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1. Introduction
1.1. Permutation pattern polynomials

Given two permutations m = m(1)...w(n) in the symmetric group S, and o =
o(l)...0(k) € Sk, we say that m contains the pattern o if there is a sequence
i1y...,8, € [n] with 44 < -+ < i such that 7(i1),...,7(ix) are ordered according
to o, i.e. m(iq) > w(%) if and only if o(a) > o(b). Such a sequence (i1,...,4) is an
occurrence of o in .

Let N, (m) denote the number of occurrences of ¢ in 7. If N, () = 0, then 7 is said
to avoid o. Beginning with the work of Knuth [7], the study of permutation patterns
and pattern avoidance has grown into a very active subfield of combinatorics (see [2]).
Permutation patterns have been found to play an important role in many settings where
algebraic or geometric objects are indexed by permutations, being ubiquitous in the
study of Schubert varieties, Bruhat order, and Kazhdan-Lusztig polynomials [1].

The distribution of permutation pattern occurrences has been studied by several
authors. For example, it was shown by Janson—Nakamura—Zeilberger [6] that the dis-
tribution of N, on uniformly random permutations from S,, is asymptotically normal,
and by Zeilberger that the moments of this distribution are given by polynomials in n
[11]. Zeilberger also used Maple code to compute a number of these polynomials.

More recently, efforts have been made to understand the distribution of pattern oc-
currences on conjugacy classes in .S, using the character theory of the symmetric group.
Hultman [5] and Gill [4] considered the mean of N, on conjugacy classes for the cases
k = 2 and k = 3, respectively. The first author and Ryba [3] used a new approach
involving partition algebras to prove that all moments of N, on conjugacy classes are
polynomials in n,my, ..., mgx (cf. Theorem 1.2), and concluded from this that the sup-
ports of these characters stabilize as n — oo, with the coefficients of irreducible characters
given by certain polynomials aéd(n) which are the main object of study in this paper
(cf. Theorem 1.3).

Definition 1.1. Following the notation of [3], let M, 4., () be the d-th moment of N, on
the conjugacy class C, containing 7, namely,

1
Mmd,n(ﬂ-) = |C | Z N(rd(ﬂl)'
™ rreC,

More generally, given d patterns o1,...,04, with o; € S, let My, -, n(7) be the
expected value of the product N, ... N, on the conjugacy class of 7, that is,

1
Mo,,....oqn(T) = W Z No, (') ... Noy (7).
™ rrec,
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Since M, .. o,n is a class function on S, we can expand it in the basis of irreducible
symmetric group characters x*, where X is a partition of n. For a partition A = (\; >
-+ > ;) with |A| < n we use A[n] to denote the partition (n — |A|, A1,...,\;) of n, when
this is well-defined. Theorems 1.2 and 1.3 below are extensions of the main theorem of
[3] and will be proven in Appendix A.

Theorem 1.2 (c¢f. Gaetz-Ryba [3], Theorem 1.1(a)). Given any permutation patterns
O1,...,04 (not necessarily distinct and not necessarily the same size) with o; € Sy,
My, ... .o0n 5 a polynomial in the variables n,mi,..., My, y..4, of degree at most
k14 -+ kq, where n has degree 1 and m; has degree i.

Theorem 1.3 (¢f. Gaetz-Ryba [3], Theorem 1.1(b)). Fix patterns o1 € Sky,...,04 € Sk,
Then

A . Aln
a‘717»--»‘7d7n T <X [ ]’M017~~»70d,n>

agrees for alln > ky +- -+ kq+ |\ with a polynomial a), ., (n) inn of degree at most
k14 -+ kg — |A|. In particular, this coefficient is zero if |A| > k1 + -+ + kq.

The polynomials ay, . (n) will be our main object of study in this paper. For

convenience, when o1 = - - = 04, we write a) ; and for a}, ., and we write simply a;

for ag,l. We also write M, , for My 1 .
1.2. A positivity conjecture

Let id; = 12...k denote the identity permutation in S, so that Ny, (7) counts
increasing subsequences of length £ in 7. The following surprising positivity conjecture
is the main motivation of this work.

Conjecture 1.4. For all k,n € N, Mg, » 5 a nonnegative linear combination of ir-
reducible symmetric group characters. Furthermore, the polynomials aﬁdk (n) are real-
rooted, with all roots less than k.

Our main theorem establishes Conjecture 1.4 for the coefficients (x*™, Mg, n) with
|A] < 2. This is accomplished by giving closed formulas for the coefficients in question in
Section 2.

Theorem 1.5. Conjecture 1./ holds for A = 0,(1),(2), and (1,1).

Remark 1.6. For all other patterns idy # o € Sy, some coefficient (x*, M, ,) must be
negative, since M, ,(id,,) = 0.

Conjecture 1.4 and Theorem 1.5 suggest the following natural question:
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Question 1.7. Is there a natural S,,-module whose character is a multiple of Mg, 7
1.8. Outline

This paper is organized as follows: In Section 2, we compute closed forms for the

polynomials ai(allz_ , ai(;]’el), and ai(ji, and verify our positivity conjecture (Conjecture 1.4) for

these cases. In Section 3, we study the case aV (n) for general o and give formulas for the
polynomials and their leading coefficients (since leading coefficients determine positivity
for large m). In Section 4, we discuss potential pathways to prove Conjecture 1.4 more
generally, as well as several other conjectures and open questions. Finally, in Appendix A,
we generalize and give an alternate proof of the polynomiality results of Gaetz and
Ryba [3] by describing a process for computing the polynomials in each case, and in
Appendix B, we prove a key technical lemma that is used for our main formulas in
Section 2.

2. The cases a?dk (n), ai(;k) (n), ai((iz (n), and ai(;;l)(n)

It follows from Theorem 1.3 that for n > 2k, the coefficients oy = = (X)‘["],Midk’@

idg,n
agree with polynomials af,‘jk (n) in n of degree at most k — |A|. Ourk goal in this section
will be to compute closed forms for the polynomials ai(;i (n), ai(i)c (n), and ai(é;cl)(n) (The-
orem 2.7), and to verify Conjecture 1.4 for these cases (Theorem 1.5). Our approach will
be to express each of these polynomials in terms of certain expected values E(n,k,r)
(Lemmas 2.3 and 2.4), for which we will then compute a closed form (Lemma 2.6). To
do so, we will make use of the character polynomial formulas, which express the sym-
metric group characters X’\[”](W) as polynomials dependent only on A and the cycle type

of 7:

Theorem 2.1 (see Macdonald [8]). Let m;(w) denote the number of i-cycles in w. Then
provided that n > |\|, the character ™ is a polynomial in mq, . .. ,m|x of degree at
most |A|, where [\| = A1 + -+ X\; and m; has degree i. Specifically, we can write

Aln] _ AT\ (T2
N ZF()()
oI <A

where p=1"12" ... and
A Al—
Y= (-1 Iplzxg’
“w

where the sum is taken over all u with |u| = |p| such that |\| — |p| bozes can be added to
w to get X with no two boxes added in the same Tow.
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The first few character polynomials, which we will make use of, are:

V=1, (1)

X(n—Ll) =my — 1’ (2)
m

X(n72,2) _ ( 21> + mg — my, (3)

X(n—2,171) — (T;L1> — Mmoo —mq + 1. (4)

In the proof of Theorem 2.7, we will use the above formulas to break each inner product
into a linear combination of simpler inner products, which we will then interpret in terms
of expected values, and our lemmas will allow us to calculate each expected value.

2.1. Preliminary lemmas

Definition 2.2. Let E(n,k,r) denote the expected value over = € S,, of the number of
ordered pairs (R,T), where R is an unordered set of r fixed points in 7 and T is an
increasing subsequence of length k containing all of those fixed points (7' 2 R).

Knowing E(n,k,r) will give us formulas for our polynomials ai(;i (n), ai(gi (n), and
ai(é;cl)(n) because of the character polynomial formulas (1), (2), (3), and (4), together

with the following two lemmas:

mi
r

R,

=0

Lemma 2.3. The inner product of ( ) with Mia,, » s given by

Proof. First we will interpret the inner product as an expected value. By definition, the
inner product of two class functions f and g on S, is

1 R
(f.9)=— > |- £(C)g(C).
" C a conjugacy class in S,
So, our inner product here can be expanded as
1 mi (C)
v e (M)
" C a conjugacy class in S,
Since Miq,, »(C) is the average value of Nig, »(m) over m € C, this sum is equal to

1 1 mq C
X (W - ))Nidk,n@r)),

" C a conjugacy class in S,
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which simplifies to

L3 (e

TESH

The (mlr(”)) represents the number of ways to choose a set R consisting of r of the
mq(m) fixed points in 7, and the Nig, (7) represents the number of occurrences T of idy,
in 7, or equivalently, the number of increasing subsequences of length k. Thus, this sum
can be interpreted as the expected value over m € S, of the number of ordered pairs
(R,T) consisting of an unordered set R of r fixed points in 7 together with a length k
increasing subsequence T in 7. Note that R need not contain all fixed points of m, and
unlike in Definition 2.2, the fixed points in R need not also be in T'.

To get the right side, we consider cases based on j := |R NT|, the number of chosen
fixed points contained in the subsequence. That is, we break the expected value into a
sum from j = 0 to r, of the expected value over m € S, of the number of pairs consisting
of r fixed points in 7 and an increasing length k£ subsequence in 7 containing exactly j
of those fized points:

Eres, (total # of pairs (R, T)) = ZEﬂesn(# of pairs (R,T) s.t. |[RNT| = j).
j=0

Note that by definition, E(n, k,r) represents the » = j term on the right side, since in
that case we require all r fixed points to also be in the subsequence.

If exactly j of the fixed points are in the subsequence, we can imagine removing the
other r — j fixed points and then relabeling the remaining elements to get a permutation
7' € Sp_ryj together with a set R’ of j fixed points in 7’ and an increasing subsequence
T’ in 7’ of length k containing all those fized points. The mapping is explained via the
example below.

Example 2.3.1. Let n =9, r =4, j =1, and k = 3, and let 7 be the permutation shown
below, with the boxed numbers representing the increasing subsequence T' = (2,5,7)
of length k = 3, and the red numbers® representing the r = 4 chosen fixed points,

R=1{1,2,6,9}:
7T_134689
S \1 (2] 5 3 [4] 6 [7] 8 9/

One of the red fixed points, namely 2, is also in the subsequence, so RNT = {2} is a set
of size j = 1. We will now remove the r — j = 3 fixed points which are not contained in
the subsequence, namely 1, 6, and 9:

2 For colors see the web version of the article.
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3 4
5 3
We are left with a permutation on the set {2,3,4,5,7,8} of size n—r+j = 6. By mapping

these 6 elements to the numbers {1,2,3,4,5,6} in increasing order (2 +— 1,3 +— 2,4
3,5—4,7— 5,8 6), we get a permutation on the set {1,2,3,4,5,6}:

oo ([ 2 s

4 2
Thus, this process results in a permutation 7’ € Sg = S,,_,j, together with a subse-
quence 7" = (1,4, 5) (the image of the original subsequence) of length k = 3, and a new

set of chosen fixed points R’ = {1}, of size j = 1. The key is that now all fixed points
are contained in the subsequence, since we removed the ones that were not.

