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Abstract

For the high order diffusion and dispersion equations, the general practice of the explicit-
implicit-null (EIN) method is to add and subtract an appropriately large linear highest
derivative term with constant coefficient at one side of the equation, and then apply the
standard implicit-explicit method to the equivalent equation. We call this approach the
constant-coefficient EIN method in this paper and hereafter denote it by “CC-EIN”. To
reduce the error in the CC-EIN method, the variable-coefficient explicit-implicit-null (VC-
EIN) method, which is obtained by adding and subtracting a linear highest derivative term
with variable coefficient, is proposed and studied in this paper. Coupled with the local
discontinuous Galerkin (LDG) spatial discretization, the VC-EIN method is shown to be
unconditionally stable and can achieve high order of accuracy for both one-dimensional and
two-dimensional quasi-linear and nonlinear equations. In addition, although the computa-
tional cost slightly increases, the VC-EIN method can obtain more accurate results than
the CC-EIN method, if the diffusion coefficient or the dispersion coefficient has a few high
and narrow bumps and the bumps only account for a small part of the whole computational

domain.
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1 Introduction

In this paper, we exploit a third order variable-coefficient explicit-implicit-null (VC-EIN)
time-marching method coupled with the local discontinuous Galerkin (LDG) methods for
solving high order diffusion and dispersion equations, respectively. For the simplification of
notations, the equations described below are only one-dimensional. Note that the conclusions
given in this paper can also be extended to equations in higher dimensions, and we shall
present two-dimensional examples in the numerical experiment section.

The second order diffusion equation
Uy = (d(U)U,)y, (1.1)

where the diffusion coefficient d(U) > 0 is smooth and bounded, has been widely used to
model various processes in engineering and industry, such as the thermo-chemical diffusion
process of carburizing and nitriding [5], the miscible displacement in porous media [21] and
so on. In this paper, we use the capital letter U to denote the exact solution to the considered
equation.

The dispersion equation

Ui+ 9(Us)ze = 0 (1.2)

is a special KdV-type equation, which has been widely used to describe the propagation of
waves in a variety of nonlinear dispersive media and appears often in applications. Appli-
cations include the study of waves in plasma physics, internal waves in coastal waters, flow
in blood vessels and so on. For more details, we refer the readers to [3] and the references
therein.

The fourth order diffusion equation
Ui + (d(Up)Ups) e = 0 (1.3)

is a special biharmonic-type equation, where the nonlinear term could be more general but we

just present (1.3) as an example. The biharmonic-type equations have wide applications in
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thin plate bending theory, strain gradient elasticity, phase-field modelling and mathematical
biology.
The explicit-implicit-null (EIN) method denotes an IMEX-type time-marching method

for a problem of the form

obtained by adding and subtracting an approximation g(t,u) of the stiff terms in f(t,u)

which is more amenable for an implicit treatment

= Ftu) — g(t,u) + g(t,w),

and then applying the standard implicit-explicit (IMEX) method to the above equation.
Namely, we treat the term f (¢, u)—g(t, u) explicitly and the remaining term g(¢, u) implicitly.
Since the piece ¢(t,u) that is added to the equation is then subtracted (seemingly adding
zero), Duchemin and Eggers [9] proposed to call this approach the “explicit-implicit-null
method”, or EIN method for short. The crucial step to the success of the method consists
in adding and subtracting the right term, which is quite flexible in the selection, but needs
to have the same scaling in wave number as the stiffest term in the equation.

The EIN method, which was first introduced by Douglas and Dupont [8], has been applied
on a case-by-case basis to, for example, the two models of motion by mean curvature and
motion by surface diffusion [13], the Boltzmann equation near the fluid dynamic regime [10],
the nonlinear hyperbolic systems containing fully nonlinear and stiff relaxation terms [4], the
porous medium equation and the high-field model in semiconductor device simulations [16],
the Navier-Stokes equations [11], the Cahn-Hilliard equations [12], the KdV-type equations
[14,15] and so on.

For the high order diffusion and dispersion equations studied in this paper, the general
practice of the EIN method is to add and subtract an appropriately large linear highest
derivative term with constant coefficient at one side of the equation, and then apply the
IMEX time-marching method to the equivalent equation. We call such method the constant-

coefficient explicit-implicit-null method in this paper and hereafter denote it by “CC-EIN”.
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In the following, we take the second order diffusion equation (1.1) as an example. Since the
equation contains a stiff part corresponding to the second derivative, in order to stabilize the
equation, a second derivative term with constant coefficient b,U,,, is added to and subtracted

from the left-hand side of the considered equation

Ut + blUm: — (d(U)Uz>z — blez = O, bl = Qg maxd(u"), (14)
h T ’ T
T1 2

where u" represents the numerical solution at the n-th time level. Here, aq is an appropriately
large constant such that 77 is either not stiff, or less stiff and less dissipative compared to
T, thus it can be treated explicitly, and T5 is stiff and dissipative, thus will be discretized
implicitly. The CC-EIN method so designed has great flexibility in dealing with stiff nonlinear
problems; as it gives rise to a linear system for which very efficient solution methods exist. In
addition, the severe time step restriction imposed by the explicit treatment of the nonlinear
stiff term (d(U)U,), can be removed. Since the auxiliary term b, U, added to and subtracted
from the equation are treated in different ways, i.e., one is treated explicitly and the other
is treated implicitly, for a p-th order CC-EIN method, stabilization is achieved essentially
at the cost of a somewhat additional temporal truncation error of order O(7?), where 7 is
the time step. When the dominant error is due to the time-stepping or the spatial order of
accuracy is at least the same as that of the time-marching method, the numerical results
in [14] show that the overall error will increase significantly with the increase of by in (1.4).
In such situation, if the diffusion coefficient d(U) has a few high and narrow bumps and the
bumps only account for a small part of the whole computational domain, the coefficient of
the additional error O(7?) of the CC-EIN method is relatively large. To resolve this issue,
the VC-EIN method, which has not been studied before to our knowledge, is proposed and
studied in this paper.

The VC-EIN method is obtained by adding and subtracting a more accurate approxima-
tion of the stiffest term at one side of the equation, and then treating them separately. In

the following, we still take the diffusion equation (1.1) as an example. From the stability



and conservation points of view, we add and subtract a second derivative term with variable

coefficient (a1(x)U,), at the left-hand side of the considered equation

Ut - \(d(U)Uz lal(x)Ux)ﬂg_\(al(QUz>ﬂg = 07 (15)

where

a(z) = ap - max  d(u(z,1)),

and then treat the damping term 75 implicitly and the remaining term 7; explicitly. Sim-
ilarly, the explicit treatment of T} and the implicit discretization of the linear term 75 will
lead to a linear system, which is relatively easy to solve by many direct or iterative methods.
Compared to other methods that also do not require solving nonlinear equations, such as
the Rosenbrock-type methods [2], our method is easier to implement. In addition, compared
with the CC-EIN method, the additional error introduced by the different treatments of
the auxiliary term (ay(z)U,), in the VC-EIN method is smaller outside the bumps of d(U).
When the high and narrow bumps only account for a small part of the whole computational
domain, the VC-EIN method will eventually lead to a smaller global error at least for the L?
and L? norms, and much smaller errors locally away from the high bumps, see the numerical
results in Section 3.

In relation to the spatial discretizations, we adopt the LDG method for the high order
diffusion and dispersion equations, respectively. The LDG method, which was first intro-
duced by Cockburn and Shu [6] for the convection-diffusion equations, has been popular. It
can easily handle meshes with hanging nodes, elements of general shapes and local spaces
of different types, thus it is flexible for hp-adaptivity. For the references on LDG methods
as well as their implementation and applications, see the review paper by Cockburn and
Shu [7]; see also the papers [17-20] (the list is far from being exhaustive). Since the stabi-
lization of both of the EIN methods (VC-EIN and CC-EIN) is achieved essentially at the cost
of a somewhat additional temporal error, the specific choice of spatial discretization does

not have much impact on the effectiveness of the VC-EIN method in reducing such error.



Therefore, we can also consider other spatial discretizations such as the finite difference, the
finite volume and the spectral methods.

An outline of this paper is as follows. In Section 2, we will present the semi-discrete
LDG schemes and the time discretization method for the equations mentioned above. In
addition, we will propose a guidance for the choices of a;(z) to ensure the stability of the
VC-EIN-LDG schemes. Section 3 shows a series of numerical examples to test the stability
and error accuracy of the proposed schemes for both one-dimensional and two-dimensional
quasi-linear and nonlinear problems. In addition, we will also carry out a comparative study
about the numerical performance of the VC-EIN-LDG scheme and the CC-EIN method
with LDG spatial discretization (CC-EIN-LDG). When proper parameters are chosen, the
numerical results show that the VC-EIN-LDG scheme can outperform the CC-EIN-LDG
scheme, especially for local errors outside the bumps. Finally, the concluding remarks are

given in Section 4.

2 The numerical schemes

In this section, we will present the semi-discrete LDG schemes and the time discretization
method used in this paper. In addition, we will propose a guidance for the choices of a;(z)
to ensure the stability of the VC-EIN-LDG schemes. For simplicity of presentation, some
preliminary notations are presented here. Let 7, = {I; = [v,_ 1, T4 ]}, be a uniform
partition of the computational domain €2 = [z, xg|, where T1 =g and Tyyl = Tpgare the

two boundary endpoints. The spatial mesh size is h = (zg — x)/N.

2.1 The LDG method for the second order diffusion equation

Let us describe in detail the implementation of the LDG method for the second order diffusion

equation (1.5) subject to periodic boundary condition and the initial condition

U(x,0) = Up(x), x €. (2.1)



Note that the LDG method described in this paper is slightly different from the classical
one [7] which involves the square root of the diffusion coefficient d(U). The idea of the LDG
method is to rewrite the equation with higher order derivatives into an equivalent first order
system, and then apply the discontinuous Galerkin (DG) method [7] to the system, so the
LDG scheme shares the advantages of the DG method. To define the LDG method, we first

introduce the new variables
P=(dU)—a(z))R, Q = a1(7)R, R=U,,

and reformulate (1.5) as the following first order system
U —P,—Q, =0, P—(dU)—ai(z))R =0,
Q—a(z)R =0, R-U,=0.

