoring (specifically, the hardness of computing
modular square roots). Both constructions rely on the random self-reducibility of the underlying assumption.
We give the formal constructions and analysis in Section 5.

+ Construction from discrete log: Let G be a group of prime order p and generated by g. The
discrete log assumption in G says that given h & G, it is hard to find x € Z,, such that g* = h. In our
construction, we sample the challenge h as h <~ G \ {g°}.” This allows for perfect rerandomization:
given any challenge h € G \ {¢°}, the distribution of h” where r & Zy, is exactly the uniform
distribution over the original challenge space G \ {¢°}. Moreover, given the discrete log s of h" (i.e.,
s € Z,, where g° = h"), we can recover the discrete log of h by computing sr~! mod p. This yields a
perfectly rerandomizable one-way function. We give the full details in Section 5.1.

+ Construction from factoring: We obtain a second rerandomizable one-way function based on the
hardness of computing square roots modulo N = pq, where p, q are distinct primes (i.e., given x? € Zy
where x < Zy, find z € Zy such that z? = x? mod N). This problem is equivalent to the hardness
of factoring N [Rab79]. This problem also has a random self-reduction: namely, given a challenge
y € Zy, we can construct a new instance by sampling r <~ Zy and outputting yr? mod N. Any
solution s € Zy where s® = yr? yields a solution sr~! mod N for the original challenge y (provided
that r is invertible modulo N). Some extra care is needed to ensure that the statistical distance of the
rerandomized distribution and the original challenge distribution is at most 27" < 274, As we show
in Section 5.2, this is possible by rejection sampling (since membership in Zy, is efficiently-checkable).

>As discussed above, security of our construction requires that the distance between the original distribution and the rerandomized
distribution to be small compared to 2", where n is the statement size. However, the size of the group should only be a function
of the security parameter (to preserve succinctness). In this case, if p = 20D | the statistical distance between the uniform
distribution on G and the uniform distribution on G \ {¢°} is 1/p = 291 which is not small enough compared to 2". Thus, the
distinction between sampling from G vs. sampling from G \ {g°} is essential to our construction.

2 Preliminaries

Throughout this work, we write A to denote the security parameter. We write poly(A) to denote a fixed
polynomial in the security parameter . We say a function f (1) is negligible in A if f(1) = 0(17) for
all ¢ € N and denote this by writing f(4) = negl(1). When x,y € {0, 1}", we will view x and y as both
bit-strings of length n as well as the binary representation of an integer between 0 and 2" — 1. We write
“x < y” to refer to the comparison of the integer representations of x and y. We say an algorithm is efficient
if it runs in probabilistic polynomial time in the length of its input.

Our construction will rely on sub-exponential hardness assumptions, so we will formulate some of
our security definitions using (t, €)-notation. Generally, we say that a primitive is (t, ¢)-secure, if for all
adversaries A running in time at most (1) - poly(4), there exists A4 € N such that for all 1 > 14, the
adversary’s advantage is bounded by £(1). We say a primitive is polynomially-secure if it is (1, negl(1))-
secure for some negligible function negl(-) and we say that it is sub-exponentially secure if it is (1,274°)-
secure for some constant ¢ € N. We now recall the main cryptographic primitives we use in this work.

Definition 2.1 (Indistinguishability Obfuscation [BGI*01]). An indistinguishability obfuscator for Boolean
circuits is an efficient algorithm iO(-, -, -) with the following properties:

« Correctness: For all security parameters A € N, circuit size parameters s € N, all Boolean circuits C
of size at most s, and all inputs x,

Pr[C'(x) = C(x) : C" « iO(14,1%,0)] = 1.

« Security: For a bit b € {0, 1} and a security parameter A, we define the program indistinguishability
game between an adversary A and a challenger as follows:

— On input the security parameter 1%, the adversary outputs a size parameter 1° and two Boolean
circuits Cy, C; of size at most s.

— If there exists an input x such that Cy(x) # C;(x), then the challenger halts with output L.
Otherwise, the challenger replies with iO(lA, 15,Cp).

— The adversary A outputs a bit b’ € {0, 1}, which is the output of the experiment.

We say that iO is (t, ¢)-secure if for all adversaries A running in time at most ¢(4) - poly(4), there
exists A € N such that for all A > A4, we have that

iOAdv#(A) == |Pr[b" =1:b=0] =Pr[b' =1:b=1]| < e(d)
in the program indistinguishability game defined above.

Definition 2.2 (Puncturable PRF [BW13, KPTZ13, BGI14]). A puncturable pseudorandom function consists
of a tuple of efficient algorithms pprr = (KeyGen, Eval, Puncture) with the following syntax:

« KeyGen(1%, 1fn, 1%ut) — k: On input the security parameter A, an input length £,, and an output
length £,, the key-generation algorithm outputs a key k. We assume that the key k contains an
implicit description of £, and £foyt.

« Puncture(k, x*) — k*"): On input a key k and a point x* € {0, 1}, the puncture algorithm outputs
a punctured key k*"). We assume the punctured key also contains an implicit description of &, and
Lout (same as the key k).

« Eval(k,x) — y: On input a key k and an input x € {0, 1}%n, the evaluation algorithm outputs a value
y € {0, 1}fout:

In addition, ITppgr should satisfy the following properties:
« Functionality-preserving: Forall A, &, £y € N, every input x € {0, 1}, and every x € {0, 1}n\ {x*},

k « KeyGen(1%)

Pr |Eval(k, x) = Eval(k*"), x) : k&) Puncture(k, x*)

=1

« Punctured pseudorandomness: For a bit b € {0, 1} and a security parameter A, we define the
(selective) punctured pseudorandomness game between an adversary A and a challenger as follows:

- On input the security parameter 1%, the adversary A outputs the input length 1%, the output
length 1%, and commits to a point x* € {0, 1},

The challenger samples k « KeyGen (14, 1%, 1%u) and gives k") « Puncture(k, x*) to A.
If b = 0, the challenger gives y* = Eval(k, x*) to A. If b = 1, then it gives y* < {0, 1}’ to A.

At the end of the game, the adversary outputs a bit b’ € {0, 1}, which is the output of the
experiment.

We say that IIppgr satisfies (t, €)-punctured pseudorandomness if for all adversaries A running in
time at most t(A) - poly(1), there exists A4 € N such that for all 1 > A4, it holds that

PPRFAdv# (1) := [Pr[b’ =1:b=0] —=Pr[b' =1:b=1]| < e(})
in the punctured pseudorandomness security game.

Theorem 2.3 (Puncturable PRFs [GGM84, BW13, KPTZ13, BGI14]). Assuming the existence of polynomially-
secure (resp., sub-exponentially-secure) one-way functions, then there exists a selective polynomially-secure
(resp., sub-exponentially-secure) puncturable PRF.

Succinct non-interactive arguments. We now recall the definition of a succinct non-interactive argu-
ment for the language of Boolean circuit satisfiability. We start by defining the language of Boolean circuit
satisfiability:

Definition 2.4 (Boolean Circuit Satisfiability). We define the circuit satisfiability language Lsar as

. n h _, n
Lsar = {(C,x) | C:{0,1}" x{0,1} {0,1},x € {0,1} }

Jw e {0,1}": C(x,w) =1

Definition 2.5 (Succinct Non-Interactive Argument). A succinct non-interactive argument (SNARG) in
the preprocessing model for Boolean circuit satisfiability is a tuple IIsyarc = (Setup, Prove, Verify) with
the following syntax:

« Setup(1%,C) — crs: On input the security parameter A and a Boolean circuit C, the setup algorithm
outputs a common reference string crs.

« Prove(crs,x, w) — m: On input a common reference string crs, a statement x, and a witness w, the
prove algorithm outputs a proof 7.

« Verify(crs,x,7) — b: On input a common reference string crs, a statement x and a proof 7z, the
verification algorithm outputs a bit b € {0, 1}.

Moreover, ITsnarc should satisfy the following properties:

. Completeness: For all security parameters A € N, all Boolean circuits C: {0,1}" x {0,1}* — {0,1},
all instances (x, w) where C(x,w) =1,

crs « Setup(1%,C)

=1.
7 < Prove(crs, x, w)

Pr | Verify(crs,x, m) = 1:

+ Adaptive soundness: For a security parameter A, we define the adaptive soundness game between
an adversary A and a challenger as follows:

On input the security parameter 1%, the adversary A starts by outputting a Boolean circuit
C: {0,1}" x {0,1}" — {0, 1}.
The challenger replies with crs « Setup(1%,C).

The adversary outputs a statement x € {0, 1}" and a proof =.

The output is b = 1if (C, x) ¢ Lsar and Verify(crs, x, r) = 1. The output is b = 0 otherwise.

We say that [Isnarc is adaptively sound if for all efficient adversaries (A, there exists a negligible
function negl(-) such that for all A € N, Pr[b = 1] = negl(A) in the adaptive soundness game. When
b = 1, we say that “A wins the adaptive soundness game.”

« Succinctness: There exist a polynomial p such that for all Boolean circuits C: {0,1}" x {0,1}"* —
{0,1}, and all crs in the support of Setup (1%, C), all statements x € {0,1}", and all witnesses w €
{0, 1}, the size of the proof 7 output by Prove(crs, x, w) satisfies || < p(A +log |C]).

Definition 2.6 (Perfect Zero-Knowledge). A preprocessing SNARG IIsnarc = (Setup, Prove, Verify) for
Boolean circuit satisfiability satisfies perfect zero-knowledge if there exists an efficient simulator S =
(So, S1) such that for all adversaries A, all Boolean circuits C: {0,1}" x {0, 1} — {0,1}, and all (x, w) €
{0,1}" x {0, 1}" where C(x, w) = 1, we have that

crs « Setup(1%,C) } _ {(crs) (crs,stg) «— Sp(14,C) }

7 < Prove(crs, x, w) 1« Si(sts, x)

{(crs, X, 7T)

Remark 2.7 (Fast Verification). In a preprocessing SNARG, the length of the common reference string
crs can depend polynomially on the size of C (i.e., |crs| = poly(4 + |C])). Correspondingly, this means the
running time of Verify(crs, -, -) can be as large as poly(A + |C|). We can compose the SNARG with a RAM
delegation scheme (i.e., a SNARG for P) [C]J]J21b, KVZ21, KLVW23] to obtain a SNARG for NP where the
verification time is poly(A + |x| + log |C|). Instead of computing Verify itself, the verifier delegates the
computation of Verify(crs, x,) to the prover and verifies the proof that Verify(crs, x, 7) = 1. We sketch
the full construction below:

« Let M be an arbitrary RAM machine that takes two inputs x and y and outputs a bit b € {0,1}.° A
RAM delegation scheme allows a prover to convince the verifier that M(x, y) = f with a proof 7 of

The approach in [CJJ21b] considers a RAM machine with a single input x (i.e., the initial state of the RAM program) and the
verification algorithm needs to read a digest of x. The same approach extends to the case where the RAM machine takes two
inputs x and y, and the verification algorithm is provided a digest for x and y individually.

10

size || = poly(A+log |[M|+log |x|+log |y|+1log T), where T is the running time of M. The verification
algorithm Verifyp,,, takes as input a common reference string crsgpam for the delegation scheme, a
hash digest dig of (M, x), the value y, the proof 7, and the claimed value § and either accepts (with
output 1) or rejects (with output 0). The length of the verification key and the length of the proof
satisfies |vk|, || = poly(A + log [M| + log |x| + log |y| + log T). The soundness requirement says that
if dig is an honestly-generated digest of (M, x), then an efficient prover cannot produce (y, 7, b) such
that Verifygap (crsram, dig, y, 7, b) = 1 and M(x, y) # b, except with negligible probability.

» To support fast verification for the SNARG, we define the new common reference string to be
crs = (crssNarGs Crsrams dig), where crssnarc is a CRS for the underlying SNARG for NP, crspam is the
CRS for the RAM delegation scheme, and dig is a digest for (M, crssnarc), where M(crssnara, (x, 7))
is the RAM machine that computes the verification algorithm Verifygyarc (crssnarc, x,) for the
underlying SNARG.

« A proof for a statement x consists of a SNARG proof msyarc together with a RAM delegation proof
7ram that M(crssnara, (X, Tsnarg)) = Verifygyarc (Crssnarc, x, 1) = 1. The verification algorithm
simply runs Verifyg,u (crsram, dig, (X, TsNARG), TrRAM, 1).