Now, by definition, the expected value over all 7’ € S,,_,; of the number ordered
pairs (R',T"), where R’ is a set of j fixed points in 7’ and T’ an increasing length &
subsequence containing all of them, is E(n — r + 4, k, j). For instance, in the example
above, E(6,3,1) would be the expected value over 7’ € Sg of the number of pairs (R’,T")
with k =|T'|=3,j=|R'|=1,and R' CT".

It remains to “add back” the r — j removed fixed points to find the expected value over
all m € S, of the number of pairs (R, T) with RNT = j. Each permutation 7’ (together
with the corresponding R’ and 7”) could have come from (rﬁj) different permutations m
by removing fixed r — j fixed points, because we could choose any subset of r — j elements
of [n] to be the set R\T of the r — j removed fixed points that we add back, as shown
in the example below.

Example 2.3.2. In our previous example, we could have chosen any r — j = 3 elements of
{1,2,...,9} to be the 3 removed fixed points, instead of choosing {1, 6,9} as above. For
instance, suppose we choose R\T = {3,4,7} to be the 3 removed fixed points. Then, to
get from the same 7', R’, and T’ as in the previous example to a different 7, R, and T', we
first turn 7’ into a corresponding permutation on the set {1,2,5,6,8,9} of all elements

of [n] except 3, 4, and T:
( 2 5 [6] [8]
6 2 8]

Then, we insert the three removed fixed points 3, 4, and 7 to get a different original

7T_2345
S\[1] 6 3 4 2 [5]

In this case, we would get R = {1,3,4,7} and T = (1,6, 8).

permutation 7:
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Since there are (Tfj) ways to choose the r — j elements of R\T, each choice of ©’, R/,
n
r—j
in going from the expected value over ' € S,_,4; to the expected value over m € S,,.
(n— T+j)

and T” corresponds to ( ) choices of 7, R, and T, so we need to multiply by (Tﬁj)

However, we also need to multiply by , since taking an expected value over
Sy —r+j involves dividing by (n —r + j)! for the (n —r + j)! possible values of 7', while
taking an expected value over S, involves dividing by n! for the n! possible values of .
Thus, in total we multiply by (")) - W =& J), The expected value over m € S,

of the number of pairs (R, S) with |[RNT| = j is thus = J),E( —r+j,k,j). Summing

over j gives the claimed formula. 0O

Lemma 2.4. The inner product of ma with Miq, , s given by
1 1 1 1
(ma, Miq,, n) = iE(n —2,k,0)+ z 1-—)En—-2k—1,00+ —=E(n—1,k,1).
n n

Proof. By similar reasoning to the start of the proof of Lemma 2.3, this inner product
can be rewritten as

- Z m2 1dk )

7r€S

Since mg(w) is the number of 2-cycles in 7 and Niq, (7) is the number of increasing
subsequences in 7, this inner product represents the expected value over w € S,, of the
number of pairs ((¢ j),T") consisting of a 2-cycle (i 7) in 7 and an increasing subsequence
T of length k in m. We will now consider cases based on the overlap between the 2-
cycle and T'. It is impossible for both ¢ and j to be contained in T, since if i < j then

(i) = j >i=m(j).

Case 1: 1,7 ¢ T.
If ¢, 7 ¢ T, then we can remove 7 and j in the same manner as in Example 2.3.1 to get
a permutation ' € S,,_» together with an increasing subsequence T” in 7’ of length k.

Example 2.4.1. Let n = 8 and k£ = 4, and let m be the permutation below, with the

boxed numbers indicating the increasing subsequence T' = (2, 3, 6, 8) and the red numbers
indicating the 2-cycle (i j) = (1 4) (which does not overlap with T'):

457)
2] [5] 1 3 [7] 6 [8]
(57)
2] [5] 3 [7] 6 [8]

Removing 1 and 4 gives
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and then relabeling to get a permutation in S,,_s = Sg gives

oo (B2 s s )
2 4 [6])"
The corresponding increasing subsequence in 7’ is T = (1,2, 4, 6).

The expected value over ' € S, _5 of the number of choices for the increasing sub-
sequence T" of length k is E(n — 2,k,0), since 7’ need not contain any chosen fixed
points. Now to translate back to m, we need to add back in the 2-cycle (i j). Like in
Example 2.3.2, we can get a pair (m,7T) given any of the (%) choices for the pair (i j),
and any choice of the pair (7/,7"). Thus, we need to multiply by (}) in going from the
expected value over ' € S,,_o to the expected value over m € S,,. We also need to mul-

tiply by @ since the expected value over S, involves a % while the expected value
over S,_1 involves a ﬁ Thus, in total, we multiply by (g) . (nr—L!Q)!

the $E(n — 2,k,0) term.

= %, which gives

Case 2:i €T and j #i+ 1.

In this case, we can imagine removing both ¢ and j and then relabeling to get a new
permutation 7’ € S, _s with a corresponding increasing subsequence T” of length k — 1.
(We will explain soon the reason for the restriction j # ¢ + 1.)

Example 2.4.2. Choose the same 7 and T as in the previous two examples, but now let

(ij)=(35):
~CEHB Y E R
“\4 (2] [5] 1 3 |7] 6 [8])°

Removing 3 and 5 gives
<1 4 6] 7 )
4 1 6 [8])’

and relabeling in the same manner as before gives

(1 3 5 [6]
3 1 4 [6])°
so 7’ is an element of S,,_5 = Sg and T” = (2,4, 6) has length k — 1 = 3.

The expected number of possible increasing subsequences 7" of length k& — 1 over all
choices of ©’ € S,,_5 is E(n — 2,k — 1,0). In this case, the number of choices for m given
7' is not always the same, so we will instead compute the expected number of choices of
m over all pairs (7', T").
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In total, there are (n — 1)? choices for where to add i and j, since there are n — 1
available slots, and we can imagine independently choosing slots for ¢ and j and then
setting ¢ = j + 1 if they happen to both be inserted in the same slot. Note that ¢ and j
are distinguishable here, since ¢ will be in T while j will not. The fact that we can now
think of ¢ and j as being added independently is the reason for the restriction j # i + 1.

Example 2.4.3. With 7’ as before, suppose we try to insert both 7 and j between the 2
and the 3. Since we cannot have j = i 4+ 1, we would set j = 3 and i = 4. Since i is
supposed to be in T’ this gives

W:<1357)
5 2] 4 [3] 1 |7] 6 [8])°

with T' = (2,4, 6, 8). This choice of (i j) happens to work, since T is indeed an increasing
subsequence of m. However, if we had instead chosen to insert ¢ after the 2 but j after

7r1468)
“\4 (2] 8] 1 [6] 5 [7] 3)°

which would not work, since T' = (2,3,5,7) does not give an increasing subsequence in

the 6, we would get

.

On average, 7 and j are each equally likely to be in any of the k intervals between
elements of T’, since these intervals all have the same average size. In order to get an
increasing subsequence T of length k containing ¢ once ¢ and j are added, they would need
to both be in the same interval between elements of T”, which happens with probability
%. Thus, the expected number of choices of m and T given 7’ and T” is @ So, to
get the expected value over m € S, from the expected value over m € S,,_1, we need to

multiply by (";1)2, and we also need to multiply by (";!2)! since there is a ﬁ in the

expected value over S,,_s and a % in the expected value over S,,. In total, we multiply

by (n_kl)z . n(nlil) = %(1 — %), which explains the %(1 — %)E(n —2,k—1,0) term.

Case 3:i €T and j =i+ 1.

In this case, instead of removing j, we can think of merging ¢ and j into a single
fixed point to create a new permutation 7’ € S,,_; with a corresponding subsequence S’
containing the fixed point ¢, as illustrated in the example below.

Example 2.4.4. We will use the same values for n, k, 7, and T as in the previous example,
but now let (i j) = (67),s04 € T:

~CEHEF R
1B s e 8)
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In this case, instead of removing ¢ and j, we merge them into a single fixed point:

2] [3] 4 5 [6] 8]
2] [5] 1 3 [6] [8]

Then, we relabel the elements after that fixed point to get a permutation ' € S,,_; = Sr:

5 [6]

3
The resulting subsequence is 77 = (2, 3,6,7), containing the distinguished fixed point
i =0.

The expected number of such subsequences T” over all 7/ € S,_1 is E(n — 1,k,1),
since S’ is required to contain a chosen fixed point i. There is only one choice of 7 for
each 7', so this gives the lE(n 1,k,1) term, where the l is because the expected value
over T € Sy, involves a ; Whlle the expected value over 7’ € S,,_1 involves a ﬁ O

It now remains to compute E(n, k,r). We first show that it can be written as a sum
as follows:

Lemma 2.5. For n > k, the expected values E(n,k,r) are given by

LR P > I

nitoAnepa=n—r  kit+-tkep1=k-r i=1

Proof. For each pair of subsets R C T C [n] with |R| = r and |T'| = k, define a random
variable X g r(7) varying over m € S, to equal 1 if T in 7 is an increasing subsequence
and R is a set of fixed points contained in T', and 0 otherwise. By linearity of expectations,
E(n, k1) =3 g1 Eres, (Xpr()).

The expected value of X p(m) represents probability over = € S,, that T forms an
increasing subsequence in 7 and all elements of R are fixed points of 7. To compute this
probability, we will ignore where 7 sends the elements outside T', and only consider where
7 maps the elements of T'. The total number of ways to choose where the k elements of
T could map under 7 is P(n, k), so that gives our denominator. It remains to find the
number of ways 7 could map T such that all values in R map to themselves and T forms
an increasing subsequence in 7.

We will illustrate the terms of T' as being boxed and the fixed points in R as red,
as in our previous examples. Choose ki, ks, ..., k,+1 such that list of elements of T" in
increasing order can be written as

k1 terms‘ ‘ﬁxed point ‘ ‘k}g terms‘ ‘ﬁxed point ‘ e ‘ﬁxed point ‘ ‘ kr41 terms |,
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and choose ni,ns,...,n,4+1 such that the entire sequence 1,2,...,n in increasing order
can be written as

n1 terms |fixed point | ny terms |fixed point| ... |fixed point| n,41 terms.

Since there are r fixed points, we must have n; +---+n,41 =n—rand k1 +-- -+ kyy1 =
k—r.

