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Abstract

For the high order diffusion and dispersion equations, the general practice of the explicit-

implicit-null (EIN) method is to add and subtract an appropriately large linear highest

derivative term with constant coefficient at one side of the equation, and then apply the

standard implicit-explicit method to the equivalent equation. We call this approach the

constant-coefficient EIN method in this paper and hereafter denote it by “CC-EIN”. To

reduce the error in the CC-EIN method, the variable-coefficient explicit-implicit-null (VC-

EIN) method, which is obtained by adding and subtracting a linear highest derivative term

with variable coefficient, is proposed and studied in this paper. Coupled with the local

discontinuous Galerkin (LDG) spatial discretization, the VC-EIN method is shown to be

unconditionally stable and can achieve high order of accuracy for both one-dimensional and

two-dimensional quasi-linear and nonlinear equations. In addition, although the computa-

tional cost slightly increases, the VC-EIN method can obtain more accurate results than

the CC-EIN method, if the diffusion coefficient or the dispersion coefficient has a few high

and narrow bumps and the bumps only account for a small part of the whole computational

domain.

Keywords: diffusion equation, dispersion equation, stability, explicit-implicit-null time

discretization, local discontinuous Galerkin method.

1Graduate School, China Academy of Engineering Physics, Beijing 100088, China. E-mail: tan-

meiqi20@gscaep.ac.cn.
2Corresponding author. Laboratory of Computational Physics, Institute of Applied Physics and Com-

putational Mathematics, Beijing 100088, China and HEDPS, Center for Applied Physics and Technology,

and College of Engineering, Peking University, Beijing 100871, China. E-mail: cheng juan@iapcm.ac.cn.

Research is supported in part by National Key R&D Program of China No. 2023YFA1009003, and NSFC

grant 12031001.
3Division of Applied Mathematics, Brown University, Providence, RI 02912, USA. E-mail: chi-

wang shu@brown.edu. Research is supported in part by NSF grants DMS-2010107 and DMS-2309249.

1



1 Introduction

In this paper, we exploit a third order variable-coefficient explicit-implicit-null (VC-EIN)

time-marching method coupled with the local discontinuous Galerkin (LDG) methods for

solving high order diffusion and dispersion equations, respectively. For the simplification of

notations, the equations described below are only one-dimensional. Note that the conclusions

given in this paper can also be extended to equations in higher dimensions, and we shall

present two-dimensional examples in the numerical experiment section.

The second order diffusion equation

Ut = (d(U)Ux)x, (1.1)

where the diffusion coefficient d(U) ≥ 0 is smooth and bounded, has been widely used to

model various processes in engineering and industry, such as the thermo-chemical diffusion

process of carburizing and nitriding [5], the miscible displacement in porous media [21] and

so on. In this paper, we use the capital letter U to denote the exact solution to the considered

equation.

The dispersion equation

Ut + g(Ux)xx = 0 (1.2)

is a special KdV-type equation, which has been widely used to describe the propagation of

waves in a variety of nonlinear dispersive media and appears often in applications. Appli-

cations include the study of waves in plasma physics, internal waves in coastal waters, flow

in blood vessels and so on. For more details, we refer the readers to [3] and the references

therein.

The fourth order diffusion equation

Ut + (d(Ux)Uxx)xx = 0 (1.3)

is a special biharmonic-type equation, where the nonlinear term could be more general but we

just present (1.3) as an example. The biharmonic-type equations have wide applications in
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thin plate bending theory, strain gradient elasticity, phase-field modelling and mathematical

biology.

The explicit-implicit-null (EIN) method denotes an IMEX-type time-marching method

for a problem of the form

du

dt
= f(t, u)

obtained by adding and subtracting an approximation g(t, u) of the stiff terms in f(t, u)

which is more amenable for an implicit treatment

du

dt
= f(t, u)− g(t, u) + g(t, u),

and then applying the standard implicit-explicit (IMEX) method to the above equation.

Namely, we treat the term f(t, u)−g(t, u) explicitly and the remaining term g(t, u) implicitly.

Since the piece g(t, u) that is added to the equation is then subtracted (seemingly adding

zero), Duchemin and Eggers [9] proposed to call this approach the “explicit-implicit-null

method”, or EIN method for short. The crucial step to the success of the method consists

in adding and subtracting the right term, which is quite flexible in the selection, but needs

to have the same scaling in wave number as the stiffest term in the equation.

The EIN method, which was first introduced by Douglas and Dupont [8], has been applied

on a case-by-case basis to, for example, the two models of motion by mean curvature and

motion by surface diffusion [13], the Boltzmann equation near the fluid dynamic regime [10],

the nonlinear hyperbolic systems containing fully nonlinear and stiff relaxation terms [4], the

porous medium equation and the high-field model in semiconductor device simulations [16],

the Navier-Stokes equations [11], the Cahn-Hilliard equations [12], the KdV-type equations

[14, 15] and so on.

For the high order diffusion and dispersion equations studied in this paper, the general

practice of the EIN method is to add and subtract an appropriately large linear highest

derivative term with constant coefficient at one side of the equation, and then apply the

IMEX time-marching method to the equivalent equation. We call such method the constant-

coefficient explicit-implicit-null method in this paper and hereafter denote it by “CC-EIN”.
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In the following, we take the second order diffusion equation (1.1) as an example. Since the

equation contains a stiff part corresponding to the second derivative, in order to stabilize the

equation, a second derivative term with constant coefficient b1Uxx is added to and subtracted

from the left-hand side of the considered equation

Ut + b1Uxx − (d(U)Ux)x︸ ︷︷ ︸
T1

− b1Uxx︸ ︷︷ ︸
T2

= 0, b1 = a0 ·max d(un), (1.4)

where un represents the numerical solution at the n-th time level. Here, a0 is an appropriately

large constant such that T1 is either not stiff, or less stiff and less dissipative compared to

T2, thus it can be treated explicitly, and T2 is stiff and dissipative, thus will be discretized

implicitly. The CC-EIN method so designed has great flexibility in dealing with stiff nonlinear

problems, as it gives rise to a linear system for which very efficient solution methods exist. In

addition, the severe time step restriction imposed by the explicit treatment of the nonlinear

stiff term (d(U)Ux)x can be removed. Since the auxiliary term b1Uxx added to and subtracted

from the equation are treated in different ways, i.e., one is treated explicitly and the other

is treated implicitly, for a p-th order CC-EIN method, stabilization is achieved essentially

at the cost of a somewhat additional temporal truncation error of order O(τ p), where τ is

the time step. When the dominant error is due to the time-stepping or the spatial order of

accuracy is at least the same as that of the time-marching method, the numerical results

in [14] show that the overall error will increase significantly with the increase of b1 in (1.4).

In such situation, if the diffusion coefficient d(U) has a few high and narrow bumps and the

bumps only account for a small part of the whole computational domain, the coefficient of

the additional error O(τ p) of the CC-EIN method is relatively large. To resolve this issue,

the VC-EIN method, which has not been studied before to our knowledge, is proposed and

studied in this paper.

The VC-EIN method is obtained by adding and subtracting a more accurate approxima-

tion of the stiffest term at one side of the equation, and then treating them separately. In

the following, we still take the diffusion equation (1.1) as an example. From the stability
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and conservation points of view, we add and subtract a second derivative term with variable

coefficient (a1(x)Ux)x at the left-hand side of the considered equation

Ut − (d(U)Ux − a1(x)Ux)x︸ ︷︷ ︸
T1

− (a1(x)Ux)x︸ ︷︷ ︸
T2

= 0, (1.5)

where

a1(x) = a0 · max
tn≤t≤tn+1

d(u(x, t)),

and then treat the damping term T2 implicitly and the remaining term T1 explicitly. Sim-

ilarly, the explicit treatment of T1 and the implicit discretization of the linear term T2 will

lead to a linear system, which is relatively easy to solve by many direct or iterative methods.

Compared to other methods that also do not require solving nonlinear equations, such as

the Rosenbrock-type methods [2], our method is easier to implement. In addition, compared

with the CC-EIN method, the additional error introduced by the different treatments of

the auxiliary term (a1(x)Ux)x in the VC-EIN method is smaller outside the bumps of d(U).

When the high and narrow bumps only account for a small part of the whole computational

domain, the VC-EIN method will eventually lead to a smaller global error at least for the L1

and L2 norms, and much smaller errors locally away from the high bumps, see the numerical

results in Section 3.

In relation to the spatial discretizations, we adopt the LDG method for the high order

diffusion and dispersion equations, respectively. The LDG method, which was first intro-

duced by Cockburn and Shu [6] for the convection-diffusion equations, has been popular. It

can easily handle meshes with hanging nodes, elements of general shapes and local spaces

of different types, thus it is flexible for hp-adaptivity. For the references on LDG methods

as well as their implementation and applications, see the review paper by Cockburn and

Shu [7]; see also the papers [17–20] (the list is far from being exhaustive). Since the stabi-

lization of both of the EIN methods (VC-EIN and CC-EIN) is achieved essentially at the cost

of a somewhat additional temporal error, the specific choice of spatial discretization does

not have much impact on the effectiveness of the VC-EIN method in reducing such error.
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Therefore, we can also consider other spatial discretizations such as the finite difference, the

finite volume and the spectral methods.

An outline of this paper is as follows. In Section 2, we will present the semi-discrete

LDG schemes and the time discretization method for the equations mentioned above. In

addition, we will propose a guidance for the choices of a1(x) to ensure the stability of the

VC-EIN-LDG schemes. Section 3 shows a series of numerical examples to test the stability

and error accuracy of the proposed schemes for both one-dimensional and two-dimensional

quasi-linear and nonlinear problems. In addition, we will also carry out a comparative study

about the numerical performance of the VC-EIN-LDG scheme and the CC-EIN method

with LDG spatial discretization (CC-EIN-LDG). When proper parameters are chosen, the

numerical results show that the VC-EIN-LDG scheme can outperform the CC-EIN-LDG

scheme, especially for local errors outside the bumps. Finally, the concluding remarks are

given in Section 4.

2 The numerical schemes

In this section, we will present the semi-discrete LDG schemes and the time discretization

method used in this paper. In addition, we will propose a guidance for the choices of a1(x)

to ensure the stability of the VC-EIN-LDG schemes. For simplicity of presentation, some

preliminary notations are presented here. Let Th = {Ij = [xj− 1

2

, xj+ 1

2

]}Nj=1 be a uniform

partition of the computational domain Ω = [xL, xR], where x 1

2

= xL and xN+ 1

2

= xR are the

two boundary endpoints. The spatial mesh size is h = (xR − xL)/N .

2.1 The LDG method for the second order diffusion equation

Let us describe in detail the implementation of the LDGmethod for the second order diffusion

equation (1.5) subject to periodic boundary condition and the initial condition

U(x, 0) = U0(x), x ∈ Ω. (2.1)
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Note that the LDG method described in this paper is slightly different from the classical

one [7] which involves the square root of the diffusion coefficient d(U). The idea of the LDG

method is to rewrite the equation with higher order derivatives into an equivalent first order

system, and then apply the discontinuous Galerkin (DG) method [7] to the system, so the

LDG scheme shares the advantages of the DG method. To define the LDG method, we first

introduce the new variables

P = (d(U)− a1(x))R, Q = a1(x)R, R = Ux,

and reformulate (1.5) as the following first order system

Ut − Px −Qx = 0, P − (d(U)− a1(x))R = 0,

Q− a1(x)R = 0, R− Ux = 0.

