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Leveraging Spatial Diversity for Ambiguity-Free
Ultra-Narrowband Phase-Based 3D Localization

Guoyi Xu, Student Member, IEEE, and Edwin C. Kan, Senior Member, IEEE

Abstract—Phase-based 3D localization of radio-frequency (RF)
markers has the advantage of high sensitivity and accuracy.
However, phase measurements suffer from oscillator phase noises,
wavelength ambiguities, and multi-path interferences. In the near
field, antenna detuning and medium inhomogeneity render the
phase-range relation nonlinear and non-monotonic, resulting in
extra ambiguities and phase-center uncertainties, especially when
the line-of-sight (LoS) path is obstructed. In this work, we present
a novel framework for precision localization which leverages
spatially diverse redundant channels to resolve ambiguities
without relying on broad bandwidth. Spline-fitting was applied to
selected reference locations, and measured differential phases
were used to retrieve differential distances from curve fitting and
to generate 3D location estimates. Ambiguities in phase, distances,
and locations are resolved at various stages to identify ambiguity-
free location from multiple candidates. An experimental multiple-
input multiple-output (MIMO) network was implemented by
Universal Software Radio Peripheral (USRP) devices and
harmonic RF markers to demonstrate millimeter-level 3D
localization at 900 MHz carrier frequency within a heavy multi-
path ambient, simulating the condition inside building materials.

Index Terms—phase ambiguity, phase-based localization, spatial
diversity, ultra-narrowband.

[. INTRODUCTION

OCALIZATION of radio-frequency (RF) markers plays

a major role in the Internet of Things (IoT), as a critical

sensing technology for a variety of applications
including indoor navigation [1], [2], inventory tracking [3], [4],
mapping [5], [6], robotic control [7]-[9], occupancy detection
[10], [11], and structural monitoring [12], [13]. Conventionally
the measuring device is situated in the far field from the target
markers. The wireless channel is assumed to be Rician with
ambient multi-paths regarded as unwanted interferences inside
a predominantly homogeneous medium. Therefore, the plane-
wave electromagnetic (EM) propagation and constant
propagation speed establish the linear relation among traveling
distance, traveling time, and carrier phase. Range-based
trilateration then derives the 2D or 3D locations by two main
approaches — continuous-wave (CW) carrier phase and wave-
packet time of flight (ToF). Phase measurements suffer from
inherent wavelength ambiguities and multi-path interferences,
which can be resolved by broadband or multiple-frequency
techniques to improve ranging accuracy [14]. Time-based
localization can achieve high accuracy with short pulses [15] or
frequency-modulated CW (FMCW) signals [16], but is strongly
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correlated with the bandwidth resources, which are heavily
regulated and expensive [17]. Even with sufficient bandwidth,
the high sampling rate poses further challenges to the hardware
design as limited by the power budget [18].

Despite of numerous previous efforts, marker localization
under the following constraints remains challenging due to
ambiguities from: 1) near-field propagation; 2) inhomogeneous
media; 3) heavy multi-path channels, especially with
suppressed or blocked line-of-sight (LoS). For phase-based
localization, phase-distance relations become nonlinear and
non-monotonic with inhomogeneous media and blocked LoS in
the near field [19], and can suffer more ambiguities. Phase
centers of observation points, usually RF antennas, cannot be
modeled by electrically small static points at their physical
centers due to antenna detuning [20]. Tag localization inside
building materials for structural integrity monitoring frequently
encounters the above three constraints — To couple EM energy
more effectively inside building materials such as concrete
blocks, near field is preferred over far field; the signal path
towards the embedded markers of interest is often deep inside
inhomogeneous weight-bearing materials; supporting steel bars
and brackets will create complex multi-path interferences.

In this paper, we propose a narrow-band CW phase-based 3D
localization method enabled by spatial diversity without
invoking far-field approximations. The major contributions of
this work are:

1) The proposed localization resolves ambiguities arising
from not only cyclic phase rotations but also nonlinear
and non-monotonic phase-distance relations under near-
field, complex media, and heavy multi-path conditions,
enabling more realistic implementations.

2) Ambiguity was resolved by leveraging redundant
channel information from spatially diverse observation
points without relying on large bandwidth, which is
advantageous for practical commercialization.

3) We verified the localization framework experimentally
using a multiple-input multiple-output (MIMO)
Universal Software Radio Peripheral (USRP) platform
and harmonic radio-frequency identification (RFID)
tags. The system achieved millimeter-level 3D
localization accuracy in a near-field and heavy multi-
path ambient, simulating the condition inside building
materials.

