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Let Nσ(π) denote the number of occurrences of a permutation 
pattern σ ∈ Sk in a permutation π ∈ Sn. Gaetz and Ryba 
[3] showed using partition algebras that the d-th moment 
Mσ,d,n(π) of Nσ on the conjugacy class of π is given by a 
polynomial in n, m1, . . . , mdk, where mi denotes the number 
of i-cycles of π. They also showed that the coefficient 
〈χλ[n], Mσ,d,n〉 agrees with a polynomial aλ

σ,d(n) in n. This 
work is motivated by the conjecture that when σ = idk is the 
identity permutation, all of these coefficients are nonnegative. 
We directly compute closed forms for the polynomials aλ

idk
(n)

in the cases λ = (1), (1, 1), and (2), and use this to verify 
the positivity conjecture for those cases by showing that the 
polynomials are real-rooted with all roots less than k. We 
also study the case a(1)

σ (n), for which we give a formula for 
the polynomials and their leading coefficients.
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1. Introduction

1.1. Permutation pattern polynomials

Given two permutations π = π(1) . . . π(n) in the symmetric group Sn and σ =
σ(1) . . . σ(k) ∈ Sk, we say that π contains the pattern σ if there is a sequence 
i1, . . . , ik ∈ [n] with i1 < · · · < ik such that π(i1), . . . , π(ik) are ordered according 
to σ, i.e. π(ia) > π(ib) if and only if σ(a) > σ(b). Such a sequence (i1, . . . , ik) is an 
occurrence of σ in π.

Let Nσ(π) denote the number of occurrences of σ in π. If Nσ(π) = 0, then π is said 
to avoid σ. Beginning with the work of Knuth [7], the study of permutation patterns 
and pattern avoidance has grown into a very active subfield of combinatorics (see [2]). 
Permutation patterns have been found to play an important role in many settings where 
algebraic or geometric objects are indexed by permutations, being ubiquitous in the 
study of Schubert varieties, Bruhat order, and Kazhdan–Lusztig polynomials [1].

The distribution of permutation pattern occurrences has been studied by several 
authors. For example, it was shown by Janson–Nakamura–Zeilberger [6] that the dis-
tribution of Nσ on uniformly random permutations from Sn is asymptotically normal, 
and by Zeilberger that the moments of this distribution are given by polynomials in n
[11]. Zeilberger also used Maple code to compute a number of these polynomials.

More recently, efforts have been made to understand the distribution of pattern oc-
currences on conjugacy classes in Sn using the character theory of the symmetric group. 
Hultman [5] and Gill [4] considered the mean of Nσ on conjugacy classes for the cases 
k = 2 and k = 3, respectively. The first author and Ryba [3] used a new approach 
involving partition algebras to prove that all moments of Nσ on conjugacy classes are 
polynomials in n, m1, . . . , mdk (cf. Theorem 1.2), and concluded from this that the sup-
ports of these characters stabilize as n → ∞, with the coefficients of irreducible characters 
given by certain polynomials aλ

σ,d(n) which are the main object of study in this paper 
(cf. Theorem 1.3).

Definition 1.1. Following the notation of [3], let Mσ,d,n(π) be the d-th moment of Nσ on 
the conjugacy class Cπ containing π, namely,

Mσ,d,n(π) = 1
|Cπ|

∑
π′∈Cπ

Nd
σ(π′).

More generally, given d patterns σ1, . . . , σd, with σi ∈ Ski
, let Mσ1,...,σd,n(π) be the 

expected value of the product Nσ1 . . . Nσd
on the conjugacy class of π, that is,

Mσ1,...,σd,n(π) = 1
|Cπ|

∑
′

Nσ1(π′) . . . Nσd
(π′).
π ∈Cπ
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Since Mσ1,...,σd,n is a class function on Sn, we can expand it in the basis of irreducible 
symmetric group characters χλ, where λ is a partition of n. For a partition λ = (λ1 ≥
· · · ≥ λi) with |λ| < n we use λ[n] to denote the partition (n − |λ|, λ1, . . . , λi) of n, when 
this is well-defined. Theorems 1.2 and 1.3 below are extensions of the main theorem of 
[3] and will be proven in Appendix A.

Theorem 1.2 (cf. Gaetz-Ryba [3], Theorem 1.1(a)). Given any permutation patterns 
σ1, . . . , σd (not necessarily distinct and not necessarily the same size) with σi ∈ Ski

, 
Mσ1,...,σd,n is a polynomial in the variables n, m1, . . . , mk1+···+kd

of degree at most 
k1 + · · · + kd, where n has degree 1 and mi has degree i.

Theorem 1.3 (cf. Gaetz-Ryba [3], Theorem 1.1(b)). Fix patterns σ1 ∈ Sk1 , . . . , σd ∈ Skd
. 

Then

αλ
σ1,...,σd,n := 〈χλ[n], Mσ1,...,σd,n〉

agrees for all n ≥ k1 + · · · + kd + |λ| with a polynomial aλ
σ1,...,σd

(n) in n of degree at most 
k1 + · · · + kd − |λ|. In particular, this coefficient is zero if |λ| > k1 + · · · + kd.

The polynomials aλ
σ1,...,σd

(n) will be our main object of study in this paper. For 
convenience, when σ1 = · · · = σd, we write aλ

σ,d and for aλ
σ1,...,σd

and we write simply aλ
σ

for aλ
σ,1. We also write Mσ,n for Mσ,1,n.

1.2. A positivity conjecture

Let idk = 12 . . . k denote the identity permutation in Sk, so that Nidk
(π) counts 

increasing subsequences of length k in π. The following surprising positivity conjecture 
is the main motivation of this work.

Conjecture 1.4. For all k, n ∈ N, Midk,n is a nonnegative linear combination of ir-
reducible symmetric group characters. Furthermore, the polynomials aλ

idk
(n) are real-

rooted, with all roots less than k.

Our main theorem establishes Conjecture 1.4 for the coefficients 〈χλ[n], Midk,n〉 with 
|λ| ≤ 2. This is accomplished by giving closed formulas for the coefficients in question in 
Section 2.

Theorem 1.5. Conjecture 1.4 holds for λ = ∅, (1), (2), and (1, 1).

Remark 1.6. For all other patterns idk 
= σ ∈ Sk, some coefficient 〈χμ, Mσ,n〉 must be 
negative, since Mσ,n(idn) = 0.

Conjecture 1.4 and Theorem 1.5 suggest the following natural question:
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Question 1.7. Is there a natural Sn-module whose character is a multiple of Midk,n?

1.3. Outline

This paper is organized as follows: In Section 2, we compute closed forms for the 
polynomials a(1)

idk
, a(1,1)

idk
, and a(2)

idk
, and verify our positivity conjecture (Conjecture 1.4) for 

these cases. In Section 3, we study the case a(1)
σ (n) for general σ and give formulas for the 

polynomials and their leading coefficients (since leading coefficients determine positivity 
for large n). In Section 4, we discuss potential pathways to prove Conjecture 1.4 more 
generally, as well as several other conjectures and open questions. Finally, in Appendix A, 
we generalize and give an alternate proof of the polynomiality results of Gaetz and 
Ryba [3] by describing a process for computing the polynomials in each case, and in 
Appendix B, we prove a key technical lemma that is used for our main formulas in 
Section 2.

2. The cases a∅
idk

(n), a(1)
idk

(n), a(2)
idk

(n), and a(1,1)
idk

(n)

It follows from Theorem 1.3 that for n ≥ 2k, the coefficients αλ
idk,n = 〈χλ[n], Midk,n〉

agree with polynomials aλ
idk

(n) in n of degree at most k − |λ|. Our goal in this section 

will be to compute closed forms for the polynomials a(1)
idk

(n), a(2)
idk

(n), and a(1,1)
idk

(n) (The-
orem 2.7), and to verify Conjecture 1.4 for these cases (Theorem 1.5). Our approach will 
be to express each of these polynomials in terms of certain expected values E(n, k, r)
(Lemmas 2.3 and 2.4), for which we will then compute a closed form (Lemma 2.6). To 
do so, we will make use of the character polynomial formulas, which express the sym-
metric group characters χλ[n](π) as polynomials dependent only on λ and the cycle type 
of π:

Theorem 2.1 (see Macdonald [8]). Let mi(π) denote the number of i-cycles in π. Then 
provided that n ≥ |λ|, the character χλ[n] is a polynomial in m1, . . . , m|λ| of degree at 
most |λ|, where |λ| = λ1 + · · · + λi and mi has degree i. Specifically, we can write

χλ[n] =
∑

|ρ|≤|λ|
F λ

ρ

(
m1

r1

)(
m2

r2

)
. . . ,

where ρ = 1r12r2 . . . and

F λ
ρ = (−1)|λ|−|ρ|

∑
μ

χμ
ρ ,

where the sum is taken over all μ with |μ| = |ρ| such that |λ| − |ρ| boxes can be added to 
μ to get λ with no two boxes added in the same row.
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The first few character polynomials, which we will make use of, are:

χ(n) = 1, (1)

χ(n−1,1) = m1 − 1, (2)

χ(n−2,2) =
(

m1

2

)
+ m2 − m1, (3)

χ(n−2,1,1) =
(

m1

2

)
− m2 − m1 + 1. (4)

In the proof of Theorem 2.7, we will use the above formulas to break each inner product 
into a linear combination of simpler inner products, which we will then interpret in terms 
of expected values, and our lemmas will allow us to calculate each expected value.

2.1. Preliminary lemmas

Definition 2.2. Let E(n, k, r) denote the expected value over π ∈ Sn of the number of 
ordered pairs (R, T ), where R is an unordered set of r fixed points in π and T is an 
increasing subsequence of length k containing all of those fixed points (T ⊇ R).

Knowing E(n, k, r) will give us formulas for our polynomials a
(1)
idk

(n), a
(2)
idk

(n), and 

a
(1,1)
idk

(n) because of the character polynomial formulas (1), (2), (3), and (4), together 
with the following two lemmas:

Lemma 2.3. The inner product of 
(

m1
r

)
with Midk,n is given by

〈(
m1

r

)
, Midk,n

〉
=

r∑
j=0

E(n − r + j, k, j)
(r − j)! .

Proof. First we will interpret the inner product as an expected value. By definition, the 
inner product of two class functions f and g on Sn is

〈f, g〉 = 1
n!

∑
C a conjugacy class in Sn

|C| · f(C)g(C).

So, our inner product here can be expanded as

1
n!

∑
C a conjugacy class in Sn

|C| ·
(

m1(C)
r

)
Midk,n(C).

Since Midk,n(C) is the average value of Nidk,n(π) over π ∈ C, this sum is equal to

1
n!

∑ (
1

|C|
∑

|C| ·
(

m1(C)
r

)
Nidk,n(π)

)
,

C a conjugacy class in Sn π∈C
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which simplifies to

1
n!

∑
π∈Sn

(
m1(π)

r

)
Nidk

(π).

The 
(

m1(π)
r

)
represents the number of ways to choose a set R consisting of r of the 

m1(π) fixed points in π, and the Nidk
(π) represents the number of occurrences T of idk

in π, or equivalently, the number of increasing subsequences of length k. Thus, this sum 
can be interpreted as the expected value over π ∈ Sn of the number of ordered pairs 
(R, T ) consisting of an unordered set R of r fixed points in π together with a length k
increasing subsequence T in π. Note that R need not contain all fixed points of π, and 
unlike in Definition 2.2, the fixed points in R need not also be in T .

To get the right side, we consider cases based on j := |R ∩ T |, the number of chosen 
fixed points contained in the subsequence. That is, we break the expected value into a 
sum from j = 0 to r, of the expected value over π ∈ Sn of the number of pairs consisting 
of r fixed points in π and an increasing length k subsequence in π containing exactly j
of those fixed points:

Eπ∈Sn
(total # of pairs (R, T )) =

r∑
j=0

Eπ∈Sn
(# of pairs (R, T ) s.t. |R ∩ T | = j).

Note that by definition, E(n, k, r) represents the r = j term on the right side, since in 
that case we require all r fixed points to also be in the subsequence.

If exactly j of the fixed points are in the subsequence, we can imagine removing the 
other r − j fixed points and then relabeling the remaining elements to get a permutation 
π′ ∈ Sn−r+j together with a set R′ of j fixed points in π′ and an increasing subsequence 
T ′ in π′ of length k containing all those fixed points. The mapping is explained via the 
example below.

Example 2.3.1. Let n = 9, r = 4, j = 1, and k = 3, and let π be the permutation shown 
below, with the boxed numbers representing the increasing subsequence T = (2, 5, 7)
of length k = 3, and the red numbers2 representing the r = 4 chosen fixed points, 
R = {1, 2, 6, 9}:

π =
(

1 2 3 4 5 6 7 8 9
1 2 5 3 4 6 7 8 9

)
.

One of the red fixed points, namely 2, is also in the subsequence, so R ∩ T = {2} is a set 
of size j = 1. We will now remove the r − j = 3 fixed points which are not contained in 
the subsequence, namely 1, 6, and 9:

2 For colors see the web version of the article.
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(
2 3 4 5 7 8
2 5 3 4 7 8

)
.