Then we seek piecewise polynomial solutions u, p, q, r from Vh such that for all the test

functions φ1, φ2, φ3, φ4 ∈ Vh and 1 ≤ j ≤ N , we have

∫

Ij

utφ1 dx+

∫

Ij

(p+ q)(φ1)x dx− (p̂+ q̂)j+ 1

2

(φ1)
−

j+ 1

2

+ (p̂+ q̂)j− 1

2

(φ1)
+
j− 1

2

= 0, (2.2a)

∫

Ij

pφ2 dx =

∫

Ij

(d(u)− a1(x))rφ2 dx, (2.2b)

∫

Ij

qφ3 dx =

∫

Ij

a1(x)rφ3 dx, (2.2c)

∫

Ij

rφ4 dx+

∫

Ij

u(φ4)x dx− ûj+ 1

2

(φ4)
−

j+ 1

2

+ ûj− 1

2

(φ4)
+
j− 1

2

= 0 (2.2d)

and

u(x, 0) = PhU0(x), (2.3)

where

Vh = {φ ∈ L2(Ω) : φ|Ij ∈ Pk(Ij), ∀j = 1, ..., N} (2.4)

and PhU0(x) is the local L2-projection of the initial condition U0(x) satisfying

∫

Ij

PhU0(x)φ1(x) dx =

∫

Ij

U0(x)φ1(x) dx, ∀φ1(x) ∈ Vh. (2.5)
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Here, Pk(Ij) is the space of polynomials in cell Ij of degree no more than k. The functions

in Vh are allowed to have discontinuities across cell interfaces. For any piecewise function

u in Vh, we denote by u−

j+ 1

2

and u+
j+ 1

2

the left and right limits of the discontinuous solution

u at the interface xj+ 1

2

, respectively. Now, the only ambiguity in the algorithm (2.2) is

the definition of the numerical fluxes (the terms with the “hat”), which are single-valued

functions defined at the interfaces and play important roles in ensuring stability of the LDG

method. As shown in Section A.1 in Appendix, we can prove a strong L2-stability result if

we adopt the following numerical fluxes

p̂ = p+, q̂ = q+, û = u−, (2.6)

where we have omitted the subscripts j± 1
2
in the definition of the fluxes, as all quantities are

evaluated at the interfaces xj± 1

2

. We remark that the choice of the fluxes is not unique. In

fact the crucial part is taking p̂ and q̂ from the same side and taking û and p̂ from opposite

sides (alternating fluxes). Note that we only need to replace the above-mentioned a1(x) with

b1 to obtain the LDG spatial discretization of the equation (1.4).

2.2 The LDG method for the dispersion equation

Since the dispersion equation (1.2) contains a stiff part corresponding to the third deriva-

tive, in order to stabilize the equation without sacrificing the conservation of the numerical

solution, we add the same term (a1(x)Ux)xx, a1(x) ≥ 0 to both sides of the equation. It

should be noted that the sign of the auxiliary term (a1(x)Ux)xx we add to both sides of

the equation needs to be adjusted according to the sign of g′(Ux). If g′(Ux) ≥ 0 within

the whole computational domain Ω, we should add two equal term with negative prefix

−(a1(x)Ux)xx to both sides of the considered equation. Otherwise, the sign of the auxiliary

term (a1(x)Ux)xx needs to be positive. We only consider the case where the sign of g′(Ux)

is fixed. The discussion of the dispersion equation with the sign of g′(Ux) varying in space

and time goes beyond the scope of the present paper and is by itself an interesting topic
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for future investigation. Assuming that g′(Ux) ≥ 0, we add two equal dispersion terms with

variable coefficient −(a1(x)Ux)xx to both sides of the equation and get

Ut + (g(Ux)− a1(x)Ux)xx︸ ︷︷ ︸
T1

= − (a1(x)Ux)xx︸ ︷︷ ︸
T2

, (2.7)

where

a1(x) = a0 · max
tn≤t≤tn+1

g′(ux(x, t))

and a0 > 0 is an appropriately large constant yet to be determined. We begin with the

equation (2.7) to describe the LDG method. For a detailed introduction of the method, we

refer the readers to [19].

By introducing the new variables

V = (g(Z)− a1(x)Z)x, W = (a1(x)Z)x, Z = Ux,

we can rewrite (2.7) into the following first order system

Ut + Vx +Wx = 0, V − (g(Z)− a1(x)Z)x = 0,

W − (a1(x)Z)x = 0, Z − Ux = 0.

The semi-discrete LDG approximation to the dispersion equation (2.7) with the initial con-

dition (2.1) and periodic boundary condition can be defined as follows: seek piecewise poly-

nomial solutions u, v, w, z from Vh such that for all the test functions φ1, φ2, φ3, φ4 ∈ Vh

and 1 ≤ j ≤ N , we have

∫

Ij

utφ1 dx−

∫

Ij

(v + w)(φ1)x dx+ (v̂ + ŵ)j+ 1

2

(φ1)
−

j+ 1

2

− (v̂ + ŵ)j− 1

2

(φ1)
+
j− 1

2

= 0, (2.8a)

∫

Ij

vφ2 dx+

∫

Ij

(g(z)− a1(x)z)(φ2)x dx−

(ĝ − â1z)j+ 1

2

(φ2)
−

j+ 1

2

+ (ĝ − â1z)j− 1

2

(φ2)
+
j− 1

2

= 0,

(2.8b)

∫

Ij

wφ3 dx+

∫

Ij

a1(x)z(φ3)x dx− (â1z)j+ 1

2

(φ3)
−

j+ 1

2

+ (â1z)j− 1

2

(φ3)
+
j− 1

2

= 0, (2.8c)

∫

Ij

zφ4 dx+

∫

Ij

u(φ4)x dx− ûj+ 1

2

(φ4)
−

j+ 1

2

+ ûj− 1

2

(φ4)
+
j− 1

2

= 0 (2.8d)
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and the equality (2.3) as the initial condition. Here, Vh is defined by (2.4). As shown in [19],

we can prove an L2-stability result, a cell entropy inequality for a more general case and

obtain optimal error estimates for the linear case, if we adopt the following numerical fluxes

v̂ = v+, ŵ = w+, û = u−, ĝ = g(z+), â1z = (a1z)
+. (2.9)

We remark that the choice of the numerical fluxes ĝ and â1z is based on the assumption

that g′(Ux) ≥ 0. If g′(Ux) ≤ 0, we should take ĝ = g(z−), â1z = (a1z)
−. Similarly, we only

need to replace the above-mentioned a1(x) with b1 to obtain the LDG spatial discretization

of the equation

Ut + (g(Ux)− b1Ux)xx︸ ︷︷ ︸
T1

= −b1Uxxx︸ ︷︷ ︸
T2

, (2.10)

where b1 = a0 ·max g′(ux(x, t
n)) and g′(Ux) ≥ 0.

2.3 The LDG method for the fourth order diffusion equation

Adding and subtracting a fourth derivative term with variable coefficient (a1(x)Uxx)xx at the

left-hand side of the equation (1.3), we obtain

Ut + (d(Ux)Uxx)xx − (a1(x)Uxx)xx︸ ︷︷ ︸
T1

+ (a1(x)Uxx)xx︸ ︷︷ ︸
T2

= 0, (2.11)

where

a1(x) = a0 · max
tn≤t≤tn+1

d(ux(x, t)),

and a0 > 0 is an appropriately large constant yet to be determined. We begin with the

equation (2.11) to describe the LDG method. The LDG method described in this paper is

slightly different from the classical one [20] which involves the square root of the diffusion

coefficient d(Ux). To define the LDG method, we introduce the new variables

V = Ux, W = Vx, P = (d(V )− a1(x))W,

Q = a1(x)W, R = Px, Z = Qx
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and rewrite the equation (2.11) as a first order system

Ut +Rx + Zx = 0, R− Px = 0, Z −Qx = 0,

P − (d(V )− a1(x))W = 0, Q− a1(x)W = 0, W − Vx = 0, V − Ux = 0.

The semi-discrete LDG approximation to (2.11) with the initial condition (2.1) and periodic

boundary condition can be defined as follows: find u, v, w, p, q, r, z ∈ Vh such that, for all

the test functions φl ∈ Vh, 1 ≤ l ≤ 7 and 1 ≤ j ≤ N we have
∫

Ij

utφ1 dx−

∫

Ij

(r + z)(φ1)x dx+ (r̂ + ẑ)j+ 1

2

(φ1)
−

j+ 1

2

− (r̂ + ẑ)j− 1

2

(φ1)
+
j− 1

2

= 0, (2.12a)

∫

Ij

rφ2 dx+

∫

Ij

p(φ2)x dx− p̂j+ 1

2

(φ2)
−

j+ 1

2

+ p̂j− 1

2

(φ2)
+
j− 1

2

= 0, (2.12b)

∫

Ij

zφ3 dx+

∫

Ij

q(φ3)x dx− q̂j+ 1

2

(φ3)
−

j+ 1

2

+ q̂j− 1

2

(φ3)
+
j− 1

2

= 0, (2.12c)

∫

Ij

pφ4 dx =

∫

Ij

(d(v)− a1(x))wφ4 dx, (2.12d)

∫

Ij

qφ5 dx =

∫

Ij

a1(x)wφ5 dx, (2.12e)

∫

Ij

wφ6 dx+

∫

Ij

v(φ6)x dx− v̂j+ 1

2

(φ6)
−

j+ 1

2

+ v̂j− 1

2

(φ6)
+
j− 1

2

= 0, (2.12f)

∫

Ij

vφ7 dx+

∫

Ij

u(φ7)x dx− ûj+ 1

2

(φ7)
−

j+ 1

2

+ ûj− 1

2

(φ7)
+
j− 1

2

= 0. (2.12g)

As shown in Section A.2 in Appendix, we can prove a strong L2-stability result if we adopt

the following numerical fluxes

û = u+, v̂ = v−, q̂ = q+, (2.13a)

p̂ = p+, r̂ = r−, ẑ = z−. (2.13b)

We remark that the choice of the fluxes is not unique. In fact the crucial part is taking

p̂ and q̂ (r̂ and ẑ) from the same side and taking û and r̂ (v̂ and p̂) from opposite sides.

Similarly, we only need to replace the above-mentioned a1(x) with b1 to obtain the LDG

spatial discretization of the equation

Ut + (d(Ux)Uxx − b1Uxx)xx︸ ︷︷ ︸
T1

+ b1Uxxxx︸ ︷︷ ︸
T2

= 0, (2.14)

where b1 = a0 ·max d(ux(x, t
n)) and d(Ux) ≥ 0.
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2.4 The implicit-explicit time discretization

The semi-discrete LDG schemes can be rewritten into the first-order ODE system

du

dt
= L(t, u) +N (t, u),

where L(t, u) arises from the spatial discretization of T2 and will be treated implicitly, and

N (t, u) is derived from the spatial discretization of T1 and will be dealt with an explicit way.

A third order IMEX Runge-Kutta (IMEX-RK) method will be considered in this paper.

Given the numerical solution at time tn, the IMEX-RK method forms 5 intermediate values

un,s, 1 ≤ s ≤ 5 according to

un,s = un + τ
s∑

l=1

aslL(t
n
l , u

n,l) + τ
s−1∑

l=1

âslN (tnl , u
n,l), (2.15a)

from which the approximation at time level tn+1 is assembled by

un+1 = un + τ
5∑

l=1

blL(t
n
l , u

n,l) + τ
5∑

l=1

b̂lN (tnl , u
n,l), (2.15b)

where the intermediate values un,s are approximations to u(x, tnl ) and

tnl = tn + ĉlτ, ĉs =
s∑

l=1

asl =
s∑

l=1

âsl.

