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ABSTRACT

Mosaic Flow is a novel domain decomposition method designed
to scale physics-informed neural PDE solvers to large domains.
Its unique approach leverages pre-trained networks on small do-
mains to solve partial differential equations on large domains purely
through inference, resulting in high reusability. This paper presents
an end-to-end parallelization of Mosaic Flow, combining data paral-
lel training and domain parallelism for inference on large-scale prob-
lems. By optimizing the network architecture and data parallel train-
ing, we significantly reduce the training time for learning the Lapla-
cian operator to minutes on 32 GPUs. Moreover, our distributed
domain decomposition algorithm enables scalable inferences for
solving the Laplace equation on domains 4096 larger than the
training domain, demonstrating strong scaling while maintaining
accuracy on 32 GPUs. The reusability of Mosaic Flow, combined
with the improved performance achieved through the distributed-
memory algorithms, makes it a promising tool for modeling com-
plex physical phenomena and accelerating scientific discovery.
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1 INTRODUCTION

Scientific machine learning (SciML) is an emerging field that aims
to integrate scientific knowledge into the development of machine
learning models. By leveraging domain expertise, SciML reduces
the reliance on massive datasets that are often scarce or difficult
to create in many scientific fields, such as fluid dynamics [3]. To
achieve this integration, researchers have proposed various inno-
vative strategies, ranging from incorporating scientific principles
into deep neural network architectures and loss functions, develop-
ing hybrid models, using transfer learning and domain adaptation
techniques, and employing Bayesian techniques [26, 40, 43, 44].

Among the above approaches, physics-informed neural networks
(PINNs) have shown promise for solving complex problems that in-
volve partial differential equations (PDEs) by incorporating physical
laws and constraints [46]. By softly enforcing PDE constraints in the
loss function, PINNs can learn from limited data and still provide ac-
curate predictions. Unlike traditional methods, PINNs are mesh-free
and time-continuous, making them attractive for many complex
scientific applications. The growing interest in physics-informed
machine learning has led to the development of numerous software
libraries that offer an easy and efficient way to create PINNs. Some
of the popular libraries include DeepXDE [39], NVIDIA Modulus
[21], and SciANN [17].

While PINNs have shown great promise in solving problems
in small domains with simple geometries, they face challenges
when applied to larger domains. As the domain size increases, the
complexity of the problem also grows, necessitating larger networks
to capture the underlying features accurately. Since the PINN loss
function can be highly non-convex, larger networks can result in a
stiff and hard optimization problem, leading to significantly slower
convergence with reduced accuracy or no convergence at all [29, 54].
Additionally, training PINNs for large domains require significant
computational resources, which can limit their applicability to real-
world problems.

Domain decomposition [9] has emerged as a potential solution to
improve the scalability and convergence of neural PDE solvers on
large domains. This approach involves breaking down the challeng-
ing global optimization problem on the entire domain into many
smaller and simpler local optimization sub-problems. Table 1 sum-
marizes the different domain decomposition methods (DDM) that
have been developed for neural PDE solvers. They can be broadly
classified into two categories. The first category is non-overlapping
DDM, where the domain is divided into non-overlapping subdo-
mains. A separate neural network is trained on each subdomain,
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Table 1: State-of-the-art domain decomposition methods for neural PDE solvers. The overlapping approaches are based on
Schwarz methods or inspired by them as denoted by *. Unlike MosaicFlows which solves PDEs on arbitrarily large domains
using only neural network inferences, all other approaches require training a new model for each new domain.

DDM | Subdomains PINN formulation Interface Interface | Dist | Dist

condition resolved | alg | eval
DPINN [12] | non-overlapping | residuals loss terms training X X
XPINN [24, 49] | non-overlapping | residuals loss terms training v v
cPINN (25, 49] | non-overlapping | conservation laws loss terms training v v
hp-VPINNSs [27] | non-overlapping | variational residuals | loss terms training X X
DeepDDM [34] | overlapping residuals Schwarz training X X
D3M [32] | overlapping variational residuals | Schwarz training X X
FBPINN (7, 42] | overlapping residuals Schwarz* training 4 X
Mosaic Flow [53] | overlapping residuals Schwarz* inference | X X
Dist-MF (this paper) | overlapping residuals relaxed Schwarz | inference | v/ v

and continuity across subdomain interfaces is enforced using ad-
ditional interface terms in the PINN loss function. DPINN [12],
XPINN [24], cPINN [25], and hp-VPINN [27] belong to this cat-
egory. A key drawback of these approaches is inherent to their
design in enforcing continuity across the subdomain interfaces.
Since the interface conditions are only weakly constrained in the
loss function, it can lead to artificial discontinuities at the subdo-
main interfaces. The additional interface terms not only introduce
additional hyperparameters that need to be tuned to train the best
model, they can also compete with the PDE losses. This contention
can often slow convergence [56]. Nevertheless, they are relatively
simple to implement, and cPINN/XPINN have been parallelized
to scale to multiple GPUs, leading to reductions in training times
[49]. The second category is overlapping DDM, which divides the
domain into overlapping subdomains. In DeepDDM [34] and D3M
[32], PINNs replace the subdomain solvers with variants of the
classical Schwarz domain decomposition method [36]. FBPINN [42]
employs a separate input normalization in each subdomain and
summation over all subdomain networks. Continuity between inter-
faces is enforced via the construction of the PINN solution ansatz!.
It can also be cast in the form of additive, multiplicative, and hybrid
Schwarz methods [7]. In contrast to the above approaches that
require training separate neural PDE solvers on non-overlapping or
overlapping subdomains and resolving the interface between them,
Mosaic Flow [53] solves PDEs on larger domains using only infer-
ence. An iterative algorithm inspired by the alternating Schwarz
method updates the solution in subdomains using the pre-trained
network inferences while maintaining the spatial regularity of the
solution at subdomain boundaries. This eliminates the need to re-
train the neural network for each new domain, making Mosaic
Flow highly reusable across different domain sizes and significantly
reducing computational costs.