We are left with a permutation on the set {2, 3, 4, 5, 7, 8} of size n −r+j = 6. By mapping 
these 6 elements to the numbers {1, 2, 3, 4, 5, 6} in increasing order (2 
→ 1, 3 
→ 2, 4 
→
3, 5 
→ 4, 7 
→ 5, 8 
→ 6), we get a permutation on the set {1, 2, 3, 4, 5, 6}:

π′ =
(

1 2 3 4 5 6
1 4 2 3 5 6

)
.

Thus, this process results in a permutation π′ ∈ S6 = Sn−r+j , together with a subse-
quence T ′ = (1, 4, 5) (the image of the original subsequence) of length k = 3, and a new 
set of chosen fixed points R′ = {1}, of size j = 1. The key is that now all fixed points 
are contained in the subsequence, since we removed the ones that were not.

Now, by definition, the expected value over all π′ ∈ Sn−r+j of the number ordered 
pairs (R′, T ′), where R′ is a set of j fixed points in π′ and T ′ an increasing length k

subsequence containing all of them, is E(n − r + j, k, j). For instance, in the example 
above, E(6, 3, 1) would be the expected value over π′ ∈ S6 of the number of pairs (R′, T ′)
with k = |T ′| = 3, j = |R′| = 1, and R′ ⊆ T ′.

It remains to “add back” the r−j removed fixed points to find the expected value over 
all π ∈ Sn of the number of pairs (R, T ) with R ∩ T = j. Each permutation π′ (together 
with the corresponding R′ and T ′) could have come from 

(
n

r−j

)
different permutations π

by removing fixed r−j fixed points, because we could choose any subset of r−j elements 
of [n] to be the set R\T of the r − j removed fixed points that we add back, as shown 
in the example below.

Example 2.3.2. In our previous example, we could have chosen any r − j = 3 elements of 
{1, 2, . . . , 9} to be the 3 removed fixed points, instead of choosing {1, 6, 9} as above. For 
instance, suppose we choose R\T = {3, 4, 7} to be the 3 removed fixed points. Then, to 
get from the same π′, R′, and T ′ as in the previous example to a different π, R, and T , we 
first turn π′ into a corresponding permutation on the set {1, 2, 5, 6, 8, 9} of all elements 
of [n] except 3, 4, and 7:

(
1 2 5 6 8 9
1 6 2 5 8 9

)
.

Then, we insert the three removed fixed points 3, 4, and 7 to get a different original 
permutation π:

π =
(

1 2 3 4 5 6 7 8 9
1 6 3 4 2 5 7 8 9

)
.

In this case, we would get R = {1, 3, 4, 7} and T = (1, 6, 8).
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Since there are 
(

n
r−j

)
ways to choose the r − j elements of R\T , each choice of π′, R′, 

and T ′ corresponds to 
(

n
r−j

)
choices of π, R, and T , so we need to multiply by 

(
n

r−j

)
in going from the expected value over π′ ∈ Sn−r+j to the expected value over π ∈ Sn. 
However, we also need to multiply by (n−r+j)!

n! , since taking an expected value over 
Sn−r+j involves dividing by (n − r + j)! for the (n − r + j)! possible values of π′, while 
taking an expected value over Sn involves dividing by n! for the n! possible values of π. 
Thus, in total we multiply by 

(
n

r−j

)
· (n−r+j)!

n! = 1
(r−j)! . The expected value over π ∈ Sn

of the number of pairs (R, S) with |R ∩ T | = j is thus 1
(r−j)! E(n − r + j, k, j). Summing 

over j gives the claimed formula. �
Lemma 2.4. The inner product of m2 with Midk,n is given by

〈m2, Midk,n〉 = 1
2E(n − 2, k, 0) + 1

k

(
1 − 1

n

)
E(n − 2, k − 1, 0) + 1

n
E(n − 1, k, 1).

Proof. By similar reasoning to the start of the proof of Lemma 2.3, this inner product 
can be rewritten as

1
n!

∑
π∈Sn

m2(π)Nidk
(π).

Since m2(π) is the number of 2-cycles in π and Nidk
(π) is the number of increasing 

subsequences in π, this inner product represents the expected value over π ∈ Sn of the 
number of pairs ((i j), T ) consisting of a 2-cycle (i j) in π and an increasing subsequence 
T of length k in π. We will now consider cases based on the overlap between the 2-
cycle and T . It is impossible for both i and j to be contained in T , since if i < j then 
π(i) = j > i = π(j).

Case 1: i, j /∈ T .
If i, j /∈ T , then we can remove i and j in the same manner as in Example 2.3.1 to get 

a permutation π′ ∈ Sn−2 together with an increasing subsequence T ′ in π′ of length k.

Example 2.4.1. Let n = 8 and k = 4, and let π be the permutation below, with the 
boxed numbers indicating the increasing subsequence T = (2, 3, 6, 8) and the red numbers 
indicating the 2-cycle (i j) = (1 4) (which does not overlap with T ):

π =
(

1 2 3 4 5 6 7 8
4 2 5 1 3 7 6 8

)
.

Removing 1 and 4 gives

(
2 3 5 6 7 8

)
,

2 5 3 7 6 8
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and then relabeling to get a permutation in Sn−2 = S6 gives

π′ =
(

1 2 3 4 5 6
1 3 2 5 4 6

)
.

The corresponding increasing subsequence in π′ is T ′ = (1, 2, 4, 6).

The expected value over π′ ∈ Sn−2 of the number of choices for the increasing sub-
sequence T ′ of length k is E(n − 2, k, 0), since π′ need not contain any chosen fixed 
points. Now to translate back to π, we need to add back in the 2-cycle (i j). Like in 
Example 2.3.2, we can get a pair (π, T ) given any of the 

(
n
2
)

choices for the pair (i j), 
and any choice of the pair (π′, T ′). Thus, we need to multiply by 

(
n
2
)

in going from the 
expected value over π′ ∈ Sn−2 to the expected value over π ∈ Sn. We also need to mul-
tiply by (n−2)!

n! since the expected value over Sn involves a 1
n! while the expected value 

over Sn−1 involves a 1
(n−2)! . Thus, in total, we multiply by 

(
n
2
)

· (n−2)!
n! = 1

2 , which gives 
the 1

2E(n − 2, k, 0) term.

Case 2: i ∈ T and j 
= i + 1.
In this case, we can imagine removing both i and j and then relabeling to get a new 

permutation π′ ∈ Sn−2 with a corresponding increasing subsequence T ′ of length k − 1. 
(We will explain soon the reason for the restriction j 
= i + 1.)

Example 2.4.2. Choose the same π and T as in the previous two examples, but now let 
(i j) = (3 5):

π =
(

1 2 3 4 5 6 7 8
4 2 5 1 3 7 6 8

)
.

Removing 3 and 5 gives
(

1 2 4 6 7 8
4 2 1 7 6 8

)
,

and relabeling in the same manner as before gives

π′ =
(

1 2 3 4 5 6
3 2 1 5 4 6

)
,

so π′ is an element of Sn−2 = S6 and T ′ = (2, 4, 6) has length k − 1 = 3.

The expected number of possible increasing subsequences T ′ of length k − 1 over all 
choices of π′ ∈ Sn−2 is E(n − 2, k − 1, 0). In this case, the number of choices for π given 
π′ is not always the same, so we will instead compute the expected number of choices of 
π over all pairs (π′, T ′).
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In total, there are (n − 1)2 choices for where to add i and j, since there are n − 1
available slots, and we can imagine independently choosing slots for i and j and then 
setting i = j + 1 if they happen to both be inserted in the same slot. Note that i and j
are distinguishable here, since i will be in T while j will not. The fact that we can now 
think of i and j as being added independently is the reason for the restriction j 
= i + 1.

Example 2.4.3. With π′ as before, suppose we try to insert both i and j between the 2 
and the 3. Since we cannot have j = i + 1, we would set j = 3 and i = 4. Since i is 
supposed to be in T , this gives

π =
(

1 2 3 4 5 6 7 8
5 2 4 3 1 7 6 8

)
,

with T = (2, 4, 6, 8). This choice of (i j) happens to work, since T is indeed an increasing 
subsequence of π. However, if we had instead chosen to insert i after the 2 but j after 
the 6, we would get

π =
(

1 2 3 4 5 6 7 8
4 2 8 1 6 5 7 3

)
,

which would not work, since T = (2, 3, 5, 7) does not give an increasing subsequence in 
π.

On average, i and j are each equally likely to be in any of the k intervals between 
elements of T ′, since these intervals all have the same average size. In order to get an 
increasing subsequence T of length k containing i once i and j are added, they would need 
to both be in the same interval between elements of T ′, which happens with probability 
1
k . Thus, the expected number of choices of π and T given π′ and T ′ is (n−1)2

k . So, to 
get the expected value over π ∈ Sn from the expected value over π ∈ Sn−1, we need to 
multiply by (n−1)2

k , and we also need to multiply by (n−2)!
n! since there is a 1

(n−2)! in the 

expected value over Sn−2 and a 1
n! in the expected value over Sn. In total, we multiply 

by (n−1)2

k · 1
n(n−1) = 1

k (1 − 1
n ), which explains the 1

k (1 − 1
n )E(n − 2, k − 1, 0) term.

Case 3: i ∈ T and j = i + 1.
In this case, instead of removing j, we can think of merging i and j into a single 

fixed point to create a new permutation π′ ∈ Sn−1 with a corresponding subsequence S′

containing the fixed point i, as illustrated in the example below.

Example 2.4.4. We will use the same values for n, k, π, and T as in the previous example, 
but now let (i j) = (6 7), so i ∈ T :

π =
(

1 2 3 4 5 6 7 8
)

.

4 2 5 1 3 7 6 8
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In this case, instead of removing i and j, we merge them into a single fixed point:

(
1 2 3 4 5 6 8
4 2 5 1 3 6 8

)
.

Then, we relabel the elements after that fixed point to get a permutation π′ ∈ Sn−1 = S7:

π′ =
(

1 2 3 4 5 6 7
4 2 5 1 3 6 7

)
.

The resulting subsequence is T ′ = (2, 3, 6, 7), containing the distinguished fixed point 
i = 6.

The expected number of such subsequences T ′ over all π′ ∈ Sn−1 is E(n − 1, k, 1), 
since S′ is required to contain a chosen fixed point i. There is only one choice of π for 
each π′, so this gives the 1

n E(n −1, k, 1) term, where the 1
n is because the expected value 

over π ∈ Sn involves a 1
n! while the expected value over π′ ∈ Sn−1 involves a 1

(n−1)! . �
It now remains to compute E(n, k, r). We first show that it can be written as a sum 

as follows:

Lemma 2.5. For n ≥ k, the expected values E(n, k, r) are given by

E(n, k, r) = 1
P (n, k)

∑
n1+···+nr+1=n−r

∑
k1+···+kr+1=k−r

r+1∏
i=1

(
ni

ki

)2

.

Proof. For each pair of subsets R ⊆ T ⊆ [n] with |R| = r and |T | = k, define a random 
variable XR,T (π) varying over π ∈ Sn to equal 1 if T in π is an increasing subsequence 
and R is a set of fixed points contained in T , and 0 otherwise. By linearity of expectations, 
E(n, k, r) =

∑
R,T Eπ∈Sn

(XR,T (π)).
The expected value of XR,T (π) represents probability over π ∈ Sn that T forms an 

increasing subsequence in π and all elements of R are fixed points of π. To compute this 
probability, we will ignore where π sends the elements outside T , and only consider where 
π maps the elements of T . The total number of ways to choose where the k elements of 
T could map under π is P (n, k), so that gives our denominator. It remains to find the 
number of ways π could map T such that all values in R map to themselves and T forms 
an increasing subsequence in π.

We will illustrate the terms of T as being boxed and the fixed points in R as red, 
as in our previous examples. Choose k1, k2, . . . , kr+1 such that list of elements of T in 
increasing order can be written as

k1 terms fixed point k2 terms fixed point . . . fixed point kr+1 terms ,
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and choose n1, n2, . . . , nr+1 such that the entire sequence 1, 2, . . . , n in increasing order 
can be written as

n1 terms fixed point n2 terms fixed point . . . fixed point nr+1 terms.

Since there are r fixed points, we must have n1 + · · ·+nr+1 = n −r and k1 + · · ·+kr+1 =
k − r.

Now suppose we fix the values of k1, . . . , kr+1 and n1, . . . , nr+1 (which means fixing 
R, since choosing R is equivalent to choosing n1, . . . , nr+1) and we would like to count 
the number of ways to choose T and π(T ) such that π fixes all values in R and T is an 
increasing subsequence in π. There are 

∏r+1
i=1

(
ni

ki

)
ways to choose the remaining elements 

of T in between the fixed points, because in the ith interval between fixed points, there 
are ni values to choose from and we must choose ki of them to be in the subsequence. 
Since we want the subsequence to be increasing, we have exactly the same number of 
choices for the images of these numbers under π. Thus, the number of ways to choose 
the rest of the subsequence T and its image under π is 

∏r+1
i=1

(
ni

k1

)2.
Summing over all possible choices of the ni’s and ki’s and dividing by P (n, k) gives 

the desired formula. �
This sum formula will actually be sufficient to prove Conjecture 1.4 for the case 

λ = (1), but to get the closed forms and the proofs in the other cases, we will need the 
following closed form for E(n, k, r):

Lemma 2.6. For n ≥ k, E(n, k, r) has the closed form

E(n, k, r) = 2k−r

(r − 1)!!(2k − r)!!