Now suppose we fix the values of k1,..., k.1 and ny,...,n.41 (which means fixing
R, since choosing R is equivalent to choosing ni,...,n,4+1) and we would like to count
the number of ways to choose T and 7(T) such that 7 fixes all values in R and T is an
increasing subsequence in m. There are H::ll (Zl) ways to choose the remaining elements
of T in between the fixed points, because in the ¢th interval between fixed points, there
are n; values to choose from and we must choose k; of them to be in the subsequence.
Since we want the subsequence to be increasing, we have exactly the same number of
choices for the images of these numbers under 7. Thus, the number of ways to choose
the rest of the subsequence T and its image under 7 is H:ill (21)2
Summing over all possible choices of the n;’s and k;’s and dividing by P(n, k) gives

the desired formula. O

This sum formula will actually be sufficient to prove Conjecture 1.4 for the case
A = (1), but to get the closed forms and the proofs in the other cases, we will need the
following closed form for E(n, k,r):

Lemma 2.6. For n >k, E(n,k,r) has the closed form

9k—r n—%
Bl k) = e —nn (k - T>'

The proof of this formula is left for Appendix B. We will note that in the case r = 1,
we get

2k=1(2n —1)(2n - 3)...(2n — 2k + 3)

E(n,k,1) = @1 7 (5)

which we will make use of in Theorem 2.7.
2.2. Closed forms for the polynomials

We can now use Lemmas 2.3, 2.4, and 2.6 together with the character polynomial
formula (Theorem 2.1) to derive closed forms for ajy, (n) for [A] < 2:

Theorem 2.7. We have the following closed forms for ajy (n) for A = 0,(1),(2), and
(1,1):
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ot =5 (3)

W, 2F@en-1)2n-3)...(2n—2k+3) 1 (n—1
(M) = (2k—1)! __ﬁ(k—l)

(2)() 1 n—2 4 1 n—1
. n)———— e
tidy n-k\k—1) " 2k — 1)1 \k -2

2F1((2k —4)n+ (2k — 1)) - (2n —3)(2n —5) ... (2n — 2k + 3)
- n-(2k — 1)1 ’

a(l’l)(n)—l n—2 n 1 n—2 . 1 n—1
id CR\k-2) n-k'\k-1 2(k — 1) \k — 2

2F=1(2kn — (2k — 1)) - (2n — 3)(2n — 5) ... (2n — 2k + 3)
B n-(2k —1)!

Furthermore we have ajy_(n) = ogy, ,, whenn >0 for X =0, whenn > k for X = (1),

and whenn > k+1 for A = (2),(1,1). (For k = 2, the products (2n—3)(2n—5)...(2n—
2k + 3) appearing in the formulas for ai(in (n) and ai((};l) (n) should be interpreted as

equaling 1.)
Proof. We will consider each case separately.

Case A = 0):

This formula is already known, and can be seen directly by noting that each of the
(Z) subsequences of length k in 7 is equally likely to be in any order, and thus has a %
chance of being increasing. This argument is valid for any n > 0. (In the cases where
n < k, both the polynomial and the coefficient are 0.)

Case A = (1):
By (2), the character polynomial for A = (1) is m; — 1. Using this and Lemma 2.3,
we get that for n > 2,

<X(n71’1)7 Midk,n> == <m17 Midk,n> - <17 Midk,n>
= FE(n,k, 1)+ E(n—1,k,0) — E(n, k,0).

Plugging in the formula for E(n, k, 1) from (5) and the formula E(n, k,0) = ; (7) and ap-
plying Pascal’s identity to the last two terms shows that the desired polynomial formula
holds for n > k + 1.

To show that it also holds for n = k, the only term to which Lemma 2.6 does not
apply is E(n — 1,k,0), so we must check that the polynomial actually agrees with the
expected value in this case, which it does since E(k —1,k,0) = 0 (as there are no length
k subsequences in a permutation of length k& — 1), and the polynomial formula gives

o (kgl), which is also 0. Thus, the formula for ai(;l (n) is valid for all n > k.



14 C. Gaetz, L. Pierson / Advances in Applied Mathematics 147 (2023) 102507

Case X\ = (2):

By (3), the character polynomial for A = (2) is ("2“) — my + my. Using this together

with Lemmas 2.3 and 2.4, we get for n > 4 that the character polynomial formula holds,
and so:

<X(n—2,2)’ Midk,n> = << ) 1d;c7 > m17 1dk n> + <m27 Midk,n>
1
:§E( —-2,k,0)+ E(n—1,k, 1)+ E(n, k,2)
—E(n—1,k,0)— E(n,k,1)

1 1 1 1
+ 5B —2.k,0) 4 <15> E(n—2,k~1,0)+ ~E(n—1k1).

Plugging in our formula from Theorem 2.6 for E(n,k,r) (using the form of F(n,k,1)
from (5)) implies that for n > k + 2,

=2 A ) = 1 <n - 2) 2F=1(2n —3)(2n —5)...(2n — 2k + 1)

2 K\ k 2k — 1)!

(i) ()

2F-1(2n —1)(2n —3)...(2n — 2k + 3) 1 (n—2
- 2k —1)! +2~k!( k >

1\ 1 (=2 1 2°'@n—3)(2n—5)...2n—2k+1)
*(1")5(%) n 2k — 1)

We can cancel several terms using Pascal’s identity:

9 1 n—2 _l n—1 +l n—2 __l n—2 +i n—2 —0
2K\ k B\ k E\k—1) kK \k-1 E\k—-1)

We can also combine the terms with denominator (2k — 1)! and factor out the common
parts to get

2F=1(2n — 3)...(2n — 2k + 3)
n-(2k —1)! ’

(n(2n—2k+1)—n2n—1)+ (2n — 2k + 1)) -
which simplifies to

2F=1((2k —4)n + (2k — 1)) - (2n —3)(2n —5) ... (2n — 2k + 3)
(2k — 1)! '

Putting all this together gives the claimed formula.
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We now know that O‘i(ji,n agrees with the claimed polynomial for n > k 4 2, so it

remains to check n = k 4+ 1. In that case, Lemma 2.6 applies to all the terms of the
expansion except possibly the two %E(n —2,k,0) terms, which sum to E(n — 2, k,0), so
it suffices to show that these two terms agree with the polynomial when n = k + 1. But
that term becomes F(k — 1,k,0) = 0 when n = k + 1, which, like in the A = (1) case,
agrees with the polynomial 2 (¥1) = 0.

Case A = (1,1):
By (4), the character polynomial for A = is ("3') —m1 — mo + 1. Using this
together with Lemmas 2.3 and 2.4, we get for n > 4 that the character polynomial

formula holds, and so:

_ m
(X" 2’1’1),Midk,n> = << 21)7Midk,n> — (m1, Mia, n) — (ma, Mia, n) + (1, Mia, n)

1
= §E(n —2,k,0)+ E(n—1,k, 1)+ E(n,k,2)

—E(n—1,k,0) — E(n,k, 1)

1

1 1
—1-=—)En—-2,k—-1,0)— —-E(n-1,k,1
(1-1) Bla—2k-1.0) - LB - Lk

1
— 3B —2,k,0)—

E(n,k,0).

Plugging in the formulas from Lemma 2.6 and (5), it follows that for n > k + 2,

(2 Ay 1 <n - 2) 2F=1(2n —3)(2n —5)...(2n — 2k + 1)
9 dg,n/ —

2K\ k 2k — 1)

ormile o) -w (")

2 2n-1)(2n-3)...(2n — 2k +3) 1 (n—Q)

(2k —1)! 2RI\ K
1\ 1/n-2 1 2812n-3)(2n—5)...(2n — 2k + 1)
(D) als) G

(i)

We can cancel the iﬁ("k 2) terms, and combine several other terms using Pascal’s

identity to get

_l n—1 +i n _l n—2 _i n—1 _i n—2 _l n—2
E'\ K E'\ k E\k—1) K \k-1 E\k—1) K \k-=2/

We can also combine the terms with denominator (2k — 1)! to get
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2F=1(2n — 3)(2n —5) ... (2n — 2k + 3)
n-(2k —1)! ’

n2n—-2k+1)—n2n—-1)—(2n -2k +1))-
which simplifies to

2= (2kn — (2k — 1)) - (2n — 3)(2n — 5) ... (2n — 2k + 3)
a n-(2k —1)!

Putting all this together gives the claimed formula for ai(;;l)(n) and proves that it agrees

with ozl(dlklzl for n > k42, so it remains to consider n = k+ 1. In this case, the only terms

to which Lemma 2.6 does not apply are the i%E(n — 2,k,0) terms, and those terms
cancel, so the formula is still valid forn=k+1. O

Remark 2.8. It follows from Theorem 1.3 that all four formulas in Theorem 2.7 are
polynomials in n, but this is not obvious from the formulas for ai(ji (n) and ai(i;cl)(n)
since they involve n’s in the denominator. However, we can check that they are in fact
polynomials in n by showing in each case that the constant terms of the polynomials
which are multiplied by % cancel. For ai(cgli (n), the relevant constant terms (coming from

the first and third term of the formula) are

1 (=2)(=3)...(=k) 2F1(2k —1)(=3)(=5)...(—2k + 3)
kD (k—1)! a (2k —1)!

Collecting the negative signs and canceling common terms from the numerator and
denominator in each fraction, this simplifies to

Similarly, for ai(dl;cl)(n), the relevant constant terms (from the second and last terms of

the formula) are

1 (=2)(=3)...(=k) 2" M(=2k+1)(=3)(=5)...(=2k +3)

! (k—1)! (2k — 3) ’

which is the same two terms as for ai(jz (n) but with the signs swapped, so again, the

terms cancel. This shows that in both cases, the formulas do in fact give polynomials in
n, as expected.

2.3. Proof of the positivity conjecture for A = 0, (1), (2), and (1,1)

Now that we have the closed forms, we can use them to prove Theorem 1.5.
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Proof of Theorem 1.5. Again, we will consider each case separately. In each case, we
will first prove that the polynomial has all roots real and less than k, so its sign never
changes for n > k.

Note next that for n = k, we get ai’\dk,k > 0 for all A since Miq,  has value 1 on
the conjugacy class of the identity and 0 on all other conjugacy classes and is thus a
scalar multiple of the character of the regular representation, implying that all characters
have nonnegative coefficients. For A = () and A = (1), this is enough to imply that the
coeflicient is positive for all n > k: we know the coefficient agrees with the polynomial
for all n > k in those cases, and since the polynomial never switches sign for n > k, it
must always be nonnegative.

For the cases A = (2) and A = (1,1), the above argument shows that the coefficient
is nonnegative for n = k, and Theorem 2.7 implies that the coefficient agrees with the
polynomial for n > k + 1, so for these cases we will complete the proof by showing that
the leading coefficient is nonnegative, which together with the roots being less than k
implies the positivity for all n > k + 1 and thus for all n > k.

Case A = 0):
Since a?dk (n) = 5 (3), the k roots in this case are 0,1,2,...,k — 1, which are all real
less than k. As explained above, that implies the positivity for this case.

Case A = (1):

Lemma 2.9. The k — 1 roots of ai(éi (n) are =1 and a root between i and i + 1 for each
1=1,2,...,k=2.

