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ABSTRACT The paper develops datasets and methods to assess student participation in real-life
collaborative learning environments. In collaborative learning environments, students are organized into
small groups where they are free to interact within their group. Thus, students can move around freely
causing issues with strong pose variation, move out and re-enter the camera scene, or face away from
the camera. We formulate the problem of assessing student participation into two subproblems: (i) student
group detection against strong background interference from other groups, and (ii) dynamic participant
tracking within the group. A massive independent testing dataset of 12,518,250 student label instances,
of total duration of 21 hours and 22 minutes of real-life videos, is used for evaluating the performance of our
proposed method for student group detection. The proposed method of using multiple image representations
is shown to perform equally or better than YOLO on all video instances. Over the entire dataset, the proposed
method achieved an F1 score of 0.85 compared to 0.80 for YOLO. Following student group detection,
the paper presents the development of a dynamic participant tracking system for assessing student group
participation through long video sessions. The proposed dynamic participant tracking system is shown to
perform exceptionally well, missing a student in just one out of 35 testing videos. In comparison, a state-
of-the-art method fails to track students in 14 out of the 35 testing videos. The proposed method achieves
82.3% accuracy on an independent set of long, real-life collaborative videos.

INDEX TERMS Human participation assessment, dynamic participant tracking, occlusion detection.

I. INTRODUCTION
Classroom video analysis requires the development of robust
image processing methods that can work in very challenging
environments. In this paper, we study methods for student
group detection, student recognition, and assessing student
participation under challenging occlusions and student move-
ment. We demonstrate our methods on classroom videos that
were collected by the Advancing Out-of-school Learning in
Mathematics and Engineering (AOLME) project.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ramakrishnan Srinivasan .

AOLME videos were recorded in actual student class-
rooms as demonstrated in Fig. 1. The classroom is organized
into several groups of students, wheremultiple student groups
can appear in a single video (see Fig. 1(b)). We use a
single video camera for each group. Thus, our first task is
to develop methods for student group detection, by detecting
the students that are closest to the camera. As it is clear from
Fig. 1, students need to be detected from multiple angles.
Furthermore, there are significant issues with both partial and
full occlusions. Students can be active participants while they
remain partially or fully occluded. Thus, in order to properly
assess student participation, we need to develop effective
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FIGURE 1. Examples of the challenges associated with developing
methods for assessing student participation based on the AOLME
datasets.

methods to deal with occlusions. In addition, we also need
to deal with significant student movements in and out of the
frame (see Fig. 1(a)). Furthermore, AOLME video sessions
are very long, ranging from 45 to 90minutes each. As a result,
we need to keep track of student participation throughout
the long video sessions. We provide an extensive compar-
ison of the AOLME video dataset against other datasets
in section II.

The unique challenges associated with processing the
AOLME dataset require that we consider the development
of new approaches. Furthermore, due to the need to
process large video datasets, we require the development
of fast methods. Specifically, we need to integrate person
detection, face recognition, and tracking under occlusion.
These methods have to be integrated into a video analysis
system that supports the long durations of the AOLME video
sessions. We use the term Dynamic Participant Tracking
(DPT) to refer to our approach. DPT processes the time
history of group detections from individual video frames
to determine a state for each student participant (e.g.,
occluded, inside frame, outside frame, inside and outside, and
unknown). Furthermore, DPT processes a sequence of frames
to determine transitions from state to state.

We provide a summary of related methods that we have
adopted for our DPT. Due to its speed, we adopted the use
of YOLO for person tracking. For face recognition, we adopt

the use of the InsightFace system [1] that has been tested on a
large number of camera-facing image datasets and a variety of
loss function models. We will provide more details on related
background methods in Section II.

Here, we provide a brief summary of methods that have
been recently developed to track objects under occlusion.
We note the use of a correlation filter in [2], a classifier
approach in [3], and convolutional neural networks in [4].
More recently, a geometric approach has been developed in
[5] and [6]. In [5], the authors proposed a novel algorithm
that addresses occlusion by using only the location and
size of detection bounding boxes. The algorithm, termed
Simple Online and Real-time Tracking with Occlusion
Handling (SORT_OH [5]) can predict occlusions and
re-identify lost targets. This paper uses both MOT16/17
datasets for pedestrian tracking and achieved state-of-the-
art results for online tracking algorithms. We will provide
comparisons of our proposed approach against Simple
Online and Real-time Tracking with Occlusion Handling
(SORT_OH [5]) to demonstrate that we can achieve signif-
icantly better performance on the AOLME dataset.