Contributions and Findings. We propose an end-to-end par-
allelization pipeline for scaling Mosaic Flow to large domains that
encompasses both training and inference.

e Training on small domains. We redesign the physics-
informed neural PDE solver with focus on performance and

1A solution ansatz is a mathematical form or assumption about the solution to a
PDE. It captures specific properties that the solution should satisfy, such as boundary
conditions or initial conditions.

scalability. The resulting network with an innovative in-
put embedding and optimized architecture, combined with
data-parallel training, reduces the training time for learning
the Laplacian operator from hours to just 2 minutes on 32
NVIDIA A30 GPUs.

¢ Inference on large domains. To enable scalable distributed
inferences using the pre-trained neural PDE solvers on arbi-
trarily large domains, we propose a relaxation in synchro-
nization. The relaxed distributed algorithm maintains accu-
racy as shown in Figure 1 while scaling up inferences to
domains 4096 times larger for solving the Laplace equation.
To the best of our knowledge, this is the largest domain
solved in seconds using 32 GPUs, combining DDM with
physics-informed neural PDE solvers as sub-domain solvers.
In addition, we demonstrate strong and weak scaling up to

32 GPUs.
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Figure 1: The leftmost sub-figure shows the solution using
PYAMBG to solve the Laplace equation on a 2x2 spatial domain
with 128x128 resolution. The boundary condition is generated
through a Gaussian process. The middle sub-figure shows
the result of using distributed Mosaic Flow predictor on the
same domain. The rightmost sub-figure shows the absolute
difference between the two.

2 BACKGROUND

This section begins with a brief introduction to the problem def-
inition and physics-informed neural PDE solvers. We then delve
into domain decomposition and elaborate on how Mosaic Flow
leverages this approach to implement large-scale physics-informed
neural solvers.
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2.1 Problem Definition

In this work, we develop SciML models to solve boundary value
problems (BVP) of the form

Dlu(x)] = f(x). x€Q

Blu(x)] = g(x), x € 0Q @

The vectors x are in the domain Q or on the domain boundary
0Q. The function u is the solution of the differential equation. The
differential operator is denoted by D, while B is the boundary oper-
ator. The forcing function is f, and g is the boundary function. A
classic example of a BVP is the 2D Laplace equation with a Dirichlet
boundary condition:

Au(x) =0, xeQ

2

u(x) =g(x), xe€Q @

where the vector x = [x,y] and A = (9%/9x? + 9% /dy?) is the
Laplacian operator [13].

2.2 Neural PDE Solvers

Neural PDE solvers (or neural solvers for short) [28, 35, 38] are a
type of model that learns to approximate the PDE solution oper-
ator and solve various instances of a BVP with different bound-
ary conditions. They are trained using a dataset that consists of
solved boundary value problems for a specific PDE. A neural solver
may take a discretized boundary function as input, denoted by
g= {g(x})c), .. .,g(iji)}, where x;w are N points sampled on the
boundary. g specifies the particular instance of the BVP to solve.
Therefore, an neural solver, represented by the function N (x, g; 0),
approximates the solution u(x) for the instance of the BVP deter-
mined by the boundary function g.

This study employs a special type of network called a physics-
informed neural PDE solver [46, 55]. While neural solvers trained
on labeled input-output pairs can learn the solution operator of a
PDE, their ability to generalize to out-of-distribution data, such as
boundary or initial conditions outside the training set, significantly
increases the demand on the training dataset size. In SciML, data is
often scarce and computationally expensive to generate. To address
this challenge, physics-informed neural solvers adopt a similar
strategy to PINNs by incorporating an additional PDE loss as a
form of regularization. This physics loss effectively constrains the
space of possible solutions, softly enforcing the PDE constraints.
By incorporating domain knowledge into the training process, the
model is more robust to noise and uncertainties present in the
dataset. As an example, for the Laplace equation, the PDE loss for
a batch of n collocation points X = {x1,...,x,} € Q is defined as

Lpae(X.§:0) = = 3 (WN(x1.6:0))° 3

1

Intuitively, as the loss function is minimized during training,
the PDE residual will approach zero, AN (x, g;0) — 0, indicat-
ing that the network approximately satisfies the Laplace equation
AN (x,g;0) =~ Au(x) = 0.
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2.3 Domain Decomposition

Domain decomposition methods are widely used in solving bound-
ary value problems [1, 9, 19]. These methods partition the domain
of a BVP into smaller subdomains, and then iteratively combine
solutions of the subdomains to develop the global solution. Do-
main decomposition methods enable scaling across multiple nodes,
making them a powerful tool for scaling PDE solvers.

The classic example of domain decomposition is the alternating
Schwarz method (ASM) [16, 47]. ASM relies on overlapping subdo-
mains to ensure continuity and information propagation between
subdomains. While Schwarz methods are commonly used as pre-
conditioners for Krylov methods [6], in this work we use a variant
of ASM as the solver.

Continuing with the Laplace example, the domain Q can be
partitioned into two subdomains Q; and Qg, such that Q1 N Qy # 0.
The subdomain interfaces are It = Q1 N Qg and I = Q1 N 9Qs.
To solve the global domain using ASM, the following routine is
applied iteratively:

Au;”l =0in Q Au;Jrl =0in Qy

n+1 n+l1 (4)

— N _ ,n+l
u; - =u, only u,  =uy;  only

The superscript denotes the iteration of the solution: u" is the
solution of subdomain i at iteration n. The process alternates be-
tween solving for u; and uy. The solution for u; is used to set the
interface condition on I';. Then, with this condition, we solve for u,.
Subsequently, the solution for u; is used to set the interface condi-
tion on I'. Schwarz proved the convergence of this iterative scheme
for general elliptic PDEs [47]. Lions proved that ASM can be used
to solve systems with an arbitrary number of subdomains, and a
parallel version of ASM exhibits similar convergence properties to
the original Schwarz method [36]. However, it is worth noting that
the convergence rate of Schwarz methods is signifiantly influenced
by the mesh parameter and overlap. A system consisting of many
subdomains with little overlap require more iterations to converge
compared to a system with fewer subdomains and greater overlap.
To address these issues, several improvements to the alternating
Schwarz method have been proposed [11, 15]. We leave exploring
these improvements to future work.

