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Abstract: This article reports an experimental work that unveils some interesting yet unknown
phenomena underneath all smooth nonlinear maps. The findings are based on the fact that, gen-
eralizing the conventional gradient dynamics, the right singular vectors of the Jacobian matrix of
any differentiable map point in directions that are most pertinent to the infinitesimal deformation
of the underlying function and that the singular values measure the rate of deformation in the
corresponding directions. A continuous adaption of these singular vectors, therefore, constitutes a
natural moving frame that carries indwelling information of the variation. This structure exists in
any dimensional space, but the development of the fundamental theory and algorithm for surface
exploration is an important first step for immediate application and further generalization. In this
case, trajectories of these singular vectors, referred to as singular curves, unveil some intriguing
patterns per the given function. At points where singular values coalesce, curious and complex
behaviors occur, manifesting specific landmarks for the function. Upon analyzing the dynamics,
it is discovered that there is a remarkably simple and universal structure underneath all smooth
two-parameter maps. This work delineates graphs with this interesting dynamical system and the
possible new discovery that, analogous to the double helix with two base parings in DNA, two
strands of critical curves and eight base pairings could encode properties of a generic and arbitrary
surface. This innate structure suggests that this approach could provide a unifying paradigm in
functional genetics, where all smooth surfaces could be genome-sequenced and classified accordingly.
Such a concept has sparked curiosity and warrants further investigation.

Keywords: moving frame; nonlinear variation; gradient adaption; singular curves; critical curves;
base pairings; parametric surfaces; geometric genome

MSC: 51N05; 37B35; 65L07; 37N30; 65D18; 53A05

1. Introduction

The notion of nonlinear maps has been used in almost every field of discipline as the
most basic apparatus to describe complicated phenomena. However, the metaphysical
question of what impinges on a function (in such a way that we may make use of its
variations to denote distinct episodes) remains a natural mystery. Surface descriptions
and their constructions in R3, for example, are of critical importance to a wide range of
disciplines. But what makes surfaces present so many different shapes and geometric
properties? This paper reports a preliminary study of a dynamics system inbuilt into every
function, which might suggest an alternative, interesting, and possibly universal paradigm
to help explore these questions.

Our idea is motivated by gradient adaption, which is ubiquitous in nature. Heat
transfer by conduction and the osmosis of substances are two prevalent examples. They
illustrate this natural phenomenon, moving against the temperature gradient, which is
perpendicular to the isothermal surfaces, and down a concentration gradient across the cell
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membrane, without requiring energy use. Gradient adaption follows the fundamental fact
that the gradient

∇η(x) :=
[

∂η

∂x1
, . . . ,

∂η

∂xn

]
of a given smooth scalar function η : Rn −→ R points in the steepest ascent direction for the
function value η(x) with the maximum rate exactly equal to the Euclidean norm ‖∇η(x)‖.
A mechanical generalization of the gradient of a scalar function to a smooth vector function
f : Rn −→ Rm should be the Jacobian matrix defined by

f′(x) :=


∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

. . . ∂ fm
∂xn

.

In this situation, the information about how f(x) transforms itself is masked by the com-
bined effect of m gradients. One way to quantify the variation of f is to measure the rate of
change along any given unit vector u via the norm of the directional derivative

lim
t→0

∥∥∥∥ f(x + tu)− f(x)
t

∥∥∥∥ = ‖f′(x)u‖, (1)

where in this discussion, we limit ourselves to the standard Euclidean norm only. Similar
to the gradient adaption, we look at which directions function f(x) changes most rapidly
and how much the maximum rate is attained. The answer lies in the notion of the singular
value decomposition (SVD) of the Jacobian matrix f′(x).

Any given matrix A ∈ Rm×n enjoys a factorization of the form

A = VΣU>, (2)

where V ∈ Rm×m and U ∈ Rn×n are orthogonal matrices, Σ ∈ Rm×n is zero everywhere
except for the nonnegative elements σ1 ≥ σ2 ≥ . . . ≥ σκ > σκ+1 = . . . = 0 along the leading
diagonal, and κ = rank(A). The scalars σi and corresponding columns ui in U and vi in
V are called singular values, and the right and left singular vectors of A, respectively [1].
The notion of the SVD has long been conceived in various disciplines [2] as it appears
frequently in a remarkably wide range of important applications, e.g., data analysis [3],
dimension reduction [4], signal processing [5], image compression, principal component
analysis [6], to name a few. Among the multiple ways to characterize the SVD of a matrix
A, the variational formulation, i.e., solving the problem

max
‖u‖=1

‖Au‖, (3)

sheds light on an important geometric property of the SVD. One can show that the unit’s
stationary points, ui ∈ Rn for problem (3), and the associated objective values, ‖Aui‖, are
exactly the right singular vectors and the singular values of A. By duality, there exists a
unit vector vi ∈ Rm, such that v>i Aui = σi. This vi is the corresponding left singular vector
of A. Because the linear map A transforms the unit sphere in Rn into a hyperellipsoid
in Rm, the right singular vectors, uis, are the pivotal directions that are mapped to the
semi-axis directions of the hyperellipsoid. Upon normalization, these semi-axis directions
are precisely the left singular vectors vi’s. Additionally, the singular values measure the
extent of deformation. In this way, it is, thus, understood that the SVD of the Jacobian
matrix f′(x) carries crucial information about the infinitesimal deformation property of the
nonlinear map f at x. At every point x ∈ Rn, we now have a set of orthonormal vectors
that point in directions that are pertinent to the variation of f. These orthonormal vectors
form a natural frame, point-by-point.
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In nature, a system often adapts itself continuously in the gradient direction. Thus, we
are inspired to believe that tracking down the “motion” of these frames might help reveal
some innate peculiarities of the underlying function f. More precisely, we are interested in
the solution flows xi(t) ∈ Rn defined by the dynamical system

ẋi := ±ui(xi), xi(0) = x̃, (4)

or the corresponding solution flows yi(t) ∈ Rm, defined by

ẏi := ±σi(xi)vi(xi), yi(0) = f (x̃), (5)

where (σi, ui, vi) is the ith singular triplet of f′(xi). The scaling in (5) ensures the relationship

yi(t) = f(xi(t)). (6)

The sign ± in defining the vector field is meant to select the direction, so as to avoid the
discontinuity jump because singular vectors are unique up to a sign change. Suppose
ẋ(t) = u(x(t)) and we define z(t) := x(−t), then ż(t) = −u(z(t)). Thus, we may assume
that—without loss of generality—the direction of singular vectors has been predestined
and that the time t can move either forward or backward.