We claim four primary contributions. First, we develop
a system for student group detection using multiple image
representations. As we document in our results, the use
of multiple representations results in much better person
detection. Second, we develop a system for video face
recognition for identifying the students within the group.
Our video face recognition enables face recognition from
different angles. Third, we develop newmethods for dynamic
scene analysis system using DPT. We demonstrate that the
DPT provides much better results than SORT_OH. Fourth,
we introduce the use of student participation maps for
visualizing the results over long video sessions.

We note that we presented preliminary results on group
detection in conference publications: [7], [8], [9],, and video
face recognition in [11]. While we review these earlier
methods for completeness, we note that the current paper
describes training and testing on the complete system over
much larger datasets. Furthermore, the dynamic participant
tracking methodology that is a primary focus of the current
paper has never appeared in any previous publications. The
paper also uses participant maps that were initially developed
in [12] for tracking student activities associated with hand
movements (see [13], [14]). Here, we note that the current
paper does not involve any student activities that include
handmovements. Overall, the complete system, including the
dynamic scene analysis, has not been previously discussed in
the literature.

We organize the rest of the paper into five additional
sections. In Section II, we provide a detailed description
of the AOLME dataset and elaborate on its challenges
as we compare against other datasets. In Section III, we
provide detailed background information. We then describe
our proposed methods in Section IV. The results are given in
Section V. We provide concluding remarks in Section VI.
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TABLE 1. AOLME dataset uniqueness against common video datasets. AOLME contains real-life recordings of actual classrooms with significant
challenges.

TABLE 2. AOLME student datasets.

II. AOLME STUDENT DATASETS
We provide a comparison of the unique characteristics of the
AOLME dataset as compared against related video datasets in
Table 1. We begin with a summary of common datasets and
then provide a summary of the characteristics that are unique
to AOLME.

We beginwith a summary of common datasets. Large-scale
SingleObject Tracking (LaSOT [18]) is used for single-object
tracking with an average video length of approximately
83 seconds. The Tracking Any Object (TAO [19]) has
2907 videos and 833 classes, where each video only includes
a single activity lasting around 30 seconds. Both LaSOT and
TAO datasets are characterized by simple backgrounds and
partial, short-term occlusions. In contrast, the AOLME video
dataset is characterized by complex backgrounds with both
partial and full longer-term occlusions.

The Visual Tracker Benchmark 2015 (OTB-2015 [16])
contains 100 video clips with various activities and different
objects. Example objects include humans and SUVs. The
entire OTB-2015 dataset contains 58,613 frames, and each
video only has one type of activity. In contrast, the

AOLME dataset is significantly larger with far more complex
activities.

There are 60 sequences in the Visual Object Tracking 2018
(VOT2018 [17]) datasets at a frame rate of about 30 fps. The
total duration for the dataset is only 745.2 sec. Furthermore,
unlike AOLME, as for OTB-2015 and VOT2018, the dataset
does not contain multiple, overlapping activities.

For human tracking, the most commonly used datasets
include Multiple Object Tracking 16/17 (MOT16/17 [15]).
The datasets cover short-term and full occlusions. However,
unlike AOLME, each video lasts less than 90 seconds.

In summary, common datasets share videos captured from
multiple video angles that can include multiple objects
and humans at diverse scales. In contrast, AOLME is
characterized by the need to develop methods for specific
group detection, long-term occlusions, and the need to track
specific objects over very long video segments. AOLME
video sessions range from 45 to 90 minutes broken into
shorter segments of 23 minutes and 45 seconds. Overall, the
AOLME dataset contains over 950 hours of video, collected
over three different cohorts, with each cohort including
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TABLE 3. AOLME-DST: Short-video dataset for entire system testing of
dynamic participant tracking. The test dataset includes 35 videos and
35 different students.

TABLE 4. AOLME-DLT: Long-video dataset for entire system testing of
dynamic participant tracking. The dataset contains videos from
22 students.

1∼3 curriculum levels. Within each cohort, we collected
10∼12 video sessions of 10-20 students collaborating in
small groups of 3 to 6 members. Thus, it is clear that we need
to developmethods that detect specific groups of students and
track them throughout each video.

We tackle the problem of assessing long-term student
participation into three subproblems that include (i) student
group detection, (ii) student face recognition within the
detected group, and (iii) dynamic participant tracking.
We develop separate training and testing datasets for each
problem as summarized in Table 2. We use different video

sessions for training and testing. At the end, we use
final testing datasets for measuring the performance of the
integrated system. In what follows, we provide detailed
descriptions of the different datasets used to develop our
system.

A. AOLME-G VIDEO DATASET FOR STUDENT GROUP
DETECTION
The AOLME-G video dataset has 54 videos from 52 groups,
covering two cohorts. These videos will be used for
group detection. We use AOLME-G to generate separate
datasets for (i) training and validation: AOLME-GY1,
AOLME-GF1, AOLME-GB1, and (ii) component testing
datasets: AOLME-GF2 and AOLME-GB2. We then want
to test the group detection system using the massive
AOLME-GT dataset. We provide separate descriptions for
each dataset.

