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 Abstract—Phase-based 3D localization of radio-frequency (RF) 

markers has the advantage of high sensitivity and accuracy. 

However, phase measurements suffer from oscillator phase noises, 

wavelength ambiguities, and multi-path interferences. In the near 

field, antenna detuning and medium inhomogeneity render the 

phase-range relation nonlinear and non-monotonic, resulting in 

extra ambiguities and phase-center uncertainties, especially when 

the line-of-sight (LoS) path is obstructed. In this work, we present 

a novel framework for precision localization which leverages 

spatially diverse redundant channels to resolve ambiguities 

without relying on broad bandwidth. Spline-fitting was applied to 

selected reference locations, and measured differential phases 

were used to retrieve differential distances from curve fitting and 

to generate 3D location estimates. Ambiguities in phase, distances, 

and locations are resolved at various stages to identify ambiguity-

free location from multiple candidates. An experimental multiple-

input multiple-output (MIMO) network was implemented by 

Universal Software Radio Peripheral (USRP) devices and 

harmonic RF markers to demonstrate millimeter-level 3D 

localization at 900 MHz carrier frequency within a heavy multi-

path ambient, simulating the condition inside building materials.  

 
Index Terms—phase ambiguity, phase-based localization, spatial 

diversity, ultra-narrowband. 

I. INTRODUCTION 

OCALIZATION of radio-frequency (RF) markers plays 

a major role in the Internet of Things (IoT), as a critical 

sensing technology for a variety of applications 

including indoor navigation [1], [2], inventory tracking [3], [4], 

mapping [5], [6], robotic control [7]–[9], occupancy detection 

[10], [11], and structural monitoring [12], [13]. Conventionally 

the measuring device is situated in the far field from the target 

markers. The wireless channel is assumed to be Rician with 

ambient multi-paths regarded as unwanted interferences inside 

a predominantly homogeneous medium. Therefore, the plane-

wave electromagnetic (EM) propagation and constant 

propagation speed establish the linear relation among traveling 

distance, traveling time, and carrier phase. Range-based 

trilateration then derives the 2D or 3D locations by two main 

approaches – continuous-wave (CW) carrier phase and wave-

packet time of flight (ToF). Phase measurements suffer from 

inherent wavelength ambiguities and multi-path interferences, 

which can be resolved by broadband or multiple-frequency 

techniques to improve ranging accuracy [14]. Time-based 

localization can achieve high accuracy with short pulses [15] or 

frequency-modulated CW (FMCW) signals [16], but is strongly 
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correlated with the bandwidth resources, which are heavily 

regulated and expensive [17]. Even with sufficient bandwidth, 

the high sampling rate poses further challenges to the hardware 

design as limited by the power budget [18]. 

Despite of numerous previous efforts, marker localization 

under the following constraints remains challenging due to 

ambiguities from: 1) near-field propagation; 2) inhomogeneous 

media; 3) heavy multi-path channels, especially with 

suppressed or blocked line-of-sight (LoS). For phase-based 

localization, phase-distance relations become nonlinear and 

non-monotonic with inhomogeneous media and blocked LoS in 

the near field [19], and can suffer more ambiguities. Phase 

centers of observation points, usually RF antennas, cannot be 

modeled by electrically small static points at their physical 

centers due to antenna detuning [20]. Tag localization inside 

building materials for structural integrity monitoring frequently 

encounters the above three constraints – To couple EM energy 

more effectively inside building materials such as concrete 

blocks, near field is preferred over far field; the signal path 

towards the embedded markers of interest is often deep inside 

inhomogeneous weight-bearing materials; supporting steel bars 

and brackets will create complex multi-path interferences. 

In this paper, we propose a narrow-band CW phase-based 3D 

localization method enabled by spatial diversity without 

invoking far-field approximations. The major contributions of 

this work are: 

1) The proposed localization resolves ambiguities arising 

from not only cyclic phase rotations but also nonlinear 

and non-monotonic phase-distance relations under near-

field, complex media, and heavy multi-path conditions, 

enabling more realistic implementations. 

2) Ambiguity was resolved by leveraging redundant 

channel information from spatially diverse observation 

points without relying on large bandwidth, which is 

advantageous for practical commercialization. 

3) We verified the localization framework experimentally 

using a multiple-input multiple-output (MIMO) 

Universal Software Radio Peripheral (USRP) platform 

and harmonic radio-frequency identification (RFID) 

tags. The system achieved millimeter-level 3D 

localization accuracy in a near-field and heavy multi-

path ambient, simulating the condition inside building 

materials. 

The paper is organized as follows. Sec. II overviews the 
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related works on 3D localization methods using phase or ToF 

measurements with either frequency or spatial diversity. Sec. 

III introduces our localization method through a series of 

algorithms. Sec. IV presents the experimental validation, and 

Sec. V discusses insights, design considerations and future 

works. Sec. VI concludes this paper. 

II. RELATED WORKS 

For the scope of this paper, we will limit our discussion to 

range-based localization, where ranging serves as the 

intermediate step preceding 3D localization. 