It must be noted that any given point x̃ at which f′(x̃) has at least one isolated singular
vector cannot be an equilibrium point of the dynamical system (4). Therefore, the frame
must move. What can happen is that the right side of (4) (or (5)) is not well-defined at
points when singular values coalesce because at such points, f′(x) has multiple singular
vectors corresponding to the same singular value. A missed choice might cause ẋi (or ẏi)
to become discontinuous. We shall argue in this paper that it is precisely at these points
that the nearby dynamics manifest significantly different behaviors. Such a discontinuity
is not to be confused with the theory of analytic singular value decomposition (ASVD),
which asserts the existence of an analytic factorization for an analytic function in x [7,8].
The subtle difference is that the ASVD guarantees an analytic decomposition as a whole,
but once we begin to pick out a specific singular vector, such as insisting that u1(x) always
denotes the right singular vector associated with the largest singular value σ1, then u1(x)
by itself cannot guarantee its analyticity at the place where σ1 = σ2.

Because of how they are constructed, the integral curves {xi(t)} and {yi(t)} are
referred to in this paper as the right and the left singular curves (The term “singular curve”
has been used in a different context in the literature. See, for example, [9]. We emphasize
its association with the singular value decomposition. Also, the notion of singular curves
is fundamentally different from the notion of principal curves used in statistics [10–13])
of map f, respectively. It suffices to consider only the right singular curves because the
relationship (6) implies that their images under f are precisely the left singular curves. What
makes singular curves interesting is that they represent some curious undercurrents not
recognized before the functions. Each function carries its own inherent flows. We conjecture
that under appropriate conditions, a given set of trajectories should also characterize a
function. Exactly how such a correspondence between singular curves and a function takes
place remains an open question.

Singular value curves do exist for smooth functions over spaces of arbitrary dimen-
sions. In this paper, we study only the singular curves for two-parameter functions so that
we can actually visualize the dynamics. In particular, we focus on how it affects parametric
surfaces in R3. Under this setting, it suffices to consider only the principal singular curves
x1(t) because the secondary singular curves x2(t) are simply the orthogonal curves to x1(t).
Limiting ourselves to two-parameter functions seems to have overly simplified the task.
However, we shall demonstrate that the corresponding dynamics already reveal some
remarkably amazing exquisiteness.

The study of surfaces is a classic subject with a long history and rich literature, both
theoretically and practically. Research endeavors range from abstract theory in pure
mathematics [14–16] to the study of minimal surfaces [17,18] and applications in computer
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graphics, security, and medical images [19–21]. For instance, perhaps the best-known
classification theorem for surfaces is that any closed connected surface is homeomorphic to
exactly one of the following surfaces: a sphere, a finite connected sum of tori, or a sphere
with a finite number of disjoint discs removed (with cross-caps glued in their place) [22]. To
extract fine grains of surfaces, more sophisticated means have been developed. For example,
the classic conformal geometry approach uses discrete Riemann mapping and Ricci flow
for parameterization, matching, tracking, and identification for surfaces with an arbitrary
number of genera [20,23]. See also reference [24], where the Laplace–Beltrami spectra are
used as isometric-invariant shape descriptors. We hasten to acknowledge that we do not
have the expertise to elaborate substantially on these and other alternative methods for
extracting geometric features of surfaces. We are not in a position to make a rigorous
comparison. We simply want to mention that, while these approaches are plausible, they
might encounter three challenges, i.e., the associated numerical algorithms are usually
complicated and expensive; the techniques designed for one particular problem are often
structure-dependent and might not be easily generalizable to another type of surface; and,
most disappointingly, they cannot decipher what really causes a surface to behave in the
way we expect it to behave. In contrast, our approach is at a much more basic level than
most of the studies in the literature. We concentrate on the dynamics that govern the
structural dissimilarity of every smooth surface.

This work, which uses the information-bearing singular value decomposition to study
smooth nonlinear functions, revealing a fascinating undercurrent per the given function,
is perhaps the first of its kind. Our goal in this presentation, therefore, is aimed at merely
conveying the point that the dynamical system of singular vectors dictates how a smooth
function varies and vice-versa. In particular, our initial investigation suggests that a
surprising and universal structure that is remarkably analogous to the biological DNA
formation, which is associated with a general parametric surface in R3, involves two strands
of critical curves in R2, strung with a sequence of eight distinct base pairings whose folding
and ordering might encode the behavior of a surface. Thus, a tantalizing new prospect
emerges—would it be possible that a surface could be genome-sequenced and synthesized,
and that its geometric properties could be explained by the makeup of genes? This new
subject is far from understood. This work is only the first step in which we hope to stimulate
some general interest.

This paper is organized as follows. For high-dimensional problems, it is not possible
to characterize the vector field (4) explicitly. For two-parameter maps, we can describe the
dynamical system in terms of two basic critical curves. These basics are outlined in Section 2.
The intersection points of these critical curves are precisely where the dynamical system
breaks down and, hence, contribute to the peculiar behavior of the system. In Section 3,
we demonstrate the interesting behavior of the singular curves by considering several
well-known parametric surfaces, such as the Klein bottle, the Boy face, the snail, and the
breather surfaces. The first-order local analysis of the dynamical system is given in Section 4.
By bringing in the second-order information in Section 5, we can further classify the local
behavior in terms of base pairings, which provide a universal structure underneath all
generic parametric surfaces. In Section 6, we recast the singular vector dynamics over the
classical scalar-valued functions and give a précis of how the notion of base pairing should
be modified into “wedges” for this simple case. Finally, in Section 7, we outline a few
potential applications, including a comparison with gradient flows and a demonstration of
the base pairing sequence.

