
Breaking Boundaries: Distributed Domain Decomposition with
Scalable Physics-Informed Neural PDE Solvers

Arthur Feeney
∗

Zitong Li
∗

afeeney@uci.edu

zitongl5@uci.edu

University of California, Irvine

USA

Ramin Bostanabad

raminb@uci.edu

University of California, Irvine

USA

Aparna Chandramowlishwaran

amowli@uci.edu

University of California, Irvine

USA

ABSTRACT
Mosaic Flow is a novel domain decomposition method designed

to scale physics-informed neural PDE solvers to large domains.

Its unique approach leverages pre-trained networks on small do-

mains to solve partial differential equations on large domains purely

through inference, resulting in high reusability. This paper presents

an end-to-end parallelization of Mosaic Flow, combining data paral-

lel training and domain parallelism for inference on large-scale prob-

lems. By optimizing the network architecture and data parallel train-

ing, we significantly reduce the training time for learning the Lapla-

cian operator to minutes on 32 GPUs. Moreover, our distributed

domain decomposition algorithm enables scalable inferences for

solving the Laplace equation on domains 4096× larger than the

training domain, demonstrating strong scaling while maintaining

accuracy on 32 GPUs. The reusability of Mosaic Flow, combined

with the improved performance achieved through the distributed-

memory algorithms, makes it a promising tool for modeling com-

plex physical phenomena and accelerating scientific discovery.

CCS CONCEPTS
• Computing methodologies→ Neural networks; Distributed
algorithms; • Mathematics of computing → Partial differen-
tial equations.

KEYWORDS
Physics-informed machine learning, neural operators, domain de-

composition, large-scale PDEs, data parallel training, scalable dis-

tributed inference

ACM Reference Format:
Arthur Feeney, Zitong Li, Ramin Bostanabad, and Aparna Chandramowlish-

waran. 2023. Breaking Boundaries: Distributed Domain Decomposition with

Scalable Physics-Informed Neural PDE Solvers. In The International Con-
ference for High Performance Computing, Networking, Storage and Analysis
(SC ’23), November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3581784.3613217

∗
Both authors contributed equally to this research.

SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0109-2/23/11.

https://doi.org/10.1145/3581784.3613217

1 INTRODUCTION
Scientific machine learning (SciML) is an emerging field that aims

to integrate scientific knowledge into the development of machine

learning models. By leveraging domain expertise, SciML reduces

the reliance on massive datasets that are often scarce or difficult

to create in many scientific fields, such as fluid dynamics [3]. To

achieve this integration, researchers have proposed various inno-

vative strategies, ranging from incorporating scientific principles

into deep neural network architectures and loss functions, develop-

ing hybrid models, using transfer learning and domain adaptation

techniques, and employing Bayesian techniques [26, 40, 43, 44].

Among the above approaches, physics-informed neural networks

(PINNs) have shown promise for solving complex problems that in-

volve partial differential equations (PDEs) by incorporating physical

laws and constraints [46]. By softly enforcing PDE constraints in the

loss function, PINNs can learn from limited data and still provide ac-

curate predictions. Unlike traditional methods, PINNs are mesh-free

and time-continuous, making them attractive for many complex

scientific applications. The growing interest in physics-informed

machine learning has led to the development of numerous software

libraries that offer an easy and efficient way to create PINNs. Some

of the popular libraries include DeepXDE [39], NVIDIA Modulus

[21], and SciANN [17].

While PINNs have shown great promise in solving problems

in small domains with simple geometries, they face challenges

when applied to larger domains. As the domain size increases, the

complexity of the problem also grows, necessitating larger networks

to capture the underlying features accurately. Since the PINN loss

function can be highly non-convex, larger networks can result in a

stiff and hard optimization problem, leading to significantly slower

convergencewith reduced accuracy or no convergence at all [29, 54].

Additionally, training PINNs for large domains require significant

computational resources, which can limit their applicability to real-

world problems.

Domain decomposition [9] has emerged as a potential solution to

improve the scalability and convergence of neural PDE solvers on

large domains. This approach involves breaking down the challeng-

ing global optimization problem on the entire domain into many

smaller and simpler local optimization sub-problems. Table 1 sum-

marizes the different domain decomposition methods (DDM) that

have been developed for neural PDE solvers. They can be broadly

classified into two categories. The first category is non-overlapping
DDM, where the domain is divided into non-overlapping subdo-

mains. A separate neural network is trained on each subdomain,

This work is licensed under a Creative Commons Attribution International
4.0 License.

https://doi.org/10.1145/3581784.3613217
https://doi.org/10.1145/3581784.3613217
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3613217&domain=pdf&date_stamp=2023-11-11

SC ’23, November 12–17, 2023, Denver, CO, USA Arthur Feeney, Zitong Li, Ramin Bostanabad, and Aparna Chandramowlishwaran

Table 1: State-of-the-art domain decomposition methods for neural PDE solvers. The overlapping approaches are based on
Schwarz methods or inspired by them as denoted by ∗. Unlike MosaicFlows which solves PDEs on arbitrarily large domains
using only neural network inferences, all other approaches require training a new model for each new domain.

DDM Subdomains PINN formulation Interface Interface Dist Dist

condition resolved alg eval

DPINN [12] non-overlapping residuals loss terms training ✗ ✗

XPINN [24, 49] non-overlapping residuals loss terms training ✓ ✓

cPINN [25, 49] non-overlapping conservation laws loss terms training ✓ ✓

hp-VPINNs [27] non-overlapping variational residuals loss terms training ✗ ✗

DeepDDM [34] overlapping residuals Schwarz training ✗ ✗

D3M [32] overlapping variational residuals Schwarz training ✗ ✗

FBPINN [7, 42] overlapping residuals Schwarz
∗

training ✓ ✗

Mosaic Flow [53] overlapping residuals Schwarz
∗

inference ✗ ✗

Dist-MF (this paper) overlapping residuals relaxed Schwarz inference ✓ ✓

and continuity across subdomain interfaces is enforced using ad-

ditional interface terms in the PINN loss function. DPINN [12],

XPINN [24], cPINN [25], and hp-VPINN [27] belong to this cat-

egory. A key drawback of these approaches is inherent to their

design in enforcing continuity across the subdomain interfaces.

Since the interface conditions are only weakly constrained in the

loss function, it can lead to artificial discontinuities at the subdo-

main interfaces. The additional interface terms not only introduce

additional hyperparameters that need to be tuned to train the best

model, they can also compete with the PDE losses. This contention

can often slow convergence [56]. Nevertheless, they are relatively

simple to implement, and cPINN/XPINN have been parallelized

to scale to multiple GPUs, leading to reductions in training times

[49]. The second category is overlapping DDM, which divides the

domain into overlapping subdomains. In DeepDDM [34] and D3M

[32], PINNs replace the subdomain solvers with variants of the

classical Schwarz domain decomposition method [36]. FBPINN [42]

employs a separate input normalization in each subdomain and

summation over all subdomain networks. Continuity between inter-

faces is enforced via the construction of the PINN solution ansatz
1
.

It can also be cast in the form of additive, multiplicative, and hybrid

Schwarz methods [7]. In contrast to the above approaches that

require training separate neural PDE solvers on non-overlapping or

overlapping subdomains and resolving the interface between them,

Mosaic Flow [53] solves PDEs on larger domains using only infer-
ence. An iterative algorithm inspired by the alternating Schwarz

method updates the solution in subdomains using the pre-trained

network inferences while maintaining the spatial regularity of the

solution at subdomain boundaries. This eliminates the need to re-

train the neural network for each new domain, making Mosaic

Flow highly reusable across different domain sizes and significantly

reducing computational costs.

Contributions and Findings. We propose an end-to-end par-

allelization pipeline for scaling Mosaic Flow to large domains that

encompasses both training and inference.

• Training on small domains. We redesign the physics-

informed neural PDE solver with focus on performance and

1
A solution ansatz is a mathematical form or assumption about the solution to a

PDE. It captures specific properties that the solution should satisfy, such as boundary

conditions or initial conditions.

scalability. The resulting network with an innovative in-

put embedding and optimized architecture, combined with

data-parallel training, reduces the training time for learning

the Laplacian operator from hours to just 2 minutes on 32

NVIDIA A30 GPUs.

• Inference on large domains. To enable scalable distributed
inferences using the pre-trained neural PDE solvers on arbi-

trarily large domains, we propose a relaxation in synchro-

nization. The relaxed distributed algorithm maintains accu-

racy as shown in Figure 1 while scaling up inferences to

domains 4096 times larger for solving the Laplace equation.

To the best of our knowledge, this is the largest domain

solved in seconds using 32 GPUs, combining DDM with

physics-informed neural PDE solvers as sub-domain solvers.

In addition, we demonstrate strong and weak scaling up to

32 GPUs.

Mosaic Flow Prediction pyAMG Solution Absolute Difference

0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.02 0.04

Figure 1: The leftmost sub-figure shows the solution using
pyAMG to solve the Laplace equation on a 2×2 spatial domain
with 128×128 resolution. The boundary condition is generated
through a Gaussian process. The middle sub-figure shows
the result of using distributed Mosaic Flow predictor on the
same domain. The rightmost sub-figure shows the absolute
difference between the two.