1) Far-Field Localization with Frequency Diversity: Time-

based approaches measure ToF or time-difference-of-arrival 

(TDoA) by transmitting an ultra-wideband (UWB) signal or 

FMCW chirp and receiving echoes from the target to extract 

accurate distance with low computational cost and improved 

robustness against multi-path [21], [22]. Researchers studied 

localization under non-line-of-sight (NLoS) conditions [23], 

[24], devised novel algorithms to identify NLoS over LoS [25], 

[26], or determined the optimal observation points in space to 

mitigate multi-path [27], [28]. Timing accuracy is correlated 

with bandwidth and resolution can be improved by a high 

sampling rate. Both factors directly affect the ranging accuracy, 

making such approaches highly susceptible to available 

spectrum resources and hardware limitations. In comparison, 

phase-based approaches measure the phase of CW signals 

received from the target and combine information over a 

continuous spectrum or multiple sparse frequencies to unravel 

wavelength ambiguity and retrieve range information. For 

example, SpotFi [29] and VWAN [30] exploited Wi-Fi 

subcarriers or multiple Wi-Fi bands to improve localization 

accuracy, and the heuristic multiple-frequency continuous-wave 

(HMFCW) was proposed to use multiple individual carrier 

frequencies with sufficient separation to resolve phase 

ambiguities and improve tolerance against large phase errors 

[14]. Similar to time-based approaches, a broad bandwidth is also 

needed for high localization accuracy. 

2) Far-Field Localization with Spatial Diversity: When 

bandwidth is limited, another approach is spatial diversity. One 

commonly adopted technique is by deploying arrays of sensing 

points to synthesize a larger aperture than available from a 

single antenna [31], [32]. Array sensing also supports accurate 

azimuth selectivity using beam-steering, where angle-of-arrival 

(AoA) can be derived [33]–[35]. Another technique is through 

a multi-static sensor deployment for unambiguous 

reconstruction of the target location [36]–[38]. Combination of 

array processing and time-based ranging techniques have also 

been studied for accurate 3D localization, where both spatial 

and frequency diversity were exploited [22], [39]–[41]. 

3) Near-Field Localization: The phase-range relation can be 

nonlinear and non-monotonic in the near field [19], [42], and 

prior efforts improved localization by leveraging large antenna 

arrays and wavefront curvature [43], [44]. Compared to far-

field approaches, near-field localization was less studied but has 

gained significant research interest due to its rich practical use 

cases and many open challenges. 

Besides simulations and experimental validations, the 

literature has also seen abundant theoretical studies on 

localization performances, e.g., for fundamental limits on 

location estimation [45], [46], environmental-based optimal 

spatial and spectrum allocation [47], novel localization schemes 

in mm-wave [46], [48], and channel estimation [49]. 

III. LOCALIZATION ALGORITHMS 

The proposed 3D localization method consists of multiple 

stages: 1) spline fitting; 2) distance searching; 3) initial ambiguity 

removal; 4) voxel-tree location searching; 5) location ambiguity 

elimination. Differential phases are measured at all transmitter 

(Tx) and receiver (Rx) pairs for a small number of selected 

reference locations for calibration. For each Tx/Rx pair, an 

empirical relation between measured differential phases and 

known differential distances from the target to the Tx/Rx pair 

is defined by spline fitting. Next, differential phases for 

unknown locations are measured to search for differential 

distances from the spline curves, and multiple candidates exist 

for nonlinear and non-monotonic curves. An initial ambiguity 

removal algorithm removes least likely ones by leveraging 

spatial diversity. Then, a location searching algorithm generates 

a location contender set using distance candidates from a subset 

of all Tx/Rx pairs. Finally, a location ambiguity elimination 

algorithm identifies the most probable location out of location 

contender sets from different subsets of Tx/Rx pairs by 

exploiting spatial diversity from redundant channel resources.  

A. Pre-Processing and Spatial Diversity 

The proposed localization framework is built upon phase 

measurements of all propagation channels between Tx and Rx. 

Simultaneously, each Tx transmits a CW signal modulated by 

in-phase and quadrature (I and Q) sinusoidal waveforms at a 

unique intermediate frequency (IF) for Tx separation, without 

baseband modulation. At each Rx, digital band-pass filters 

centered at each IF are applied to I and Q samples after 

demodulation, from which the carrier phase is calculated for 

each Tx [50]. As here Tx IF only serves for the multiplexing 

purpose, IF and their separations are purposefully set low to 

reduce the sampling rate requirement. Compared with GHz-

level carrier frequency, the kHz-level bandwidth is much 

smaller than most existing localization methods. In this paper, 

we will show that the localization framework presents no 

dependence on bandwidth to resolve phase ambiguities.  

Throughout the paper, unless otherwise noted, “phase” and 

“distance” refer to differential phase and differential distance 
Diff. 

Channel

Diff. Phase 

& Distance

Diff. 

Channel

Measured 

Param.