1) AOLME-GY1 FOR FACE DETECTION TRAINING AND
VALIDATION
We use 1000 faces and 1200 non-face images from student
groups extracted from the AOLME-G dataset to train the
YOLO face detector. Among the selected face images, we use
70% of the images for training and 30% for validation. For
each group, we identify the faces of each group member.

2) AOLME-GF1 FOR GROUP FACE DETECTION TRAINING
AND VALIDATION
The dataset is generated from the AOLME-G videos to train
the group face classifier. The augmented dataset contained
56,045 group faces and 56,084 non-group face images.
We use 70% of the dataset for training and 30% for validation.

3) AOLME-GB1 FOR TRAINING FOR BACK OF THE HEAD
DETECTION
For the back-of-the-head classifier, the dataset uses over
45,000 frames from AOLME-G videos. It contains 22,768
back-of-the-head images and 22,800 other images.

4) AOLME-GF2 FOR GROUP FACE DETECTION TESTING
The dataset is generated from AOLME-G videos for testing
the group face classifier. The dataset contains 14,011 group
faces and 14,021 non-group face images. The numbers
include seven-fold data augmentation performed using
random rescaling, cropping, rotating, and flipping.

5) AOLME-GB2 FOR BACK OF THE HEAD TESTING
To test the back-of-the-head classifier, we used 5,710 back-
of-the-heads and 5,682 others from the AOLME-G video
dataset.

6) AOLME-GT: A LARGE DATASET FOR FINAL TESTING OF
GROUP DETECTION
We test the group detection methodology with a set of
13 videos containing 12,518,250 student labels. The student
labels identify whether a student belongs to a group or not.
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FIGURE 2. A simple example to demonstrate the issues for training and testing dynamic participant tracking. In this example, we only show annotation
for a single student per image. We note that there is no bounding box for the student in (d) because he is not visible. For the training and testing
datasets, in each frame, we mark all of the students for each group.

FIGURE 3. AOLME student participation analysis system. We detect groups every second. We perform face recognition and dynamic participant
tracking every frame.
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Overall, the combined duration of all of the AOLME-GT
videos is 21 hours and 22 minutes.

B. AOLME-FR VIDEO FACE RECOGNITION TRAINING
The AOLME-FR video dataset is used for training the
video face recognition algorithms. These video images were
sampled from 13 sessions that cover level 1 of cohorts 2 & 3.
Overall, the combinations of training and testing videos are
4 hours long.

1) AOLME-FR1 FOR TRAINING VIDEO FACE RECOGNITION
Within AOLME-FR, we separate out the AOLME-FR1
dataset that consists of 3,968 images for identifying up to
42 students and student facilitators. The dataset is used to
generate face prototypes associated with each participant as
described in the methodology. Each prototype is resized to
112 × 112 pixels.

2) AOLME-D FOR SYSTEM TESTING OF VIDEO FACE
RECOGNITION FROM RAW INPUT VIDEOS
The AOLME-D video dataset has 13 different sessions
of 1 to 1.5 hours each from urban and rural schools.
We use AOLME-D to derive a collection of short videos
(AOLME-DST) and long videos (AOLME-DLT) for final
system testing.

3) AOLME-DST: SHORT VIDEOS DATASET FOR FINAL
SYSTEM TESTING
The AOLME-DST dataset is summarized in Table 3. This
diverse dataset contains a selection of short video samples
that are used to test system performance under occlusion
for 35 students from 5 groups. The AOLME-DST dataset
is designed to provide exhaustive testing in many different
scenarios. In the results, we will provide detailed results for
each group.

4) AOLME-DLT: LONG VIDEOS DATASET FOR FINAL SYSTEM
TESTING
The AOLME-DLT contains raw real-life videos as detailed
in Table 4. The videos are broken into shorter videos that are
23 minutes and 45 seconds. This final dataset will be used
to test all aspects of our system using different groups and a
diverse set of students.

C. DATASETS FOR DYNAMIC PARTICIPANT TRACKING
The ultimate goal of dynamic participant tracking is to
quantify student participation. Thus, we need to know
whether a specific student is present within a group. Students
are marked as present even if they do not appear in the frame
due to occlusion. Thus, in order to develop ground truth
for dynamic participant tracking, we review the entire video
from beginning to end to eliminate false negatives due to
occlusion. Furthermore, in most cases, students are partially
occluded and are free to move around while remaining close
to the table. In all such cases, we assume that the students
are present. We only mark students as not-present if they are

completely missing from several video frames over several
seconds.