The IMEX-RK method can be represented by the following Butcher tableau

asl

0 0 0 0 0 0 0 0 0 0

âsl

0 1
2

0 0 0 1
2

0 0 0 0

0 1
6

1
2

0 0 11
18

1
18

0 0 0

0 −1
2

1
2

1
2

0 5
6

−5
6

1
2

0 0

0 3
2

−3
2

1
2

1
2

1
4

7
4

3
4

−7
4

0

bl 0 3
2

−3
2

1
2

1
2

1
4

7
4

3
4

−7
4

0 b̂l

(2.16)

of which the left half lists asl and bl, with the five rows from top to bottom corresponding

to s = 1, ..., 5, and the columns from left to right corresponding to l = 1, ..., 5. Similarly, the

right half lists âsl and b̂l. With the above Butcher coefficients, we then arrive at a third order
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IMEX-RK method. The IMEX-RK method we consider is a combination of a four-stage,

third order, L-stable, stiffly-accurate, singly diagonally implicit Runge-Kutta method and a

four-stage, third order explicit Runge-Kutta method. For more details of the method, we

refer to [1]. We have also considered other IMEX methods, but we will not state them here

to save space.

2.5 The choice of a1(x) for stability

Note that for the following simplified linear equations with periodic boundary conditions:

• The linear second order diffusion equation

Ut = dUxx,

• The linear dispersion equation

Ut + dUxxx = 0,

• The linear fourth order diffusion equation

Ut + dUxxxx = 0,

where d > 0 are three constants, the EIN-LDG schemes are shown to be unconditionally

stable [14] provided a0 ≥ 0.54 regardless of the order accuracy of the LDG spatial dis-

cretizations. Here, we use the notation EIN-LDG to refer to both the VC-EIN-LDG and the

CC-EIN-LDG schemes. After all, for linear equations with constant coefficients, these two

schemes are equivalent. Even though the analysis is only performed on the simplified linear

equations with constant coefficients, numerical experiments [14] show that the CC-EIN-LDG

scheme is unconditionally stable for the second order diffusion equation (1.4) if

b1 = a0 ·max d(un), a0 ≥ 0.54,

for the dispersion equation (2.10) if

b1 = a0 ·max g′(un
x), a0 ≥ 0.54,
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and for the fourth order diffusion equation (2.14) if

b1 = a0 ·max d(un
x), a0 ≥ 0.54.

Based on the stability results of the CC-EIN-LDG schemes, we propose a guidance for the

choice of a1(x) in the VC-EIN-LDG scheme for the second order diffusion equation (1.5),

i.e.,

a1(x) = a0 · max
tn≤t≤tn+1

d(u(x, t)), a0 ≥ 0.54, (2.17)

for the dispersion equation (2.7), i.e.,

a1(x) = a0 · max
tn≤t≤tn+1

g′(ux(x, t)), a0 ≥ 0.54, (2.18)

and for the fourth order diffusion equation (2.11), i.e.,

a1(x) = a0 · max
tn≤t≤tn+1

d(ux(x, t)), a0 ≥ 0.54. (2.19)

Although the above stability conditions have not been confirmed theoretically, we find nu-

merically that the above choices are sharp.

Note that for the quasi-linear equations, it is easy to obtain a1(x). However, if the

diffusion coefficient or the dispersion coefficient depends on the solution (nonlinear case),

as an alternative, the approach adopted in this paper is to obtain its approximation ã1(x)

through the convolution technique. Given a unit-mass kernel

Φ(x) =
1

∫ 1

−1
e

1

|x|2−1dx




e

1

|x|2−1 , |x| < 1,

0, |x| ≥ 1,

we form a dilated mollifier

ΦC0,δ(x) :=
C0

δ
Φ
(x
δ

)
(2.20)

with C0, δ being two free dilation parameters at our disposal. By tuning δ we can adjust the

support of Φ(x) over the symmetric interval (−δ, δ). By adjusting C0, we can always make

ã1(x) = a0 · d̃(x) ≥ a1(x) = a0 · max
tn≤t≤tn+1

d(u(x, t)), (2.21)
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to keep the unconditional stability of the VC-EIN-LDG scheme for the second order diffusion

equation, or

ã1(x) = a0 · g̃(x) ≥ a1(x) = a0 · max
tn≤t≤tn+1

g′(ux(x, t)), (2.22)

to keep the unconditional stability of the scheme for the dispersion equation, or

ã1(x) = a0 · d̂(x) ≥ a1(x) = a0 · max
tn≤t≤tn+1

d(ux(x, t)), (2.23)

to keep the unconditional stability of the scheme for the fourth order diffusion equation,

where

d̃(x) =

∫
d(u(y, tn))ΦC0,δ(x− y) dy,

g̃(x) =

∫
g′(uy(y, t

n))ΦC0,δ(x− y) dy,

d̂(x) =

∫
d(uy(y, t

n))ΦC0,δ(x− y) dy.

However, now we encounter the difficulty on how to adjust the dilation parameters C0

and δ. In the following, we provide a simple adjustment strategy using the second order

diffusion equation as an example. At the beginning of the computation, we can always

preset the parameters C0 and δ according to d(u0). As the computation proceeds, we scan

the sign of d̃(x) − d(un,s), where un,s, 2 ≤ s ≤ 5 are the intermediate values defined by

(2.15a), at some preselected points which are distributed inside each cell, for example, the

Gaussian points used in the Gaussian numerical integration. For all the intermediate values

un,s between tn and tn+1 time layers, if no negativity is detected at these points, then it

is acceptable to judge that d̃(x) − maxtn≤t≤tn+1 d(u(x, t)) is nonnegative, and we make the

parameters C0 and δ stay the same as before. If d̃(x) − d(un,s) is negative at some points,

then we return to the n-th time level and modify the parameters C0 and δ according to

d(un). When the time step is relatively small, we can always obtain satisfactory parameters

through a finite number of adjustments to ensure the stability of the scheme, provided the

changes from d(un) to d(un+1) are not particularly significant. It must be acknowledged
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that the adjustment strategy is still somewhat ad hoc, and it is worthwhile to make it more

systematic and precise in future study.

Remark 2.1. As pointed out in [14], the threshold value of a0 for stability depends on the

specific IMEX method, that is, the constant a0 = 0.54 may not be valid if the IMEX time-

marching method is changed.

Remark 2.2. The computational cost of the VC-EIN-LDG scheme is definitely higher than

that of the CC-EIN-LDG scheme, especially in the high-dimensional nonlinear cases, as it

requires performing convolution for a series of discrete points to get ã1(x), reassembling the

matrix and solving a more complex linear system at each time step. In addition, just as

mentioned in the introduction, only in certain cases can the VC-EIN method obtain more

accurate results than the CC-EIN method. First, it requires that the dominant error is due

to the time-stepping or the spatial order of accuracy is at least the same as that of the time-

marching method. Second, it requires that the diffusion coefficient or the dispersion coefficient

has a few high and narrow bumps and the bumps only account for a small part of the whole

computational domain. Therefore, we do not advocate blindly adopting the VC-EIN method,

and would recommend using the CC-EIN method when it is not clear whether the diffusion

coefficient or the dispersion coefficient meets the above requirements.

3 The numerical experiments

In this section, we will present a series of numerical tests to show the order of accuracy and

stability of the VC-EIN-LDG schemes for the high order diffusion and dispersion equations,

respectively. We will also carry out a comparative study about the numerical performance

of the VC-EIN-LDG and CC-EIN-LDG schemes. For simplicity, we only consider the one-

dimensional and two-dimensional cases. Since the time discretization is limited to only third

order accuracy, we concentrate on the piecewise quadratic polynomial (k = 2) case for the

LDG spatial discretization in the numerical experiments. In addition, we take τ = h in the
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tests, such that the orders accuracy of errors in space and time match.

3.1 The second order diffusion equations

In this subsection, we would like to test the performance and stability of the proposed schemes

for the second order diffusion equations in one and two space dimensions. The equations

with periodic boundary conditions will be considered, unless otherwise stated. Following the

lines in [6], it is straightforward to generalize the LDG scheme (2.2) for Cartesian meshes in

the two-dimensional case.

3.1.1 The quasi-linear numerical test in one dimension

We consider the quasi-linear diffusion equation

Ut + (a1(x)Ux)x − (d(x, t)Ux)x − s(x, t)︸ ︷︷ ︸
T1

− (a1(x)Ux)x︸ ︷︷ ︸
T2

= 0, x ∈

(
−
3

2
π,

1

2
π

)
(3.1)

augmented with the diffusion coefficient

d(x, t) = α + β tanh(σ cos(η(x+ t)))

the initial condition U(x, 0) = sin(x) and the source term

s(x, t) = cos(x+ t) + βησ cos(x+ t) sech2(σ cos(η(x+ t))) sin(η(x+ t))+

sin(x+ t)(α + β tanh(σ cos(η(x+ t)))).

The problem has an exact solution

U(x, t) = sin(x+ t). (3.2)

Indeed, the standard IMEX methods can be directly adopted to solve the problem.

To illustrate the necessity of the stability condition (2.17), in the test, we take a1(x) as

0.54 · d(x, tn), 0.53 · maxtn≤t≤tn+1 d(x, t), 0.54 · maxtn≤t≤tn+1 d(x, t) and maxtn≤t≤tn+1 d(x, t),

respectively. It is worth pointing out that it is not necessary to get the specific expression of

maxtn≤t≤tn+1 d(x, t). In the LDG scheme (2.2), these two formulas, (2.2b) and (2.2c), involve
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a1(x) = a0 ·maxtn≤t≤tn+1 d(x, t) and are integral expressions, which will be solved by a high

order numerical integration method in practical computing. Thus we only need to consider

the maximum value of d(x, t) at a series of discrete time points from tn to tn+1 for each

numerical integration point and this is easy to achieve. We compute to T = π with the

parameters α = 11, β = 10, σ = 3π, η = 1. Note that with those parameters, the diffusion

coefficient d(x, t) is not a monotonic function of time t for any fixed x. In other words,

d(x, tn) 6= maxtn≤t≤tn+1 d(x, t). The numerical errors and orders of accuracy are listed in Ta-

ble 3.1. Intuitively speaking, since un+1 involves multiple intermediate values un,s, 2 ≤ s ≤ 5,

as shown in (2.15), a1(x) < 0.54 ·maxtn≤t≤tn+1 d(x, t) is not large enough to remove the stiff-

ness in all N (tns , u
n,s), 2 ≤ s ≤ 5 when d(x, t) changes sharply with respect to time t and the

mesh division is coarse, unless we use a small enough time step to temporally resolve the

rapid transient of d(x, t). Thus, from Table 3.1 we can see that the VC-EIN-LDG scheme is

unstable or a sufficiently dense mesh grid is required to maintain the stability of the scheme

if a1(x) < 0.54 · maxtn≤t≤tn+1 d(x, t). When a1(x) ≥ 0.54 · maxtn≤t≤tn+1 d(x, t), the scheme

is stable and the numerical orders of the scheme settle down towards the asymptotic value

slowly. In fact, it is reasonable for this to happen, because the auxiliary term (a1(x)Ux)x

we add to and subtract from the equation are treated in different ways, i.e., one is treated

explicitly and the other is treated implicitly. The two different time-stepping methods bring

a certain error to the scheme, which increases with the increase of a1(x) and slows down

the convergence of the scheme to the optimal order to some extent. The above explanation

can also be used to interpret the similar convergence behavior of the VC-EIN-LDG and

CC-EIN-LDG schemes for nonlinear equations.