Tx12      ,      Rx24      ,      

Tx13      ,      Rx25      ,      

Tx23      ,      Rx26      ,      

Rx12      ,      Rx34      ,      

Rx13      ,      Rx35      ,      

Rx14      ,      Rx36      ,      

Rx15      ,      Rx45      ,      

Rx16      ,      Rx46      ,      

Rx23      ,      Rx56      ,      

Target

Tx1

Tx2

Tx3

Rx1 Rx2

Rx3

Rx4

Rx6

Rx5

Fig. 1. The schematics shows 3 Tx and 6 Rx antennas for localization, and 

the table lists all channels with corresponding phases and distances. 

 



3 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

from a target to a Tx/Rx pair, respectively, and “channel” 

denotes one Tx/Rx pair, due to their extensive usage. 

Differential measurements enable an initial phase offset 

cancellation for channels with shared random initial phases of 

phase-locked loops (PLL) during frequency synthesis of local 

oscillators (LO) [51]. Then, calibration is required to obtain 

repeatable phase measurements for MIMO channels without 

shared LO. This is beyond the scope of this paper but will be 

briefly summarized in Sec. IV.D. 

On the left, Fig. 1 shows the schematic of a MIMO network 

with 3 Tx and 6 Rx, where Tx antennas and downlink paths 

(from Tx antennas to the target) are marked in purple, and Rx 

antennas and uplink paths (from the target to Rx antennas) are 

marked in green. LoS from Tx to Rx and ambient multi-path are 

not shown. On the right, a table lists phases and distances in 

each channel, with 3 Tx pairs and 15 Rx pairs in total. In 

general, differential measurements add to the diversity 

compared with single Tx/Rx phase measurements, because the 

network with 𝑀 Tx and 𝑁 Rx consists of 𝑄 =
𝑀(𝑀−1)

2
+
𝑁(𝑁−1)

2
 

differential pairs, which increases quadratically with the 

number of Tx/Rx. This provides abundant channel resources for 

3D location searching, and the redundancy can be exploited to 

resolve location ambiguity.  

In a MIMO network, baseband signals from each Tx to each 

Rx are retrieved. Specifically, the phase for Tx1 and Tx2 can 

be measured at each Rx, with IF1 and IF2 filtered out 

respectively. Likewise, the phase for Rx1 and Rx2 is available 

at each IF. For a network with 𝑀 Tx and 𝑁 Rx, totally there are 

𝑁 ∙
𝑀(𝑀−1)

2
 and 𝑀 ∙

𝑁(𝑁−1)

2
 differential Tx and Rx 

measurements, respectively, which increase cubically with the 

number of Tx/Rx. Multiple measurements available from a 

single channel will be exploited for initial ambiguity removal.  

B. Spline Fitting 

Unlike linear phase-distance relations in the far field and 

homogeneous media, a heavy multi-path channel in the near 

field is more complex [19]. Here, we explore the relation by 

curve fitting. The previous 3rd-order polynomial fitting and 

iterative fitting in [13] was time-consuming to obtain an 

optimized curve. Prolonged phase-distance relations in a large 

capture volume with complex multi-path have complicated 

curvature variations with more ambiguities. In addition, curve 

morphology varies over different channels, with some nearly 

linear and monotonic and others having many turnings and 

inflections. Without prior knowledge, the optimal polynomial 

fitting order is difficult to select for each channel, so segmented 

spline fitting was selected to mitigate local fitting errors.  

Fig. 2 illustrates the complex phase-distance relations 

measured from experiments, and the accuracies of polynomial 

fitting with varying orders and 3rd-order spline fitting. Phase 

measurements and distance ground truths of reference locations 

are represented by red diamond markers. For spline fitting, 

these points are used as anchor points. Cyan circles represent 

ground truths for unknown locations, presented for evaluating 

fitting accuracy. Fig. 2(a) is an example when the phase-

distance relation is nearly linear and monotonic over most of 

the curve, where polynomial fitting with orders 5 and 10 are 

both appropriate, but the order of 15 produces overshoots at the 

edge of the linear curve segment. Figs. 2(b) and (c) present two 

examples when the phase-distance relation contains non-

monotonic segments while monotonic segments are more 

linear. There, polynomial fitting with orders 10 and 15 give 

good fitting but the order of 5 is insufficient for local variations 

especially near turning points. Fig. 2(d) shows an example 

when the phase-distance relation contains many large curvature 

variations over the entire curve. Polynomial fitting with orders 

5 and 10 both exhibit inaccurate local fitting in some segments, 

while the order 15 produces overshoots elsewhere.  

All examples show diverse variations of phase-distance 

relation curves, and hence the challenges in selecting an optimal 

and uniform polynomial order. In comparison, spline fitting has 

a superior performance than polynomial fitting of all selected 

orders, which minimizes the total least-squares error over the 

entire curve without ensuring good local fitting. Physically 

speaking, the phase-distance curves are continuous to the 

second-order derivatives, justifying the use of spline fitting. 