We present four occlusion examples in Fig. 2. In all cases,
we mark the student as present. Yet, the student is partially
occluded in Fig. 2(a), fully occluded in Fig. 2(b), and at the
edge of the frame in Fig. 2(c). In Fig. 2(d), a small portion of
his hand is visible in the lower-right edge of the video frame.

We used the Matlab video labeler to mark the presence
of each student in each frame of each video. For each video
frame, we carefully mark the locations of all students within
each group.

1) AOLME-DST FOR SYSTEM TESTING OF DYNAMIC
PARTICIPANT TRACKING
We perform both short-term and long-term testing of the
ability of the system to perform dynamic participant tracking.
For short-term testing, we use 35 short video segments
ranging from 10 seconds to 150 seconds long at a frame rate
of 30 fps. Overall, short-term testing consisted of 17 minutes
and 17 seconds. The video examples include occlusion of
at-least one person as detailed in Table 3.

2) AOLME-DLT FOR SYSTEM TESTING OF DYNAMIC
PARTICIPANT TRACKING ON LONG-DURATION VIDEOS
We use a second dataset to test our dynamic participant
tracking system over long video segments. Six long videos
from different groups from the AOLME-CT video dataset are
used to generate separate testing videos for AOLME-DLT.
For long-term testing, each video is 23 minutes 45 seconds
at a frame rate of 30 fps with 3 to 5 recognizable persons
per video as described in Table 4. As for the short-term video
dataset, we mark the location of every person in each video
frame.

III. BACKGROUND
A. RELATED WORK
1) GROUP DETECTION
We formulate the problem of group detection as a problem
of detecting the students working together and sitting at the
table nearest to the camera. Beyond the classic problem of
human detection, group detection requires that we detect
humans at arbitrary angles, while facing the camera and also
while looking away from the camera. In this subsection,
we will summarize some related research done by our group,
published in a conference paper, and outline the new research
summarized in the current paper.

We reported on initial research of combining YOLO with
AM-FM representations for group detection in a conference
paper in [10]. In our basic approach, we used YOLO for
face detection. YOLO generated a large number of false
face detections that belonged to different student groups.
To address the problem, we relied on the fact that student
faces that are far away from the camera are characterized
by high instantaneous-frequency components. We thus used
FM feature extraction and a simple LeNet5 network to
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FIGURE 4. Student group detection system.

FIGURE 5. AM-FM representation of the classroom environment.

FIGURE 6. Face prototype samples of four students.

remove false face detections and also detect back of the
head students facing away from the camera. Here, we note
that the advantages of the FM representations come from
the fact that they are explainable and provide additional
image representations that go beyond the standard raw images
processed by YOLO. We will employ this system for student
group detection.

2) FACE RECOGNITION
In order to recognize the student participant, following face
detection, we use face recognition. Here, we note that face
recognition is a very mature research area for the case when
the humans are facing the camera. Unfortunately, this is not
the case here. We are faced with several challenges since the
students are not posing for the camera. Instead, they can be at
arbitrary angles. Our approach was to adopt a state of the art
system face recognition system and retrain it for video face
recognition for our current problem. Thus, for our baseline
system, we use the InsightFace system [1] that is based on

Additive Angular Margin Loss for Deep Face Recognition
(ArcFace). Here, we note that ArcFace has been tested on a
large number of camera-facing image datasets and a variety
of loss function models. We have summarized our modified
system in a conference paper in [11]. For completeness,
we will provide a summary of our methodology adopted
from [11] in our methods section.

3) TRACKING UNDER OCCLUSION
Following person recognition and face recognition, we are
faced with the problem of tracking under occlusion. As men-
tioned in the introduction, previously considered methods
include the use of correlation filters in [2], a classifier
approach [3], convolutional neural networks in [4], and a
geometric approach in [5] and [6]. As noted earlier, wewill be
comparing our approach to the Simple Online and Real-time
Tracking with Occlusion Handling (SORT_OH [5]) which
achieved state-of-the-art results on the MOT16/17 datasets
for pedestrian tracking.

VOLUME 12, 2024 53147



W. Shi et al.: Long-Term Human Participation Assessment in Collaborative Learning Environments

FIGURE 7. Dynamic participant tracking system. Here, bbox refers to the bounding box.

FIGURE 8. The edge of the video frame is defined as the set of pixels
located within 30 pixels of the edge of the frame.

