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ABSTRACT

To facilitate dynamic spectrum sharing, the FCC has designated
certified SAS administrators to implement their own spectrum ac-
cess systems (SASs) that manage the shared spectrum usage in the
novel CBRS band. As a premise, different SAS servers must conduct
periodic inter-SAS coordination to synchronize service states and
avoid allocation conflicts. However, SAS servers may inevitably
stop service for regular upgrades, crash down, or even perform
maliciously that deviate from the normal routines, posing a funda-
mental operation security problem — the system shall be robust
against these faults to guarantee secure and efficient spectrum shar-
ing service. Unfortunately, the incumbent inter-SAS coordination
mechanism, CPAS, is prone to SAS failures and does not support
real-time allocation. Recent proposals that rely on blockchain smart
contracts or state machine replication mechanisms to realize fault-
tolerant inter-SAS coordination require all SASs to follow a unified
allocation algorithm. They however face performance bottlenecks
and cannot accommodate the current fact that different SASs hold
their own proprietary allocation algorithms.

In this work, we propose TriSAS—a novel inter-SAS coordination
mechanism to facilitate secure, efficient, and dependable spectrum
allocation that is fully compatible with the existing SAS infrastruc-
ture. TriSAS decomposes the coordination process into two phases
including input synchronization and decision finalization. The first

This work is licensed under a Creative Commons Attribution International 4.0 License.

ASIA CCS °24, July 1-5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0482-6/24/07.
https://doi.org/10.1145/3634737.3645005

phase ensures participants share a common input set while the
second one fulfills a fair and verifiable spectrum allocation selec-
tion, which is generated efficiently via SAS proposers’ proprietary
allocation algorithms and evaluated by a customized designed al-
location evaluation algorithm (AEA), in the face of no more than
one-third of malicious participants. We implemented a prototype
of TriSAS on the AWS cloud computing platform and evaluated its
throughput and latency performance. The results show that TriSAS
achieves high transaction throughput and low latency under vari-
ous practical settings.
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1 INTRODUCTION

The radio spectrum is an important and scarce resource for wire-
less communications. To accommodate the ever-increasing volume
and variety of spectrum users in the commercial setting, spectrum
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regulatory agencies in the US, notably the Federal Communications
Commission (FCC) and National Telecommunications and Informa-
tion Administration (NTIA) have opened up previously exclusive
spectrum bands for more flexible shared use by the public [18],
culminating in a paradigm of dynamic spectrum sharing (DSS). The
Spectrum Access System (SAS), mandated by the FCC for managing
spectrum sharing in the 3.55- 3.7 GHz Citizens Broadband Radio
Service (CBRS) band [24], is currently the most promising DSS-
enabling technology and has started commercial deployment in
2020. At its core, SASs are implemented and operated by certified
service providers, called SAS administrators, to allocate spectrum
usage resources (location, time, bands, power) to commercial spec-
trum users per request while ensuring the pre-emptive access right
of incumbent users (e.g., military radars, satellite stations, and other
federal users). Multiple SAS administrators have been approved
by the FCC for the CBRS ecosystem, including Google, Federated
Wireless, Sony, Amdocs, and CommScope.

1.1 Inter-SAS Coordination Problem

The SAS administrators have been certified to manage the CBRS
band usage of their customers (spectrum users) through proprietary
SAS servers. They overlap in geographical service areas, a situa-
tion similar to that of current mobile network operators (MNOs).
However, unlike the current MNOs where each MNO operates
in its own licensed spectrum bands, all SAS administrators serve
their customers in the same CBRS band. This brings a fundamental
inter-SAS coordination problem—the SAS administrators should
be coordinated so that their customers do not receive the same or
significantly overlapping allocations (location, time, bands, power).
Failing to address this problem leads to service de-synchronization
and allocation conflicts, which could result in harmful interference
between spectrum users. Unfortunately, this is strictly prohibited
by the current WInnForum Standards [29] because any interference
that exceeds the pre-defined threshold can disrupt the spectrum
sharing service of the whole area.

However, during the operation of the SAS, some SAS servers may
inevitably deviate from normal routines because of server crashes,
regular system upgrades, or even malicious hacking. As a result,
these SAS servers exhibit arbitrary behaviors and can be treated as
Byzantine nodes. For example, SAS servers may become offline and
stop service for a certain period because of regular maintenance.
Malicious SAS servers may purposely modify or lie for some shared
information to gain excessive spectrum resources in the shared
CBRS band. To provide a sound and sustainable spectrum sharing
service, the SAS system shall be able to overcome these issues
and ensure that the system operates smoothly even if a portion of
the server fails. More specifically, the already committed spectrum
allocation transactions shall not be revoked or modified even if
their proposed servers crash down, and the malicious servers shall
not jeopardize the coordination procedure of the honest servers.
Moreover, when these crashed or malicious servers go online, they
shall be able to recover their operation status and retrieve the
records from the honest servers.

The Coordinated Periodic Activities for SASs (CPAS) procedure,
as specified in the Wireless Innovation Forum (WInnForum) stan-
dard [10], is the only incumbent inter-SAS coordination mechanism
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used in practice. This mechanism requires SAS administrators to
perform a full-dump-style synchronization of SAS service states
on a daily basis, from 3 AM to 6 AM U.S. Eastern Time, so that
they can provide non-conflicting spectrum allocations to users the
next day. However, this overnight message-exchange protocol nei-
ther considers the possible presence of malicious SASs nor meets
with real-time performance expectations of the dynamic spectrum
sharing service.