2.4 Mosaic Flow

Mosaic Flow [53] is a novel approach for solving BVPs on diverse
domains with arbitrary boundary conditions. It consists of two
primary components:

(1) The subdomain solver (SDNet) is a physics-informed neural PDE
solver trained to solve a BVP on a small domain with arbitrary
boundary conditions. Although this paper focuses on Dirichlet
boundary conditions, SDNet can also be used with Neumann or
Robin boundary conditions. SDNet’s effectiveness arises from
its ability to rapidly generate predictions for any point within
the domain. Note that while the boundary function input to
SDNet is discretized, the xy-coordinate can be in continuous
space. This is unlike finite difference or finite elements methods,
which require discretizing the interior of the domain [30].

(2) The Mosaic Flow predictor (MFP) illustrated in Figure 2 is an it-
erative algorithm that leverages pre-trained SDNet’s inferences
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Figure 2: MFP predicts the solution in new domains by combining SDNet predictions on atomic and overlapping subdomains.
Unlike traditional numerical methods and PINNs, MF predictor only infers the solution on interfaces of subdomains rather
than computing solutions for all grid or collocation points in the domain during each iteration.

to solve BVPs on large domains—much larger than those that
can be solved with a SDNet directly. The iterative algorithm
decomposes the domain into smaller atomic subdomains, and
updates the solution within each subdomain using SDNet’s pre-
dictions. It also ensures the spatial regularity of the solution
along the subdomain boundaries using overlapping subdomains,
inspired by the alternating Schwarz method. By utilizing SD-
Net as the sub-domain solver, MFP inherits its ability to make
predictions for arbitrary points within the domain. This feature
results in a significant performance advantage, as Mosaic Flow
can compute the solution for only a small fraction of grid points,
specifically the interfaces of the subdomains, as opposed to all
grid points in the entire domain, as done in classical ASM.

Mosaic Flow combines the efficiency of SDNet on small domains
with the scalability of MFP on larger domains, enabling the efficient
solution of complex BVPs.

3 NEURAL PDE SOLVER TRAINING

SDNet is a neural PDE solver designed to approximate solutions
to boundary value problems by taking a discretized boundary con-
dition g and the coordinates of a point x as inputs. N(x, §;0) ~
u(x;g), where u(-; g) is the solution to the BVP determined by the
boundary function g. By including the boundary condition in the
input, the network can be used across multiple unseen instances
of a BVP. However, this also results in a large input layer that,
in combination with a PINN loss function, can make the network
computationally expensive to train.

In the case of Mosaic Flow, the training of physics-informed
neural PDE solvers is restricted to a small domain for each PDE
type. However, even on small domains (e.g., spatial dimensions of
1 X 1), the training can take several hours (see Fig 6). To enable scal-
able training, performance-focused optimization and parallelization
across multiple GPUs are crucial. By optimizing the training pro-
cess, it becomes feasible to create a library of pre-trained SDNet
models for different PDE types, facilitating the solution of complex
multiphysics problems efficiently.

3.1 SDNet Model Overview

In general, our approach is agnostic of the choice of model for SD-
Net. For instance, one could use pure MLPs, a flavor of DeepONet
[38], or Fourier layers [35]. The architecture of the neural solver
used in this work, shown in Figure 3, is a variant of DeepONet
that we inherit and improve. We first apply 1D convolutions to the
input boundary conditions to create a high-dimensional embedding.
The reason for using 1D convolutions is to take advantage of the
inherent spatial structure of the boundary conditions, which can
be seen as a 1D curve along the boundary of the domain. By con-
volving this signal, we capture local patterns and relevant features
for predicting the solution within the domain. We anticipate this
treatment of the boundaries will enhance convergence performance
without affecting per-iteration performance, as convolutions are
computationally efficient. We choose not to use Fourier layers due
to the non-periodic nature of Dirichlet boundary conditions [35].
Although FNO can handle non-periodic boundaries, the combina-
tion of convolutions and fully-connected layers proves sufficient
for capturing global phenomena.

Next, we apply the input-split optimization discussed in Section
3.2 to the high-dimensional boundary embedding coupled with the
input x. The rest of the architecture is composed of a stack of linear
layers, each followed by a nonlinear activation function. We use
the GELU activation function [20] because PINN training tends to
have better convergence properties when using a smooth activation
function [48].

3.2 Optimized Input Embedding

A common input embedding in physics-informed neural PDE solvers
is to concatenate the spatial coordinates x with the discretized
boundary function g into a single input vector [38, 53]. However,
this input-concat approach is highly inefficient. For example, in a
square 2D domain discretized into an N X N resolution, inferring
the solution, u(x) at a single point x in the domain requires an in-
put vector of dimension 4N + 2. The discretized boundary function
g is a vector of dimension 4N and the additional 2 dimensions are
for the xy-coordinates.
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Figure 3: The architecture of the neural solver begins by convolving the input boundary condition, which results in a high-
dimensional embedding. Next, the split layer optimization is applied to the batches of boundary conditions and xy-coordinates.
The processed output is fed into a standard MLP, which approximates the solution of the PDE at the input points. Finally, the
model computes higher-order derivatives to enforce the PDE constraints in the loss function.

When inferring the solution of ¢ points in a batch, the input
becomes a g X (4N + 2) matrix I:

g, x1
g, x2
I=| . |=[G X] ®)

9. xq
where the matrix G € R?*4N is formed by replicating the vector
g for each point in the batch and the rows of X € R7%? are the
coordinates of the g points. Denoting the weights of the first layer
of the neural network as W € R¥*(4N+2) the output of this layer
is given by the matrix multiplication of I with W, followed by the

application of the activation function ¢. Mathematically, we can
express this as:

U=¢(IW") e R (6)

To reduce the computational cost and remove the redundancy in
G introduced by the input-concat approach, we split weight matrix
W e R¥X(4N+2) into two column blocks, denoted as W, € RI*X4N
and W, € R9%2, Using eq. (5), we can rewrite eq. (6) to arrive at
our optimized approach:

vog(fe X WT]> "
Wy
= $(gW] & XW,) ®)

where @ is a broadcasted sum along the second axis of XWZT . Note
that the discretized boundary condition g is no longer replicated for
each point in the input, but is computed only once and broadcasted
along the batch dimension. This reduces the overall number of
computations required by the network. With eq. (6), the cost of
the first layer is O(gNd). In comparison, with our optimized input-
split approach in eq. (8), the cost is reduced to O(Nd + gd). More
importantly, this reduces the memory requirement of input tensor
from q(4N +2) words to 4N +2q words; when q and N are large, this

saving can be substantial. The reduction in memory usage achieved
by the optimized approach makes it possible to scale training to
larger batch sizes.