Then we seek piecewise polynomial solutions wu, p, ¢, r from V}, such that for all the test

functions ¢, ¢o, @3, ¢4 € V3 and 1 < 57 < N, we have

/. w1 dr + /(p +q)(¢1). dz — (P + @)j+%(¢1)}+% + (D + Cj)j—%(gbl);r_ =0, (2.2a)

I; I;

(I

/ poode = / (d(u) — a1 (z))rés dr, (2.2b)

I; I;

/q¢3dx:/a1(x)r¢3dx, (2.2¢)
I; I

J J

/1]. réy d + /Ij (@) — ity 1 (62)7, i1,y (00)7, =0 (2.24)
and
u(z,0) = PrUy(x), (2.3)
where
Vi ={¢ € L*Q): 9|1, € Pe(L;),Vj=1,..,N} (2.4)

and P,Uy(x) is the local L*-projection of the initial condition Uy(z) satisfying

/ ByUi(a) () dr = / Uo(@)én(z) dz,  Véi(z) € Vi (2.5)

I; I;



Here, Py (I;) is the space of polynomials in cell ; of degree no more than k. The functions

in V, are allowed to have discontinuities across cell interfaces. For any piecewise function

u in V3, we denote by ujjrl and u;l the left and right limits of the discontinuous solution
2

2

u at the interface x respectively. Now, the only ambiguity in the algorithm (2.2) is

t3
the definition of the numerical fluxes (the terms with the “hat”), which are single-valued
functions defined at the interfaces and play important roles in ensuring stability of the LDG

method. As shown in Section A.1 in Appendix, we can prove a strong L*-stability result if

we adopt the following numerical fluxes

ﬁ:pa @297 a:u_a (26)

where we have omitted the subscripts ji% in the definition of the fluxes, as all quantities are
evaluated at the interfaces z, 1. We remark that the choice of the fluxes is not unique. In
fact the crucial part is taking p and ¢ from the same side and taking @ and p from opposite
sides (alternating fluxes). Note that we only need to replace the above-mentioned a;(z) with

by to obtain the LDG spatial discretization of the equation (1.4).

2.2 The LDG method for the dispersion equation

Since the dispersion equation (1.2) contains a stiff part corresponding to the third deriva-
tive, in order to stabilize the equation without sacrificing the conservation of the numerical
solution, we add the same term (ai(x)U,)zs, a1(x) > 0 to both sides of the equation. It
should be noted that the sign of the auxiliary term (a;(z)U,).. we add to both sides of
the equation needs to be adjusted according to the sign of ¢'(U,). If ¢'(U,) > 0 within
the whole computational domain €2, we should add two equal term with negative prefix
—(a1(2)U, )2z to both sides of the considered equation. Otherwise, the sign of the auxiliary
term (a;(z)U, )z, needs to be positive. We only consider the case where the sign of ¢'(U,)
is fixed. The discussion of the dispersion equation with the sign of ¢’(U,) varying in space

and time goes beyond the scope of the present paper and is by itself an interesting topic



for future investigation. Assuming that ¢'(U,) > 0, we add two equal dispersion terms with

variable coefficient —(a1(x)U, )., to both sides of the equation and get

U _'_\(Q(UI) _?rl(x)Ux)x:vj = _\(al(xle)zzj (27)

where

— . /
al(x> = Qg t"éltlgatx’”lg (Uz(l',t))

and ay > 0 is an appropriately large constant yet to be determined. We begin with the
equation (2.7) to describe the LDG method. For a detailed introduction of the method, we
refer the readers to [19].

By introducing the new variables
V=(9(2)-a(@)2)e;, W=(0(2)2)e, Z=U,

we can rewrite (2.7) into the following first order system

W —(a1(x)Z), =0, Z—-U, =0.

The semi-discrete LDG approximation to the dispersion equation (2.7) with the initial con-
dition (2.1) and periodic boundary condition can be defined as follows: seek piecewise poly-
nomial solutions u, v, w, z from V}, such that for all the test functions ¢, ¢o, ¢3, ¢4 € V},
and 1 < j < N, we have
Jwside— [0 w)@ndot @0+ )40, (64 0),
I; I;

/ Voo da + / (9(2) — a1(x)z)(p2)r dr—
I I (2.8b)

(9= @72);44(80);, + (0 — 072);_3(B0) 1y = 0,
[ wonde+ [ ala)ston,do - @), 00, + @), 00] =0, (289
Ij Ij 2 2
/1- z¢ydx + /1 u(py), do — ﬂj+%(¢4);+% + ’zlj,%(@);i% =0 (2.8d)

J J



and the equality (2.3) as the initial condition. Here, V}, is defined by (2.4). As shown in [19],
we can prove an L2-stability result, a cell entropy inequality for a more general case and

obtain optimal error estimates for the linear case, if we adopt the following numerical fluxes

+

w=w", ), arz = (a12)". (2.9)

>
I
4
>
I
N
Na)
I
Q
—~
I}

We remark that the choice of the numerical fluxes § and a;z is based on the assumption
that ¢'(U,) > 0. If ¢'(U,) < 0, we should take g = g(z7), a1z = (a12)~. Similarly, we only
need to replace the above-mentioned a;(x) with b; to obtain the LDG spatial discretization

of the equation

Ty Ty

where by = ap - max ¢'(u,(x,t")) and ¢'(U,) > 0.

2.3 The LDG method for the fourth order diffusion equation

Adding and subtracting a fourth derivative term with variable coefficient (a;(2)Uy,.).. at the

left-hand side of the equation (1.3), we obtain

Us + (d(U) U)o — (01(2)Use) s + (01(2) Ui ) = 0, (2.11)
T T

where

—qq - d t
a(e) = ap- | max d(u(,))

and ay > 0 is an appropriately large constant yet to be determined. We begin with the
equation (2.11) to describe the LDG method. The LDG method described in this paper is
slightly different from the classical one [20] which involves the square root of the diffusion

coefficient d(U,). To define the LDG method, we introduce the new variables

V=U, W=V,  P=(dV)-a(x)W,

Q=a(x)W, R=PF, Z=0
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and rewrite the equation (2.11) as a first order system
U+R,+ Z, =0, R—-P, =0, Z—Q, =0,
P—(d(V)—a(x)W =0, Q — ay(z)W =0, W -V, =0, V-U,=0.
The semi-discrete LDG approximation to (2.11) with the initial condition (2.1) and periodic

boundary condition can be defined as follows: find u, v, w, p, q, r, 2 € V}, such that, for all

the test functions ¢; € V,, 1 <1 < 7and 1 < j < N we have

[wside— [ 4 2@nado+ (42,04 (00)), - (42,400, =0, (2120

I] I]

/I]. réo du + /Ij P(0a)e dz — by, y(60);,y + 8,3 (02), =0 (2.12b)

[ zovdat [ atondo =iy 0n);,y i sl o0 (2120)

/ posdr = / (d(v) — ay(x))we, dz, (2.12d)

I I
/ qos dx :/ ai(x)wes dz, (2.12¢)
I I
/1]. wee Az + /Ij 0(G6)a dr = 0, 1(66)7, , + 0,4 (86)7, =0, (2.12f)
[ vonda s [ uonde— iy 60, + i (00, =0 (2.12¢)
1; I; 2 2

As shown in Section A.2 in Appendix, we can prove a strong L*-stability result if we adopt

the following numerical fluxes

+ v,

=q", (2.13a)

Il
IS
>

Il
LS5

U

+ =r, 2=z, (2.13Db)

p=p,

>

We remark that the choice of the fluxes is not unique. In fact the crucial part is taking
p and ¢ (7 and 2) from the same side and taking @ and 7 (0 and p) from opposite sides.
Similarly, we only need to replace the above-mentioned a;(x) with b; to obtain the LDG

spatial discretization of the equation

~ ~ _ T
T 2

where by = ag - max d(u,(z,t")) and d(U,) > 0.
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2.4 The implicit-explicit time discretization

The semi-discrete LDG schemes can be rewritten into the first-order ODE system

du
i L(t,u) +N(t,u),

where L(t,u) arises from the spatial discretization of T, and will be treated implicitly, and
N (t,u) is derived from the spatial discretization of 77 and will be dealt with an explicit way.
A third order IMEX Runge-Kutta (IMEX-RK) method will be considered in this paper.

Given the numerical solution at time t", the IMEX-RK method forms 5 intermediate values
u™®; 1 < s <5 according to
s s—1
umt =u" 4T Z ag Lt u™) + 1 Z agN (L7, u™), (2.15a)
=1 =1

from which the approximation at time level "*! is assembled by
5 5
un+1 =u"+T Z bl£<tln7 u”J) +7 Z blN(tgla uml)’ (2'15b)
=1 =1
where the intermediate values u™*® are approximations to u(zx,t]') and

t?:tn—l—éﬂ', 65: E Qg = E dsl'

The IMEX-RK method can be represented by the following Butcher tableau

o o0 O O0O0}j0 O O O O
0L 0 00[f 0 0 0 0
ag [0 1 1 o o[ L 0 0 0ay 2.16)
05 L 3|2 2L o0 o
0 3 31t ozos 1
AT

of which the left half lists ag and b;, with the five rows from top to bottom corresponding
to s =1,...,5, and the columns from left to right corresponding to [ =1, ..., 5. Similarly, the

right half lists ay and Z;l. With the above Butcher coefficients, we then arrive at a third order
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IMEX-RK method. The IMEX-RK method we consider is a combination of a four-stage,
third order, L-stable, stiffly-accurate, singly diagonally implicit Runge-Kutta method and a
four-stage, third order explicit Runge-Kutta method. For more details of the method, we
refer to [1]. We have also considered other IMEX methods, but we will not state them here

to save space.

2.5 The choice of a;(x) for stability

Note that for the following simplified linear equations with periodic boundary conditions:

e The linear second order diffusion equation

Up = dUsg,

e The linear dispersion equation

Ut + dUzzw = Oa
e The linear fourth order diffusion equation

Ut + dea:x:v = 07

where d > 0 are three constants, the EIN-LDG schemes are shown to be unconditionally
stable [14] provided ag > 0.54 regardless of the order accuracy of the LDG spatial dis-
cretizations. Here, we use the notation EIN-LDG to refer to both the VC-EIN-LDG and the
CC-EIN-LDG schemes. After all, for linear equations with constant coefficients, these two
schemes are equivalent. Even though the analysis is only performed on the simplified linear
equations with constant coefficients, numerical experiments [14] show that the CC-EIN-LDG

scheme is unconditionally stable for the second order diffusion equation (1.4) if
by = ap - maxd(u"), ag > 0.54,

for the dispersion equation (2.10) if
by = ag - max g'(ul?), ap > 0.54,

13



and for the fourth order diffusion equation (2.14) if
by = ap - maxd(ul), ap > 0.54.

Based on the stability results of the CC-EIN-LDG schemes, we propose a guidance for the
choice of a1(x) in the VC-EIN-LDG scheme for the second order diffusion equation (1.5),
ie.,

aj(x) =ap- max d(u(z,t)), ag > 0.54, (2.17)

tngtgtn+l

for the dispersion equation (2.7), i.e.,

ai(z) =ag- max ¢ (u.(z,t)), ap > 0.54, (2.18)

tmn StStn+l

and for the fourth order diffusion equation (2.11), i.e.,

aj(x) =ap- max d(ug(z,t)), ap > 0.54. (2.19)

tn StStn+l

Although the above stability conditions have not been confirmed theoretically, we find nu-
merically that the above choices are sharp.