Next, to demonstrate the optimal order of accuracy of the scheme, we consider again the

quasi-linear numerical test proposed before. The simulation is run from t = 0 to T = π with

a1(x) = 0.54 · maxtn≤t≤tn+1 d(x, t) and the parameters α = 1, β = 1
2
, σ = 1, η = 1. We list

the errors and the experimental orders of the VC-EIN-LDG scheme in Table 3.2, from which

we can observe a rate of convergence about 3 for L1, L∞ and L2 norms.
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Table 3.1: The errors and orders of the VC-EIN-LDG scheme for Example (3.1) with α =

11, β = 10, σ = 3π, η = 1.

a1(x) N L1 error order L∞ error order L2 error order

0.54 · d(x, tn)

128 4.02E+21 9.84E+22 1.49E+22

256 2.02E+19 7.64 9.08E+20 6.76 1.00E+20 7.22

512 2.24E+07 39.71 1.10E+09 39.59 1.21E+08 39.60

1024 4.19E-06 42.28 2.83E-05 45.14 7.50E-06 43.87

2048 8.68E-07 2.27 7.29E-06 1.96 1.73E-06 2.11

0.53 · max
tn≤t≤tn+1

d(x, t)

128 1.17E-03 1.91E-02 2.66E-03

256 6.87E-03 -2.55 2.83E-01 -3.89 3.21E-02 -3.59

512 1.09E+03 -17.27 8.35E+04 -18.17 7.20E+03 -17.78

1024 1.69E+16 -43.82 1.43E+18 -43.96 9.48E+16 -43.58

2048 4.36E+46 -101.03 2.70E+48 -100.58 2.02E+47 -100.75

0.54 · max
tn≤t≤tn+1

d(x, t)

128 4.62E-04 2.23E-03 6.24E-04

256 1.04E-04 2.16 5.84E-04 1.93 1.49E-04 2.06

512 2.12E-05 2.29 1.38E-04 2.08 3.39E-05 2.14

1024 4.32E-06 2.29 3.27E-05 2.07 7.76E-06 2.13

2048 8.78E-07 2.30 7.78E-06 2.07 1.76E-06 2.14

max
tn≤t≤tn+1

d(x, t)

128 6.42E-04 2.27E-03 9.06E-04

256 1.55E-04 2.05 6.96E-04 1.71 2.28E-04 1.99

512 3.43E-05 2.17 1.96E-04 1.83 5.46E-05 2.06

1024 7.28E-06 2.24 5.22E-05 1.91 1.28E-05 2.09

2048 1.48E-06 2.30 1.30E-05 2.01 2.92E-06 2.14

Table 3.2: The errors and orders of the VC-EIN-LDG scheme for Example (3.1) with α =

1, β = 1
2
, σ = 1, η = 1.

a1(x) N L1 error order L∞ error order L2 error order

0.54 · max
tn≤t≤tn+1

d(x, t)

128 2.33E-06 5.60E-06 2.94E-06

256 3.09E-07 2.91 7.72E-07 2.86 3.92E-07 2.91

512 4.00E-08 2.95 1.02E-07 2.92 5.09E-08 2.95

1024 5.09E-09 2.97 1.32E-08 2.95 6.50E-09 2.97

2048 6.42E-10 2.99 1.68E-09 2.97 8.21E-10 2.98
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3.1.2 The nonlinear numerical test in one dimension

We consider the nonlinear diffusion equation

Ut = (d(U)Ux)x + s(x, t) (3.3)

augmented with the diffusion coefficient

d(U) = α + βU2 (3.4)

and the exact solution

U(x, t) = (γ + λe−σ2(1−cos(x+t)))(cos(η(x+ t)) + 1).

The initial solution is extracted from the exact solution and the source term s(x, t) is chosen

properly such that the exact solution satisfies the given equation.

For such a nonlinear problem, since the stability condition (2.17) involves the unknown

solutions above the n-th time level, the VC-EIN-LDG scheme is adjusted for use with the

help of the convolution technique. In short, we add and subtract a second derivative term

with variable coefficient (ã1(x)Ux)x at the left-hand side of the equation (3.3)

Ut + (ã1(x)Ux)x − (d(U)Ux)x − s(x, t)︸ ︷︷ ︸
T1

− (ã1(x)Ux)x︸ ︷︷ ︸
T2

= 0,

where ã1(x) = a0 · d̃(x) and d̃(x) is the convolution of d(un) and the dilated mollifier ΦC0,δ(x)

defined by (2.20). By adjusting the dilation parameters δ and C0, we can always make ã1(x)

satisfy (2.21) and then ensure the stability of the scheme.

With the numerical solution at time tn in hand, one might be tempted to increase the

value of a0 to make the inequality

a0 · d(u(x, t
n)) ≥ 0.54 · max

tn≤t≤tn+1
d(u(x, t))

tenable and ensure the stability of the scheme. However, this approach has two shortcomings

that cannot be ignored. One is that much larger a0 might be needed, which could bring larger
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errors. The other is that for degenerate parabolic equations, of which the diffusion coefficient

d(U) has a compact support, even if we increase the value of a0, it still leads to a0 · d(U) = 0

outside the support. When the interface of the support is sharp and propagates with a

high speed, it may still fail to remove the stiffness in all N (tns , u
n,s), 2 ≤ s ≤ 5 defined by

(2.15), and ensure the stability of the scheme on a relatively coarse mesh grid. With the

convolution of d(un) and the dilated mollifier ΦC0,δ(x), we can expand the support to avoid

such a situation.

First, we numerically validate the stability of the VC-EIN-LDG scheme for this nonlinear

problem. In the test, we take the parameters α = 0, β = 1, γ = 0, λ = 0.5, σ = 6, η = 4.

The computational domain is set to be (−π, π) and the final computing time is T = 1.

With these parameters, the diffusion coefficient d(U), for any time t ≥ 0, forms a steep

bump with the value of d(U) outside the bump decaying exponentially. To understand this

clearly, we have plotted in Figure 3.1 the pictures for the diffusion coefficient d(U(x, t)) at

time t = 0 and t = 1, respectively. The numerical results of the VC-EIN-LDG scheme with

ã1(x) = 0.54 · d̃(x), ã1(x) = d̃(x) a1(x) = 10 · d(un) and a1(x) = 100 · d(un) are presented

in Table 3.3. Note that we preset the dilation parameters as C0 = 3 and δ = 0.6 in the

test. These two preset values are sufficient to ensure the stability of the scheme without

adjustment, due to the fact that the bump of the diffusion coefficient does not deform except

for moving. As expected, the scheme is stable for ã1(x) ≥ 0.54 · maxtn≤t≤tn+1 d(u(x, t)). In

addition, even though we greatly increase the value of a0 in the test, a1(x) = a0 · d(u
n) still

cannot ensure the stability of the scheme, unless the mesh is dense enough. When N = 2048,

the VC-EIN-LDG scheme is stable for a1(x) = 10 · d(un), however, the errors of the scheme

are much larger than those of the scheme with ã1(x) = 0.54 · d̃(x).

Second, we perform an optimal accuracy check for the VC-EIN-LDG and CC-EIN-LDG

schemes. In the test, we take the parameters α = 0, β = 2, γ = 0.01, λ = 0.1, σ = 3, η = 4.

Compared with the previous case, we reduce the values of these two parameters, λ and σ,

and increase the values of β and γ. With these parameters, the diffusion coefficient d(U),
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for any time t ≥ 0, forms a gentler bump and the value of d(U) outside the bump no longer

decays exponentially. To understand this clearly, we have plotted in Figure 3.2 the pictures

for the diffusion coefficient d(U(x, t)) at time t = 0 and t = 1, respectively. On the basis of

keeping the final computing time and the computational domain unchanged, the simulation

is run with ã1(x) = 0.54 · d̃(x) and b1 = 0.54 · max d(un). Note that for the VC-EIN-LDG

scheme, the dilation parameters are kept as C0 = 2.2, δ = 0.7 and remain unchanged in

this test. The orders and errors of the schemes in the L1, L2 and L∞ norms are presented

in Table 3.4. Clearly, we can observe a rate of convergence about 3 for all the norms. In

addition, in this case, the errors of the VC-EIN-LDG scheme are slightly smaller compared

to those of the CC-EIN-LDG scheme.

Third, we increase the deviation of the bump and compare the performance of both the

schemes. On the basis of keeping other parameters of the previous case unchanged, the

value of λ is increased to 1. Note that for the VC-EIN-LDG scheme, we still set the dilation

parameters as C0 = 2.2 and δ = 0.7 in the test. The errors and orders of accuracy for both

the schemes are computed at two different regions, namely the entire computational region

[−π, π] and the region away from the bumps [−π,−2]∪ [1, π]. The results are listed in Table

3.5 and Table 3.6, respectively. Due to the fact the errors are larger near the bumps and

such errors do not decrease much from the CC-EIN method to the VC-EIN method, all the

global errors (L1, L2, L∞) do not show significant reductions from the CC-EIN-LDG scheme

to the VC-EIN-LDG scheme as can be seen in Table 3.5. However, in regions away from the

bumps, the VC-EIN method produces much smaller errors than the CC-EIN method, as can

be seen in Table 3.6.

3.1.3 The nonlinear numerical test in one dimension

We experiment with a highly nonlinear example

Ut = (d(U)Ux)x + s(x, t), (3.5a)

d(U) = (γ + λe−σ2(1−U))(2U2 − 1)2 (3.5b)
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Figure 3.1: Snapshots of the diffusion coefficient (3.4) with parameters α = 0, β = 1, γ =

0, λ = 0.5, σ = 6, η = 4 at the indicated times.
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Figure 3.2: Snapshots of the diffusion coefficient (3.4) with parameters α = 0, β = 2, γ =

0.01, λ = 0.1, σ = 3, η = 4 at the indicated times.
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Table 3.3: The errors and orders of the VC-EIN-LDG scheme for Example (3.3) with α =

0, β = 1, γ = 0, λ = 0.5, σ = 6, η = 4.

N L1 error order L∞ error order L2 error order

ã1(x) = 0.54 · d̃(x)

128 2.29E-03 4.19E-02 6.05E-03

256 6.60E-04 1.80 9.72E-03 2.11 1.65E-03 1.87

512 1.68E-04 1.97 1.89E-03 2.36 4.19E-04 1.98

1024 3.68E-05 2.19 5.53E-04 1.77 9.40E-05 2.16

2048 6.82E-06 2.43 1.21E-04 2.20 1.80E-05 2.38

ã1(x) = d̃(x)

128 4.72E-03 8.59E-02 1.23E-02

256 1.63E-03 1.54 2.61E-02 1.72 4.11E-03 1.58

512 5.00E-04 1.70 6.38E-03 2.03 1.25E-03 1.71

1024 1.33E-04 1.92 1.90E-03 1.74 3.41E-04 1.88

2048 2.94E-05 2.17 5.32E-04 1.84 7.92E-05 2.11

a1(x) = 10 · d(un)

128 2.62E-01 8.89E+00 8.12E-01

256 NaN NaN NaN NaN NaN NaN

512 NaN NaN NaN NaN NaN NaN

1024 NaN NaN NaN NaN NaN NaN

2048 3.10E-03 NaN 7.13E-02 NaN 9.14E-03 NaN

a1(x) = 100 · d(un)

128 NaN NaN NaN

256 1.98E-01 NaN 1.62E+01 NaN 1.06E+00 NaN

512 1.83E-01 0.12 2.84E+01 -0.81 1.33E+00 -0.32

1024 NaN NaN NaN NaN NaN NaN

2048 NaN NaN NaN NaN NaN NaN
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Table 3.4: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Exam-

ple (3.3) with α = 0, β = 2, γ = 0.01, λ = 0.1, σ = 3, η = 4.