We also provide a summary of other research in this area.
In [20], the authors present a novel approach for visual
object tracking that discriminates occlusion from the self-
deformation of the target. In [21], the authors evaluate the
performance of visual object trackers in challenging occluded
scenarios by creating a small dataset that includes sequences
with multiple instances of hard occlusions. In [6], the authors
developed a regression-based multi-pedestrian tracker that
can re-track targets without an extra re-identification model.
The paper reports a method for improving track management
by regressing inactive tracks and also developing a method

for dealing with tracks that are out of the camera’s view.
In [4], the authors develop an object-tracking method
based on the combination of correlation filters and ResNet
features. The paper describes the use of response maps
by extracting features from different layers of ResNet, and
then fusing response maps using the AdaBoost algorithm.
In [2], the authors propose the Kernelized Correlation
Filter (KCF) model to track ships in consecutive maritime
images and then use the tracking to estimate ship trajec-
tories. In [3], the authors present an integrated Circulant
Structure Kernels (ICSK) tracking framework to handle
occlusion by estimating target objects’ translation and scale
variations.

The paper describes a new method to support dynamic
participant tracking that can deal with long-term occlu-
sions and persons entering and leaving the scene. Our
DPT uses a finite-state machine to track each person.
Transitions between states are based on intuitive geo-
metrical constraints. As we discuss in the results, the
DPT is proven to be very effective on real-life AOLME
videos.

IV. METHODOLOGY
A. OVERVIEW
We present a top-level diagram of the entire system in
Fig. 3. The raw input video is first processed through
group detection to identify the students with the current
group while rejecting people in the background that do not
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FIGURE 9. State determination is based on the distance from the center
of the frame to the centroid of the object detection bounding box.

belong to the current group. We then identify the students
for whom we can detect faces based on a face recognition
system.We use dynamic participant tracking for all identified
students to account for cases where students may move or
leave the scene. Then, we combine the information to pro-
duce participation maps documenting student participation
through time. Informed consent was obtained for all study
participants.

B. GROUP DETECTION
For group detection, we need to detect the students sitting
at the table closest to the camera. Group detection is
based on face detection for students facing the camera
and back-of-the-head detection for students facing away.
We present a system diagram of the group detection
system in Fig 4. Due to the need for speed, we use
YOLO for face detection. Back-of-the-head detection is
performed based on extracted AM-FM features as described
next.

AM-FM components are extracted from the grayscale
(Y-component) using dominant component analysis (DCA)
estimated using a 54-channel Gabor filterbank as described
in [8]. Using DCA, the input image frame is approximated
by: I (x, y) ≈ a(x, y) cosϕ(x, y) where a(x, y) denotes the AM
component and cosϕ(x, y) denotes the FM component. Fig 5
shows an example of the extracted AM-FM components.

FIGURE 10. Definitions of ‘Outside’, ‘Inside & Outside’, and ‘Inside’ states.

FIGURE 11. One example of DPT transition rules: rule 8.

The FM image is masked by the results of the YOLO face
detector. We apply this step to extract the FM components
over students within the desired group while rejecting
detections from other groups. FM components over the
faces of the closest group exhibit lower frequency com-
ponents than the higher frequency components associated
with distant faces from other groups. To detect the group
faces, we thus apply a simple, LeNet-based classifier [22]
on the extracted FM components over 100 × 100 pixel
regions.

The AM-FM components are also used to detect the hair
and back-of-the-head candidate regions described in [8].
A LeNet-based classifier is used to detect the back-of-the-
heads against background detections, as detailed in [8].
We detect the entire group for each video frame by
concatenating the results from the face and back-of-the-head
classifiers.

C. FACE RECOGNITION
We adopt the face recognition method previously described
as a conference paper in [11]. We use the InsightFace [23]
system to recognize faces. The face recognition system
requires a set of face prototypes associated with each
participant.

We combine sparse sampling and K-means clustering
to compute face prototypes as given in Algorithm 1 (also
see [11]).

Fig 6 displays some samples of face prototypes.
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Algorithm 1 Compute Face Prototypes Using Sparse
Sampling and K-Means
Input: Video clips associated with each participant
Output: facePrototypes associated with each participant
1: for each participant
2: Sample an image every 30 frames of video
3: Apply K-means clustering
4: Select cluster means
5: Find the nearest images from cluster centroids
6: Align faces to 112 × 112

1) SPARSE SAMPLING
To achieve sparsity, the algorithm extracts a single sample
image per second of video with a frame rate equal to 30 fps.

2) K-MEANS CLUSTERING
We use clustering to describe different face poses. The
algorithm searches for the training image that is closest to
a cluster centroid to prevent the usage of centroids that
might be impractical. Once the algorithm has identified
a prototype image that is closest to the mean, it pro-
ceeds to align and resize every image to 112 × 112
pixels. This paper uses K-means with 64 clusters for data
training.