2 BACKGROUND
This section begins with a brief introduction to the problem def-

inition and physics-informed neural PDE solvers. We then delve

into domain decomposition and elaborate on how Mosaic Flow

leverages this approach to implement large-scale physics-informed

neural solvers.

Breaking Boundaries: Distributed Domain Decomposition with Scalable Physics-Informed Neural PDE Solvers SC ’23, November 12–17, 2023, Denver, CO, USA

2.1 Problem Definition
In this work, we develop SciML models to solve boundary value

problems (BVP) of the form

𝐷 [𝑢 (𝒙)] = 𝑓 (𝒙), 𝒙 ∈ Ω

𝐵 [𝑢 (𝒙)] = 𝑔(𝒙), 𝒙 ∈ 𝜕Ω
(1)

The vectors 𝒙 are in the domain Ω or on the domain boundary

𝜕Ω. The function 𝑢 is the solution of the differential equation. The

differential operator is denoted by 𝐷 , while 𝐵 is the boundary oper-

ator. The forcing function is 𝑓 , and 𝑔 is the boundary function. A

classic example of a BVP is the 2D Laplace equation with a Dirichlet

boundary condition:

Δ𝑢 (𝒙) = 0, 𝒙 ∈ Ω

𝑢 (𝒙) = 𝑔(𝒙), 𝒙 ∈ 𝜕Ω
(2)

where the vector 𝒙 = [𝑥,𝑦] and Δ = (𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2) is the
Laplacian operator [13].

2.2 Neural PDE Solvers
Neural PDE solvers (or neural solvers for short) [28, 35, 38] are a

type of model that learns to approximate the PDE solution oper-
ator and solve various instances of a BVP with different bound-

ary conditions. They are trained using a dataset that consists of

solved boundary value problems for a specific PDE. A neural solver

may take a discretized boundary function as input, denoted by

𝒈̂ = {𝑔(𝒙1
𝑏𝑐
), . . . , 𝑔(𝒙𝑁

𝑏𝑐
)}, where 𝒙𝑖

𝑏𝑐
are 𝑁 points sampled on the

boundary. 𝒈̂ specifies the particular instance of the BVP to solve.

Therefore, an neural solver, represented by the function N(𝒙, 𝒈̂;𝜃),
approximates the solution 𝑢 (𝒙) for the instance of the BVP deter-

mined by the boundary function 𝑔.

This study employs a special type of network called a physics-
informed neural PDE solver [46, 55]. While neural solvers trained

on labeled input-output pairs can learn the solution operator of a

PDE, their ability to generalize to out-of-distribution data, such as

boundary or initial conditions outside the training set, significantly

increases the demand on the training dataset size. In SciML, data is

often scarce and computationally expensive to generate. To address

this challenge, physics-informed neural solvers adopt a similar

strategy to PINNs by incorporating an additional PDE loss as a

form of regularization. This physics loss effectively constrains the

space of possible solutions, softly enforcing the PDE constraints.

By incorporating domain knowledge into the training process, the

model is more robust to noise and uncertainties present in the

dataset. As an example, for the Laplace equation, the PDE loss for

a batch of 𝑛 collocation points 𝑿 = {𝒙1, . . . , 𝒙𝑛} ⊆ Ω is defined as

L𝑝𝑑𝑒 (𝑿 , 𝒈̂;𝜃) = 1

𝑛

𝑛∑︁
𝑖

(ΔN(𝒙𝑖 , 𝒈̂;𝜃))2 (3)

Intuitively, as the loss function is minimized during training,

the PDE residual will approach zero, ΔN(𝒙, 𝒈̂;𝜃) → 0, indicat-

ing that the network approximately satisfies the Laplace equation

ΔN(𝒙, 𝒈̂;𝜃) ≈ Δ𝑢 (𝒙) = 0.

2.3 Domain Decomposition
Domain decomposition methods are widely used in solving bound-

ary value problems [1, 9, 19]. These methods partition the domain

of a BVP into smaller subdomains, and then iteratively combine

solutions of the subdomains to develop the global solution. Do-

main decomposition methods enable scaling across multiple nodes,

making them a powerful tool for scaling PDE solvers.

The classic example of domain decomposition is the alternating

Schwarz method (ASM) [16, 47]. ASM relies on overlapping subdo-

mains to ensure continuity and information propagation between

subdomains. While Schwarz methods are commonly used as pre-

conditioners for Krylov methods [6], in this work we use a variant

of ASM as the solver.

Continuing with the Laplace example, the domain Ω can be

partitioned into two subdomains Ω1 and Ω2, such that Ω1∩Ω2 ≠ ∅.
The subdomain interfaces are Γ1 = 𝜕Ω1 ∩ Ω2 and Γ2 = Ω1 ∩ 𝜕Ω2.

To solve the global domain using ASM, the following routine is

applied iteratively:

Δ𝑢𝑛+1
1

= 0 in Ω1

𝑢𝑛+1
1

= 𝑢𝑛
2
on Γ1

Δ𝑢𝑛+1
2

= 0 in Ω2

𝑢𝑛+1
2

= 𝑢𝑛+1
1

on Γ2
(4)

The superscript denotes the iteration of the solution: 𝑢𝑛
𝑖
is the

solution of subdomain 𝑖 at iteration 𝑛. The process alternates be-

tween solving for 𝑢1 and 𝑢2. The solution for 𝑢1 is used to set the

interface condition on Γ2. Then, with this condition, we solve for 𝑢2.

Subsequently, the solution for 𝑢2 is used to set the interface condi-

tion on Γ1. Schwarz proved the convergence of this iterative scheme

for general elliptic PDEs [47]. Lions proved that ASM can be used

to solve systems with an arbitrary number of subdomains, and a

parallel version of ASM exhibits similar convergence properties to

the original Schwarz method [36]. However, it is worth noting that

the convergence rate of Schwarz methods is signifiantly influenced

by the mesh parameter and overlap. A system consisting of many

subdomains with little overlap require more iterations to converge

compared to a system with fewer subdomains and greater overlap.

To address these issues, several improvements to the alternating

Schwarz method have been proposed [11, 15]. We leave exploring

these improvements to future work.

2.4 Mosaic Flow
Mosaic Flow [53] is a novel approach for solving BVPs on diverse

domains with arbitrary boundary conditions. It consists of two

primary components:

(1) The subdomain solver (SDNet) is a physics-informed neural PDE
solver trained to solve a BVP on a small domain with arbitrary

boundary conditions. Although this paper focuses on Dirichlet

boundary conditions, SDNet can also be used with Neumann or

Robin boundary conditions. SDNet’s effectiveness arises from

its ability to rapidly generate predictions for any point within

the domain. Note that while the boundary function input to

SDNet is discretized, the 𝑥𝑦-coordinate can be in continuous

space. This is unlike finite difference or finite elements methods,

which require discretizing the interior of the domain [30].

(2) The Mosaic Flow predictor (MFP) illustrated in Figure 2 is an it-

erative algorithm that leverages pre-trained SDNet’s inferences

SC ’23, November 12–17, 2023, Denver, CO, USA Arthur Feeney, Zitong Li, Ramin Bostanabad, and Aparna Chandramowlishwaran

Figure 2: MFP predicts the solution in new domains by combining SDNet predictions on atomic and overlapping subdomains.
Unlike traditional numerical methods and PINNs, MF predictor only infers the solution on interfaces of subdomains rather
than computing solutions for all grid or collocation points in the domain during each iteration.

to solve BVPs on large domains—much larger than those that

can be solved with a SDNet directly. The iterative algorithm

decomposes the domain into smaller atomic subdomains, and
updates the solution within each subdomain using SDNet’s pre-

dictions. It also ensures the spatial regularity of the solution

along the subdomain boundaries using overlapping subdomains,
inspired by the alternating Schwarz method. By utilizing SD-

Net as the sub-domain solver, MFP inherits its ability to make

predictions for arbitrary points within the domain. This feature

results in a significant performance advantage, as Mosaic Flow

can compute the solution for only a small fraction of grid points,

specifically the interfaces of the subdomains, as opposed to all

grid points in the entire domain, as done in classical ASM.

Mosaic Flow combines the efficiency of SDNet on small domains

with the scalability of MFP on larger domains, enabling the efficient

solution of complex BVPs.

3 NEURAL PDE SOLVER TRAINING
SDNet is a neural PDE solver designed to approximate solutions

to boundary value problems by taking a discretized boundary con-

dition 𝒈̂ and the coordinates of a point 𝒙 as inputs. N(𝒙, 𝒈̂;𝜃) ≈
𝑢 (𝒙 ;𝑔), where 𝑢 (·;𝑔) is the solution to the BVP determined by the

boundary function 𝑔. By including the boundary condition in the

input, the network can be used across multiple unseen instances

of a BVP. However, this also results in a large input layer that,

in combination with a PINN loss function, can make the network

computationally expensive to train.

In the case of Mosaic Flow, the training of physics-informed

neural PDE solvers is restricted to a small domain for each PDE

type. However, even on small domains (e.g., spatial dimensions of

1× 1), the training can take several hours (see Fig 6). To enable scal-

able training, performance-focused optimization and parallelization

across multiple GPUs are crucial. By optimizing the training pro-

cess, it becomes feasible to create a library of pre-trained SDNet

models for different PDE types, facilitating the solution of complex

multiphysics problems efficiently.