VC-EIN-LDG

ã1(x) N L1 error order L∞ error order L2 error order

0.54 · d̃(x)

128 5.78E-06 7.14E-05 1.17E-05

256 7.30E-07 2.99 9.12E-06 2.97 1.49E-06 2.97

512 9.36E-08 2.96 1.16E-06 2.98 1.92E-07 2.96

1024 1.19E-08 2.97 1.46E-07 2.99 2.46E-08 2.97

2048 1.51E-09 2.98 1.83E-08 2.99 3.11E-09 2.98

CC-EIN-LDG

b1 N L1 error order L∞ error order L2 error order

0.54 ·max d(un)

128 7.67E-06 7.57E-05 1.40E-05

256 9.96E-07 2.94 9.49E-06 3.00 1.83E-06 2.93

512 1.30E-07 2.94 1.22E-06 2.97 2.40E-07 2.93

1024 1.66E-08 2.96 1.53E-07 2.99 3.10E-08 2.96

2048 2.11E-09 2.98 1.92E-08 2.99 3.93E-09 2.98

Table 3.5: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Exam-

ple (3.3) with α = 0, β = 2, γ = 0.01, λ = 1, σ = 3, η = 4 in [−π, π].

VC-EIN-LDG

ã1(x) N L1 error order L∞ error order L2 error order

0.54 · d̃(x)

128 2.12E-02 2.88E-01 4.82E-02

256 6.15E-03 1.79 7.60E-02 1.92 1.32E-02 1.87

512 1.52E-03 2.01 1.50E-02 2.34 3.03E-03 2.12

1024 3.33E-04 2.19 2.37E-03 2.66 6.33E-04 2.26

2048 7.29E-05 2.19 6.60E-04 1.85 1.51E-04 2.06

CC-EIN-LDG

b1 N L1 error order L∞ error order L2 error order

0.54 ·max d(un)

128 2.62E-02 1.34E-01 3.84E-02

256 1.19E-02 1.14 5.23E-02 1.36 1.76E-02 1.13

512 4.69E-03 1.34 3.03E-02 0.79 7.59E-03 1.21

1024 1.58E-03 1.57 1.38E-02 1.13 2.84E-03 1.42

2048 4.36E-04 1.86 4.72E-03 1.55 8.52E-04 1.74
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Table 3.6: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Exam-

ple (3.3) with α = 0, β = 2, γ = 0.01, λ = 1, σ = 3, η = 4 in [−π,−2] ∪ [1, π].

VC-EIN-LDG

ã1(x) N L1 error order L∞ error order L2 error order

0.54 · d̃(x)

128 1.95E-06 1.40E-04 1.24E-05

256 2.12E-07 3.20 2.17E-05 2.69 1.50E-06 3.05

512 1.55E-08 3.78 1.70E-06 3.68 9.71E-08 3.95

1024 1.14E-09 3.77 8.16E-08 4.38 4.33E-09 4.49

2048 1.21E-10 3.24 5.88E-09 3.79 3.21E-10 3.75

CC-EIN-LDG

b1 N L1 error order L∞ error order L2 error order

0.54 ·max d(un)

128 1.04E-02 2.98E-02 1.39E-02

256 4.06E-03 1.35 2.11E-02 0.50 6.46E-03 1.11

512 9.07E-04 2.16 8.67E-03 1.28 1.85E-03 1.80

1024 1.82E-04 2.32 1.69E-03 2.36 3.11E-04 2.57

2048 5.05E-05 1.85 2.81E-04 2.59 9.47E-05 1.72

augmented with the exact solution

U(x, t) = cos(x+ t).

The initial solution is extracted from the exact solution and the source term s(x, t) is chosen

properly such that the exact solution satisfies the given equation.

First, we numerically validate the stability and error accuracy of the VC-EIN-LDG

scheme. In the test, we take the parameters γ = 0, λ = 20, σ = 3. The computational

domain is set to be (−π, π) and the final computing time is T = 1. The numerical results

of the scheme with a1(x) = 1000 · d(un) and ã1(x) = 0.54 · d̃(x) are presented in Table 3.7.

Note that for the VC-EIN-LDG scheme, the dilation parameters are set as C0 = 1.8, δ = 0.7

and remain unchanged in the test. As expected, the scheme is stable for ã1(x) = 0.54 · d̃(x).

Even though we greatly increase the value of a0 to 1000, a1(x) = a0 · d(u
n) still cannot

ensure the stability of the scheme. Second, the CC-EIN-LDG scheme is also used to solve

the nonlinear problem. In the test, we take b1 = 0.54 ·max d(un). The numerical results of

the scheme are also listed in Table 3.7, from which we can see that the CC-EIN-LDG scheme

26



is stable as always and the numerical orders of accuracy settle down towards the asymptotic

value slowly with mesh refinements. Due to the fact the errors are larger near the bumps

and such errors do not decrease much from the CC-EIN method to the VC-EIN method, the

global errors of the VC-EIN-LDG scheme are comparable with the CC-EIN-LDG scheme.

However, in regions away from the bumps, namely [−π,−2.5]∪ [1.5, π], the VC-EIN method

produces much smaller errors than the CC-EIN method, as can be seen in Table 3.8.

Table 3.7: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Exam-

ple (3.5) with γ = 0, λ = 20, σ = 3 in [−π, π].

VC-EIN-LDG

N L1 error order L∞ error order L2 error order

a1(x) = 1000 · d(un)

128 NaN NaN NaN

256 4.08E-01 NaN 2.72E+00 NaN 7.18E-01 NaN

512 NaN NaN NaN NaN NaN NaN

1024 NaN NaN NaN NaN NaN NaN

2048 NaN NaN NaN NaN NaN NaN

ã1(x) = 0.54 · d̃(x)

128 4.56E-03 6.70E-02 1.15E-02

256 1.18E-03 1.95 2.06E-02 1.70 3.11E-03 1.89

512 2.56E-04 2.20 5.17E-03 2.00 7.08E-04 2.14

1024 5.00E-05 2.36 1.07E-03 2.27 1.37E-04 2.37

2048 8.14E-06 2.62 1.84E-04 2.54 2.25E-05 2.61

CC-EIN-LDG

N L1 error order L∞ error order L2 error order

b1 = 0.54 ·max d(un)

128 5.13E-03 1.17E-02 6.31E-03

256 9.22E-04 2.48 2.59E-03 2.18 1.14E-03 2.47

512 1.44E-04 2.68 5.76E-04 2.17 1.81E-04 2.66

1024 2.12E-05 2.76 1.31E-04 2.14 2.85E-05 2.66

2048 2.96E-06 2.84 2.77E-05 2.24 4.72E-06 2.60

3.1.4 Numerical simulation to the porous medium equation

To further validate the performance of the proposed schemes, we consider the porous medium

equation (PME)

Ut = (Um)xx, (3.6)
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Table 3.8: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Exam-

ple (3.5) with γ = 0, λ = 20, σ = 3 in [−π,−2.5] ∪ [1.5, π].

VC-EIN-LDG

ã1(x) N L1 error order L∞ error order L2 error order

0.54 · d̃(x)

128 8.25E-07 3.52E-06 1.14E-06

256 9.42E-08 3.13 3.31E-07 3.41 1.21E-07 3.23

512 1.01E-08 3.22 3.09E-08 3.42 1.24E-08 3.30

1024 1.08E-09 3.23 2.82E-09 3.46 1.27E-09 3.28

2048 1.18E-10 3.19 2.76E-10 3.35 1.34E-10 3.25

CC-EIN-LDG

b1 N L1 error order L∞ error order L2 error order

0.54 ·max d(un)

128 4.51E-03 8.81E-03 5.13E-03

256 7.66E-04 2.56 1.51E-03 2.54 8.72E-04 2.56

512 1.12E-04 2.77 2.17E-04 2.81 1.27E-04 2.78

1024 1.56E-05 2.84 2.90E-05 2.90 1.76E-05 2.85

2048 2.09E-06 2.90 3.96E-06 2.87 2.36E-06 2.90

where m ≥ 1 is a constant. This equation [21] often occurs in nonlinear problems of heat and

mass transfer, combustion theory, and flow in porous media, where U is either a concentration

or a temperature required to be nonnegative. We assume the initial value for the above

equation is a bounded nonnegative continuous function. Then the PME can be rewritten as

Ut = (d(U)Ux)x

with d(U) = mUm−1. In this case, the classical smooth solution may not always exist in

general, even if the initial solution is smooth. It is necessary to consider the weak energy

solution. In a recent work [16], a second order CC-EIN method with the third order LDG

spatial discretization for the PME with the Barenblatt solution was considered. We try

to replicate this test with the third order VC-EIN-LDG and CC-EIN-LDG schemes in this

paper. For any given m ≥ 1, the Barenblatt solution is defined by

U(x, t) = t−s

[(
1−

s(m− 1)

2m

|x|2

t2s

)

+

]1/(m−1)

where u+ = max{u, 0} and s = 1/(m+1). Similarly, we begin the computation from t = 1 in

order to avoid the singularity of the Barenblatt solution near t = 0. The boundary condition
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is U(±6, t) = 0 for t > 1. Note that the simulation is run with ã1(x) = 0.54 · d̃(x) and b1 =

0.54 ·max d(un). In addition, the dilation parameters are always taken as C0 = 1.2, δ = 2.5

for the VC-EIN-LDG scheme. We plot in Figure 3.3 the numerical results for m = 3 and

m = 8 at T = 2 with N = 800. From this figure, we see that our schemes simulate the

Barenblatt solution accurately and sharply.

x

U

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

Numerical
Exact

(a) CC-EIN-LDG, m = 3

x

U

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

Numerical
Exact

(b) VC-EIN-LDG, m = 3

x

U

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

Numerical
Exact

(c) CC-EIN-LDG, m = 8

x

U

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

Numerical
Exact

(d) VC-EIN-LDG, m = 8

Figure 3.3: The CC-EIN-LDG and VC-EIN-LDG schemes for the PME (3.6) with the Baren-

blatt solution at T = 2. Solid line: the exact solution; Square symbol: the numerical solution.
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3.1.5 The nonlinear numerical test in two dimensions

We consider the two-dimensional nonlinear diffusion equation

Ut = ∇ · (d(U)∇U) + s(x, y, t) (3.7)

augmented with the diffusion coefficient (3.4) and the exact solution

U(x, y, t) = (γ + λe−σ2(1−cos(x+y+t)))(1 + cos(η(x+ y + t))).

The initial solution is extracted from the exact solution and the source term s(x, y, t) is

chosen properly such that the exact solution satisfies the given equation.

First, we numerically validate the stability and error accuracy of the VC-EIN-LDG

scheme. In the test, we take the parameters α = 0, β = 2, γ = 0.001, λ = 0.1, σ = 3, η = 4.

The computational domain is set to be (−π, π)2 and the final computing time is T = 1. The

numerical results of the scheme with a1(x, y) = 0.54 · d(un) and ã1(x, y) = 0.54 · d̃(x, y) are

presented in Table 3.9. Note that for the VC-EIN-LDG scheme, the dilation parameters are

set as C0 = 2, δ = 0.6 and remain unchanged in the test. It is observed that the scheme is

stable for ã1(x, y) = 0.54 · d̃(x, y) and can achieve very nice third order convergence rates

for L1, L2 and L∞ norms. Second, the CC-EIN-LDG scheme is also used to solve the non-

linear problem. In the test, we take b1 = 0.54 · max d(un). The numerical results of the

scheme are also listed in Table 3.9, from which we can see that the CC-EIN-LDG scheme

is stable as always. Under the same mesh grid, the results of the VC-EIN-LDG scheme are

compared against those of the CC-EIN-LDG scheme. In this case, the global errors of the

VC-EIN-LDG scheme are comparable with the CC-EIN-LDG scheme.