2. Basics

Given a differentiable two-parameter function f: R2 → Rm, we denote the two columns
of its m× 2 Jacobian matrix by

f′(x) =
[

a1(x), a2(x)
]
.
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Define the two scalar functions{
n(x) := ‖a2(x)‖2 − ‖a1(x)‖2,

o(x) := 2a1(x)>a2(x),
(7)

that measure the disparity of norms and nearness of orthogonality between the column
vectors of f′(x), respectively. Correspondingly, define the two sets:{

N := {x ∈ Rn | n(x) = 0},

O := {x ∈ Rn | o(x) = 0}.
(8)

Generically, each set forms a one-dimensional manifold in R2, which is possibly empty
or composed of multiple curves or loops. They will be shown in our analysis to play the
role of “polynucleotide”, connecting a string of interesting points and characterizing certain
properties of a function.

A direct computation shows that the two singular values of f′(x) are given by
σ1(x) :=

(
1
2

(
‖a1(x)‖2 + ‖a2(x)‖2 +

√
o(x)2 + n(x)2

))1/2
,

σ2(x) :=
(

1
2

(
‖a1(x)‖2 + ‖a2(x)‖2 −

√
o(x)2 + n(x)2

))1/2
.

(9)

The corresponding right singular vectors (expressions for both u1 and u2, are given, but we
will carry out the analysis for x1(t) only as that for x2(t) can be done similarly. Also, x2(t)
is simply the orthogonal curve of x1(t) in R2) are:

u1(x) :=
±1√

1 + ω(x)2

[
ω(x)

1

]
, (10)

u2(x) :=
±1√

1 + ζ(x)2

[
ζ(x)

1

]
, (11)

respectively, where 
ω(x) := o(x)

n(x)+
√

o(x)2+n(x)2
,

ζ(x) := −n(x)−
√

o(x)2+n(x)2

o(x) .
(12)

In the above, we normalize the second entry of the singular vectors with the understanding
of taking limits when either ω(x) or ζ(x) becomes infinity. The following fact is observed
immediately from (10).

Lemma 1. The tangent vectors to the singular curves x1(t) at any points in N , but not in O,
are always parallel to either αn := 1√

2
[1, 1]> or βn := [1, −1]>, depending on whether o(x) is

positive or negative. Likewise, the tangent vectors of the singular curves at any points in O, but
not in N , are parallel to αo := [0, 1]> or βo := [1, 0]>, depending on whether n(x) is positive
or negative.

At places where N and O intersect, which will be called singular points, the singular
values coalesce and the (right) singular vectors become ambiguous. We shall argue that
the intersection angles by N and O at the singular points affect the intriguing dynamics.
The one-dimensional manifolds, N and O, can be thought of as stringing singular points
together (with particular pairings) and will be referred to as the critical curves of f.

It might be best to plot the above basic curves with some curious graphic exam-
ples. Consider the various two-parameter maps defined in Table 1, each representing
some peculiar features. Repeatedly applying a high-precision numerical ODE integrator
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to the differential systems (4) from starting points at different locations in the window
[−5, 5]× [−5, 5], we find its singular curves x1(t) behave like those in the drawing of
Figure 1, whereas its critical curves are sketched in the drawing of Figure 2. By overlaying
the corresponding drawings in Figures 1 and 2, we can catch a glimpse into how these
critical curves affect the dynamics of singular curves. In particular, the singular curves x1(t)
make interesting twists nearby, where N and O intersect. The analysis of the angles at
which the critical curves cut across each other will be detailed in the sequel. To demonstrate
our point, an enlarged drawing over a coarser grid for Example 1 is depicted in Figure 3.
Note that there are regions where the critical curves are extremely close to each other,
forming long and narrow ridges with σ2/σ1 > 0.95.
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Mathematics 2023, 11, 3306 7 of 20

x
1

x
2

Critical Curves for Example 1

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

Critical Curves for Example 2a

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

Critical Curves for Example 2b

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

Critical Curves for Example 3

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

Critical Curves for Example 4

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

Critical Curves for Example 5

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

Critical Curves for Example 6

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

Critical Curves for Example 7

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

Critical Curves for Example 8

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 2. Examples of critical curves: n(x) = 0 (green); o(x) = 0, (black); borders where σ2/σ1 ≥ 0.95,
(blue, not always shown if the region is too small).

x
1

x
2

Critical Curves and Singular Curves for Example 1

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

ridges of near singular values

Figure 3. Superposition of singular curves and critical curves for example 1: n(x) = 0 (green);
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Table 1. List of sample functions.

Example 1 Example 2a Example 2b[
sin(x1 + x2) + cos(x2)− 1

cos(2 x1) + sin(x2)− 1

] [
ex1 cos(x2)

20ex1 sin(x1)

]  ex1 cos(x2)

ex1 sin(x1)

x2


Example 3 Example 4 Example 5 4 + x1 cos(x2/2)

x2

x1 sin(x1x2/2)


[

ex1 cos(20x2)

20esin(x2) sin(x1)

]  sin(x2
1 + x2

2) cos(x2)

2e−2x2
2 x2

1 cos(10 sin(x1))


Example 6 [25] Example 7 Example 8 [26]

(
−270x4

1x3
2 − 314x1x4

2

−689x1x3
2 + 1428

)


36x7
1 + 417x6

1x2

−422x5
1x2

2 − 270x4
1x3

2

+1428x3
1x4

2 − 1475x2
1x5

2

+510x1x6
2 − 200x6

1

−174x5
1x2 − 966x4

1x2
2

+529x3
1x3

2 + 269x2
1x4

2

+49x1x5
2 − 267x6

2

+529x4
1x2 + 1303x2

1x3
2

−314x1x4
2 + 262x5

2

+36x4
1 − 788x2

1x2
2

−689x1x3
2 + 177x4

2






x1 −

x2
1

3 + x1x2
2

x2 −
x3

2
6 + x2x3

1

x2
1 − x3

2






1
2 (2ρ2 − φ2 − ψ2

+2φψ(φ2 − ψ2)