Adaptive computational soundness follows from the fact that if Verifygay, (crsram, dig, (x, TsnarG), Tram, 1),
then with all but negligible probability, Verifycyarc (crssnaras X, Tsnarg) = 1, and soundness reduces to that
of the underlying SNARG. Moreover, the size of 7ram is poly(A +1og|C]), so the composed scheme remains
succinct. In the composed scheme, the verification algorithm only needs crsgam and dig (but not crssnarc)-
Thus, we can define a separate verification key for the composed scheme vk = (crspam, dig), which has size
poly(A +log|C|). The running time of the composed verification algorithm is then poly(4 + |x| + log |C|).

3 Rerandomizable One-Way Functions

In this section, we introduce the notion of a rerandomizable one-way function, which is one of the main
building blocks we use in our construction. Then, in Section 5, we show that rerandomizable one-way
functions can be based on standard number-theoretic assumptions.

Definition 3.1 (Rerandomizable One-Way Functions). A rerandomizable one-way function is a tuple of effi-
cient algorithms ITrowr = (Setup, Genlnstance, Rerandomize, Verify, RecoverSolution) with the following
syntax:

« Setup(1%,1™) — crs: On input a security parameter A and a rerandomization parameter m, the setup
algorithm outputs a common reference string crs.

+ Genlnstance(crs) — (y,z): On input the common reference string crs, the instance-generator
algorithm outputs an instance y together with a solution z.

« Rerandomize(crs,y) — (y/, st): On input the common reference string crs, the rerandomize algorithm
outputs a new instance y’ and a randomization state st.

« Verify(crs,y,z) — b: On input the common reference string crs, an instance y, and a solution z, the
verification algorithm outputs a bit b € {0, 1}.

« RecoverSolution(crs, z’,st) — z: On input the common reference string crs, a solution z’ and a
randomization state st, the solution-recovery algorithm outputs a solution z.

11

We require that ITrowr satisfy the following properties:
« Correctness: For all A, m € N, it holds that

crs « Setup(14,1™)

Pr Verify(crs,y,z) =1: (y,z) < Genlnstance(crs) |

« Rerandomization correctness: For all A, m € N, all crs in the support of Setup(l’l, 1™), all (y, z)
in the support of Genlnstance(crs), all (3, st) in the support of Rerandomize(crs, y), and for all 2z’
where Verify(crs,y’, z’) = 1, it holds that

Pr[Verify(crs,y,z) = 1 : z < RecoverSolution(crs, z’, st)] = 1.

+ One-wayness: For an adversary A, a security parameter A, and a rerandomization parameter m, we
define the one-wayness security game as follows:
— On input the security parameter 14, algorithm A outputs the rerandomization parameter 1.

— The challenger samples crs < Setup(1%,1™) and (y*, z*) « Genlnstance(crs). It gives (crs, y*)
to A.

— Algorithm A outputs a solution z. The challenger outputs b = Verify(crs, y*, z).

We say that the rerandomizable one-way function is one-way if for all efficient adversaries A, there
exists a negligible function negl(-) such that forall A € N,

OWFAdv#(A) :=Pr[b=1] < &(A)
in the one-wayness game.

« Rerandomization security: For an adversary A, a bit b € {0, 1}, a security parameter A, and a
rerandomization parameter m, we define the rerandomization security game as follows:

— The challenger starts by sampling crs « Setup(l’l, 1™) and (Ybase, Zbase) < Genlnstance(crs).

— If b = 0, the challenger samples (y*, z*) «<— Genlnstance(crs). If b = 1, the challenger samples
(y*, st) « Rerandomize(crs, Ypase). The challenger gives (1%, 1™, crs, ypase, y*) to A.

— Algorithm A outputs a bit b” € {0, 1}, which is the output of the experiment.

We say that the rerandomizable one-way function satisfies (t, €)-rerandomizable security if for all
polynomials m = m(A), all adversaries A running in time ¢(1) - poly(4), there exists A4, € N such
that for all A > A7,

RerandAdvg m(A) == [Pr[b" =1:b=0] —=Pr[b' =1:b=1]| < e(m(R))

in the rerandomization security game. In particular, the distinguishing advantage ¢ is a function of
the rerandomization parameter m. We say that Ilpowr satisfies e-statistical rerandomizable security if
for all polynomials m = m(A), all (possibly unbounded) adversaries A, and all A € N,

RerandAdv 4., (1) < e(m(A)).

We say Ilrowr satisfies perfect rerandomizable security if it satisfies e-statistical rerandomizable
security for e = 0.

+ Succinctness: There exists a polynomial p such that for all A,m € N, all crs in the support of
Setup(1%,1™), and all (y, z) in the support of Genlnstance(crs), it holds that |z| < p(A + log m).

12

4 Constructing Adaptively-Sound SNARGs for NP

In this section, we show how to construct an adaptively-sound SNARG from indistinguishability obfuscation
together with a rerandomizable one-way function.

Construction 4.1 (Adaptively-Sound SNARGs). Our construction relies on the following primitives:

« Let iO be an indistinguishability obfuscator for Boolean circuits.

« Let ITrowr = (R.Setup, R.Genlnstance, R.Rerandomize, R.Verify, R.RecoverSolution) be a rerandom-
izable one-way function.

« Let IIpprr = (F.KeyGen, F.Eval, F.Puncture) be a puncturable PRF. For a key k and an input x, we
will write F(k, x) to denote F.Eval(k, x).

Our construction will leverage sub-exponential hardness of iO and Ipprr. In the following, let Ao =
Aobf (A, 1), Aprr = Apre(A, n), and m = m(A, n) be fixed polynomials in the scheme’s security parameter
A and the statement length n. We will describe how to define the polynomials Aqpf, Aprr, and m in the
security analysis. We construct a (preprocessing) succinct non-interactive argument ITsyarg = (Setup,
Prove, Verify) for Boolean circuit satisfiability as follows:

« Setup(1%4,C): On input the security parameter A and a Boolean circuit C: {0,1}" x {0,1}"* — {0, 1},
the setup algorithm does the following:

— Let crsgowr < R.Setup(1%4,1™).
Sample a “selector” PRF key ks <— F.Setup(147%F 17 11),

Let p be a bound on the number of bits of randomness the R.Genlnstance(crsrowr) algorithm
takes. Sample two additional PRF keys ko, k1 «— F.Setup(l’lPRF, 1", 1P).

Define the following programs GenProof and Genlnst:

Input: statement x and witness w
Hard-coded: Boolean circuit C: {0,1}" x {0,1}" — {0,1} and common reference string
crsrowr for the rerandomizable one-way function, puncturable PRF keys ks, ko, k1

On input a statement x € {0, 1}" and a witness w € {0, 1}":
« If C(x,w) = 0, output L.

« If C(x,w) = 1, then compute b = F(ks,x) and (yp,2zp) =
R.Genlnstance(crsrowr; F(kp, x)). Output (b, zp).

Figure 1: The proof-generation program GenProof[C, crsrowr, ksel, ko, k1]-

Input: statement x
Hard-coded: Boolean circuit C: {0,1}" x {0,1}"* — {0, 1} and common reference string
crsrowr for the rerandomizable one-way function, puncturable PRF keys ko, k;

On input a statement x € {0, 1}™

+ Compute (yp, zp) = R.Genlnstance(crsrowr; F(kp, x)) for b € {0, 1}. Output (yo, y1).

Figure 2: The instance-generation program Genlnst[C, crsrowr, ko, k1].

13

Let s = s(A4, n,|C|) be the maximum size of the GenProof and Genlnst programs as well as those
appearing in the proof of Theorem 4.3 (specifically, the programs in Figs. 3 to 5). By construction,
we note that s = poly(4, |C|) is polynomially-bounded.

— Construct the obfuscated programs ObfProve «— iO(l’lobf, 1%, GenProof [C, crsrowr, ksel, ko, k1])
and Obf Verify « iO(lAObf, 1%, Genlnst[C, crsrowr, ko, k1]). Output the common reference string
crs = (crsrowr, ObfProve, Obf Verify).

« Prove(crs, x, w): On input the common reference string crs = (crsrowr, ObfProve, Obf Verify), the
prove algorithm outputs the proof 7 = (b, z;) = ObfProve(x, w).

« Verify(crs, x, 7): On input the common reference string crs = (crsrowr, ObfProve, Obf Verify), the
statement x € {0, 1}", and the proof = = (b, z), the verification algorithm runs (yo, y1) = ObfVerify(x).
It outputs R.Verify(crsrowr, Yp, 2)-

Theorem 4.2 (Completeness). IfiO and IIrowr are correct, then Construction 4.1 is complete.

Proof. Take any security parameter A € N, any Boolean circuit C: {0,1}" x {0,1}* — {0,1}, and any
instance-witness pair (x, w) where C(x, w) = 1. Let crs = (crspowr, ObfProve, Obf Verify) « Setup(1%,C)
and 7 = (b,z) « Prove(crs, x, w). Consider the output of Verify(crs, x, 7):

+ By construction, ObfProve is an obfuscation of the program GenProof [C, crsrowr, ksel, ko, k1], where
CISROWF R.Setup(l’l, 1), kge) «— F.Setup(lA"RF, 1",1Y), and ko, k; < F.Setup(l’lPRF, 1",17). In
this case (b, z) is obtained by evaluating ObfProve on input (x, w). By correctness of iO and defini-
tion of GenProof, this means that b = F(ks|, x) and (y, z) = R.Genlnstance(crsgowr; F(kp, x)). By
correctness of IIrowr, it follows that R.Verify(crsrowr, ¢, z) = 1

+ By construction ObfVerify is an obfuscation of the program Genlnst[C, crsrowr, ko, k1]. The veri-
fication algorithm first evaluates Genlnst on input x to obtain (yg, y]). By correctness of iO and
definition of Genlnst, for § € {0, 1}, we have that (y}i, 223) = R.Genlnstance(crsrowr; F(kg, x)).

« The verification algorithm now outputs R.Verify(crsrowr, y;, z). By definition y; = y and the verifi-
cation algorithm outputs 1. O

Theorem 4.3 (Adaptive Soundness). Suppose iO is (1, Z_Ax?f)—secure, Ippgr satisfies selective (1, 2_’1;?5?)—
punctured security, and Irowr satisfies (1, 9~ mROWF)-rerandomization security for constants €,pf, EpRF> EROWF €
(0,1). Let Adgps = (A + n) /20 Appp = (A + n) /%% and m = (A + n)'/%RoWF In addition, suppose iO is correct,
IIpprr satisfies punctured correctness, and lrowr satisfies rerandomization correctness. Then, Construction 4.1
is adaptively sound.

Proof. Let A be an efficient adversary for the adaptive soundness game for Construction 4.1 that succeeds
with (non-negligible) advantage ¢ = £(1). We first claim that without loss of generality, we can assume
that for every security parameter A, algorithm A always outputs a Boolean circuit C with statements of a
fixed length n = n(1). To argue this formally, we first use the fact that A is a polynomial-time algorithm,
so on input the security parameter 1%, algorithm A outputs a Boolean circuit of size at most sy (1), where
Smax(4) = poly(A). This in turn define a maximum statement length np,x (1) < smax(4). In an execution
of the adaptive soundness game, let E; be the event that algorithm A outputs a Boolean circuit C with
statements of length i. Then,

Pr[A wins the soundness game] = Z Pr[A wins the soundness game A E;].

le[nmax]

14

If A wins the soundness game with advantage (1), then it must be the case that there exists some index
i* € [Nmax(A)] such that

e(A)
Nmax (4) '

For each security parameter A, define n(1) := i* to be the smallest index i* where Eq. (4.1) holds. We
can now construct a new (non-uniform) adversary A’ that functions as a wrapper around A. Namely,
algorithm A’ takes as input the security parameter 1* and the non-uniform advice n(1). Algorithm A’
runs A on the same security parameter 1%, If A outputs a Boolean circuit C where the statement length
is not n(A), then algorithm (A" aborts. Otherwise, algorithm A’ simply follows the behavior of A (and
outputs whatever A outputs). By construction,

Pr[A wins the soundness game A E;] > (4.1)

e(A)
Nmax (4) '

The advantage of A’ is only polynomially-smaller than that of A and moreover, algorithm A’ always
outputs a Boolean circuit with fixed statement n(A) size. Thus, if there exists an adaptive soundness
adversary A that succeeds with non-negligible probability, then we can construct from A an efficient
(non-uniform) adversary A’ that also succeeds with non-negligible probability. For the remainder of this
proof, we will thus assume that the adaptive soundness adversary always outputs a circuit C for statements
of length exactly n = n(1). We now define a sequence of hybrid experiments:

Pr[A’ wins the soundness game] = Pr[A wins the soundness game A E,(3)] >

+ Hyb,: This is the real adaptive soundness experiment. Namely, the adversary starts by outputting a
Boolean circuit C: {0,1}" x {0, 1} — {0, 1}. The challenger then constructs the CRS as follows:
— Sample crspowr < R.Setup(l’l, 1m).
— Sample PRF keys kse| — F.Setup(lAPRF, 1",1') and ko, k; «— F.Setup(l’lPRF, 1", 1°).