(
n − r

2
k − r

)
.

The proof of this formula is left for Appendix B. We will note that in the case r = 1, 
we get

E(n, k, 1) = 2k−1(2n − 1)(2n − 3) . . . (2n − 2k + 3)
(2k − 1)! , (5)

which we will make use of in Theorem 2.7.

2.2. Closed forms for the polynomials

We can now use Lemmas 2.3, 2.4, and 2.6 together with the character polynomial 
formula (Theorem 2.1) to derive closed forms for aλ

idk
(n) for |λ| ≤ 2:

Theorem 2.7. We have the following closed forms for aλ
idk

(n) for λ = ∅, (1), (2), and 
(1, 1):
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a∅
idk

(n) = 1
k!

(
n

k

)
,

a
(1)
idk

(n) = 2k−1(2n − 1)(2n − 3) . . . (2n − 2k + 3)
(2k − 1)! − 1

k!

(
n − 1
k − 1

)
,

a
(2)
idk

(n) = − 1
n · k!

(
n − 2
k − 1

)
+ 1

2(k − 1)!

(
n − 1
k − 2

)

− 2k−1((2k − 4)n + (2k − 1)) · (2n − 3)(2n − 5) . . . (2n − 2k + 3)
n · (2k − 1)! ,

a
(1,1)
idk

(n) = 1
k!

(
n − 2
k − 2

)
+ 1

n · k!

(
n − 2
k − 1

)
+ 1

2(k − 1)!

(
n − 1
k − 2

)

− 2k−1(2kn − (2k − 1)) · (2n − 3)(2n − 5) . . . (2n − 2k + 3)
n · (2k − 1)! .

Furthermore we have aλ
idk

(n) = αλ
idk,n when n ≥ 0 for λ = ∅, when n ≥ k for λ = (1), 

and when n ≥ k +1 for λ = (2), (1, 1). (For k = 2, the products (2n −3)(2n −5) . . . (2n −
2k + 3) appearing in the formulas for a

(2)
idk

(n) and a
(1,1)
idk

(n) should be interpreted as 
equaling 1.)

Proof. We will consider each case separately.

Case λ = ∅:
This formula is already known, and can be seen directly by noting that each of the (

n
k

)
subsequences of length k in π is equally likely to be in any order, and thus has a 1

k!
chance of being increasing. This argument is valid for any n ≥ 0. (In the cases where 
n < k, both the polynomial and the coefficient are 0.)

Case λ = (1):
By (2), the character polynomial for λ = (1) is m1 − 1. Using this and Lemma 2.3, 

we get that for n ≥ 2,

〈χ(n−1,1), Midk,n〉 = 〈m1, Midk,n〉 − 〈1, Midk,n〉

= E(n, k, 1) + E(n − 1, k, 0) − E(n, k, 0).

Plugging in the formula for E(n, k, 1) from (5) and the formula E(n, k, 0) = 1
k!

(
n
k

)
and ap-

plying Pascal’s identity to the last two terms shows that the desired polynomial formula 
holds for n ≥ k + 1.

To show that it also holds for n = k, the only term to which Lemma 2.6 does not 
apply is E(n − 1, k, 0), so we must check that the polynomial actually agrees with the 
expected value in this case, which it does since E(k − 1, k, 0) = 0 (as there are no length 
k subsequences in a permutation of length k − 1), and the polynomial formula gives 
1 (

k−1)
, which is also 0. Thus, the formula for a(1)

id (n) is valid for all n ≥ k.
k! k k
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Case λ = (2):
By (3), the character polynomial for λ = (2) is 

(
m1
2

)
− m1 + m2. Using this together 

with Lemmas 2.3 and 2.4, we get for n ≥ 4 that the character polynomial formula holds, 
and so:

〈χ(n−2,2), Midk,n〉 =
〈(

m1

2

)
, Midk,n

〉
− 〈m1, Midk,n〉 + 〈m2, Midk,n〉

= 1
2E(n − 2, k, 0) + E(n − 1, k, 1) + E(n, k, 2)

− E(n − 1, k, 0) − E(n, k, 1)

+ 1
2E(n − 2, k, 0) + 1

k

(
1 − 1

n

)
E(n − 2, k − 1, 0) + 1

n
E(n − 1, k, 1).

Plugging in our formula from Theorem 2.6 for E(n, k, r) (using the form of E(n, k, 1)
from (5)) implies that for n ≥ k + 2,

〈χ(n−2,2), Midk,n〉 = 1
2 · k!

(
n − 2

k

)
+ 2k−1(2n − 3)(2n − 5) . . . (2n − 2k + 1)

(2k − 1)!

+ 1
2(k − 1)!

(
n − 1
k − 2

)
− 1

k!

(
n − 1

k

)

− 2k−1(2n − 1)(2n − 3) . . . (2n − 2k + 3)
(2k − 1)! + 1

2 · k!

(
n − 2

k

)

+
(

1 − 1
n

)
1
k!

(
n − 2
k − 1

)
+ 1

n
· 2k−1(2n − 3)(2n − 5) . . . (2n − 2k + 1)

(2k − 1)! .

We can cancel several terms using Pascal’s identity:

(
2 · 1

2 · k!

(
n − 2

k

)
− 1

k!

(
n − 1

k

))
+ 1

k!

(
n − 2
k − 1

)
= − 1

k!

(
n − 2
k − 1

)
+ 1

k!

(
n − 2
k − 1

)
= 0.

We can also combine the terms with denominator (2k − 1)! and factor out the common 
parts to get

(n(2n − 2k + 1) − n(2n − 1) + (2n − 2k + 1)) · 2k−1(2n − 3) . . . (2n − 2k + 3)
n · (2k − 1)! ,

which simplifies to

−2k−1((2k − 4)n + (2k − 1)) · (2n − 3)(2n − 5) . . . (2n − 2k + 3)
(2k − 1)! .

Putting all this together gives the claimed formula.
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We now know that α
(2)
idk,n agrees with the claimed polynomial for n ≥ k + 2, so it 

remains to check n = k + 1. In that case, Lemma 2.6 applies to all the terms of the 
expansion except possibly the two 1

2E(n − 2, k, 0) terms, which sum to E(n − 2, k, 0), so 
it suffices to show that these two terms agree with the polynomial when n = k + 1. But 
that term becomes E(k − 1, k, 0) = 0 when n = k + 1, which, like in the λ = (1) case, 
agrees with the polynomial 1

k!
(

k−1
k

)
= 0.

Case λ = (1, 1):
By (4), the character polynomial for λ = (1, 1) is 

(
m1
2

)
− m1 − m2 + 1. Using this 

together with Lemmas 2.3 and 2.4, we get for n ≥ 4 that the character polynomial 
formula holds, and so:

〈χ(n−2,1,1), Midk,n〉 =
〈(

m1

2

)
, Midk,n

〉
− 〈m1, Midk,n〉 − 〈m2, Midk,n〉 + 〈1, Midk,n〉

= 1
2E(n − 2, k, 0) + E(n − 1, k, 1) + E(n, k, 2)

− E(n − 1, k, 0) − E(n, k, 1)

− 1
2E(n − 2, k, 0) − 1

k

(
1 − 1

n

)
E(n − 2, k − 1, 0) − 1

n
E(n − 1, k, 1)

+ E(n, k, 0).

Plugging in the formulas from Lemma 2.6 and (5), it follows that for n ≥ k + 2,

〈χ(n−2,1,1), Midk,n〉 = 1
2 · k!

(
n − 2

k

)
+ 2k−1(2n − 3)(2n − 5) . . . (2n − 2k + 1)

(2k − 1)!

+ 1
2(k − 1)!

(
n − 1
k − 2

)
− 1

k!

(
n − 1

k

)

− 2k−1(2n − 1)(2n − 3) . . . (2n − 2k + 3)
(2k − 1)! − 1

2 · k!

(
n − 2

k

)

−
(

1 − 1
n

)
1
k!

(
n − 2
k − 1

)
− 1

n
· 2k−1(2n − 3)(2n − 5) . . . (2n − 2k + 1)

(2k − 1)!

+ 1
k!

(
n

k

)
.

We can cancel the ± 1
2·k!

(
n−2

k

)
terms, and combine several other terms using Pascal’s 

identity to get

− 1
k!

(
n − 1

k

)
+ 1

k!

(
n

k

)
− 1

k!

(
n − 2
k − 1

)
= 1

k!

(
n − 1
k − 1

)
− 1

k!

(
n − 2
k − 1

)
= 1

k!

(
n − 2
k − 2

)
.

We can also combine the terms with denominator (2k − 1)! to get
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(n(2n − 2k + 1) − n(2n − 1) − (2n − 2k + 1)) · 2k−1(2n − 3)(2n − 5) . . . (2n − 2k + 3)
n · (2k − 1)! ,

which simplifies to

−2k−1(2kn − (2k − 1)) · (2n − 3)(2n − 5) . . . (2n − 2k + 3)
n · (2k − 1)! .

Putting all this together gives the claimed formula for a(1,1)
idk

(n) and proves that it agrees 
with α(1,1)

idk,n for n ≥ k +2, so it remains to consider n = k +1. In this case, the only terms 
to which Lemma 2.6 does not apply are the ±1

2E(n − 2, k, 0) terms, and those terms 
cancel, so the formula is still valid for n = k + 1. �
Remark 2.8. It follows from Theorem 1.3 that all four formulas in Theorem 2.7 are 
polynomials in n, but this is not obvious from the formulas for a

(2)
idk

(n) and a
(1,1)
idk

(n)
since they involve n’s in the denominator. However, we can check that they are in fact 
polynomials in n by showing in each case that the constant terms of the polynomials 
which are multiplied by 1

n cancel. For a(2)
idk

(n), the relevant constant terms (coming from 
the first and third term of the formula) are

− 1
·k! · (−2)(−3) . . . (−k)

(k − 1)! − 2k−1(2k − 1)(−3)(−5) . . . (−2k + 3)
(2k − 1)! .

Collecting the negative signs and canceling common terms from the numerator and 
denominator in each fraction, this simplifies to

(−1)k

(k − 1)! + 2k−1(−1)k−1

2 · 4 · 6 · · · · · (2k − 1) = 0.

Similarly, for a(1,1)
idk

(n), the relevant constant terms (from the second and last terms of 
the formula) are

1
k! · (−2)(−3) . . . (−k)

(k − 1)! − 2k−1(−2k + 1)(−3)(−5) . . . (−2k + 3)
(2k − 3) ,

which is the same two terms as for a(2)
idk

(n) but with the signs swapped, so again, the 
terms cancel. This shows that in both cases, the formulas do in fact give polynomials in 
n, as expected.

2.3. Proof of the positivity conjecture for λ = ∅, (1), (2), and (1, 1)

Now that we have the closed forms, we can use them to prove Theorem 1.5.



C. Gaetz, L. Pierson / Advances in Applied Mathematics 147 (2023) 102507 17
Proof of Theorem 1.5. Again, we will consider each case separately. In each case, we 
will first prove that the polynomial has all roots real and less than k, so its sign never 
changes for n ≥ k.

Note next that for n = k, we get αλ
idk,k ≥ 0 for all λ since Midk,k has value 1 on 

the conjugacy class of the identity and 0 on all other conjugacy classes and is thus a 
scalar multiple of the character of the regular representation, implying that all characters 
have nonnegative coefficients. For λ = ∅ and λ = (1), this is enough to imply that the 
coefficient is positive for all n ≥ k: we know the coefficient agrees with the polynomial 
for all n ≥ k in those cases, and since the polynomial never switches sign for n ≥ k, it 
must always be nonnegative.

For the cases λ = (2) and λ = (1, 1), the above argument shows that the coefficient 
is nonnegative for n = k, and Theorem 2.7 implies that the coefficient agrees with the 
polynomial for n ≥ k + 1, so for these cases we will complete the proof by showing that 
the leading coefficient is nonnegative, which together with the roots being less than k
implies the positivity for all n ≥ k + 1 and thus for all n ≥ k.

Case λ = ∅:
Since a∅

idk
(n) = 1

k!
(

n
k

)
, the k roots in this case are 0, 1, 2, . . . , k − 1, which are all real 

less than k. As explained above, that implies the positivity for this case.

Case λ = (1):

Lemma 2.9. The k − 1 roots of a(1)
idk

(n) are −1 and a root between i and i + 1 for each 
i = 1, 2, . . . , k − 2.

Proof. Plugging in n = −1 to the formula from Theorem 2.7 gives

2k−1(−3)(−5) . . . (−2k + 1)
(2k − 1)! − 1

k! · (−2)(−4) . . . (−k)
(k − 1)! = (−1)k−1

(k − 1)! − (−1)k−1

(k − 1)! = 0.

For the remaining roots, note that if we plug in n = 1, 2, . . . , k − 1 to the formula from 
Theorem 2.7, the 1

k!
(

n−1
k−1

)
term is 0, so

a
(1)
idk

(n) = 2k−1(2n − 1)(2n − 3) . . . (2n − 2k + 3)
(2k − 1)! .