+ψρ(ρ2 − ψ2)

+ρφ(φ2 − ρ2))




√
3

2 (φ2 − ψ2

+(ψρ(ψ2 − ρ2)

+ρφ(φ2 − ρ2)))




(ρ + φ + ψ)

∗((ρ + φ + ψ)3

+4(φ− ρ)(ψ− φ)

∗(ρ− ψ))





with


ρ = cos(x1) sin(x2)

φ = sin(x1) sin(x2)

ψ = cos(x2)

3. Application to Parametric Surfaces

In this section, we apply the notion of singular curves to a few renowned but more
complicated 3D surfaces to further demonstrate the associated critical curves, singular
points, and the trajectories of (left) singular curves on the surfaces (Admittedly, it is
difficult to render a satisfactory 3D drawing unless one can view the surface from different
perspectives. The singular curves presented here are simply some snapshots of the far
more complicated dynamics. We can furnish our beta version software for readers to
interactively play out the evolution of the singular curve at arbitrarily selected locations
in R2. A mechanism that can perform local analysis was also built into our code, as we
shall explain in the next section). In all cases, we denote the two-parameter map in the
form f(x1, x2) = (X(x1, x2), Y(x1, x2), Z(x1, x2)), whose components are abbreviated as
(X, Y, Z). Our point is that the surfaces might be complicated in R3, but the dynamics of
the (right) singular curves could be surprisingly simple in R2. The shapes of the critical
curves and the sequences of the base pairings together seem sufficient to characterize a
particular surface.

Example 9: (Klein bottle). The well-known Klein bottle can be characterized by the
following parametric equations:

X := − 2
15 c1(3c2 + 5s1c2c1 − 30s1 − 60s1c6

1 + 90s1c4
1),

Y := − 1
15 s1(80c2c7

1s1 + 48c2c6
1 − 80c2c5

1s1 − 48c2c4
1 − 5c2c3

1s1 − 3c2c2
1 + 5s1c2c1 + 3c2 − 60s1),

Z := 2
15 s2(3 + 5s1c1),

where the parameters x1 ∈ [−π, π] and x2 ∈ [−π, π] are embedded in c1 := cos x1,
s1 := sin x1, c2 := cos x2, and s2 := sin x2. In the left drawing of Figure 4, we find
that critical curves for this particular Klein bottle are surprisingly simple. There is no N
curve at all, whereas the O curves form vertical and horizontal grids. Therefore, there is
no singular point in this case. We sketch two (right) singular curves by integrating the
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dynamics system (4) in both forward (red) and backward (blue) times from two distinct
start points (the forward and backward directions of integration are relative to the singular
vector chosen at the starting point x̃. Such a distinction is really immaterial. We mark
them differently only to identify the starting point. If, however, the vector field u1(x) is
obtained through numerical calculations, then we must be aware that a general-purpose
SVD solver cannot guarantee the continuity of u1(x(t)), even if x(t) is continuous in t. An
additional mechanism must be made to ensure that u1(x(t)) does not abruptly reverse its
direction, once the initial direction is set), which are identifiable at the places where the
colors are changed. It is interesting to note that, in this example, all right singular curves
are horizontal, whereas their images, namely, the corresponding left singular curves, are
periodic on the bottle, and wind the bottle twice. To manifest the dynamics of the left
singular curves on the Klein bottle, we remove the surface and draw only the 3D curves in
the right drawing of Figure 4.

Figure 4. Klein bottle: N (green); O (black); left singular curves (forward time (red); backward time
(blue, overwritten)).

If we perturb the equation by modifying some coefficients, the resulting surface
is topologically equivalent to the original bottle. However, the critical curves are very
different. The drawing in Figure 5 is the flattened bottle, where the Y component is scaled
down to 10% of its original value, i.e., the coefficient − 1

15 is changed to − 1
150 . Note that

now there are N curves and singular points and that the left singular curves are no longer
periodic. This kind of distinction is significant because it shows the idiosyncrasies even
among topologically equivalent surfaces.

Figure 5. Klein bottle with Y downscaled: N (green); O (black); singular curves (forward time (red);
backward time (blue)).
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Example 10. (Boy’s surface). For parameters x1 ∈ [0, π] and x2 ∈ [0, 2π], define
p := cos x1 sin x2, q := sin x1 sin x2, and r := cos x2. Then the famous non-orientable Boy’s
surface can be described analytically by the parametric equations [26]:

X :=: (2p2 − q2 − r2 + 2qr(q2 − r2) + rp(p2 − r2) + pq(q2 − p2)),

Y :=
√

3
2 (q2 − r2 + (rp(r2 − p2) + pq(q2 − p2))),

Z := (p + q + r)((p + q + r)3 + 4(q− p)(r− q)(p− r)).

As shown in the left drawing of Figure 6, the critical curves repeat themselves as
jigsaw puzzles with periods π in both x1 and x2 directions, and there are many singular
points in this case. We integrate one right singular curve, starting at the location (1, 4.5)
over the extended domain in the x2 direction to show how far it can migrate. A total of four
singular points are involved. Going southwest, the forward time (red) integration passes
by (but never touches) the first singular point A. Then, it makes a U-turn around a second
singular point B and comes to a stop (due to the discontinuity) at a third singular point C.
The backward time (blue) integration moves northeast, makes a U-turn around a fourth
singular point D before it stops at the first singular point A. It is interesting to note that
the first point A serves both as a roundabout and an attractor and that the fourth singular
point D is a translation by π of the second singular point B. We rotate the XY-plane by 90◦

to show the back side of the (left) singular curves in the right drawing of Figure 6. As Boy’s
surface is known to have no cuspidal points, it is important to understand the geometric
roles of these singular points on the surface.