— The challenger then constructs ObfProve « iO(l’IObf, 1%, GenProof [C, crsrowr, ksel, ko, k1]) and
ObfVerify « iO(lAObf, 1%, Genlnst[C, crsgowr, ko, k1]) where GenProof and Genlnst on the
programs from Figs. 1 and 2, and s is the same size parameter from Construction 4.1.

The challenger gives the crs = (crspowr, ObfProve, Obf Verify) to A. Algorithm A then outputs a
statement x and a proof 7 = (b, z). The challenger then computes (yo, y;) = ObfVerify(x) and the
output is 1 if

(C,x) ¢ Lsar and R.Verify(crsrowr, Yp, z) = 1.

+ Hyb,: Same as Hyb, except the output of the experiment is 1 if the following hold:

(C,x) ¢ Lsar and R.Verify(crspowr, Yp,2) =1 and b # F(kse, x).

+ Hyb,: Same as Hyb, except when computing the output, the challenger no longer checks that
(C,x) ¢ Lsar. Namely, the output of the experiment is 1 if

R.Verify(crsrowr, Yp-2) =1 and b # F(ksel, X).

+ Hyb,: Same as Hyb,, except the challenger changes how it constructs Obf Verify. During setup, the
challenger now does the following:

15

— Sample an instance (Ypase, Zhase) <— R.Genlnstance(crsgowr)-

— Let k be the number of bits of randomness the R.Rerandomize(crsgowr, y) takes. Sample a PRF
key kierand < F.Setup(lAPRF, 1",1%). Define the following program Genlnst; :

Input: statement x

Hard-coded: Boolean circuit C: {0,1}" x {0,1}"* — {0,1} and common reference string
crsrowr for the rerandomizable one-way function, puncturable PRF keys ksel, ko, k1, krerands
and instance ypase

On input a statement x € {0, 1}™:
+ Compute b = F(kgel, x).
+ Compute (yp, zp) = R.Genlnstance(crsrowr; F(kp, x)).
+ Compute (y;-p, st) = R.Rerandomize(crsrowr, Ybase; F (Krerand, X))-

+ Output (yo, y1).

Figure 3: The instance-generation program Genlnst; [C, crsrowr, Ksels Ko, K1, Krerands Ybase |-

The challenger sets Obf Verify « i0 (1%, 15, Genlnst; [C, crSRowr, ksel, ko, k1, Krerands Upase]) In
crs. The rest of the experiment proceeds exactly as in Hyb,.

We write Hyb, (A) to denote the output distribution of an execution of hybrid Hyb, with the adversary A.
We now analyze each adjacent pair of hybrid distributions.

_) Eobf . . _ 3 €PRF
Lemma 4.4. Suppose iO is (1,2 b)-secure and suppose Ipprr satisfies selective (1,2 *err)-punctured
security for constants eopf, eprr € (0, 1). In addition, suppose that Agps = (A + n) et and Apgr = (A + n)l/eerF,
Finally, suppose Ipprr satisfies punctured correctness. Then,

1
Pr[Hyb, (A) = 1] = = Pr[Hyb, (A) = 1] - 9=Q()

Proof. Consider an execution of Hyb, or Hyb,. For an index i € {0,1}", let E; be the event that the adversary
A outputs i as its statement in an execution of Hyb,, or Hyb,. By definition, we can now write

Pr[Hyb,(A) = 1] = Z Pr[Hyby(A) = 1 A E;]

ie{0,1}n

(4.2)
Pr[Hyb, (A) = 1] = Z Pr[Hyb, (A) = 1 A E;].
ie{01)n
To show the claim, we show that for all i € {0, 1}",
1 1 1
Pr[Hyb,(A) =1 AE;] > > Pr[Hyb,(A) =1 AE;] - o % (4.3)

To show this, we consider two cases.

Case 1. Suppose (C,i) € Lsar. If the adversary outputs i as its statement (i.e., if E; occurs), then the
output in Hyb, and Hyb, are both 0. Thus,
Pr[Hyb,(A) =1 A E;] =0 =Pr[Hyb,(A) =1 AE;].

Correspondingly, Eq. (4.3) holds.

16

Case 2. Suppose (C,i) ¢ Lsar. In this case, we proceed by defining a sequence of hybrids:

. Hyb(()f)l.) : Same as Hyb, except the challenger outputs 1 only if

(C,x) ¢ Lsar and R.Verify(crsrpowr, yp,2) =1 and x =1.

. Hyb((),li): Same as Hyb(()f)i) except when setting up the CRS, the challenger defines the modified solution-
generation problem GenProof; as follows:

Input: statement x and witness w
Hard-coded: Boolean circuit C: {0,1}" x {0, 1} — {0, 1} and common reference string crspowr
for the rerandomizable one-way function, puncturable PRF keys k|, ko, k1, statement i € {0, 1}"

On input a statement x € {0, 1}" and a witness w € {0, 1}":
- If x = i, output L.
- If C(x,w) =0, output L.

- If C(x,w) = 1, then compute b = F(ksel, x) and (yp, zp) =
R.Genlnstance(crsrowr; F(kp, x)). Output (b, zp).

Figure 4: The solution-generation program GenProof;[C, crsrowr, ksel, ko, k1, £]-
Next, after sampling kge| < F.Setup(lAPRF, 1",11), the challenger computes ks(el[) « F.Puncture(ksey, i).
It then constructs the prover program ObfProve « iO(l’lﬂbf, 1%, GenProof{[C, crsrowr, kD) ko, k1, z])

sel?

The remainder of the program proceeds as in Hyb(()f)l.).

. Hyb(()zi): Same as Hyb(li), except after the adversary outputs its statement x and the proof 7 = (b, z),
the challenger samples a random bit b’ <~ {0, 1} and outputs 1 if

(C,x) ¢ Lsar and R.Verify(crsrowr, yp,2) =1 and x=i and b #D.

. Hyb(()i.): Same as Hyb(i.), except after the adversary outputs its statement x and the proof 7 = (b, z),
the challenger outputs 1 if

(C,x) ¢ Lsar and R.Verify(crspowr, Yp,2) =1 and x=1i and b # F(ks,i).

. Hyb(()i.): Same as Hyb(i.), except when setting up the CRS, the challenger reverts to computing
ObfProve « iO(l/l°bf, 1%, GenProof [C, crsrowr, ksel, ko, k1]).

By definition,
Pr[Hyb}” (A) = 1] = Pr[Hyby(A) = 1 AE;]] and Pr[Hyb{" (A) = 1] = Pr[Hyb,(A) = 1 A E].
We now consider each pair of adjacent distributions.

€obf
Claim 4.5. Suppose iO is (1, 2 obf)-secure for some constant e, € (0,1). In addition, suppose Aops =
(A + n)/eobt and Mppge satisfies punctured correctness. Then, there exists A € N such that for all A > A,

| Pr[Hyb{") (#A) = 1] - Pr[Hyb(") (A) = 1] < 1/2™".

17

Proof. We first show that GenProof[C, crsrowr, ksel, ko, k1] in Hyb, and GenProof [C, crsrowr, ks(;l) ko, k1, i]
in Hyb, compute identical functionality. We consider the possibilities. Let (x, w) be an input to the two
programs.

« Suppose x = i. We are analyzing the case (C,i) ¢ Lsar, so C(i, w) = 0. In this case, both programs
output L.

« Suppose C(x,w) = 0. Then both programs output L.

« Suppose C(x,w) = 1. In this case x # i. Since the key ksél) is punctured at input i, it follows that

F(ksel, x) = F(ks(eil)’ x). Once again, the behavior of the two programs are identical.

We conclude that the two programs output identical functionality. The claim now follows by iO security.
Formally, suppose there exists an infinite set Az € N such that for all A € A4,

| Pr[Hyb(}) (#A) = 1] - Pr[Hyb(") (A) = 1]| > 1/2M"P). (4.4)

Let Ag = {(/1 +n()) Ve ;) e Ag{}. Since n is a non-negative function, Ag is also an infinite set. We use

A to construct an efficient adversary 8B such that for all Ao € Ag, IOAdvg(Aebf) > 1/ 2"13?{. For each
value of Ao € Ag, we provide the associated value of 1 € A 4 to B as non-uniform advice (if there are
multiple such A € A # associated with a particular Ayps, we pick the largest such A; note that since eops < 1
and n(A) > 0, it will always be the case that 1 < Aops). Algorithm B proceeds as follows:

1. Oninput the security parameter 1% (and advice string 1*), algorithm B runs algorithm A on security
parameter 1% to get a circuit C: {0,1}" x {0, 1} — {0,1}.

2. Algorithm B samples crsrowr R.Setup(1’1, 1™). It sets Aprr = Aprr(A, n) and samples PRF keys
kel — F.Setup(l’lPRF, 1", 1Y), ko, k1 «— F.Setup(l’lPRF, 1", 17). It computes ks(él) «— F.Puncture(ksel, i).

3. Algorithm B computes s as in Construction 4.1 and gives 1°, GenProof [C, crsrowr, ksel, ko, k1], and
GenProof[C, crsrRowr, ks(él) ko, k1, i] to the challenger to receive the obfuscated program ObfProve.

4. Algorithm B computes ObfVerify « iO (1% 1%, Genlnst[C, crsrows, ko, k1]) and gives A the com-
mon reference string crs = (crsrowr, ObfProve, Obf Verify).

5. After algorithm A outputs a statement x and a proof 7= = (b, z), algorithm B computes (yo,y;) =
ObfVerify(x) and outputs 1 if x = i and R.Verify(crsrowr, yp, 2) = 1.

If the challenger obfuscates the program GenProof|[C, crsrowr, ksel, ko, k1], then algorithm B perfectly
simulates Hybég). In this case, algorithm 8 outputs 1 with probability Pr[Hyb((]’Oi) (A) = 1]. Alternatively,
if the challenger obfuscates the program GenProof[C, crsrowr, ks(eil)’

simulates Hyb((),ll.) and outputs 1 with probability Pr[Hyb((),li) (A) =1]. By Eq. (4.4),

ko, k1, i], then algorithm B perfectly

_ Afobf

iIOAdv g (Aopf) > 27 A1) = 2= O
Claim 4.6. It holds that Pr[Hyb{" (A1) = 1] = 1 Pr[Hyb{") (#) = 1].

Proof. The only difference between Hyb((),li) and Hybéi) is the extra condition b # b’ in Hyb(()i.). Since the
challenger samples b’ <~ {0, 1} after the adversary outputs b, we have that b’ = b with probability 1/2. O

18

Claim 4.7. Suppose Ippgrr satisfies selective (1, Z_APE}EF)—punctured security for some constant epgp € (0,1)
and Aprr = (A + n)Y/P%F Then, there exists .z € N such that for all A > A4, it holds that

| Pr[Hyb{? (A) = 1] - Pr[Hyb{) (A) = 1]| < 1/2**".
Proof. Suppose there exists an infinite set Az € N such that for all A € A 4,
| Pr[Hyb(® (#A) = 1] - Pr[Hyb{}) (A) = 1]| > 1/2M"D).

Let Ag = {(/1 +n(1))Veere ;) € Ag}. We use A to construct an efficient adversary B such that for all

Aprr € Ag, PPRFAdvg (Aprg) > 27’1:&?. For each Aprr € A g, we provide the associated value of A € A # to
B as non-uniform advice (if there are multiple such A € A 4 associated with a particular Aprg, we pick the
largest such 1). Algorithm 8B now proceeds as follows:

1. On input the security parameter 1**% (and advice 1%), algorithm B runs algorithm A on input 1* to
get a circuit C: {0,1}" x {0,1}" — {0,1}.