The right hand side has roots at n = 1
2 , 32 , . . . , k − 3

2 , so it has a root between i and i + 1
for each i = 1, 2, . . . , k − 2. This means a(1)

idk
switches sign between i and i + 1 for each 

of these values of i, so it must have a root in each interval (i, i + 1). Since it has degree 
k − 1, this accounts for all its roots. �

As explained above, Lemma 2.9 together with a(1)
idk

(k) ≥ 0 implies the positivity of 
a

(1)
id (n) for all n ≥ k.
k
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Alternatively, for this case we can actually prove Conjecture 1.4 directly from 
Lemma 2.3 and Lemma 2.5, without using the closed form for a(1)

idk
(n):

Alternate proof of the case λ = (1). By (2) and Lemma 2.3,

a
(1)
idk

(n) = 〈m1 − 1, Midk,1, n〉 = E(n − 1, k, 1) + E(n − 1, k, 0) − E(n, k, 0).

It follows from Lemma 2.5 and Pascal’s identity that for n ≥ k, this polynomial can be 
written as

a
(1)
idk

(n) = 1
P (n, k)

∑
k1+k2=k−1

(
n1

k1

)2(
n2

k2

)2

+ 1
k!

(
n − 1

k

)
− 1

k!

(
n

k

)

= 1
P (n, k)

∑
k1+k2=k−1

(
n1

k1

)2(
n2

k2

)2

− 1
k!

(
n − 1
k − 1

)
.

If we fix n1 and n2 with n1 + n2 = n − 1, then by Vandermonde’s identity, ∑
k1+k2=k−1

(
n1
k1

)(
n2
k2

)
=

(
n−1
k−1

)
, and using that together with Cauchy-Schwarz,

k ·
∑

k1+k2=k−1

(
n1

k1

)2(
n2

k2

)2

≥
( ∑

k1+k2=k−1

(
n1

k1

)(
n2

k2

))2

=
(

n − 1
k − 1

)2

.

Dividing both sides by k
n P (n, k) = k!

(
n−1
k−1

)
, moving all terms to the left, and then 

averaging over n1 from 1 to n implies a(1)
idk

(n) ≥ 0 for n ≥ k. �
Case λ = (2):

Lemma 2.10. The k − 2 roots of a(2)
idk

(n) are −1 and a root between i and i + 1 for each 
i = 1, 2, . . . , k − 3.

Proof. To show that −1 is a root, plugging in n = −1 to our formula from Theorem 2.7
gives

1
k! · (−3) . . . (−k − 1)

(k − 1)! − 2k−1(−3)(−5) . . . (−2k + 1)
(−1)(2k − 1)! + 1

2(k − 1)! · (−2)(−3) . . . (−k + 1)
(k − 2)! .

This simplifies to

(−1)k−1(k + 1)
2(k − 1)! + (−1)k−2

(k − 1)! + (−1)k−2(k − 1)
2(k − 1)! = 0.

For the remaining roots, note that the two binomial coefficient terms are 0 for n =
2, . . . , k − 2, so for each of these values of n,



C. Gaetz, L. Pierson / Advances in Applied Mathematics 147 (2023) 102507 19
a
(2)
idk

(n) = −2k−1((2k − 4)n + (2k − 1)) · (2n − 3) . . . (2n − 2k + 3)
n · (2k − 1)! .

This polynomial has roots at −2k−1
2k−4 , 32 , 52 , . . . , k − 3

2 . Thus, for each i = 2, 3, . . . , k − 2, 
a

(2)
idk

(i) and a(2)
idk

(i + 1) have opposite signs, so a(2)
idk

has a root in the interval (i, i + 1). 
For i = 1, the 

(
n−1
k−2

)
term is 0 and we get

a
(2)
idk

(1) = − 1
k! · (−1)(−2) . . . (−k + 1)

(k − 1)! − 2k−1(4k − 5) · (−1)(−3) . . . (−2k + 5)
(2k − 1)!

= − (−1)k−1

k! − (4k − 5)(−1)k−2

(2k − 1)(2k − 3) · (k − 1)!

These terms have opposite signs, but the second has larger absolute value since

k(4k − 5) = 4k2 − 5k > 4k2 − 8k + 3 = (2k − 1)(2k − 3).

Thus, the sign of a(2)
idk

(1) matches the sign of the second term, which implies that there 

is also a sign flip between a(2)
idk

(1) and a(2)
idk

(2), and therefore a root of a(2)
idk

in the interval 
(1, 2). Since we know a(2)

idk
has k − 2 roots total, this accounts for all of them. �

We know the positivity holds for n = k, so to prove it for n ≥ k +1, it suffices to show 
that the polynomial has positive leading coefficient, since we know that all its roots are 
less than k, and that the coefficient agrees with the polynomial for all n ≥ k + 1.

Lemma 2.11. The polynomial a(2)
idk

(n) has nonnegative leading coefficient for all k ≥ 2.

Proof. The three terms in the formula from Theorem 2.7 all have degree k − 2, and 
adding together their leading coefficients gives that the leading coefficient of a(2)

idk
(n) is

1
2(k − 1)!(k − 2)! − 1

(k − 1)!k! − 22k−2(k − 2)
(2k − 1)! .

This is equal to

1
(2k − 1)!

((
k

2

)(
2k − 1
k − 1

)
−

(
2k − 1
k − 1

)
− 22k−2(k − 2)

)

= k − 2
2(2k − 1)!

(
(k + 1)

(
2k − 1
k − 1

)
− 22k−1

)
.

For k = 2, this is 0, and for k = 3 we get

1
(

4
(

5
)

− 25
)

= 8 = 1
.
2 · 5! 2 240 30
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Now we use induction to show that this is positive for all k ≥ 3. Assume it is positive 
for k − 1. The part outside the parentheses is positive, so it suffices to show that (k +
1)

(2k−1
k−1

)
≥ 22k−1. We have

(k + 1)
(2k−1

k−1
)

k
(2k−3

k−2
) = (k + 1)(2k − 1)(2k − 2)

k2(k − 1) = 2(k + 1)(2k − 1)
k2

= 2(2k2 + k − 1)
k2 > 4 = 22k−1

22k−3 ,

so the result follows from the inductive hypothesis. �
Case λ = (1, 1):

Lemma 2.12. The k − 2 roots of a
(1,1)
idk

(n) are a root between i and i + 1 for each i =
0, 1, . . . , k − 3.

Proof. If we plug in n = 2, 3, . . . , k − 2 to the formula from Theorem 2.7, the first three 
terms are 0, so

a
(1,1)
idk

(n) = −2k−1(2kn − (2k − 1)) · (2n − 3) . . . (2n − 2k + 3)
n · (2k − 1)! . (6)

Since this polynomial has roots at 2k−1
2k , 32 , . . . , k − 3

2 , a(1,1)
idk

flips signs between i and i +1
for each i = 2, . . . , k − 3, so it has a root in the interval (i, i + 1). Now for i = 1, the first 
three terms of a(1,1)

idk
(1) sum to

1
k! · (−1)(−2) . . . (−k + 2)

(k − 2)! + 1
k! · (−1)(−2) . . . (−k + 1)

(k + 1)! + 0 = (−1)k−2

k! + (−1)k−1

k! = 0,

so actually, a(1,1)
idk

also matches (6) when n = 1, meaning the root of (6) at 3
2 gives a sign 

flip between a(1,1)
idk

(1) and a(1,1)
idk

(2), so a(1,1)
idk

must have a root in the interval (1, 2).
It remains to consider i = 0. Since the numerator has the root 2k−1

2k between 0 and 

1, it suffices to show that at n = 0, the sign of a(1,1)
idk

matches the sign of the numerator 
of (6), since then we will know that a(1,1)

idk
(0) and a(1,1)

idk
(1) have opposite signs and thus 

there is a root in the interval (0, 1). The sign of the numerator of (6) at n = 0 is 
−(−1)k−1 = (−1)k.

Now to compute the sign of a
(1,1)
idk

(0), when we plug in n = 0 to the formula from 
Theorem 2.7, for the two terms with an n in the denominator we have to take the linear 
term in the numerator, which is the negative of the constant term times the sum of the 
reciprocals of the roots. We get

a
(1,1)
idk

(0) = (−1)k

· k − 1 + (−1)k
(

1 + 1 + · · · + 1
)

+ (−1)k
(k − 1)! k (k − 1)! 2 3 k 2(k − 1)!
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− (−1)k

(k − 1)!

(
2k

2k − 1 + 1
1 1

2
+ 1

2 1
2

+ · · · + 1
k − 1 1

2

)
.

Thus, factoring out (−1)k

(k−1)! , to show that this has sign (−1)k it suffices to show that

k − 1
k

+
(

1
2 + 1

3 + · · · + 1
k

)
+ 1

2 >
2k

2k − 1 + 1
1 1

2
+ 1

2 1
2

+ · · · + 1
k − 1 1

2
.

Since 1
x is a convex function,

1
2

(
1 + 1

2

)
+ 1

2

(
1
2 + 1

3

)
+ · · · + 1

2

(
1

k − 2 + 1
k − 1

)
>

1
1 1

2
+ 1

2 1
2

+ · · · + 1
k − 1 1

2
,

which simplifies to

1
2 +

(
1
2 + 1

3 + · · · + 1
k − 2

)
+ 1

2(k − 1) >
1

1 1
2

+ 1
2 1

2
+ · · · + 1

k − 1 1
2

.

For the remaining terms, we get

k − 1
k

+ 1
2(k − 1) + 1

k
= 1 + 1

2k − 2 > 1 + 1
2k − 1 = 2k

2k − 1 .

It follows that a(1,1)
idk

(0) has sign (−1)k, which is the opposite sign from a(1,1)
idk

(1), implying 
that there is a root in the interval (0, 1). Thus, there is a root in the interval (i, i + 1)
for each i = 0, 1, . . . , k − 3, completing the proof. �

As in the case λ = (2), we already know that a(1,1)
idk

(k) ≥ 0. We also know that the 

coefficient equals the polynomial a(1,1)
idk

(n) for n ≥ k + 1 and that this polynomial never 
switches sign in this range since all the roots are smaller, so again, to complete the proof 
it suffices to check that the leading coefficient is nonnegative.

Lemma 2.13. The polynomial a(1,1)
idk

(n) has nonnegative leading coefficient for all k ≥ 2.

Proof. All four terms in our formula from Theorem 2.7 have degree n − 2, so the leading 
coefficient is the sum of their leading coefficients, which is

1
k!(k − 2)! + 1

k!(k − 1)! + 1
2(k − 1)!(k − 2)! − 22k−2k

(2k − 1)! .

Factoring out 1
(2k−1)! , we get

1
(

(k − 1)
(

2k − 1
)

+
(

2k − 1
)

+ k(k − 1)
(

2k − 1
)

− 22k−2k

)
.
(2k − 1)! k − 1 k − 1 2 k − 1
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Combining the first three terms and factoring our k
2 , this becomes

k

2(2k − 1)!

(
(k + 1)

(
2k − 1
k − 1

)
− 22k−1

)
.

This is exactly k
k−2 times the leading coefficient of a

(2)
idk

(n) which we computed in 
Lemma 2.11, so it must be positive for k > 2. Also, for k = 2, the leading coefficient is

2
2 · 3!

(
3
(

3
1

)
− 23

)
= 1

6 ,

which is also positive. �
3. The case a(1)

σ (n)

In this section, we generalize to the case σ 
= idk for λ = (1), d = 1, and write down 
formulas for the associated polynomials a

(1)
σ (n). Since we are interested in positivity, 

we also compute the leading coefficients. In this case, the polynomials are not always 
real-rooted and also do not always have roots less than k, so the sign is not necessarily 
the same for all n ≥ k, but the leading coefficient will determine the sign for sufficiently 
large n.

Proposition 3.1. The polynomials a(1)
σ (n) can be written as

a(1)
σ (n) = 1

P (n, k)

n∑
i=1

k∑
j=1

(
i − 1
j − 1

)(
i − 1

σ(j) − 1

)(
n − i

k − j

)(
n − i

k − σ(j)

)
− 1

k!

(
n − 1
k − 1

)
.

Proof. We can follow essentially the same logic as in the case σ = idk. We have

a(1)
σ (n) = Eπ∈Sn

(m1(π)Nσ(π)) − Eπ∈Sn
(Nσ(π))

= 1
n

n∑
i=1

Eπ∈Sn
(# occurrence of σ in π containing i | i fixed)

+ 1
n

n∑
i=1

Eπ∈Sn
(# occurrences of σ in π not containing i | i fixed)

− Eπ∈Sn
(Nσ(π)).

The third term is 1
k!

(
n
k

)
, because there are 

(
n
k

)
ways to choose a set of k points and 

a 1
k! chance that each such set forms an increasing subsequence. The second term is 

− 1
k!

(
n−1

k

)
, since it represents the expected number of length k increasing subsequences 

in a permutation on n − 1 values, as we can imagine removing the fixed point i to get a 
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new permutation π′ ∈ Sn−1 with a new increasing subsequence of length k in the same 
manner as before. Thus by Pascals’ identity, the sum of these two terms is − 1

k!
(

n−1
k−1

)
.