Figure 6. Boy’s surface: N (green); O (black); singular curves (forward time (red); backward
time (blue)).

Example 11. (Snail). It is interesting to note that, with v := x2 +
(x2−2)2

16 , s := e−
1

10v ,
and r := s + 7

5 s cos x1 for the parameters x1 ∈ [0, 2π] and x2 ∈ [−10, 35], points specified
by the parametric equations are as follows:

X := r cos v,

Y := 4(1− s) + 7
5 s sin x1,

Z := r sin v,

form a snail shape surface in R3. Despite the impression that the snail surface appears
complicated, its critical curves are surprisingly simple. The left drawing in Figure 7 shows
the O curves are straight lines intersecting the N curve at only two singular points in the
given window. The mirror image of the N curve, with respect to the horizontal O curve,
which produces exactly the same dynamics, is not shown. In the left drawing of Figure 7,
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we integrate the right singular curve x1(t) from one particular starting point (where colors
change). The forward (red) integration approaches asymptotically to the vertical O curve.
The corresponding left singular curve converges to the tip of the snail. The backward (blue)
integration converges to a singular point, which indicates an “isotropic point” on the surface
at which rates of change are identical in all directions. The snail does have a core inside the
shell. The left singular curve plotted in the right drawing of Figure 7 traces that core.

Figure 7. Snail: N (green); O (black); singular curves (forward time (red); backward time (blue)).

In Figure 8, we cut open the snail by restricting x2 ∈ [−3, 3] to demonstrates another
singular curve starting from (2,−2). Note that its backward (blue) integration stays on the
outside shell and converges to the tip of the snail, while its forward (red) integration loops
around the opening mouth of the snail.

Figure 8. Opened snail: N (green); O (black); singular curves (forward time (red); backward
time (blue)).

Example 12. (Breather). The breather surface is a generalized pseudo-sphere, which
has special meaning in theoretical physics. Denote w :=

√
21
5 and ρ := 2

5 ((w cosh( 2
5 x1))

2 +

( 2
5 sin(wx2))

2). Then, one way to parameterize the breather surface is via the follow-
ing equations:

X := −x1 +
2w2

ρ cosh( 2
5 x1) sin( 2

5 x1),

Y := 2w cosh( 2
5 x1)

ρ (−w cos(x2) cos(wx2)− sin(x2) sin(wx2)),

Z := 2w cosh( 2
5 x1)

ρ (−w sin(x2) cos(wx2) + cos(x2) sin(wx2)),
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where x1 controls how far the tips extend outward and x2 controls how far the girth goes
around. Starting with 0, every increment of x2 by 5

2
√

21
π ≈ 3.42776 defines one “vertebra”

with two layers of “patagium” extended to the tips for a total of 22 vertebrae around the
girth. We plot a portion of the surface with x1 ∈ [−5, 5] and x2 ∈ [−2, 5] and some singular
curves in Figure 9. There are periodic left singular curves on the vertebra, so the color
distinction of the trajectories becomes futile. The horizontal O curves at x2 = 0, 5

2
√

21
π,

and so on, are invariant under the right singular curve dynamics (4), whose corresponding
left singular curves are precisely those “ribs” on the breather surface. Again, we find
it interesting that critical curves and singular curves are simple when compared to the
entirety of the breather surface.

Figure 9. Breather: N (green); O (black); singular curves (forward time (red); backward time (blue)).

4. Local Behavior

Given the above illustrations, one big question is to understand what is going on
behind these intriguing curves. In order to answer this question, we rewrite the dynamical
system governing the (right) singular curves, as

ẋ = ± 1√
2
√

n(x)2 + o(x)2


o(x)√

n(x)+
√

n(x)2+o(x)2√
n(x) +

√
n(x)2 + o(x)2

, (13)

which clearly shows that there are no equilibrium points, but they become undefined at
singular points. Let x0 be an isolated singular point. We now investigate the dynamical
behavior nearby x0.

Consider the scenario where N and O intersect in the scheme depicted in Figure 10.
The short red segments denote tangent vectors of singular curves crossing the critical curves
(here, we assume a generic case, where only one N curve and one O curve intersect at x0.
It is possible that more than two critical curves are intersecting at a singular point, e.g., the
monkey saddle. To present the basic idea, we consider only the generic case here) that
take into account the signs of o(x) and n(x). By Lemma 1, these directions are invariant on
each half of the critical curves. The portions of N and O, where the tangent vectors of the
crossing singular curves are parallel to the unit vectors αn = 1√

2
[1, 1]> and αo := [0, 1]>,

respectively, are referred to as the α halves of the critical curves and denoted by nα and
oα. Likewise, by changing α to β, we refer to the other halves of the critical curves. It is
convenient to flag the critical curves with arrows to indicate the sides of nα and oα. In this
generic case, the neighborhood of x0 is naturally divided into “quadrants” distinguished
by the signs (sgn(n(x)), sgn(o(x)), which, in a sense, imply a specific “orientation” of a
local curvilinear coordinate system. With tangent vectors depicted in the left drawing of
Figure 10, the flow of the singular curves near x0 should move away from x0, as is depicted
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in the right diagram. In other words, the singular point x0 acts like a repeller for the flows
x1(t). If the orientation is switched, such as that depicted in Figure 11, then the nearby
dynamical behavior may change its topology.

N

O
x0

(+,+)

(+,−)(−,+)
(−,−) N

O
x0

(+,+)

(+,−)(−,+)
(−,−)

1

Figure 10. Local behavior near a propellant singular point x0.

N

O

x0

(+,+)

(+,−) (−,+)
(−,−)

N

O

x0

(+,+)

(+,−) (−,+)
(−,−)

1

Figure 11. Local behavior near a roundabout singular point x0.