2. Algorithm B samples crsgowr < R.Setup(1%,1™) and ko, k; < F.Setup(14%% 17 1P). It gives the
input length 17, the output length 1', and the point i € {0, 1}" to the punctured PRF challenger. The
challenger replies with a punctured key ks(él) and a challenge bit " € {0, 1}.

3. Algorithm B sets Aops = Aopf(A, 1), and computes

ObfProve « iO(lA"bf, 1%, GenProof [C, crsrowr, ks(i) ko, k1, l])

el ’

Obf Verify « i0(1’1°bf, 1%, Genlnst[C, crsrowr, ko, k1]).
It gives crs = (crsrowr, ObfProve, Obf Verify) to A.

4. After algorithm A outputs a statement x and a proof 7 = (b, z), algorithm B computes (yo,y;) =
ObfVerify(x) and outputs 1 if x = i, R.Verify(crsrowr, Yp,2) = 1,and b = b’.
By construction, algorithm 8 perfectly simulates an execution of Hyb((),zi) and Hyb(()i.) for A. If the challenger

samples b’ <~ {0, 1}, then algorithm B computes its output according to the specification of Hybgi). If the

challenger computes b’ = F(kse|, i), then algorithm 8 computes its output according to the specification of
_)EPRF

Hybéi.). Correspondingly, PPRFAdv g (Apre) > 9= (A+n(2) — 9= Apg a

Claim 4.8. Suppose iO is (1, Z_Aog?f)-secure for some constant eops € (0,1). In addition, suppose Aops =
A+ n)l/ “bf gnd Ipprr satisfies punctured correctness. Then, there exists Aq € N such that for all A > A4,

| Pr[Hyb” (A) = 1] - Pr[Hyb{? (A) = 1]| < 1/2*".
Proof. This follows by an analogous argument as the proof of Claim 4.5. O

Combining Claims 4.5 to 4.8, we have demonstrated that for all i € {0, 1}" where (C,i) ¢ Lsar, Eq. (4.3)
holds. Combined with Eq. (4.2), we can now write

1 2" 01
Pr[Hyb,(A) =1] = Z Pr[Hyb,(A) =1AE;] > - Z Pr[Hyb,(A) =1AE;] - — - oW
_ 2 2n 24
ie{o,1}" ie{0,1}"
1
= 5Pr[Hybo(ﬂ) =1] - 2790, O

19

Lemma 4.9. It holds that Pr[Hyb,(A) = 1] > Pr[Hyb,(A) =1].

Proof. This follows by construction since the conditions for outputting 1 in Hyb, is a strict subset of those
in Hyb,. Thus, whenever the challenger outputs 1 in Hyb,, it would also do so in Hyb,, and the lemma
follows.]

Lemma 4.10. Suppose iO is (1, Z_Azg?f)-secure, Ipprr satisfies selective (1, Z_A;?;F)—punctured security, and
Irowr satisfies (1, Z_ngOWF)—rerandomization security for constants &opf, €prr, ERoWF € (0,1). Let Agps =
(A+n) Ve Apre = (A+n)Y% and m = (A+n)/®owF _ Finally, suppose Ippre satisfies punctured correctness.
Then,

| Pr[Hyb, (A) = 1] — Pr[Hyb,(A) = 1]| < 279@),

Proof. We define a sequence of intermediate hybrids indexed by i € {0,.. ., 2"}:

. Hybéf)i): Same as Hyb,, except the challenger defines the following program Genlnst;:

Input: statement x

Hard-coded: Boolean circuit C: {0,1}" x {0, 1} — {0, 1} and common reference string crspowr
for the rerandomizable one-way function, puncturable PRF keys ks, ko, k1, Krerand, instances
Ybases Y, index i € {0,1}"

On input a statement x € {0, 1}™:

Compute b = F(ksel, x).

Compute (yp, zp) = R.Genlnstance(crsrowr; F(kp, x)).

Compute y;_p as follows:
« If x < i, let (y1-p, st) = R.Rerandomize(crsrowr, Ybase; F (krerands X))-
« Ifx =1i,lety;_p = y".

« If x > i, let (y1-p, z1-p) = R.Genlnstance(crsrowr; F(k1-p, x)).

Output (yo, y1)-

Figure 5: The instance-generation program Genlnst;[C, crsrowr, Ksel, Ko, K1, Krerands Ybases Y 1]

Then, the challenger samples crspowr < R.Setup(1%,1™) and PRF keys kee| < F.Setup (1%, 17, 11),
ko, k1 «— F.Setup(lAPRF, 1",17), kierand < F.Setup(l’lPRF, 1",1%). The challenger also samples the
following additional components:

— Sample (Ypases Zbase) <— R.Genlnstance(crsrowr)-

— Let b* =1 — F(ksel, i). Compute r* = F(kp+, i) and (y*, z") « R.Genlnstance(crsrowr;).
The challenger computes ObfProve « iO(l’lobf, 1%, GenProof [C, crsrowr, ksels ko, k1]) and Obf Verify «
i0 (1%, 15, Genlnst,[C, crsrowr, ksel, ko, k1, Krerand, Upase> Y "> 1|) where GenProof and Genlnst; are the
programs from Figs. 1 and 5 and s is the bound on the program size from Construction 4.1. Algorithm

B gives crs = (crspowr, ObfProve, Obf Verify) to A. After A outputs the statement x and the proof
7 = (b, z), the challenger computes (yo, y;) = ObfVerify(x) and outputs 1 if

R.Verify(crsrowr, UYp,2) =1 and b # F(ksel, X).

20

b;,li): Same as Hyb(f)l.), except after computing b* = 1 — F(kgel, i), the challenger punctures k- and

Krerand at index i. Namely, it computes k;l) « F.Puncture(ky+, i) and kr(i)

erand
It still sets r* = F(kp+, i) and (y*,z*) = R.Genlnstance(crsgowr;r*). Then, it uses the punctured
keys klgi) and kr(elr)an 410 place of kp+ and kyerand in ObfProve and Obf Verify. Specifically, ObfProve and

Obf Verify are now defined as follows:

oHy

«— F.Punctu re(krerands l)

— If b* = 0, then the challenger sets ObfProve «— iO (1% 15, GenProof [C, crsrowr, ksel, k;),{), ki)
and Obf Verify « iO(l’lobf, 1°, Genlnsty [C, crsRowr, Ksel k}()f), k1, kr(eir)and’ Ybases Y5 i]).

— If b* = 1, then the challenger sets ObfProve «— iO (1% 15, GenProof [C, crsrowr, ksel, ko, k;}l)])
and ObfVerify « iO (1%, 1%, Genlnst, [C, crspowr, ksel, ko, k;}f), kr(eir)and, Ubases Y5 I])-

. Hybé,zl.): Same as Hyb(’ll.), except the challenger samples r* <~ {0, 1},

. Hybéi.): Same as Hyb(i), except the challenger first samples r* <~ {0, 1}* and rerandomizes ypase to
obtain y*: (y*, st) = R.Rerandomize(crsrowr, Ybase; 7")-

. Hyb:gi.): Same as Hyb(i.), except the challenger sets r* = F(kierand, i)-
We now show that each pair of adjacent experiments are indistinguishable.

Claim 4.11. Suppose iO is (1,272 -secure for some constant qps € (0,1) and suppose Agps = (A + n)/%obf
Suppose I1ppre satisfies punctured correctness. Then, there exists Aq € N such that forall A > A4,

| Pr[Hyb,(A) = 1] - Pr[Hyb{} (A) = 1]| < 1/2M".

Proof. We start by showing that the program Genlnst[C, crsrowr, ko, k1] in Hyb, and the correspond-
ing program Genlnstz[C, crsrowr, Ksel> ko, k1, Krerand> Ybase> Y > 0] in Hybé?o) compute identical functionalities.
Take any input x € {0, 1}", and consider the program Genlnst;[C, crSRowr; Ksels kos k1, krerands Ybase> Y, 0] in
Hybéoo):

« Let b = F(ksel, x). Then Genlnst, computes (yp, z5) = R.Genlnstance(crsrowr; F(kp, X)), which is
exactly how the program Genlnst computes (yp, zp).

+ Consider the distribution of y;_p. In Hybg%), when x satisfies x > 0, the program Genlnst, computes

(y1-p> z1-») = R.Genlnstance(crsrowr; F(k1-p, x))), which matches the behavior of Genlnst. When
x = 0, Genlnst, sets y;_, = y*, where (y*,z") = R.Genlnstance(crsgowr; r*) and r* = F(k;_p, x).
Once again, this is the behavior of Genlnst.

We conclude that on all inputs x, the verification programs Genlnst and Genlnst, in Hyb, and Hybé’oo) have
identical input/output behavior. The claim now holds by security of iO. Formally, suppose there exists an
infinite set A% C N such that for all A € A 4,

| Pr[Hyb, (A) = 1] - Pr[Hyb{} (A) = 1]| > 1/2M"%).

Let Ag = {(/1 +n(d)Vebt :) e A Jq}. We use A to construct an efficient adversary 8B such that for all

Aobf € Ag, IOAdVg(Aohs) > 1/2_Azg?f_ For each value of Aop¢ € Ag, we provide the associated value of
A € A g to B as non-uniform advice (if there are multiple such A € A # associated with a particular Ayps, we
pick the largest such A). Algorithm B works as follows:

21

1. On input the security parameter 17 (and advice string 1), algorithm B runs A on security parameter
A to get a circuit C: {0,1}" x {0,1}* — {0,1}.

2. Algorithm B samples crsrowr «— R.Setup(l/l, 1™). It sets Aprr = Aprr(A, n) and then samples PRF
keys kse F.Setup(l’lPRF, 1",1Y), ko, ki «— F.Setup(l’lPRF, 1",17), krerand < F.Setup(l’lPRF, 1", 1%).

3. Algorithm B then computes b* = 1—-F(kse, 0), r* = F(kp+, 0) and (y*, z*) = R.Genlnstance(crsrowr;).
It also samples (Ypase Zbase) < R.Genlnstance(crsrower).

4. Algorithm B computes the parameter s as in Construction 4.1 and gives 1%, Genlnst[C, crsrowr, ko, k1],
and Genlnst, [C, crsRowrs Ksel Ko K1, Krerands Ybases Y~ 0] to the challenger. The challenger replies with
an obfuscated program Obf Verify.

5. Algorithm 8B computes ObfProve « i0 (1%, 15, GenProof [C, crsrowr, ksel, ko, k1]) and gives the
common reference string crs = (crspowr, ObfProve, Obf Verify) to A.

6. After A outputs the statement x and the proof 7 = (b,z), the challenger computes (yo,y1) =
ObfVerify(x) and outputs 1 if R.Verify(crsrowr, Y», z) = 1 and b # F(ksel, x).

If the challenger obfuscates the program Genlnst[C, crsrowr, ko, k1], then algorithm B perfectly simulates
Hyb,. If the challenger obfuscates the program Genlnst;[C, crsrowr, Ksel, ko, k1, Krerands Ubase» ™, 0], then

/lgobf

algorithm B perfectly simulates Hybg?o). Correspondingly, iOAdv g (Agps) > 274+) = 2= O

Claim 4.12. Suppose iO is (1, 272" -secure for some constant eqps € (0,1) and suppose Aops = (A + n)/%obf
Suppose Mppgrr satisfies punctured correctness. Then, for alli € {0, ...,2" — 1}, there exists Ay € N such that
forallA > A4,

| Pr[Hyb” (A) = 1] - Pr[Hyb{") (A) = 1]| < 2/2*".

Proof. Take any i € {0,...,2" — 1}. Consider an execution of Hybéf)i) and Hybé’li). Let b* = 1 — F(ksel, i).

We first show that if b* = 0, then the program GenProof[C, crsrowr, ksel, kp+, k1] in Hybgg.) has the same
. (0),

ki] in Hyb, ;:

functionality as the program GenProof [C, crsrowr, Ksel, kl()i),

« First, the key kéi) is punctured on input i, so it follows that F (kéi), x) = F(kp+, x) for all x # i. Thus,
on all inputs (x, w) where x # i, the two programs behave identically.

« Consider an input (x, w) where x = i. In this case, both programs first computes b = F(ks, i) and
then evaluate R.Genlnstance(crsrowr; F(kp, i)). However, by definition, b* = 1 —F(kse, i) = 1—b # b.
In this case, both programs derive the randomness using F(k;_p+, x) = F(ky, x). Once again, the two
programs have identical functionality.