3.3 Distributed Data Parallel Neural PDE solvers

After optimizing the network architecture, we accelerate the train-
ing of neural PDE solvers with a physics-informed loss using data
parallelism. Recall that when training a physics-informed model, we
use a loss function with multiple terms: £(6) = Ly414(0)+Lpqe (0)
where L j,;4(0) represents the data loss function. The loss function
that enforces the PDE constraints, £, (0) requires the computa-
tion of higher-order derivatives with respect to the model inputs.
In the case of the Laplace equation, this involves calculating the
second derivatives Nyx and Nyy. This results in a large autograd
graph that consumes significant device memory. The size of this
autograd graph limits the batch size on a single GPU, motivating
the need to scale up to multiple GPUs to improve performance. It is
worth noting that without the PDE loss, a purely data-driven model
could be trained with a larger batch size on a single device. How-
ever, such a model may exhibit physical inaccuracies and require
significantly larger dataset for training.

To efficiently train the network with multiple loss terms, we sep-
arate the data and collocation points into distinct forward passes.
This approach simplifies the application of different losses to their
respective coordinates, as the data loss can only be applied to points
with known solutions. However, when using distributed data par-
allelism (DDP), it is important to preserve the standard semantics
of stochastic gradient descent (SGD). In data-parallel training, the
model is replicated across different compute nodes, and local gradi-
ents are computed on each process. To synchronize gradients, an
allreduce [4] operation is commonly used, where the gradients are
averaged across processes. To maintain the correct semantics of
SGD, we must be mindful of when gradient synchronization occurs.
If synchronization occurs after both forward passes, it will compute
a sum of averages rather than a true global average. Although this
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approach may yield satisfactory results in practice, it does not offer
the same convergence guarantees.

Algorithm 1 SDNet Training Iteration

. G is a batch of discretized boundary functions

. Xdata 1s a batch of points with known solutions
Xcollocation 1s @ batch of points with unknown solutions
: Step 1: Solve Data Points

Pgasa = N(G, Xgata; 0)

Vaata = VLdara(Pata; 9)

: Step 2: Solve Collocation Points

Peotiocation = N(G, Xcollocations 0)

V =Viaa + V-Lpde(Pcollocation; 0)

. Step 3: Perform allreduce on gradient V

R N A B A

—_
=)

To maintain consistency with SGD and ensure reliable conver-
gence, we propose the method outlined in Algorithm 1 for each
training iteration. In step 1, the forward and backward passes are
computed for the data points (lines 5-6) on each process without
averaging gradients across processes. Then, in step 2, we apply the
forward and backward passes for the collocation points (lines 8-9).
The gradients for the collocation points are accumulated onto the
gradients for the data points (line 9), and this sum is subsequently
averaged across all processes using the allreduce operation in step
3. The averaged gradients are applied locally on each device, ensur-
ing consistency. The proposed approach not only ensures accurate
gradient accumulation but also offers the advantage of performing
a single allreduce operation per training iteration, instead of two
separate operations for data and collocation points. This optimiza-
tion reduces communication overhead and enhances the scalability
and efficiency of the training process.

4 PARALLEL AND DISTRIBUTED INFERENCE

The baseline MFP [53] has limited scalability, as we show in Sec-
tion 5.3. This constraint significantly hampers its capacity to solve
BVPs on large domains. Our approach to addressing this limita-
tion includes two strategies: increasing device-level parallelism and
formulating the distributed MF predictor algorithm for multi-GPU
scaling. The algorithm is designed to harness the inherent strengths
of the baseline MFP, while simultaneously extending its scope to
BVPs on significantly larger domains.

4.1 Batched Inference with Atomic Subdomains

The baseline MFP adopts a sequential approach to solve subdo-
mains, which ensures that all predictions are based on updated
boundary conditions. Empirical evidence suggests that relaxing
this can have a negative effect on prediction accuracy. However,
by observing Figure 2, it becomes evident that atomic subdomains
within each iteration of the algorithm do not overlap. This creates
an opportunity for concurrently predicting these non-overlapping
subdomains. To leverage this, we implement a batching technique
that combines the atomic subdomains as input for SDNet inference.
This effectively increases GPU occupancy by exploiting device-level
parallelism as demonstrated in Section 5.3.

Arthur Feeney, Zitong Li, Ramin Bostanabad, and Aparna Chandramowlishwaran

4.2 Domain Parallelization for Distributed
Inference

The MFP takes the boundary conditions of subdomains as its input.
During the development of the distributed algorithm, a key factor
is both accurately and effectively managing updates to boundary
conditions within overlapping regions. The boundary information
of the subdomains can be organized into a Cartesian grid. In the
example illustrated in Figure 2, the distance between neighboring
grid points is %m, which is a tunable hyperparameter. Choosing a
smaller distance allows for more subdomains to be placed in the
domain, potentially resulting in more accurate results. However,
this also leads to increased computation and communication costs,
as shown in Section 4.3. In this study, we choose a value of %m
because it is the largest distance we can use without significantly
sacrificing accuracy.

To design a parallel algorithm for the MFP, we first divide the
global domain into a 2D grid, where each block is assigned to a
processor. The processors are assigned to this 2D grid in a row-wise
scan pattern. It is worth noting that a processor mapping strategy
based on locality-preserving space-filling curves such as Morton or-
der [41] or Z-order could provide better load balancing and reduced
data movement [45], although we leave this for future studies. We
refer to the region owned by a processor as the processor subdomain.
In order to iteratively approach the final solution using Schwarz
methods, neighboring processor subdomains need to communicate
boundary information. To enable this exchange of information, we
give each processor additional halo boundary information from its
neighboring processor subdomains. Figure 4 illustrates the distribu-
tion of processor subdomains and how the boundary information
is exchanged between processors.