The manifolds N and O near x0 can be infinitesimally represented by their respective
tangent vectors τn and τo at x0. Again, we flag the originally undirected vectors τn and
τo with arrows pointing to the corresponding α halves of the critical curves. Starting
with the north, and centered at x0, we divide the plane into eight sectors, each with a
central angle π

4 , and assign an ordinal number to name the sectors clockwise. The relative
positions of the two α halves nα and oα, with respect to these sectors, are critical in deciding
the local behavior. For easy reference, we say that we have configuration (i, j) when τn
and τo are located in the i-th and the j-th sectors, respectively. There are a total of 64
possible configurations.

First consider the general case when τn is not parallel to αn and τo is not parallel to
αo. Special cases can be discussed in a similar manner. As already demonstrated earlier in
Figures 10 and 11, the orientations of τn and τo do matter. The 48 configurations (where
i 6= j and |i − j| 6= 4) already include τn and τo in reverse positions. Each of the eight
configurations where i = j contains two distinct cases, when the orientations of τn and τo
are swapped. Likewise, each of the eight configurations where |i− j| = 4 also contains
two distinct orientations. Using the ideas described in Figures 10 and 11 to conduct an
exhaustive search, we sketch all 80 possible local behaviors in Figure 12, some of which are
identical by rotations. Upon inspecting all the possibilities, we summarize our observations
in the following lemma.

Lemma 2. Assume that a given singular point is the intersection of exactly one N curve and
one O curve in its neighborhood. Assume also that at this point τn is not parallel to αn and τo
is not parallel to αo. Then, the singular point serves to affect three essentially different dynamics,
i.e., propellant, roundabout, or one-sided roundabout and one-sided attractor or propellant.

The local bearings are identified by the two-letter marks, namely, the pairings at the
upper left corner in each case, which will be explained in the next section. We mention in
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passing that every even-numbered column in the upper table in Figure 12 has the same
paring as that in the odd column to its left.

Aa Aa Ac Ac Bb Bb Bd Bd

DdDdCaCaCcCcDbDb

Db Db CcCc CaCa DdDd

BbBb BdBd AaAa AcAc

BbBb BdBd AaAa AcAc

Ca Ca DdDd Db Db CcCc

Cc CcDb DbDd DdCa Ca

AaAa Ac Ac Bb Bb BdBd

Bb Ca Dd Ac AcDdCaBb

Aa Db Cc Bd Aa Db Cc Bd

Figure 12. Eighty possible local behaviors near a singular point x0. Arrows point at the α halves
nα(green) and oα (black).

5. Base Pairing

To justify the various curling behaviors of x1(t) shown in Figure 12, we need to take
into account more than just the first-order derivative u1(t). Observe that ω(x) can be
expressed as

ω(x) :=



sgn(o(x))− n(x)
o(x) +

sgn(o(x))n(x)2

2o(x)2 + O
(

n(x)3
)

, near n(x) = 0,

o(x)
2n(x) −

o(x)3

8n(x)3 +
o(x)5

16n(x)5 + O
(

o(x)7
)

, near o(x) = 0 and if n(x) > 0,

−1
o(x)

2n(x)−
o(x)3

8n(x)3
+ o(x)5

16n(x)5
+O

(
o(x)7

) , near o(x) = 0 and if n(x) < 0.

(14)

We already know that the first derivative of x1(t) is related to ω(x1(t)) via (10). The expan-
sion (14) of ω(x) can now be used to estimate the second derivative of x1(t). In this way,
we can characterize the concavity property and the local behaviors observed in Figure 12.

As an example, consider the case that we are at a point on nα, where the singular flow
necessarily points in the direction αn. Then, it follows from (14) that the value of ω(x(t))
will increase if the vector x(t) moves to the side, where n(x) < 0, implying that the slope of
the tangent vector u1(x(t)) must be less than 1. Likewise, if x(t) moves to the side where
n(x) > 0, then the slope of u1(x(t)) must be greater than 1. We, therefore, know how x(t)
is bent.
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A careful analysis concludes that, in all, near a singular point x0 and relative to a
fixed τn, there are only four basic patterns, marked as A, B, C, and D, where the singular
curves can cross the critical curve N . Noting that τn can be rotated to the points in other
directions, we sketch a few possible concavities of x1(t) in Figure 13.

(A)

(C)

n(x) > 0

n(x) > 0

n(x) < 0

n(x) < 0

x0

x0

τn

τn

(B)

(D)

n(x) > 0

n(x) > 0

n(x) < 0

n(x) < 0

x0

x0

τn

τn

1

Figure 13. Basic concavities of singular curves near n(x) = 0.

Similarly, suppose that we are at a point on oα, where the singular flow necessarily
points in the direction of α0. If the vector x(t) veers to the side where o(x)

n(x) > 0, then ω(x)
increases from 0 and, hence, the absolute value of the slope of the tangent vector u1(x(t))
must decrease, causing the bend. Again, there are four basic concavities of x1(t), marked
as a, b, c, and d, near O, subject to rotations, as depicted in Figure 14.

(a)

(c)

o(x) > 0

o(x) > 0

o(x) < 0

o(x) < 0

x0

x0

τ o

τ o

(b)

(d)

o(x) > 0

o(x) > 0

o(x) < 0

o(x) < 0

x0

x0

τ o

τ o

1

Figure 14. Basic concavities of singular curves near o(x) = 0.

Paring the second-order derivative information along both the N curve and the O
curve does not give rise to 16 cases. Instead, after carefully examining the 80 possible
dynamics in Figure 12, we make the following interesting observation.

Theorem 1. Assume that a given singular point is the intersection of exactly one N curve and
one O curve in its neighborhood. Assume also that, at this point, τn is not parallel to αn and τo
is not parallel to αo. Then, the local behavior of the singular curves can be one of eight possible
patterns identified by the base parings Aa, Ac, Bb, Bd, Ca, Cc, Db, and Dd only. There is no other
possible combination.