Proof. Plugging in n = —1 to the formula from Theorem 2.7 gives

28 1(=3)(=5) .. (2k+1) 1 (=2)(4)...(=k) _ (=Dt (=t 0
(2k —1)! k! (k—1)! k=10 (k=1 =

For the remaining roots, note that if we plugin n =1,2,...,k — 1 to the formula from
Theorem 2.7, the % (Zj) term is 0, so

_ 2k=1(2n —1)(2n - 3)...(2n — 2k + 3)

M
%a, () 2k — 1)

The right hand side has roots at n = %, %, N %,
1)

for each 1 = 1,2,...,k — 2. This means a;y, switches sign between ¢ and ¢ + 1 for each

so it has a root between 7 and 7+ 1

of these values of 7, so it must have a root in each interval (¢,7 + 1). Since it has degree
k — 1, this accounts for all its roots. 0O

As explained above, Lemma 2.9 together with ai(;])c (k) > 0 implies the positivity of

ai(éi (n) for all n > k.
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Alternatively, for this case we can actually prove Conjecture 1.4 directly from
Lemma 2.3 and Lemma 2.5, without using the closed form for ai(éi (n):

Alternate proof of the case A = (1). By (2) and Lemma 2.3,
aly) (n) = (my — 1, Miq, 1,n) = E(n — 1,k, 1) + E(n — 1,k,0) — E(n, k,0).

It follows from Lemma 2.5 and Pascal’s identity that for n > k, this polynomial can be

a.(l)(n): 1 Z ny 2 no 2+i n—1 _l n
idk P(n, k) It h1 k1 ko k! k k' \k
B 1 Z ni 2 N9 2 _ l n—1
- P(n, k) ko1 k1 ko E\k—-1)"

written as

If we fix n; and ny with ny + no = n — 1, then by Vandermonde’s identity,
D (Zi) (Z;) = (Zj), and using that together with Cauchy-Schwarz,

ni 2 o 2 ni1\ (N2 2 n—1\2
k- > = .
2 (k-1> (kz) - ( 2 (’ﬁ) (k2>> (k‘l)
k1 +ko=k—1 k1+ko=k—1
Dividing both sides by %P(n,k‘) = k!(:j), moving all terms to the left, and then
averaging over np from 1 to n implies ai(dli (n)>0forn>k O
Case A = (2):

Lemma 2.10. The k — 2 roots of ai(sz (n) are —1 and a root between i and i + 1 for each
1=1,2,...,k—3.

Proof. To show that —1 is a root, plugging in n = —1 to our formula from Theorem 2.7
gives

1 (=3)...(zk=1) 281(=3)(=5)...(=2k+1) N 1 (=2)(=3)...(=k+1)
k! (k—1)! (=1D)(2k —1)! 2(k —1)! (k—2)! '

This simplifies to

(DMk+1) (D2 (DR -1)
2(k —1)! (k—1)! * 20k —1)! 7

For the remaining roots, note that the two binomial coefficient terms are 0 for n =
2,...,k — 2, so for each of these values of n,
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e (n) = _2k*1((2k —4dn+(2k—-1))-(2n—3)...(2n — 2k + 3)
i A n-(2k —1)! '
This polynomial has roots at —%, %, %, ek — % Thus, for each i = 2,3,...,k — 2,

ai(zi (i) and ai(iz (i + 1) have opposite signs, so ai(ji has a root in the interval (i,i + 1).

For i =1, the ("_1) term is 0 and we get

k—2
@y L (=1)(=2)...(=k+1) 214k —5)-(=1)(=3)...(~2k +5)
azg, (1) = =4~ &= 1) - 2k —1)!
_ (=pHt (4k —5)(=1)*2
TR 2k-D2k-3)-(k—1)!

These terms have opposite signs, but the second has larger absolute value since
k(4k —5) = 4k* — 5k > 4k* — 8k +3 = (2k — 1)(2k — 3).

Thus, the sign of aﬁi(l) matches the sign of the second term, which implies that there
is also a sign flip between ai(jz (1) and ai(ji (2), and therefore a root of ai(jz in the interval
(1,2). Since we know ai(gi has k — 2 roots total, this accounts for all of them. O

We know the positivity holds for n = k, so to prove it for n > k+1, it suffices to show
that the polynomial has positive leading coefficient, since we know that all its roots are
less than k, and that the coefficient agrees with the polynomial for all n > &k + 1.

Lemma 2.11. The polynomial ai(ji (n) has nonnegative leading coefficient for all k > 2.

Proof. The three terms in the formula from Theorem 2.7 all have degree k — 2, and

adding together their leading coefficients gives that the leading coefficient of ai(gi (n) is

1 1 22k=2(E — 2)
2k — DI(k—2)! (k=D& (2k—1)!

This is equal to
(6 G-

For k = 2, this is 0, and for k = 3 we get

1 5 5 8 1
750 (4(2)—2)—ﬂo—@'
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Now we use induction to show that this is positive for all k¥ > 3. Assume it is positive
for k — 1. The part outside the parentheses is positive, so it suffices to show that (k +
1)(37}) > 221 We have

E+DCT) e+ D@k—1)@k—-2) 2k +1)(2k—1)

k(zkk_23) - kQ(k’ _ 1) - 2
202k% + k — 1) 92k=1
==z  “i=om=

so the result follows from the inductive hypothesis. O
Case A = (1,1):

Lemma 2.12. The k — 2 roots of ai%,ll)(") are a root between i and i + 1 for each i =
0,1,...,k—3.

Proof. If we plug in n = 2,3,...,k — 2 to the formula from Theorem 2.7, the first three
terms are 0, so

—k—1 n— — (Z2n—=9)...(Z2n —
S,f)() 2k=1(2kn — (2k n1.)22k(2_1)!3) (2n — 2k +3) (©)

Since this polynomial has roots at 2% , g, s k— %, ald ﬂlpS signs between ¢ and ¢+ 1

for each i = 2,...,k —3, so it has a root in the interval (¢,7+ 1). Now for ¢ = 1, the first
three terms of ai(é;cl)(l) sum to

1 (=D(=2)...(=k+2) 1 (=1)(=2)...(-k+1) (DR (=Dt
W *k—2)! TR k1 1) L TR N TR

so actually, a(;’l) also matches (6) when n = 1, meaning the root of (6) at 2 gives a sign

flip between a( ’ )( 1) and a(l 1)( 2), so a(d’ ) must have a oot in the interval (1,2).
It remains to consider ¢ = 0. Since the numerator has the root % between 0 and

(’)

1, it suffices to show that at n = 0, the sign of a,;’"’ matches the sign of the numerator

of (6), since then we will know that a( )(0) and a( )( 1) have opposite signs and thus
there is a root in the interval (0,1). The sign of the numerator of (6) at n = 0 is
—(—1F L = (—1)R,

Now to compute the sign of ai(;;cl)(O), when we plug in n = 0 to the formula from
Theorem 2.7, for the two terms with an n in the denominator we have to take the linear
term in the numerator, which is the negative of the constant term times the sum of the
reciprocals of the roots. We get

1(011k1)(0) (—1)16._k—1Jr (—1)k.<1+1+...+1>+2(—_1)k!
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GV T N S|
k-1 \2k—1 "1 '

k
Thus, factoring out %, to show that this has sign (—1)* it suffices to show that

_ — — e — -> — JE— —_— ce e
Tyt TR e Tt T

k—1 (1 1 1) 1 2k 1 1 1
1
2

Since % is a convex function,

L T I PRI (L T L
2 2) 2\2 3 2\k-2 k-1 17 21 k—13’

which simplifies to

= + = + = +- 1t ! + ! > ! + ! +- 4+ !
2 2 3 k—2 2(k—1) ~ 11 2l k—1%°
For the remaining terms, we get

e I N QYN -
k 20k—1)  k 2k — 2 2%k—1 2k—1"

It follows that ai(j;cl)(()) has sign (—1)*, which is the opposite sign from ai(j;l)( 1), implying

that there is a root in the interval (0,1). Thus, there is a root in the interval (i,7 + 1)
for each i =0,1,...,k — 3, completing the proof. O

As in the case A = (2), we already know that ai(dl;l)(k:) > 0. We also know that the

coefficient equals the polynomial ai(i’cl)(n) for n > k + 1 and that this polynomial never
switches sign in this range since all the roots are smaller, so again, to complete the proof

it suffices to check that the leading coefficient is nonnegative.
Lemma 2.13. The polynomial ai(;l’cl)(n) has nonnegative leading coefficient for all k > 2.

Proof. All four terms in our formula from Theorem 2.7 have degree n — 2, so the leading

coefficient is the sum of their leading coeflicients, which is

1 1 1 22k—2[

ME—2)!  BEk—1) T2k k=2  (@k—1)

Factoring out m, we get

(2%_1)! ((k - 1)<2kk_—11> . (2:_—11) . k:(kT—l) (2:_—11) _ 2%—%) :
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Combining the first three terms and factoring our Z, this becomes

e (0 f) ).

This is exactly k—EQ times the leading coefficient of ai(zi (n) which we computed in
Lemma 2.11, so it must be positive for k > 2. Also, for k = 2, the leading coefficient is

2 3 1
= _93) ==
5 (3(0)-2) =5
which is also positive. O

3. The case a'V) (n)

In this section, we generalize to the case o # idy for A = (1), d = 1, and write down
formulas for the associated polynomials a( )( ). Since we are interested in positivity,
we also compute the leading coefficients. In this case, the polynomials are not always
real-rooted and also do not always have roots less than k, so the sign is not necessarily
the same for all n > k, but the leading coefficient will determine the sign for sufficiently
large n.