For the first term, we compute the probability that a sequence i1 < i2 < · · · < ij−1 <

i < ij+1 < · · · < ik containing i as its jth term is an occurrence of σ. The number 
of ways to choose such a sequence with j − 1 terms before i and k − j terms after i

is 
(

i−1
j−1

)(
n−i
k−j

)
. For the sequence π(i1), . . . , π(ik) to be ordered according to σ, we must 

have π(i�) < π(i) = i whenever σ(�) < σ(j) (which happens for σ(j) − 1 values of �), so 
there are 

(
i−1

σ(j)−1
)

ways to choose where these values map under π. Similarly, the k−σ(j)
values of � for which σ(�) > σ(j) must satisfy π(i�) > i, so there are 

(
n−i

k−σ(j)
)

ways to 
choose where these values map. The total number of places the subsequence i1, . . . , ik

(not counting the fixed point i) could map to under π is P (n − 1, k − 1) = 1
n P (n, k), so 

the probability the sequence actually represents an occurrence of σ is

(
i−1

σ(j)−1
)(

n−i
k−σ(k)

)
1
n P (n, k)

.

Summing over all j and plugging this back in gives the claimed formula for a(1)
σ (n). �

Proposition 3.2. The leading coefficient of a(1)
σ (n) is

1
(2k − 1)!

k∑
j=1

(
j + σ(j) − 2

j − 1

)(
2k − j − σ(j)

k − j

)
− 1

k!(k − 1)! .

Proof. Taking only the highest degree parts from each term in the sum

P (n, k)a(1)
σ (n) =

n∑
i=1

k∑
j=1

(
i − 1
j − 1

)(
i − 1

σ(j) − 1

)(
n − i

k − j

)(
n − i

k − σ(j)

)

gives

n∑
i=1

k∑
j=1

ij+σ(j)−2(n − i)2k−j−σ(j)

(j − 1)!(σ(j) − 1)!(k − j)!(k − σ(j))! . (7)

If we fix k but sum over n, we can see by taking a limit as n → ∞ that the leading 
coefficient in the numerator matches the value of the integral

1∫
0

xj+σ(j)−2(1 − x)2k−j−σ(j)dx.

This is an Eulerian integral of the first kind (see [10]), so the solution is the Beta function
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(j + σ(j) − 2)!(2k − j − σ(j))!
(2k − 1)! .

Plugging this back into (7), the leading coefficient of the sum is

1
(2k − 1)!

k∑
j=1

(
j + σ(j) − 2

j − 1

)(
2k − j − σ(j)

k − j

)
.

The degree of this leading term is 2k − 1 (since each term we are adding has degree 
2k − 2). In our formula for a(1)

σ (n), this sum is divided by P (n, k), which has leading 
term nk, so a(1)

σ (n) has a leading term of degree k − 1 with the same leading coefficient. 
The second term − 1

k!
(

n−1
k−1

)
also has degree k − 1, and has leading coefficient 1

k!(k−1)! . It 
follows that the leading coefficient of a(1)

σ (n) is as claimed. �
We can now state the following condition for when a(1)

σ (n) is nonnegative:

Corollary 3.3. The polynomial a(1)
σ (n) is positive for sufficiently large n if and only if

k∑
j=1

(
j + σ(j) − 2

j − 1

)(
2k − j − σ(j)

k − j

)
≥

(
2k − 1

k

)
.

It would be interesting to try to find a simpler condition on σ for when this leading 
coefficient is positive, although it is not clear from this formula whether one exists.

4. Future directions

In this section, we discuss a few potential pathways for proving Conjecture 1.4 in 
general, as well as several other conjectures based on our work in this paper and our 
numerical computations of the polynomials aλ

σ(n) for σ ≤ 4.

4.1. Roots of the polynomials

Note that if we could prove the real-rootedness statement in Conjecture 1.4 and also 
show that aλ

idk
(n) has nonnegative leading coefficient, that would imply the positivity 

for n ≥ k + |λ|, since we know from Theorem 1.3 that αλ
idk,n = aλ

idk
(n) for those values. 

Then to prove Conjecture 1.4, it would remain to check the positivity for k + 1 ≤ n ≤
k + |λ| − 1, since as mentioned in the proof of Theorem 1.5, the positivity for n = k

follows automatically from Midk,k being a scalar multiple of the regular representation.
Lemmas 2.9, 2.10, and 2.12 also show that the roots are fairly evenly spaced for 

λ = (1), (2), and (1, 1) (one root in each unit interval in a specific range, plus a root 
at −1 when λ = (1), (2)), so it would be interesting to know whether something similar 
holds more generally. Our work in Section 2 together with direct computations of the 
polynomials for k ≤ 4 also suggests the following:
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Conjecture 4.1. When λ has a single row, the polynomials aλ
σ(n) have n = −1 as a root.

Lemmas 2.9 and 2.10 prove this for the cases a(1)
idk

and a(2)
idk

, and we have verified it 
numerically for all σ with k ≤ 4. This could potentially be proven for the case a(1)

σ for 
arbitrary σ using the formula in Proposition 3.1. It is also true for the case k = 4 that the 
polynomials a(1,1,1)

σ have −1 as a root (although this is not true for a(1,1)
σ or a(1,1,1,1)

σ ), 
so there might be a more general rule for a certain subset of these polynomials where 
n = −1 is a root.

4.2. Possible approaches for a combinatorial positivity proof

Another potential approach to proving Conjecture 1.4 more generally is to use the 
interpretation of inner products with character polynomials as representing a linear com-
bination of expected numbers of tuples consisting of an increasing subsequence and ri

mi-cycles for some i, as we did throughout this paper, but by constructing an injection 
rather than explicitly computing the terms. One thing that might provide some guidance 
for this approach is that the case λ = (k) appears to be tight, in that the polynomials 
seem to be 0 in this case:

Conjecture 4.2. If λ = (k), we get a(k)
idk

(n) = 0.

We know that a(k)
idk

is a constant (since its degree is k − |λ|), so Conjecture 4.2 would 
follow from Conjecture 4.1, since a nonzero constant polynomial cannot have any roots 
and thus cannot have n = −1 as a root. If Conjecture 4.2 holds, then any injective proof 
for Conjecture 1.4 would give a bijection in this case.

From the character polynomial formulas, a(k)
idk

represents the expected number of or-
dered pairs consisting of an increasing subsequence of length k and a set of k points which 
are mapped among themselves, minus the expected number of ordered pairs consisting 
of an increasing subsequence of length k and a set of k − 1 points which are mapped 
among themselves. If we could find a bijection between these two sets, this would give a 
combinatorial proof that a(k)

idk
= 0, and potentially some clues as to how to more generally 

find an injective proof that aλ
idk

(n) is nonnegative.

4.3. Positivity for σ 
= idk

Another interesting question would be whether there is a general rule for when the 
polynomials aλ

σ(n) are positive for other values of σ:

Question 4.3. Is there a rule for when aλ
σ(n) is nonnegative?

From our computations of the polynomials for k ≤ 4, neither the real-rootedness nor 
the property of all real roots being less than k holds in general for σ 
= idk. Thus, in 



26 C. Gaetz, L. Pierson / Advances in Applied Mathematics 147 (2023) 102507
general the sign of aλ
σ(n) depends on n and only stabilizes for sufficiently large n (based 

on the sign of the leading coefficient). For the case λ = (1), Corollary 3.3 could potentially 
be used to help find a more explicit rule for when the polynomials a(1)

σ (n) are positive. 
One might hope that for sufficiently large n, the values of a

(1)
σ (n) are monotonically 

decreasing under we weak Bruhat order, but this is not the case for k = 4, as σ = 4321
does not have minimal leading coefficient. However, the following does hold for k ≤ 4, 
so we might hope that it also holds in general:

Question 4.4. Do the polynomials a(1)
σ (n) with nonnegative leading coefficients form an 

order ideal in the weak (or strong) Bruhat order? If so, is there a simple characterization 
of the maximal elements?

It could also be interesting to explore general formulas for these polynomials and try 
to find closed forms in other special cases, potentially by using similar methods to those 
in Section 2 and Section 3.
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Appendix A. Polynomiality proofs

We prove here Theorems 1.2 and 1.3. This generalizes and gives an alternate proofs 
of Gaetz and Ryba’s results in [3], which concerned the case σ1 = · · · = σd.

A.1. Polynomiality of Mσ1,...,σd,n

Proof of Theorem 1.2. We can interpret the value of Mσ1,...,σd,n on the conjugacy class 
C as

E(# of ordered d-tuples (T1, . . . , Td) with Ti an occurrence of σi in π | π ∈ C).

To simplify notation, let

T = T1 ∪ · · · ∪ Td.

By linearity of expectations, we can break the desired expected value into cases, where 
each case specifies how many distinct elements there are in the set T ∪ π(T ), which 
elements of π(T ) map back to elements of T (and thus which subsets of T ∪ π(T ) form 
cycles), and also the relative ordering of the elements of T ∪ π(T ).
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Example A.0.1. Let n = 15, let C be the conjugacy class of permutations of cycle type 
(5, 3, 3, 2, 2), and let d = 2 with σ1 = 43251 and σ2 = 21345. Throughout our examples, 
we will use boxes or circles to indicate occurrences of particular permutation patterns, 
and colors to indicate cycles of particular sizes. In this example, the elements of the 
occurrence of T1 of σ1 will be boxed, the elements of the occurrence of T2 of σ2 will be 
circled, the 2-cycles will be red and orange, and the 3-cycles will be green and blue. With 
this notation, a particular choice of π ∈ C (written in two-line notation) together with 
a choice of T1 and T2 could be as follows:

π =

⎛
⎝ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 8 1 7 6 5 9 10 11 2 15 14 12 13 4

⎞
⎠ .

In cycle notation, we have

π = (4 7 9 11 15)(2 8 10)(12 14 13)(1 3)(5 6),

and the permutation pattern occurrences are T1 = (2, 5, 6, 8, 10) and T2 = (4, 5, 7, 9, 11).
The case under which this choice of (π, T1, T2) falls would specify that the third 

element of T1 must equal the second element of T2, but that there are no other overlaps 
between them. It would also specify that T1 is the union of a 3-cycle and a 2-cycle, 
ordered in the same way as above. Thus, the boxed and circled elements are required 
to look something like this, where the green elements form a 3-cycle and the orange 
elements form a 2-cycle:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ .

The case would also specify that the remaining four elements of T2 (the black circled 
elements) map to each other under π in order, but do not form a complete cycle (for 
π, we have 4 
→ 7 
→ 9 
→ 11). Finally, it would specify that the relative ordering of all 
boxed and circled elements, including which ones map to each other, must be exactly 
the same as above.

Notice that this implies that there is a fixed permutation σ such that the list above 
forms an occurrence in π of σ. For our example π above, the images of the boxed and 
circled elements are

8 7 6 5 9 10 11 2 15 .

Relabeling the smallest of these as 1, the next smallest as 2, and so on, we get

5 4 3 2 6 7 8 1 9 .

Thus, in this case, the elements of T1 ∪ T2 form an occurrence in π of
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σ =
(

1 2 3 4 5 6 7 8 9
5 4 3 2 6 7 8 1 9

)
.

Given this information about our case, the following permutation π′ from the same 
conjugacy class C would also fall under the same case, with the occurrences T ′

1 and T ′
2

of σ1 and σ2 again shown boxed and circled, respectively:

π′ =

⎛
⎝ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 1 2 11 8 7 6 12 10 9 13 14 4 15 5

⎞
⎠ .

Note that the order of the elements outside T ∪ π(T ) is not specified by the case and 
may change.

For each case, we can define a corresponding “supercase,” which includes all possible 
choices of T1 and T2 subject to the same restrictions about which elements form cycles 
and which elements map to each other, but without any restrictions on the ordering, 
including no requirement that T1 and T2 be occurrences of σ1 and σ2. To make counting 
a bit easier, the supercase will also specify an ordering on the cycles of each size which 
are contained in T , and on the elements of each such cycle.

Example A.0.2. The following permutation π′′, together with the indicated choice of T ′′
1

and T ′′
2 , would fall under the same supercase as π and π′ from the previous example, 

even though T ′′
1 and T ′′

2 are not occurrences of σ1 or σ2, and the green, orange, boxed, 
and circled elements are not ordered in the same way as before:

π′′ =

⎛
⎝ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 1 2 7 6 13 5 9 10 8 12 11 4 15 14

⎞
⎠ .

The relevant information preserved from the original case is that the boxed elements 
are a union of a 2-cycle and a 3-cycle, one element of that 2-cycle is also circled, and 
the remaining circled elements map to each other but do not form a complete cycle. We 
would also choose a “first” element of the 2-cycle (11 12), which must be 12 since that 
is on the one which is also circled, and we would arbitrarily choose a “first” element of 
the 3-cycle, say the 3.

The first key observation is that as π ranges over the conjugacy class C and as 
T1, . . . , Td range over a given supercase, the probability that (π, T1, . . . , Td) actually falls 
into a particular case is simply 1/|T ∪ π(T )|!, because as π ranges over C, there is no 
reason for the elements of T ∪ π(T ) to be in any particular order, and thus all orderings 
of them are equally likely, while each case specifies one exact ordering. The second is 
that given any π ∈ C, the total number of choices of T1, . . . , Td falling under a given 
supercase is always the same, since this number depends only on the cycle type of π. 
Thus, our overall probability is
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∑
supercases

(# of choices of the Ti’s under the supercase (given π))

· # of cases under the supercase
|T ∪ π(T )|! .