The paper is organized as follows. Sec. II overviews the
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related works on 3D localization methods using phase or ToF
measurements with either frequency or spatial diversity. Sec.
IIT introduces our localization method through a series of
algorithms. Sec. IV presents the experimental validation, and
Sec. V discusses insights, design considerations and future
works. Sec. VI concludes this paper.

II. RELATED WORKS

For the scope of this paper, we will limit our discussion to
range-based localization, where ranging serves as the
intermediate step preceding 3D localization.

1) Far-Field Localization with Frequency Diversity: Time-
based approaches measure ToF or time-difference-of-arrival
(TDoA) by transmitting an ultra-wideband (UWB) signal or
FMCW chirp and receiving echoes from the target to extract
accurate distance with low computational cost and improved
robustness against multi-path [21], [22]. Researchers studied
localization under non-line-of-sight (NLoS) conditions [23],
[24], devised novel algorithms to identify NLoS over LoS [25],
[26], or determined the optimal observation points in space to
mitigate multi-path [27], [28]. Timing accuracy is correlated
with bandwidth and resolution can be improved by a high
sampling rate. Both factors directly affect the ranging accuracy,
making such approaches highly susceptible to available
spectrum resources and hardware limitations. In comparison,
phase-based approaches measure the phase of CW signals
received from the target and combine information over a
continuous spectrum or multiple sparse frequencies to unravel
wavelength ambiguity and retrieve range information. For
example, SpotFi [29] and VWAN [30] exploited Wi-Fi
subcarriers or multiple Wi-Fi bands to improve localization
accuracy, and the heuristic multiple-frequency continuous-wave
(HMFCW) was proposed to use multiple individual carrier
frequencies with sufficient separation to resolve phase
ambiguities and improve tolerance against large phase errors
[14]. Similar to time-based approaches, a broad bandwidth is also
needed for high localization accuracy.

2) Far-Field Localization with Spatial Diversity: When
bandwidth is limited, another approach is spatial diversity. One
commonly adopted technique is by deploying arrays of sensing
points to synthesize a larger aperture than available from a
single antenna [31], [32]. Array sensing also supports accurate
azimuth selectivity using beam-steering, where angle-of-arrival
(AoA) can be derived [33]-[35]. Another technique is through
a multi-static sensor deployment for unambiguous
reconstruction of the target location [36]—[38]. Combination of
array processing and time-based ranging techniques have also
been studied for accurate 3D localization, where both spatial
and frequency diversity were exploited [22], [39]-[41].

3) Near-Field Localization: The phase-range relation can be
nonlinear and non-monotonic in the near field [19], [42], and
prior efforts improved localization by leveraging large antenna
arrays and wavefront curvature [43], [44]. Compared to far-
field approaches, near-field localization was less studied but has
gained significant research interest due to its rich practical use
cases and many open challenges.

Besides simulations and experimental validations, the
literature has also seen abundant theoretical studies on
localization performances, e.g., for fundamental limits on
location estimation [45], [46], environmental-based optimal
spatial and spectrum allocation [47], novel localization schemes
in mm-wave [46], [48], and channel estimation [49].

III. LOCALIZATION ALGORITHMS

The proposed 3D localization method consists of multiple
stages: 1) spline fitting; 2) distance searching; 3) initial ambiguity
removal; 4) voxel-tree location searching; 5) location ambiguity
elimination. Differential phases are measured at all transmitter
(Tx) and receiver (Rx) pairs for a small number of selected
reference locations for calibration. For each Tx/Rx pair, an
empirical relation between measured differential phases and
known differential distances from the target to the Tx/Rx pair
is defined by spline fitting. Next, differential phases for
unknown locations are measured to search for differential
distances from the spline curves, and multiple candidates exist
for nonlinear and non-monotonic curves. An initial ambiguity
removal algorithm removes least likely ones by leveraging
spatial diversity. Then, a location searching algorithm generates
a location contender set using distance candidates from a subset
of all Tx/Rx pairs. Finally, a location ambiguity elimination
algorithm identifies the most probable location out of location
contender sets from different subsets of Tx/Rx pairs by
exploiting spatial diversity from redundant channel resources.

A. Pre-Processing and Spatial Diversity

The proposed localization framework is built upon phase
measurements of all propagation channels between Tx and Rx.
Simultaneously, each Tx transmits a CW signal modulated by
in-phase and quadrature (I and Q) sinusoidal waveforms at a
unique intermediate frequency (IF) for Tx separation, without
baseband modulation. At each Rx, digital band-pass filters
centered at each IF are applied to I and Q samples after
demodulation, from which the carrier phase is calculated for
each Tx [50]. As here Tx IF only serves for the multiplexing
purpose, IF and their separations are purposefully set low to
reduce the sampling rate requirement. Compared with GHz-
level carrier frequency, the kHz-level bandwidth is much
smaller than most existing localization methods. In this paper,
we will show that the localization framework presents no
dependence on bandwidth to resolve phase ambiguities.