Note that for the quasi-linear equations, it is easy to obtain ai(x). However, if the
diffusion coefficient or the dispersion coefficient depends on the solution (nonlinear case),
as an alternative, the approach adopted in this paper is to obtain its approximation a;(z)

through the convolution technique. Given a unit-mass kernel

1 6‘”3‘21*1, lz| < 1,
1P p——
[ errde 0, lz| > 1,
we form a dilated mollifier
C
Dcpa(7) = =0 (%) (2.20)

with Cy, ¢ being two free dilation parameters at our disposal. By tuning § we can adjust the

support of ®(x) over the symmetric interval (—d,0). By adjusting Cj, we can always make

ar(z) = ag-d(z) > ai(x) = ap- max d(u(z,t)), (2.21)

- tn<g<gntl

14



to keep the unconditional stability of the VC-EIN-LDG scheme for the second order diffusion

equation, or

ar(z) = ag-g(x) > ai(x) = ap- max ¢ (u.(z,t)), (2.22)

tn StStn+1

to keep the unconditional stability of the scheme for the dispersion equation, or

ar(z) = ap-d(z) > ay(z) = ap- max d(ug(z, 1)), (2.23)

tngtgtn+l

to keep the unconditional stability of the scheme for the fourth order diffusion equation,

where

d@%=/dwwf%@@ﬂx—wd%
guozjﬁm@@ﬂw@@xx—wd%

d@wz/dwa%wwahxx—wdu

However, now we encounter the difficulty on how to adjust the dilation parameters Cj
and 0. In the following, we provide a simple adjustment strategy using the second order
diffusion equation as an example. At the beginning of the computation, we can always
preset the parameters Cy and & according to d(u"). As the computation proceeds, we scan
the sign of d(z) — d(u™*), where u™*, 2 < s < 5 are the intermediate values defined by
(2.15a), at some preselected points which are distributed inside each cell, for example, the
Gaussian points used in the Gaussian numerical integration. For all the intermediate values

t"*1 time layers, if no negativity is detected at these points, then it

u™* between t" and
is acceptable to judge that d(z) — maxm<icemir d(u(z,t)) is nonnegative, and we make the
parameters Cy and § stay the same as before. If d(x) — d(u™"®) is negative at some points,
then we return to the n-th time level and modify the parameters Cy and § according to
d(u™). When the time step is relatively small, we can always obtain satisfactory parameters

through a finite number of adjustments to ensure the stability of the scheme, provided the

changes from d(u™) to d(u™"') are not particularly significant. It must be acknowledged
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that the adjustment strategy is still somewhat ad hoc, and it is worthwhile to make it more

systematic and precise in future study.

Remark 2.1. As pointed out in [14], the threshold value of ag for stability depends on the
specific IMEX method, that s, the constant ag = 0.54 may not be valid if the IMEX time-

marching method is changed.

Remark 2.2. The computational cost of the VC-EIN-LDG scheme is definitely higher than
that of the CC-EIN-LDG scheme, especially in the high-dimensional nonlinear cases, as it
requires performing convolution for a series of discrete points to get a;(x), reassembling the
matrix and solving a more complex linear system at each time step. In addition, just as
mentioned in the introduction, only in certain cases can the VC-EIN method obtain more
accurate results than the CC-EIN method. First, it requires that the dominant error is due
to the time-stepping or the spatial order of accuracy is at least the same as that of the time-
marching method. Second, it requires that the diffusion coefficient or the dispersion coefficient
has a few high and narrow bumps and the bumps only account for a small part of the whole
computational domain. Therefore, we do not advocate blindly adopting the VC-EIN method,
and would recommend using the CC-EIN method when it is not clear whether the diffusion

coefficient or the dispersion coefficient meets the above requirements.

3 The numerical experiments

In this section, we will present a series of numerical tests to show the order of accuracy and
stability of the VC-EIN-LDG schemes for the high order diffusion and dispersion equations,
respectively. We will also carry out a comparative study about the numerical performance
of the VC-EIN-LDG and CC-EIN-LDG schemes. For simplicity, we only consider the one-
dimensional and two-dimensional cases. Since the time discretization is limited to only third
order accuracy, we concentrate on the piecewise quadratic polynomial (k = 2) case for the

LDG spatial discretization in the numerical experiments. In addition, we take 7 = h in the
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tests, such that the orders accuracy of errors in space and time match.

3.1 The second order diffusion equations

In this subsection, we would like to test the performance and stability of the proposed schemes
for the second order diffusion equations in one and two space dimensions. The equations
with periodic boundary conditions will be considered, unless otherwise stated. Following the
lines in [6], it is straightforward to generalize the LDG scheme (2.2) for Cartesian meshes in

the two-dimensional case.

3.1.1 The quasi-linear numerical test in one dimension

We consider the quasi-linear diffusion equation

/
g g

Ty Ty

1
Ui + (a1(2)Uy)r — (d(z,t)Uy)y — s(x, t) — (a1 (2)Uy), = 0, x € (--7‘(‘, 57?) (3.1)
augmented with the diffusion coefficient
d(z,t) = o + S tanh(o cos(n(x + t)))

the initial condition U(z,0) = sin(z) and the source term

s(x,t) =cos(z +t) + fno cos(z + t) sech? (o cos(n(z + 1)) sin(n(z + t))+
sin(z + t)(a + B tanh(o cos(n(z + t)))).

The problem has an exact solution
U(z,t) =sin(x + t). (3.2)

Indeed, the standard IMEX methods can be directly adopted to solve the problem.
To illustrate the necessity of the stability condition (2.17), in the test, we take a;(x) as
0.54 - d(z,t"), 0.53 - maxm <y<pn+1 d(2, 1), 0.54 - maxm<p<pns1 d(z, 1) and maxm<icmr d(x,t),
respectively. It is worth pointing out that it is not necessary to get the specific expression of

maxn <<+t d(,t). In the LDG scheme (2.2), these two formulas, (2.2b) and (2.2¢), involve
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a1(z) = ap - maxn<i<m+1 d(x,t) and are integral expressions, which will be solved by a high
order numerical integration method in practical computing. Thus we only need to consider
the maximum value of d(z,t) at a series of discrete time points from " to t"*™! for each
numerical integration point and this is easy to achieve. We compute to T" = 7 with the
parameters o = 11, § = 10, 0 = 3w, n = 1. Note that with those parameters, the diffusion
coefficient d(x,t) is not a monotonic function of time ¢ for any fixed z. In other words,
d(z,t") # maxm<;<m+1 d(z, t). The numerical errors and orders of accuracy are listed in Ta-
ble 3.1. Intuitively speaking, since u™*! involves multiple intermediate values u™*,2 < s < 5,
as shown in (2.15), a;(z) < 0.54 - maxn<;<n+1 d(x,t) is not large enough to remove the stiff-
ness in all N (7, u™*),2 < s < 5 when d(x,t) changes sharply with respect to time ¢ and the
mesh division is coarse, unless we use a small enough time step to temporally resolve the
rapid transient of d(x,t). Thus, from Table 3.1 we can see that the VC-EIN-LDG scheme is
unstable or a sufficiently dense mesh grid is required to maintain the stability of the scheme
if a(x) < 0.54 - maxn<j<pn+r d(x,t). When aq(x) > 0.54 - maxn<i<n+1 d(x,t), the scheme
is stable and the numerical orders of the scheme settle down towards the asymptotic value
slowly. In fact, it is reasonable for this to happen, because the auxiliary term (a;(z)U,),
we add to and subtract from the equation are treated in different ways, i.e., one is treated
explicitly and the other is treated implicitly. The two different time-stepping methods bring
a certain error to the scheme, which increases with the increase of a;(x) and slows down
the convergence of the scheme to the optimal order to some extent. The above explanation
can also be used to interpret the similar convergence behavior of the VC-EIN-LDG and
CC-EIN-LDG schemes for nonlinear equations.

Next, to demonstrate the optimal order of accuracy of the scheme, we consider again the
quasi-linear numerical test proposed before. The simulation is run from ¢ = 0 to 7" = 7 with
a1(z) = 0.54 - maxyn<i<pm+1 d(z,t) and the parameters « =1, § =1, 0 =1, n = 1. We list
the errors and the experimental orders of the VC-EIN-LDG scheme in Table 3.2, from which

we can observe a rate of convergence about 3 for L', L> and L? norms.
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Table 3.1: The errors and orders of the VC-EIN-LDG scheme for Example (3.1) with o =
11, =10, 0 = 3w, n = 1.

ay () ‘ N ‘ L' error ‘ order ‘ L™ error ‘ order ‘ L? error ‘ order
128 | 4.02E+21 9.84E4-22 1.49E+22

256 | 2.02E419 7.64 | 9.08E4-20 6.76 1.00E+20 7.22

0.54 - d(x,t") 512 | 2.24E+07 | 39.71 | 1.10E+09 | 39.59 | 1.21E+08 | 39.60

1024 | 4.19E-06 42.28 2.83E-05 45.14 7.50E-06 43.87
2048 | 8.68E-07 2.27 7.29E-06 1.96 1.73E-06 2.11

128 | 1.17E-03 1.91E-02 2.66E-03
256 | 6.87E-03 -2.55 2.83E-01 -3.89 3.21E-02 -3.59
0.53 - tngggﬂ d(z,t) | 512 | 1.09E+03 | -17.27 | 8.35E404 | -18.17 | 7.20E+03 | -17.78
T 1024 | 1.69E+16 | -43.82 | 1.43E+18 | -43.96 | 9.48E+16 | -43.58
2048 | 4.36E+46 | -101.03 | 2.70E+48 | -100.58 | 2.02E+47 | -100.75

128 | 4.62E-04 2.23E-03 6.24E-04
256 | 1.04E-04 2.16 5.84E-04 1.93 1.49E-04 2.06
0.54 - tngggﬂ d(z,t) | 512 | 2.12E-05 2.29 1.38E-04 2.08 3.39E-05 2.14

- 1024 | 4.32E-06 2.29 3.27E-05 2.07 7.76E-06 2.13
2048 | 8.78E-07 2.30 7.78E-06 2.07 1.76E-06 2.14

128 | 6.42E-04 2.27E-03 9.06E-04
256 | 1.55E-04 2.05 6.96E-04 1.71 2.28E-04 1.99
max d(z,t) 512 | 3.43E-05 2.17 1.96E-04 1.83 5.46E-05 2.06

t”gtgt"+1

1024 | 7.28E-06 2.24 5.22E-05 1.91 1.28E-05 2.09
2048 | 1.48E-06 2.30 1.30E-05 2.01 2.92E-06 2.14

Table 3.2: The errors and orders of the VC-EIN-LDG scheme for Example (3.1) with o =
L,f=30=1n=1

ay(z) ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error ‘ order

128 | 2.33E-06 5.60E-06 2.94E-06
256 | 3.09E-07 | 291 | 7.72E-07 | 2.86 | 3.92E-07 | 2.91
0.54 - tn<r£1<a§l+1 d(z,t) | 512 | 4.00E-08 | 2.95 | 1.02E-07 | 2.92 | 5.09E-08 | 2.95
- 1024 | 5.09E-09 | 2.97 | 1.32E-08 | 2.95 | 6.50E-09 | 2.97
2048 | 6.42E-10 | 2.99 | 1.68E-09 | 2.97 | 8.21E-10 | 2.98
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3.1.2 The nonlinear numerical test in one dimension

We consider the nonlinear diffusion equation
Ui = (d(U)U,), + s(x,t) (3.3)
augmented with the diffusion coefficient
d(U) = a + BU? (3.4)
and the exact solution
U, t) = (v + e 70D (cos(p(z + 1)) + 1)

The initial solution is extracted from the exact solution and the source term s(x,t) is chosen
properly such that the exact solution satisfies the given equation.