C. Distance Searching 

Given the phase-distance curves from reference locations, 

the distance searching for unknown locations is then performed 

at each channel. Fig. 3 shows distance searching with given 

phase measurements of one unknown target location at four 

channels. Red diamond markers represent reference location, 

and values predicted by spline curves are shown in black. Cyan 

circles represent ground truths for target locations unknown in 

advance. Notice that for some channels, the same distance (but 

corresponding to two different physical locations) can give 

different phase measurements due to different multi-path 

interferences, with an example shown in Fig. 3(c). The 

constant-phase line can intersect with the phase-distance curve 

Fig. 2. (a)-(d) Curve fitting is applied to measured phases and distances of 

reference tag locations (red diamond markers). Fitted curves predict phases 
for non-reference tag locations as curves with different colors and shapes, 

with ground truths shown as cyan circles. Four representative channels are 

selected, and predictions are shown by the following fitting schemes: least-
squares polynomial fitting with orders 5, 10 and 15, and 3rd-order least-

squares spline fitting. 

(a) (b)

(c) (d)
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at multiple points, each corresponding to a distance candidate, 

and the most challenging task is near the flat region, as the 

constant-phase line is almost tangential to the phase-distance 

curve to give a large distance error bound. To resolve this, we 

propose a recursive distance searching algorithm.  

Fig. 4(a) shows curve intersections of one unknown location 

for one channel, with 164.39 measured phase. The distance 

range is divided into 1m-resolution grid points, and we 

selected a heuristically pre-defined proportion (2% for this 

work) of those with best phase predictions as the coarse 

selection pool, shown by green square markers. Fig. 4(b) is a 

zoomed-in view for the right intersection in Fig. 4(a), enclosed 

in the orange dashed box, and the recursive distance searching 

(or fine selection) algorithm identifies two intersections. Fig. 

4(c) shows the fine selection result for a measured phase of 

164.21, corresponding to another target location 1 mm away, 

and the intersection near the minimum is identified by recursive 

distance searching. For every coarse selection pool striding over 

a local extremum, the algorithm shrinks it by abandoning a pre-

defined proportion of distance candidates (we selected 20% 

heuristically) with the worst phase predictions, and this process 

continues recursively until none of the new fine selection pools 

stride over a local extremum, shown as magenta triangle 

markers in Figs. 4(b) and (c). Physical centers of each fine 

selection pool are output as distance candidates. For Fig. 4(b), 

two fine selection pools are generated, centered at 5.71 mm and 

5.77 mm, respectively. For Fig. 4(c), the candidate pool shrinks 

towards the local minimum around 5.73 mm. Without fine 

selection, these two cases cannot be distinguished given the 

similarity in their coarse selection pools. Fine selection 

provides sub-0.1mm distance error, which ensures high 

accuracy in further location searching as errors propagate and 

accumulate. The distance candidate corresponding to the left 

intersection in Fig. 4(a) is directly identified without fine 

selection, and ambiguities will be removed at later stages.  

The distance searching algorithm is presented in 

Supplementary Algorithm I. The DBSCAN in Algorithm I 

stands for the density-based spatial clustering of applications 

with noise [52].  

D. Initial Ambiguity Removal 

The MIMO communication scheme provides multiple phase-

distance curves in each channel. Fig. 5(a) shows the example of 

phase-distance curves for the pair of Tx1 and Tx2, with 

different morphologies at Rx1 through Rx6. For an unknown 

location, the distance searching algorithm first determines the 

candidates for each curve, indicated by the intersection points 

with constant-phase lines in Fig. 5(a). Despite of the different 

candidate sets due to Rx spatial diversity, each curve contains 

one common candidate on the right, highlighted by magenta 

(a) (b)

(c) (d)

Fig. 3. (a)-(d) Four representative channels are shown with nonlinear and 

non-monotonic phase-distance relationships. All curves are fitted by 3rd-
order least-squares splines curves, and each plot shows phases from 

ground truth non-reference location measurements (cyan circles), 

reference location measurements (red diamond markers) and spline fitting 
phase predictions (black lines). 

(a) (b)

(c)

Phase = 164.39

Phase = 164.21

5.73 mm 

Phase = 164.21Phase = 164.21
Phase = 164.21

Phase = 164.39

5.71 mm 5.77 mm 

Phase = 164.39

Fig. 4. (a) For an unknown tag location, with the measured phase of 164.39, multiple differential distances are found by intersecting the horizontal constant-

phase line with the phase-distance curve. (b) The right intersection, represented by the orange dashed box in (a), is located near its local minimum. Green 

square markers are distance candidates in the coarse selection pool, and magenta triangular markers are distance candidates after fine selection, identifying 

two separate distance candidates. (c) The intersection point of another constant-phase line of 164.21, where fine selection identifies only one candidate. 
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dashed circles. Because only one candidate corresponds to the 

ground truth, the common candidate present in all curves 

indicates that it is the correct one and all others are spurious. 