Throughout the paper, unless otherwise noted, “phase” and
“distance” refer to differential phase and differential distance

Diff. Diff. Phase Diff. Measured
Channel & Distance Channel Param.

Rx1 YT“ Rx2

Tx12 Praaz. drx1z Rx24 Prx24> drx2s

Rxd Tx13 Praa3. drx1z Rx25 Prxzs: drx2s

Tx23 Prx23, drx2z Rx26 Praze> Arxz6

Rx12 Prx12, drx12 Rx34 Prx34 Arx3a

X;\ Tx2 Rx13 Prx13, Arx13 Rx35 Prazs, Arx3s

Rx14 Prx14> Arx14 Rx36 Prx3e> Arx3e

Rx15 Prx15: drx1s Rx45 Prxass drxas

Rx16 Prx16: drx16 Rx46 Prxac: drxac

Rx23 Prx23> ARrxz3 Rx56 Prxs6: drxse

Fig. 1. The schematics shows 3 Tx and 6 Rx antennas for localization, and
the table lists all channels with corresponding phases and distances.
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from a target to a Tx/Rx pair, respectively, and “channel”
denotes one Tx/Rx pair, due to their extensive usage.
Differential measurements enable an initial phase offset
cancellation for channels with shared random initial phases of
phase-locked loops (PLL) during frequency synthesis of local
oscillators (LO) [51]. Then, calibration is required to obtain
repeatable phase measurements for MIMO channels without
shared LO. This is beyond the scope of this paper but will be
briefly summarized in Sec. IV.D.

On the left, Fig. 1 shows the schematic of a MIMO network
with 3 Tx and 6 Rx, where Tx antennas and downlink paths
(from Tx antennas to the target) are marked in purple, and Rx
antennas and uplink paths (from the target to Rx antennas) are
marked in green. LoS from Tx to Rx and ambient multi-path are
not shown. On the right, a table lists phases and distances in
each channel, with 3 Tx pairs and 15 Rx pairs in total. In
general, differential measurements add to the diversity
compared with single Tx/Rx phase measurements, because the

network with M Tx and N Rx consists of Q = M- 4 N(A;_l)

differential pairs, which increases quadratically with the
number of Tx/Rx. This provides abundant channel resources for
3D location searching, and the redundancy can be exploited to
resolve location ambiguity.

In a MIMO network, baseband signals from each Tx to each
Rx are retrieved. Specifically, the phase for Tx1 and Tx2 can
be measured at each Rx, with IF1 and IF2 filtered out
respectively. Likewise, the phase for Rx1 and Rx2 is available
at each IF. For a network with M Tx and N Rx, totally there are

N-MMZDd M -N(I\;_l) differential Tx and Rx

measurements, respectively, which increase cubically with the
number of Tx/Rx. Multiple measurements available from a
single channel will be exploited for initial ambiguity removal.

B. Spline Fitting

Unlike linear phase-distance relations in the far field and
homogeneous media, a heavy multi-path channel in the near
field is more complex [19]. Here, we explore the relation by
curve fitting. The previous 3™-order polynomial fitting and
iterative fitting in [13] was time-consuming to obtain an
optimized curve. Prolonged phase-distance relations in a large
capture volume with complex multi-path have complicated
curvature variations with more ambiguities. In addition, curve
morphology varies over different channels, with some nearly
linear and monotonic and others having many turnings and
inflections. Without prior knowledge, the optimal polynomial
fitting order is difficult to select for each channel, so segmented
spline fitting was selected to mitigate local fitting errors.

Fig. 2 illustrates the complex phase-distance relations
measured from experiments, and the accuracies of polynomial
fitting with varying orders and 3™-order spline fitting. Phase
measurements and distance ground truths of reference locations
are represented by red diamond markers. For spline fitting,
these points are used as anchor points. Cyan circles represent
ground truths for unknown locations, presented for evaluating
fitting accuracy. Fig. 2(a) is an example when the phase-
distance relation is nearly linear and monotonic over most of
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Fig. 2. (a)-(d) Cgr)ve fitting is applied to measured phas(es)and distances of
reference tag locations (red diamond markers). Fitted curves predict phases
for non-reference tag locations as curves with different colors and shapes,
with ground truths shown as cyan circles. Four representative channels are
selected, and predictions are shown by the following fitting schemes: least-
squares polynomial fitting with orders 5, 10 and 15, and 3"-order least-
squares spline fitting.