For such a nonlinear problem, since the stability condition (2.17) involves the unknown
solutions above the n-th time level, the VC-EIN-LDG scheme is adjusted for use with the
help of the convolution technique. In short, we add and subtract a second derivative term

with variable coefficient (@ (x)U,), at the left-hand side of the equation (3.3)

U, + (a1 (2)Uy)s — (d(U)U,)s — s(x,t) — (@ (2)Uy)s = 0,

. S N J/
-~ -~

T1 T2

where @, () = ag-d(z) and d(z) is the convolution of d(u™) and the dilated mollifier @, 5()
defined by (2.20). By adjusting the dilation parameters § and Cj, we can always make @, (z)
satisfy (2.21) and then ensure the stability of the scheme.

With the numerical solution at time ¢" in hand, one might be tempted to increase the

value of ag to make the inequality

ag - d(u(z,t")) > 0.54 - max d(u(x,t))

tn StStn+1

tenable and ensure the stability of the scheme. However, this approach has two shortcomings

that cannot be ignored. One is that much larger ao might be needed, which could bring larger
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errors. The other is that for degenerate parabolic equations, of which the diffusion coefficient
d(U) has a compact support, even if we increase the value of ay, it still leads to ag-d(U) =0
outside the support. When the interface of the support is sharp and propagates with a
high speed, it may still fail to remove the stiffness in all N (7, u™*),2 < s < 5 defined by
(2.15), and ensure the stability of the scheme on a relatively coarse mesh grid. With the
convolution of d(u") and the dilated mollifier ®¢, 5(z), we can expand the support to avoid
such a situation.

First, we numerically validate the stability of the VC-EIN-LDG scheme for this nonlinear
problem. In the test, we take the parameters « =0, 5 =1,y =0, A =0.5, 0 =6, n = 4.
The computational domain is set to be (—m,7) and the final computing time is 7' = 1.
With these parameters, the diffusion coefficient d(U), for any time ¢t > 0, forms a steep
bump with the value of d(U) outside the bump decaying exponentially. To understand this
clearly, we have plotted in Figure 3.1 the pictures for the diffusion coefficient d(U(z,t)) at
time t = 0 and t = 1, respectively. The numerical results of the VC-EIN-LDG scheme with
a1(x) = 0.54 - d(z), a1(x) = d(z) ay(z) = 10 - d(u") and ai(x) = 100 - d(u™) are presented
in Table 3.3. Note that we preset the dilation parameters as Cy = 3 and § = 0.6 in the
test. These two preset values are sufficient to ensure the stability of the scheme without
adjustment, due to the fact that the bump of the diffusion coefficient does not deform except
for moving. As expected, the scheme is stable for a;(x) > 0.54 - maxn ;<1 d(u(z,t)). In
addition, even though we greatly increase the value of aq in the test, ai(x) = ag - d(u™) still
cannot ensure the stability of the scheme, unless the mesh is dense enough. When N = 2048,
the VC-EIN-LDG scheme is stable for a;(z) = 10 - d(u™), however, the errors of the scheme
are much larger than those of the scheme with @y (z) = 0.54 - d(z).

Second, we perform an optimal accuracy check for the VC-EIN-LDG and CC-EIN-LDG
schemes. In the test, we take the parameters « =0, § =2, v=0.01, A=0.1, 0 =3, n = 4.
Compared with the previous case, we reduce the values of these two parameters, A and o,

and increase the values of § and v. With these parameters, the diffusion coefficient d(U),
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for any time ¢ > 0, forms a gentler bump and the value of d(U) outside the bump no longer
decays exponentially. To understand this clearly, we have plotted in Figure 3.2 the pictures
for the diffusion coefficient d(U(x,t)) at time ¢ = 0 and ¢ = 1, respectively. On the basis of
keeping the final computing time and the computational domain unchanged, the simulation
is run with @ (z) = 0.54 - d(z) and by = 0.54 - maxd(u"). Note that for the VC-EIN-LDG
scheme, the dilation parameters are kept as Cy = 2.2, 6 = 0.7 and remain unchanged in
this test. The orders and errors of the schemes in the L!, L? and L> norms are presented
in Table 3.4. Clearly, we can observe a rate of convergence about 3 for all the norms. In
addition, in this case, the errors of the VC-EIN-LDG scheme are slightly smaller compared
to those of the CC-EIN-LDG scheme.

Third, we increase the deviation of the bump and compare the performance of both the
schemes. On the basis of keeping other parameters of the previous case unchanged, the
value of \ is increased to 1. Note that for the VC-EIN-LDG scheme, we still set the dilation
parameters as Cy = 2.2 and ¢ = 0.7 in the test. The errors and orders of accuracy for both
the schemes are computed at two different regions, namely the entire computational region
[—m, 7] and the region away from the bumps [—m, —2] U[1, w]. The results are listed in Table
3.5 and Table 3.6, respectively. Due to the fact the errors are larger near the bumps and
such errors do not decrease much from the CC-EIN method to the VC-EIN method, all the
global errors (L', L?, L>°) do not show significant reductions from the CC-EIN-LDG scheme
to the VC-EIN-LDG scheme as can be seen in Table 3.5. However, in regions away from the
bumps, the VC-EIN method produces much smaller errors than the CC-EIN method, as can

be seen in Table 3.6.

3.1.3 The nonlinear numerical test in one dimension
We experiment with a highly nonlinear example
Ui = (d(U)U,), + s(x,t), (3.5a)
d(U) = (7 + Ae 7 =) (202 — 1)? (3.5b)
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0.4
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t=0
t=1

Figure 3.1: Snapshots of the diffusion coefficient (3.4) with parameters o = 0, B = 1,

0, A\=0.5, 0 =6, n=4 at the indicated times.

0.1

wh

Figure 3.2: Snapshots of the diffusion coefficient (3.4)

0.01, A =0.1, 0 = 3, n =4 at the indicated times.
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Table 3.3: The errors and orders of the VC-EIN-LDG scheme for Example (3.3) with o =
0,6=1,vy=0,A=0.5,0=6,n=4.

‘ N ‘ L' error ‘ order ‘ L™ error ‘ order ‘ L? error ‘ order

128 | 2.29E-03 4.19E-02 6.05E-03
256 | 6.60E-04 | 1.80 | 9.72E-03 | 2.11 | 1.65E-03 | 1.87
dy(z) = 0.54 - d(z) | 512 | 1.68E-04 | 1.97 | 1.89E-03 | 2.36 | 4.19E-04 | 1.98
1024 | 3.68E-05 | 2.19 | 5.53E-04 | 177 | 9.40E-05 | 2.16
2048 | 6.82E-06 | 2.43 | 1.21E-04 | 220 | 1.80E-05 | 2.38

128 | 4.72E-03 8.59E-02 1.23E-02
256 | 1.63E-03 | 1.54 | 2.61E-02 | 1.72 | 4.11E-03 | 1.58
d1(z) = d(z) 512 | 5.00E-04 | 1.70 | 6.38E-03 | 2.03 | 1.25E-03 | 1.71

1024 | 1.33E-04 | 1.92 | 1.90E-03 | 1.74 | 3.41E-04 | 1.88
2048 | 2.94E-05 | 2.17 | 5.32E-04 | 1.84 | 7.92E-05 | 2.11

128 | 2.62E-01 8.89E+-00 8.12E-01
256 NaN NalN NalN NaN NalN NalN
aj(z) =10 - d(u™) 512 NaN NaN NaN NaN NaN NaN
1024 NaN NalN NalN NaN NalN NalN
2048 | 3.10E-03 | NaN | 7.13E-02 | NaN | 9.14E-03 | NaN

128 NaN NalN NalN
256 | 1.98E-01 | NaN | 1.62E+01 | NaN | 1.06E+00 | NaN
aj(z) =100 -d(u™) | 512 | 1.83E-01 | 0.12 | 2.84E+01 | -0.81 | 1.33E+00 | -0.32
1024 NaN NalN NalN NaN NalN NalN
2048 NaN NalN NalN NaN NalN NalN
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Table 3.4: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Exam-
ple (3.3) with « =0, 5 =2,7=0.01,A=0.1,0 =3, n = 4.

VC-EIN-LDG
ay () ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error | order
128 | 5.78E-06 7.14E-05 1.17E-05
256 | 7.30E-07 | 2.99 | 9.12E-06 | 2.97 | 1.49E-06 | 2.97
0.54 - d(z) 512 | 9.36E-08 | 2.96 | 1.16E-06 | 2.98 | 1.92E-07 | 2.96

1024 | 1.19E-08 | 2.97 | 1.46E-07 | 2.99 | 2.46E-08 | 2.97
2048 | 1.51E-09 | 298 | 1.83E-08 | 2.99 | 3.11E-09 | 2.98

CC-EIN-LDG
by ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error | order
128 | 7.67E-06 7.57TE-05 1.40E-05

256 | 9.96E-07 | 2.94 | 9.49E-06 | 3.00 | 1.83E-06 | 2.93
0.54 - maxd(u™) | 512 | 1.30E-07 | 2.94 | 1.22E-06 | 2.97 | 2.40E-07 | 2.93
1024 | 1.66E-08 | 2.96 | 1.53E-07 | 2.99 | 3.10E-08 | 2.96
2048 | 2.11E-09 | 298 | 1.92E-08 | 2.99 | 3.93E-09 | 2.98

Table 3.5: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Exam-
ple (3.3) witha =0, =2,7y=001,A=1,0 =3, n=4in [—7,7].

VC-EIN-LDG
ay () ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error | order
128 | 2.12E-02 2.88E-01 4.82E-02
256 | 6.15E-03 | 1.79 | 7.60E-02 | 1.92 | 1.32E-02 | 1.87
0.54 - d(x) 512 | 1.52E-03 | 2.01 | 1.50E-02 | 2.34 | 3.03E-03 | 2.12

1024 | 3.33E-04 | 2.19 | 2.37TE-03 | 2.66 | 6.33E-04 | 2.26
2048 | 7.29E-05 | 2.19 | 6.60E-04 | 1.85 | 1.51E-04 | 2.06

CC-EIN-LDG
by ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error | order
128 | 2.62E-02 1.34E-01 3.84E-02

256 | 1.19E-02 | 1.14 | 5.23E-02 | 1.36 | 1.76E-02 | 1.13
0.54 - maxd(u™) | 512 | 4.69E-03 | 1.34 | 3.03E-02 | 0.79 | 7.59E-03 | 1.21
1024 | 1.58E-03 | 1.57 | 1.38E-02 | 1.13 | 2.84E-03 | 1.42
2048 | 4.36E-04 | 1.86 | 4.72E-03 | 1.55 | 8.52E-04 | 1.74
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Table 3.6: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Exam-
ple (3.3) witha=0,5=2,7y=001,A=1,0=3,n=4in [—-7, 2] U[1,7].