3.2 The dispersion equations

In this subsection, we would like to test the performance and stability of the proposed

schemes for the dispersion equations in one and two space dimensions. The equations with

periodic boundary conditions will be considered, unless otherwise stated. The generalization
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Table 3.9: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Exam-

ple (3.7) with α = 0, β = 2, γ = 0.001, λ = 0.1, σ = 3, η = 4.

VC-EIN-LDG

N L1 error order L∞ error order L2 error order

a1(x, y) = 0.54 · d(un)

20 3.58E+04 1.58E+06 1.36E+05

40 NaN NaN NaN NaN NaN NaN

60 NaN NaN NaN NaN NaN NaN

80 NaN NaN NaN NaN NaN NaN

100 NaN NaN NaN NaN NaN NaN

ã1(x, y) = 0.54 · d̃(x, y)

20 5.97E-03 6.88E-02 1.34E-02

40 7.00E-04 3.09 1.55E-02 2.15 1.70E-03 2.97

60 1.56E-04 3.70 3.47E-03 3.70 3.67E-04 3.79

80 6.33E-05 3.13 9.26E-04 4.59 1.44E-04 3.25

100 3.08E-05 3.23 4.37E-04 3.36 7.01E-05 3.22

CC-EIN-LDG

N L1 error order L∞ error order L2 error order

b1 = 0.54 ·max d(un)

20 3.03E-03 3.15E-02 6.21E-03

40 6.04E-04 2.33 1.30E-02 1.27 1.37E-03 2.18

60 1.34E-04 3.70 3.08E-03 3.55 3.10E-04 3.66

80 5.67E-05 3.00 9.77E-04 4.00 1.24E-04 3.18

100 2.99E-05 2.88 4.56E-04 3.41 6.34E-05 3.01
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of the LDG scheme (2.8) to the two-dimensional dispersion equations is straightforward; we

refer the readers to [19] for the details.

3.2.1 The quasi-linear numerical test in one dimension

Indeed, the standard IMEX methods can be directly adopted to solve the quasi-linear equa-

tions. In order to illustrate the necessity of the stability condition (2.18), we consider the

quasi-linear dispersion equation

Ut + [(g(x, t)− a1(x))Ux]xx − s(x, t)︸ ︷︷ ︸
T1

+ (a1(x)Ux)xx︸ ︷︷ ︸
T2

= 0, x ∈ (0, 2π) (3.8)

augmented with the dispersion coefficient

g(x, t) = α− β tanh2(η cos(x+ t)),

the initial condition U(x, 0) = sin(x) and the source term

s(x, t) =− 2βη2 cos(x+ t) sech4(η cos(x+ t)) sin2(x+ t)+

2βη sech2(η cos(x+ t)) tanh(η cos(x+ t))(cos2(x+ t)−

2 sin2(x+ t) + 2η cos(x+ t) sin2(x+ t) tanh(η cos(x+ t)))+

cos(x+ t)(1− α+ β tanh2(η cos(x+ t))).

The exact solution to the problem is defined by (3.2). In order to test the stability of

the VC-EIN-LDG scheme in terms of a1(x), in the test, we take a1(x) as 0.54 · g(x, tn),

0.53 ·maxtn≤t≤tn+1 g(x, t), 0.54 ·maxtn≤t≤tn+1 g(x, t) and maxtn≤t≤tn+1 g(x, t), respectively. We

compute to T = 10 with the parameters α = 1, β = 1, η = 3. We present the errors and

orders of accuracy in different norms in Table 3.10, from which we can see that the scheme is

unstable or a sufficiently dense mesh grid is required to maintain the stability of the scheme

if a1(x) < 0.54 · maxtn≤t≤tn+1 g(x, t). As expected, when a1(x) = 0.54 · maxtn≤t≤tn+1 g(x, t),

the VC-EIN-LDG scheme is stable and can achieve a very nice third order convergence rate.

The scheme remains stable as always when a1(x) = maxtn≤t≤tn+1 g(x, t), but the numerical

orders of accuracy settle down towards the asymptotic value slowly.
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Table 3.10: The errors and orders of the VC-EIN-LDG scheme for Example (3.8) with

α = 1, β = 1, η = 3.

a1(x) N L1 error order L∞ error order L2 error order

0.54 · g(x, tn)

64 5.47E+50 5.00E+51 1.25E+51

128 1.06E+53 -7.60 1.18E+54 -7.88 2.65E+53 -7.72

256 3.51E+46 21.52 4.63E+47 21.28 9.52E+46 21.41

512 3.89E+25 69.61 5.72E+26 69.46 1.13E+26 69.51

1024 6.30E-06 102.28 2.02E-05 104.48 7.93E-06 103.50

0.53 · max
tn≤t≤tn+1

g(x, t)

64 4.62E-02 1.15E-01 5.53E-02

128 5.34E-03 3.11 1.28E-02 3.17 6.32E-03 3.13

256 4.90E-04 3.44 1.28E-03 3.32 5.76E-04 3.46

512 5.54E+20 -79.90 7.51E+21 -82.27 1.46E+21 -81.07

1024 4.01E+70 -165.63 5.73E+71 -165.71 1.08E+71 -165.66

0.54 · max
tn≤t≤tn+1

g(x, t)

64 4.64E-02 1.16E-01 5.55E-02

128 5.34E-03 3.12 1.28E-02 3.17 6.32E-03 3.13

256 4.92E-04 3.44 1.16E-03 3.47 5.73E-04 3.46

512 4.69E-05 3.39 1.09E-04 3.41 5.61E-05 3.35

1024 5.86E-06 3.00 1.36E-05 3.00 7.06E-06 2.99

max
tn≤t≤tn+1

g(x, t)

64 1.17E-02 3.10E-02 1.43E-02

128 2.97E-04 5.30 1.09E-03 4.83 4.00E-04 5.16

256 9.24E-05 1.69 2.92E-04 1.90 1.18E-04 1.77

512 2.21E-05 2.06 8.52E-05 1.78 2.86E-05 2.04

1024 5.41E-06 2.03 2.09E-05 2.02 6.88E-06 2.06
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3.2.2 The nonlinear numerical test in one dimension

We consider the nonlinear dispersion equation

Ut + g(Ux)xx = s(x, t) (3.9)

augmented with the dispersion coefficient

g(Ux) = αUx + βU3
x

and the exact solution

U(x, t) = γ sin(η(x+ t))− λ tanh(σ cos(x+ t)).

The initial solution is extracted from the exact solution and the source term s(x, t) is chosen

properly such that the exact solution satisfies the given equation.

Similarly, for such a nonlinear problem, since the stability condition (2.18) involves the

unknown solutions above the n-th time layer, the VC-EIN-LDG scheme is adjusted for use

with the help of the convolution technique. In short, we add and subtract a third derivative

term with variable coefficient (ã1(x)Ux)xx at the left-hand side of the equation

Ut + g(Ux)xx − (ã1(x)Ux)xx − s(x, t)︸ ︷︷ ︸
T1

+ (ã1(x)Ux)xx︸ ︷︷ ︸
T2

= 0,

where ã1(x) = a0 · g̃(x) and g̃(x) is the convolution of g′(un
x) and the dilated mollifier

ΦC0,δ(x) defined by (2.20). By adjusting the dilation parameters δ and C0, we can always

make inequality (2.22) tenable to ensure the stability of the VC-EIN-LDG scheme. The

adjustment strategy of the dilation parameters δ and C0 is similar to that described in

Section 2.3 for the second order diffusion equations.

First, we test the stability of the VC-EIN-LDG scheme for this nonlinear dispersion

equation. In the test, we take the parameters α = 0.001, β = 0.1, γ = −0.2, λ = 0.2, σ =

2, η = 2. The computational domain is set to be (−π, π) and the final computing time

is T = 1. The numerical results of the VC-EIN-LDG scheme with a1(x) = 0.54 · g′(un
x),
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a1(x) = g′(un
x), ã1(x) = 0.54 · g̃(x) and ã1(x) = g̃(x) are presented in Table 3.11. Note that

the dilation parameters are set as C0 = 1.5, δ = 0.5 and remain unchanged in the test. As

expected, the scheme is stable and can achieve optimal error accuracy if ã1(x) ≥ 0.54 · g̃(x).

Second, we take the parameters α = 0.001, β = 0.025, γ = −0.05, λ = 0.05, σ = 4, η = 2

to demonstrate the optimal accuracy of the VC-EIN-LDG and CC-EIN-LDG schemes in

various norms. On the basis of keeping the final computing time and the computational

domain unchanged, the simulation is run with ã1(x) = 0.54 · g̃(x) and b1 = 0.54 ·max g′(un
x).

Note that in the test we keep the dilation parameters C0 = 2, δ = 0.7 unchanged for the

VC-EIN-LDG scheme. The numerical errors and orders of accuracy are presented in Table

3.12, from which we can see that both the schemes are stable as always and can achieve

optimal orders of accuracy for all the norms. In addition, compared with the CC-EIN-LDG

scheme, the VC-EIN-LDG scheme is more accurate for this test.

Third, we take α = 0.001, β = 0.1, γ = −0.1, λ = 0.1, σ = 4, η = 2 and compare the

performance of the VC-EIN-LDG scheme with the CC-EIN-LDG scheme. Compared with

the previous case, we have reduced the value of γ and increased the values of β and λ. With

these parameters, there is a larger deviation in g′(Ux) and the bump of g′(Ux) tends to be

steeper. To understand this clearly, we have plotted in Figure 3.4 the pictures for g′(Ux)

at time t = 0 and t = 1, respectively. Note that for the VC-EIN-LDG scheme, we set the

dilation parameters as C0 = 3.3 and δ = 0.7 in the test. The errors and orders of accuracy

of these two schemes are listed in Table 3.13. In this case, the errors of the VC-EIN-LDG

scheme are smaller than those of the CC-EIN-LSG scheme.

3.2.3 The nonlinear numerical test in one dimension

We experiment with a highly nonlinear example

Ut + g(Ux)xx = s(x, t), x ∈ (0, 2π) (3.10a)

g(Ux) = αUx + tanh(eβ(1+Ux)). (3.10b)
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Table 3.11: The errors and orders of the VC-EIN-LDG scheme for Example (3.9) with

α = 0.001, β = 0.1, γ = −0.2, λ = 0.2, σ = 2, η = 2.