Next, we show that the program Genlnst;[C, crsrowr, Ksel, ko, k15 Krerands Ybase, Ys i] in Hybgol.) has the same

functionality as the program Genlnst, [C, crsrowr, Ksel, klgi), k1, kD Ypase> Y >] In Hybg}i):

rerand’

« By punctured correctness, for all x # i, it follows that

F(kl(,i),x)=F(kb*,x) and F(k(i)

rerand’

x) = F(krerands x)'

Thus, for all inputs x # i, the two programs have identical behavior.

22

« Suppose x = i. Then, both programs compute b = F(kge|, i) and R.Genlnstance(crsrowr; F(kp, i)). By
definition, b* = 1 — F(kse, i) = 1 — b # b. In this case, both programs derive the randomness using
F(ki—p+, x) = F(ky, x). Once again, the two programs have identical functionality.

An analogous argument shows that the GenProof and Genlnst programs in Hybéol.) and Hybgll.) have identical
behavior when b* = 1. To complete the proof, we first introduce an intermediate hybrid:

+ iHyb;: Same as Hybgll.) except the challenger computes the ObfVerify as in Hybéol.). Namely, it
computes ObfVerify « i0 (1%, 15, Genlnsty [C, crsRowr ksels ko, k1, Krerands Ubases Y5 1])-

Suppose there exists an infinite set Az C N such that for all A € A #,
| Pr[Hyb ") (A) = 1] - Pr[iHyb,(A) = 1]| > 1/2*".

Let Ag = {(/1 +n(d)Vebf 2) e A 5:(}. We use A to construct an efficient adversary 8B such that for all

Aobf € Ag, iIOAdvg(Agps) > 1/ 2= %" . For each value of Aobf € Ag, we provide the associated value of
A € A g to B as non-uniform advice (if there are multiple such A € A # associated with a particular Ayps, we
pick the largest such A). Algorithm B works as follows:

1. On input the security parameter 17 (and advice 1%), algorithm B runs algorithm A on input 1* to
get a circuit C: {0,1}" x {0,1}" — {0,1}.

2. Algorithm B samples crsrowr R.Setup(14,1™). It sets Aprr = Aprr(4, n) and samples PRF keys
ksel — F.Setup(l’lPRF, 1", 1Y), ko, k1 «— F.Setup(l’lPRF, 1™, 1°), and krerand < F.Setup(l/l”RF, 1", 1%).

3. Algorithm B then computes b* = 1-F(ksey, i), 7" = F(kp+, i) and (y*, z*) = R.Genlnstance(crsrowr; r").
It also samples (Ypase, Zbase) <— R.Genlnstance(crsrowr) and k;i) < F.Puncture(kp-, i).

4. Algorithm B computes the parameter s as in Construction 4.1. It then constructs its challenge as
follows:

« If b* = 0, it gives 1°, GenProof [C, crsrowr, ksel, ko, k1], and GenProof[C, crspowr, ksel, kéi), k1]
to the challenger.

« If b* = 1, it gives 1°, GenProof [C, crsrowr, ksel, ko, k1], and GenProof[C, crsrowr, ksel, ko, k;i)]

to the challenger.

The challenger replies with an obfuscated program ObfProve.

5. Algorithm 8B computes ObfVerify « iO(l’lobf, 1%, Genlnsty [C, crsrowr, ksel, kos k1, Krerands Ybases Y5 i)
and gives the common reference string crs = (crsrowr, ObfProve, Obf Verify) to A.

6. After A outputs the statement x and the proof 7 = (b, z), the challenger computes (yo,y;) =
ObfVerify(x) and outputs 1 if R.Verify(crsrowr, Yp, 2) = 1 and b # F(ksey, x).

If the challenger obfuscates the program GenProof[C, crsrowr, ksel, ko, k1], then algorithm B perfectly
simulates Hybé,oi). If the challenger obfuscates the program GenProof[C, crsrowr, ksel, kl(]i), k1] (in the case

where b* = 0) or GenProof[C, crsrowr, Ksel, ko, kéi)] (in the case where b* = 1), algorithm B perfectly

23

simulates iHyb,. Correspondingly, iOAdvg(Aopf) > 2~ (An(A)) = Z_Azglf)f. As such, algorithm B breaks
(1, 274" -security of iO. Thus, for all sufficiently-large A € N,

| Pr[Hyb” (A) = 1] - Pr[iHyb,(A) = 1]| < 1/2*"X). (4.5)

By an analogous argument (where the reduction algorithm obtains Obf Verify from the challenger), we can
show that for all sufficiently-large A € N; it holds that

| Pr[Hyb}) (A) = 1] - Pr[iHyb,(A) = 1]| < 1/2*"D). (4.6)
Combining Eqs. (4.5) and (4.6), we conclude that for all sufficiently-large A € N,

| Pr[Hyb{") (#A) = 1] - Pr[Hyb(}) (A) = 1] < 2/2*"D). O

Claim 4.13. Suppose Ilppgr satisfies selective (1, Z_A;EF;F)-punctured security for some constant eprr € (0,1)
and Aprr = (A + n)l/SPRF. Then, for all i € {0,...,2" — 1}, there exists Ay € N such that forall A > Ag, it
holds that

| Pr[Hyb! ") (A) = 1] - Pr[Hyb{? (A) = 1] < 1/2M"

Proof. Take any i € {0, ...,2" — 1} and suppose there exists an infinite set A # C N such that forall 1 € A 4,
| Pr[HybS) (A) = 1] - Pr[Hyb{? (A) = 1]| > 1/2M"4)

Let Ag = {(/1 +n()Veere ;) € Aﬂ}. We use A to construct an efficient adversary 8 such that for all

Aprr € Ag, PPRFAdvg (Aprg) > 1/2_’1;??. For each value of Apgrr € Ag, we provide the associated value of
A € Ag to B as non-uniform advice (if there are multiple such A € A # associated with a particular Apgp,
we pick the largest such A). Algorithm B works as follows:

1. On input the security parameter 1*** (and advice string 1%), algorithm B runs algorithm A on input
1* to obtain a circuit C: {0, 1} x {0, 1}* — {0, 1}.

2. Algorithm B samples crsrowr R.Setup(1%,1™), (Ybase, Zbase) < R.Genlnstance(crspowr), and
ksel < F.Setup (1777, 17, 11). It computes b* = 1 — F(key, i). It samples k;_p- < F.Setup(147%F, 17, 1°)

and krerand < F.Setup(l’lPRF, 1", 1%). Algorithm 8 also computes kr(eir)an «— F.Puncture(kerand, i)-

d

3. Algorithm 8 submits the input length 1", the output length 17, and a point i € {0, 1}" to the punctured
PRF challenger. It receives the punctured key kl(i " as well as the challenge value r* € {0, 1}”.

4. Algorithm B now samples (y*,z*) < R.Genlnstance(crspowr;"). Then, algorithm B sets Ao =
Aobf (A4, n) and constructs the programs ObfProve and Obf Verify as follows:

« If b* = 0, then it computes ObfProve « i()(l’l"bf, 1%, GenProof[C, crsrowr, ksel, k;l) ki_p+]) and
Obf Verify « i0(1/1°bf, 1°, Genlnsty [C, crsrowr, Ksel, k;l) ki—p, kr(tfzand’ Ubase» ™5 1])-

« If b* = 1, then it computes ObfProve « i0 (1% 15, GenProof [C, crsrowr, ksel, k1—p+ klil)]) and
Obf Verify « iO(l’lobf, 1%, Genlnsty [C, crsRowr, ksel, k1—p*» kéf), kr(eir)and’ Ubase> Y™, i]).

Algorithm B gives the common reference string crs = (crsrowr, ObfProve, Obf Verify) to A.

24

5. After algorithm A outputs the statement x and the proof = = (b, z), algorithm B computes (yo, y1) <
ObfVerify(x) and outputs 1 if R.Verify(crsrowr, Y», z2) = 1 and b # F(ksel, x).

By definition, the punctured PRF challenger constructs key kz(;i) by first sampling kp- < F.Setup(147%F 17, 1°)

and setting klgi) «— F.Puncture(kp, i). This matches the specification in Hybg’ll.) to Hybéi). Consider now
the distribution of the challenge value r*:

« Suppose r* = F(kp+, i). Then, algorithm B perfectly simulates an execution of Hyb;)li> and outputs 1
with probability Pr[Hyb! (A) = 1].

« Suppose r* < {0, 1}*. Then, algorithm B perfectly simulates an execution of Hybéi.) and outputs 1
with probability Pr[Hyb(z) (A) =1].

Then PPRFAdvg(Apge) > 2~ (A1) = Z_A;EEF, and the claim follows. O

Claim 4.14. Suppose Ilrowr satisfies (1, Z_mFROWF)-rerandomization security for some constant erowr € (0, 1],
and suppose m = (A +n)'/ROWF Then, for alli € {0, ...,2" — 1}, there exists Az € N such that for all A > 1 #,
it holds that

| Pr[Hyb{? (A) = 1] - Pr[Hyb{? (A) = 1]| < 1/2*".

Proof. Take any i € {0,...,2" — 1} and suppose there exists an infinite set A C N such that for all 1 € A,
| Pr[Hyb(®) (#A) = 1] - Pr[Hyb{}) (A) = 1]| > 1/2M"D).

Let m(A) = (A + n(1))/%RowF. We use A to construct an efficient adversary B such that for all 1 € A,
RerandAdvg (1) > 1/27mWFOY Algorithm B works as follows:

1. On input the challenge (14, 1™, crs, ypase, y*), algorithm B runs algorithm A on input 17 to obtain
the circuit C: {0,1}" x {0,1}* — {0, 1}.

2. Algorithm 8B computes Aprr = Aprr(4, n) and samples PRF keys kge| «— F.Setup(l’lPRF, 1", 1Y), ko, ky
F.Setup(14,17,17), and kyerand < F.Setup(1777F 17 1¥).

3. Algorithm B computes b* = 1—-F(kse, i). It then computes the punctured keys k;i) «— F.Puncture(kp+, i)

and kr(ér)and «— F.Puncture(kyerand, i). Finally, it sets Agbs = Aobf(4, n) and constructs ObfProve and
Obf Verify as follows:

« If b* = 0, then it computes ObfProve « iO(1%, 1%, GenProof[C,crsROWF, kse|,
Obf Verify « iO (1% 15, Genlnsty[C, crsrowr, ksels kD

) ky]) and
b*) kl: kfer)anda ybase, y*’ l])
« If b* = 1, then it computes ObfProve « iO(lA‘)bf, 1%, GenProof [C, crsrowr, ksel, ko, klgi)]) and
ObfVerify « iO(1%, 1%, Genlnst, [C, crspowr, kse|,ko,k(l) kr(el:and,ybase: Y, i]).
4. After algorithm A outputs the statement x and the proof = = (b, z), algorithm B computes (yo, y1)
ObfVerify(x) and outputs 1 if R.Verify(crsrowr, Yp, 2) = 1 and b # F(ksel, x).

The challenger samples crspowr R.Setup(l’l, 1™) and (Ypase Zbase) <— R.Genlnstance(crsgowr). This
matches the distribution of crspowr and ypase in Hybgi.) and Hybfi). Consider the distribution of y*:

25

« Suppose the challenger samples r* < {0, 1}* and computes (y*, z*) = R.Genlnstance(crspowr; r*). In
this case, algorithm B perfectly simulates Hybgi) and outputs 1 with probability Pr[Hybgi.) (A) =1].

« Suppose the challenger samples r* <~ {0, 1}* and sets (y*, st) = R.Rerandomize(crsrowr, Ybase; 7). In
this case, algorithm B perfectly simulates Hybfi) and outputs 1 with probability Pr[Hyb;j.) (A) =1].

We conclude that algorithm B succeeds with advantage RerandAdvg p, (1) > 27 (A#n(A) = g=mTOWF
Claim 4.15. Suppose Ipprr satisfies selective (1, Z_AggﬁF)—punctured security for some constant epgr € (0,1)
and Apre = (A + n) V% Then, for alli € {0,...,2" — 1}, there exists Az € N such that for all A > A, it
holds that

| Pr[Hyb{?) (A) = 1] - Pr[Hyb{¥ (A) = 1] < 1/2™*"

Proof. This follows by a similar argument as in the proof of Claim 4.13, except the reduction algorithm
outputs 1* as the output length and programs kr(;r)an 4 to be the punctured key (and samples ko, k; itself).