the curve, where polynomial fitting with orders 5 and 10 are
both appropriate, but the order of 15 produces overshoots at the
edge of the linear curve segment. Figs. 2(b) and (c) present two
examples when the phase-distance relation contains non-
monotonic segments while monotonic segments are more
linear. There, polynomial fitting with orders 10 and 15 give
good fitting but the order of 5 is insufficient for local variations
especially near turning points. Fig. 2(d) shows an example
when the phase-distance relation contains many large curvature
variations over the entire curve. Polynomial fitting with orders
5 and 10 both exhibit inaccurate local fitting in some segments,
while the order 15 produces overshoots elsewhere.

All examples show diverse variations of phase-distance
relation curves, and hence the challenges in selecting an optimal
and uniform polynomial order. In comparison, spline fitting has
a superior performance than polynomial fitting of all selected
orders, which minimizes the total least-squares error over the
entire curve without ensuring good local fitting. Physically
speaking, the phase-distance curves are continuous to the
second-order derivatives, justifying the use of spline fitting.

C. Distance Searching

Given the phase-distance curves from reference locations,
the distance searching for unknown locations is then performed
at each channel. Fig. 3 shows distance searching with given
phase measurements of one unknown target location at four
channels. Red diamond markers represent reference location,
and values predicted by spline curves are shown in black. Cyan
circles represent ground truths for target locations unknown in
advance. Notice that for some channels, the same distance (but
corresponding to two different physical locations) can give
different phase measurements due to different multi-path
interferences, with an example shown in Fig. 3(c). The
constant-phase line can intersect with the phase-distance curve
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Fig. 3. (a)-(d) Four representative channels are shown with nonlinear and
non-monotonic phase-distance relationships. All curves are fitted by 3%-
order least-squares splines curves, and each plot shows phases from
ground truth non-reference location measurements (cyan circles),
reference location measurements (red diamond markers) and spline fitting
phase predictions (black lines).

-60 -50 0

at multiple points, each corresponding to a distance candidate,
and the most challenging task is near the flat region, as the
constant-phase line is almost tangential to the phase-distance
curve to give a large distance error bound. To resolve this, we
propose a recursive distance searching algorithm.

Fig. 4(a) shows curve intersections of one unknown location
for one channel, with 164.39° measured phase. The distance
range is divided into lpm-resolution grid points, and we
selected a heuristically pre-defined proportion (2% for this
work) of those with best phase predictions as the coarse
selection pool, shown by green square markers. Fig. 4(b) is a
zoomed-in view for the right intersection in Fig. 4(a), enclosed
in the orange dashed box, and the recursive distance searching
(or fine selection) algorithm identifies two intersections. Fig.
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4(c) shows the fine selection result for a measured phase of
164.21°, corresponding to another target location 1 mm away,
and the intersection near the minimum is identified by recursive
distance searching. For every coarse selection pool striding over
a local extremum, the algorithm shrinks it by abandoning a pre-
defined proportion of distance candidates (we selected 20%
heuristically) with the worst phase predictions, and this process
continues recursively until none of the new fine selection pools
stride over a local extremum, shown as magenta triangle
markers in Figs. 4(b) and (c). Physical centers of each fine
selection pool are output as distance candidates. For Fig. 4(b),
two fine selection pools are generated, centered at 5.71 mm and
5.77 mm, respectively. For Fig. 4(c), the candidate pool shrinks
towards the local minimum around 5.73 mm. Without fine
selection, these two cases cannot be distinguished given the
similarity in their coarse selection pools. Fine selection
provides sub-0.lmm distance error, which ensures high
accuracy in further location searching as errors propagate and
accumulate. The distance candidate corresponding to the left
intersection in Fig. 4(a) is directly identified without fine
selection, and ambiguities will be removed at later stages.

The distance searching algorithm is presented in
Supplementary Algorithm I. The DBSCAN in Algorithm I
stands for the density-based spatial clustering of applications
with noise [52].