Once the face prototypes are obtained, we use the
InsightFace system to identify the students. Seven-fold
data augmentation is implemented to increase the training
dataset. Data augmentation is based on random rescaling,
cropping, rotating, and left-to-right flipping. This process
generates a total of 18,816 prototype faces for training and
validation.

The algorithm for face recognition uses the MTCNN
model to detect faces in the video. It then calculates the
minimum distances to the face prototypes to identify each
participant.

D. DYNAMIC PARTICIPANT TRACKING
We develop the Dynamic Participant Tracking (DPT) system
to account for the presence of the students in relation to
the camera as shown in Fig.7. More specifically, during the
tracking process, a participant is classified as being ‘Inside’
or ‘Outside’ the video frame, in the process of leaving
the scene (‘Inside & Outside’), occluded by another object
(‘Occluded’), or being in an undetermined state (‘Unknown’).
In what follows, we begin the section by providing definitions
of each state. We then describe how to determine whether
a participant is in one of the states and how to transition
from state to state. Here, we note that state transitions are
based on the current state and the participant detection results.
We also note that the DPT is applied separately for each
participant.

1) EDGE
We define the edge of the video frame to be the pixels less
than 30 pixels from the edge, as shown in Fig. 8.

FIGURE 12. Head detection system results. True positives are bounded by
green boxes. False positives are bounded by red boxes. False negatives
are bounded by yellow boxes. For successful detection, we require the
intersection over union (IOU) score to be at least 0.6.

2) THE DISTANCE BETWEEN CENTERS
We define the centroid distance D (Fig. 9) between the center
of the frame and a bounding box that exists in the frame using:

D =

√
|x2 − x1|2 + |y2 − y1|2.

3) STATES
The state of each participant is based on the location of
the bounding box resulting from participant detection. All
participants are initially in ‘Unknown’ state if not detected.
This state remains unknown as long as they are not detected
in the current state.

If a person is detected in the initial frame, their location
is used to determine their initial state. Thus, if the person is
detected entirely inside the frame, their state is set as ‘Inside’.
If the person is detected at the edge of the frame, their initial
state is set to ‘Inside & Outside’.

In Fig.10, we demonstrate how the locations of the bound-
ing boxes are used to determine the states ‘Outside’, ‘Inside
& Outside’, and ‘Inside’. The black rectangle represents
the frame edge. The red-yellow rectangles represent the
bounding boxes. This frame has no bounding box if a
person is occluded because other people or objects cover
them.

4) INPUTS
We define the five possible inputs for determining transitions
between states as follows.
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FIGURE 13. Examples from Group Detection Results. Left column ((a) and (d)) shows the results of YOLO. Middle-column ((b) and (e)) shows the
ground truth. Right-column ((c) and (f)) shows the results of the proposed method.

TABLE 5. Comparative results for student group detection over 13 videos. TP, FP, and FN refer to true positives, false positives, and false negatives,
respectively. F1 scores are given for each video and each method. The videos represent different student groups based on the AOLME-GT dataset. Here,
recall that there is a large number of students in each image that do not belong to the current group. Hence, the number of detected persons is higher
than the number of labeled students.

We use C to denote the detection in the current state. Thus,
C : ✓ denotes successful detection. On the other hand, C : ✗
denotes failure to detect a participant in the current frame.

We use Nn to denote the detection of a participant
over n frames. Thus, Nn : ✓ denotes successful detec-
tion in any of the following n frames while Nn : ✗
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TABLE 6. Comparison of DPT versus SORT_OH [5] for group 1 (1 out of 5). The results are computed over the AOLME-DST dataset.

TABLE 7. Comparison of DPT versus SORT_OH [5] for group 2 (2 out of 5). The results are computed over the AOLME-DST dataset.

denotes failure to detect a participant in the subsequent n
frames.

We use Pdist to denote the distance between the centroid of
the bounding box and the center of the previous frame.

We use Cdist to denote the distance between the bounding
box’s centroid and the current frame’s center (See Fig.9).

We use Lbbox to denote the location of the latest detection
with a bounding box.
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TABLE 8. Comparison of DPT versus SORT_OH [5] for group 3 (3 out of 5). The results are computed over the AOLME-DST dataset.

TABLE 9. Comparison of DPT versus SORT_OH [5] for group 4 (4 out of 5). The results are computed over the AOLME-DST dataset.

TABLE 10. Comparison of DPT versus SORT_OH [5] for group 5 (5 out of 5). The results are computed over the AOLME-DST dataset.

5) DPT TRANSITIONS
The initial states can be ‘Inside’, ‘Unknown’, or ‘Inside &
Outside’ as described in the DPT states subsection. Here,
we describe transitions among other states. We note that for
each state, we consider all possible input combinations for
determining how to transition to another state.