Proposition 3.1. The polynomials af,l)(n) can be written as

=522 )l ) ()0 ) ()

=1 j=

Proof. We can follow essentially the same logic as in the case ¢ = id;. We have

a (n) = Eres, (m1(m)Ny (1)) — Exes, (No (1))

n
_ 1 Z Eres, (# occurrence of ¢ in 7 containing 4 | ¢ fixed)
=
n
+ - ZEﬁegn (# occurrences of o in 7 not containing i | 4 fixed)

— Eres, (NU (77))

The third term is %(2), because there are (Z) ways to choose a set of k points and

a % chance that each such set forms an increasing subsequence. The second term is
_ L

K\ E
in a permutation on n — 1 values, as we can imagine removing the fixed point i to get a

), since it represents the expected number of length k increasing subsequences
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new permutation 7’ € S, _1 with a new increasing subsequence of length k in the same
manner as before. Thus by Pascals’ identity, the sum of these two terms is f% ("_1).

k-1
For the first term, we compute the probability that a sequence i1 < iy < -+ < 7;_1 <
i < ij41 < --- < 4 containing ¢ as its jth term is an occurrence of ¢. The number

of ways to choose such a sequence with j — 1 terms before ¢ and k — j terms after ¢
is (i_l) (z_;) For the sequence 7(i1),...,7(ix) to be ordered according to o, we must
have m(ip) < 7r( ) = i whenever o(¢) < a( ) (which happens for o(j) — 1 values of ¢), s

there are ( (z 3 1) ways to choose where these values map under 7. Similarly, the k —o( j)
values of ¢ for which o(f) > o(j) must satisfy w(i¢) > i, so there are (), "_(i])) ways to
choose where these values map. The total number of places the subsequence i1, ...,
(not counting the fixed point i) could map to under 7 is P(n — 1,k — 1) = L P(n, k), so

the probability the sequence actually represents an occurrence of o is

Summing over all j and plugging this back in gives the claimed formula for af,l)(n). O

Proposition 3.2. The leading coefficient of a(l)( ) is

Proof. Taking only the highest degree parts from each term in the sum

Pl K)ol (n 21]21 (j:i)( Z>_—1 1> (Z:D (k’i;fﬁ)

gives

ZHU (49— 2(n — 4)2k=i=o()

n k
22 GG = DIk =G ")

=1 j=1

If we fix k£ but sum over n, we can see by taking a limit as n — oo that the leading
coefficient in the numerator matches the value of the integral

1
/xj+a<j>—2(1  p)2=i=00) gy
0

This is an Eulerian integral of the first kind (see [10]), so the solution is the Beta function
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(J+0() =22k —j—o(h))
(2k —1)! '

Plugging this back into (7), the leading coefficient of the sum is

w0 ))

The degree of this leading term is 2k — 1 (since each term we are adding has degree
2k — 2). In our formula for a((,l)(n), this sum is divided by P(n,k), which has leading

term n*, so af,l) (n) has a leading term of degree k — 1 with the same leading coefficient.

n—1

1
The second term % (k—l

) also has degree k — 1, and has leading coefficient m It

follows that the leading coefficient of a((fl)(n) is as claimed. O

We can now state the following condition for when a((,l)(n) is nonnegative:

Corollary 3.3. The polynomial a((,l)(n) 1s positive for sufficiently large n if and only if

z’“: <j +]g(j)1— 2) (% —kj—ja(j)> . (%k_ 1).

Jj=1

It would be interesting to try to find a simpler condition on ¢ for when this leading
coefficient is positive, although it is not clear from this formula whether one exists.

4. Future directions

In this section, we discuss a few potential pathways for proving Conjecture 1.4 in
general, as well as several other conjectures based on our work in this paper and our
numerical computations of the polynomials a)(n) for o < 4.

4.1. Roots of the polynomials

Note that if we could prove the real-rootedness statement in Conjecture 1.4 and also
show that a’\d (n) has nonnegative leading coefficient, that would imply the positivity

for n > k + | )|, since we know from Theorem 1.3 that o] ay, (n) for those values.

idg,m —
Then to prove Conjecture 1.4, it would remain to check tkhe positivity for k +1 <n <
k 4+ |A\| — 1, since as mentioned in the proof of Theorem 1.5, the positivity for n = k
follows automatically from Mg, ; being a scalar multiple of the regular representation.

Lemmas 2.9, 2.10, and 2.12 also show that the roots are fairly evenly spaced for
A = (1),(2), and (1,1) (one root in each unit interval in a specific range, plus a root
at —1 when A = (1),(2)), so it would be interesting to know whether something similar
holds more generally. Our work in Section 2 together with direct computations of the

polynomials for k < 4 also suggests the following:
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Conjecture 4.1. When X has a single row, the polynomials a(n) have n = —1 as a root.

Lemmas 2.9 and 2.10 prove this for the cases ai(éi and ai(ii, and we have verified it

numerically for all ¢ with & < 4. This could potentially be proven for the case a,(;l) for
arbitrary ¢ using the formula in Proposition 3.1. It is also true for the case k = 4 that the
polynomials af,l’l’l) have —1 as a root (although this is not true for ag—l’l) or agl’l’l’l)),
so there might be a more general rule for a certain subset of these polynomials where

n = —1 is a root.
4.2. Possible approaches for a combinatorial positivity proof

Another potential approach to proving Conjecture 1.4 more generally is to use the
interpretation of inner products with character polynomials as representing a linear com-
bination of expected numbers of tuples consisting of an increasing subsequence and r;
my-cycles for some i, as we did throughout this paper, but by constructing an injection
rather than explicitly computing the terms. One thing that might provide some guidance
for this approach is that the case A = (k) appears to be tight, in that the polynomials
seem to be 0 in this case:

Conjecture 4.2. If A = (k), we get ai(gz (n) =0.

We know that ai((’icz is a constant (since its degree is k — |\|), so Conjecture 4.2 would
follow from Conjecture 4.1, since a nonzero constant polynomial cannot have any roots
and thus cannot have n = —1 as a root. If Conjecture 4.2 holds, then any injective proof
for Conjecture 1.4 would give a bijection in this case.

From the character polynomial formulas, ai(glz represents the expected number of or-
dered pairs consisting of an increasing subsequence of length k and a set of k£ points which
are mapped among themselves, minus the expected number of ordered pairs consisting
of an increasing subsequence of length k£ and a set of kK — 1 points which are mapped
among themselves. If we could find a bijection between these two sets, this would give a
combinatorial proof that ai((};z = 0, and potentially some clues as to how to more generally
find an injective proof that ai’\dk (n) is nonnegative.

4.8. Positivity for o # idy,

Another interesting question would be whether there is a general rule for when the
polynomials @) (n) are positive for other values of o:

A

g

Question 4.3. Is there a rule for when a/(n) is nonnegative?

From our computations of the polynomials for k£ < 4, neither the real-rootedness nor
the property of all real roots being less than k holds in general for o # idy. Thus, in



26 C. Gaetz, L. Pierson / Advances in Applied Mathematics 147 (2023) 102507

general the sign of a)(n) depends on n and only stabilizes for sufficiently large n (based
on the sign of the leading coefficient). For the case A = (1), Corollary 3.3 could potentially
be used to help find a more explicit rule for when the polynomials a((,l)(n) are positive.
One might hope that for sufficiently large n, the values of agl)(n) are monotonically
decreasing under we weak Bruhat order, but this is not the case for k = 4, as 0 = 4321
does not have minimal leading coefficient. However, the following does hold for k < 4,
so we might hope that it also holds in general:

Question 4.4. Do the polynomials ag,l)(n) with nonnegative leading coefficients form an
order ideal in the weak (or strong) Bruhat order? If so, is there a simple characterization
of the maximal elements?

It could also be interesting to explore general formulas for these polynomials and try
to find closed forms in other special cases, potentially by using similar methods to those
in Section 2 and Section 3.
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Appendix A. Polynomiality proofs

We prove here Theorems 1.2 and 1.3. This generalizes and gives an alternate proofs
of Gaetz and Ryba’s results in [3], which concerned the case o1 = - -+ = 0y.

A.1. Polynomiality of Moy, . o4m

Proof of Theorem 1.2. We can interpret the value of M, . ., on the conjugacy class

C as
E(# of ordered d-tuples (T1,...,Ty) with T; an occurrence of o; in 7 | w € C).
To simplify notation, let
T=TU---UTy.
By linearity of expectations, we can break the desired expected value into cases, where
each case specifies how many distinct elements there are in the set T'U «(T"), which

elements of 7(7T") map back to elements of T' (and thus which subsets of T'U 7(T") form
cycles), and also the relative ordering of the elements of T'U 7 (T').
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Example A.0.1. Let n = 15, let C' be the conjugacy class of permutations of cycle type
(5,3,3,2,2), and let d = 2 with o7 = 43251 and o9 = 21345. Throughout our examples,
we will use boxes or circles to indicate occurrences of particular permutation patterns,
and colors to indicate cycles of particular sizes. In this example, the elements of the
occurrence of T} of oy will be boxed, the elements of the occurrence of T, of oo will be
circled, the 2-cycles will be red and orange, and the 3-cycles will be green and blue. With
this notation, a particular choice of 7 € C' (written in two-line notation) together with
a choice of T7 and T3 could be as follows:

123 @00 oeoE @ [0 @ 15
3100 HO0 I @E ® 1

In cycle notation, we have

7= (47911 15)(2 8 10)(12 14 13)(1 3)(5 6),

and the permutation pattern occurrences are Ty = (2,5,6,8,10) and T3 = (4,5,7,9,11).

The case under which this choice of (w,T,T») falls would specify that the third
element of 77 must equal the second element of T5, but that there are no other overlaps
between them. It would also specify that T3 is the union of a 3-cycle and a 2-cycle,
ordered in the same way as above. Thus, the boxed and circled elements are required
to look something like this, where the green elements form a 3-cycle and the orange
elements form a 2-cycle:

HeHdoeldeHe.

The case would also specify that the remaining four elements of 75 (the black circled
elements) map to each other under 7 in order, but do not form a complete cycle (for
m, we have 4 — 7+ 9+ 11). Finally, it would specify that the relative ordering of all
boxed and circled elements, including which ones map to each other, must be exactly
the same as above.

Notice that this implies that there is a fixed permutation o such that the list above
forms an occurrence in 7 of o. For our example 7 above, the images of the boxed and
circled elements are

@ [0 B @ W @ 2] ®.

Relabeling the smallest of these as 1, the next smallest as 2, and so on, we get

HooeHdaen o

Thus, in this case, the elements of 77 U 75 form an occurrence in 7 of
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Given this information about our case, the following permutation 7’ from the same
conjugacy class C' would also fall under the same case, with the occurrences T and T
of o1 and o9 again shown boxed and circled, respectively:

a Dol EHe s v ®m®
e 00 ®@wy 3 @[E @ s

Note that the order of the elements outside T"U 7 (T') is not specified by the case and
may change.

3

For each case, we can define a corresponding “supercase,” which includes all possible
choices of T} and T5 subject to the same restrictions about which elements form cycles
and which elements map to each other, but without any restrictions on the ordering,
including no requirement that 77 and 75 be occurrences of o1 and o2. To make counting
a bit easier, the supercase will also specify an ordering on the cycles of each size which
are contained in 7', and on the elements of each such cycle.

Example A.0.2. The following permutation 7", together with the indicated choice of T}’
and T4, would fall under the same supercase as 7 and 7’ from the previous example,
even though T} and T4 are not occurrences of o1 or g, and the green, orange, boxed,
and circled elements are not ordered in the same way as before:

ﬂ//:DDD@Q@@@ \:‘Ol31415
BIOER®© 6 B 6 (2] || 4 15 14

The relevant information preserved from the original case is that the boxed elements

are a union of a 2-cycle and a 3-cycle, one element of that 2-cycle is also circled, and
the remaining circled elements map to each other but do not form a complete cycle. We
would also choose a “first” element of the 2-cycle (11 12), which must be 12 since that
is on the one which is also circled, and we would arbitrarily choose a “first” element of
the 3-cycle, say the 3.