3.1 SDNet Model Overview
In general, our approach is agnostic of the choice of model for SD-

Net. For instance, one could use pure MLPs, a flavor of DeepONet

[38], or Fourier layers [35]. The architecture of the neural solver

used in this work, shown in Figure 3, is a variant of DeepONet

that we inherit and improve. We first apply 1D convolutions to the

input boundary conditions to create a high-dimensional embedding.

The reason for using 1D convolutions is to take advantage of the

inherent spatial structure of the boundary conditions, which can

be seen as a 1D curve along the boundary of the domain. By con-

volving this signal, we capture local patterns and relevant features

for predicting the solution within the domain. We anticipate this

treatment of the boundaries will enhance convergence performance

without affecting per-iteration performance, as convolutions are

computationally efficient. We choose not to use Fourier layers due

to the non-periodic nature of Dirichlet boundary conditions [35].

Although FNO can handle non-periodic boundaries, the combina-

tion of convolutions and fully-connected layers proves sufficient

for capturing global phenomena.

Next, we apply the input-split optimization discussed in Section

3.2 to the high-dimensional boundary embedding coupled with the

input 𝒙 . The rest of the architecture is composed of a stack of linear

layers, each followed by a nonlinear activation function. We use

the GELU activation function [20] because PINN training tends to

have better convergence properties when using a smooth activation

function [48].

3.2 Optimized Input Embedding
A common input embedding in physics-informed neural PDE solvers

is to concatenate the spatial coordinates 𝒙 with the discretized

boundary function 𝒈̂ into a single input vector [38, 53]. However,

this input-concat approach is highly inefficient. For example, in a

square 2D domain discretized into an 𝑁 × 𝑁 resolution, inferring

the solution, 𝑢 (𝒙) at a single point 𝒙 in the domain requires an in-

put vector of dimension 4𝑁 + 2. The discretized boundary function

𝒈̂ is a vector of dimension 4𝑁 and the additional 2 dimensions are

for the 𝑥𝑦-coordinates.

Breaking Boundaries: Distributed Domain Decomposition with Scalable Physics-Informed Neural PDE Solvers SC ’23, November 12–17, 2023, Denver, CO, USA

Figure 3: The architecture of the neural solver begins by convolving the input boundary condition, which results in a high-
dimensional embedding. Next, the split layer optimization is applied to the batches of boundary conditions and 𝑥𝑦-coordinates.
The processed output is fed into a standard MLP, which approximates the solution of the PDE at the input points. Finally, the
model computes higher-order derivatives to enforce the PDE constraints in the loss function.

When inferring the solution of 𝑞 points in a batch, the input

becomes a 𝑞 × (4𝑁 + 2) matrix I:

I =


𝒈̂, 𝒙1
𝒈̂, 𝒙2
.
.
.

𝒈̂, 𝒙𝑞


=
[
G X

]
(5)

where the matrix G ∈ R𝑞×4𝑁 is formed by replicating the vector

𝒈̂ for each point in the batch and the rows of X ∈ R𝑞×2 are the
coordinates of the 𝑞 points. Denoting the weights of the first layer

of the neural network as W ∈ R𝑑×(4𝑁+2)
, the output of this layer

is given by the matrix multiplication of I withW, followed by the

application of the activation function 𝜙 . Mathematically, we can

express this as:

U = 𝜙 (IWT) ∈ R𝑞×𝑑 (6)

To reduce the computational cost and remove the redundancy in

G introduced by the input-concat approach, we split weight matrix

W ∈ R𝑑×(4𝑁+2)
into two column blocks, denoted as W1 ∈ R𝑑×4𝑁

and W2 ∈ R𝑑×2. Using eq. (5), we can rewrite eq. (6) to arrive at

our optimized approach:

U = 𝜙 (
[
G X

] [WT
1

WT
2

]
) (7)

= 𝜙 (𝒈̂WT
1
⊕ XWT

2
) (8)

where ⊕ is a broadcasted sum along the second axis of 𝑿𝑾𝑇
2
. Note

that the discretized boundary condition 𝒈̂ is no longer replicated for

each point in the input, but is computed only once and broadcasted

along the batch dimension. This reduces the overall number of

computations required by the network. With eq. (6), the cost of

the first layer is 𝑂 (𝑞𝑁𝑑). In comparison, with our optimized input-
split approach in eq. (8), the cost is reduced to 𝑂 (𝑁𝑑 + 𝑞𝑑). More

importantly, this reduces the memory requirement of input tensor

from 𝑞(4𝑁 +2) words to 4𝑁 +2𝑞 words; when 𝑞 and 𝑁 are large, this

saving can be substantial. The reduction in memory usage achieved

by the optimized approach makes it possible to scale training to

larger batch sizes.

3.3 Distributed Data Parallel Neural PDE solvers
After optimizing the network architecture, we accelerate the train-

ing of neural PDE solvers with a physics-informed loss using data

parallelism. Recall that when training a physics-informedmodel, we

use a loss functionwithmultiple terms:L(𝜃) = L𝑑𝑎𝑡𝑎 (𝜃)+L𝑝𝑑𝑒 (𝜃)
where L𝑑𝑎𝑡𝑎 (𝜃) represents the data loss function. The loss function
that enforces the PDE constraints, L𝑝𝑑𝑒 (𝜃) requires the computa-

tion of higher-order derivatives with respect to the model inputs.

In the case of the Laplace equation, this involves calculating the

second derivatives N𝑥𝑥 and N𝑦𝑦 . This results in a large autograd

graph that consumes significant device memory. The size of this

autograd graph limits the batch size on a single GPU, motivating

the need to scale up to multiple GPUs to improve performance. It is

worth noting that without the PDE loss, a purely data-driven model

could be trained with a larger batch size on a single device. How-

ever, such a model may exhibit physical inaccuracies and require

significantly larger dataset for training.

To efficiently train the network with multiple loss terms, we sep-

arate the data and collocation points into distinct forward passes.

This approach simplifies the application of different losses to their

respective coordinates, as the data loss can only be applied to points

with known solutions. However, when using distributed data par-

allelism (DDP), it is important to preserve the standard semantics

of stochastic gradient descent (SGD). In data-parallel training, the

model is replicated across different compute nodes, and local gradi-

ents are computed on each process. To synchronize gradients, an

allreduce [4] operation is commonly used, where the gradients are

averaged across processes. To maintain the correct semantics of

SGD, we must be mindful of when gradient synchronization occurs.

If synchronization occurs after both forward passes, it will compute

a sum of averages rather than a true global average. Although this

SC ’23, November 12–17, 2023, Denver, CO, USA Arthur Feeney, Zitong Li, Ramin Bostanabad, and Aparna Chandramowlishwaran

approach may yield satisfactory results in practice, it does not offer

the same convergence guarantees.

Algorithm 1 SDNet Training Iteration

1:
ˆ𝑮 is a batch of discretized boundary functions

2: 𝑿𝑑𝑎𝑡𝑎 is a batch of points with known solutions

3: 𝑿𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is a batch of points with unknown solutions

4: Step 1: Solve Data Points
5: 𝑷𝑑𝑎𝑡𝑎 = N(ˆ𝑮,𝑿𝑑𝑎𝑡𝑎 ;𝜃)
6: ∇𝑑𝑎𝑡𝑎 = ∇L𝑑𝑎𝑡𝑎 (𝑷𝑑𝑎𝑡𝑎 ;𝜃)
7: Step 2: Solve Collocation Points

8: 𝑷𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = N(ˆ𝑮,𝑿𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ;𝜃)
9: ∇ = ∇𝑑𝑎𝑡𝑎 + ∇L𝑝𝑑𝑒 (𝑷𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ;𝜃)
10: Step 3: Perform allreduce on gradient ∇

To maintain consistency with SGD and ensure reliable conver-

gence, we propose the method outlined in Algorithm 1 for each

training iteration. In step 1, the forward and backward passes are

computed for the data points (lines 5-6) on each process without

averaging gradients across processes. Then, in step 2, we apply the

forward and backward passes for the collocation points (lines 8-9).

The gradients for the collocation points are accumulated onto the

gradients for the data points (line 9), and this sum is subsequently

averaged across all processes using the allreduce operation in step

3. The averaged gradients are applied locally on each device, ensur-

ing consistency. The proposed approach not only ensures accurate

gradient accumulation but also offers the advantage of performing

a single allreduce operation per training iteration, instead of two

separate operations for data and collocation points. This optimiza-

tion reduces communication overhead and enhances the scalability

and efficiency of the training process.

4 PARALLEL AND DISTRIBUTED INFERENCE
The baseline MFP [53] has limited scalability, as we show in Sec-

tion 5.3. This constraint significantly hampers its capacity to solve

BVPs on large domains. Our approach to addressing this limita-

tion includes two strategies: increasing device-level parallelism and

formulating the distributed MF predictor algorithm for multi-GPU

scaling. The algorithm is designed to harness the inherent strengths

of the baseline MFP, while simultaneously extending its scope to

BVPs on significantly larger domains.