From the ‘Inside’ state, a participant can move to the
‘Inside&Outside’ state, ‘Inside’ state, or the ‘Occluded’ state
as given below:

• To transition to the ‘Inside & Outside’ state, we detect
a movement inside the frame toward outside the frame.
Here, the movement is detected by requiring that 1) the
person is detected in the current frame, 2) the centroid’s
distance of previous frame is less than the one of current
frame, and 3) the person is detected at the edge of the

current frame. We simplify these rules by using: C :

✓, Pdist < Cdist , and Lbbox is at the edge (rule 8) (See
Fig.11).

• To remain in the ‘Inside’ state, we detect a movement
inside the frame. Here, the movement is detected by
requiring that 1) C : ✓and Lbbox is not at the edge, or 2)
C : ✓, Pdist ≥ Cdist , and Lbbox is at the edge (rule 9).

• To transition to the ‘Occluded’ state, we detect the
movement disappears inside the frame. Here, it requires
that C : ✗ (rule 10).

From the ‘Outside’ state, a participant can move to the
‘Outside’ state or the ‘Inside & Outside’ state as given below:

• To remain in the ‘Outside’ state, we detect no movement
in the frame. Here, it requires that Nn : ✗ (rule 3).
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TABLE 11. Final system results over the raw, real-life video dataset of
AOLME-DLT. The use of DPT provided substantially better results than the
frame-based results that did not use DPT. The duration of each video is
23 minutes and 45 seconds.

• To transition to the ‘Inside & Outside’ state, we detect
a movement from outside the frame toward inside the
frame. The movement is detected by requiring Nn : ✓
(rule 4).

From the ‘Inside & Outside’ state, a participant can move
to the ‘Outside’ state, ‘Inside & Outside’ state, or the ‘Inside’
state as given below:

• To transition to the ‘Outside’ state, we detect a
movement from the frame toward outside the frame. The
movement is detected by requiring Nn : ✗ (rule 5).

• To remain in the ‘Inside & Outside’ state, we detect
a movement around the edge of the frame. Here, the
movement is detected by requiring that Nn : ✓ C : ✓/ ✗
and Lbbox is at the edge (rule 6).

• To transition to the ‘Inside’ state, we detect a movement
from outside the frame toward inside the frame. Here,
the movement is detected by requiring that Nn : ✓ C :

✓ and Lbbox is not at the edge (rule 7).
From the ‘Occluded’ state, a participant can move to the

‘Inside’ state or the ‘Occluded’ state as given below:

• To transition to the ‘Inside’ state, we detect a movement
that appears inside the frame. The movement is detected
by requiring C : ✓ (rule 11).

• To remain in the ‘Occluded’ state, we detect no
movement inside the frame. Here, it requires that C :

✗ (rule 12).
From the ‘Unknown’ state, a participant can move to the

‘Unknown’ state, ‘Inside & Outside’ state, or the ‘Inside’
state as given below:

• To remain in the ‘Unknown’ state, we detect no
movement inside the frame. Here, it requires that C :

✗ (rule 0).
• To transition to the ‘Inside & Outside’ state, we detect
a movement that appears in the frame. Here, the
movement is detected by requiring that C : ✓ and Lbbox
is at the edge (rule 1).

• To transition to the ‘Inside’ state, we detect a movement
that appears in the frame. Here, the movement is
detected by requiring that C : ✓ and Lbbox is not at the
edge (rule 2).

In this paper, for Nn, we set up n = 30 because the frame
rate of video is 30 fps and students in the videos have big
movement. We note that n = 30 represents a second. Here,
it is important to note that our parameters were intuitively set
for 1-second transitions.

V. RESULTS
We summarize our results over the final testing datasets
(see Table 2). First, we summarize our group detection
results over the massive AOLME-GT dataset. For group
detection, recall that we labeled 12,518,250 student instances
in over 21 hours and 22 minutes of real-life videos
(see section II-A6). For system testing, we will first
present results over the carefully selected short videos
of the AOLME-DST dataset (see section II-C1). We also
summarize final system testing results over raw, real-life
videos of the AOLME-DLT dataset (see section II-B4).
We then present participation maps for visualizing the final
results. As mentioned earlier, the testing datasets do not
share any video sessions with the training and validation
datasets.