N L1 error order L∞ error order L2 error order

a1(x) = 0.54 · g′(unx)

128 NaN NaN NaN

256 NaN NaN NaN NaN NaN NaN

512 NaN NaN NaN NaN NaN NaN

1024 NaN NaN NaN NaN NaN NaN

2048 NaN NaN NaN NaN NaN NaN

a1(x) = g′(unx)

128 NaN NaN NaN

256 2.83E-05 NaN 1.58E-04 NaN 4.27E-05 NaN

512 4.48E-06 2.66 3.27E-05 2.27 7.53E-06 2.50

1024 8.92E-07 2.33 5.89E-06 2.47 1.39E-06 2.43

2048 1.58E-07 2.50 9.59E-07 2.62 2.32E-07 2.59

ã1(x) = 0.54 · g̃(x)

128 1.44E-04 7.34E-04 2.21E-04

256 4.96E-05 1.54 2.18E-04 1.75 7.32E-05 1.59

512 1.18E-05 2.07 4.79E-05 2.19 1.61E-05 2.19

1024 1.46E-06 3.01 4.98E-06 3.27 1.85E-06 3.12

2048 8.20E-08 4.16 5.80E-07 3.10 1.24E-07 3.90

ã1(x) = g̃(x)

128 3.58E-04 1.98E-03 5.94E-04

256 1.73E-04 1.05 8.99E-04 1.14 2.72E-04 1.13

512 6.18E-05 1.48 2.57E-04 1.81 9.03E-05 1.59

1024 1.30E-05 2.25 5.30E-05 2.28 1.81E-05 2.32

2048 1.25E-06 3.37 5.18E-06 3.35 1.69E-06 3.43
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Figure 3.4: Snapshots of g′(Ux) at the indicated times. Left: α = 0.001, β = 0.025, γ =

−0.05, λ = 0.05, σ = 4, η = 2. Right: α = 0.001, β = 0.1, γ = −0.1, λ = 0.1, σ = 4, η = 2.
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Table 3.12: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-

ample (3.9) with α = 0.001, β = 0.025, γ = −0.05, λ = 0.05, σ = 4, η = 2.

VC-EIN-LDG

ã1(x) N L1 error order L∞ error order L2 error order

0.54 · g̃(x)

256 1.07E-06 5.74E-06 1.58E-06

512 2.33E-07 2.20 9.62E-07 2.58 3.37E-07 2.23

1024 3.60E-08 2.70 1.41E-07 2.77 4.94E-08 2.77

2048 4.71E-09 2.93 1.89E-08 2.90 6.32E-09 2.97

4096 5.95E-10 2.98 2.46E-09 2.94 7.95E-10 2.99

CC-EIN-LDG

b1 N L1 error order L∞ error order L2 error order

0.54 ·max g′(unx)

256 1.27E-06 8.09E-06 1.95E-06

512 5.09E-07 1.32 1.99E-06 2.03 6.93E-07 1.49

1024 9.76E-08 2.38 4.13E-07 2.27 1.36E-07 2.35

2048 1.24E-08 2.97 5.57E-08 2.89 1.75E-08 2.96

4096 1.53E-09 3.02 7.05E-09 2.98 2.16E-09 3.01

Table 3.13: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-

ample (3.9) with α = 0.001, β = 0.1, γ = −0.1, λ = 0.1, σ = 4, η = 2.

VC-EIN-LDG

ã1(x) N L1 error order L∞ error order L2 error order

0.54 · g̃(x)

256 2.20E-04 1.69E-03 3.70E-04

512 1.16E-04 0.92 7.83E-04 1.11 1.92E-04 0.95

1024 4.30E-05 1.43 2.40E-04 1.70 6.51E-05 1.56

2048 7.16E-06 2.59 3.14E-05 2.94 9.67E-06 2.75

4096 5.38E-07 3.74 2.38E-06 3.72 6.91E-07 3.81

CC-EIN-LDG

b1 N L1 error order L∞ error order L2 error order

0.54 ·max g′(unx)

256 3.30E-04 1.82E-03 4.67E-04

512 1.40E-04 1.24 8.87E-04 1.04 2.12E-04 1.14

1024 5.46E-05 1.36 3.75E-04 1.24 8.52E-05 1.31

2048 2.00E-05 1.45 1.30E-04 1.52 3.13E-05 1.44

4096 5.19E-06 1.94 2.88E-05 2.18 8.29E-06 1.92
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augmented with the exact solution

U(x, t) = sin(x+ λt). (3.11)

The initial solution is extracted from the exact solution and the source term s(x, t) is chosen

properly such that the exact solution satisfies the given equation.

First, we numerically validate the stability and error accuracy of the VC-EIN-LDG

scheme. In the test, we take the parameters α = 0, β = 6, λ = 1
3
. The numerical re-

sults of the scheme with a1(x) = 1000 · g′(un
x) and ã1(x) = 0.54 · g̃(x) at time T = 1 are

presented in Table 3.14. Note that for the VC-EIN-LDG scheme, the dilation parameters

are set as C0 = 1.6, δ = 0.9 and remain unchanged in the test. As expected, the scheme

is stable for ã1(x) = 0.54 · g̃(x). Even though we greatly increase the value of a0 to 1000,

a1(x) = a0 · d(un) still cannot ensure the stability of the scheme. Second, the CC-EIN-LDG

scheme is also used to solve the nonlinear problem. In the test, we take b1 = 0.54 ·max g′(un
x).

The numerical results of the scheme are also listed in Table 3.14, from which we can see that

the CC-EIN-LDG scheme is stable as always and the numerical orders of accuracy settle

down towards the asymptotic value slowly with mesh refinements. Similarly, due to the fact

the errors are larger near the bumps and such errors do not decrease much from the CC-EIN

method to the VC-EIN method, the global errors of the VC-EIN-LDG scheme are compa-

rable with the CC-EIN-LDG scheme. However, in regions away from the bumps, namely

[0, 1]∪ [5, 2π], the VC-EIN method produces much smaller errors than the CC-EIN method,

as can be seen in Table 3.15.

3.2.4 The nonlinear numerical test in two dimensions

We consider the two-dimensional nonlinear dispersion equation

Ut + g(Uy)xy = s(x, y, t), (x, y) ∈ (−π, π)2 (3.12)

augmented with the dispersion coefficient

g(Uy) = αUy + βU3
y
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Table 3.14: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-

ample (3.10) with α = 0, β = 6, λ = 1
3
in [0, 2π].

VC-EIN-LDG

N L1 error order L∞ error order L2 error order

a1(x) = 1000 · g′(unx)

128 NaN NaN NaN

256 NaN NaN NaN NaN NaN NaN

512 NaN NaN NaN NaN NaN NaN

1024 NaN NaN NaN NaN NaN NaN

2048 NaN NaN NaN NaN NaN NaN

ã1(x) = 0.54 · g̃(x)

128 3.26E-04 2.91E-03 6.09E-04

256 1.40E-04 1.21 1.64E-03 0.82 3.05E-04 1.00

512 4.08E-05 1.78 5.32E-04 1.63 9.55E-05 1.67

1024 8.98E-06 2.18 1.15E-04 2.21 2.24E-05 2.09

2048 1.72E-06 2.39 2.87E-05 2.01 4.99E-06 2.17

CC-EIN-LDG

b1 N L1 error order L∞ error order L2 error order

0.54 ·max g′(unx)

128 6.39E-05 2.61E-04 9.50E-05

256 1.63E-05 1.97 7.78E-05 1.75 2.44E-05 1.96

512 3.70E-06 2.14 2.11E-05 1.88 5.84E-06 2.06

1024 8.22E-07 2.17 5.82E-06 1.86 1.44E-06 2.02

2048 1.79E-07 2.20 1.63E-06 1.83 3.49E-07 2.04
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Table 3.15: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-

ample (3.10) with α = 0, β = 6, λ = 1
3
in [0, 1] ∪ [5, 2π].

VC-EIN-LDG

ã1(x) N L1 error order L∞ error order L2 error order

0.54 · g̃(x)

128 3.37E-09 6.05E-09 3.81E-09

256 4.11E-10 3.04 6.07E-10 3.32 4.62E-10 3.05

512 5.07E-11 3.02 7.18E-11 3.08 5.52E-11 3.06

1024 5.91E-12 3.10 8.83E-12 3.02 6.81E-12 3.02

2048 7.13E-13 3.05 1.06E-12 3.06 8.17E-13 3.06

CC-EIN-LDG

b1 N L1 error order L∞ error order L2 error order

0.54 ·max g′(unx)

128 6.27E-05 2.28E-04 8.10E-05

256 1.26E-05 2.31 3.84E-05 2.57 1.74E-05 2.22

512 2.20E-06 2.52 1.22E-05 1.66 3.60E-06 2.27

1024 2.47E-07 3.16 1.20E-06 3.34 4.29E-07 3.07

2048 2.89E-08 3.10 2.60E-07 2.21 5.38E-08 2.99

and the exact solution

U(x, y, t) = γ sin(η(x+ y + t))− λ tanh(σ cos(x+ y + t)).

The initial solution is extracted from the exact solution and the source term s(x, y, t) is

chosen properly such that the exact solution satisfies the given equation.

First, we numerically validate the stability and order of accuracy of the VC-EIN-LDG

scheme. In the test, we take the parameters α = 0.001, β = 0.02, γ = −0.05, λ = 0.05, σ =

2, η = 2. The numerical results of the VC-EIN-LDG scheme with a1(x, y) = 0.54 · g′(un
y)

and ã1(x, y) = 0.54 · g̃(x, y) at time T = 1 are presented in Table 3.16. Note that in the test

the dilation parameters are always taken as C0 = 1.6 and δ = 0.7. It is observed that the

scheme is stable for ã1(x, y) = 0.54 · g̃(x, y) and can achieve very nice third order convergence

rates for L1, L2 and L∞ norms. Second, the CC-EIN-LDG scheme is also used to solve the

nonlinear problem. In the test, we take b1 = 0.54 ·max g′(un
y). The numerical results of the

scheme are also listed in Table 3.16, from which we can see that the CC-EIN-LDG scheme

is stable as always. Under the same mesh grid, the results of the VC-EIN-LDG scheme are
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compared against those of the CC-EIN-LDG scheme. In this case, the global errors of the

VC-EIN-LDG scheme are comparable with the CC-EIN-LDG scheme.

Table 3.16: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-

ample (3.12) with α = 0.001, β = 0.02, γ = −0.05, λ = 0.05, σ = 2, η = 2.

VC-EIN-LDG

N L1 error order L∞ error order L2 error order

a1(x, y) = 0.54 · g′(uny )

20 NaN NaN NaN

40 NaN NaN NaN NaN NaN NaN

60 NaN NaN NaN NaN NaN NaN

80 NaN NaN NaN NaN NaN NaN

100 NaN NaN NaN NaN NaN NaN

ã1(x, y) = 0.54 · g̃(x, y)

20 2.45E-04 1.38E-03 3.29E-04

40 3.13E-05 2.97 2.48E-04 2.48 4.32E-05 2.93

60 8.84E-06 3.12 8.26E-05 2.71 1.27E-05 3.01

80 3.83E-06 2.91 3.73E-05 2.77 5.58E-06 2.87

100 1.99E-06 2.93 1.97E-05 2.86 2.92E-06 2.90

CC-EIN-LDG

N L1 error order L∞ error order L2 error order

b1 = 0.54 ·max g′(uny )

20 2.42E-04 1.46E-03 3.29E-04

40 3.10E-05 2.96 2.51E-04 2.54 4.31E-05 2.93

60 8.77E-06 3.12 8.25E-05 2.74 1.27E-05 3.00

80 3.79E-06 2.92 3.70E-05 2.79 5.58E-06 2.87

100 1.98E-06 2.92 1.95E-05 2.88 2.92E-06 2.90

3.3 The fourth order diffusion equations

In this subsection, we would like to test the performance and stability of the proposed

schemes for the fourth order diffusion equation (1.3). As a dissipative equation, it has many

similarities in properties with the second order diffusion equation (1.1). To save space, we

only take the fourth order diffusion equation in one dimension as an example to present the

results.
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3.3.1 The nonlinear numerical test in one dimension

We consider the fourth order diffusion equation

Ut + (d(Ux)Uxx)xx = s(x, t), x ∈ (−π, π) (3.13)

augmented with the coefficient

d(Ux) = (γ + αe−σ2(1−Ux))(2U2
x − 1)2

and periodic boundary conditions. The exact solution is given by (3.11). The initial solution

is extracted from the exact solution and the source term s(x, t) is chosen properly such that

the exact solution satisfies the given equation.