Fig. 5(b) shows another example of phase-distance curves for 

the pair of Rx3 and Rx6, where the curves for Tx1 to Tx3 are 

similar and give two common distance candidates. Hence, both 

candidates are likely correct and should be preserved for future 

steps. Therefore, the described routine does not guarantee 

complete ambiguity elimination but can serve as initial 

ambiguity removal to reduce computational burden at later 

steps of location searching and location ambiguity elimination. 

The initial ambiguity removal algorithm is performed for each 

channel, laid out in Supplementary Algorithm II.  

E. Location Searching 

After distance searching and initial ambiguity removal for all 

channels, distance candidates are gathered to generate 3D 

locations, where the remaining distance ambiguities are 

converted to location ambiguities. Here, we present location 

searching for one set of unique distances from each channel and 

introduce location ambiguity elimination in Sec. II.F.  

Given the distance for one channel, the 3D location is on the 

hyperbolic surface with constant differential distances from the 

foci, i.e., two Tx/Rx antennas. Therefore, it lies on the 

intersection of multiple hyperbolic surfaces corresponding to 

many channels. We implement a voxel-tree searching algorithm 

to find the 3D location, and Fig. 6(a) visualizes the voxel 

exponential reduction scheme. The algorithm is shown in 

Supplementary Algorithm III.  

Compared with Algorithm I in [13], the major improvements 

in the location searching algorithm lies in selecting multiple 

location candidates rather than a single one with the best-

matched differential distances for each channel. We 

occasionally observed inferior localization accuracy of the best-

matched voxel compared with the 2nd- or 3rd-best-matched 

voxel. This was likely because the ground truth stood in 

between two neighboring voxels, or the distance candidates 

were inaccurate due to phase noise or degraded fitting. A 

visualization of insufficient voxel resolution is shown in Fig. 

6(b). Moreover, the number of channels used to generate one 

3D location, denoted by 𝑃 in Supplementary Algorithm III, can 

be increased with the abundant channel resources (in this work 

𝑃 = 8 while in [13] P = 4), to improve robustness and reduce 

sensitivity against distance errors from one particular channel.  

F. Location Ambiguity Elimination 

With location ambiguities, a unique estimate for the target 

3D location is needed. As mentioned before, a MIMO network 

with 𝑀  Tx and 𝑁  Rx has 𝑄 =
𝑀(𝑀−1)

2
+
𝑁(𝑁−1)

2
 channels. 

When 𝑃 channels are used to search for one location, totally 

𝑊 = (𝑄
𝑃
) =

𝑄(𝑄−1)(𝑄−2)…(𝑄−𝑃+1)

𝑃!
 selections are available. 

Suppose all 𝑄 channels have one unique distance candidate, the 

calculated 3D location should coincide under the perfect fitting 

condition regardless of 𝑃. With phase noise and fitting errors, 

calculated 3D locations from each subset of 𝑃  channels are 

slightly different but still within proximity. With ambiguities, 

each subset of 𝑃 channels generate a “location contender set”, 

in which each location is generated from a combination of 𝑃 

distance candidates of the subset using voxel-tree searching. 

Among the aggregate locations from all contender sets, 

spurious ones are scattered in space but correct ones are within 

close proximity, which can be found by spatial clustering.   

Fig. 7(a) presents the flow chart for the ambiguity 

elimination algorithm, and Fig. 7(b) visualizes contender sets 

from different subsets of 𝑃  channels and clustering of the 

correct location candidates. The location ambiguity elimination 

algorithm is presented in Supplementary Algorithm IV.  

Fig. 8 shows two examples of 𝐽 = 10 contender sets, each 

Fig. 5. Two examples of initial ambiguity removal. (a) Different curves 
from channel Tx12 measurements at each Rx give different distance 

candidate sets. The initial ambiguity removal algorithm identifies the 

common candidate and abandons all others before further processing, as 
shown in dashed magenta circles. (b) Differential measurements for 

channel Rx36 give two common distance candidates at each Tx, so no 

ambiguity is removed. 

(a)

(b)

(a) (b)

Tx1
Rx1

Rx2 Voxel Center

True Location

Fig. 6. (a) The exponential capture volume reduction to reduce 
computational burden. (b) Visualization of insufficient voxel resolution 

for best-match location searching, justifying the use of more than one best-

match locations during searching. 
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with 𝑃 = 8 channels. In Fig. 8(a) each contender set is shown 

in an individual color, and within the black dashed circle is the 

valid cluster with at least one candidate from each contender 

set, corresponding to the correct target location. Spurious 

locations are outside the black dashed circle where no valid 

cluster can be found. Fig. 8(b) is a zoomed-in view of the black 

dashed circle in Fig. 8(a). Figs. 8(c) and (d) show another 

example where one single valid cluster is found, corresponding 

to the correct target location. The physical center of the 

identified valid cluster is taken as the final location estimate. 

For this work, 𝐽  and 𝑃  were empirically selected and kept 

constant throughout all experiments.  

Furthermore, the described algorithm is revised to determine 

the wavelength integer and remove wavelength ambiguities due 

to cyclic phase rotations. As different channels have different 

wavelength numbers, only the true location with the correct 

wavelength integer appears in spatial proximity as a valid 

solution. The revised algorithm is shown in Supplementary 

Algorithm IV Variation.  