4.1 Batched Inference with Atomic Subdomains
The baseline MFP adopts a sequential approach to solve subdo-

mains, which ensures that all predictions are based on updated

boundary conditions. Empirical evidence suggests that relaxing

this can have a negative effect on prediction accuracy. However,

by observing Figure 2, it becomes evident that atomic subdomains

within each iteration of the algorithm do not overlap. This creates

an opportunity for concurrently predicting these non-overlapping

subdomains. To leverage this, we implement a batching technique

that combines the atomic subdomains as input for SDNet inference.

This effectively increases GPU occupancy by exploiting device-level

parallelism as demonstrated in Section 5.3.

4.2 Domain Parallelization for Distributed
Inference

The MFP takes the boundary conditions of subdomains as its input.

During the development of the distributed algorithm, a key factor

is both accurately and effectively managing updates to boundary

conditions within overlapping regions. The boundary information

of the subdomains can be organized into a Cartesian grid. In the

example illustrated in Figure 2, the distance between neighboring

grid points is
1

2
𝑚, which is a tunable hyperparameter. Choosing a

smaller distance allows for more subdomains to be placed in the

domain, potentially resulting in more accurate results. However,

this also leads to increased computation and communication costs,

as shown in Section 4.3. In this study, we choose a value of
1

2
𝑚

because it is the largest distance we can use without significantly

sacrificing accuracy.

To design a parallel algorithm for the MFP, we first divide the

global domain into a 2D grid, where each block is assigned to a

processor. The processors are assigned to this 2D grid in a row-wise

scan pattern. It is worth noting that a processor mapping strategy

based on locality-preserving space-filling curves such as Morton or-

der [41] or Z-order could provide better load balancing and reduced

data movement [45], although we leave this for future studies. We

refer to the region owned by a processor as the processor subdomain.
In order to iteratively approach the final solution using Schwarz

methods, neighboring processor subdomains need to communicate

boundary information. To enable this exchange of information, we

give each processor additional halo boundary information from its

neighboring processor subdomains. Figure 4 illustrates the distribu-

tion of processor subdomains and how the boundary information

is exchanged between processors.

Our proposed distributed algorithm is outlined in algorithm 2,

where 𝑡 , 𝜖 , 𝒈, SDNet, and 𝒏 respectively denote the maximum num-

ber of iterations, convergence threshold, global boundary condi-

tion, the pre-trained SDNet model, and the neighbors of the current

processor. We use the hat notation to denote a local variable (for

example, 𝒈̂0 denotes the local part of 𝒈0). The algorithm can be

conceptually divided into two phases. The first phase is the iter-

ation loop from line 2 to line 9. In each iteration, the boundary

information of the local atomic subdomains is input to the pre-

trained SDNet, which predicts the values only along the center

lines of these atomic subdomains (line 3). Since the center lines of

one subdomain are the boundary of another, these predictions are

subsequently input to SDNet for the next iteration. After the infer-

ence step, the boundary information in the region where processor

subdomains overlaps is packed into a contiguous buffer and sent to

the corresponding neighbors with communicate_new_boundaries
in line 4. Figure 4 provides a graphical illustration of which parts of

the boundaries are being communicated. The second phase starts

after 𝑡 iterations or upon reaching the convergence threshold. In

this phase, each processor uses the most recent atomic subdomain

boundaries as input for SDNet, to predict the values at every grid

point within each atomic subdomain, forming the local solution

Ŝ (line 10). Finally, an all_gather is performed to collect the dis-

tributed subdomains. In the region where processor subdomains

overlap, the final solution is obtained by computing the average of

the predictions.

Breaking Boundaries: Distributed Domain Decomposition with Scalable Physics-Informed Neural PDE Solvers SC ’23, November 12–17, 2023, Denver, CO, USA

P4

𝑁

𝑚

1

2

𝑚

Domain Boundary Atomic Subdomain Boundary Region Owned by a Processor

Boundary sent to P4 by its orthogonal neighbors Boundary sent to P4 by its diagonal neighbors

1 2 3

P8

P0

Figure 4: 1 illustrates a 𝑁 × 𝑁 domain distributed among a 3 × 3 processor grid and the placement of non-overlapping atomic
subdomains on the entire domain. We omitted some of the processors in these figures to avoid cluttering. 2 zooms in on the
region encompassing the subdomain owned by 𝑃4. It highlights the boundaries sent to 𝑃4 by its neighbors. The red lines indicate
boundaries received by 𝑃4 from its diagonal neighbors: [𝑃0, 𝑃2, 𝑃6, 𝑃8]. The purple lines indicate boundaries received by 𝑃4 from
its orthogonal neighbors: [𝑃1, 𝑃3, 𝑃5, 𝑃7]. 3 shows the stencil communication pattern for exchanging boundary information.
For processors on the four boundaries, the communication group will not include all 9 processors.

Algorithm 2 Distributed Mosaic Flow Predictor

1: function Predict(𝑡 , 𝜖 , SDNet, 𝒈0, 𝒏)
2: for 𝑖 in 1:𝑡 do
3: 𝒈̂𝑖 = SDNet(𝒈̂𝑖−1)
4: 𝒈̂𝑖 = communicate_new_boundaries(𝒈̂𝑖 , 𝒏)
5: 𝛿 = ∥𝒈̂𝑖 − 𝒈̂𝑖−1∥/∥𝒈̂𝑖−1∥
6: if 𝛿 < 𝜖 then
7: break

8: end if
9: end for
10: Ŝ = SDNet(𝒈̂𝑖)
11: all_gather(Ŝ)
12: S = combine all Ŝ and average over the overlapping regions
13: return S
14: end function

To design a scalable algorithm, we partially relax the order of

subdomain updates in the baseline algorithm to balance accuracy

requirements with communication efficiency. In the algorithm illus-

trated in Figure 2, as subdomains are solved by SDNet, the update

to the boundary information inside the subdomain is applied imme-

diately. However, when processors solve subdomains on the over-

lapped region, the update to the boundary information cannot be

reflected in the neighboring processor until the communication step.

In our parallel algorithm, we relax this principle by communicating

only once per iteration. This relaxation in synchronization not only

reduces the communication frequency but also makes the commu-

nication pattern agnostic to subdomain placement schemes. It is

worth highlighting that the baseline principle of immediate updates

to boundary information still holds within individual processor

subdomains. This relaxation is similar to the algorithm proposed

by Lions [36], which was proven to converge to the global solution.

Empirical results in Section 5.3 show that this modification does

not prevent the distributed MFP from finding accurate solutions.

4.3 Cost Analysis
We now analyze the costs associated with the distributed MF Pre-

dictor. Suppose the global domain has a resolution of 𝑁 × 𝑁 and is

distributed across 𝑃 processors arranged in a

√
𝑃 ×

√
𝑃 grid. The res-

olution of each subdomain is𝑚×𝑚. As a result, each processor is as-

signed a subdomain consisting of
𝑁

𝑚
√
𝑃
× 𝑁

𝑚
√
𝑃
non-overlapping sub-

domains. Assuming that the subdomain boundaries form a Carte-

sian grid with interval
𝑚
𝑑
, and the overlapping region is

2(𝑑−1)
𝑑

𝑚

wide along each subdomain boundary, there are
(𝑑𝑁)2
𝑚2𝑃

subdomains

in each processor with all eight neighbors. Using the alpha-beta

model and removing the trailing terms, the communication cost of

each processor is 𝐶𝑐𝑜𝑚𝑚 = 8𝐼𝛼 + 1

𝛽
𝐼 (16𝑁𝑑√

𝑃
), where 𝛼 models the

network latency and 𝛽 models the network bandwidth.

Since communication is performed in every iteration, both the

bandwidth and latency cost scale linearly with the iteration count.

As the communication is limited to each processor and its immedi-

ate neighbors, the latency cost is not influenced by 𝑃 or 𝑁 . Band-

width cost increases linearly with
𝑁√
𝑃
, which is the length of one

side of each subdomain, and 𝑑 , which controls how dense the sub-

domains are placed. Denoting the computation cost of making 1

SDNet inference as 𝑐 , we can express the computation cost of each

processor as 𝐶𝑐𝑜𝑚𝑝 = 𝑐
(𝑑𝑁)2
𝑚2𝑃

. From this, we expect the compu-

tation cost to scale linearly with the number of processors. Note

that we assume communication can be carried out simultaneously

with all neighbors in our analysis, which may not always hold in

practice.

SC ’23, November 12–17, 2023, Denver, CO, USA Arthur Feeney, Zitong Li, Ramin Bostanabad, and Aparna Chandramowlishwaran

5 RESULTS AND DISCUSSION
We perform two sets of experiments to assess the performance of

training and inference. First, we evaluate SDNet training across

multiple GPUs to analyze per-iteration performance and the impact

of scaling on convergence. We present results on multiple GPU

clusters, as detailed in Table 2, to gain a deeper understanding

of the impact of optimizations discussed in Section 3. Second, we

evaluate the performance and scalability of distributed MFP on

unseen domains that are significantly larger than the input seen by

SDNet during training. Ground truth data for both experiments is

generated using the approach described in Section 5.1.