D. Initial Ambiguity Removal

The MIMO communication scheme provides multiple phase-
distance curves in each channel. Fig. 5(a) shows the example of
phase-distance curves for the pair of Txl and Tx2, with
different morphologies at Rx1 through Rx6. For an unknown
location, the distance searching algorithm first determines the
candidates for each curve, indicated by the intersection points
with constant-phase lines in Fig. 5(a). Despite of the different
candidate sets due to Rx spatial diversity, each curve contains
one common candidate on the right, highlighted by magenta
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Fig. 4. (a) For an unknown tag location, with the measured phase of 164.39°, multiple differential distances are found by intersecting the horizontal constant-
phase line with the phase-distance curve. (b) The right intersection, represented by the orange dashed box in (a), is located near its local minimum. Green
square markers are distance candidates in the coarse selection pool, and magenta triangular markers are distance candidates after fine selection, identifying
two separate distance candidates. (c) The intersection point of another constant-phase line of 164.21°, where fine selection identifies only one candidate.
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Fig. 5. Two examples of initial ambiguity removal. (a) Different curves

from channel Tx12 measurements at each Rx give different distance

candidate sets. The initial ambiguity removal algorithm identifies the

common candidate and abandons all others before further processing, as

shown in dashed magenta circles. (b) Differential measurements for

channel Rx36 give two common distance candidates at each Tx, so no

ambiguity is removed.
dashed circles. Because only one candidate corresponds to the
ground truth, the common candidate present in all curves
indicates that it is the correct one and all others are spurious.
Fig. 5(b) shows another example of phase-distance curves for
the pair of Rx3 and Rx6, where the curves for Tx1 to Tx3 are
similar and give two common distance candidates. Hence, both
candidates are likely correct and should be preserved for future
steps. Therefore, the described routine does not guarantee
complete ambiguity elimination but can serve as initial
ambiguity removal to reduce computational burden at later
steps of location searching and location ambiguity elimination.
The initial ambiguity removal algorithm is performed for each
channel, laid out in Supplementary Algorithm II.

E. Location Searching

After distance searching and initial ambiguity removal for all
channels, distance candidates are gathered to generate 3D
locations, where the remaining distance ambiguities are
converted to location ambiguities. Here, we present location
searching for one set of unique distances from each channel and
introduce location ambiguity elimination in Sec. ILF.

Rx2 ¢ Voxel Center
A True Location

- Tx1 Rx1

(a) (b)

(a) The exponential capture volume reduction to reduce

Fig. 6.
computational burden. (b) Visualization of insufficient voxel resolution
for best-match location searching, justifying the use of more than one best-
match locations during searching.

Given the distance for one channel, the 3D location is on the
hyperbolic surface with constant differential distances from the
foci, i.e., two Tx/Rx antennas. Therefore, it lies on the
intersection of multiple hyperbolic surfaces corresponding to
many channels. We implement a voxel-tree searching algorithm
to find the 3D location, and Fig. 6(a) visualizes the voxel
exponential reduction scheme. The algorithm is shown in
Supplementary Algorithm III.

Compared with Algorithm I in [13], the major improvements
in the location searching algorithm lies in selecting multiple
location candidates rather than a single one with the best-
matched differential distances for each channel. We
occasionally observed inferior localization accuracy of the best-
matched voxel compared with the 2"- or 3™-best-matched
voxel. This was likely because the ground truth stood in
between two neighboring voxels, or the distance candidates
were inaccurate due to phase noise or degraded fitting. A
visualization of insufficient voxel resolution is shown in Fig.
6(b). Moreover, the number of channels used to generate one
3D location, denoted by P in Supplementary Algorithm III, can
be increased with the abundant channel resources (in this work
P = 8 while in [13] P = 4), to improve robustness and reduce
sensitivity against distance errors from one particular channel.

F. Location Ambiguity Elimination

With location ambiguities, a unique estimate for the target
3D location is needed. As mentioned before, a MIMO network

with M Tx and N Rx has Q =M(1";—1) N(N-1)

When P channels are used to search for one location, totally
_ (@) _ 2@-1)(Q-2)..(e-P+1)

W= (P) - P!

Suppose all Q channels have one unique distance candidate, the

calculated 3D location should coincide under the perfect fitting
condition regardless of P. With phase noise and fitting errors,
calculated 3D locations from each subset of P channels are
slightly different but still within proximity. With ambiguities,
each subset of P channels generate a “location contender set”,
in which each location is generated from a combination of P
distance candidates of the subset using voxel-tree searching.
Among the aggregate locations from all contender sets,
spurious ones are scattered in space but correct ones are within
close proximity, which can be found by spatial clustering.

Fig. 7(a) presents the flow chart for the ambiguity
elimination algorithm, and Fig. 7(b) visualizes contender sets
from different subsets of P channels and clustering of the
correct location candidates. The location ambiguity elimination
algorithm is presented in Supplementary Algorithm I'V.