IV. EXPERIMENTAL VALIDATION BY A PROTOTYPE 

A. Prototype Hardware Components 

We built an experimental prototype for the proposed 

localization using 3 National Instruments (NI) USRP Ettus 

B210 devices (Ettus Research, Austin, TX) and harmonic RFID 

tags. The prototype enables MIMO synchronized differential 

phase measurements after a phase calibration process.  

Fig. 9(a) shows the Tx/Rx antenna placements, and Figs. 9(b) 

and (c) show top and side views of the prototype. The capture 

volume is enclosed within an aluminum frame of size 70 cm × 

70 cm × 70 cm, constructed by bolt framing and fitting parts. 

Multiple concrete bricks filled the space within the capture 

volume to block the LoS of Tx/Rx antennas and create more 

multi-path propagations. Tx antennas transmitted signals 

backscattered by the harmonic RFID tag, which were received 

by Rx antennas. The tag was constructed by nonlinear 

transmission lines (NLTL) to generate the second harmonic 

carrier frequency [53], so that self-leakages, Tx-to-Rx LoS 

interferences, and downlink multi-path can be readily separated 

by Rx filtering. This also simplifies noise origin analysis at Tx 

and Rx. The tag was attached to a linear stepping motor, which 

has 1.25 m resolution, and was configured to move in 1 mm 

steps over a total length of 300 mm. The driving track is made 

mostly of steel and aluminum causing even more complicated 

multi-path interferences. At each step the motor was stopped 

and phases for all channels were measured and saved.  

We selected the Tx and Rx carrier frequencies as 900 MHz 

and 1.8 GHz, respectively, and the three IF used to modulate 

the carrier frequencies for Tx1 through Tx3 are 4 kHz, 12.5 kHz 

and 50 kHz, respectively. Therefore, after Rx demodulation, 

three IF components are located at 8 kHz, 25 kHz and 100 kHz, 

respectively, band-pass filtered in the digital domain with 100 

Hz bandwidth centered at each IF to retrieve signals from each 

Tx. Figs. 9(d) and (e) show one Tx antenna (Abracon 

ARRKP7059-S915B with around 3.5 dBi gain at 900 MHz) and 

two Rx antennas (Siretta Delta 14 with around 1 dBi gain at 1.8 

Gather    
 
   sets of 

differential distances.
Select  Tx/Rx 

pairs.

Calculate    
 
   

ambiguous 3D locations.
Algorithm III

Cluster  location 
sets.

Repeat for  times, each 
with a location set with 
ambiguous 3D locations.

Find clusters with at least 
one location from each set.

Identify one valid cluster 
and output the 3D location.

(a)

(b)

A valid cluster

Invalid clusters

1st channel subset

2nd channel subset

3rd channel subset

Fig. 7. (a) The ambiguity elimination algorithm, with more details in 
Algorithm IV. (b) Visualization of contender sets and spatial clustering. 

Fig. 8. (a) One experimental example of 𝐽 = 10 contender sets, where 

𝑃 = 8 channels were selected for each set. Locations from each set are 

represented in a distinct color, and the black diamond marker represents 

the true tag location. The black dashed circle corresponds to the valid 
cluster determined by ambiguity elimination. (b) The zoomed-in view of 

the black dashed circle in (a). (c)-(d) Another experimental examples at a 

different non-reference tag location, with the same 𝐽 and 𝑃. 

(a) (b)

(c) (d)
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GHz), respectively. An NLTL harmonic tag is shown in Fig. 

9(f). Fig. 9(g) shows one USRP B210 device and the global 

positioning system disciplined oscillator (GPSDO, BG7TBL 

2018-06-05) used to provide a 10 MHz frequency reference and 

a 1 pulse per second (pps) baseband time reference for all 3 

USRP devices. A schematic for the stepping motor is shown in 

Fig. 9(h). Both parallel displacement and tilt angle of the track 

installed on the stepping motor can be adjusted and we repeated 

the described linear stepping experiments over multiple trails.   

B. Tag Localization Results 

Three stepping motor trails located at different regions of the 

capture volume and with different tilt angles were selected to 

present the localization results of the proposed framework. Fig. 

10(a) shows the placements of Trails A to C, where Trails A and 

B are parallelly separated by 75 mm with horizontal placement, 

and Trail C is further separated from them with 4.5 tilt angle. Due 

to the multiple concrete bricks used for LoS blockage and multi-

paths, there is limited space to deploy the linear module. However, 

3D testing points were reasonably distributed in all dimensions.  

The ground truth and estimated tag locations are plotted in Fig. 