VC-EIN-LDG
ay () ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error ‘ order
128 | 1.95E-06 1.40E-04 1.24E-05

256 | 2.12E-07 | 3.20 | 2.17E-05 | 2.69 | 1.50E-06 | 3.05
0.54 - j(x) 512 | 1.55E-08 | 3.78 | 1.70E-06 | 3.68 | 9.71E-08 | 3.95
1024 | 1.14E-09 | 3.77 | 8.16E-08 | 4.38 | 4.33E-09 | 4.49
2048 | 1.21E-10 | 3.24 | 5.88E-09 | 3.79 | 3.21E-10 | 3.75

CC-EIN-LDG
by ‘ N ‘ L' error ‘ order ‘ L™ error ‘ order ‘ L? error | order
128 | 1.04E-02 2.98E-02 1.39E-02

256 | 4.06E-03 | 1.35 | 2.11E-02 | 0.50 | 6.46E-03 | 1.11
0.54 - maxd(u™) | 512 | 9.07E-04 | 2.16 | 8.67E-03 | 1.28 | 1.85E-03 | 1.80
1024 | 1.82E-04 | 2.32 | 1.69E-03 | 2.36 | 3.11E-04 | 2.57
2048 | 5.056E-05 | 1.85 | 2.81E-04 | 2.59 | 947E-05 | 1.72

augmented with the exact solution
U(x,t) = cos(x +t).

The initial solution is extracted from the exact solution and the source term s(x, ) is chosen
properly such that the exact solution satisfies the given equation.

First, we numerically validate the stability and error accuracy of the VC-EIN-LDG
scheme. In the test, we take the parameters v = 0, A = 20, 0 = 3. The computational
domain is set to be (—m, 7) and the final computing time is 7" = 1. The numerical results
of the scheme with ay(z) = 1000 - d(u™) and a;(x) = 0.54 - d(x) are presented in Table 3.7.
Note that for the VC-EIN-LDG scheme, the dilation parameters are set as Cy = 1.8, § = 0.7
and remain unchanged in the test. As expected, the scheme is stable for @, (z) = 0.54 - d(x).
Even though we greatly increase the value of ay to 1000, ai(x) = ag - d(u™) still cannot
ensure the stability of the scheme. Second, the CC-EIN-LDG scheme is also used to solve
the nonlinear problem. In the test, we take b; = 0.54 - max d(u"). The numerical results of

the scheme are also listed in Table 3.7, from which we can see that the CC-EIN-LDG scheme
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is stable as always and the numerical orders of accuracy settle down towards the asymptotic
value slowly with mesh refinements. Due to the fact the errors are larger near the bumps
and such errors do not decrease much from the CC-EIN method to the VC-EIN method, the
global errors of the VC-EIN-LDG scheme are comparable with the CC-EIN-LDG scheme.
However, in regions away from the bumps, namely [—m, —2.5] U [1.5, 7|, the VC-EIN method

produces much smaller errors than the CC-EIN method, as can be seen in Table 3.8.

Table 3.7: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Exam-

ple (3.5) with v =0, A =20, 0 = 3 in [—m, 7|
VC-EIN-LDG

‘ N ‘ L' error ‘ order ‘ L™ error ‘ order ‘ L? error | order

128 NalN NaN NaN
256 | 4.08E-01 | NaN | 2.72E+00 | NaN | 7.18E-01 | NaN
ai(z) = 1000 - d(u™) 512 NaN NaN NaN NaN NaN NaN
1024 NalN NalN NaN NalN NaN NalN
2048 NalN NalN NaN NalN NaN NalN

128 | 4.56E-03 6.70E-02 1.15E-02
256 | 1.18E-03 | 1.95 | 2.06E-02 | 1.70 | 3.11E-03 | 1.89
dy(z) =054 -d(z) | 512 | 256E-04 | 2.20 | 5.17E-03 | 2.00 | 7.08E-04 | 2.14
1024 | 5.00E-05 | 2.36 | 1.07E-03 | 2.27 | 1.37E-04 | 2.37
2048 | 8.14E-06 | 2.62 | 1.84E-04 | 2.54 | 2.25E-05 | 2.61

CC-EIN-LDG

=

L' error ‘ order ‘ L™ error ‘ order ‘ L? error | order

128 | 5.13E-03 1.17E-02 6.31E-03

256 | 9.22E-04 | 2.48 | 2.59E-03 | 2.18 | 1.14E-03 | 247
by = 0.54 - maxd(u™) | 512 | 1.44E-04 | 2.68 | 5.76E-04 | 2.17 | 1.81E-04 | 2.66

1024 | 2.12E-05 | 2.76 | 1.31E-04 | 2.14 | 2.85E-05 | 2.66

2048 | 2.96E-06 | 2.84 | 2.77E-05 | 2.24 | 4.72E-06 | 2.60

3.1.4 Numerical simulation to the porous medium equation

To further validate the performance of the proposed schemes, we consider the porous medium
equation (PME)
U= (U") sz, (3.6)
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Table 3.8: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Exam-
ple (3.5) with v =0, A =20, 0 = 3 in [—m, —2.5] U [1.5, 7].

VC-EIN-LDG
ay () ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error | order
128 | 8.25E-07 3.52E-06 1.14E-06
256 | 9.42E-08 | 3.13 | 3.31E-07 | 3.41 | 1.21E-07 | 3.23
0.54 - J(g;) 512 | 1.01E-08 | 3.22 | 3.09E-08 | 3.42 | 1.24E-08 | 3.30

1024 | 1.08E-09 | 3.23 | 2.82E-09 | 3.46 | 1.27E-09 | 3.28
2048 | 1.18E-10 | 3.19 | 2.76E-10 | 3.35 | 1.34E-10 | 3.25

CC-EIN-LDG
by ‘ N ‘ L' error ‘ order ‘ L™ error ‘ order ‘ L? error | order
128 | 4.51E-03 8.81E-03 5.13E-03

256 | 7.66E-04 | 2.56 | 1.51E-03 | 2.54 | 8.72E-04 | 2.56
0.54 - maxd(u™) | 512 | 1.12E-04 | 2.77 | 2.17E-04 | 2.81 | 1.27E-04 | 2.78
1024 | 1.56E-05 | 2.84 | 2.90E-05 | 2.90 | 1.76E-05 | 2.85
2048 | 2.09E-06 | 2.90 | 3.96E-06 | 2.87 | 2.36E-06 | 2.90

where m > 1 is a constant. This equation [21] often occurs in nonlinear problems of heat and
mass transfer, combustion theory, and flow in porous media, where U is either a concentration
or a temperature required to be nonnegative. We assume the initial value for the above

equation is a bounded nonnegative continuous function. Then the PME can be rewritten as

with d(U) = mU™ 1. In this case, the classical smooth solution may not always exist in
general, even if the initial solution is smooth. It is necessary to consider the weak energy
solution. In a recent work [16], a second order CC-EIN method with the third order LDG
spatial discretization for the PME with the Barenblatt solution was considered. We try
to replicate this test with the third order VC-EIN-LDG and CC-EIN-LDG schemes in this

paper. For any given m > 1, the Barenblatt solution is defined by

Ulz,t)=1t""* [(1 _ M\:’TP) J 1/(m=1)

2m
where uy = max{u,0} and s = 1/(m+1). Similarly, we begin the computation from ¢t = 1 in

order to avoid the singularity of the Barenblatt solution near ¢ = 0. The boundary condition
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is U(46,t) = 0 for ¢ > 1. Note that the simulation is run with @, (z) = 0.54 - d(z) and by =
0.54 - max d(u™). In addition, the dilation parameters are always taken as Cy = 1.2, § = 2.5
for the VC-EIN-LDG scheme. We plot in Figure 3.3 the numerical results for m = 3 and
m = 8 at T' = 2 with N = 800. From this figure, we see that our schemes simulate the

Barenblatt solution accurately and sharply.

Numerical

]

Numerical

Numerical
Exact

Numerical
Exact

(¢) CC-EIN-LDG, m =8

(d) VC-EIN-LDG, m = 8

Figure 3.3: The CC-EIN-LDG and VC-EIN-LDG schemes for the PME (3.6) with the Baren-

blatt solution at 7' = 2. Solid line: the exact solution; Square symbol: the numerical solution.

29



3.1.5 The nonlinear numerical test in two dimensions

We consider the two-dimensional nonlinear diffusion equation
U=V - (dU)VU) + s(z,y,t) (3.7)
augmented with the diffusion coefficient (3.4) and the exact solution
Ula,y.t) = (3 + Ae @M (1 4 cos(n(z +y +1))).

The initial solution is extracted from the exact solution and the source term s(z,y,t) is
chosen properly such that the exact solution satisfies the given equation.

First, we numerically validate the stability and error accuracy of the VC-EIN-LDG
scheme. In the test, we take the parameters a« =0, § =2, v =0.001, A =0.1, 0 = 3, n = 4.
The computational domain is set to be (=, 7)? and the final computing time is 7= 1. The
numerical results of the scheme with a;(z,y) = 0.54 - d(u") and @ (x,y) = 0.54 - d(x,y) are
presented in Table 3.9. Note that for the VC-EIN-LDG scheme, the dilation parameters are
set as Cp = 2, 6 = 0.6 and remain unchanged in the test. It is observed that the scheme is
stable for @y (x,y) = 0.54 - d(x,y) and can achieve very nice third order convergence rates
for L', L? and L*™ norms. Second, the CC-EIN-LDG scheme is also used to solve the non-
linear problem. In the test, we take by = 0.54 - maxd(u"). The numerical results of the
scheme are also listed in Table 3.9, from which we can see that the CC-EIN-LDG scheme
is stable as always. Under the same mesh grid, the results of the VC-EIN-LDG scheme are
compared against those of the CC-EIN-LDG scheme. In this case, the global errors of the

VC-EIN-LDG scheme are comparable with the CC-EIN-LDG scheme.

3.2 The dispersion equations

In this subsection, we would like to test the performance and stability of the proposed
schemes for the dispersion equations in one and two space dimensions. The equations with

periodic boundary conditions will be considered, unless otherwise stated. The generalization
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Table 3.9: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Exam-

ple (3.7) with « =0, =2, 7= 0.001, A\ =0.1, 0 = 3, n = 4.
VC-EIN-LDG

‘ N ‘ L' error ‘ order ‘ L°° error ‘ order ‘ L2 error | order

20 | 3.58E+04 1.58E+06 1.36E+05
40 NalN NaN NaN NalN NaN NalN
aj(z,y) = 0.54 - d(u™) | 60 NaN NaN NaN NaN NaN NaN
80 NalN NaN NaN NalN NaN NalN
100 NalN NaN NaN NalN NaN NalN

20 | 5.97E-03 6.88E-02 1.34E-02
40 | 7.00E-04 | 3.09 | 1.55E-02 | 2.15 | 1.70E-03 | 2.97
ay(z,y) = 0.54 - j(x’y) 60 | 1.56E-04 | 3.70 | 3.47E-03 | 3.70 | 3.67E-04 | 3.79
80 | 6.33E-05 | 3.13 | 9.26E-04 | 4.59 | 1.44E-04 | 3.25
100 | 3.08E-05 | 3.23 | 4.37E-04 | 3.36 | 7.01E-05 | 3.22

CC-EIN-LDG

‘ N ‘ L' error ‘ order ‘ L°° error ‘ order ‘ L2 error | order

20 | 3.03E-03 3.156E-02 6.21E-03

40 | 6.04E-04 | 2.33 | 1.30E-02 | 1.27 | 1.37E-03 | 2.18
by = 0.54 - max d(u") 60 | 1.34E-04 | 3.70 | 3.08E-03 | 3.55 | 3.10E-04 | 3.66

80 | 5.67E-05 | 3.00 | 9.77E-04 | 4.00 | 1.24E-04 | 3.18

100 | 2.99E-05 | 2.88 | 4.56E-04 | 3.41 | 6.34E-05 | 3.01
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of the LDG scheme (2.8) to the two-dimensional dispersion equations is straightforward; we

refer the readers to [19] for the details.