Proof. The result is from a direct comparison, case-by-case. More specifically, we have
four ways of describing the concavity along the N curve near a singular point x0. These
are cases (A) and (C), where x0 behaves like a propellant, and cases (B) and (D), where
x0 behaves like a roundabout. In the meantime, we have four similar ways of describing
the concavity along the O curve. Under the assumption, case (A) or (C) can pair with
(a) or (c) only to obtain a propellant. A pairing of Ab or Ad is not possible because it
will require the singular curve near x0 to have both a positive tangent and a negative
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tangent simultaneously. Likewise, case (B) or (D) can pair with (b) or (d) only, whence
x0 serves as either a roundabout or a mixture of a one-sided roundabout and one-sided
repeller/attractor.

Each drawing in Figure 12 is identified by two letters of base parings in the upper left
corner to indicate the corresponding dynamics. Each base paring has its own characteristic
traits, which can be distinguished by visualization, e.g., the difference between both Aa
and Ac in configurations (1, 2) and (1, 3) are repellers, according to whether the tailing
is above or below βo. We shall not categorize the details as they might be too tedious to
describe in this paper. It is the combined effects of these basic curvatures that we refer to as
base pairings, together with the positions of τn and τo, which makes up the local dynamics
observed in Figure 12. It is worth noting that a quick count shows that each base pairing
results in eight dynamics in the top drawing as general cases and two in the middle or
bottom drawings as special cases. In Section 6, we shall characterize another situation
where different types of pairings might occur.

In the examples outlined in Section 3, there are cases that are not covered in Figure 12.
Still, local behaviors of singular curves can be analyzed similarly, but need more details.
One aspect is that they depend not only on the relative positions of the tangent vectors
τo to τn but also on which side of τn that the α-half nα resides. For instance, consider the
scenario depicted in Figure 15, where τn points to the northeast and τo is neither parallel
to τn nor the east–west direction. Then, there are eight possible patterns. The subtlety is at
the “crossover” of base pairings on the two sides of τn. In the two rightmost drawings of
Figure 15, we observe that if nα resides on the left side of τn, then we have the Bd dynamics
similar to that of (1, 8) in Figure 12; but if nα veers to the right of τn, then we have the
Dd dynamics similar to that of (2, 8) in Figure 12. We denote this as a hybrid Bd/Dd base
pairing, which results in roundabout behavior near the singular point x0 with distinct traits.
Similarly, the Aa/Ca pairing results in a new type of repelling behavior near x0. Readers
might attempt this exercise themselves. Without repeating mundane details, we mention
that local patterns, when τo points in the north–south direction, or even when τn and τo
are parallel to each other, can be explained by the idea outlined above.

Bd

Dd

Aa

Ca

Bb

Db Ca Cc

Aa Ac Ac

Cc

Bb

Ca

Bd

Dd

Figure 15. Relative positions of τo and possible transitions of base pairings when τn points to
the northeast.

6. Wedged Bases of Scalar-Valued Functions

One simple but significant case must be mentioned because it commonly defies the
assumption made in Theorem 1. Consider the surface that is the graph of a first-order
continuously differentiable two-variable function f : R2 → R. An obvious parametric
equation is 

X := x1,

Y := x2,

Z := f (x1, x2).

(15)

It is easy to see that 
n(x) =

(
∂ f
∂x2

)2
(x)−

(
∂ f
∂x1

)2
(x),

o(x) = 2 ∂ f
∂x1

(x) ∂ f
∂x2

(x).
(16)

Thus, singular points x0 where O and N intersect must satisfy ∂ f
∂x1

(x0) =
∂ f
∂x2

(x0) = 0.
In other words, singular points are precisely the conventional critical points where the
gradient of the function f vanishes. Indeed, we find from (10) that the first right singular
vector is given by



Mathematics 2023, 11, 3306 17 of 20

u1 = ±
(

12 +
(n +

√
n2 + o2

o

)2
)− 1

2
[

1
n+
√

n2+o2

o

]
= ± 1√

∂ f
∂x1

2
+ ∂ f

∂x2

2

 ∂ f
∂x1

∂ f
∂x2

, (17)

so the principal singular curve x1(t) in the context of (15) is precisely the (normalized)
gradient flow of f (x). The sign choice determines whether this is a descent flow or an
ascent flow.

Furthermore, it is clear from (16) that o(x) and n(x) are always factorizable in this
particular case. We define

N 1 := {(x, y)| fx(x, y)− fy(x, y) = 0},
N 2 := {(x, y)| fx(x, y) + fy(x, y) = 0},
O1 := {(x, y)| fx(x, y) = 0},
O2 := {(x, y)| fy(x, y) = 0}.

(18)

Each critical curve of either O or N has at least two separate components. So, at a singular
point where all components meet together, there will be more than just two intersecting
curves (For example, the function f (x1, x2) = x3

1 − 3x1x2
2 has four components for each

critical curve O or N , so at the monkey saddle point, a total of eight critical curves
intersect together.). This situation is different from what we have detailed in Figure 12
and Theorem 1. The techniques employed earlier can readily be generalized to this case.
However, the multiple components of critical curves allow more variations of sign changes
for n(x) and o(x) near x0. It is possible to have multiple α halves for N or O curves.
The following result represents a typical case.

Lemma 3. At a singular point, x0, assume that each of the curves defined in (18) contains exactly
one curve. Then, up to the equivalence of rotations:

1. There are only four possible ways for singular curves to intersect with the N curve, as shown
in Figure 16.

2. There are only four possible ways for singular curves to intersect with the O curve, as are
shown in Figure 17.

n(x) > 0

n(x) > 0

n(x) > 0

n(x) > 0

n(x) > 0

n(x) > 0

n(x) > 0

n(x) > 0

n(x) < 0

n(x) < 0

n(x) < 0

n(x) < 0

n(x) < 0

n(x) < 0

n(x) < 0

n(x) < 0
x0x0

x0x0

1

Figure 16. Basic concavities of singular curves near n(x) = 0 for the special case (15).

o(x) > 0

o(x) > 0

o(x) > 0

o(x) > 0 o(x) > 0

o(x) > 0

o(x) > 0

o(x) > 0

o(x) < 0

o(x) < 0

o(x) < 0

o(x) < 0 o(x) < 0

o(x) < 0

o(x) < 0

o(x) < 0

x0
x0 x0x0

1

Figure 17. Basic concavities of singular curves near o(x) = 0 for the special case (15).