V100 A30 A100

Architecture Volta Ampere Ampere

Peak FP32 14 TF 10.3 TF 19.5 TF

GPUs/node 4 4 2

Nodes 13 14 4

Memory 16GB 24GB 80GB

(HBM2) (HBM2) (HBM2e)

Memory Bandwidth 900 GB/s 933 GB/s 2 TB/s

Intra-node Interconnect 32 GB/s 200 GB/s 600 GB/s

(PCIe) (NVLink) (NVLink)

Inter-node Interconnect 100 Gbits/s

(ConnectX-5 Infiniband)

Table 2: GPU evaluation platforms and their specifications.

5.1 Data Generation
We generate two distinct datasets: one for training SDNet and

another for evaluating the MFP. The training dataset consists of

small domains of fixed size, while the test dataset includes larger

domains of arbitrary sizes. To construct these datasets, we generate

boundary conditions using Gaussian processes and follow a similar

approach to the original Mosaic Flow paper [53]. First, we use a

Sobol Sequence [50] to sample the hyperparameters of an infinitely

differentiable Gaussian kernel of a 1-dimensional Gaussian process.

Then, from each Gaussian process, we draw a sample function

(i.e., a 1-D curve). This function serves as the discretized boundary

function 𝒈̂ described in Section 2. Each boundary value problem

for the Laplace equation is solved using pyAMG. [2].

5.2 SDNet Training
TrainDataset. Weuse themethodology described in Section 5.1

to generate a dataset of 20, 000 boundary conditions for domains

with a resolution of 32 × 32 and spatial dimension of 0.5 × 0.5.

The pairs of boundary conditions and sample solutions form our

training dataset. We use 90% of this dataset for training and hold

out the remaining 10% as a validation set.

Hyperparameters. We perform hyperparameter tuning to de-

termine the optimal values for several parameters, including the

maximum learning rate, the fraction of iterations used for learning

rate warmup, the learning rate schedule, the number of epochs,

weight decay, and the number of points per subdomain. We do this

tuning using a single GPU and select a sufficiently large batch size

to ensure efficient GPU utilization. The tuned hyperparameters we

use are as follows: a maximum learning rate of 0.001, using 0.1%

of iterations for learning rate warmup, using polynomial learning

rate decay with the exponent set to one, training for 500 epochs,

and setting the coefficient for weight decay to zero.

For experiments with varying GPU counts, we reuse the same

hyperparameters from the single GPU case, with two modifications:

(a) We scale the maximum learning rate by the square root of

the increase in batch size. (b) The fraction of iterations used for

learning rate warmup is scaled linearly with the increase in batch

size [14, 57].

Finally, as we increase the number of GPUs, the number of points

per batch can reach tens of thousands. We adopt the Lamb optimizer

[57], which we find yields better convergence than AdamW [37]

when scaling to larger batch sizes and multiple GPUs. Specifically,

we utilize the implementation of FusedLAMB from Nvidia Apex.

Training Methodology. To train the SDNet, we employ a loss

function with two terms: a data loss and a PDE loss. The data

loss is a mean squared error using the pyAMG solution as the

ground truth. The PDE loss is the PDE residual applied at the

collocation points. It requires computing higher order derivatives

with respect to the model inputs. Despite the relatively small size

of our models compared to state-of-the-art vision and language

models, the autograd graph generated during training consumes

a significant amount of device memory. This memory constraint

severely limits the batch size that can be used on a single GPU,

which motivates the distributed data parallel approach to training.

As seen in Figure 5, we can scale inference to process hundreds of

thousands of subdomains at a time, but merely hundreds during

training. Even for a relatively simple PDE like Laplace, a single

model update requires three backward passes: (a) a backward pass

to compute the derivatives w.r.t 𝑥 and 𝑦, (b) a second backward

pass to compute the second derivatives w.r.t. 𝑥 and 𝑦 and (c) a final

backward pass, through the prior two gradient computations. We

measure the maximum memory allocated during the forward and

backward passes of the model. The results, presented in Table 3,

highlight the difference in memory usage with and without the PDE

loss. The inclusion of the PDE loss leads to a significant increase

in memory consumption, primarily attributed to the storage of

intermediate activations in the autograd graph.

Domains No PDE Loss With PDE Loss

5 0.05 GB 0.503 G

320 2.77 GB 15.11 GB

640 5.54 GB OOM

Table 3: Memory allocated during the forward pass, loss com-
putation, and backward pass on a single V100 GPU with and
without PDE loss. OOM indicates “out of memory”.

We implement data parallel training using PyTorch Distributed.

A key advantage of PyTorch’s implementation of DDP training is

the ability to overlap communication with the current backward

pass [33]. This is unlike other frameworks, like Horovod, which

overlap communication with the following forward pass. It is im-

portant to ensure that communication overhead does not dominate

the overall execution time. Since our models are relatively small,

Breaking Boundaries: Distributed Domain Decomposition with Scalable Physics-Informed Neural PDE Solvers SC ’23, November 12–17, 2023, Denver, CO, USA

(a) SDNet Inference vs. Batch Size (b) SDNet Training Performance vs. Batch Size

Figure 5: SDNet inference and training performance with varying batch sizes. optimized model utilizes the split-layer optimiza-
tion, while the baseline model is a standard neural PDE solver. Each point is the average of 30 trials. The variance is near zero
in every case. This plot shows both how the split-layer optimization improves performance, and enables scaling to larger batch
sizes. For instance, the baseline models reach memory limits at a batch size of 10, 000 points, while the optimized models can
scale to larger batch sizes, processing up to 50, 000 points during inference.

(a) Epoch Counter vs. MSE

0 100 200 300 400

1

0.1

0.01

0.001

100μ

10μ

1μ

GPUs

32

16

8

4

2

1

Epoch

V
a
li
d
a
t
io

n
 M

S
E

(b) Runtime vs. MSE

0 1000 2000 3000 4000

1

0.1

0.01

0.001

100μ

10μ

1μ

Runtime (s)

V
a
li
d
a
t
io

n
 M

S
E

(c) Runtime to MSE 2.5 × 10
−6

1 2 4 8 16 32
0

500

1000

1500

2000

GPU Count

R
u
n
t
im

e
 (

s
)

Figure 6: SDNet multi-GPU performance and impact on convergence. (a) shows the MSE of the validation set as a function
of the epoch count. (b) illustrates the runtime improvements with increasing A30 GPUs. Both (a) and (b) report the median
validation MSE across 10 models initialized with different random seeds. The bands represent the 95% confidence interval of the
median [22, 31]. Note that (a) and (b) are plotted on a 𝑙𝑜𝑔10 scale and all models achieve final MSEs within 1.5× 10

−6 of the single
GPU case. (c) shows the average time, across 10 trials, taken by each model to reach an MSE of 2.5 × 10

−6, which corresponds to
the mean MSE of the final epoch with 32 A30 GPUs. The bands in (c) represent the standard deviation.

the forward passes are typically inexpensive. Therefore, overlap-

ping communication with the current backward pass improves the

efficiency of training our models.

Training Performance. We implemented several optimizations

that result in much faster training compared to a baseline neural

solver. First, we implemented the split layer, which significantly

reduces redundant computation in the first layer of the network.

This optimization is also important for the performance of model

inference in the MFP, as seen in Figure 5. Second, we apply a series

of 1-dimensional convolutions to the input boundary conditions,

which form a smooth curve. Convolutions are cheap to compute,

so this optimization has essentially no effect on the per-iteration

performance of the MFP, but improves the convergence rate of the

SDNet. Finally, we scale model training across multiple GPUs.

Figure 6 shows the performance and accuracy of SDNet when

scaling the number of GPUs. Although, we observe a slight negative

impact on the validation MSE, all models achieve final MSEs within

1.5 × 10
−6

of the model trained on a single A30 GPU. Notably, the

model trained on one GPU takes over 30 minutes to reach an MSE

of 2.5 × 10
−6
, while 32 GPUs reduces the training time to just two

minutes to reach the same MSE, resulting in a speedup of 12×.

SC ’23, November 12–17, 2023, Denver, CO, USA Arthur Feeney, Zitong Li, Ramin Bostanabad, and Aparna Chandramowlishwaran

To compare the effectiveness of the SDNet models as sub-domain

solvers for MFP, we additionally evaluate each SDNet on test prob-

lems of different sizes, as shown in Figure 7. Despite the slight

variations in the validation set’s MSE (see Figure 6), we observe

consistent MAE across all models. This indicates that all models

exhibit comparable accuracy and are equally reliable as sub-domain

solvers for MFP.

Figure 7: MAE of the MFP, using models trained with vary-
ing GPU count. The discretized boundary function for each
domain is 𝒈̂(𝑥) = 𝑠𝑖𝑛(2𝜋𝑥). This illustrates that the small
changes in MSE seen in Figure 6 have little affect on the MFP,
which makes prediction of similar quality with each model.

5.3 MF Predictor Performance
We implement the distributed MFP in Python. For GPU-to-GPU

communication, we use mpi4py [5], which is built with a CUDA-

aware MPI library to enhance communication performance. To

generate boundary conditions and ground truth solutions of the

Laplace equation on larger domains, we use the method described

in Section 5.1. We evaluate both batched inference for device-level

parallelism and distributed inference for node-level parallelism.