Fig. 8 shows two examples of /] = 10 contender sets, each

channels.

selections are available.
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Fig. 7. (a) The ambiguity elimination algorithm, with more details in

Algorithm IV. (b) Visualization of contender sets and spatial clustering.
with P = 8 channels. In Fig. 8(a) each contender set is shown
in an individual color, and within the black dashed circle is the
valid cluster with at least one candidate from each contender
set, corresponding to the correct target location. Spurious
locations are outside the black dashed circle where no valid
cluster can be found. Fig. 8(b) is a zoomed-in view of the black
dashed circle in Fig. 8(a). Figs. 8(c) and (d) show another
example where one single valid cluster is found, corresponding
to the correct target location. The physical center of the
identified valid cluster is taken as the final location estimate.
For this work, /] and P were empirically selected and kept
constant throughout all experiments.

Furthermore, the described algorithm is revised to determine
the wavelength integer and remove wavelength ambiguities due
to cyclic phase rotations. As different channels have different
wavelength numbers, only the true location with the correct
wavelength integer appears in spatial proximity as a valid
solution. The revised algorithm is shown in Supplementary
Algorithm IV Variation.

IV. EXPERIMENTAL VALIDATION BY A PROTOTYPE

A. Prototype Hardware Components

We built an experimental prototype for the proposed
localization using 3 National Instruments (NI) USRP Ettus
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Fig. 8. (a) One experimental example of ] = 10 contender sets, where

P = 8 channels were selected for each set. Locations from each set are

represented in a distinct color, and the black diamond marker represents

the true tag location. The black dashed circle corresponds to the valid
cluster determined by ambiguity elimination. (b) The zoomed-in view of

the black dashed circle in (a). (¢)-(d) Another experimental examples at a

different non-reference tag location, with the same J and P.

B210 devices (Ettus Research, Austin, TX) and harmonic RFID
tags. The prototype enables MIMO synchronized differential
phase measurements after a phase calibration process.

Fig. 9(a) shows the Tx/Rx antenna placements, and Figs. 9(b)
and (c) show top and side views of the prototype. The capture
volume is enclosed within an aluminum frame of size 70 cm x
70 cm % 70 cm, constructed by bolt framing and fitting parts.
Multiple concrete bricks filled the space within the capture
volume to block the LoS of Tx/Rx antennas and create more
multi-path propagations. Tx antennas transmitted signals
backscattered by the harmonic RFID tag, which were received
by Rx antennas. The tag was constructed by nonlinear
transmission lines (NLTL) to generate the second harmonic
carrier frequency [53], so that self-leakages, Tx-to-Rx LoS
interferences, and downlink multi-path can be readily separated
by Rx filtering. This also simplifies noise origin analysis at Tx
and Rx. The tag was attached to a linear stepping motor, which
has 1.25 um resolution, and was configured to move in 1 mm
steps over a total length of 300 mm. The driving track is made
mostly of steel and aluminum causing even more complicated
multi-path interferences. At each step the motor was stopped
and phases for all channels were measured and saved.

We selected the Tx and Rx carrier frequencies as 900 MHz
and 1.8 GHz, respectively, and the three IF used to modulate
the carrier frequencies for Tx1 through Tx3 are 4 kHz, 12.5 kHz
and 50 kHz, respectively. Therefore, after Rx demodulation,
three IF components are located at 8 kHz, 25 kHz and 100 kHz,
respectively, band-pass filtered in the digital domain with 100
Hz bandwidth centered at each IF to retrieve signals from each
Tx. Figs. 9(d) and (e) show one Tx antenna (Abracon
ARRKP7059-S915B with around 3.5 dBi gain at 900 MHz) and
two Rx antennas (Siretta Delta 14 with around 1 dBi gain at 1.8
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GHz), respectively. An NLTL harmonic tag is shown in Fig.
9(f). Fig. 9(g) shows one USRP B210 device and the global
positioning system disciplined oscillator (GPSDO, BG7TBL
2018-06-05) used to provide a 10 MHz frequency reference and
a 1 pulse per second (pps) baseband time reference for all 3
USRP devices. A schematic for the stepping motor is shown in
Fig. 9(h). Both parallel displacement and tilt angle of the track
installed on the stepping motor can be adjusted and we repeated
the described linear stepping experiments over multiple trails.

B. Tag Localization Results

Three stepping motor trails located at different regions of the
capture volume and with different tilt angles were selected to
present the localization results of the proposed framework. Fig.
10(a) shows the placements of Trails A to C, where Trails A and
B are parallelly separated by 75 mm with horizontal placement,
and Trail C is further separated from them with 4.5° tilt angle. Due
to the multiple concrete bricks used for LoS blockage and multi-
paths, there is limited space to deploy the linear module. However,
3D testing points were reasonably distributed in all dimensions.