Example A.0.3. For the permutation π from Example A.0.1, we have

T ∪ π(T ) = {2, 4, 5, 6, 7, 8, 9, 10, 11, 15}.

This is a set of size 10, so it takes on 10! equally likely orderings as π ranges over C and 
T1 and T2 range over the supercase specified in Example A.0.2. We will treat the ordering 
occurring in π as the identity permutation. For the permutation π′′ in Example A.0.2, if 
we write elements of T ′′ ∪ π′′(T ) in the order corresponding to how they are ordered in 
π (including writing the “first” element of each cycle first, and the elements of the chain 
in the order in which they map to each other), we get

Elements in T ∪ π(T ): 2 4 5 6 7 8 9 10 11 15

Corresponding elements in 3 4 12 11 7 2 5 1 6 13
T ′′ ∪ π′′(T ′′):

.

(Note that we include the element π′′(6) = 13 corresponding to π(11) = 15, since it 
is in π′′(T ′′) but not in T ′′.) Relabeling the smallest element of T ′′ ∪ π′′(T ′′) as 1, the 
second smallest as 2, and so on, we see that the ordering of T ′′ ∪ π′′(T ′′) in comparison 
to the ordering of the corresponding elements in T ∪ π(T ) corresponds to the following 
permutation in S10: (

1 2 3 4 5 6 7 8 9 10
3 4 9 8 7 2 5 1 6 10

)
.

Note that if we had used T ′∪π′(T ′) in place of T ′′∪π′′(T ′′), we would have just gotten the 
identity permutation. Thus, only one of the 10! permutations would lead to (π, T1, T2)
falling under the case from Example A.0.1, so the probability of falling under that case 
would be 1

10! . The total number of valid cases falling under the supercase would be the 
number of orderings such that T1 actually forms an occurrence of σ1 and T2 actually 
forms an occurrence of σ2, which is some constant less than 10!.

It remains to show that the number of choices of the Ti’s given π and a particular 
supercase is a polynomial in n. Given a supercase, we can write T as a disjoint union 
of cycles (a1 a2 . . . ai), where aj+1 = π(aj) for i = 1, 2, . . . , j − 1 and a1 = π(ai), and 
chains (b1, b2, . . . , bi), where bj+1 = π(bj) for j = 1, 2, . . . , i − 1 but π−1(b1) /∈ T and 
π(bi) /∈ T .

Example A.0.4. For (π, T1, T2) from Example A.0.1, the relevant cycles would be (2 8 10)
and (5 6), and the relevant chain would be (4, 7, 9, 11).
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Then the number of ways to choose all the ai’s (without regard to their being in the 
correct order specified by our case) is just∏

i≥1
iriP (mi, ri),

where ri is the number of i-cycles in T and P (n, k) := n(n −1) . . . (n −k +1), since there 
are P (mi, ri) ways to choose which i-cycles get used, and i ways to rotate each i-cycle. 
This is a polynomial whose degree equals the total number of elements of T contained 
in the cycles, since mi has degree i and thus P (mi, ri) has degree iri. Recall that we 
are considering the chosen cycles to be in a particular order and to each be assigned a 
“first” element, since then all |T ∪ π(T )|! possible orderings discussed above will actually 
be treated as different.

Example A.0.5. For the supercase in Example A.0.2, we need to choose a 2-cycle and a 
rotation of it, which can be done in 2m2 ways, since there are m2 2-cycles to choose from 
(2 · 2 for the conjugacy class C in our example). Then we need to choose a 3-cycle and 
a rotation of it, which can be done in 3m3 ways (3 · 2 in our example). Our polynomial 
so far is thus 6m2m3, which has degree 2 + 3 = 5, since m2 has degree 2 and m3 has 
degree 3.

Next, we will choose the chains in T (again without regard to their being in the correct 
order), which will be entirely determined by choosing the first element b1 of each chain. 
At each step where we are choosing the first element of a chain, the number of choices is

n − (# of values in the chosen cycles)

− (# of remaining values in cycles which are too short). (8)

If we are choosing a chain of length i, a cycle which is “too short” means a cycle of 
length at most i. The first term of (8) is a polynomial of degree 1, the second term is 
a constant, and the third term is a polynomial of degree at most i, since it is a linear 
combination of m1, . . . , mi, and some constant term. Thus, at each step we multiply by 
a polynomial whose degree is the number of elements currently being added to T .

Example A.0.6. For the supercase in Example A.0.2, to count the number of ways to 
choose the first element of the chain, we would first subtract the 5 elements already 
used, and then subtract all the remaining elements in cycles of length at most 4, which 
in this case is equivalent to just subtracting all elements in cycles of length at most 4. 
Thus, this term works out to n − m1 − 2m2 − 3m3 − 4m4, so the full polynomial is

6m2m3(n − m1 − 2m2 − 3m3 − 4m4).

This last factor has degree 4 because of the m4 term (corresponding to adding 4 new 
elements to T ), so in total our polynomial has degree 2 +3 +4 = 9, which is precisely the 
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number of elements of T : 2 from the 2-cycle, 3 from the 3-cycle, and 4 from the chain of 
length 4.

Example A.0.7. Suppose we instead wanted to choose a 5-cycle and a chain of length 3. 
The number of ways to choose the 5-cycle would be 5m5. Then, the number of ways to 
choose the chain would be n −5 −m1 −2m2 −3m3, since the chain cannot be contained in 
a cycle of length 1, 2, or 3, and it also cannot overlap with the particular 5-cycle already 
chosen, even though in general it could be part of some 5-cycle. Thus, our polynomial 
would be

5m5(n − 5 − m1 − 2m2 − 3m3),

which has degree 5 + 3 = 8.

We may also need to subtract some terms to ensure that there are never multiple 
chains that overlap with each other, including the last element of one chain mapping to 
the first element of another chain. However, if the problem is the chains overlapping to 
form an i-cycle for some i, we would need to subtract a term of the form imi (possibly 
combined with a constant term to account for not overlapping with elements of chosen 
cycles), and if the problem is the chains overlapping to form a chain of length i, we 
subtract a term of the form n − m1 − 2m2 − · · · − imi, again possibly with a constant 
term added. In either case, we are subtracting a term of degree i, and i must be at most 
the sum of the lengths of the chains, so the degree of the new term never exceeds the 
sum of the lengths of the chains.

Example A.0.8. The issue of overlapping chains does not occur for the supercase from 
Example A.0.2, since there was only one chain being chosen, but suppose instead that 
we wanted to choose two chains, (b1, b2) of length 2 and (c1, c2, c3) of length 3 (and no 
cycles). The number of ways to choose the two chains independently would be

(n − m1 − 2m2)(n − m1 − 2m2 − 3m3).

We can then list all the ways the chains might overlap, as cases we will need to subtract:

• They could both be part of the same chain of length 3, either (b1 = c1, b2 = c2, c3)
or (c1, b1 = c2, b2 = c3), which could happen in 2(n − m1 − 2m2 − 3m3) ways total.

• They could combine to form a chain of length 4, either (b1, b2 = c1, c2, c3) or 
(c1, c2, c3 = b1, b2), which could happen in 2(n − m1 − 2m2 − 3m3 − 4m4) ways.

• They could form a cycle of length 4, either (b1 b2 = c1 c2 c3) or (c1 c2 c3 = b1 b2), 
which could happen in 2 · 4m4 ways.

• They could form a chain of length 5, (b1, b2, c1, c2, c3) or (c1, c2, c3, b1, b2), which could 
happen in 2(n − m1 − 2m2 − 3m3 − 4m4 − 5m5) ways.
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• They could form a cycle of length 5, (b1 b2 c1 c2 c3), which could happen in 5m5
ways.

Putting all this together, our polynomial would be

(n − m1 − 2m2)(n − m1 − 2m2 − 3m3) − 2(n − m1 − 2m2 − 3m2)

− 2(n − m1 − 2m2 − 3m2 − 4m4)

− 2 · 4m4

− 2(n − m1 − 2m2 − 3m2 − 4m4 − 5m5)

− 5m5.

It has degree 5, which is precisely the sum of the sizes of our two chains.

In general, the number of possible ways to choose T in each case is a polynomial of 
degree at most |T | ≤ |T1| + · · · + |Td| = k1 + · · · + kd, since very term has at most this 
degree.

Then to find the expected number of successful choices of (T1, . . . , Td) over π ∈ C

for each case, we need to multiply the total number of choices for (T1, . . . , Td) for the 
corresponding supercase by the probability over all π ∈ C that the chosen elements 
are actually ordered in the way we want according to our particular case, which, as 
noted above, is just 1/|T ∪ π(T )|!. Summing over all cases, our expected value is a linear 
combination of polynomials of degree at most k1 + · · · + kd, so we get a polynomial of 
at most the same degree. �
A.2. Polynomiality of the character coefficients

It follows from Theorem 1.2 that for n ≥ 2(k1 + · · · + kd), the coefficients

αλ
σ1,...,σr,n = χλ[n], 〈Mσ1,...,σr,n〉

agree with polynomials aλ
σ1,...,σd

(n) in n of degree at most k1 + · · ·+kd −|λ|, by the same 
logic as in [3]: the character polynomials χλ[n] form a basis for the space of polynomials 
in m1, . . . , mk1+···+kd

of degree at most k1 + · · · + kd (where mi has degree i), and so we 
can expand our polynomial in this basis to get coefficients which are polynomials in n
of the claimed degrees. Setting n ≥ 2(k1 + · · · + kd) ensures that this works, since then 
all the relevant characters agree with the corresponding character polynomials.

However, we can also give a more direct argument for why these coefficients are 
polynomials in n, which will also show that in fact the polynomial aλ

σ1,...,σd
(n) agrees 

with the coefficient for n ≥ k1 + · · · + kd + |λ|, not just for n ≥ 2(k1 + · · · + kd).

Proof of Theorem 1.3. We will begin by expanding the inner product in a similar manner 
to the cases computed in Section 2, and then we will interpret each term of the resulting 
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sum as an expected value. We know that the character χλ[n] can be written using the 
character polynomial formula (Theorem 2.1, [8]) as some linear combination of terms of 
the form 

∏
i≥1

(
mi

ri

)
. Thus, by linearity of inner products, we can write αλ

σ1,...,σd,n as a 
linear combination of terms of the form

〈∏
i≥1

(
mi

ri

)
, Mσ1,...,σd,n

〉
.

By definition, the inner product of two class functions f and g on Sn is

〈f, g〉 = 1
n!

∑
C a conjugacy class in Sn

|C| · f(C)g(C).

In this case, the inner product can be expanded as

1
n!

∑
C a conjugacy class in Sn

|C| ·
(

m1(C)
r1

)(
m2(C)

r2

)
. . . · Mσ1,...,σd,n(C).

Since Mσ1,...,σd,n(C) is the average value of Nσ1(π) . . . Nσd
(π) over π ∈ C, so we can 

rewrite this sum as

1
n!

∑
C a conjugacy class in Sn

(
|C| ·

(
m1(C)

r1

)(
m2(C)

r2

)
. . . · 1

|C|
∑
π∈C

Nσ1(π) . . . Nσd
(π)

)
,

which is equivalent to

1
n!

∑
π∈Sn

(
m1(π)

r1

)(
m2(π)

r2

)
. . . · Nσ1(π) . . . Nσd

(π).

This term represents the expected value

Eπ∈Sn
(# of tuples (R1, R2, . . . , T1, . . . , Td) |Ri is the union of ri i-cycles,

Ti is an occurrence of σi),

since 
(

mi(π)
ri

)
represents the number of ways to choose a set Ri of ri i-cycles in π and 

Nσi
(π) represent the number of ways to choose an occurrence Ti of σi in π. To help 

simplify notation, let

R =
⋃
i≥1

Ri, T = T1 ∪ · · · ∪ Td, r = |R| =
∑
i≥1

iri, s = |T\R|,

so |R ∪ T | = r + s.
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We will consider cases based on how exactly the elements of R ∪ T are ordered and 
overlap with each other, as well as the precise ordering of their images. The approach to 
specifying these cases will be explained via the following example.

Example A.0.9. Suppose n = 20, and that R consists of 2 fixed points, a 2-cycle, and a 
3-cycle, so r1 = 2, r2 = 1, r3 = 1, ri = 0 for i ≥ 4, and r = r1 + 2r2 + 3r3 = 7. Let 
σ1 = 312 and σ2 = 31452. Then the expected number of tuples (R1, R2, R3, T1, T2) over 
all π ∈ Sn is

1
n!

∑
π∈Sn

(
m1(π)

2

)
m2(π)m3(π) · N312(π)N31452(π).