Batched Inference. In this experiment, we assess the perfor-

mance improvement achieved by batching the atomic subdomains

during each iteration of the MFP (as discussed in Section 5.3). We

compare this batched approach to the original unbatched algorithm,

which predicts one subdomain at a time using SDNet. The results

in Figure 8, shows the impact of batching when scaling the domain

size from 1×2 to 16×16 (i.e., resolutions from 64×128 to 1024×1024).
In the unbatched approach, time increases linearly with the domain

size. However, with batching subdomains, we observe a significant

improvement in GPU utilization, resulting in about 50% of the peak

performance. Note that since atomic subdomain inferences are in-

dependent, batching improves performance by up to 100× without

sacrificing accuracy.

Distributed Inference. We conduct both strong and weak scal-

ing studies to evaluate MFP on multiple GPUs. In the strong scaling

experiments, we consider a BVP for the Laplace equation with a

spatial domain size of 32× 32 (2048× 2048 resolution). This domain

is divided into 4096 atomic subdomains where each subdomain is of

size 0.5× 0.5. The global boundary condition is generated using the

same process described in Section 5.1. The MFP terminates when

64 x 128

128 x 128

128 x 256

256 x 256

256 x 512

512 x 512

512 x 1024

1024 x 1024

Domain Size

10 2

10 1

100

101

Ti
m

e
Pe

r I
te

ra
tio

n
(s

ec
on

ds
) batched A100

batched A30
batched V100
unbatched A100
unbatched A30
unbatched V100

Figure 8: Performance of batched vs. unbatched atomic sub-
domains on a single GPU with increasing domain sizes. Time
per iteration is calculated by averaging over 100 iterations.

the MAE of the solution drops below 0.05. The results, shown in

Figure 9a, demonstrate a clear trend of decreasing computation time

and an increasing percentage of communication time as we scale

from 1 to 32 GPUs. The total runtime reduces from approximately

15 minutes (∼ 880 seconds) to less than 2 minutes (∼ 90 seconds),

resulting in a speedup of almost 10× on 32 A30 GPUs.

As discussed in Section 4.2, updates in the overlapping regions

along the borders of processor subdomains are not immediately

reflected since the data is distributed. Therefore, as we decompose

a domain into more (and smaller) processor subdomains, a larger

percentage of the boundary information becomes stale. This can

lead to a degradation of the convergence rate of the distributed

MFP algorithm. In the strong scaling experiment, we investigate

the impact of the distributed algorithm on the convergence rate.

We record the number of iterations required to reach an MAE of

0.05 and present the results in Table 4. As the number of processors

increases, we observe a slight increase in the number of iterations

required to reach the specifiedMAE. However, note that the benefits

of parallelization and the reduction in computation time outweigh

the slight increase in the number of iterations, leading to improved

overall performance.

GPU Count 1 2 4 8 16 32

Iterations 3200 3250 3250 3300 3400 3500

Table 4: The number of iterations required to achieve a MAE
of 0.05 for different GPU counts. The corresponding runtimes
are shown in Figure 9a.

We also perform a weak scaling experiment with an increas-

ing number of processors while keeping the spatial size of each

processor subdomain fixed at 16 × 8 (1024 × 512 resolution), this

result is shown in Figure 9b. Computation scales well, as the only

additional computation cost is to average across regions where

processor domains overlap. However, the communication scaling

is less optimal. We see around 4× increase going from 2 to 8 GPUs,

which then plateaus. This increase is likely due to high latency cost

as the number of messages sent by each processor increases with

Breaking Boundaries: Distributed Domain Decomposition with Scalable Physics-Informed Neural PDE Solvers SC ’23, November 12–17, 2023, Denver, CO, USA

an increasing number of neighbors from 2 to 8 GPUs. We don’t see

a noticeable improvement in performance with CUDA-aware MPI

compared to standard MPI, potentially due to the small buffer sizes

of send/recv communication where latency dominates the over-

all communication performance [5]. The increased latency cost is

further exacerbated by mpi4py, which serializes Pytorch tensors be-

fore communication. Techniques that leverage direct GPU-to-GPU

communication through NVSHMEM [23] are potential alternatives

to reduce this communication overhead.

Open problems. Systems challenges – One approach to address-

ing the latency overhead is to convert a latency-bound algorithm to

a bandwidth-bound algorithm. This can be achieved by reducing the

communication frequency. In the current implementation, each pro-

cessor exchanges boundary information with its neighbors during

every iteration. However, communicating less frequently introduces

a trade-off with redundant computation. Given that compute scales

significantly better than communication (both bandwidth and la-

tency), communication-avoiding algorithms are worth exploring.

Nonetheless, there is a communication lower bound that cannot be

avoided, in which case, overlapping communication with compu-

tation can further push the scaling ceiling. It is worth noting that

communication-overlapping algorithms have been well-studied in

the context of numerical simulations [23, 45, 52]. However, neural

PDE solvers can be significantly faster than numerical solvers. In

contrast to large languagemodels, current neural models for approx-

imating PDEs are notably smaller. Additionally, batched inference

only requires a forward pass (no expensive higher-order gradient

computation). Consequently, communication becomes the bottle-
neck for scaling even on smaller GPU clusters. Studying the trade-

offs of communication-avoiding and communication-overlapping

algorithms in the context of distributed neural PDE solvers remains

a promising direction for future research.

Algorithmic challenges – For BVPs, where you are interested in

finding a solution that satisfies specific boundary conditions within

a domain, information needs to be exchanged across the entire do-

main. For this reason, one-level Schwarz methods require a global

coarse grid correction to scale to a large number of subdomains

for solving BVPs [10]. FBPINN extended to multiple levels of over-

lapping domain decomposition demonstrates improved accuracy,

specifically for large number of subdomains, implying that coarse

levels are necessary for efficient global information propagation in

large domains [8]. However, for time-dependent problems, where

the solution evolves over time, information typically only needs to

be exchanged between neighboring subdomains. As time advances,

information is propagated across the domain as adjacent subdo-

mains continually share their updated information. We hypothesize

that distributed Mosaic Flow coupled with one-level Schwarz is

optimal for exploring neural domain decomposition methods to

solve time-dependent PDEs [18, 51].

6 CONCLUSIONS
The hybrid parallelization scheme presented in this paper shows

promise in scaling physics-informed neural PDE solvers to large

domains using a combination of data parallel training and domain

parallelization. The SDNets can be trained in minutes, allowing

for the creation of a library of models for different PDEs. The

1 2 4 8 16 32
GPU Count

0

2

4

6

8

10

12

14

Ti
m

e
(m

in
ut

es
)

Model Inference
SendRecv
Allgather
Boundaries IO

(a) Strong scaling over a 2048×2048 resolution domain.

1 2 4 8 16 32
GPU Count

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e
(m

in
ut

es
)

(b)Weak scaling for 2000 iterationswhere eachGPUowns a 1024×512
resolution subdomain.

Figure 9: Strong and weak scaling of MFP. We average the
results across 5 trials. “Boundaries IO" refers to reading sub-
domain boundaries for SDNet and updating them with the
prediction from SDNet.

MF Predictor demonstrated accuracy when scaling up to 32 GPUs.

Overall, this work opens up avenues for future research in the

field of physics-informed machine learning. There is still room for

improvement by exploring other domain decomposition methods

and improved Schwarz methods, such as using a coarse correction

[10] or Optimized Schwarz methods [15], and extending DDM for

time-dependent neural PDE solvers.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation un-

der the award number 2211908. We gratefully acknowledge the

GPU computing resources provided on HPC3, a high-performance

computing cluster operated by the Research Cyberinfrastructure

Center at the University of California, Irvine. We specifically thank

Hengjie Wang at Modular for helpful discussions on Mosaic Flow.

SC ’23, November 12–17, 2023, Denver, CO, USA Arthur Feeney, Zitong Li, Ramin Bostanabad, and Aparna Chandramowlishwaran

REFERENCES
[1] Satish Balay, Shrirang Abhyankar, Mark Adams, Jed Brown, Peter Brune, Kris

Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, W Gropp, et al. 2019.

PETSc users manual. (2019).

[2] Nathan Bell, Luke N. Olson, and Jacob Schroder. 2022. PyAMG: Algebraic Multi-

grid Solvers in Python. Journal of Open Source Software 7, 72 (2022), 4142.

https://doi.org/10.21105/joss.04142

[3] Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. 2020. Machine

learning for fluid mechanics. Annual review of fluid mechanics 52 (2020), 477–508.
[4] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert Van De Geijn. 2007.

Collective communication: theory, practice, and experience. Concurrency and
Computation: Practice and Experience 19, 13 (2007), 1749–1783.

[5] Lisandro Dalcin and Yao-Lung L Fang. 2021. mpi4py: Status update after 12 years

of development. Computing in Science & Engineering 23, 4 (2021), 47–54.

[6] Victorita Dolean, Martin J Gander, Walid Kheriji, Felix Kwok, and Roland Masson.

2016. Nonlinear preconditioning: How to use a nonlinear Schwarz method to

precondition Newton’s method. SIAM Journal on Scientific Computing 38, 6 (2016),
A3357–A3380.

[7] Victorita Dolean, Alexander Heinlein, Siddhartha Mishra, and Ben Moseley. 2022.

Finite basis physics-informed neural networks as a Schwarz domain decomposi-

tion method. arXiv preprint arXiv:2211.05560 (2022).
[8] Victorita Dolean, Alexander Heinlein, Siddhartha Mishra, and Ben Moseley.