3.2.1 The quasi-linear numerical test in one dimension

Indeed, the standard IMEX methods can be directly adopted to solve the quasi-linear equa-
tions. In order to illustrate the necessity of the stability condition (2.18), we consider the

quasi-linear dispersion equation

U+ [(g(z,t) — ar(2))Up)ww — s(x, ) + (a1(2)Uy) ze = 0, x € (0,27) (3.8)

" S N J/
-~ -~

T1 T2

augmented with the dispersion coefficient
g(x,t) = a — Btanh®(n cos(x + 1)),

the initial condition U(z,0) = sin(z) and the source term
s(x,t) = — 2B8n* cos(z + t) sech?(n cos(z + t)) sin?(z + t)+

28nsech?(n cos(z + t)) tanh(n cos(x + t))(cos? (z + t)—

2sin?(z +t) + 25 cos(x + t) sin®(x + t) tanh(n cos(x + t)))+

cos(z +t)(1 — o+ Btanh*(ncos(z +1))).
The exact solution to the problem is defined by (3.2). In order to test the stability of
the VC-EIN-LDG scheme in terms of a;(z), in the test, we take a;(x) as 0.54 - g(x,t"),
0.53 - maxm <p<n+1 g(, 1), 0.54 - maxm <j<pn+1 g(2, 1) and maxm <;<n+1 g(2, t), respectively. We
compute to 7' = 10 with the parameters « = 1, # = 1, n = 3. We present the errors and
orders of accuracy in different norms in Table 3.10, from which we can see that the scheme is
unstable or a sufficiently dense mesh grid is required to maintain the stability of the scheme
if a;(x) < 0.54 - maxm<i<mer g(2,t). As expected, when aq(x) = 0.54 - maxm<;<nt1 g(2,1),
the VC-EIN-LDG scheme is stable and can achieve a very nice third order convergence rate.
The scheme remains stable as always when a;(x) = maxn<;<im+1 g(x,t), but the numerical

orders of accuracy settle down towards the asymptotic value slowly.
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Table 3.10: The errors and orders of the VC-EIN-LDG scheme for Example (3.8) with

a=1, =1 n=3.

ay(x) ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error ‘ order
64 | 5.47E+50 5.00E+51 1.25E+51
128 | 1.06E+53 | -7.60 | 1.18E+454 | -7.88 | 2.65E+53 | -7.72
0.54 - g(z,t") 256 | 3.51E+46 | 21.52 | 4.63E+47 | 21.28 | 9.52E+46 | 21.41
512 | 3.89E+25 | 69.61 | 5.72E+26 | 69.46 | 1.13E+26 | 69.51
1024 | 6.30E-06 | 102.28 | 2.02E-05 | 104.48 | 7.93E-06 | 103.50
64 4.62E-02 1.15E-01 5.53E-02
128 | 5.34E-03 3.11 1.28E-02 3.17 6.32E-03 3.13
0.53 - tngg;iﬂ g(z,t) | 256 | 4.90E-04 3.44 1.28E-03 3.32 5.76E-04 3.46
- 512 | 5.54E+420 | -79.90 | 7.51E+421 | -82.27 | 1.46E+421 | -81.07
1024 | 4.01E+70 | -165.63 | 5.73E+71 | -165.71 | 1.08E+71 | -165.66
64 4.64E-02 1.16E-01 5.50E-02
128 | 5.34E-03 3.12 1.28E-02 3.17 6.32E-03 3.13
0.54 - tn<r?<a;§+1 g(z,t) | 256 | 4.92E-04 3.44 1.16E-03 3.47 5.73E-04 3.46
- 512 | 4.69E-05 3.39 1.09E-04 3.41 5.61E-05 3.35
1024 | 5.86E-06 3.00 1.36E-05 3.00 7.06E-06 2.99
64 1.17E-02 3.10E-02 1.43E-02
128 | 2.97E-04 5.30 1.09E-03 4.83 4.00E-04 5.16
i 2132%“ g(x,t) 256 | 9.24E-05 1.69 2.92E-04 1.90 1.18E-04 1.77
- 512 | 2.21E-05 2.06 8.52E-05 1.78 2.86E-05 2.04
1024 | 5.41E-06 2.03 2.09E-05 2.02 6.88E-06 2.06
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3.2.2 The nonlinear numerical test in one dimension

We consider the nonlinear dispersion equation
Ui + g(Uy)zz = sz, t) (3.9)
augmented with the dispersion coefficient
9(Uy) = al, + BU;
and the exact solution
U(x,t) = vysin(n(z +t)) — Atanh(o cos(x + t)).

The initial solution is extracted from the exact solution and the source term s(z,t) is chosen
properly such that the exact solution satisfies the given equation.

Similarly, for such a nonlinear problem, since the stability condition (2.18) involves the
unknown solutions above the n-th time layer, the VC-EIN-LDG scheme is adjusted for use
with the help of the convolution technique. In short, we add and subtract a third derivative
term with variable coefficient (a1 (x)U, )., at the left-hand side of the equation

U "‘g(Uz)m — (a1(2)Us )z — 8(2, 1) + (@1(2)Us )2x = 0,

-~ -~

Ty Ty

where ai(x) = ag - g(x) and g(x) is the convolution of ¢'(u”) and the dilated mollifier
O, s(x) defined by (2.20). By adjusting the dilation parameters § and Cp, we can always
make inequality (2.22) tenable to ensure the stability of the VC-EIN-LDG scheme. The
adjustment strategy of the dilation parameters 0 and Cj is similar to that described in
Section 2.3 for the second order diffusion equations.

First, we test the stability of the VC-EIN-LDG scheme for this nonlinear dispersion
equation. In the test, we take the parameters a = 0.001, = 0.1, y = —0.2, A = 0.2, 0 =
2, n = 2. The computational domain is set to be (—m,7) and the final computing time

is T' = 1. The numerical results of the VC-EIN-LDG scheme with a;(z) = 0.54 - ¢'(ul),

34



aj(xz) = ¢'(ul), a1(x) = 0.54 - g(z) and a;(z) = g(z) are presented in Table 3.11. Note that
the dilation parameters are set as Cy = 1.5, § = 0.5 and remain unchanged in the test. As
expected, the scheme is stable and can achieve optimal error accuracy if a;(x) > 0.54 - §(z).

Second, we take the parameters o = 0.001, g = 0.025, v = —0.05, A =0.05, 0 =4, n =2
to demonstrate the optimal accuracy of the VC-EIN-LDG and CC-EIN-LDG schemes in
various norms. On the basis of keeping the final computing time and the computational
domain unchanged, the simulation is run with a,(z) = 0.54 - §(z) and b; = 0.54 - max ¢’ (uZ).
Note that in the test we keep the dilation parameters Cy = 2, § = 0.7 unchanged for the
VC-EIN-LDG scheme. The numerical errors and orders of accuracy are presented in Table
3.12, from which we can see that both the schemes are stable as always and can achieve
optimal orders of accuracy for all the norms. In addition, compared with the CC-EIN-LDG
scheme, the VC-EIN-LDG scheme is more accurate for this test.

Third, we take o = 0.001, 8 = 0.1, v = —0.1, A = 0.1, 0 = 4, n = 2 and compare the
performance of the VC-EIN-LDG scheme with the CC-EIN-LDG scheme. Compared with
the previous case, we have reduced the value of v and increased the values of 5 and A\. With
these parameters, there is a larger deviation in ¢'(U,) and the bump of ¢'(U,) tends to be
steeper. To understand this clearly, we have plotted in Figure 3.4 the pictures for ¢'(U,)
at time ¢ = 0 and ¢t = 1, respectively. Note that for the VC-EIN-LDG scheme, we set the
dilation parameters as Cy = 3.3 and 0 = 0.7 in the test. The errors and orders of accuracy
of these two schemes are listed in Table 3.13. In this case, the errors of the VC-EIN-LDG

scheme are smaller than those of the CC-EIN-LSG scheme.

3.2.3 The nonlinear numerical test in one dimension

We experiment with a highly nonlinear example

U+ g(Uyp) gz = s(x, 1), x € (0,2m) (3.10a)

9(U,) = aU, + tanh(e?3FU), (3.10b)
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Table 3.11: The errors and orders of the VC-EIN-LDG scheme for Example (3.9) with

a=0001,8=01v=-02A=02,0=2,1n=2.

‘ N ‘ L' error ‘ order ‘ L™ error ‘ order ‘ L? error ‘ order

128 NalN NalN NaN
256 NalN NaN NalN NalN NaN NaN
aj(z) =0.54 - ¢'(ul) | 512 NaN NaN NaN NaN NaN NaN
1024 NalN NaN NalN NalN NaN NaN
2048 NalN NaN NalN NalN NaN NaN
128 NalN NalN NaN
256 | 2.83E-05 | NaN | 1.58E-04 | NaN | 4.27E-05 | NaN
ar(z) = ¢'(ul) 512 | 4.48E-06 | 2.66 | 3.27E-05 | 2.27 | 7.53E-06 | 2.50
1024 | 8.92E-07 | 2.33 | 5.89E-06 | 2.47 | 1.39E-06 | 2.43
2048 | 1.58E-07 | 2.50 | 9.59E-07 | 2.62 | 2.32E-07 | 2.59
128 | 1.44E-04 7.34E-04 2.21E-04
256 | 4.96E-05 | 1.54 | 2.18E-04 | 1.75 | 7.32E-05 | 1.59
ai(x) = 0.54 - §(x) 512 | 1.18E-05 | 2.07 | 4.79E-05 | 2.19 | 1.61E-05 | 2.19
1024 | 1.46E-06 | 3.01 | 4.98E-06 | 3.27 | 1.85E-06 | 3.12
2048 | 8.20E-08 | 4.16 | 5.80E-07 | 3.10 | 1.24E-07 | 3.90
128 | 3.58E-04 1.98E-03 5.94E-04
256 | 1.73E-04 | 1.05 | 899E-04 | 1.14 | 2.72E-04 | 1.13
ai(z) = g(x) 512 | 6.18E-05 | 1.48 | 2.57E-04 | 1.81 | 9.03E-05 | 1.59
1024 | 1.30E-05 | 2.25 | 5.30E-05 | 2.28 | 1.81E-05 | 2.32
2048 | 1.25E-06 | 3.37 | 5.18E-06 | 3.35 | 1.69E-06 | 3.43
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Figure 3.4: Snapshots of ¢'(U,) at the indicated times. Left: a = 0.001, § = 0.025, v =
—0.05, A =0.05, 0 =4, n=2. Right: « =0.001, 5 =0.1,y=-0.1, A=0.1, 0 =4, n = 2.
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Table 3.12: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-
ample (3.9) with a = 0.001, g = 0.025, v = —0.05, A = 0.05, 0 = 4, n = 2.