10(a) for each trail, where the estimated locations closely match 

ground truths along all the linear trails. Reference tag locations 

were selected for each trail for spline fitting. Distance searching 

and localization were applied for all other non-reference tag 

locations along the same trail. For this work, around 15% of 

locations were selected as reference locations. Ground truth for 

reference and non-reference tag locations are marked in yellow 

and red, respectively, and estimated tag locations are marked in 

blue. Figs. 10(b-d) present zoomed-in plots for the ground-truth 

and estimated tag 3D locations along Trails A through C, when 

the wavelength integer for any non-reference tag location was 

unknown. 𝑁𝑀𝑎𝑥𝑊𝑎𝑣𝑒𝐼𝑛𝑡 = 1  was selected in Supplementary 

Algorithm IV Variation, meaning that the correct wavelength 

integer was identified among -1, 0, and 1. It is worth noting that 

although prior knowledge of linear module length and capture 

volume size is required for selecting parameter 𝑁𝑀𝑎𝑥𝑊𝑎𝑣𝑒𝐼𝑛𝑡 , 

such knowledge usually can be easily obtained in practice. Fig. 

10(e) shows the overall cumulative distribution function (CDF) of 

3D localization errors for Figs. 10(b-d), where millimeter-level 

accuracy in 3D localization is achieved. This shows the 

effectiveness of the spatial diversity and redundant channels, as 

only 3 Tx and 6 Rx were used, a relatively small number in 

comparison with the antenna array approach [31].  

C. Link Budget 

We performed link budget measurements for the prototype in 

Figs. 9(b)-(c), and the signal powers at various stages from Tx to 

Rx are shown in Fig. 11. As all Tx antennas are closely located, 

the tag received signal power and backscatter signal power have 

little variation, around 0 dBm and -18.3 dBm, respectively. 

However, diversity in Rx antenna location rendered large 

variation of received signal powers at each Rx, ranging from -73 

dBm to -49 dBm. Potential improvements on the power loss can 

be from replacing the NLTL tag with a simpler nonlinear 

component such as a diode or rectenna, as the harmonic tag 

introduces 15-20 dB insertion loss by the NLTL structure [53]. As 

the proposed localization framework consumes negligible 

bandwidth, broadband operation by NLTL is not required. 

Conventional non-harmonic backscattering tags with subcarrier 

uplink separation can also work, at the cost of higher phase noise 

close to the Tx carrier frequency.  

D. MIMO Phase Synchronization 

Multistatic RF transceivers suffer from asynchronous phases 

among Tx/Rx channels and non-repeatable phases at each 

device startup, even with shared external frequency and time 

references [51]. This is due to the random LO initial phases by 

individual phase lock loops (PLLs) during frequency synthesis. 

Stringent requirements of individual PLLs to ensure 

synchronous phases [54] are not achievable in practice. To 

ensure repeatable phase measurements and synchronous 

phases, we directly measured the non-ideal random phase 

offsets using a known splitter-based wired channel and 

switched to the wireless channel to immediately remove it from 

measured phases. A detailed description of the phase calibration 

method would be published elsewhere due to length concerns.  

V. DISCUSSIONS 

A. Different Aspects of Spatial Diversity 

Spatial diversity is first exploited by initial ambiguity 

removal. Harmonic RFID decouples tag backscatter from Tx-

to-Rx LoS, ambient interferences and self-leakages by different 

carrier frequencies, leading to similar Tx (Rx) differential 

phase-distance curves at each Rx (Tx) in the far field. However, 

in the near field, uncertainties in Tx/Rx antenna phase centers 

affect phase measurements, resulting in different phase-

(a) (b)

Rx1

Rx2

Rx6Rx5Tx3

Tx2

Tx1 Tag

(below the trail)

Rx4

Rx3

Wooden 

board

(g)(d)

(e)

(f)

tag

Tilt Angle 
( )

Insert wooden 

boards
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( )

(h)

Rx1

Rx2
Tag

Rx6
Rx3

(behind 
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Rx4 

(behind 
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Tx1-3

Rx5

(c)

Rx5
Rx6

Rx4

Rx3
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Tx3

0 0
200
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600

0

300
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y / mm

z 
/ 
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Fig. 9. (a) The Tx and Rx antenna placement for the experimental 

validation. (b)-(c) The top and side views of the experimental setup, where 
Tx, Rx antennas, the tag, and the stepping motor are shown. (d) A patch 

antenna operating around 900 MHz for Tx. (e) Whip antennas operating 

around 1.8 GHz for Rx. (f) A harmonic RFID tag. (g) The Universal 
Software Radio Peripheral (USRP) B210 device and global positioning 

system disciplined oscillator (GPSDO). (h) A schematic of the tag-carrying 

stepping motor with horizontal displacement. Tilt angle can be adjusted by 

inserting wood boards at one side. 
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distance curves, which the initial ambiguity removal algorithm 

exploits to save computational resources for further steps. For 

non-harmonic/non-backscatter MIMO phase measurements, 

phase centers of Tx, Rx and target are dominant factors in the 

far field, while additional factors include uncertainties in Tx/Rx 

phase centers due to antenna detuning and multi-path in the near 

field, where different phase-distance curves can also be 

exploited. 