2023. Multilevel domain decomposition-based architectures for physics-informed

neural networks. arXiv preprint arXiv:2306.05486 (2023).
[9] Victorita Dolean, Pierre Jolivet, and Frédéric Nataf. 2015. An introduction to

domain decomposition methods: algorithms, theory, and parallel implementation.
SIAM.

[10] Olivier Dubois, Martin Gander, Sébastien Loisel, Amik St-Cyr, and Daniel Szyld.

2009. The Optimized Schwarz Method with a Coarse Grid Correction. SIAM
Journal on Scientific Computing 34 (11 2009). https://doi.org/10.1137/090774434

[11] Olivier Dubois, Martin J Gander, Sébastien Loisel, Amik St-Cyr, and Daniel B

Szyld. 2012. The optimized Schwarz method with a coarse grid correction. SIAM
Journal on Scientific Computing 34, 1 (2012), A421–A458.

[12] Vikas Dwivedi, Nishant Parashar, and Balaji Srinivasan. 2021. Distributed learn-

ing machines for solving forward and inverse problems in partial differential

equations. Neurocomputing 420 (2021), 299–316.

[13] Lawrence C. Evans. 2010. Partial differential equations. American Mathematical

Society, Providence, R.I.

[14] Steven Farrell, Murali Emani, Jacob Balma, Lukas Drescher, Aleksandr Drozd, An-

dreas Fink, Geoffrey Fox, David Kanter, Thorsten Kurth, PeterMattson, DaweiMu,

Amit Ruhela, Kento Sato, Koichi Shirahata, Tsuguchika Tabaru, Aristeidis Tsaris,

Jan Balewski, Ben Cumming, Takumi Danjo, Jens Domke, Takaaki Fukai, Naoto

Fukumoto, Tatsuya Fukushi, Balazs Gerofi, Takumi Honda, Toshiyuki Imamura,

Akihiko Kasagi, Kentaro Kawakami, Shuhei Kudo, Akiyoshi Kuroda, MaximeMar-

tinasso, Satoshi Matsuoka, Henrique Mendonça, Kazuki Minami, Prabhat Ram,

Takashi Sawada, Mallikarjun Shankar, Tom St. John, Akihiro Tabuchi, Venka-

tram Vishwanath, Mohamed Wahib, Masafumi Yamazaki, and Junqi Yin. 2021.

MLPerf HPC: A Holistic Benchmark Suite for Scientific Machine Learning on

HPC Systems.. In IEEE/ACM Workshop on Machine Learning in High Performance
Computing Environments (MLHPC). 1–45.

[15] Martin J Gander. 2006. Optimized schwarz methods. SIAM J. Numer. Anal. 44, 2
(2006), 699–731.

[16] Martin Jakob Gander. 2008. Schwarz methods over the course of time. Electronic
transactions on numerical analysis 31 (2008), 228–255.

[17] Ehsan Haghighat and Ruben Juanes. 2021. SciANN: A Keras/TensorFlow wrapper

for scientific computations and physics-informed deep learning using artificial

neural networks. Computer Methods in Applied Mechanics and Engineering 373

(2021), 113552.

[18] Sheikh Md Shakeel Hassan, Arthur Feeney, Akash Dhruv, Jihoon Kim, Youngjoon

Suh, Jaiyoung Ryu, Yoonjin Won, and Aparna Chandramowlishwaran. 2023.

BubbleML: A Multi-Physics Dataset and Benchmarks for Machine Learning.

arXiv preprint arXiv:2307.14623 (2023).
[19] Frédéric Hecht. 2012. New development in FreeFem++. Journal of numerical

mathematics 20, 3-4 (2012), 251–266.
[20] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian Error Linear Units (GELUs).

arXiv preprint arXiv:1606.08415 (2016).
[21] Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, Akshay Subra-

maniam, Kaustubh Tangsali, Zhiwei Fang, Max Rietmann, Wonmin Byeon, and

Sanjay Choudhry. 2021. NVIDIA SimNet™: An AI-accelerated multi-physics

simulation framework. In Computational Science–ICCS 2021: 21st International
Conference, Krakow, Poland, June 16–18, 2021, Proceedings, Part V. Springer, 447–
461.

[22] Torsten Hoefler and Roberto Belli. 2015. Scientific Benchmarking of Parallel

Computing Systems: Twelve Ways to Tell the Masses When Reporting Perfor-

mance Results. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (Austin, Texas) (SC ’15).
Association for Computing Machinery, New York, NY, USA, Article 73, 12 pages.

https://doi.org/10.1145/2807591.2807644

[23] Ismayil Ismayilov, Javid Baydamirli, Doğan Sağbili, Mohamed Wahib, and Didem

Unat. 2023. Multi-GPU Communication Schemes for Iterative Solvers: When

CPUs Are Not in Charge. In Proceedings of the 37th International Conference on Su-
percomputing (Orlando, FL, USA) (ICS ’23). Association for Computing Machinery,

New York, NY, USA, 192–202. https://doi.org/10.1145/3577193.3593713

[24] Ameya D Jagtap and George E Karniadakis. 2021. Extended Physics-informed

Neural Networks (XPINNs): A Generalized Space-Time Domain Decomposition

based Deep Learning Framework for Nonlinear Partial Differential Equations.. In

AAAI Spring Symposium: MLPS. 2002–2041.
[25] Ameya D Jagtap, Ehsan Kharazmi, and George Em Karniadakis. 2020. Conser-

vative physics-informed neural networks on discrete domains for conservation

laws: Applications to forward and inverse problems. Computer Methods in Applied
Mechanics and Engineering 365 (2020), 113028.

[26] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan

Wang, and Liu Yang. 2021. Physics-informed machine learning. Nature Reviews
Physics 3, 6 (2021), 422–440.

[27] Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. 2021. hp-

VPINNs: Variational physics-informed neural networks with domain decom-

position. Computer Methods in Applied Mechanics and Engineering 374 (2021),

113547.

[28] Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik

Bhattacharya, AndrewM. Stuart, and AnimaAnandkumar. 2021. Neural Operator:

Learning Maps Between Function Spaces. CoRR abs/2108.08481 (2021).

[29] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W

Mahoney. 2021. Characterizing possible failure modes in physics-informed neural

networks. Advances in Neural Information Processing Systems 34 (2021), 26548–
26560.

[30] Stig Larrson and Vidar Thomée. 2003. Partial Differential Equations with Numeri-
cal Methods. Springer Berlin, Heidelberg.

[31] Jean-Yves Le Boudec. 2010. Performance Evaluation of Computer and Communica-
tion Systems. EPFL Press, Lausanne, Switzerland. https://doi.org/10.1201/b16328

[32] Ke Li, Kejun Tang, Tianfan Wu, and Qifeng Liao. 2019. D3M: A deep domain

decomposition method for partial differential equations. IEEE Access 8 (2019),
5283–5294.

[33] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,

Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.

2020. PyTorch distributed: experiences on accelerating data parallel training.. In

Proceedings of the VLDB Endowment. 3005–3018.
[34] Wuyang Li, Xueshuang Xiang, and Yingxiang Xu. 2020. Deep domain decomposi-

tion method: Elliptic problems. In Mathematical and Scientific Machine Learning.
PMLR, 269–286.

[35] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik

Bhattacharya, Andrew Stuart, and Anima Anandkumar. 2020. Fourier Neural

Operator for Parametric Partial Differential Equations. ICLR.
[36] Pierre-Louis Lions et al. 1988. On the Schwarz alternating method. I. In First

international symposium on domain decomposition methods for partial differential
equations, Vol. 1. Paris, France, 42.

[37] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.

In International Conference on Learning Representations. https://openreview.net/

forum?id=Bkg6RiCqY7

[38] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karni-

adakis. 2021. Learning nonlinear operators via DeepONet based on the universal

approximation theorem of operators. Nature machine intelligence 3, 3 (2021),

218–229.

[39] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. 2021. DeepXDE:

A deep learning library for solving differential equations. SIAM review 63, 1

(2021), 208–228.

[40] StefanoMarkidis. 2021. The old and the new: Can physics-informed deep-learning

replace traditional linear solvers? Frontiers in big Data (2021), 92.
[41] G. M. Morton. 1966. A Computer Oriented Geodetic DataBase and a New Tech-

nique in File Sequencing. Tech.rep.,IBM, (1966). https://dominoweb.draco.res.

ibm.com/0dabf9473b9c86d48525779800566a39.html

[42] Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. 2021. Finite Basis

Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition

approach for solving differential equations. arXiv preprint arXiv:2107.07871
(2021).

[43] Octavi Obiols-Sales, Abhinav Vishnu, Nicholas Malaya, and Aparna Chan-

dramowliswharan. 2020. CFDNet: A deep learning-based accelerator for fluid

simulations. In Proceedings of the 34th ACM international conference on supercom-
puting. 1–12.

[44] Octavi Obiols-Sales, Abhinav Vishnu, Nicholas P Malaya, and Aparna Chan-

dramowlishwaran. 2021. SURFNet: Super-resolution of turbulent flows with

transfer learning using small datasets. In 2021 30th International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE, 331–344.