Our proposed distributed algorithm is outlined in algorithm 2,
where ¢, €, g, SDNet, and n respectively denote the maximum num-
ber of iterations, convergence threshold, global boundary condi-
tion, the pre-trained SDNet model, and the neighbors of the current
processor. We use the hat notation to denote a local variable (for
example, go denotes the local part of g¢). The algorithm can be
conceptually divided into two phases. The first phase is the iter-
ation loop from line 2 to line 9. In each iteration, the boundary
information of the local atomic subdomains is input to the pre-
trained SDNet, which predicts the values only along the center
lines of these atomic subdomains (line 3). Since the center lines of
one subdomain are the boundary of another, these predictions are
subsequently input to SDNet for the next iteration. After the infer-
ence step, the boundary information in the region where processor
subdomains overlaps is packed into a contiguous buffer and sent to
the corresponding neighbors with communicate_new_boundaries
in line 4. Figure 4 provides a graphical illustration of which parts of
the boundaries are being communicated. The second phase starts
after ¢t iterations or upon reaching the convergence threshold. In
this phase, each processor uses the most recent atomic subdomain
boundaries as input for SDNet, to predict the values at every grid
point within each atomic subdomain, forming the local solution
S (line 10). Finally, an all_gather is performed to collect the dis-
tributed subdomains. In the region where processor subdomains
overlap, the final solution is obtained by computing the average of
the predictions.
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Figure 4: o illustrates a N X N domain distributed among a 3 X 3 processor grid and the placement of non-overlapping atomic
subdomains on the entire domain. We omitted some of the processors in these figures to avoid cluttering. @) zooms in on the
region encompassing the subdomain owned by P;. It highlights the boundaries sent to P4 by its neighbors. The red lines indicate
boundaries received by P4 from its diagonal neighbors: [Py, P2, Ps, Pg]. The purple lines indicate boundaries received by P4 from
its orthogonal neighbors: [Py, P3, Ps, P7]. €) shows the stencil communication pattern for exchanging boundary information.
For processors on the four boundaries, the communication group will not include all 9 processors.

Algorithm 2 Distributed Mosaic Flow Predictor

1: function PREDICT(Z, €, SDNet, go, n)

2 for iin 1:t do

3 gi = SDNet(gi-1)

4: gi = communicate_new_boundaries(g;, n)
5: 8= gi — gi-1ll/11gi-1ll

6 if § < € then

7 break

8 end if

9: end for

10: S =SDNet(g;)

11: all_gather(S)

12: S = combine all § and average over the overlapping regions
13: return S

14: end function

To design a scalable algorithm, we partially relax the order of
subdomain updates in the baseline algorithm to balance accuracy
requirements with communication efficiency. In the algorithm illus-
trated in Figure 2, as subdomains are solved by SDNet, the update
to the boundary information inside the subdomain is applied imme-
diately. However, when processors solve subdomains on the over-
lapped region, the update to the boundary information cannot be
reflected in the neighboring processor until the communication step.
In our parallel algorithm, we relax this principle by communicating
only once per iteration. This relaxation in synchronization not only
reduces the communication frequency but also makes the commu-
nication pattern agnostic to subdomain placement schemes. It is
worth highlighting that the baseline principle of immediate updates
to boundary information still holds within individual processor
subdomains. This relaxation is similar to the algorithm proposed
by Lions [36], which was proven to converge to the global solution.

Empirical results in Section 5.3 show that this modification does
not prevent the distributed MFP from finding accurate solutions.

4.3 Cost Analysis

We now analyze the costs associated with the distributed MF Pre-
dictor. Suppose the global domain has a resolution of N X N and is
distributed across P processors arranged in a VP x VP grid. The res-
olution of each subdomain is m X m. As a result, each processor is as-

signed a subdomain consisting of —~= x —Y¥_ non-overlapping sub-
g g VP mvP pping

domains. Assuming that the subdomain boundaries form a Carte-
sian grid with interval 2, and the overlapping region is 2<dd_1) m

(dN)?

wide along each subdomain boundary, there are ~—
in each processor with all eight neighbors. Using the alpha-beta
model and removing the trailing terms, the communication cost of
each processor is Ceomm = 8la + %1(16%), where a models the

subdomains

network latency and f models the network bandwidth.

Since communication is performed in every iteration, both the
bandwidth and latency cost scale linearly with the iteration count.
As the communication is limited to each processor and its immedi-
ate neighbors, the latency cost is not influenced by P or N. Band-
width cost increases linearly with %, which is the length of one

side of each subdomain, and d, which controls how dense the sub-
domains are placed. Denoting the computation cost of making 1
SDNet inference as ¢, we can express the computation cost of each
processor as Ceomp = ¢ (fnfgz. From this, we expect the compu-
tation cost to scale linearly with the number of processors. Note
that we assume communication can be carried out simultaneously
with all neighbors in our analysis, which may not always hold in

practice.
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5 RESULTS AND DISCUSSION

We perform two sets of experiments to assess the performance of
training and inference. First, we evaluate SDNet training across
multiple GPUs to analyze per-iteration performance and the impact
of scaling on convergence. We present results on multiple GPU
clusters, as detailed in Table 2, to gain a deeper understanding
of the impact of optimizations discussed in Section 3. Second, we
evaluate the performance and scalability of distributed MFP on
unseen domains that are significantly larger than the input seen by
SDNet during training. Ground truth data for both experiments is
generated using the approach described in Section 5.1.

V100 A30 A100
Architecture Volta Ampere | Ampere
Peak FP32 14 TF 10.3 TF 19.5 TF
GPUs/node 4 4 2
Nodes 13 14 4
Memory 16GB 24GB 80GB
(HBM2) | (HBM2) | (HBM2e)
Memory Bandwidth | 900 GB/s | 933 GB/s 2TB/s
Intra-node Interconnect | 32 GB/s | 200 GB/s | 600 GB/s
(PCle) | (NVLink) | (NVLink)
Inter-node Interconnect 100 Gbits/s
(ConnectX-5 Infiniband)

Table 2: GPU evaluation platforms and their specifications.

5.1 Data Generation

We generate two distinct datasets: one for training SDNet and
another for evaluating the MFP. The training dataset consists of
small domains of fixed size, while the test dataset includes larger
domains of arbitrary sizes. To construct these datasets, we generate
boundary conditions using Gaussian processes and follow a similar
approach to the original Mosaic Flow paper [53]. First, we use a
Sobol Sequence [50] to sample the hyperparameters of an infinitely
differentiable Gaussian kernel of a 1-dimensional Gaussian process.
Then, from each Gaussian process, we draw a sample function
(i.e., a 1-D curve). This function serves as the discretized boundary
function g described in Section 2. Each boundary value problem
for the Laplace equation is solved using pyAMG. [2].