The rest of the argument proceeds analogously. O

Claim 4.16. Suppose iO is (1,272 -secure for some constant eqps € (0,1) and suppose Aops = (A + n)/%obf
Suppose IppRrr satisfies punctured correctness. Then, for alli € {0,...,2" — 1}, there exists Az € N such that
foralld > A4,

| Pr[Hyb{¥ (#A) = 1] - Pr[Hyb{’), (A) = 1]| < 2/2"*".

Proof. This follows by a similar argument as the proof of Claim 4.12. For completeness, we show that
the programs associated with ObfProve and ObfVerify have identical behavior in the two experiments.
The claim then follows by security of iO (as in the proof of Claim 4.12). Take any i € {0,...,2" — 1} and
consider an execution of Hyb;i.) and Hybé,oill. Let b* = 1 — F(ksey,). First, consider the case where b* = 0.
The GenProof programs. When b* = 0, by the identical analysis as in the proof of Claim 4.12, the

programs GenProof[C, crsrowr, ksels klgl) ,ki] in Hyb;i.) computes the same functionality as the program
(0)

GenProof [C, crsRowr, ksel, ki, k1] in Hbe,M.

The Genlnst programs. Consider the programs Genlnst,[C, crsrowr, ksels k;f), ki, k:ei:and, Ypases Y*» 1] in
(0)

2,i+1°

Hybgll.) and Genlnst, [C, crsrowe, Ksel> ko> k1, krerand> Ybase> Y > I + 1] in Hyb Again, suppose b* = 0:

« By punctured correctness, for all x # i, it follows that

rerand’

F(kl(,i),x) = F(kp+,x) and F(k(i) x) = F(krerands X)-
Thus, for all inputs x ¢ {i,i + 1}, the two programs have identical behavior.

« Suppose x = i. In this case, the Genlnstance; program in Hyb;? sets y;-p = y* where (y*,st) =

R.Rerandomize(crsrowr, Ybase; 7*) and r* = F(krerand,). This coincides with the behavior of the
(0)

2,i+1°

program in Hyb
« Suppose x =i+ 1. Let b = F(ksel, i + 1). Then, the program in Hybéi.) sets y;_p as follows:

(@) i+1)). By punctured

- If1-b = b* = 0, it computes (y;_p, z1-») = R.Genlnstance(crsrowr; F(kb* ,

correctness, F(k;i), i+1) =F(kpr,i+1) = F(ko,i+1).

26

- If1-b=1-b"=1,it computes (y;_p, z1-5) = R.Genlnstance(crsrowr; F(k1, i+ 1)).

In particular, the program in Hybé‘t.) sets y;—p = R.Genlnstance(crspowr; F(ki—p, i + 1)). In Hybéoill,

the challenger sets y;_, = y*, where y* = R.Genlnstance(crsrowr; F(ki—p, i + 1)). Once more, the
two programs have identical behavior.

Completing the proof of Claim 4.15. The above analysis shows that when b* = 0, the GenProof and

Genlnst programs in Hybgi) and Hybgoi)Jrl compute identical functionality. An analogous argument applies

when b* = 1. The claim now follows by security of iO (following the exact same structure as in the proof of
Claim 4.12). O

Claim 4.17. Suppose iO is (1, Z_Aég?f)-securefor some constant eops € (0, 1) and suppose Aops = (A + n)/ ot
Suppose Ipprr satisfies punctured correctness. Then, there exists Az € N such that forall A > A 4,

| Pr[Hyb{), (A) = 1] = Pr[Hyb,(A) = 1]| < 1/2*",

Proof. This follows by a similar argument as the proof of Claim 4.11. We first show that the programs
Genlnst; [C, CrSROWFs Ksel, Ko, K1, Krerands Ybases y*, 2n] and Genlnst; [C, CrSROWFs Ksels Ko, K1, Krerands ybase] in hY-
brids Hybgoz)n and Hyb,, respectively, compute identical functionalities. Take any input x € {0,1}". Let
b = F(ksel, X).

« Consider the behavior of Genlnst,. Since x € {0, 1}", it follows that x < 2. In this case, Genlnst,
computes

(Yp, zp) = R.Genlnstance(crsrowr; F(kp, X))
(y1-p, st) = R.Rerandomize(crsrowr, Ybase; F (Krerand, X))-
+ Consider the behavior of Genlnst;. By definition, Genlnst; sets
(Y», zp) = R.Genlnstance(crsrowr; F(kp, X))

(41-p, st) = R.Rerandomize(crsrowr, Ybase; F (Krerands X))-

Both experiments sample the quantities crspowr, ksel, Ko, k1, Krerand> and ypase using identical procedures.
We conclude that the two programs compute identical functionality. The claim now follows via iO security
(as in the proof of Claim 4.11). O

We now return to the proof of Lemma 4.10. By Claims 4.12 to 4.16, for all i € {0,...,2" — 1}, and all
sufficiently-large A € N, it follows that

| Pr[Hyb(") (A) = 1] - Pr[Hyb{"), (A) = 1]| < 7/2M"D).

By the triangle inequality, this means that

(0) 11 (0) _ nay T T
| Pr[Hyb, ; (A) = 1] = Pr[Hyb,,.(A) = 1]| < 2 T () = g
Combined with Claims 4.11 and 4.17, we conclude that
O(1
| Pr[Hyb,(A) = 1] — Pr[Hyb,(A) = 1]| < % =279, O

27

Lemma 4.18. Suppose Ilrowr is one-way, iO satisfies correctness, and Ilrowr satisfies rerandomizable
correctness. Then, there exists a negligible function negl(-) such that forall A € N,

Pr[Hyb;(A) = 1] < negl(4).

Proof. Suppose Pr[Hyb;(A) = 1] > &(1) for some non-negligible function ¢. We use A to construct an
efficient adversary B:

1. On input the security parameter 1%, algorithm 8B runs algorithm A on 1% and obtains the circuit
C: {0,1}" x {0,1}" — {0, 1}.

2. Algorithm B computes m = m(A, n) and gives 1™ to the challenger. The challenger replies with a
challenge (crsrowr, Ybase)-

3. Algorithm 8B computes Aprr = Aprr(A, 1) and samples PRF keys kge| «— F.Setup(l’lPRF, 1", 1Y), ko, ky
F.Setup(1%7%, 1", 1”), and krerand < F.Setup(147%F 17 1),

4. Algorithm B sets Aopf = Aobf(A, 1) and constructs the obfuscated programs

ObfProve « iO(l/L’bf, 1°GenProof[C, crsrowr, ksel, ko, k1])
ObfVe”fY — iO(laObﬂ 1°, Genlnsty [C, crsrowr, Ksel, ko, k1, krerands ybaseD-

It gives crs = (crsrowr, ObfProve, Obf Verify) to A.

5. After A outputs a statement x € {0,1}" and a proof 7 = (b, z), algorithm B computes (y, st) =
R.Rerandomize(crsrowr, Ybase; F (krerand> X)) and outputs R.RecoverSolution(crsgowr, 2, st).

By definition, the one-wayness challenger samples crsgowr <« R.Setup(1*,1™) and (Ypase> Zbase)
R.Genlnstance(crsrowr), which matches the distribution in Hyb,. Thus, with probability e, algorithm A
outputs (x, b, z) with the following properties:

b # F(kse,x) and R.Verify(crsrowr, Up, 2) = 1,
where (yo,y1) = ObfVerify(x). By correctness of iO,
(Yo, y1) = ObfVerify(x) = Genlnst;[C, crsrowr, ksel, ko, k1, Krerands Ybase] (X).
By definition of Genlnsty, the instance y;, (for b # F(ksel, x)) is computed as
(yp, st) = R.Rerandomize(crsrowr, Ybase; F (Krerands X))-

Since R.Verify(crsrowr, Yp, z) = 1, we appeal to rerandomization correctness of IIgowr to conclude that
R.Verify(crs, Ypase, z°) = 1 when z* = R.RecoverSolution(crsrowr, z, st). In this case, algorithm 8B wins the
one-wayness game and OWFAdvg (1) > £(A). O

Combining Lemmas 4.4, 4.9 and 4.10, we have for all sufficiently-large A € N,
Pr[Hyb, (A) = 1] > %Pr[Hybo(ﬂ) —1] = 2720,
By Lemma 4.18, we have Pr[Hyb,(A) = 1] = negl(1). We conclude that
Pr[Hyb,(A) = 1] < negl(1).

Since Hyb,, corresponds to the real adaptive soundness security game, Theorem 4.3 follows. O

28

Theorem 4.19 (Succinctness). If TIrowr is succinct, then Construction 4.1 is succinct.

Proof. A proof & in Construction 4.1 consists of a bit b € {0, 1} and an element z output by algorithm
R.Genlnstance(crspowr). Since Ilrowr is succinct, there exists a fixed polynomial p such that |z| <
p(A+logm). Since m(A, n) in Construction 4.1 is a fixed polynomial in the security parameter A and the
statement length n and the statement length is always upper-bounded by the circuit size, it follows that
|| < poly(A +1log|C)). m|

Theorem 4.20 (Perfect Zero-Knowledge). If iO is correct, then Construction 4.1 satisfies perfect zero-
knowledge.

Proof. We construct the simulator as follows:

« Sy(1%,C): On input the security parameter A and a Boolean circuit C: {0,1}" x {0, 1} — {0, 1}, the
simulator samples the common reference string crs « Setup(14, C) exactly as in the real scheme.
Let kqel, ko, k1 be the underlying PRF keys sampled in Setup. The simulator algorithm outputs crs
together with the state sts = (ksel, ko, k1)-

« Si(sts, x): On input the state sts = (ksel, ko, k1) and a statement x € {0, 1}", the simulator computes
b = F(ksel, x) and (yp, zp) = R.Genlnstance(crsrowr; F(kp, x)). It then outputs (b, zp).

Take any Boolean circuit C: {0,1}" x {0,1}* — {0, 1}. First, observe that the common reference string
crs = (crspowr, ObfProve, ObfVerify) output by Sy is distributed exactly as Setup (1%, C). Thus, it suffices
to consider the simulated proofs. Consider any pair (x, w) where C(x, w) = 1. By construction, the proof
7 = (b, z) output by Prove(crs, x, w) is obtained by evaluating ObfProve on input (x, w). By correctness of
i0, the output of ObfProve on input (x, w) is the output of GenProof [C, crsrowr, Ksel> ko, k1] on input (x, w).
By construction of GenProof, it computes b = F(kse|, x) and (yp, z5) = R.Genlnstance(crsrowr; F(kp, x)).
This is how the simulator S; constructs the proof and perfect zero-knowledge follows. O

Remark 4.21 (Katz-Wang Signatures in the Plain Model). Our two-challenge approach for constructing
adaptively-sound SNARGs shares a similar structure as the approach from Katz and Wang [KW03] for
constructing adaptively-secure digital signatures in the random oracle model with a tight security reduction.
In fact, our approach can be viewed as a way to “implement” the Katz-Wang proof strategy using an
obfuscated PRF in place of the random oracle; as such, we obtain an adaptively-secure digital signature
scheme in the plain model. We provide an overview of this relationship below:

» The Katz-Wang signature scheme. The core signature scheme is the short signature scheme
of Boneh, Lynn, and Shacham [BLS01]. Let (G, Gr) be a pairing group of prime order p. Let g be
a generator of G and e: G X G — Gr be an efficiently-computable non-trivial bilinear map. The
public verification key in the signature scheme is vk = g* and the secret key is the exponent a € Z,,
along with a PRF key k| (for a PRF F with one-bit outputs). A signature on a message m is then
(b,H(m, b)*), where b = F(ks|,m) and H is a hash function with codomain G (and modeled as a
random oracle). To verify a signature (b,) on a message m with respect to the verification key
vk = g%, the verifier checks that

e(g*. H(m,b)) = e(g.0).

In the signature security proof, the reduction algorithm needs a way to (1) create a signature for
any message (to answer signing queries), and (2) convert a successful forgery into a solution to a
computational problem (in this case, the computational Diffie-Hellman problem (CDH) in G). Katz

29

and Wang achieve this through a two-challenge approach. For each message m, there are two possible
signatures: (0, H(m, 0)%) and (1, H(m, 1)¥). For each message, the reduction algorithm programs
the outputs of the random oracle so for every m it knows (b, H(m, b,,)%) for some by, € {0,1}. It
embeds the computational challenge into the value of H(m, 1 — b,,). This way, it has the ability to
answer all signing queries, and simultaneously, if the adversary produces a valid forgery for any m*
with respect to bit 1 — b+, then it solves the hard problem. Since the bit b,,~ associated with each
message is pseudorandom and hidden from the adversary, this happens with probability 1/2.