[45] Johannes Pekkilä, Miikka S Väisälä, Maarit J Käpylä, Matthias Rheinhardt, and

Oskar Lappi. 2022. Scalable communication for high-order stencil computations

using CUDA-aware MPI. Parallel Comput. 111 (2022), 102904.

https://doi.org/10.21105/joss.04142
https://doi.org/10.1137/090774434
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1145/3577193.3593713
https://doi.org/10.1201/b16328
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://dominoweb.draco.res.ibm. com/0dabf9473b9c86d48525779800566a39.html
https://dominoweb.draco.res.ibm. com/0dabf9473b9c86d48525779800566a39.html

Breaking Boundaries: Distributed Domain Decomposition with Scalable Physics-Informed Neural PDE Solvers SC ’23, November 12–17, 2023, Denver, CO, USA

[46] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019. Physics-informed

neural networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations. Journal of Computa-
tional physics 378 (2019), 686–707.

[47] Hermann Amandus Schwarz. 1869. Ueber einige Abbildungsaufgaben. (1869).

[48] Yeonjong Shin, Jermone Darbon, and George Karniadakis. 2020. On the conver-

gence of physics informed neural networks for linear second-order elliptic and

parabolic type PDEs.. In Communications in Computational Physics. 2042–2074.
[49] Khemraj Shukla, Ameya D Jagtap, and George Em Karniadakis. 2021. Parallel

physics-informed neural networks via domain decomposition. J. Comput. Phys.
447 (2021), 110683.

[50] I.M. Sobol. 1998. On quasi-Monte Carlo integrations. Mathematics and Computers
in Simulation 47, 2 (1998), 103–112. https://doi.org/10.1016/S0378-4754(98)00096-

2

[51] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay,

Francesco Alesiani, Dirk Pflüger, and Mathias Niepert. 2022. PDEBench: An

extensive benchmark for scientific machine learning. Advances in Neural Infor-
mation Processing Systems 35 (2022), 1596–1611.

[52] Hengjie Wang and Aparna Chandramowlishwaran. 2020. Pencil: A pipelined

algorithm for distributed stencils. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–16.

[53] HengjieWang, Robert Planas, Aparna Chandramowlishwaran, and Ramin Bostan-

abad. 2022. Mosaic flows: A transferable deep learning framework for solving

PDEs on unseen domains. Computer Methods in Applied Mechanics and Engineer-
ing 389 (2022), 114424.

[54] SifanWang, Yujun Teng, and Paris Perdikaris. 2021. Understanding andmitigating

gradient flow pathologies in physics-informed neural networks. SIAM Journal
on Scientific Computing 43, 5 (2021), A3055–A3081.

[55] Sifan Wang, Hanwen Wang, and Paris Perdikaris. 2021. Learning the solution

operator of parametric partial differential equations with physics-informed Deep-

ONets. Science Advances 7, 40 (2021). https://doi.org/10.1126/sciadv.abi8605

[56] Sifan Wang, Xinling Yu, and Paris Perdikaris. 2022. When and why PINNs fail to

train: A neural tangent kernel perspective. J. Comput. Phys. 449 (2022), 110768.
[57] Yang You, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,

Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. 2020. Large

Batch Optimization for Deep Learning: Training BERT in 76 minutes.. In ICLR.
2042–2074.

https://doi.org/10.1016/S0378-4754(98)00096-2
https://doi.org/10.1016/S0378-4754(98)00096-2
https://doi.org/10.1126/sciadv.abi8605

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT IDENTIFICATION
Mosaic Flows is a novel domain decomposition method for scaling
physics-informed operator networks to large domains. It contains
two parts: a Subdomain Network (SDNet) and the Mosaic Flows
(MF) predictor. SDNet is an operator network trained to solve a
certain partial differential equation on a small domain. The MF
predictor decomposes a large domain into smaller overlapping
subdomains and uses SDNet to solve these subdomains. After many
iterations of solving overlapping subdomains, it will converge to
the PDE solution. In this work, we propose methods to substantially
accelerate both the training of SDNet and MF predictor through
distributed computing and sequential optimizations.

The source code in our artifact implements the methods de-
scribed in the article and we provide all of our visualization scripts.
We provide training scripts and sample hyperparameters that can be
used to reproduce the results for training performance scaling and
accuracy. Similarly, we provide a script implementing the MF Pre-
dictor. Pre-trained checkpoints are provided, which will reproduce
the reported accuracies.

The SDNet and the MF predictor are implemented with Python
and rely heavily on PyTorch and its new distributed communication
library. We use PyTorch’s automatic differentiation to compute the
higher-order derivatives. For each training run we write errors
and iteration runtimes to a TensorBoard log file. From this, we
reconstruct per-iteration latencies and times for a full training run.

The performance results reported in the article are also generated
directly through testing the software described here. Using the
appropriate parameters, which are provided in sample scripts, the
accuracy of the SDNet can be reproduced approximately. Similarly,
the SDNet checkpoints provided can be used to reproduce the
accuracy of MF predictor. While they can not be reproduced exactly,
the general performance trends for both SDNet and MF predictor
should also be reproducible on any hardware.

Generally, the artifacts we provide will enable reproducing the
trends of our experiments, but will generally not allow for exact
reproduction.

REPRODUCIBILITY OF EXPERIMENTS
There are two separate workflows in our work: one is for training
the SubDomain Network (SDNet) and the second is for testing the
Mosaic Flows (MF) Predictor.

Subdomain Network (SDNet) Training. First, we describe the
steps for training. Our training scripts require a Linux cluster with
at least interconnected 32 GPUs, Python, NCCL, and an assortment
of common Python Libraries (such as PyTorch). When using Nvidia
V100 or A30 GPUs, The training time can vary from several minutes
to several hours depending on the number of GPUs used and the
target accuracy. To reproduce the training experiments, one must
run the submission script with the desired number of GPUs. The
training script saves checkpoints for the model every 200 epochs.

Additionally, it checkpoints the model that achieves the lowest
validation error and the final model state after the last iteration.

All of the runtime data will be logged automatically. The Ten-
sorBoard log files include run times for each training iteration
and various error metrics like the mean squared error, mean ab-
solute error, and PDE residuals. The visualization scripts take the
corresponding log directory as a command-line argument. The vi-
sualization scripts parse the TensorBoard log files and can construct
the error plots with respect to the number of iterations, wall time,
or number of epochs.

The results produced by the visualization scripts should look
quite similar to the plots presented in the paper. Some figures are
the combination of several separate plots, but each individual plot
should match nicely with the reproduction. The main training script
is “gfnet_torch_distributed.py" and can be run on a slurm cluster
using the sample submissions script “torch_dist_loss_limit.sh".

Mosaic Flows (MF) Predictor. The following steps describes
how to reproduce the strong scaling result presented in the article.
This workflow requires a Linux cluster with at least 32 GPUs with
python, jupyter, NCCL, and the required python libraries such as
PyTorch properly installed. Each of the 3 experiments mentioned
below typically takes less than an hour to finish, however this time
may vary depending on the software and hardware configuration
of the system used.

(1) In a cluster with the Slurm job scheduling system, navigate
to src/mf inside the code repository.

(2) Run sbatch strongScaling.sub to submit a job that runs
the MF predictor to solve the Laplace equation on the 32×32
domain with increasing number of GPUs. (This job script
is written for Slurm, if the system uses other job schedul-
ing tools, changes to the job script have to be made before
running it.)

(3) The output of this job will be two series of .csv files in the
src/mf/figure directory. The first series contains the time
performance of each run. The second contains the accuracy
of each run.

(4) Run the jupyter script
sc23-mosaic-flows/src/mf/figure/strongScaling.ipynb
to reproduce the figures.

In general, the reproduced result should show the runtime decreases
linearly with the number of processors used. Running the steps
above should reproduce the exact same accuracy result presented
in the article.

Weak scaling can be reproduced with very similar steps men-
tioned above with the following changes:

(1) Run sbatch weakScaling.sub to submit the job.
(2) Run sc23-mosaic-flows/src/mf/figure/weakScaling.ipynb

to reproduce the figure.
In this case, the runtime of each run is expected to increase slightly
as the number of processors increase, with most of the increase
coming from the increase in communication cost.

Feeney, et al.

The experiment results that compares the sequential optimiza-
tion can also be reproduced with very similar steps with the follow-
ing changes:

(1) Run sbatch batchVunBatch.sub to submit the job.
(2) Run sc23-mosaic-flows/src/mf/figure/batchVsUnbatched.ipynb

to reproduce the figure.
In this case, we can expect to see the runtime of the batched ver-
sion to be significantly shorter than the runtime of the unbatched
version.

	Abstract
	1 Introduction
	2 Background
	2.1 Problem Definition
	2.2 Neural PDE Solvers
	2.3 Domain Decomposition
	2.4 Mosaic Flow

	3 Neural PDE Solver Training
	3.1 SDNet Model Overview
	3.2 Optimized Input Embedding
	3.3 Distributed Data Parallel Neural PDE solvers

	4 Parallel and Distributed Inference
	4.1 Batched Inference with Atomic Subdomains
	4.2 Domain Parallelization for Distributed Inference
	4.3 Cost Analysis

	5 Results and Discussion
	5.1 Data Generation
	5.2 SDNet Training
	5.3 MF Predictor Performance

	6 Conclusions
	Acknowledgments
	References