A. STUDENT GROUP DETECTION TESTING USING
AOLME-GT DATASET
We begin with a simple example in Fig. 12. For students
within the group of interest, we use green bounding boxes to
indicate successful detections (true positives (TP)). We used
yellow bounding boxes to denote false negatives (FN), when
we fail to detect a student that belongs to the group. For
students outside the group, we use red bounding boxes to
indicate false positives (FP). In the top image of Fig. 12, we
see that we have a false positive case for a background student
facing the camera. Then, in the bottom image of Fig. 12, we
have a false negative example where we could not detect a
student that is partially occluded by the camera. Here, it is
important to note that the false negative case can be corrected
using the dynamic participant tracking algorithm. Assuming
that a student was detected in an earlier frame, the DPT will
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FIGURE 14. Student participation maps on long videos of AOLME-DLT
dataset (see V1 in Table 11). The results demonstrate the effectiveness of
DPT (bottom) against ground truth (top). Without DPT, the lack of
detection gives several false negatives (middle).

correctly classify the student as occluded and mark them as
present.

We present comparative results of the proposed method
and YOLO in Fig. 13. To differentiate among methods,
we use blue bounding boxes for YOLO (left column),
yellow bounding boxes for the ground truth (middle column),
and green bounding boxes for the proposed method (right
column). In this example, the proposed method successfully
detected the entire group without giving any false positives.
In contrast, YOLO, trained on the same dataset, gave
several false positives by wrongly labeling background face
detections as being part of the group. Most alarmingly,
YOLO failed to detect a student that belongs to the group
(see student in the lower-left part of the image in the
left column). Our performance clearly benefited from the

use of multiple representations and our back-of-the-head
detector.

We provide comparative results over the AOLME-GT
dataset in Table 5. Here, note that the numbers of detected
persons are often higher than the number of labels as
both methods may falsely identify background students
as belonging to the current student group. Furthermore,
false positives are associated with falsely labeling out of
group students as being part of the group. On the other
hand, false negatives are primarily due to occlusions. Our
approach achieves a substantially lower number of false
positives. We use the F1 score to assess overall performance
(harmonic mean of precision and recall). We note that our
proposed method performs better on all video examples
(except for V9 where performance was the same). In many
cases, the proposed method is substantially better, with over
0.07 improvement (e.g., V1 improved by 0.09, V2 improved
by 0.14, V4 & V6 improved by 0.07). Overall, it yields an F1
score of 0.85 against 0.80 for YOLO.

B. DYNAMIC PARTICIPANT TRACKING AND FINAL
SYSTEM TESTING RESULTS
This section provides comparative results of the DPT against
SORT_OH as well as results over the raw, real-life video
sessions. We also present the use of participation maps for
visualizing the final results.

Following student group detection, we compare the per-
formance of the DPT (proposed method) against SORT_OH
for the AOLME-DST test dataset (see section II-C1). Our
results include detailed performance analysis for each student
participant in Tables 6, 7, 8, 9, and 10.

We note that our proposed method performs exceptionally
on nearly every case. In the overwhelming majority of the test
cases, we are able to dynamically track each participant with
100% accuracy. On the other hand, SORT_OH fails to track
several students. Here, we define failure as the inability of
the method to track students with more than 70% accuracy.
We highlight failure examples in red in Tables 6, 7, 8, 9, and
10. In our 35 test video sequences, we can see 14 examples of
failures by SORT_OH. Out of the five groups, we can see that
SORT_OH has at-least one failure to track example in each
student group. In comparison, our proposed method failed on
just one example (see Table 9).
We believe that the efficacy of the DPT is due to its

simplicity. The finite-state transitions were derived based
on intuitive rules that did not require training. The only
parameter used by DPT is to require the persistence of each
transition rule over 30 frames (=1 second).

We report final testing results over raw, real-life video
sessions of 23 minutes and 45 seconds of the AOLME-DLT
dataset (see section II-C2). In Table 11, we compare
DPT against not using any tracking. The results clearly
illustrate the need for dynamic tracking. The overall accuracy
improved from 61.9% to 82.3% when using the DPT.

We demonstrate the use of participation maps for visualiz-
ing student participation in Fig. 14. We note that the ground
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truth plot of Fig. 14(a) suggests that there are long periods
where the students are present. Without DPT, as shown in
Fig. 14(b), tracking fails to track the top and bottom students
(Javier67p + Kenneth1P). With DPT, as shown in Fig. 14(c),
we see dramatic performance improvements in tracking the
top and bottom students (Javier67p + Kenneth1P). In this
example, the overall accuracy improved by 16.4%.

VI. CONCLUSION
The paper describes our efforts to build a system to
assess student-participation in real-life collaborative learning
videos. The real-life dataset presented many challenges
that are not represented in standard occlusion datasets.
We developed a new system to address the unique chal-
lenges. Specifically, we developed methods for student
group detection using multiple representations, video face
recognition, and dynamic participant tracking. We then
document excellent performance by our proposed system
that is significantly better than other methods. We verify our
system on long videos of over 20 minutes and also provide
visualization using student participation maps.
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