+ Replacing the random oracle with an obfuscated PRF. Instead of using a random oracle to
construct the challenge, we can replace it with an indistinguishability obfuscation of a puncturable PRF
(i-e., as in the program Genlnst from Construction 4.1). Then, by relying on (sub-exponential) hardness
of i0 and the puncturable PRF (by following an analogous structure as the proof of Theorem 4.3)
as well as the hardness of CDH (as in the Katz-Wang construction), we obtain an adaptively-secure
digital signature scheme with a tight reduction to the CDH problem.

Thus, our techniques provide a way to instantiate the Katz-Wang techniques for arguing adaptive security in
the plain model without random oracles through the use of obfuscation. Of course, using indistinguishability
obfuscation in place of the random oracle will incur significant overhead in the size of the public verification
key. Nonetheless, our result highlights an interesting conceptual point that it is possible to instantiate the
random oracle with a concrete hash function and base hardness on (standard) cryptographic assumptions in
the plain model. Previously, [HSW14] showed how to replace the random oracle with indistinguishability
obfuscation in the setting of full-domain hash signatures.

5 Constructing Rerandomizable One-Way Functions

In this section, we describe two constructions of rerandomizable one-way functions from classic number-
theoretic assumptions. Our first construction is based on the discrete log assumption and the second is
based on the hardness of computing modular square roots (which reduces to factoring [Rab79]). Both
constructions rely on random self-reducibility.

5.1 Rerandomizable One-Way Function from Discrete Log

In this section, we show how to construct a rerandomizable one-way function from discrete log. We begin
by recalling the discrete log assumption in prime-order groups.

Notation. For a positive integer p > 1, we write Z, to denote the set of integers {0,...,p — 1}. We write
Zy, to denote the multiplicative group of integers modulo p.

Definition 5.1 (Prime-Order Group Generator). Let A be a security parameter. A prime-order group
generator is an efficient algorithm GroupGen that takes as input a security parameter 1* and outputs the
description G = (G, p, g) of a group G of prime order p = 2°) and generated by g € G. Moreover, we
require that the group operation in G be efficiently-computable.

Definition 5.2 (Discrete Log Assumption). Let GroupGen be a prime-order group generator. We say that
the discrete log assumption holds with respect to GroupGen if for all efficient adversaries A, there exists a
negligible function negl(-) such that for all A € N,

Pr |A(1%, G.g)=x:G=(G,p,g) « Groquen(l’l),x & Zp| < negl(A).

30

Construction 5.3 (Rerandomizable One-Way Functions from Discrete Log). Let GroupGen be a prime-
order group generator. We construct a rerandomizable one-way function IIrowr = (Setup, Genlnstance,
Rerandomize, Verify, RecoverSolution) as follows:

« Setup(1%,1™): On input the security parameter A and a rerandomization parameter m, the setup
algorithm samples G = (G, p, g) < GroupGen(1*) and outputs crs = G.

« Genlnstance(crs): On input the common reference string crs = (G, p, g), the instance-generator
algorithm samples z <~ Z; and outputs (g7, z).”

« Rerandomize(crs, y): On input the common reference string crs = (G, p, g) and an instance y € G,
the rerandomization algorithm samples r <~ Zj, and outputs (y", r).

« Verify(crs,y,z): On input the common reference string crs = (G, p, g), an instance y € G, and a
candidate solution z € Z;, the verification algorithm outputs 1 if y = g*.

« RecoverSolution(crs, z’, st): On input the common reference string crs = (G, p, g), a solution z’ € Z;;,
and the rerandomization state st = r € Z,, the solution-recovery algorithm outputs Zrle Zy,.

Theorem 5.4 (Correctness). Construction 5.3 is correct.

Proof. Take any A,m € N and let crs = (G, p,g) < Setup(1*,1™) and (y,z) < Genlnstance(crs). By
construction, this means z € Z;, and y = g*. As such, Verify(crs,y,z) = 1. m]

Theorem 5.5 (Rerandomization Correctness). Construction 5.3 satisfies rerandomization correctness.

Proof. Take any A, m € N and any common reference string crs = (G, p, g) in the support of Setup (14, 1™).
Take any (y, z) in the support of Genlnstance(crs) and (y’, st) in the support of Rerandomize(crs, y). By
construction of Genlnstance, this means that z € Z;, and y = g*. Similarly, by construction of Rerandomize,
we have that st =r € Z;, and y’ = y". Consider any z’ where Verify(crs,y’,z") = 1. This means z’ € Z;, and
moreover, g =y =y’ = ¢*. Since r € Zy,, this means that z = Zrte Zy, and Verify(crs, y, Zr) =1.
Since RecoverSolution(crs, 2, st) outputs Z’r~1 the claim holds. O

Theorem 5.6 (One-Wayness). If the discrete log assumption holds with respect to GroupGen, then Construc-
tion 5.3 is one-way.

Proof. Suppose there exists an efficient adversary A where OWFAdv # (1) > €(A) for some non-negligible «.
We use A to construct an adversary B for the discrete log problem:

1. At the beginning of the game, algorithm B receives the security parameter 1%, the group G = (G, p,)
and the challenge h € G. If h = ¢°, then algorithm B outputs 0.

2. Algorithm B runs A on the security parameter 1*. Algorithm A outputs the rerandomization
parameter 1™, and algorithm B replies with crs = (G, p, g) and the instance h € G.

3. After algorithm A outputs a solution z, algorithm 8 also outputs z.

"It is important that GenlInstance samples the challenge from Zj, and not Zp. Our proof of rerandomization security will critically
rely on this distinction.

31

By construction, the discrete log challenger samples crs = (G, p,g) < Setup(1%,1™), x & Zyp, and sets
h = g*. If h = ¢°, then algorithm B solves the discrete log problem. If x # 0, then x is uniformly distributed
over Zj, so algorithm B perfectly simulates the one-wayness game for A. In this case, with probability at
least ¢, algorithm A outputs z € Z;, such that Verify(crs, h, z) = 1, or equivalently, z such that h = g°. But
in this case, algorithm 8 also solves the discrete log problem. We conclude that algorithm 8 succeeds in
solving the discrete log problem with the same non-negligible advantage e. m]

Theorem 5.7 (Rerandomization Security). Construction 5.3 satisfies perfect rerandomizable security. Namely,
for all polynomials m = m(A) and all adversaries A, RerandAdv # ,, (1) = 0.

Proof. Take any polynomial m = m(A). Let crs = (G,p,g) « Setup(1*,1™). Sample (Ypase, Zbase)
Genlnstance(crs). This means that zp,ee < Z;‘, and ypase = g7, Suppose (y, z) « Genlnstance(crs) and
(¢, st) «— Rerandomize(crs, ypase). We argue that (crs, ypase, y) is distributed identically to (crs, Ypase, ¥'):

» By construction of Genlnstance, the distribution of z is uniform over Z;, so y = ¢* is uniform over
G\ {g"}-
» By construction of Rerandomize, the distribution of st = r is uniform over Z,. Nexty’ =y = g™
ase

Since zpase € Z%, it follows that zpase # 0.2 This means that the distribution of zp,ser is uniform over
Zj, and so y’ is uniform over G \ {go} (and independent of ypyse).

We conclude that the joint distribution of (crs, Ypase, §) and (crs, Ypase, y’) are identically distributed and the
claim follows. O

Theorem 5.8 (Succinctness). Construction 5.3 is succinct.

Proof. Take any A,m € N and let crs = (G, p,g) « Setup(1*,1™) and (y,z) < Genlnstance(crs). By
construction of Setup, (G, p,g) is output by GroupGen(1*). This means p = 29}, By construction of
Genlnstance, this means z € Z;, so |z| = ©(4). O

5.2 Rerandomizable One-Way Functions from Computing Modular Square Roots

In this section, we show how to construct a rerandomizable one-way function from factoring. Specifically,
we base hardness on the hardness of computing modular square roots, which is equivalent to the factoring
problem. We begin by recalling the computational assumptions we use:

Definition 5.9 (Composite Modulus Sampler). Let A be a security parameter. A composite-modulus sampler
is an efficient algorithm SampleN that takes as input the security parameter 1* and outputs (N, p, g) where
N = pq and p, q are distinct A-bit primes (i.e., p,q € [2471, 2% - 1]).

Definition 5.10 (Hardness of Factoring). Let SampleN be a composite-modulus sampler. Factoring is hard
with respect to SampleN if for all efficient adversaries A, there exists a negligible function negl(-) such
that forall A € N,

Pr[A1}, N) € {p,q} : (N, p,q) «— SampleN(1*)] = negl(A).

8This is where we use the fact that z},ee is drawn from Z;‘, and not Zy. If we sampled z},55¢ from Z,, then these two distributions

have a statistical distance of 1/p =1/ 291 which may not be small enough relative to the rerandomization parameter m.

32

Definition 5.11 (Hardness of Computing Modular Square Roots). Let SampleN be a composite-modulus
sampler. Computing modular square roots is hard if with respect to SampleN if for all efficient adversaries
A, there exists a negligible function negl(-) such that for all A € N,

(N, p,q) < SampleN(1%),x & Zy

2_ 2)
Pr |z =x"mod N : 2 A(1*.N,x%)

= negl(1).

Fact 5.12 (Computing Modular Square Roots is Equivalent to Factoring [Rab79]). For every composite-
modulus sampler SampleN, factoring is hard with respect to SampleN if and only if computing modular
square roots is hard with respect to SampleN.

Construction 5.13 (Rerandomizable One-Way Functions from Factoring). Let SampleN be a composite-
modulus sampler. We construct a rerandomizable one-way function Hgrowr = (Setup, Genlnstance,
Rerandomize, Verify, RecoverSolution) as follows:

« Setup(1%,1™): On input the security parameter A € N and a rerandomization parameter m € N,
the setup algorithm samples (N, p,q) < SampleN(1%). It outputs the common reference string
crs = (1™, N).

« Genlnstance(crs): On input the common reference string crs = (1™, N), the instance-generator
algorithm proceeds as follows:
- Sample x1, ..., %, < Zy. If ged(x;, N) # 1 forall i € [m], then output (1, 1).
- Otherwise, take the smallest such i € [m] where ged(x;, N) = 1 and output (x? mod N, x;).
« Rerandomize(crs, y): On input the common reference string crs = (1, N) and an instance y € Zy,
the rerandomizable algorithm does the following:
- Sample ry,...,rm < Zn. If gcd(r;, N) # 1 for all i € [m], then output (y, 1).
- Otherwise, take the smallest such i € [m] where gcd(r;, N) = 1 and output (yr? mod N, r;).

« Verify(crs,y,z): On input the common reference string crs = (1™, N), an instance y € Zy, and a
candidate solution z € Zy, the verification algorithm outputs 1 if y = z> mod N.

« RecoverSolution(crs, z’, st): On input the common reference string crs = (1™, N), a solution 2z’ € Zy;,
and the rerandomizable state st = r € Zj,, the solution-recovery algorithm outputs z’/r mod N.
Theorem 5.14 (Correctness). Construction 5.13 is correct.
Proof. Take any A,m € N and let crs = (1™, N) « Setup(1%,1™) and (y,z) < Genlnstance(crs). By
construction, this means y = 2> mod N, and Verify(crs,y,z) = 1. O
Theorem 5.15 (Rerandomization Correctness). Construction 5.13 satisfies rerandomization correctness.

Proof. Take any A, m € N and any common reference string crs = (1™, N) in the support of Setup(1%,1™).
Take any (y, z) in the support of Genlnstance(crs) and (y’, st) in the support of Rerandomize(crs, y). By
construction of Genlnstance, this means gcd(N,z) = 1. This means z € Z}, and y = z> mod N. By
construction of Rerandomize, we have that st = r € Z, and v’ = yr? mod N. Consider any z’ where
Verify(crs,y’,z") = 1. This means y’ = (z’)? mod N. Thus,

yr’ = (z)* mod N = y = (2//r)* mod N.
Here, r is invertible since r € Zj;. Now RecoverSolution(crs, z’, st) outputs z’/r and Verify(crs,y, 2" /r) = 1,

so the claim holds. |

33

Theorem 5.16 (One-Wayness). If computing modular square roots is hard, then Construction 5.13 is one-way.
Proof. We start by defining a sequence of hybrid experiments:

« Hyb,: This is the real one-wayness experiment. Namely, on input the security parameter 1%, the
adversary A outputs 1. Then, the challenger does the following:

— Sample (N, p, q) < SampleN(1%).
- Sample xy,...,%nm < Zy. If ged(x;, N) # 1 for all i € [m], the challenger sets the challenge

to be y = 1. Otherwise, it takes the smallest such i € [m] where ged(x;, N) = 1 and sets the
challenge to be y = x? mod N.