5.2 SDNet Training

Train Dataset. We use the methodology described in Section 5.1
to generate a dataset of 20,000 boundary conditions for domains
with a resolution of 32 X 32 and spatial dimension of 0.5 X 0.5.
The pairs of boundary conditions and sample solutions form our
training dataset. We use 90% of this dataset for training and hold
out the remaining 10% as a validation set.

Hyperparameters. We perform hyperparameter tuning to de-
termine the optimal values for several parameters, including the
maximum learning rate, the fraction of iterations used for learning
rate warmup, the learning rate schedule, the number of epochs,
weight decay, and the number of points per subdomain. We do this
tuning using a single GPU and select a sufficiently large batch size
to ensure efficient GPU utilization. The tuned hyperparameters we
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use are as follows: a maximum learning rate of 0.001, using 0.1%
of iterations for learning rate warmup, using polynomial learning
rate decay with the exponent set to one, training for 500 epochs,
and setting the coefficient for weight decay to zero.

For experiments with varying GPU counts, we reuse the same
hyperparameters from the single GPU case, with two modifications:
(a) We scale the maximum learning rate by the square root of
the increase in batch size. (b) The fraction of iterations used for
learning rate warmup is scaled linearly with the increase in batch
size [14, 57].

Finally, as we increase the number of GPUs, the number of points
per batch can reach tens of thousands. We adopt the Lamb optimizer
[57], which we find yields better convergence than AdamW [37]
when scaling to larger batch sizes and multiple GPUs. Specifically,
we utilize the implementation of FusedLAMB from Nvidia Apex.

Training Methodology. To train the SDNet, we employ a loss
function with two terms: a data loss and a PDE loss. The data
loss is a mean squared error using the pyAMG solution as the
ground truth. The PDE loss is the PDE residual applied at the
collocation points. It requires computing higher order derivatives
with respect to the model inputs. Despite the relatively small size
of our models compared to state-of-the-art vision and language
models, the autograd graph generated during training consumes
a significant amount of device memory. This memory constraint
severely limits the batch size that can be used on a single GPU,
which motivates the distributed data parallel approach to training.
As seen in Figure 5, we can scale inference to process hundreds of
thousands of subdomains at a time, but merely hundreds during
training. Even for a relatively simple PDE like Laplace, a single
model update requires three backward passes: (a) a backward pass
to compute the derivatives w.r.t x and y, (b) a second backward
pass to compute the second derivatives w.r.t. x and y and (c) a final
backward pass, through the prior two gradient computations. We
measure the maximum memory allocated during the forward and
backward passes of the model. The results, presented in Table 3,
highlight the difference in memory usage with and without the PDE
loss. The inclusion of the PDE loss leads to a significant increase
in memory consumption, primarily attributed to the storage of
intermediate activations in the autograd graph.

# Domains | No PDE Loss | With PDE Loss

5 0.05 GB 0.503 G
320 2.77 GB 15.11 GB
640 5.54 GB OOM

Table 3: Memory allocated during the forward pass, loss com-
putation, and backward pass on a single V100 GPU with and
without PDE loss. OOM indicates “out of memory”.

We implement data parallel training using PyTorch Distributed.
A key advantage of PyTorch’s implementation of DDP training is
the ability to overlap communication with the current backward
pass [33]. This is unlike other frameworks, like Horovod, which
overlap communication with the following forward pass. It is im-
portant to ensure that communication overhead does not dominate
the overall execution time. Since our models are relatively small,
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Figure 5: SDNet inference and training performance with varying batch sizes. optimized model utilizes the split-layer optimiza-
tion, while the baseline model is a standard neural PDE solver. Each point is the average of 30 trials. The variance is near zero
in every case. This plot shows both how the split-layer optimization improves performance, and enables scaling to larger batch
sizes. For instance, the baseline models reach memory limits at a batch size of 10,000 points, while the optimized models can
scale to larger batch sizes, processing up to 50, 000 points during inference.
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Figure 6: SDNet multi-GPU performance and impact on convergence. (a) shows the MSE of the validation set as a function
of the epoch count. (b) illustrates the runtime improvements with increasing A30 GPUs. Both (a) and (b) report the median
validation MSE across 10 models initialized with different random seeds. The bands represent the 95% confidence interval of the
median [22, 31]. Note that (a) and (b) are plotted on a logio scale and all models achieve final MSEs within 1.5 x 107° of the single
GPU case. (c) shows the average time, across 10 trials, taken by each model to reach an MSE of 2.5 x 1079, which corresponds to
the mean MSE of the final epoch with 32 A30 GPUs. The bands in (c) represent the standard deviation.

the forward passes are typically inexpensive. Therefore, overlap-
ping communication with the current backward pass improves the
efficiency of training our models.

Training Performance. We implemented several optimizations
that result in much faster training compared to a baseline neural
solver. First, we implemented the split layer, which significantly
reduces redundant computation in the first layer of the network.
This optimization is also important for the performance of model
inference in the MFP, as seen in Figure 5. Second, we apply a series
of 1-dimensional convolutions to the input boundary conditions,
which form a smooth curve. Convolutions are cheap to compute,

so this optimization has essentially no effect on the per-iteration
performance of the MFP, but improves the convergence rate of the
SDNet. Finally, we scale model training across multiple GPUs.
Figure 6 shows the performance and accuracy of SDNet when
scaling the number of GPUs. Although, we observe a slight negative
impact on the validation MSE, all models achieve final MSEs within
1.5 X 10~ of the model trained on a single A30 GPU. Notably, the
model trained on one GPU takes over 30 minutes to reach an MSE
of 2.5 X 107, while 32 GPUs reduces the training time to just two
minutes to reach the same MSE, resulting in a speedup of 12x.
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To compare the effectiveness of the SDNet models as sub-domain
solvers for MFP, we additionally evaluate each SDNet on test prob-
lems of different sizes, as shown in Figure 7. Despite the slight
variations in the validation set’s MSE (see Figure 6), we observe
consistent MAE across all models. This indicates that all models
exhibit comparable accuracy and are equally reliable as sub-domain
solvers for MFP.