Spatial diversity is exploited to a greater extent for ambiguity 

elimination. The large number of redundant channels provides 

much freedom to resolve the phase-distance ambiguity, because 

available Tx/Rx pairs are more than sufficient to generate a 3D 

location. In our experiments, sufficient spatial diversity in 

Tx/Rx antenna placement ensured the cluster corresponding to 

the correct target location can always be accurately identified.  

B. Missing Detection vs. Ambiguous Detection 

While identifying the correct distance and location 

candidates among ambiguous ones requires extra effort, 

missing detection is much harder to cope with. Therefore, one 

major consideration is to ensure preference of generating 

ambiguity over missing detection. First, the example in Fig. 

4(b) shows the recursive distance searching algorithm provides 

two closely located distance candidates near the local 

minimum, while the coarse selection cannot differentiate the 

two candidates and may lead to missing detection and large 

distance searching errors. Then, in location searching, we 

purposefully output all likely best-matched voxels rather than a 

single best-matched voxel, to tolerate 3D localization errors due 

to insufficient voxel resolution. Introduced ambiguities were 

finally resolved by spatial diversity. In comparison, if a distance 

candidate or location candidate is missing during any previous 

step, in no way can we retrieve it at later stages.  

C. Reference Calibration 

The proposed localization framework requires selection of 

reference locations for unknown phase-distance relations. In 

our experiments, the selection was assisted with the phase-

distance curve morphology observed from preliminary phase 

measurements. For a practical scenario such as structural 

monitoring, preliminary measurements are not available as RF 

markers are buried inside building materials, and the number of 

available reference points may be significantly reduced. 

Although we will not discuss these issues in full detail, we 

envision two main approaches to a more practical reference 

calibration. One approach is to perform reference calibration in 

another structure and transfer the data to the structure of 

interest, and the other approach is by modeling the structure and 

measuring the phase-distance relation through simulation.  

D. Further Challenges and Future Work 

For future work, the proposed algorithm framework is 

expected to address the challenge of robustness against 

degraded fitting accuracy when phase measurements have 

reduced signal-to-noise ratio (SNR), or the proportion of 

reference locations is significantly reduced, e.g., from 15% 

down to 5%. In addition, the current channel subset selection is 

based only on subsets with fewest ambiguities, some without 

ambiguity at all. This can make location estimates biased 

towards channels with degraded fitting, while there may exist 

other channels with more accurate fitting but more ambiguities. 

Out of 𝑊 = (𝑄
𝑃
)  selections of 𝑃  Tx/Rx pairs, there are (𝑊

𝐽
) 

Rx5

Rx6

Rx4

Rx3

Rx2

Rx1

Tx1

Tx2

Tx3

(a)

(c)

(d)

(b)

(e)

Fig. 10. (a) Tag localization results are shown along 3 stepping motor trails as blue markers, and the ground truth reference tag locations and non-reference 
tag locations are shown as yellow and red markers, respectively. (b)-(d) Zoomed-in views of localization results of Trails A-C shown in 10(a), with wavelength 
ambiguity elimination. (e) Overall cumulative distribution function (CDF) of 3D localization errors for the results in (b)-(d). 
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Fig. 11. Link budget analysis for the Tx-to-Rx channels, with varied Rx power depending on signal propagation distances. 
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different selections of 𝐽 Tx/Rx pairs, so optimizing the choice 

is usually impractical by exhaustive searching. Next, conditions 

for existence and uniqueness of the valid cluster corresponding 

to the ground truth can be studied. This can provide a better 

guidance on selecting number of Tx/Rx antennas and number 

of channels in a subset for ambiguity elimination. Finally, 

although the proposed 3D localization framework was 

demonstrated for phase-based localization in the near field, it 

can also be applied to far-field localization and time-based 

localization with bandwidth dependence. In the far field, phase-

range and time-range relations can be linear, but ambiguities 

due to phase rotations can be resolved by our algorithm. For 

time-based localization with heavy multi-path interferences or 

inhomogeneous medium, potentially nonlinear or piecewise-

linear time-range relations introduce ambiguities, which can 

also be similarly resolved. Different phase-range or time-range 

relations at multiple carrier frequencies over a wide bandwidth 

can also be combined to resolve ambiguity at an initial stage, 

together with the spatial diversity.  

VI. CONCLUSION 

In this paper, we introduce a novel narrow-band framework 

for phase-based precision localization. Differential distances 

are retrieved from measured differential phases of multiple 

channels and are further combined to generate 3D locations. 

Ambiguities are resolved by leveraging redundant channel 

resources from spatially diverse Tx/Rx antennas, without 

relying on costly bandwidth resources. The proposed 3D 

localization framework was demonstrated by a prototype 

implemented by a USRP platform and harmonic RFID, 

showing millimeter-level 3D localization accuracy. The system 

worked under the conditions of near-field propagation and 

heavy multi-path environments with blocked LoS, and it also 

can be potentially applied to both phase-based and time-based 

localization setups with far-field assumptions and bandwidth 

dependence. Future works will focus on robustness against 

fitting accuracy, optimized channel subset selection, and 

theoretical studies of valid cluster existence and uniqueness. 
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