VC-EIN-LDG
ay () ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error | order
256 | 1.07E-06 5.74E-06 1.58E-06

512 | 2.33E-07 | 2.20 | 9.62E-07 | 2.58 | 3.37E-07 | 2.23
0.54 - §(z) 1024 | 3.60E-08 | 2.70 | 1.41E-07 | 2.77 | 4.94E-08 | 2.77
2048 | 4.71E-09 | 2.93 | 1.89E-08 | 2.90 | 6.32E-09 | 2.97
4096 | 5.95E-10 | 2.98 | 2.46E-09 | 2.94 | 7.95E-10 | 2.99

CC-EIN-LDG
by ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error | order
256 | 1.27E-06 8.09E-06 1.95E-06

512 | 5.09E-07 | 1.32 | 1.99E-06 | 2.03 | 6.93E-07 | 1.49
0.54 - max ¢/(u?) | 1024 | 9.76E-08 | 2.38 | 4.13E-07 | 2.27 | 1.36E-07 | 2.35
2048 | 1.24E-08 | 2.97 | 5.57E-08 | 2.89 | 1.75E-08 | 2.96
4096 | 1.53E-09 | 3.02 | 7.05E-09 | 2.98 | 2.16E-09 | 3.01

Table 3.13: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-
ample (3.9) with « =0.001, 5 =0.1,y=—-0.1, A=0.1,0 =4, n = 2.

VC-EIN-LDG
ay () ‘ N ‘ L' error ‘ order ‘ L™ error ‘ order ‘ L? error | order
256 | 2.20E-04 1.69E-03 3.70E-04

512 | 1.16E-04 | 0.92 | 7.83E-04 | 1.11 | 1.92E-04 | 0.95
0.54 - §(x) 1024 | 4.30E-05 | 1.43 | 2.40E-04 | 1.70 | 6.51E-05 | 1.56
2048 | 7.16E-06 | 2.59 | 3.14E-05 | 2.94 | 9.67TE-06 | 2.75
4096 | 5.38E-07 | 3.74 | 2.38E-06 | 3.72 | 6.91E-07 | 3.81

CC-EIN-LDG
by ‘ N ‘ L' error ‘ order ‘ L™ error ‘ order ‘ L? error | order
256 | 3.30E-04 1.82E-03 4.67TE-04

512 | 1.40E-04 | 1.24 | 8.87E-04 | 1.04 | 2.12E-04 | 1.14
0.54 - max ¢/(u?) | 1024 | 5.46E-05 | 1.36 | 3.75E-04 | 1.24 | 8.52E-05 | 1.31
2048 | 2.00E-05 | 1.45 | 1.30E-04 | 1.52 | 3.13E-05 | 1.44
4096 | 5.19E-06 | 1.94 | 2.88E-05 | 2.18 | 8.29E-06 | 1.92
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augmented with the exact solution
U(z,t) =sin(x + At). (3.11)

The initial solution is extracted from the exact solution and the source term s(x, ) is chosen
properly such that the exact solution satisfies the given equation.

First, we numerically validate the stability and error accuracy of the VC-EIN-LDG

1

scheme. In the test, we take the parameters « = 0, 8 = 6, A = 3. The numerical re-

sults of the scheme with a;(z) = 1000 - ¢'(u}) and a,(x) = 0.54 - §(z) at time 7' = 1 are
presented in Table 3.14. Note that for the VC-EIN-LDG scheme, the dilation parameters
are set as Cyp = 1.6, § = 0.9 and remain unchanged in the test. As expected, the scheme
is stable for a;(z) = 0.54 - g(x). Even though we greatly increase the value of ay to 1000,
ai(x) = ag - d(u™) still cannot ensure the stability of the scheme. Second, the CC-EIN-LDG
scheme is also used to solve the nonlinear problem. In the test, we take by = 0.54-max ¢’ (uZ).
The numerical results of the scheme are also listed in Table 3.14, from which we can see that
the CC-EIN-LDG scheme is stable as always and the numerical orders of accuracy settle
down towards the asymptotic value slowly with mesh refinements. Similarly, due to the fact
the errors are larger near the bumps and such errors do not decrease much from the CC-EIN
method to the VC-EIN method, the global errors of the VC-EIN-LDG scheme are compa-
rable with the CC-EIN-LDG scheme. However, in regions away from the bumps, namely
[0, 1] U [5, 27|, the VC-EIN method produces much smaller errors than the CC-EIN method,

as can be seen in Table 3.15.

3.2.4 The nonlinear numerical test in two dimensions
We consider the two-dimensional nonlinear dispersion equation
U+ g(Uy)zy = s(x,y, 1), (z,y) € (—m,m)? (3.12)
augmented with the dispersion coefficient
gU,) = alU, + ﬁU;
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Table 3.14: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-
ample (3.10) with a =0, =6, A = 3 in [0, 27].
VC-EIN-LDG

‘ N ‘ L' error ‘ order ‘ L™ error ‘ order ‘ L? error | order

128 NalN NalN NalN
256 NalN NaN NalN NalN NalN NaN
ar(z) = 1000 - g'(ug) 512 NaN NaN NaN NaN NaN NaN
1024 NalN NaN NalN NalN NalN NaN
2048 NalN NaN NalN NalN NalN NaN

128 | 3.26E-04 2.91E-03 6.09E-04
256 | 1.40E-04 | 1.21 | 1.64E-03 | 0.82 | 3.05E-04 | 1.00
dy(x) =054 g(z) | 512 | 4.08E-05 | 1.78 | 5.32E-04 | 1.63 | 9.55E-05 | 1.67
1024 | 8.98E-06 | 2.18 | 1.15E-04 | 2.21 | 2.24E-05 | 2.09
2048 | 1.72E-06 | 2.39 | 2.87E-05 | 2.01 | 4.99E-06 | 2.17

CC-EIN-LDG
by ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error | order
128 | 6.39E-05 2.61E-04 9.50E-05

256 | 1.63E-05 | 1.97 | 7.78E-05 | 1.75 | 2.44E-05 | 1.96
0.54 - max ¢’ (u?) 512 | 3.70E-06 | 2.14 | 2.11E-05 | 1.88 | 5.84E-06 | 2.06
1024 | 8.22E-07 | 2.17 | 5.82E-06 | 1.86 | 1.44E-06 | 2.02
2048 | 1.79E-07 | 2.20 | 1.63E-06 | 1.83 | 3.49E-07 | 2.04
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Table 3.15: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-
ample (3.10) with a =0, =6, A =5 in [0,1] U [5, 27].

VC-EIN-LDG
ay(x) ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error | order
128 | 3.37E-09 6.05E-09 3.81E-09
256 | 4.11E-10 | 3.04 | 6.07E-10 | 3.32 | 4.62E-10 | 3.05
0.54 - §(x) 512 | 5.07E-11 | 3.02 | 7.18E-11 | 3.08 | 5.52E-11 | 3.06

1024 | 5.91E-12 | 3.10 | 8.83E-12 | 3.02 | 6.81E-12 | 3.02
2048 | 7.13E-13 | 3.05 | 1.06E-12 | 3.06 | 8.17E-13 | 3.06

CC-EIN-LDG
by ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error | order
128 | 6.27E-05 2.28E-04 8.10E-05

256 | 1.26E-05 | 2.31 | 3.84E-05 | 2.57 | 1.74E-05 | 2.22
0.54 - max ¢/(u?) | 512 | 2.20E-06 | 2.52 | 1.22E-05 | 1.66 | 3.60E-06 | 2.27
1024 | 2.47E-07 | 3.16 | 1.20E-06 | 3.34 | 4.29E-07 | 3.07
2048 | 2.89E-08 | 3.10 | 2.60E-07 | 2.21 | 5.38E-08 | 2.99

and the exact solution
Ulx,y,t) = ysin(n(x +y +t)) — Atanh(o cos(x +y + t)).

The initial solution is extracted from the exact solution and the source term s(z,y,t) is
chosen properly such that the exact solution satisfies the given equation.

First, we numerically validate the stability and order of accuracy of the VC-EIN-LDG
scheme. In the test, we take the parameters o = 0.001, § = 0.02, v = —0.05, A = 0.05, 0 =
2, n = 2. The numerical results of the VC-EIN-LDG scheme with a;(z,y) = 0.54 - ¢'(u;)
and a,(z,y) = 0.54- g(z,y) at time T' = 1 are presented in Table 3.16. Note that in the test
the dilation parameters are always taken as Cy = 1.6 and 6 = 0.7. It is observed that the
scheme is stable for a;(z,y) = 0.54- §(x, y) and can achieve very nice third order convergence
rates for L', L? and L* norms. Second, the CC-EIN-LDG scheme is also used to solve the
nonlinear problem. In the test, we take b; = 0.54 - max ¢’(uy). The numerical results of the
scheme are also listed in Table 3.16, from which we can see that the CC-EIN-LDG scheme

is stable as always. Under the same mesh grid, the results of the VC-EIN-LDG scheme are
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compared against those of the CC-EIN-LDG scheme. In this case, the global errors of the
VC-EIN-LDG scheme are comparable with the CC-EIN-LDG scheme.

Table 3.16: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-

ample (3.12) with o = 0.001, 5 = 0.02, v = —0.05, A = 0.05, 0 = 2, n = 2.
VC-EIN-LDG

‘ N ‘ L' error ‘ order ‘ L°° error ‘ order ‘ L? error | order

20 NaN NalN NalN
40 NaN NalN NalN NaN NalN NaN
a(z,y) = 0.54 - ¢'(uy) | 60 NaN NaN NaN NaN NaN NaN
80 NaN NalN NalN NaN NalN NaN
100 NaN NalN NalN NaN NalN NaN

20 | 2.45E-04 1.38E-03 3.29E-04
40 | 3.13E-05 | 2.97 | 2.48E-04 | 248 | 4.32E-05 | 2.93
ai(z,y) = 0.54 - §(z,y) | 60 | 8.84E-06 | 3.12 | 8.26E-05 | 2.71 | 1.27E-05 | 3.01
80 | 3.83E-06 | 2.91 | 3.73E-05 | 2.77 | 5.58E-06 | 2.87
100 | 1.99E-06 | 2.93 | 1.97E-05 | 2.86 | 2.92E-06 | 2.90

CC-EIN-LDG

‘ N ‘ L' error ‘ order ‘ L°° error ‘ order ‘ L2 error | order

20 | 2.42E-04 1.46E-03 3.29E-04

40 | 3.10E-05 | 2,96 | 2.51E-04 | 2.54 | 4.31E-05 | 2.93
by = 0.54 - max g’(u;l) 60 | 8.77E-06 | 3.12 | 8.25E-05 | 2.74 | 1.27TE-05 | 3.00

80 | 3.79E-06 | 2.92 | 3.70E-05 | 2.79 | 5.58E-06 | 2.87

100 | 1.98E-06 | 2.92 | 1.95E-05 | 2.88 | 2.92E-06 | 2.90

3.3 The fourth order diffusion equations

In this subsection, we would like to test the performance and stability of the proposed
schemes for the fourth order diffusion equation (1.3). As a dissipative equation, it has many
similarities in properties with the second order diffusion equation (1.1). To save space, we
only take the fourth order diffusion equation in one dimension as an example to present the

results.
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3.3.1 The nonlinear numerical test in one dimension

We consider the fourth order diffusion equation
U + (d(Ua)Usa)a = 5(2,1), @ € (=m,7) (3.13)
augmented with the coefficient
d(U,) = (v + ae~ " 01=U))(2U2 — 1)?

and periodic boundary conditions. The exact solution is given by (3.11). The initial solution
is extracted from the exact solution and the source term s(z,t) is chosen properly such that
the exact solution satisfies the given equation.