GPUs

0.04
0.035 .
0.03 = 16
0.025 " 32
w
< o002
=
0.015
0.01
0.005
0
64 x 64 128x128 256 x 256

Domain Resolution

Figure 7: MAE of the MFP, using models trained with vary-
ing GPU count. The discretized boundary function for each
domain is g(x) = sin(2zx). This illustrates that the small
changes in MSE seen in Figure 6 have little affect on the MFP,
which makes prediction of similar quality with each model.

5.3 MF Predictor Performance

We implement the distributed MFP in Python. For GPU-to-GPU
communication, we use mpi4py [5], which is built with a CUDA-
aware MPI library to enhance communication performance. To
generate boundary conditions and ground truth solutions of the
Laplace equation on larger domains, we use the method described
in Section 5.1. We evaluate both batched inference for device-level
parallelism and distributed inference for node-level parallelism.

Batched Inference. In this experiment, we assess the perfor-
mance improvement achieved by batching the atomic subdomains
during each iteration of the MFP (as discussed in Section 5.3). We
compare this batched approach to the original unbatched algorithm,
which predicts one subdomain at a time using SDNet. The results
in Figure 8, shows the impact of batching when scaling the domain
size from 1X2 to 16X 16 (i.e., resolutions from 64x 128 to 1024x1024).
In the unbatched approach, time increases linearly with the domain
size. However, with batching subdomains, we observe a significant
improvement in GPU utilization, resulting in about 50% of the peak
performance. Note that since atomic subdomain inferences are in-
dependent, batching improves performance by up to 100X without
sacrificing accuracy.

Distributed Inference. We conduct both strong and weak scal-
ing studies to evaluate MFP on multiple GPUs. In the strong scaling
experiments, we consider a BVP for the Laplace equation with a
spatial domain size of 32 X 32 (2048 X 2048 resolution). This domain
is divided into 4096 atomic subdomains where each subdomain is of
size 0.5 X 0.5. The global boundary condition is generated using the
same process described in Section 5.1. The MFP terminates when
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Figure 8: Performance of batched vs. unbatched atomic sub-
domains on a single GPU with increasing domain sizes. Time
per iteration is calculated by averaging over 100 iterations.

the MAE of the solution drops below 0.05. The results, shown in
Figure 9a, demonstrate a clear trend of decreasing computation time
and an increasing percentage of communication time as we scale
from 1 to 32 GPUs. The total runtime reduces from approximately
15 minutes (~ 880 seconds) to less than 2 minutes (~ 90 seconds),
resulting in a speedup of almost 10X on 32 A30 GPUs.

As discussed in Section 4.2, updates in the overlapping regions
along the borders of processor subdomains are not immediately
reflected since the data is distributed. Therefore, as we decompose
a domain into more (and smaller) processor subdomains, a larger
percentage of the boundary information becomes stale. This can
lead to a degradation of the convergence rate of the distributed
MFP algorithm. In the strong scaling experiment, we investigate
the impact of the distributed algorithm on the convergence rate.
We record the number of iterations required to reach an MAE of
0.05 and present the results in Table 4. As the number of processors
increases, we observe a slight increase in the number of iterations
required to reach the specified MAE. However, note that the benefits
of parallelization and the reduction in computation time outweigh
the slight increase in the number of iterations, leading to improved
overall performance.

GPUCount | 1 | 2 | 4 | 8 | 16 | 32
Iterations | 3200 | 3250 | 3250 | 3300 | 3400 | 3500
Table 4: The number of iterations required to achieve a MAE
of 0.05 for different GPU counts. The corresponding runtimes

are shown in Figure 9a.

We also perform a weak scaling experiment with an increas-
ing number of processors while keeping the spatial size of each
processor subdomain fixed at 16 X 8 (1024 X 512 resolution), this
result is shown in Figure 9b. Computation scales well, as the only
additional computation cost is to average across regions where
processor domains overlap. However, the communication scaling
is less optimal. We see around 4X increase going from 2 to 8 GPUs,
which then plateaus. This increase is likely due to high latency cost
as the number of messages sent by each processor increases with
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an increasing number of neighbors from 2 to 8 GPUs. We don’t see
a noticeable improvement in performance with CUDA-aware MPI
compared to standard MPI, potentially due to the small buffer sizes
of send/recv communication where latency dominates the over-
all communication performance [5]. The increased latency cost is
further exacerbated by mpi4py, which serializes Pytorch tensors be-
fore communication. Techniques that leverage direct GPU-to-GPU
communication through NVSHMEM [23] are potential alternatives
to reduce this communication overhead.

Open problems. Systems challenges — One approach to address-
ing the latency overhead is to convert a latency-bound algorithm to
a bandwidth-bound algorithm. This can be achieved by reducing the
communication frequency. In the current implementation, each pro-
cessor exchanges boundary information with its neighbors during
every iteration. However, communicating less frequently introduces
a trade-off with redundant computation. Given that compute scales
significantly better than communication (both bandwidth and la-
tency), communication-avoiding algorithms are worth exploring.
Nonetheless, there is a communication lower bound that cannot be
avoided, in which case, overlapping communication with compu-
tation can further push the scaling ceiling. It is worth noting that
communication-overlapping algorithms have been well-studied in
the context of numerical simulations [23, 45, 52]. However, neural
PDE solvers can be significantly faster than numerical solvers. In
contrast to large language models, current neural models for approx-
imating PDEs are notably smaller. Additionally, batched inference
only requires a forward pass (no expensive higher-order gradient
computation). Consequently, communication becomes the bottle-
neck for scaling even on smaller GPU clusters. Studying the trade-
offs of communication-avoiding and communication-overlapping
algorithms in the context of distributed neural PDE solvers remains
a promising direction for future research.

Algorithmic challenges — For BVPs, where you are interested in
finding a solution that satisfies specific boundary conditions within
a domain, information needs to be exchanged across the entire do-
main. For this reason, one-level Schwarz methods require a global
coarse grid correction to scale to a large number of subdomains
for solving BVPs [10]. FBPINN extended to multiple levels of over-
lapping domain decomposition demonstrates improved accuracy,
specifically for large number of subdomains, implying that coarse
levels are necessary for efficient global information propagation in
large domains [8]. However, for time-dependent problems, where
the solution evolves over time, information typically only needs to
be exchanged between neighboring subdomains. As time advances,
information is propagated across the domain as adjacent subdo-
mains continually share their updated information. We hypothesize
that distributed Mosaic Flow coupled with one-level Schwarz is
optimal for exploring neural domain decomposition methods to
solve time-dependent PDEs [18, 51].