The challenger gives crs and y to A. Algorithm A outputs a solution z € Zy and the output of the
experiment is 1 if y = z2 mod N.

« Hyb,: Same as Hyb, except to generate the challenge y € Zy, the challenger instead samples x <~ 7,
and sets y = x* mod N. The rest of the experiment proceeds as in Hyb,.

For an adversary A, we write Hyb,(A) to denote the output distribution of Hyb; with adversary A. We
now analyze the experiments.

Lemma 5.17. For all adversaries ‘A, there exists a negligible function negl(-) such that for all A € N,
| Pr[Hyby(A) = 1] — Pr[Hyb, (A) = 1]| < 2790,

Proof. We argue that the distribution of y in the two experiments are statistically close. Consider the
distribution of y in Hyb,. Let x1,...,x¢ €<~ Zy be the values sampled by the challenger in Hyb,. We
consider two possibilities:

« Suppose for all i € [m], ged(x;, N) # 1. Since N = pq, the primes p, q are A-bits each, and each
x; < Zn, the probability that ged(x;, N) # 1 is

-1
Prlged(x, N) # 1: % & Zy] = L2472 — g-00), (5.1)

rq
Thus, this case happens with probability at most 27%%),

« Suppose there exists an i € [m] where gcd(x;, N) = 1. For all such i, the distribution of x; is uniform
over Zy,. In this case, the challenger sets y = x? mod N. This is exactly the distribution of y in Hyb,.

We conclude that the statistical distance between the distribution of (1™, N, y) in Hyb, and Hyb, is at most
272 and the claim holds. O

To complete the proof of Theorem 5.16, we show that under the hardness of computing modular square
roots with respect to SampleN, Pr[Hyb, (A) = 1] = negl(A) for all efficient adversaries A. To show this,
suppose there exists an efficient adversary A where OWFAdv #(A) > ¢(1) for some non-negligible ¢. We
use A to construct an adversary 8B for computing modular square roots:

1. At the beginning of the game, algorithm B receives the security parameter 1%, the common reference
string crs = (1™, N), and the challenge y € Zy. Algorithm B first checks if ged(y, N) = 1. If
ged(y, N) # 1, then algorithm B aborts with output L.

Technically, algorithm B learns a factor of N in this case and can use the factorization of N to obtain a square root y. However,
since the event ged(y, N) = 1 happens with negligible probability, it also suffices to ignore this case and simplify the analysis.

34

2. If ged(y, N) = 1, then algorithm B runs A on the security parameter 1*. Algorithm A outputs the
rerandomization parameter 1" and algorithm 8 replies with crs = (1, N) and the instance y € Zy.

3. After algorithm A outputs a solution z, algorithm $ also outputs z.

By construction, the challenger samples (N, p, q) < SampleN(1%) and y = x* where x & Zy. We consider
two possibilities:

« Suppose ged(x, N) # 1. From Eq. (5.1), this case happens with probability 27,

« Suppose gcd(x, N) = 1. Then the distribution of x is uniform over Zj;. In this case, algorithm 8
perfectly simulates an execution of Hyb, for A. By assumption, with probability at least ¢, algorithm
A outputs z € Zy such that y = z2 mod N. In this case, algorithm B successfully outputs a square
root of y mod N.

Thus, we conclude that algorithm B succeeds with probability at least £(1 — 27?(})) = ¢ — negl(1), which
is non-negligible. Thus, we conclude that for all efficient adversaries A, Pr[Hyb,(A) = 1] = negl(A).
Combined with Lemma 5.17, this means that for all efficient adversaries A,

OWFAdv #(A) = Pr[Hyb,(A) = 1] = negl(1). O

Theorem 5.18 (Rerandomization Security). Construction 5.13 satisfies 2~*"™ -statistical rerandomizable
security. Namely, for all polynomials m = m(2) and all adversaries A, RerandAdv 7, (1) < 27¢mA),

Proof. Take any polynomial m = m(4). We define three distributions:

« Dy: Sample crs = (1™, N) « Setup(1%,1™), (Ybase» Zbase) ¢ Genlnstance(crs), and (1,z) «
Genlnstance(crs). Output (crs, Ypases Y)-

« D;: Sample crs = (1™, N) « Setup(14,1™) and (ypase, Zbase) < Genlnstance(crs). Sample x < Zy
and set y = x> mod N. Output (crs, Ypase, Y)-

« D,: Sample crs = (1™ N) « Setup(14,1™), (Ybases Zbase) «— Genlnstance(crs), and (y,st) «
Rerandomize(crs, ypase). Output (crs, Ybase, Y)-

We argue that the statistical distance between each pair of distributions is bounded by 27°(™):

+ Consider distributions 9y and 9;. Since crs and ypase are identically distributed in the two dis-
tributions, it suffices to consider the distribution of y. In Dy, the Genlnstance algorithm samples
X1, ..., Xm ¢~ Zy and outputs y = x? mod N if there exists some i € [m] where ged(x;, N) = 1. In
this case, the distribution of x; (given crs and ypase) in Dy is uniform over Zy;, and the distribution
of y is distributed exactly as in D;. The only setting where the two distributions differ is if in Dy,
for all i € [m], ged(x;, N) # 1. Since N = pq, the primes p, q are A-bits each, and each x; <~ Zy, the
probability that ged(x;, N) = 1 for alli € [m] is

P+q—1)m < 9-00m).

Pr[Vi € [m] : ged(x;, N) =1 | x; & Zn] = (»
q

Thus, the statistical distance between D, and D, is at most 2-2(™).

35

+ Consider distributions 9, and 9,. Again, it suffices to consider the distribution of y in the two
experiments. By construction of Genlnstance, in distribution D;, it is the case that zp.se € Zj,
and Ypase = zﬁase mod N. In D,, the Rerandomize algorithm samples r4,. .., 7, < Zy and outputs
y = ybaseriz if there exists some i € [m] where ged(r;, N) = 1. In this case, we can write y as
Y = (Zbaseri)* Where r; ¢ Z3,, which coincides exactly with the distribution of y in ;. Thus, the
only setting where the two distributions differ is if in D5, for all i € [m], ged(r;, N) # 1. By the
same calculation as in the previous case, this happens with probability at most 27" and so the
statistical distance between D; and D, is at most 2-2(™).

Since the statistical distance between D, and D; as well as that between D; and D, is at most 272" jt
follows that the statistical distance between Dy and D, is also bounded by 2~(m) O

Theorem 5.19 (Succinctness). Construction 5.13 is succinct.

Proof. Take any A,m € N and let crs = (1™, N) « Setup(1%,1™) and (y,z) < Genlnstance(crs). By
construction of Setup, N = pq where p, q are A-bit primes. By construction of Genlnstance, this means
z € Zn so |z| =log N < 2A. O

Acknowledgments

Brent Waters is supported by NSF CNS-1908611, CNS-2318701, and a Simons Investigator award. David J. Wu
is supported by NSF CNS-2151131, CNS-2140975, CNS-2318701, a Microsoft Research Faculty Fellowship,
and a Google Research Scholar award.

References

[ACL*22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Krish-
nan Thyagarajan. Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively
composable - (extended abstract). In CRYPTO, pages 102-132, 2022.

[BBK*23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, and Omer Paneth.
SNARGs for monotone policy batch NP. In CRYPTO, pages 252-283, 2023.

[BCC*17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,
Y
and Eran Tromer. The hunting of the SNARK. 7. Cryptol., 30(4):989-1066, 2017.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In ITCS, pages
326-349, 2012.

[BCI*13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In TCC, pages 315-333, 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable
one-way functions. In STOC, pages 505-514, 2014.

[BGI*01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1-18, 2001.

36

[BGI14]

[BHK17]

[BISW17]

[BISW18]

[BLSO01]

[BP04]

[BW13]

[CGJ*23]

[CGKS23]

[ClJ21a]

[CJJ21b]

[CLM23]

[DFH12]

[FWW23]

[GGM84]

[GGPR13]

[Gro10]

Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In PKC, pages 501-519, 2014.

Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation and
batch NP verification from standard computational assumptions. In STOC, pages 474-482, 2017.

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their
application to more efficient obfuscation. In EUROCRYPT, pages 247-277, 2017.

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal SNARGs via linear
multi-prover interactive proofs. In EUROCRYPT, pages 222-255, 2018.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In
ASIACRYPT, pages 514-532, 2001.

Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-knowledge. In TCC,
pages 121-132, 2004.

Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
ASIACRYPT, pages 280-300, 2013.

Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang. Cor-
relation intractability and snargs from sub-exponential DDH. In CRYPTO, pages 635-668,
2023.

Matteo Campanelli, Chaya Ganesh, Hamidreza Khoshakhlagh, and Janno Siim. Impossibilities
in succinct arguments: Black-box extraction and more. In AFRICACRYPT, pages 465-489, 2023.

Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for
NP from standard assumptions. In CRYPTO, pages 394-423, 2021.

Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In FOCS,
pages 68-79, 2021.

Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. Lattice-based succinct arguments from
vanishing polynomials - (extended abstract). In CRYPTO, pages 72-105, 2023.

Ivan Damgard, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low
communication. In TCC, pages 54-74, 2012.

Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Registered
abe, flexible broadcast, and more. In CRYPTO, pages 498-531, 2023.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of
random functions. In CRYPTO, pages 276-288, 1984.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct nizks without pcps. In EUROCRYPT, pages 626645, 2013.

Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT,
pages 321-340, 2010.

37

[GW09]

[GW11]

[HSW14]

[JJ22]

[JKKZ21]

[JLS21]

[JLS22]

[Kil92]

[KLV23]

[KLVW23]

[KP16]

[KPTZ13]

[KPY19]

[KR09]

[KVZ21]

[KW03]

[Lip13]

Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems (with short
ciphertexts). In EUROCRYPT, pages 171-188, 2009.

Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In STOC, pages 99-108, 2011.

Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In EUROCRYPT, pages 201-220, 2014.

Abhishek Jain and Zhengzhong Jin. Indistinguishability obfuscation via mathematical proofs
of equivalence. In FOCS, pages 1023-1034, 2022.

Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. SNARGs for
bounded depth computations and PPAD hardness from sub-exponential LWE. In STOC, pages
708-721, 2021.

Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In STOC, pages 60-73, 2021.

Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over F,,
DLIN, and PRGs in NC°. In EUROCRYPT, pages 670-699, 2022.

Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
STOC, pages 723732, 1992.

Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. SNARGs and PPAD hardness
from the decisional diffie-hellman assumption. In EUROCRYPT, pages 470-498, 2023.

Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch arguments
and RAM delegation. In STOC, pages 1545-1552, 2023.

Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In TCC, pages 91-118,
2016.

Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegat-
able pseudorandom functions and applications. In ACM CCS, pages 669-684, 2013.

Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In
STOC, pages 1115-1124, 2019.

Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In CRYPTO, pages
143-159, 2009.

Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical
soundness, post-quantum security, and SNARGs. In TCC, pages 330-368, 2021.

Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight
security reductions. In ACM CCS, pages 155-164, 2003.

Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and
linear error-correcting codes. In ASIACRYPT, pages 41-60, 2013.

38

[Mic94] Silvio Micali. CS proofs (extended abstracts). In FOCS, pages 436—453, 1994.

[Rab79] Michael Rabin. Digitalized signatures and public-key functions as intractable as factorization.
1979.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In STOC, pages 475-484, 2014.

[Wee05] Hoeteck Wee. On round-efficient argument systems. In ICALP, pages 140-152, 2005.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear group
assumptions. In CRYPTO, pages 433-463, 2022.

39

	Introduction
	Technical Overview

	Preliminaries
	Rerandomizable One-Way Functions
	Constructing Adaptively-Sound SNARGs for NP
	Constructing Rerandomizable One-Way Functions
	Rerandomizable One-Way Function from Discrete Log
	Rerandomizable One-Way Functions from Computing Modular Square Roots