Similarly, for such a nonlinear problem, since the stability condition (2.19) involves the

unknown solutions above the n-th time level, the VC-EIN-LDG scheme is adjusted for use

with the help of the convolution technique. In short, we add and subtract a fourth derivative

term with variable coefficient (ã1(x)Uxx)xx at the left-hand side of the equation

Ut + (d(Ux)Uxx − ã1(x)Uxx)xx − s(x, t)︸ ︷︷ ︸
T1

+ (ã1(x)Uxx)xx︸ ︷︷ ︸
T2

= 0,

where ã1(x) = a0 · d̂(x) and d̂(x) is the convolution of d(un
x) and the dilated mollifier ΦC0,δ(x)

defined by (2.20). By adjusting the dilation parameters δ and C0, we can always make

the inequality (2.23) tenable to ensure the stability of the VC-EIN-LDG scheme. Again,

the adjustment strategy of the dilation parameters δ and C0 is similar to that described in

Section 2.3 for the second order diffusion equations.

First, we numerically validate the stability of the VC-EIN-LDG scheme. In the test, we

take the parameters γ = 0, α = 20, σ = 3, λ = 1
10
. With those parameters, the diffusion

coefficient d(Ux), for any time t ≥ 0, forms a steep bump with the value of d(Ux) outside the

bump decaying exponentially. The numerical results of the scheme with a1(x) = 100 · d(un
x)

and ã1(x) = 0.54 · d̂(x) are presented in Table 3.17. Note that for the VC-EIN-LDG scheme,

the dilation parameters are set as C0 = 1.7 and δ = 0.7 and remain unchanged in the test.
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As expected, the scheme is stable for ã1(x) = 0.54 · d̂(x). Second, the CC-EIN-LDG scheme

is also used to solve the nonlinear problem. In the test, we take b1 = 0.54 ·max d(un
x). The

numerical results of the scheme are also listed in Table 3.17, from which we can see that the

CC-EIN-LDG scheme is stable as always and the numerical orders of accuracy settle down

towards the asymptotic value slowly with mesh refinements. Due to the fact the errors are

larger near the bumps and such errors do not decrease much from the CC-EIN method to the

VC-EIN method, the global errors of the VC-EIN-LDG scheme are comparable with the CC-

EIN-LDG scheme. However, in regions away from the bumps, namely x ∈ [−π, 2.5]∪ [2.5, π],

the VC-EIN method produces much smaller errors than the CC-EIN method, as can be seen

in Table 3.18.

Table 3.17: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-

ample (3.13) with γ = 0, α = 20, σ = 3, λ = 1
10

in [−π, π].

VC-EIN-LDG

ã1(x) N L1 error order L∞ error order L2 error order

100 · d(unx)

40 1.71E-02 4.75E-02 2.36E-02

80 NaN NaN NaN NaN NaN NaN

160 NaN NaN NaN NaN NaN NaN

320 NaN NaN NaN NaN NaN NaN

640 NaN NaN NaN NaN NaN NaN

0.54 · d̂(x)

40 6.62E-03 1.52E-02 8.76E-03

80 3.87E-03 0.77 7.96E-03 0.93 5.09E-03 0.78

160 2.05E-03 0.92 4.23E-03 0.91 2.68E-03 0.92

320 9.79E-04 1.07 2.08E-03 1.03 1.28E-03 1.07

640 4.02E-04 1.28 8.83E-04 1.23 5.24E-04 1.29

CC-EIN-LDG

b1 N L1 error order L∞ error order L2 error order

0.54 ·max d(unx)

40 6.13E-03 9.76E-03 6.75E-03

80 1.68E-03 1.86 2.69E-03 1.86 1.85E-03 1.87

160 3.50E-04 2.27 5.56E-04 2.27 3.84E-04 2.27

320 6.02E-05 2.54 9.00E-05 2.63 6.56E-05 2.55

640 1.22E-05 2.31 2.79E-05 1.69 1.38E-05 2.25
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Table 3.18: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-

ample (3.13) with γ = 0, α = 20, σ = 3, λ = 1
10

in [−π,−2.5] ∪ [2.5, π].

VC-EIN-LDG

ã1(x) N L1 error order L∞ error order L2 error order

0.54 · d̂(x)

40 1.08E-05 1.55E-05 1.12E-05

80 1.25E-06 3.10 2.02E-06 2.95 1.42E-06 2.98

160 1.64E-07 2.93 6.73E-07 1.58 1.92E-07 2.89

320 2.21E-08 2.89 1.63E-07 2.04 2.84E-08 2.76

640 2.70E-09 3.04 1.56E-08 3.38 3.28E-09 3.11

CC-EIN-LDG

b1 N L1 error order L∞ error order L2 error order

0.54 ·max d(unx)

40 9.11E-03 9.76E-03 9.13E-03

80 2.49E-03 1.87 2.69E-03 1.86 2.50E-03 1.87

160 5.19E-04 2.27 5.56E-04 2.27 5.20E-04 2.27

320 8.49E-05 2.61 9.00E-05 2.63 8.50E-05 2.61

640 1.10E-05 2.95 1.37E-05 2.72 1.11E-05 2.94

4 Concluding remarks

The present study investigates the stability and performance of a third order VC-EIN method

in conjunction with the LDG methods for the high order diffusion and dispersion equations,

respectively. Unlike the CC-EIN method, the auxiliary term we add to and subtract from

the original equation is a spatially varying linear term. Based on the stability results of

the schemes for simplified linear equations [14], we provide a guidance for the choice of the

variable coefficient a1(x) to ensure the stability of the VC-EIN-LDG scheme for the quasi-

linear and nonlinear equations. Numerical experiments show that the schemes can be stable

under a relatively coarse mesh grid and achieve optimal orders of accuracy when the stability

constraints (2.17), (2.18) and (2.19) are satisfied. As a comparative study we also revisit

the CC-EIN-LDG scheme studied in [14]. When proper parameters δ, C0, a0 are chosen, the

numerical results show that the VC-EIN-LDG scheme is more accurate than the CC-EIN-

LDG scheme of the same order, if the diffusion coefficient or the dispersion coefficient has

a few high and narrow bumps and the bumps only account for a small part of the whole
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computational domain. We have only considered one and two dimensional problems in this

paper. The method can be applied to three dimensions in the same fashion, which will be

carried out in our future work.
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Appendix

A.1 Stability analysis of the LDG method (2.2)

Theorem 1: The numerical scheme (2.2) with the choice of fluxes (2.6) is L2 stable, i.e.

1

2

d

dt

∫

Ω

u2 dx+

∫

Ω

d(u)r2 dx ≤ 0. (A.1)

Proof. We sum up the four equalities in (2.2) and introduce the notation

Bj(u, p, q, r; φ1, φ2, φ3, φ4) =

∫

Ij

utφ1 dx+

∫

Ij

(p+ q)(φ1)x dx− (p̂+ q̂)j+ 1

2

(φ1)
−

j+ 1

2

+ (p̂+ q̂)j− 1

2

(φ1)
+
j− 1

2

+

∫

Ij

pφ2 dx−

∫

Ij

(d(u)− a1(x))rφ2 dx

+

∫

Ij

qφ3 dx−

∫

Ij

a1(x)rφ2 dx+

∫

Ij

rφ4 dx+

∫

Ij

u(φ4)x dx− ûj+ 1

2

(φ4)
−

j+ 1

2

+ ûj− 1

2

(φ4)
+
j− 1

2

.

Obviously, the solutions u, p, q, r of the scheme satisfy

Bj(u, p, q, r; φ1, φ2, φ3, φ4) = 0

for all φ1, φ2, φ3, φ4 ∈ Vh. We then take

φ1 = u, φ2 = −r, φ3 = −r, φ4 = p+ q

to obtain, after some algebraic manipulations,

0 = Bj(u, p, q, r; u,−r,−r, p+ q) =
1

2

d

dt

∫

Ij

u2 dx+

∫

Ij

d(u)r2 dx+ (Ĥj+ 1

2

− Ĥj− 1

2

) + Θj− 1

2

,

where

Ĥ =
(
u(p+ q)

)−
− (p̂+ q̂)u− − û(p+ q)−,

Θ = −[u(p+ q)] + (p̂+ q̂)[u] + û[(p+ q)].

Here, [u] denotes u+ − u−. To this end, we notice that, with the definition of the numerical

fluxes (2.6) and periodic boundary condition, we can easily obtain Θj− 1

2

= 0. Then we sum

over j to obtain (A.1).
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A.2 Stability analysis of the LDG method (2.12)

Theorem 1: The numerical scheme (2.12) with the choice of fluxes (2.13) is L2 stable, i.e.

1

2

d

dt

∫

Ω

u2 dx+

∫

Ω

d(v)w2 dx ≤ 0. (A.2)

Proof. We sum up the equalities in (2.12) and introduce the notation

Bj(u, r, z, p, q, w, v; φl) =

∫

Ij

utφ1 dx−

∫

Ij

(r + z)(φ1)x dx+ (r̂ + ẑ)j+ 1

2

(φ1)
−

j+ 1

2

− (r̂ + ẑ)j− 1

2

(φ1)
+
j− 1

2

+

∫

Ij

rφ2 dx+

∫

Ij

p(φ2)x dx− p̂j+ 1

2

(φ2)
−

j+ 1

2

+ p̂j− 1

2

(φ2)
+
j− 1

2

+

∫

Ij

zφ3 dx+

∫

Ij

q(φ3)x dx− q̂j+ 1

2

(φ3)
−

j+ 1

2

+ q̂j− 1

2

(φ3)
+
j− 1

2

+

∫

Ij

pφ4 dx−

∫

Ij

(d(v)− a1(x))wφ4 dx

+

∫

Ij

qφ5 dx−

∫

Ij

a1(x)wφ5 dx

+

∫

Ij

wφ6 dx+

∫

Ij

v(φ6)x dx− v̂j+ 1

2

(φ6)
−

j+ 1

2

+ v̂j− 1

2

(φ6)
+
j− 1

2

+

∫

Ij

vφ7 dx+

∫

Ij

u(φ7)x dx− ûj+ 1

2

(φ7)
−

j+ 1

2

+ ûj− 1

2

(φ7)
+
j− 1

2

.

Obviously, the solutions u, r, z, p, q, w, v of the scheme satisfy

Bj(u, r, z, p, q, w, v; φl) = 0

for all φl ∈ Vh, 1 ≤ l ≤ 7. We then take

φ1 = u, φ2 = φ3 = v, φ4 = φ5 = −w, φ6 = p+ q, φ7 = −(r + z)

to obtain, after some algebraic manipulations,

0 = Bj =
1

2

d

dt

∫

Ij

u2 dx+

∫

Ij

d(v)w2 dx+ (Ĥj+ 1

2

− Ĥj− 1

2

) + Θj− 1

2

,

where

Ĥ = −
(
u(r + z)

)−
+
(
v(p+ q)

)−
+ (r̂ + ẑ)u− − (p̂+ q̂)v− − v̂(p+ q)− + û(r + z)−,

Θ = [u(r + z)]− [v(p+ q)]− (r̂ + ẑ)[u] + (p̂+ q̂)[v] + v̂[p+ q]− û[r + z].
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Here, [u] denotes u+ − u−. To this end, we notice that, with the definition of the numerical

fluxes (2.13) and periodic boundary condition, we can easily obtain Θj− 1

2

= 0. Then we sum

over j to obtain (A.2).
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