The first key observation is that as m ranges over the conjugacy class C' and as
Ty,..., T4 range over a given supercase, the probability that (m, T, ..., Ty) actually falls
into a particular case is simply 1/|T U 7(T)|!, because as m ranges over C, there is no
reason for the elements of TU7(T) to be in any particular order, and thus all orderings
of them are equally likely, while each case specifies one exact ordering. The second is
that given any m € C, the total number of choices of T7,...,Ty falling under a given
supercase is always the same, since this number depends only on the cycle type of 7.
Thus, our overall probability is
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Z (# of choices of the T;’s under the supercase (given ))

supercases
of cases under the supercase
i p
|TUn(T)|!

Example A.0.3. For the permutation 7 from Example A.0.1, we have
Tur(T) ={2,4,5,6,7,8,9,10,11, 15}.

This is a set of size 10, so it takes on 10! equally likely orderings as 7 ranges over C' and
T and T5 range over the supercase specified in Example A.0.2. We will treat the ordering
occurring in 7 as the identity permutation. For the permutation 7’ in Example A.0.2, if
we write elements of 7" U 7" (T') in the order corresponding to how they are ordered in
7 (including writing the “first” element of each cycle first, and the elements of the chain
in the order in which they map to each other), we get

Elements in T'U 7 (T): D @ @ D @ D ©) |:| an 15
Corresponding elements in D @ @l D @ D ® D ® 13-

TI/ U 7]'”(TH):

(Note that we include the element 7”/(6) = 13 corresponding to 7(11) = 15, since it
is in 7”(T") but not in T".) Relabeling the smallest element of 7" U n”(T") as 1, the
second smallest as 2, and so on, we see that the ordering of 7" U 7”(T") in comparison
to the ordering of the corresponding elements in 7'U w(7") corresponds to the following

123 45 6 7 8 9 10
3498 7 2516 10)°
Note that if we had used T"Un’(T”) in place of T"”"Ur” (T""), we would have just gotten the
identity permutation. Thus, only one of the 10! permutations would lead to (m, T3, T3)

permutation in Sig:

falling under the case from Example A.0.1, so the probability of falling under that case
would be ﬁ. The total number of valid cases falling under the supercase would be the
number of orderings such that 7 actually forms an occurrence of o7 and 75 actually
forms an occurrence of oy, which is some constant less than 10!.

It remains to show that the number of choices of the T;’s given 7w and a particular
supercase is a polynomial in n. Given a supercase, we can write 1" as a disjoint union
of cycles (ar az ... a;), where aj41 = mw(a;) for i =1,2,...,5 —1 and a1 = 7(a;), and
chains (by,ba,...,b;), where bj 1 = m(b;) for j = 1,2,...,i— 1 but 7= 1(by) ¢ T and
w(b;) ¢ T.

Example A.0.4. For (7, Ty, T») from Example A.0.1, the relevant cycles would be (2 8 10)
and (5 6), and the relevant chain would be (4,7,9,11).
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Then the number of ways to choose all the a;’s (without regard to their being in the
correct order specified by our case) is just

Hi”P(mi,ri),

i>1

where r; is the number of i-cycles in T and P(n, k) :=n(n—1)...(n—k+1), since there
are P(m;,r;) ways to choose which i-cycles get used, and i ways to rotate each i-cycle.
This is a polynomial whose degree equals the total number of elements of T contained
in the cycles, since m; has degree i and thus P(m;,r;) has degree ir;. Recall that we
are considering the chosen cycles to be in a particular order and to each be assigned a
“first” element, since then all |T"Um(T)|! possible orderings discussed above will actually
be treated as different.

Example A.0.5. For the supercase in Example A.0.2, we need to choose a 2-cycle and a
rotation of it, which can be done in 2msy ways, since there are msy 2-cycles to choose from
(2 - 2 for the conjugacy class C in our example). Then we need to choose a 3-cycle and
a rotation of it, which can be done in 3mg ways (3 - 2 in our example). Our polynomial
so far is thus 6moms, which has degree 2 + 3 = 5, since mo has degree 2 and mg3 has
degree 3.

Next, we will choose the chains in T' (again without regard to their being in the correct
order), which will be entirely determined by choosing the first element b; of each chain.
At each step where we are choosing the first element of a chain, the number of choices is

n — (# of values in the chosen cycles)

— (# of remaining values in cycles which are too short). (8)

If we are choosing a chain of length ¢, a cycle which is “too short” means a cycle of
length at most i. The first term of (8) is a polynomial of degree 1, the second term is
a constant, and the third term is a polynomial of degree at most 4, since it is a linear
combination of myq, ..., m;, and some constant term. Thus, at each step we multiply by
a polynomial whose degree is the number of elements currently being added to T

Example A.0.6. For the supercase in Example A.0.2, to count the number of ways to
choose the first element of the chain, we would first subtract the 5 elements already
used, and then subtract all the remaining elements in cycles of length at most 4, which
in this case is equivalent to just subtracting all elements in cycles of length at most 4.
Thus, this term works out to n — mj — 2mo — 3mg — 41my, so the full polynomial is

6mams(n —my — 2mg — 3mg — 4dmy).

This last factor has degree 4 because of the my term (corresponding to adding 4 new
elements to T'), so in total our polynomial has degree 2+ 344 = 9, which is precisely the
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number of elements of T 2 from the 2-cycle, 3 from the 3-cycle, and 4 from the chain of
length 4.

Example A.0.7. Suppose we instead wanted to choose a 5-cycle and a chain of length 3.
The number of ways to choose the 5-cycle would be 5ms. Then, the number of ways to
choose the chain would be n—5—mj —2msg —3mg, since the chain cannot be contained in
a cycle of length 1, 2, or 3, and it also cannot overlap with the particular 5-cycle already
chosen, even though in general it could be part of some 5-cycle. Thus, our polynomial
would be

5ms(n — 5 —my — 2mg — 3ms),
which has degree 5 + 3 = 8.

We may also need to subtract some terms to ensure that there are never multiple
chains that overlap with each other, including the last element of one chain mapping to
the first element of another chain. However, if the problem is the chains overlapping to
form an i-cycle for some i, we would need to subtract a term of the form im; (possibly
combined with a constant term to account for not overlapping with elements of chosen
cycles), and if the problem is the chains overlapping to form a chain of length i, we
subtract a term of the form n —my — 2msy — - -+ — @m;, again possibly with a constant
term added. In either case, we are subtracting a term of degree 7, and ¢ must be at most
the sum of the lengths of the chains, so the degree of the new term never exceeds the
sum of the lengths of the chains.

Example A.0.8. The issue of overlapping chains does not occur for the supercase from
Example A.0.2, since there was only one chain being chosen, but suppose instead that
we wanted to choose two chains, (b1, bs) of length 2 and (¢q, ¢z, c3) of length 3 (and no
cycles). The number of ways to choose the two chains independently would be

(n —mq —2mz)(n — my — 2ma — 3mg).
We can then list all the ways the chains might overlap, as cases we will need to subtract:

o They could both be part of the same chain of length 3, either (by = ¢1,ba = c2,¢3)
or (c1,b1 = ¢a,bs = ¢3), which could happen in 2(n — m; — 2my — 3ms) ways total.

e They could combine to form a chain of length 4, either (b1,bo = ¢1,¢2,¢3) or
(c1,c2,¢3 = b1, b2), which could happen in 2(n — my — 2mg — 3ms — 4my) ways.

o They could form a cycle of length 4, either (by by =c¢; c2 c3)or (¢1 ¢ ¢z =0by ba),
which could happen in 2 - 4m, ways.

o They could form a chain of length 5, (b1, ba, ¢1, ¢, ¢3) or (¢1, ca, 3, b1, ba), which could
happen in 2(n — my — 2mg — 3ms — 4my — 5ms) ways.
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o They could form a cycle of length 5, (by by ¢1 ¢2 ¢3), which could happen in 5my
ways.

Putting all this together, our polynomial would be

(n—mq —2ma)(n — my — 2mg — 3ms) — 2(n — my — 2mg — 3Mz)
—2(n —my — 2mg — 3mg — dmy)
—2-4dmy
—2(n —mq — 2mgy — 3mg — 4dmy — 5ms)

- 5m5.
It has degree 5, which is precisely the sum of the sizes of our two chains.

In general, the number of possible ways to choose T" in each case is a polynomial of
degree at most |T'| < |Ty|+ -+ |Tq| = k1 + - - - + kg, since very term has at most this

degree.
Then to find the expected number of successful choices of (T4,...,Ty) over 7 € C
for each case, we need to multiply the total number of choices for (71,...,T4) for the

corresponding supercase by the probability over all # € C that the chosen elements
are actually ordered in the way we want according to our particular case, which, as
noted above, is just 1/|T Un(T)|!l. Summing over all cases, our expected value is a linear
combination of polynomials of degree at most k1 + - -+ + kg, so we get a polynomial of
at most the same degree. O

A.2. Polynomiality of the character coefficients

It follows from Theorem 1.2 that for n > 2(ky + - - - + kq), the coefficients

agl,...,dr,n = XA\[n]> (Msy.....onn)
agree with polynomials a(’}h_”ad (n) in n of degree at most ki +- - -+ kg —|A|, by the same
logic as in [3]: the character polynomials M form a basis for the space of polynomials
inmy,..., Mg 4.4k, of degree at most ky + - - - + kg (where m; has degree i), and so we
can expand our polynomial in this basis to get coefficients which are polynomials in n
of the claimed degrees. Setting n > 2(ky + - - - + kq) ensures that this works, since then
all the relevant characters agree with the corresponding character polynomials.
However, we can also give a more direct argument for why these coefficients are
polynomials in n, which will also show that in fact the polynomial a} . (n) agrees
with the coefficient for n > kq + - -+ + kq + |A|, not just for n > 2(ky + - - - + kqg).

Proof of Theorem 1.3. We will begin by expanding the inner product in a similar manner
to the cases computed in Section 2, and then we will interpret each term of the resulting
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Aln]

sum as an expected value. We know that the character x can be written using the

character polynomial formula (Theorem 2.1, [8]) as some linear combination of terms of

the form ], (7). Thus, by linearity of inner products, we can write aj, . ., as a

linear combination of terms of the form

my
<}:[1 < T ) ’ Mal""v”d,n> .

By definition, the inner product of two class functions f and g on .S, is
1 -
(£.9) =~ > C| - £(C)g(C).
" C a conjugacy class in S,
In this case, the inner product can be expanded as
1 mq(C mao(C
* > o1 (MY (MDY b pan©),
n! 71 T
C' a conjugacy class in S,

Since My, ... o,n(C) is the average value of Ny (7)... Ny, (m) over m € C, so we can
rewrite this sum as

1 m1(C)\ [ma(C) 1
o > <|0|-( . g ...-HZNQ(W)...N%(W) :
" C a conjugacy class in S,, 1 2 el

which is equivalent to

1 mi (7T) mo (71')

2 (MY N ) )

TESR

This term represents the expected value

Eres, (# of tuples (Ry, Ra,...,T1,...,Ty) |R; is the union of r; i-cycles,

T; is an occurrence of 0;),

since (m;(_“)) represents the number of ways to choose a set R; of r; i-cycles in 7w and
N, (m) represent the number of ways to choose an occurrence T; of o; in m. To help
simplify notation, let

R=|JR;, T=T1U---UT; r=IRl=) ir;, s=IT\R|

i>1 i>1

so |[RUT|=r+s.
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We will consider cases based on how exactly the elements of R UT are ordered and
overlap with each other, as well as the precise ordering of their images. The approach to
specifying these cases will be explained via the following example.