One possible choice of π, R, and T would be

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3 2 18 4 16 8 1 6 11 10 12 9 19 7 15 5 20 13 14 17

)
,

with the two fixed points 2 and 10 in R1 shown in red and orange, the 2-cycle R2 = (5 16)
shown in green, the 3-cycle R3 = (9 11 12) shown in blue, the occurrence T1 = (5, 8, 12)
of σ1 = 312 shown circled, and the occurrence T2 = (3, 10, 13, 17, 19) of σ2 = 31452
shown boxed. We get that R = {2, 5, 9, 10, 11, 12, 16} is the set of colored elements, 
T = {3, 5, 8, 10, 12, 13, 17, 19} is the set of boxed or circled elements, and s = |T\R| =
|{3, 8, 13, 17, 19}| = 5.

Now to specify what case this choice of π, R, and T falls under, we would require that 
the ordering of the colored, boxed, and circled elements be exactly as shown above. In 
this case, writing out only those elements in order, we get

2 3 5 8 9 10 11 12 13 16 17 19 .

So, this particular case would specify that when written in increasing order, the colored, 
boxed, and circled numbers follow the pattern

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ .

Also, the images of these boxed and circled numbers under π are

2 18 16 6 11 10 12 9 19 5 20 14 .

Relabeling the smallest of these numbers as 1, the second smallest as 2, the next smallest 
as 3, and so on, we get

1 10 9 3 6 5 7 4 11 2 12 8 .
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Thus, our sequence R ∪ T of colored, boxed and circled numbers is an occurrence in π
of the permutation

σ =
(

1 2 3 4 5 6 7 8 9 10 11 12
1 10 9 3 6 5 7 4 11 2 12 8.

)

The case we are in will also require that the boxed and circled numbers R ∪ T always be 
an occurrence in π of this particular permutation σ.

For instance, the following permutation would also fall under the same case, since the 
colored, boxed, and circled numbers are ordered in the same way as above, and they 
form an occurrence in π of the same permutation σ:
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 14 13 4 10 6 7 8 9 11 5 15 3 16 12 14 17 18 19 20

)
.

Observe now that given the values of r1, r2, r3, . . . and σ1, σ2, σ3, . . . , there are a fixed 
number of such cases, no matter what n is, since the number of colored, boxed and circled 
elements is bounded as n grows, and those are the only elements relevant to specifying 
what a particular case looks like. The idea now is to find the expected value over π ∈ Sn

of the number of pairs (R, T ) falling under a particular case, and to then sum over all 
cases. If we can show that the expected number of such pairs is a polynomial in n for 
every case, it will follow that the total number of expected pairs over all cases is also a 
polynomial in n.

For the purpose of computing these expected values, we will ignore what π does to 
elements outside R∪T , since this is not relevant and does not impact the expected value. 
For each case, we will compute the expected value to be

# of successful choices for R, T , and their images under π

total # of choices for where R ∪ T could map under π
.

Assuming |R ∪ T | = r + s for the particular case we are in, the denominator will be 
P (n, r + s), since as π ranges over Sn, there are n(n − 1)(n − 2) = . . . (n − r − s + 1) =
P (n, r + s) equally likely choices for the images of any r + s elements.

To compute the numerator, we will further subdivide each case into subcases based 
on first choosing which elements of [n] are in R.

Example A.0.10. Using the first permutation from Example A.0.9, choosing a subcase 
would mean choosing the colored elements, so the relevant subcase would be permuta-
tions that look like(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
∗ 2 ∗ ∗ 16 ∗ ∗ ∗ 11 10 12 9 ∗ ∗ ∗ 5 ∗ ∗ ∗ ∗

)
.

Note that we already know which elements of R are boxed and circled and where all 
elements of R map under π, because this was specified by our case described in Ex-
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ample A.0.9. However, do not yet know exactly which other elements will be boxed or 
circled or what their images will be under π, although we do know that the pattern of 
boxed and circled elements should be

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ,

and that these elements should form an occurrence in π of the permutation σ from 
Example A.0.9. Note that in counting the number of possibilities, we will ignore where 
elements which are not boxed, circled, or colored map under π. Thus, in the case of our 
permutation from Example A.0.9, the relevant information would be
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
∗ 2 18 ∗ 16 ∗ ∗ 6 11 10 12 9 19 ∗ ∗ 5 20 ∗ 14 ∗

)
.

Let us now count the number of choices under this subcase for the remaining boxed 
and circled elements and their images (the above being one such possibility). First we 
choose the elements themselves. We need to choose one of 3 and 4 to be boxed, one of 
6, 7, and 8 to be circled, one of 13, 14, and 15 to be boxed, and two of 17, 18, 19, and 
20 to be boxed. In total, this gives

(
2
1

)(
3
1

)(
3
1

)(
4
2

)

choices so far. Next, we need to choose the images of these elements. To match the 
ordering of the images shown above, the image of the 2nd circled element must be 
chosen from among 6, 7, and 8, the image of the final boxed element must be chosen 
from among 13, 14, and 15, and the images of the remaining three boxed elements must 
be chosen from among 17, 18, 19, and 20. Thus, the total number of ways to choose the 
images of these elements is

(
3
1

)(
3
1

)(
4
3

)
.

Once these choices are made, all the relevant information will be determined, since we 
do not care where the remaining elements map under π.

We will now generalize this example. Given a particular case (before specifying a 
subcase), there are numbers j1, j2, . . . , jr+1 such that the list of elements of R ∪ T in 
increasing order looks like

j1 terms element of R j2 terms element of R . . . element of R jr+1 terms .

Example A.0.11. Counting the number of boxed or circled elements between consecutive 
colored elements in Example A.0.9 (which has r = 7 for the 7 colored elements), we find 



C. Gaetz, L. Pierson / Advances in Applied Mathematics 147 (2023) 102507 37
j1 = 0 since there are no boxed or circled elements before the 2, j2 = 1 because there is 
one boxed element between the 2 and the 5 , j3 = 1 because there is one boxed element 
between the 5 and the 9, j4 = j5 = j6 = 0, j7 = 1 since there is one boxed element 
between the 12 and the 16, and j8 = 2 since there are 2 boxed elements after the 16.

Similarly, there are numbers �1, �2, . . . , �r+1 so that the list of elements of π(R ∪ T ) =
R ∪ π(T ) in increasing order looks like

�1 terms element of R �2 terms element of R . . . element of R �r+1 terms .

Example A.0.12. In Example A.0.9, we get �1 = �2 = 0 since none of the boxed or circled 
elements have images less than 5 , �3 = 1 since one circled element has image between 
5 and 9, �4 = �5 = �6 = 0, �7 = 1 since one boxed element has image between 12 and 
16, and �8 = 3 since 3 boxed elements have image greater than 16.

Note that the ji’s and �i’s are determined by the ordering of the elements of R ∪ T

specified by our particular case (without regard yet to which subcase we are in), and 
that

j1 + · · · + jr+1 = �1 + · · · + �r+1 = |T\R| = s.

Next, once we have specified a subcase, there are numbers n1, . . . , nr+1 such that the 
full list 1, . . . , n looks like

n1 terms element of R n2 terms element of R . . . element of R nr+1 terms ,

and these numbers satisfy

n1 + · · · + nr+1 = n − r.

Example A.0.13. For the subcase in Example A.0.10, we get n1 = 1 (the 1), n2 = 2 (the 
3 and 4), n3 = 3 (the 6, 7, and 8), n4 = n5 = n6 = 0, n7 = 3 (the 13, 14, and 15), and 
n8 = 4 (the 17, 18, 19, and 20).

Now we can do a calculation like the one in Example A.0.10. The total number of 
ways we could choose T \R (the non-colored boxed and circled elements) and their images 
given our particular subcase is

r+1∏
i=1

(
ni

ji

)
·

r+1∏
i=1

(
ni

�i

)
,

since in the ith block we have ni elements to choose from, and we must choose ji of 
them to be in T and �i of them to be in π(T ). (One can check that this matches the 
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computation in Example A.0.10 for that particular subcase.) Summing over all choices for 
the ni’s (subcases) and then dividing by the denominator P (n, r+s) that we determined 
earlier, the expected value of π ∈ Sn for the number of choices of R, T , and their images 
that work for a particular case is

1
n(n − 1) . . . (n − r − s + 1)

∑
n1+n2+...nr+1=n−r

r+1∏
i=1

(
ni

ji

)(
ni

�i

)
. (9)

This is a rational function in n, and to show that it is a polynomial, it suffices to show 
that all the roots of the denominator, namely, n = 0, 1, . . . , r +s −1, are also roots of the 
numerator. This holds because the numerator counts a particular set of ways to choose 
two sets of r + s elements from among the elements of [n], and if n < r + s, that would 
mean choosing more elements than we have available, so the numerator must be 0. Thus, 
we get a polynomial in every case, so summing over all cases, we also get a polynomial. 
Finally, summing over all terms of the form

1
n!

∑
π∈Sn

(
m1(π)

r1

)(
m2(π)

r2

)
. . . · Nσ1(π) . . . Nσd

(π)

from our expanded inner product 〈χλ[n], Mσ1,...,σd,n〉, we get that αλ
σ1,...,σd,n is a polyno-

mial as well. We write aλ
σ1,...,σd

(n) for this polynomial.
This argument is valid as long as we are not dividing by 0, which is the case as long 

as n ≥ r + s. Since r ≤ |λ| for all terms in the character polynomial for χλ[n] and 
s ≤ k1 + · · · + kd in all cases, it suffices to take n ≥ k1 + · · · + kd + |λ| to ensure that 
n ≥ r + s, and therefore that aλ

σ1,...,σd
(n) = αλ

σ1,...,σd,n. �
Appendix B. Proof of Lemma 2.6

The goal of this appendix is to prove Lemma 2.6, which states that for n ≥ k,

E(n, k, r) = 2k−r

(r − 1)!!(2k − r)!!

(
n − r

2
k − r

)
.

Our proof of this formula is structured as follows:

1. Use generating functions to prove the statement for r = 1 (Claim 1).
2. Use induction on n together with Claim 1 to prove the statement in general (Claim 2).

Our proof will make use of the following two generating functions:

Definition B.1. Let F (x, y) and G(x, y) be the generating functions

F (x, y) =
∑ (

n

k

)2

x2ny2k,

n,k≥0
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G(x, y) = 1
2

∑
n,k≥0

(
2n

2k − 1

)
x2ny2k.

From Lemma 2.5, the E(n, k, r)’s can be expressed in terms of coefficients of powers 
of F (x, y) as

∑
n,k≥0

P (n, k)E(n, k, r)x2ny2k = (xy)2rF (x, y)r+1.

Our second claim will give a closed form for E(n, k, 1), or equivalently, a relationship 
between these two generating functions.

Claim 1. The formula holds for r = 1. Equivalently,

E(n, k, 1) = 2k−1

(2k − 1)!!

(
n − 1

2
k − 1

)
= 2k−1(2n − 1)(2n − 3) . . . (2n − 2k + 3)

(2k − 1)!

= 1
2P (n, k)

(
2n

2k − 1

)
. (10)

In terms of generating functions, this can be written as

x2y2F (x, y)2 = G(x, y). (11)

Proof. First we show that all these claims are equivalent. Multiplying out the factorials 
and canceling common terms, we get

2k−1

(2k − 1)!!

(
n − 1

2
k − 1

)
= 2k−1

(2k − 1)(2k − 3) . . . 3 · 1 ·
(n − 1

2 )(n − 3
2 ) . . . (n − k + 3

2 )
(k − 1)(k − 2) . . . 2 · 1

= 2k−1

(2k − 1)(2k − 3) . . . 3 · 1 · (2n − 1)(2n − 3) . . . (2n − 2k + 3)
(2k − 2)(2k − 4) . . . 4 · 2

= 2k−1(2n − 1)(2n − 3) . . . (2n − 2k + 3)
(2k − 1)!

= 2n(2n − 2) . . . (2n − 2k + 2)
2 · n(n − 1) . . . (n − k + 1) · (2n − 1)(2n − 3) . . . (2n − 2k + 3)

(2k − 1)!

= 1
2P (n, k)

(
2n

2k − 1

)
.

This shows that the first three expressions are equivalent. Thus, we will prove the third 
expression. By Lemma 2.5, the desired statement can be rewritten as

∑ ∑ (
n1

k1

)2(
n2

k2

)2

= 1
2

(
2n

2k − 1

)
.

n1+n2=n−1 k1+k2=k−1
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Rewriting this in terms of the generating functions from Definition B.1, we can see that 
this is equivalent to (11). To show (11), we will compute closed forms for F (x, y) and 
G(x, y), and show that they match. First, we compute a closed form for G(x, y) by writing 
it as a difference of two geometric series and then putting the resulting two fractions over 
a common denominator:

G(x, y) = y

2
∑
n≥0

x2n
n∑

k=0

(
2n

2k − 1

)
y2k−1

= y

2
∑
n≥0

x2n · (y + 1)2n − (y − 1)2n

2

= y

4

(
1

1 − x2(y + 1)2 − 1
1 − x2(y − 1)2

)

= y

4

(
1

1 − x2 − x2y2 − 2x2y
− 1

1 − x2 − x2y2 + 2x2y

)

= y

4 · 4x2y

(1 − x2 − x2y2)2 − (2x2y2)2

= x2y2

(1 − x2 − x2y2)2 − (2x2y2)2 .