6 CONCLUSIONS

The hybrid parallelization scheme presented in this paper shows
promise in scaling physics-informed neural PDE solvers to large
domains using a combination of data parallel training and domain
parallelization. The SDNets can be trained in minutes, allowing
for the creation of a library of models for different PDEs. The
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Figure 9: Strong and weak scaling of MFP. We average the
results across 5 trials. “Boundaries 10" refers to reading sub-
domain boundaries for SDNet and updating them with the
prediction from SDNet.

MF Predictor demonstrated accuracy when scaling up to 32 GPUs.
Overall, this work opens up avenues for future research in the
field of physics-informed machine learning. There is still room for
improvement by exploring other domain decomposition methods
and improved Schwarz methods, such as using a coarse correction
[10] or Optimized Schwarz methods [15], and extending DDM for
time-dependent neural PDE solvers.
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Appendix: Artifact Description/Artifact Evaluation

ARTIFACT IDENTIFICATION

Mosaic Flows is a novel domain decomposition method for scaling
physics-informed operator networks to large domains. It contains
two parts: a Subdomain Network (SDNet) and the Mosaic Flows
(MF) predictor. SDNet is an operator network trained to solve a
certain partial differential equation on a small domain. The MF
predictor decomposes a large domain into smaller overlapping
subdomains and uses SDNet to solve these subdomains. After many
iterations of solving overlapping subdomains, it will converge to
the PDE solution. In this work, we propose methods to substantially
accelerate both the training of SDNet and MF predictor through
distributed computing and sequential optimizations.

The source code in our artifact implements the methods de-
scribed in the article and we provide all of our visualization scripts.
We provide training scripts and sample hyperparameters that can be
used to reproduce the results for training performance scaling and
accuracy. Similarly, we provide a script implementing the MF Pre-
dictor. Pre-trained checkpoints are provided, which will reproduce
the reported accuracies.

The SDNet and the MF predictor are implemented with Python
and rely heavily on PyTorch and its new distributed communication
library. We use PyTorch’s automatic differentiation to compute the
higher-order derivatives. For each training run we write errors
and iteration runtimes to a TensorBoard log file. From this, we
reconstruct per-iteration latencies and times for a full training run.

The performance results reported in the article are also generated
directly through testing the software described here. Using the
appropriate parameters, which are provided in sample scripts, the
accuracy of the SDNet can be reproduced approximately. Similarly,
the SDNet checkpoints provided can be used to reproduce the
accuracy of MF predictor. While they can not be reproduced exactly,
the general performance trends for both SDNet and MF predictor
should also be reproducible on any hardware.

Generally, the artifacts we provide will enable reproducing the
trends of our experiments, but will generally not allow for exact
reproduction.

REPRODUCIBILITY OF EXPERIMENTS

There are two separate workflows in our work: one is for training
the SubDomain Network (SDNet) and the second is for testing the
Mosaic Flows (MF) Predictor.

Subdomain Network (SDNet) Training. First, we describe the
steps for training. Our training scripts require a Linux cluster with
at least interconnected 32 GPUs, Python, NCCL, and an assortment
of common Python Libraries (such as PyTorch). When using Nvidia
V100 or A30 GPUs, The training time can vary from several minutes
to several hours depending on the number of GPUs used and the
target accuracy. To reproduce the training experiments, one must
run the submission script with the desired number of GPUs. The
training script saves checkpoints for the model every 200 epochs.

Additionally, it checkpoints the model that achieves the lowest
validation error and the final model state after the last iteration.

All of the runtime data will be logged automatically. The Ten-
sorBoard log files include run times for each training iteration
and various error metrics like the mean squared error, mean ab-
solute error, and PDE residuals. The visualization scripts take the
corresponding log directory as a command-line argument. The vi-
sualization scripts parse the TensorBoard log files and can construct
the error plots with respect to the number of iterations, wall time,
or number of epochs.

The results produced by the visualization scripts should look
quite similar to the plots presented in the paper. Some figures are
the combination of several separate plots, but each individual plot
should match nicely with the reproduction. The main training script
is “gfnet_torch_distributed.py” and can be run on a slurm cluster
using the sample submissions script “torch_dist_loss_limit.sh".

Mosaic Flows (MF) Predictor. The following steps describes
how to reproduce the strong scaling result presented in the article.
This workflow requires a Linux cluster with at least 32 GPUs with
python, jupyter, NCCL, and the required python libraries such as
PyTorch properly installed. Each of the 3 experiments mentioned
below typically takes less than an hour to finish, however this time
may vary depending on the software and hardware configuration
of the system used.

(1) In a cluster with the Slurm job scheduling system, navigate
to src/mf inside the code repository.

(2) Run sbatch strongScaling.sub to submit a job that runs
the MF predictor to solve the Laplace equation on the 32 x 32
domain with increasing number of GPUs. (This job script
is written for Slurm, if the system uses other job schedul-
ing tools, changes to the job script have to be made before
running it.)

(3) The output of this job will be two series of . csv files in the

src/mf/figure directory. The first series contains the time

performance of each run. The second contains the accuracy
of each run.

Run the jupyter script

—~
N
=

sc23-mosaic-flows/src/mf/figure/strongScaling.ipynb

to reproduce the figures.

In general, the reproduced result should show the runtime decreases
linearly with the number of processors used. Running the steps
above should reproduce the exact same accuracy result presented
in the article.

Weak scaling can be reproduced with very similar steps men-
tioned above with the following changes:

(1) Run sbatch weakScaling.sub to submit the job.

(2) Runsc23-mosaic-flows/src/mf/figure/weakScaling.ipynb

to reproduce the figure.

In this case, the runtime of each run is expected to increase slightly
as the number of processors increase, with most of the increase
coming from the increase in communication cost.
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The experiment results that compares the sequential optimiza-
tion can also be reproduced with very similar steps with the follow-
ing changes:
(1) Run sbhatch batchVunBatch. sub to submit the job.
(2) Runsc23-mosaic-flows/src/mf/figure/batchVsUnbatched.ipynb
to reproduce the figure.
In this case, we can expect to see the runtime of the batched ver-
sion to be significantly shorter than the runtime of the unbatched
version.
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