Example A.0.9. Suppose n = 20, and that R consists of 2 fixed points, a 2-cycle, and a
3-cycle, sor; =2, ro =1, r3=1,r, =0fori >4, and r =71 + 2ry + 3r3 = 7. Let
01 = 312 and o9 = 31452. Then the expected number of tuples (R1, Ra, R3,T1,T>) over
all m € S, is

% ﬂ;ﬁ (m12(7r)> ma(m)ms(m) - Na1a () Na1a52 (7).

One possible choice of 7, R, and T would be

<124OG7 E 01415 1820)
3 2 [18] 4 M 8 1 ® O [19] 7 15 [20] 13 [14] 17 )"
with the two fixed points 2 and 10 in Ry shown in red and orange, the 2-cycle Ry = (5 16)
shown in green, the 3-cycle Rz = (9 11 12) shown in blue, the occurrence Ty = (5, 8,12)
of 01 = 312 shown circled, and the occurrence T = (3,10,13,17,19) of o3 = 31452
shown boxed. We get that R = {2,5,9,10,11,12,16} is the set of colored elements,
T = {3,5,8,10,12,13,17,19} is the set of boxed or circled elements, and s = |[T\R| =
I{3,8,13,17,19}] = 5.

Now to specify what case this choice of 7w, R, and T falls under, we would require that
the ordering of the colored, boxed, and circled elements be exactly as shown above. In
this case, writing out only those elements in order, we get

2 3] © ® o [0] 1 @ [13) 16 [17] [19].

So, this particular case would specify that when written in increasing order, the colored,
boxed, and circled numbers follow the pattern

MO ® [0

Also, the images of these boxed and circled numbers under 7 are

2@ ®© 1 M o s @m o

Relabeling the smallest of these numbers as 1, the second smallest as 2, the next smallest
as 3, and so on, we get

L[] @ @[5 7 O[] 2 [x2] [8].
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Thus, our sequence R U T of colored, boxed and circled numbers is an occurrence in 7
of the permutation

1 2 3 4 5 6 7 8 9 10 11 12
o— =
1 10 9 3 6 5 7 4 11 2 12 8.
The case we are in will also require that the boxed and circled numbers RUT always be
an occurrence in m of this particular permutation o.
For instance, the following permutation would also fall under the same case, since the

colored, boxed, and circled numbers are ordered in the same way as above, and they
form an occurrence in 7 of the same permutation o:

1 2] @ @ 6 7 8 [9] @ [12] [14] [15] 16 17 18 19 20
1 [u] @ @ 6 7 8 [9] O [15] [16] [12] 14 17 18 19 20/

Observe now that given the values of r1,79,73,... and 01,09, 03, ..., there are a fixed
number of such cases, no matter what n is, since the number of colored, boxed and circled
elements is bounded as n grows, and those are the only elements relevant to specifying
what a particular case looks like. The idea now is to find the expected value over m € S,,
of the number of pairs (R, T) falling under a particular case, and to then sum over all
cases. If we can show that the expected number of such pairs is a polynomial in n for
every case, it will follow that the total number of expected pairs over all cases is also a
polynomial in n.

For the purpose of computing these expected values, we will ignore what 7 does to
elements outside RUT, since this is not relevant and does not impact the expected value.
For each case, we will compute the expected value to be

# of successful choices for R, T, and their images under 7

total # of choices for where R UT could map under 7

Assuming |[RUT| = r + s for the particular case we are in, the denominator will be
P(n,r + s), since as 7 ranges over Sy, there are n(n —1)(n—2)=...(n—r—s+1) =
P(n,r + s) equally likely choices for the images of any r + s elements.

To compute the numerator, we will further subdivide each case into subcases based
on first choosing which elements of [n] are in R.

Example A.0.10. Using the first permutation from Example A.0.9, choosing a subcase
would mean choosing the colored elements, so the relevant subcase would be permuta-
tions that look like

1 234 O 6178 ) 13 14 15 17 18 19 20
* 2 % x (10 * * =* @O * x = % ok % )

Note that we already know which elements of R are boxed and circled and where all
elements of R map under 7, because this was specified by our case described in Ex-
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ample A.0.9. However, do not yet know exactly which other elements will be boxed or
circled or what their images will be under 7, although we do know that the pattern of
boxed and circled elements should be

O ® ¢ [ v O [ o+ [

and that these elements should form an occurrence in 7 of the permutation o from
Example A.0.9. Note that in counting the number of possibilities, we will ignore where
elements which are not boxed, circled, or colored map under 7. Thus, in the case of our
permutation from Example A.0.9, the relevant information would be

12 3] 4 O 6 7 ® @ [13] 14 15 [17] 18 [19] 20

vo[8) @+ - ® O ol « « o 2] » [ )

Let us now count the number of choices under this subcase for the remaining boxed
and circled elements and their images (the above being one such possibility). First we
choose the elements themselves. We need to choose one of 3 and 4 to be boxed, one of

6, 7, and 8 to be circled, one of 13, 14, and 15 to be boxed, and two of 17, 18, 19, and
20 to be boxed. In total, this gives

2\ (3\ (3\ /4

1/\1/\1/\2
choices so far. Next, we need to choose the images of these elements. To match the
ordering of the images shown above, the image of the 2nd circled element must be
chosen from among 6, 7, and 8, the image of the final boxed element must be chosen

from among 13, 14, and 15, and the images of the remaining three boxed elements must
be chosen from among 17, 18, 19, and 20. Thus, the total number of ways to choose the

DG

Once these choices are made, all the relevant information will be determined, since we

images of these elements is

do not care where the remaining elements map under 7.

We will now generalize this example. Given a particular case (before specifying a
subcase), there are numbers ji, jo, ..., jr4+1 such that the list of elements of RUT in
increasing order looks like

element of R element of R ... element of R .

Example A.0.11. Counting the number of boxed or circled elements between consecutive
colored elements in Example A.0.9 (which has r = 7 for the 7 colored elements), we find
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j1 = 0 since there are no boxed or circled elements before the 2, j, = 1 because there is
one boxed element between the 2 and the (3), j3 = 1 because there is one boxed element
between the (O) and the U, j; = js5 = js = 0, jv = 1 since there is one boxed element
between the ((2) and the 16, and jg = 2 since there are 2 boxed elements after the

Similarly, there are numbers ¢1, fs, ..., ¢, 11 so that the list of elements of 7(RUT) =
RU(T) in increasing order looks like

element of R element of R ... element of R .

Example A.0.12. In Example A.0.9, we get £; = ¢5 = 0 since none of the boxed or circled

elements have images less than (O), £3 = 1 since one circled element has image between

(@ and 0, £y = l5 = lg = 0, {7 = 1 since one boxed element has image between (2) and
, and fg = 3 since 3 boxed elements have image greater than

Note that the j;’s and ¢;’s are determined by the ordering of the elements of RUT
specified by our particular case (without regard yet to which subcase we are in), and
that

it =4+l = [T\R| = s.

Next, once we have specified a subcase, there are numbers nq,...,n,11 such that the
full list 1,...,n looks like

ny terms element of R mngy terms element of R ... element of R n,y; terms,
and these numbers satisfy
ny+--+npp1=n-—r.
Example A.0.13. For the subcase in Example A.0.10, we get ny = 1 (the 1), ny = 2 (the
3 and 4), ng = 3 (the 6, 7, and 8), ngy = ns = ng = 0, ny = 3 (the 13, 14, and 15), and

ng =4 (the 17, 18, 19, and 20).

Now we can do a calculation like the one in Example A.0.10. The total number of
ways we could choose T\ R (the non-colored boxed and circled elements) and their images

;) 1(;)

=1 i=1

given our particular subcase is

since in the ith block we have n; elements to choose from, and we must choose j; of
them to be in T and ¢; of them to be in 7(T). (One can check that this matches the
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computation in Example A.0.10 for that particular subcase.) Summing over all choices for
the n;’s (subcases) and then dividing by the denominator P(n,r+ s) that we determined
earlier, the expected value of m € S, for the number of choices of R, T, and their images
that work for a particular case is

r+1

n(n—l)...(rlz—r—s+1) 2 H(?)(Z) (9)

ni+nz+..nep1=n—r i=1

This is a rational function in n, and to show that it is a polynomial, it suffices to show
that all the roots of the denominator, namely, n = 0,1,...,r+s— 1, are also roots of the
numerator. This holds because the numerator counts a particular set of ways to choose
two sets of r + s elements from among the elements of [n], and if n < r + s, that would
mean choosing more elements than we have available, so the numerator must be 0. Thus,
we get a polynomial in every case, so summing over all cases, we also get a polynomial.
Finally, summing over all terms of the form

% 2 (m;?)) (miiﬂ)> co. Ny, (n)... N, (m)

" wEeS,

from our expanded inner product (x*", My, .. o4n), We get that a(él’.__,[,d’n is a polyno-
mial as well. We write aj, , (n) for this polynomial.

This argument is valid as long as we are not dividing by 0, which is the case as long
as n > 7 + 5. Since 7 < |\ for all terms in the character polynomial for y*™ and
s < ki+ -+ kq in all cases, it suffices to take n > k1 + -+ + kg + |A| to ensure that

n >r+ s, and therefore that ay, n) = a) O

,~~7<7d( O150000d,M"

Appendix B. Proof of Lemma 2.6
The goal of this appendix is to prove Lemma 2.6, which states that for n > k,

2k—7" n—2=L
E(n, k,r) = (r — D)2k — r)!! <k - 72“>

Our proof of this formula is structured as follows:

1. Use generating functions to prove the statement for » = 1 (Claim 1).
2. Use induction on n together with Claim 1 to prove the statement in general (Claim 2).

Our proof will make use of the following two generating functions:

Definition B.1. Let F(z,y) and G(z,y) be the generating functions

Fe = X () e,

n,k>0
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1 2n 2n, 2k
G(x,y)f%Z <2k_1):r Y

From Lemma 2.5, the E(n, k,r)’s can be expressed in terms of coefficients of powers
of F(x,y) as

Z P(n,k)E(n, k,r)2*"y** = (xy)? F(z,y) .
n,k>0

Our second claim will give a closed form for E(n,k, 1), or equivalently, a relationship
between these two generating functions.