Similarly, for such a nonlinear problem, since the stability condition (2.19) involves the
unknown solutions above the n-th time level, the VC-EIN-LDG scheme is adjusted for use
with the help of the convolution technique. In short, we add and subtract a fourth derivative

term with variable coefficient (@1 (x)U,, )., at the left-hand side of the equation

Ut + (d(Ux)Umm - dl(x)sz)a:a: - S(ZL‘, t) + (dl(l‘)Umm)maj - 07

(. J (.
g g

Ty Ts

where a; () = ag-d(z) and d(z) is the convolution of d(u?) and the dilated mollifier ®;, 5(x)
defined by (2.20). By adjusting the dilation parameters § and Cjy, we can always make
the inequality (2.23) tenable to ensure the stability of the VC-EIN-LDG scheme. Again,
the adjustment strategy of the dilation parameters 6 and Cj is similar to that described in
Section 2.3 for the second order diffusion equations.

First, we numerically validate the stability of the VC-EIN-LDG scheme. In the test, we
take the parameters v = 0, a = 20, 0 = 3, A = %. With those parameters, the diffusion
coefficient d(U,), for any time ¢ > 0, forms a steep bump with the value of d(U,) outside the
bump decaying exponentially. The numerical results of the scheme with a;(x) = 100 - d(u?)

and @, (z) = 0.54 - d(z) are presented in Table 3.17. Note that for the VC-EIN-LDG scheme,

the dilation parameters are set as Cy = 1.7 and 0 = 0.7 and remain unchanged in the test.
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As expected, the scheme is stable for @ () = 0.54 - d(z). Second, the CC-EIN-LDG scheme
is also used to solve the nonlinear problem. In the test, we take by = 0.54 - max d(u}). The
numerical results of the scheme are also listed in Table 3.17, from which we can see that the
CC-EIN-LDG scheme is stable as always and the numerical orders of accuracy settle down
towards the asymptotic value slowly with mesh refinements. Due to the fact the errors are
larger near the bumps and such errors do not decrease much from the CC-EIN method to the
VC-EIN method, the global errors of the VC-EIN-LDG scheme are comparable with the CC-
EIN-LDG scheme. However, in regions away from the bumps, namely = € [—7,2.5|U[2.5, 7],
the VC-EIN method produces much smaller errors than the CC-EIN method, as can be seen

in Table 3.18.

Table 3.17: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-
ample (3.13) with v =0, « =20, 0 =3, A = 5 in [-,7].

VC-EIN-LDG
ar(z) ‘ N ‘ L' error ‘ order ‘ L™ error ‘ order ‘ L? error | order
40 | 1.71E-02 4.75E-02 2.36E-02
100 - d(u® 80 NaN NaN NaN NaN NaN NaN
nd(ug) 160 | NaN | NaN | NaN | NaN | NaN | NaN
320 NaN NaN NaN NaN NaN NaN
640 NaN NaN NaN NaN NaN NaN
40 | 6.62E-03 1.52E-02 8.76E-03
054.d 80 | 3.87TE-03 | 0.77 | 7.96E-03 | 0.93 | 5.09E-03 | 0.78
54 - d(z) 160 | 2.05E-03 | 0.92 | 4.23E-03 | 0.91 | 2.68E-03 | 0.92
320 | 9.79E-04 | 1.07 | 2.08E-03 | 1.03 | 1.28E-03 | 1.07
640 | 4.02E-04 | 1.28 | 8.83E-04 | 1.23 | 5.24E-04 | 1.29
CC-EIN-LDG
by ‘ N ‘ L' error ‘ order ‘ L™ error ‘ order ‘ L? error | order
40 | 6.13E-03 9.76E-03 6.75E-03

80 | 1.68E-03 | 1.86 | 2.69E-03 | 1.86 | 1.85E-03 | 1.87
160 | 3.50E-04 | 2.27 | 5.56E-04 | 2.27 | 3.84E-04 | 2.27
320 | 6.02E-05 | 2.54 | 9.00E-05 | 2.63 | 6.56E-05 | 2.55
640 | 1.22E-05 | 2.31 | 2.79E-05 | 1.69 | 1.38E-05 | 2.25

0.54 - max d(u})
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Table 3.18: The errors and orders of the VC-EIN-LDG and CC-EIN-LDG schemes for Ex-
ample (3.13) with v =0, « =20, 0 =3, A = 15 in [—7, —2.5] U [2.5, 7].

VC-EIN-LDG
ay(x) ‘ N ‘ L' error ‘ order ‘ L error ‘ order ‘ L? error ‘ order
40 | 1.08E-05 1.55E-05 1.12E-05
0.54. d 80 | 1.25E-06 | 3.10 | 2.02E-06 | 2.95 | 1.42E-06 | 2.98
54 - d() 160 | 1.64E-07 | 2.93 | 6.73E-07 | 1.58 | 1.92E-07 | 2.89
320 | 2.21E-08 | 2.89 | 1.63E-07 | 2.04 | 2.84E-08 | 2.76
640 | 2.70E-09 | 3.04 | 1.56E-08 | 3.38 | 3.28E-09 | 3.11
CC-EIN-LDG
by ‘ N ‘ L' error ‘ order ‘ L™ error ‘ order ‘ L? error | order
40 | 9.11E-03 9.76E-03 9.13E-03

80 | 2.49E-03 | 1.87 | 2.69E-03 | 1.86 | 2.50E-03 | 1.87
160 | 5.19E-04 | 2.27 | 5.56E-04 | 2.27 | 5.20E-04 | 2.27
320 | 8.49E-05 | 2.61 | 9.00E-05 | 2.63 | 8.50E-05 | 2.61
640 | 1.10E-05 | 2.95 | 1.37E-05 | 2.72 | 1.11E-05 | 2.94

0.54 - max d(u})

4 Concluding remarks

The present study investigates the stability and performance of a third order VC-EIN method
in conjunction with the LDG methods for the high order diffusion and dispersion equations,
respectively. Unlike the CC-EIN method, the auxiliary term we add to and subtract from
the original equation is a spatially varying linear term. Based on the stability results of
the schemes for simplified linear equations [14], we provide a guidance for the choice of the
variable coefficient a;(x) to ensure the stability of the VC-EIN-LDG scheme for the quasi-
linear and nonlinear equations. Numerical experiments show that the schemes can be stable
under a relatively coarse mesh grid and achieve optimal orders of accuracy when the stability
constraints (2.17), (2.18) and (2.19) are satisfied. As a comparative study we also revisit
the CC-EIN-LDG scheme studied in [14]. When proper parameters d, Cy, ag are chosen, the
numerical results show that the VC-EIN-LDG scheme is more accurate than the CC-EIN-
LDG scheme of the same order, if the diffusion coefficient or the dispersion coefficient has

a few high and narrow bumps and the bumps only account for a small part of the whole
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computational domain. We have only considered one and two dimensional problems in this

paper. The method can be applied to three dimensions in the same fashion, which will be

carried out in our future work.
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Appendix

A.1 Stability analysis of the LDG method (2.2)

Theorem 1: The numerical scheme (2.2) with the choice of flures (2.6) is L* stable, i.e.

1
5% Qu2dx+/ﬂd(u)r2dx§0. (A.1)

Proof. We sum up the four equalities in (2.2) and introduce the notation

Bj(uapaqar; (bla ¢27¢37 ¢4) :/ ut(bl dx + /(p + q)((bl)x dz — (ﬁ + qA)JJr%((bl)]:r%

I; I;

i) o0y + [ poade— [ (@) - an@)rosda

I;

+/1~ Q¢3d$—/ ay (7)1, dr+

J I;

(64)_1-

J=3

/ roude + / uldn)ade — iy, (61);,

I; I;

+ U,

1
2

N|—=

Obviously, the solutions u, p, ¢, r of the scheme satisfy

Bj(uapaqar; (bla ¢27¢37 ¢4) =0

for all ¢, ¢a, ¢3, ¢4 € Vj,. We then take

(bl:ua ¢2:—7", (b;g:—?", ¢4:p+q

to obtain, after some algebraic manipulations,

A~ ~

1d
0= B;(u,p,q,r; u,—r,—r,p+q):§a/ qux—i-/ d(u)rzdx—l—(HjJr% —H,;_
I; Ij

where

A~

H=(ulp+q) —G+Pu —alp+aq),

O = —[ulp+ )] + B+ ¢ u] +a[(p+ q)].

Here, [u] denotes u™ — u~. To this end, we notice that, with the definition of the numerical

fluxes (2.6) and periodic boundary condition, we can easily obtain ©, 1 = 0. Then we sum

_1
2

over j to obtain (A.1). O
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A.2 Stability analysis of the LDG method (2.12)

Theorem 1: The numerical scheme (2.12) with the choice of flures (2.13) is L* stable, i.e.

1d

—— [ u? 2dr <0. A2
5 % Qu d:c—l—/ﬂd(’u)w dz <0 (A.2)

Proof. We sum up the equalities in (2.12) and introduce the notation

Bj(u,r,z,p,q,w,v; gbl) :/ utgbl dr — / (T’ + 2)(¢1)$ dr + (72 + 2)]+%(¢1)j_+% - (72 + é)j—%(gbl);—_

I Iy

+ /Ij ¢y d + /Ij p(92)edr — Pyoa(do) 1 +Pj-1(d2)]
" / cndo+ | 89w~y (0507 + 0oy (99)]
; / péad — /Ij(d(“) — ay(@))wes da

" / 465 do - / ar(@)wos da

+ /I wee dz + /I 0(06)a dv = 0141 (P6) ;4 + 051 (06)]
- /1 vy da + /1 w(@r)e do — iy 1 (d7) 1 + -1 (d7) ]y

J J

Obviously, the solutions u, r, 2z, p, q, w, v of the scheme satisfy
Bj(u,r, z,p,q,w,v; ¢;) =0
for all ¢, € V},, 1 <1 < 7. We then take
¢1 = u, P2 = ¢3 =0, ¢4 = ¢5 = —w, 6 =p+q, ¢r=—(r+2z)

to obtain, after some algebraic manipulations,

uzdx+/ d(v)wzd:c—l—(f[jJr% —H,_
I

J

1d
0=B,=-——
724t

H=—(u(r+2) +@wp+q) +F+2u" —G+dv —ip+q)~ +alr+2)7,
O =[u(r+2)] = [vlp+q)] = (7 + 2)[u] + B+ Plv] + o[p + ¢] — a[r + 2].
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Here, [u] denotes u™ — u~. To this end, we notice that, with the definition of the numerical

fluxes (2.13) and periodic boundary condition, we can easily obtain ©; 1 = 0. Then we sum

_1
2

over j to obtain (A.2). O
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