Proof. It can easily be checked that the singular curves cross the critical curvesN 1,N 2,O1,
and O2 with tangent vectors parallel to αn, βn, αo, and βo, respectively. Trivially, by (17),

the tangent of the singular curve is n+
√

n2+o2

o . It follows that when a singular curve crosses
the N curve, the absolute value of its tangent becomes greater than one when it enters the
region {(x, y)|n(x, y) > 0}, and the absolute value of its tangent becomes less than one
when it enters the region {(x, y)|n(x, y) < 0}. This property necessarily determines the
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concavity of the singular curves. The double-arrow curve in Figure 16 representsN 1. There
can be only four positions of N 2 relative to N 1 that give rise to different local behaviors.
Similarly, when a singular curve crosses the O curve, its tangent becomes positive when it
enters the region {(x, y)|o(x, y) > 0}, and its tangent becomes negative when it enters the
region {(x, y)|o(x, y) < 0}.

Observe that in each of the eight basic drawings, the property of concavity is symmetric
with respect to x0. Therefore, it suffices to identify the corresponding dynamics by simply
the upper-half wedge of each drawing. In this way, each wedge is still made of one α-half
and one β-half with a cusp at x0. In Figures 13 and 14, the concavity is determined by one
single curve. In contrast, the concavities in the new bases are determined by two curves.
These wedged bases give considerably more flexibility for the pairing of N and O. Indeed,
we conjecture from our investigation that all 16 pairings are possible.

7. Applications

Thus far, we have studied only the motifs of singular curves. The classification of all
possible local behaviors suggests a simplistic collection of “tiles” for the delicate and com-
plex “mosaics” observed in the dynamics of singular curves. The inherent characteristics
of each given function determine the reflections or kinks of the critical curves (N and O)
and a particular set of base pairings. These local tiles are strung together along the strands
of critical curves to form the particular patterns of the underlying functions. While there
are zillions of possible variations, we find it interesting that there are only finitely many
possible base pairings. To our knowledge, the dynamical system of singular curves has
not been studied before. The analysis of such a special differential system should be of
theoretical interest in itself.

On the other hand, a successful exploration of the following two questions might help
find important applications of the dynamical system of singular curves to parametric surfaces:

1. Given a parametric surface, can we decipher the making of its base pairings?
2. Given a sequence of base pairings together with a specific formation of critical curves,

can we synthesize the main features of a surface?

At present, we are obviously far from completely understanding these concepts. We
are hoping that this paper will stimulate further investigation. For the idea to work, it
seems plausible to expect that when base pairings are strung together, they form a “gene”
which, similar to the biological genes that dictate how the cells are going to live and
function, should have the combined effect on determining how a surface would vary. We
demonstrate two simple examples below.

Example 13. For surfaces arising in the form of (15), the singular points are the critical
points and the singular curves are the gradient flows. As expected, the dynamics of singular
curves, therefore, trace directions along which function f changes most rapidly. On the one
hand, since we allow the integration to go in both forward and backward directions, every
gradient trajectory stops at either a local maximum or a local minimum. Depending on the
direction of the flows, these kinds of extreme points are either a sink or a source. In contrast
to Lemma 2, these singular points are neither propellants nor roundabouts. On the other
hand, the only other types of singular points are the saddle points of f , around which the
gradient (singular) trajectories will exhibit a mixture of behavior. No Hessian information
at the critical point is available unless we fix the sign of the gradient. In all, we believe we
have enough knowledge to answer the above two questions in a similar way to how we
learn to sketch a surface in multi-variable calculus.

Example 14. Critical curves N and O generally intertwines in a much more involved
way. Once their α halves are determined, which is precisely the inborn property of the
underlying function, we begin to see the beauty and complexity of its mosaic patterns. We
illustrate our point by color-coding the jigsaw pieces of Example 1 over a small window
[−2, 4]× [−2, 4] in Figure 18 to evince the signs of n(x) and o(x). Singular points occur at
the common borders where the regions overlap, whose orientations are, thus, determined.
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We look up from Figure 12 to label the singular points with corresponding base pairings.
We immediately notice that the same segment of the base parings, say, as short as BbAcBd
in the drawing, determines almost the same dynamical behavior, and vice versa. The ideas
about sequencing a surface or synthesizing a surface seem sensible.

Although we have all the local pieces in hand, we hasten to point out that there must
be some other information missing in the current analysis of the dynamics. For instance,
the two groups of singular curves near the point (0, 1) in Figure 18 share the same Bd paring
and, hence, local behavior. However, when away from this singular point, the singular
curves wander off and are contracted to distinct destinations. The long-term dynamics
must have other bearings that are not as yet explainable by our local analysis.

x
1

x 2

α −Halves and Base Pairings for Example 1
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Figure 18. Base pairings for sample singular points in Example 1: N (green); n(x) > 0 (blue); O
(black); o(x) > 0, (yellow).

8. Conclusions

Gradient adaption is an important mechanism that occurs frequently in nature. Its
generalization to Jacobian for vector functions does not immediately reveal the critical
adaption directions. That information is manifested by the moving frame formed from the
singular vectors of the Jacobian matrix. Intricate patterns resulting from singular curves
seem to characterize some underneath movements of the function. The idea discussed
in this paper is perhaps the first that relates the dynamical system of singular vectors to
parametric surfaces.

The global behavior, in general, and its interpretation in a specific dynamical system
of singular vectors, are not yet completely understood. For parametric surfaces in R3, at
least, and for any f : R2 → Rn, in general, this work finds that two strands of curves joined
by singular points with specific base pairings make up the local behavior of the function.
In particular, at a singular point, where exactly one N curve crosses exactly one O curve,
there are exactly eight possible base pairings available.

This work aimed to introduce the notion of singular curves. Many interesting ques-
tions remain to be answered, including whether a surface can be genome-sequenced
and synthesized.
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