Claim 1. The formula holds for r = 1. Equivalently,

bl n—3 k=1(2n — n—3)...(2n —
E(n,k, 1) = — ( )_2 (2n —1)(2n —3)...(2n— 2k +3)

2
2k — DN \Ek -1 (2k — 1)!
1 2n
= . 10
2P(n, k) (2k — 1) (10)
In terms of generating functions, this can be written as
2P F(2,y)* = G(a,y). (11)

Proof. First we show that all these claims are equivalent. Multiplying out the factorials
and canceling common terms, we get

k=1 p 1\ k=1 n—Yn—-3)...(n—k+32)
(2k1)!!(k1)‘(2k1)(2k3)...3~1' (k—1)(k—2)...2-1
_ 2k—1 (2n—1)(2n—3)...(2n — 2k + 3)
T (2k—1)(2k-3)...3-1 (2k —2)(2k —4)...4-2
2 l@n—1)(2n-3)...(2n — 2k + 3)
B (2k —1)!
_2n(2n—2)...2n -2k +2) (2n—1)(2n—3)...(2n — 2k + 3)
2nn—1)...(n—k+1) (2k — 1)!

=27 (o 1)

This shows that the first three expressions are equivalent. Thus, we will prove the third
expression. By Lemma 2.5, the desired statement can be rewritten as

¥ s (1)) a0

ni+ne=n—1 ki+ko=k
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Rewriting this in terms of the generating functions from Definition B.1, we can see that
this is equivalent to (11). To show (11), we will compute closed forms for F(z,y) and
G(z,y), and show that they match. First, we compute a closed form for G(z, y) by writing
it as a difference of two geometric series and then putting the resulting two fractions over
a common denominator:

e =53y ()

n>0
Y o (Y +1)* = (y—1)>"
~ 2 ngoz 2
Yy 1 1
A\l —22(y+1)2 1 —a2(y —1)2
Yy 1 1
4\l — 22 —22y2 — 222y 1 — 22 — 222 + 222y
Y 41:2y
T4 (1 — 22— 222)2 — (22242)2

2242

T (122 — 2%2)2 — (222y%)2°

It remains to compute a closed form for F'(z,y). By Pascal’s identity, for all n > 1 we

have
n 27 n—1 n n—1 27 n—1 2+2 n—1\/n-—1 n n—1\2
k) \\k—-1 k S \k-1 E—1 k k ’
so we get
_ n—1 2n 2k n—1 2n, 2k
F(;my)—l—i—z (k—l) +Z< ) Y
n,k>1 n,k>1

-1\ /n-1
B
n>1,k>0
:1+Z() 2n+22k+2+2<) 2n+22k

n,k>0 n,k>0
-1 -1
19 Z (n )(”k >x2ny2k
n>1,k>0
-1\ /n—-1
-1 2 2 e 9 n n, 2k
+ (@ + ) F(z,y) +2 ) <k1 A Ea
n>1,k>0

Rearranging gives
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(1-2? — 2P F(z,y) = 1+ 2% S ( " )(Z)ﬁnly%? (12)

k—1
n>1,k>0

The generating function for the Narayana numbers (see [9]) is known to be

Z 1< n )<n> on, ok _ 1= 2% — 2%y + /1 - 222(1 + %) + 27(1 — y?)?
j— J/‘ y = .

n\k—1/\k 22292
n>1,k>0

Multiplying by 3? and taking the derivative with respect to = gives

n n 1 op 1 d 1 1492
902 n-1 2k—2 _ _ + & [ L 1— )2
Y Z (k‘ - 1) (k:)x Y a3 * da V 4at 22 +1-y)

n>1,k>0
N NI £
_ 1 14 1
3 2 — )2
X 9 1 1+y + (1 y)
4zt 22 4

B 1 1 1—x2—x2y2
A\ VIR e - pP )

Plugging this into (12) gives

1 1— 22 — 22y?
(1—:52—3323/2)}7(%9):1_553'_3 1- 2 2 4 2)2 |’
x V1=222(1+y?) + 242 —y?)
so we have
1
F(x,y) = 3 1 22
V1I=222(1+42) + 2%(1 — ?)
and thus
2,2
2 2 2 rY
F pr—
2y F(z,y) 1-222(1 1 42) + #0(1 — y2)2
22y

1— 222 — 22292 + 2yt — 20%y2 + 24
B 222
T P
= G(z,y),

which completes the proof. O

Now for our third part of our proof, we will define an additional function E'(n, k,r)
and simultaneously prove formulas for both E(n, k,r) and E’(n, k,r) by induction on n.
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Definition B.2. Let E’(n, k,r) denote the sum

AU 1/2(n—i—1)
P 3 PEGsr =25 (50T )

4,521

E'(n,k,r) =

Claim 2. E(n,k,r) and E'(n,k,r) are given by the formulas

ok—r n—3
E(n,k,r) = (r — D2k — r)!! (k - 7"),

E'(n,k,r) = 2 n-g
T =Nk —r)\E+1 1)

Proof. We will prove both formulas simultaneously by induction on n, and we will also
assume in the inductive step that the formulas are known to hold for smaller values of k
and 7. Our base case will cover all values of k and r assuming that n is minimal given &

and r.

We will first find recursive formulas expressing each of E(n,k,r) and E'(n,k,r) in
terms of smaller values ((13) and (14)). Using our generating functions from Defini-

tion B.1 and equation (11) relating them,

> P(n,k)E(n,k,r)2z*"y** = F(z,y) > P(n,k)E(n,k,r —2)z*"y>*

n,k>0 n,k>0

= 2%y°G(z,y) Z P(n,k)E(n, k,r — 2)x*"y*".

n,k>0
Since G(z,y) = Zn7k20 %(gzﬁl)x%y%, this can be rewritten as
P(n,k)E(n, k,r) ZPZ E(i,j,r—2) L 2n=i=1)
= DEG.S o\2k—j-1)—1)

Using Pascal’s identity twice,
2n—2i—2\ (2n—2i-3 n 2n—21—-3
2k—2j—-3) \2k—2j—4 2k — 25 —2
2n—2i—4 2n —2i—4 2n —2i—4
= ) +2 . + . .
2k —2j — 5 2k —2j —4 2k — 2j — 3
Thus, our right hand side splits into

, 1/ 2(n—i—2
P(?’Lk nkT ZPZ] Z]ur_2)§<2(k(_.7_2)11>

i,j>1

+ > P(i j)E(i,j,r —2)- %(2(1: - j - 2))

4,521
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e oy L(2(n—i—2)
+2MZ>1P(ZJ)E(Z7J7T 2) 2<2(k—j—1))'

From the recurrence for E(n, k,r) and the definition of E’(n, k,r), we can rewrite this
as

P(n,k)E(n,k,r)=Pn—1,k—1)E(n—1,k—1,r)+ P(n—1,k)E(n—1,k,r)
+2P(n—1,k—1)E'(n—1,k—1,r).

Dividing by P(n — 1,k — 1) on both sides, we get
nE(n,k,r)=En—1,k—1,7r)+(n—k)E(n—1,k,7)+2E'(n—1,k—1,7). (13)

We can use a similar argument to get a recurrence for E'(n, k,r). We have to take out

the term with a (g) in it, since we cannot split (8) using Pascal’s identity. We get

s s (21
+ Z P(i j)E(, j,r—2)- % @EZ—; - i;)
+2 > P B, jr=2)- % (2(2(ﬁ jil)Qz 1)'

Applying the recurrence to each of these sums and then dividing by P(n — 1,k — 1), we
get the recurrence

1
nE'(n,k,r) = §E(n— Lk—1,r—2)+E'(n—1L,k—1,7r)+(n—k)E'(n—1,k,7)

+2(n—k)E(n—1,k,7). (14)
We can now proceed with the induction:

Base case: For our base case, the smallest that n can be for a given k to make E(n,k, )
nonzero is if n = k, since otherwise there cannot be any increasing subsequences of
length k. In this case, we get E(k,k,r) = %(f) The only way to have an increasing
subsequence of length k& when n = k is if the permutation is the identity (which happens
with probability %) In that case every subset of size r is a set of r fixed points contained
in the subsequence, and there are (f) such subsets. To check that our formula gives the

same result in this case, we can plug in n = k to get
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P~ L) (5 +1)
(r— N2k — Nk —r)!

2k —7r)2k—r—2)...(r+2)
(r=1)(r=3)...]-[2k=r)...(r+2)r(r—2)...]- (k—7)!

_ ﬁ _ %(ﬁ) — Bk, k, 7).

By the above calculation and (13) together with Pascal’s identity, we get

(k+D)Ek+1,k+1,7) — E(k, k,7)

E'(k,k,r) = 5
kA1) mmm () -8l &) L
N 2 2 2 (=D (k+1—1)
1
Tlr-Dr -3 [k -2k —r—2)...]

. 2k —r)2k—r—2)...
2-[(r=2)(r—4)...]- (k+1—1r)!
1
Tl —3).. ] (k1) 2k —r—2)...]
_ (k-5 (k—5—1)...
225715 - 1)(5-2)...] - (k+1—7)

_ 2T k—3

=Nk - \k+1—1)"
This completes the base case.
Inductive step: For the inductive hypothesis, assume both formulas hold when n is
strictly smaller and k and r are weakly smaller than their current values. First we will

prove that the formula for E(n, k,r) holds. By the inductive hypothesis, we can plug our
formulas into (13) to give

nE(n,k,r)=En—1,k—1,r)+(n—k)E(n—1,k,r)+2E'(n— 1,k —1,7)

_ T ek D) 2 te(n )
(r = DNk —2 — )l (r — N2k — 7)!! (r — D2k — r)!!

2 (26 =) (2420 20 ) (1) 202k - ) ()
B (r— D2k — )1l :

Rearranging and using Pascal’s identity, we get

2 En(" ) + 2k - (G E) 20k - ) (")

nE(n, k) = (r — 1)11(2k — r)l! =
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1
1

:§> + (- k+ 505

B 2k=T . n—g
=Dk -\ k1)
Dividing by n shows that the formula for E(n, k,r) holds for the current value of n

It remains to show prove that the formula for E'(n,k,r) holds as well. Using the
inductive hypothesis to plug our formulas into (14), we get

1
—§E(n—1,k—1r— 2)+ E'(n—1,k—1,r)
_l’_

(n—K)E'(n—1,k,r)+2(n—k)E(n —1,k,7)

Lok gh-r=1(n-1-5)
~ (r=3)1(2k —7)! (r—l)..(2k:—2—r)!!
27— () | 22— R(LE)
(r— N2k — ! (r— N2k —r)!!
_ (-0 B DO - WG - 00 E)
(r =12k — )N

Again, rearranging and using Pascal’s identity, we get

) ok—r ((r — 1)(,:@3) + ((n —r4+ 1)(”;:5) +(n—r+ 1)(7;&:?)))
nt (n,k,r) = (r — )12k — )]
(k1m0 - =k 5 - ()
(r—1DN(2k —r)!!

2k=r ((7" - 1)(!?13) +(n—r+ (52 r))
(r—1DN2k —r!

T - f;u(r% =l (’fili’")

Dividing by n shows that E’(n, k,r) matches the claimed formula, which completes the
proof. O
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