It remains to compute a closed form for F (x, y). By Pascal’s identity, for all n ≥ 1 we 
have

(
n

k

)2

=
((

n − 1
k − 1

)
+

(
n − 1

k

))2

=
(

n − 1
k − 1

)2

+ 2
(

n − 1
k − 1

)(
n − 1

k

)
+

(
n − 1

k

)2

,

so we get

F (x, y) = 1 +
∑

n,k≥1

(
n − 1
k − 1

)2

x2ny2k +
∑

n,k≥1

(
n − 1

k

)2

x2ny2k

+ 2
∑

n≥1,k≥0

(
n − 1
k − 1

)(
n − 1

k

)
x2ny2k

= 1 +
∑

n,k≥0

(
n

k

)2

x2n+2y2k+2 +
∑

n,k≥0

(
n

k

)2

x2n+2y2k

+ 2
∑

n≥1,k≥0

(
n − 1
k − 1

)(
n − 1

k

)
x2ny2k

= 1 + (x2y2 + x2)F (x, y) + 2
∑

n≥1,k≥0

(
n − 1
k − 1

)(
n − 1

k

)
x2ny2k.

Rearranging gives
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(1 − x2 − x2y2)F (x, y) = 1 + 2x3y2
∑

n≥1,k≥0

(
n

k − 1

)(
n

k

)
x2n−1y2k−2. (12)

The generating function for the Narayana numbers (see [9]) is known to be

∑
n≥1,k≥0

1
n

(
n

k − 1

)(
n

k

)
x2ny2k−2 =

1 − x2 − x2y2 +
√

1 − 2x2(1 + y2) + x4(1 − y2)2

2x2y2 .

Multiplying by y2 and taking the derivative with respect to x gives

2y2
∑

n≥1,k≥0

(
n

k − 1

)(
n

k

)
x2n−1y2k−2 = − 1

x3 + d

dx

√
1

4x4 − 1 + y2

2x2 + (1 − y)2

= − 1
x3 +

− 1
x5 + 1+y2

x3

2
√

1
4x4 − 1+y2

2x2 + (1−y)2

4

= − 1
x3

(
1 − 1 − x2 − x2y2√

1 − 2x2(1 + y2) + x4(1 − y2)2

)
.

Plugging this into (12) gives

(1 − x2 − x2y2)F (x, y) = 1 − x3 · 1
x3

(
1 − 1 − x2 − x2y2√

1 − 2x2(1 + y2) + x4(2 − y2)2

)
,

so we have

F (x, y) = 1√
1 − 2x2(1 + y2) + x4(1 − y2)2

and thus

x2y2F (x, y)2 = x2y2

1 − 2x2(1 + y2) + x4(1 − y2)2

= x2y2

1 − 2x2 − 2x2y2 + x4y4 − 2x4y2 + x4

= x2y2

(1 − x2 − x2y2)2 − (2x2y)2

= G(x, y),

which completes the proof. �
Now for our third part of our proof, we will define an additional function E′(n, k, r)

and simultaneously prove formulas for both E(n, k, r) and E′(n, k, r) by induction on n.
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Definition B.2. Let E′(n, k, r) denote the sum

E′(n, k, r) = 1
P (n, k)

∑
i,j≥1

P (i j)E(i, j, r − 2) · 1
2

(
2(n − i − 1)
2(k − j − 1)

)
.

Claim 2. E(n, k, r) and E′(n, k, r) are given by the formulas

E(n, k, r) = 2k−r

(r − 1)!!(2k − r)!!

(
n − r

2
k − r

)
,

E′(n, k, r) = 2k−r

(r − 1)!!(2k − r)!!

(
n − r

2
k + 1 − r

)
.

Proof. We will prove both formulas simultaneously by induction on n, and we will also 
assume in the inductive step that the formulas are known to hold for smaller values of k
and r. Our base case will cover all values of k and r assuming that n is minimal given k
and r.

We will first find recursive formulas expressing each of E(n, k, r) and E′(n, k, r) in 
terms of smaller values ((13) and (14)). Using our generating functions from Defini-
tion B.1 and equation (11) relating them,

∑
n,k≥0

P (n, k)E(n, k, r)x2ny2k = F (x, y)
∑

n,k≥0

P (n, k)E(n, k, r − 2)x2ny2k

= x2y2G(x, y)
∑

n,k≥0

P (n, k)E(n, k, r − 2)x2ny2k.

Since G(x, y) =
∑

n,k≥0
1
2
( 2n

2k−1
)
x2ny2k, this can be rewritten as

P (n, k)E(n, k, r) =
∑

i,j≥1
P (i j)E(i, j, r − 2) · 1

2

(
2(n − i − 1)

2(k − j − 1) − 1

)
.

Using Pascal’s identity twice,
(

2n − 2i − 2
2k − 2j − 3

)
=

(
2n − 2i − 3
2k − 2j − 4

)
+

(
2n − 2i − 3
2k − 2j − 2

)

=
(

2n − 2i − 4
2k − 2j − 5

)
+ 2

(
2n − 2i − 4
2k − 2j − 4

)
+

(
2n − 2i − 4
2k − 2j − 3

)
.

Thus, our right hand side splits into

P (n, k)E(n, k, r) =
∑

i,j≥1
P (i j)E(i, j, r − 2) · 1

2

(
2(n − i − 2)

2(k − j − 2) − 1

)

+
∑

P (i j)E(i, j, r − 2) · 1
2

(
2(n − i − 2)
2(k − j − 2)

)

i,j≥1



C. Gaetz, L. Pierson / Advances in Applied Mathematics 147 (2023) 102507 43
+ 2
∑

i,j≥1
P (i j)E(i, j, r − 2) · 1

2

(
2(n − i − 2)
2(k − j − 1)

)
.

From the recurrence for E(n, k, r) and the definition of E′(n, k, r), we can rewrite this 
as

P (n, k)E(n, k, r) = P (n − 1, k − 1)E(n − 1, k − 1, r) + P (n − 1, k)E(n − 1, k, r)

+ 2P (n − 1, k − 1)E′(n − 1, k − 1, r).

Dividing by P (n − 1, k − 1) on both sides, we get

nE(n, k, r) = E(n − 1, k − 1, r) + (n − k)E(n − 1, k, r) + 2E′(n − 1, k − 1, r). (13)

We can use a similar argument to get a recurrence for E′(n, k, r). We have to take out 
the term with a 

(0
0
)

in it, since we cannot split 
(0

0
)

using Pascal’s identity. We get

P (n, k)E(n, k, r) = P (n − 1, k − 1)E(n − 1, k − 1, r − 2) · 1
2

(
0
0

)

+
∑

i,j≥1
P (i j)E(i, j, r − 2) · 1

2

(
2(n − i − 2)
2(k − j − 2)

)

+
∑

i,j≥1
P (i j)E(i, j, r − 2) · 1

2

(
2(n − i − 2)
2(k − j − 1)

)

+ 2
∑

i,j≥1
P (i j)E(i, j, r − 2) · 1

2

(
2(n − i − 2)

2(k − j − 1) − 1

)
.

Applying the recurrence to each of these sums and then dividing by P (n − 1, k − 1), we 
get the recurrence

nE′(n, k, r) = 1
2E(n − 1, k − 1, r − 2) + E′(n − 1, k − 1, r) + (n − k)E′(n − 1, k, r)

+ 2(n − k)E(n − 1, k, r). (14)

We can now proceed with the induction:

Base case: For our base case, the smallest that n can be for a given k to make E(n, k, r)
nonzero is if n = k, since otherwise there cannot be any increasing subsequences of 
length k. In this case, we get E(k, k, r) = 1

k!
(

k
r

)
. The only way to have an increasing 

subsequence of length k when n = k is if the permutation is the identity (which happens 
with probability 1

k! ). In that case every subset of size r is a set of r fixed points contained 
in the subsequence, and there are 

(
k
r

)
such subsets. To check that our formula gives the 

same result in this case, we can plug in n = k to get
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2k−r(k − r
2 ) . . . ( r

2 + 1)
(r − 1)!!(2k − r)!!(k − r)!

= (2k − r)(2k − r − 2) . . . (r + 2)
[(r − 1)(r − 3) . . . ] · [(2k − r) . . . (r + 2)r(r − 2) . . . ] · (k − r)!

= 1
r!(k − r)! = 1

k!

(
k

r

)
= E(k, k, r).

By the above calculation and (13) together with Pascal’s identity, we get

E′(k, k, r) = (k + 1)E(k + 1, k + 1, r) − E(k, k, r)
2

=
(k + 1) · 1

(k+1)!
(

k+1
r

)
− 1

k!
(

k
r

)
2 =

1
k!

(
k

r−1
)

2 = 1
2 · (r − 1)!(k + 1 − r)!

= 1
[(r − 1)(r − 3) . . . ] · [(2k − r)(2k − r − 2) . . . ]

· (2k − r)(2k − r − 2) . . .

2 · [(r − 2)(r − 4) . . . ] · (k + 1 − r)!

= 1
[(r − 1)(r − 3) . . . ] · [(2k − r)(2k − r − 2) . . . ]

·
2k− r

2 (k − r
2 )(k − r

2 − 1) . . .

2 · [2 r
2 −1( r

2 − 1)( r
2 − 2) . . . ] · (k + 1 − r)!

= 2k−r

(r − 1)!!(2k − r)!!

(
k − r

2
k + 1 − r

)
.

This completes the base case.

Inductive step: For the inductive hypothesis, assume both formulas hold when n is 
strictly smaller and k and r are weakly smaller than their current values. First we will 
prove that the formula for E(n, k, r) holds. By the inductive hypothesis, we can plug our 
formulas into (13) to give

nE(n, k, r) = E(n − 1, k − 1, r) + (n − k)E(n − 1, k, r) + 2E′(n − 1, k − 1, r)

=
2k−r−1(n−1− r

2
k−1−r

)
(r − 1)!!(2k − 2 − r)!! +

2k−r(n − k)
(n−1− r

2
k−r

)
(r − 1)!!(2k − r)!! +

2k−r−1 · 2
(n−1− r

2
k−r

)
(r − 1)!!(2k − r)!!

=
2k−r−1

(
(2k − r)

(n−1− r
2

k−1−r

)
+ 2(n − k)

(n−1− r
2

k−r

)
+ 2(2k − r)

(n−1− r
2

k−r

))
(r − 1)!!(2k − r)!! .

Rearranging and using Pascal’s identity, we get

nE(n, k, r) =
2k−r−1(2n

(n−1− r
2

k−r

)
+ (2k − r)

(n−1− r
2

k−1−r

)
+ 2(k − r)

(n−1− r
2

k−r

)
)

(r − 1)!!(2k − r)!!
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=
2k−r

(
n

(n−1− r
2

k−r

)
+ (k − r

2 )
(n−1− r

2
k−1− r

2

)
+ (n − k + r

2 )
(n−1− r

2
k−1−r

))
(r − 1)!!(2k − r)!!

=
2k−r

(
n

(n−1− r
2

k−r

)
+ n

(n−1− r
2

k−1−r

))
(r − 1)!!(2k − r)!!

= 2k−r · n

(r − 1)!!(2k − r)!!

(
n − r

2
k − r

)
.

Dividing by n shows that the formula for E(n, k, r) holds for the current value of n.
It remains to show prove that the formula for E′(n, k, r) holds as well. Using the 

inductive hypothesis to plug our formulas into (14), we get

nE′(n, k, r) = 1
2E(n − 1, k − 1, r − 2) + E′(n − 1, k − 1, r)

+ (n − k)E′(n − 1, k, r) + 2(n − k)E(n − 1, k, r)

=
1
2 · 2k−r+1( n− r

2
k+1−r

)
(r − 3)!!(2k − r)!! +

2k−r−1(n−1− r
2

k−r

)
(r − 1)!!(2k − 2 − r)!!

+
2k−r(n − k)

(n−1− r
2

k+1−r

)
(r − 1)!!(2k − r)!! +

2k−r · 2(n − k)
(n−1− r

2
k−r

)
(r − 1)!!(2k − r)!!

= 2k−r
(

(r − 1)
( n− r

2
k+1−r

)
+ (k − r

2 )
(n−1− r

2
k−r

)
+ (n − k)

(n−1− r
2

k+1−r

)
+ 2(n − k)

(n−1− r
2

k−r

))
(r − 1)!!(2k − r)!!

.

Again, rearranging and using Pascal’s identity, we get

nE′(n, k, r) =
2k−r

(
(r − 1)

( n− r
2

k+1−r

)
+

(
(n − r + 1)

(n−1− r
2

k−r

)
+ (n − r + 1)

(n−1− r
2

k+1−r

)))
(r − 1)!!(2k − r)!!

−
2k−r

(
(k + 1 − r)

(n−1− r
2

k+1−r

)
− (n − k + r

2 − 1)
(n−1− r

2
k−r

))
(r − 1)!!(2k − r)!!

=
2k−r

(
(r − 1)

( n− r
2

k+1−r

)
+ (n − r + 1)

( n− r
2

k+1−r

))
(r − 1)!!(2k − r)!!

= 2k−r · n

(r − 1)!!(2k − r)!!

(
n − r

2
k + 1 − r

)
.

Dividing by n shows that E′(n, k, r) matches the claimed formula, which completes the 
proof. �
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