The ground truth and estimated tag locations are plotted in Fig.
10(a) for each trail, where the estimated locations closely match
ground truths along all the linear trails. Reference tag locations
were selected for each trail for spline fitting. Distance searching
and localization were applied for all other non-reference tag
locations along the same trail. For this work, around 15% of
locations were selected as reference locations. Ground truth for
reference and non-reference tag locations are marked in yellow
and red, respectively, and estimated tag locations are marked in
blue. Figs. 10(b-d) present zoomed-in plots for the ground-truth
and estimated tag 3D locations along Trails A through C, when
the wavelength integer for any non-reference tag location was
unknown. Nyaxwaverne = 1 was selected in Supplementary
Algorithm IV Variation, meaning that the correct wavelength
integer was identified among -1, 0, and 1. It is worth noting that
although prior knowledge of linear module length and capture
volume size is required for selecting parameter Ny qrwavernt »
such knowledge usually can be easily obtained in practice. Fig.
10(e) shows the overall cumulative distribution function (CDF) of
3D localization errors for Figs. 10(b-d), where millimeter-level
accuracy in 3D localization is achieved. This shows the
effectiveness of the spatial diversity and redundant channels, as
only 3 Tx and 6 Rx were used, a relatively small number in
comparison with the antenna array approach [31].

C. Link Budget

We performed link budget measurements for the prototype in
Figs. 9(b)-(c), and the signal powers at various stages from Tx to
Rx are shown in Fig. 11. As all Tx antennas are closely located,
the tag received signal power and backscatter signal power have
little variation, around 0 dBm and -18.3 dBm, respectively.
However, diversity in Rx antenna location rendered large
variation of received signal powers at each Rx, ranging from -73
dBm to -49 dBm. Potential improvements on the power loss can
be from replacing the NLTL tag with a simpler nonlinear
component such as a diode or rectenna, as the harmonic tag
introduces 15-20 dB insertion loss by the NLTL structure [53]. As
the proposed localization framework consumes negligible
bandwidth, broadband operation by NLTL is not required.
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Fig. 9. (a) The Tx and Rx antenna placement for the experimental
validation. (b)-(c) The top and side views of the experimental setup, where
Tx, Rx antennas, the tag, and the stepping motor are shown. (d) A patch
antenna operating around 900 MHz for Tx. (e¢) Whip antennas operating
around 1.8 GHz for Rx. (f) A harmonic RFID tag. (g) The Universal
Software Radio Peripheral (USRP) B210 device and global positioning
system disciplined oscillator (GPSDO). (h) A schematic of the tag-carrying
stepping motor with horizontal displacement. Tilt angle can be adjusted by
inserting wood boards at one side.

Conventional non-harmonic backscattering tags with subcarrier
uplink separation can also work, at the cost of higher phase noise
close to the Tx carrier frequency.

D. MIMO Phase Synchronization

Multistatic RF transceivers suffer from asynchronous phases
among Tx/Rx channels and non-repeatable phases at each
device startup, even with shared external frequency and time
references [51]. This is due to the random LO initial phases by
individual phase lock loops (PLLs) during frequency synthesis.
Stringent requirements of individual PLLs to ensure
synchronous phases [54] are not achievable in practice. To
ensure repeatable phase measurements and synchronous
phases, we directly measured the non-ideal random phase
offsets using a known splitter-based wired channel and
switched to the wireless channel to immediately remove it from
measured phases. A detailed description of the phase calibration
method would be published elsewhere due to length concerns.

V. DISCUSSIONS

A. Different Aspects of Spatial Diversity

Spatial diversity is first exploited by initial ambiguity
removal. Harmonic RFID decouples tag backscatter from Tx-
to-Rx LoS, ambient interferences and self-leakages by different
carrier frequencies, leading to similar Tx (Rx) differential
phase-distance curves at each Rx (Tx) in the far field. However,
in the near field, uncertainties in Tx/Rx antenna phase centers
affect phase measurements, resulting in different phase-
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Fig. 10. (a) Tag localization results are shown along 3 stepping motor trails as blue markers, and the ground truth reference tag locations and non-reference
tag locations are shown as yellow and red markers, respectively. (b)-(d) Zoomed-in views of localization results of Trails A-C shown in 10(a), with wavelength
ambiguity elimination. (¢) Overall cumulative distribution function (CDF) of 3D localization errors for the results in (b)-(d).

distance curves, which the initial ambiguity removal algorithm
exploits to save computational resources for further steps. For
non-harmonic/non-backscatter MIMO phase measurements,
phase centers of Tx, Rx and target are dominant factors in the
far field, while additional factors include uncertainties in Tx/Rx
phase centers due to antenna detuning and multi-path in the near
field, where different phase-distance curves can also be
exploited.

Spatial diversity is exploited to a greater extent for ambiguity
elimination. The large number of redundant channels provides
much freedom to resolve the phase-distance ambiguity, because
available Tx/Rx pairs are more than sufficient to generate a 3D
location. In our experiments, sufficient spatial diversity in
Tx/Rx antenna placement ensured the cluster corresponding to
the correct target location can always be accurately identified.

B. Missing Detection vs. Ambiguous Detection

While identifying the correct distance and location
candidates among ambiguous ones requires extra effort,
missing detection is much harder to cope with. Therefore, one
major consideration is to ensure preference of generating
ambiguity over missing detection. First, the example in Fig.
4(b) shows the recursive distance searching algorithm provides
two closely located distance candidates near the local
minimum, while the coarse selection cannot differentiate the
two candidates and may lead to missing detection and large
distance searching errors. Then, in location searching, we
purposefully output all likely best-matched voxels rather than a
single best-matched voxel, to tolerate 3D localization errors due
to insufficient voxel resolution. Introduced ambiguities were
finally resolved by spatial diversity. In comparison, if a distance

External Power Tx Antenna
Amplifier (PA)

Wireless
Downlink @f

A B

~-93dBm  ~24.5dBm
(~117.5 uW)  (~282 mW)

Tag Antenna

candidate or location candidate is missing during any previous
step, in no way can we retrieve it at later stages.

C. Reference Calibration

The proposed localization framework requires selection of
reference locations for unknown phase-distance relations. In
our experiments, the selection was assisted with the phase-
distance curve morphology observed from preliminary phase
measurements. For a practical scenario such as structural
monitoring, preliminary measurements are not available as RF
markers are buried inside building materials, and the number of
available reference points may be significantly reduced.
Although we will not discuss these issues in full detail, we
envision two main approaches to a more practical reference
calibration. One approach is to perform reference calibration in
another structure and transfer the data to the structure of
interest, and the other approach is by modeling the structure and
measuring the phase-distance relation through simulation.

D. Further Challenges and Future Work

For future work, the proposed algorithm framework is
expected to address the challenge of robustness against
degraded fitting accuracy when phase measurements have
reduced signal-to-noise ratio (SNR), or the proportion of
reference locations is significantly reduced, e.g., from 15%
down to 5%. In addition, the current channel subset selection is
based only on subsets with fewest ambiguities, some without
ambiguity at all. This can make location estimates biased
towards channels with degraded fitting, while there may exist
other channels with more accurate fitting but more ambiguities.

Out of W = (g) selections of P Tx/Rx pairs, there are (V]V)

Tag Antenna
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Fig. 11. Link budget analysis for the Tx-to-Rx channels, with varied Rx power depending on signal propagation distances.
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different selections of ] Tx/Rx pairs, so optimizing the choice
is usually impractical by exhaustive searching. Next, conditions
for existence and uniqueness of the valid cluster corresponding
to the ground truth can be studied. This can provide a better
guidance on selecting number of Tx/Rx antennas and number
of channels in a subset for ambiguity elimination. Finally,
although the proposed 3D localization framework was
demonstrated for phase-based localization in the near field, it
can also be applied to far-field localization and time-based
localization with bandwidth dependence. In the far field, phase-
range and time-range relations can be linear, but ambiguities
due to phase rotations can be resolved by our algorithm. For
time-based localization with heavy multi-path interferences or
inhomogeneous medium, potentially nonlinear or piecewise-
linear time-range relations introduce ambiguities, which can
also be similarly resolved. Different phase-range or time-range
relations at multiple carrier frequencies over a wide bandwidth
can also be combined to resolve ambiguity at an initial stage,
together with the spatial diversity.

VI. CONCLUSION

In this paper, we introduce a novel narrow-band framework
for phase-based precision localization. Differential distances
are retrieved from measured differential phases of multiple
channels and are further combined to generate 3D locations.
Ambiguities are resolved by leveraging redundant channel
resources from spatially diverse Tx/Rx antennas, without
relying on costly bandwidth resources. The proposed 3D
localization framework was demonstrated by a prototype
implemented by a USRP platform and harmonic RFID,
showing millimeter-level 3D localization accuracy. The system
worked under the conditions of near-field propagation and
heavy multi-path environments with blocked LoS, and it also
can be potentially applied to both phase-based and time-based
localization setups with far-field assumptions and bandwidth
dependence. Future works will focus on robustness against
fitting accuracy, optimized channel subset selection, and
theoretical studies of valid cluster existence and uniqueness.
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