To tackle these issues, recent literature has proposed using the
blockchain and distributed ledger technology to construct fault-
tolerant SASs and inter-SAS coordination schemes [3, 12, 31, 34].
They either use the blockchain to bootstrap a distributed spec-
trum database [3, 12], or leverage smart contracts’ flexible pro-
gramming interfaces to implement spectrum allocation and other
business logic [31, 32, 34]. The blockchain-based solutions can also
provide auditability by maintaining an immutable ledger of spec-
trum operations across all participants. In [31, 32] particularly, the
fault-tolerant inter-SAS coordination is fulfilled by the blockchain
system’s built-in Byzantine fault-tolerant (BFT) consensus, which
essentially realizes a state machine replication (SMR) in that all SAS
servers follow the same spectrum allocation algorithm and curate
a unified ledger for all spectrum users. In this way, the non-faulty
servers can synchronize and process new requests sequentially,
instead of exchanging all service data in a full-dump style (as in
the case of CPAS).

Limitations of Blockchain/SMR-based SAS: While provid-
ing consensus-driven security and immutable records of spectrum
access, the above blockchain-based SASs and SMR-based inter-
SAS coordination schemes do not represent a practical solution in
the recently deployed SAS ecosystem. First and foremost, the SAS
administrators are competitive commercial entities and manage
their own service subscribers and adopt proprietary allocation algo-
rithms which could be commercial secrets. As a result, there is no
unified allocation algorithm among different SAS administrators,
and their managed SAS servers cannot be treated as replicated state
machines. Moreover, implementing complex allocation algorithms
in blockchain smart contracts and executing them could face pro-
hibitive on-chain costs, since the spectrum allocation algorithm
can be highly complex, such as using graph coloring-based [33],
reinforcement learning-based [1] or optimization-based approach
[14] to derive a fair and effective spectrum allocation. Therefore,
instead of replicating the same spectrum sharing service across dif-
ferent entities, it is imperative for the SASs to adopt a coordination
mechanism that can ensure a unified and fair spectrum allocation
among all participating SASs without having all parties pre-agree
on any allocation algorithm. To avoid situations in that malicious
or selfish SAS plays favoritism towards its own customers, security
properties including fault-tolerance, immutability, and auditability
of spectrum allocations should also be observed.

1.2 Our Solution

In this work, we propose TriSAS: a trustworthy, robust, and effi-
cient inter-SAS coordination mechanism that achieves the above
goals while being backward compatible with the existing SAS frame-
work. TriSAS’s core mission is to facilitate independent SAS servers
to generate fair and auditable spectrum allocations for their users
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in an efficient manner while ensuring correctness against selfish
and even malicious SAS servers. Catering to the heterogeneity of
spectrum allocation algorithms among different SAS servers, we
decompose the inter-SAS coordination into a two-phase process—
the input data synchronization phase and the decision finalization
phase. We use a blockchain database as a key component for the
secure and efficient handling of spectrum requests from all users.

For the input synchronization phase, we require all servers to
store their input requests in the blockchain database proactively.
The blockchain database automatically converts the requests to in-
put transactions and uses a reliable broadcast mechanism to deliver
the transactions to all other SAS servers securely. This phase en-
sures that all participants share a common input set. In the decision
finalization phase, each SAS server first pulls the common input set
from the blockchain database and computes its allocation proposal
locally via its proprietary allocation algorithm, which is stored in
the blockchain database and reliably broadcasted to other parties.
To avoid any SAS from playing favoritism towards its own users,
we design a voting sub-phase to allow all SAS servers to agree on
the best allocation proposal. We propose an allocation evaluation
algorithm (AEA), which balance between the spectrum utilization
rate and allocation fairness, for the SASs to evaluate different al-
locations following pre-agreed evaluation criteria. An allocation
receiving a high score needs to boost spectrum usage efficiency
and ensure allocation fairness at the same time. The servers vote
for their preferred allocation according to the scores obtained from
AFA. The allocation that is voted by the majority of the servers is
elected as the final allocation result. TriSAS stores all the transac-
tions in an immutable ledger for potential audits. In general, TriSAS
can tolerate one-third of SAS servers being Byzantine.

We implemented TriSAS on the AWS cloud computing platform
with the Bigchaindb [22] serving as the blockchain database. We
deployed a network of servers in different areas across the U.S. to
simulate real-world deployments of the SAS. We evaluated the per-
formance of TriSAS with respect to different input rates and pulling
intervals. We focused on the throughput and latency performance
of TriSAS and the experiment results show that TriSAS can achieve
scalable performance under practical settings.

In summary, this paper makes the following contributions:

e We identify the inter-SAS coordination problem and its
unique challenges of achieving operation security while ac-
commodating the diversity of allocation algorithms across
distributed SAS servers in the current CBRS ecosystem.

e We propose TriSAS, a new inter-SAS coordination mech-
anism to address these challenges. TriSAS is resilient to
Byzantine SAS servers when their number does not exceed
one-third of the total population and at the same time keeps
high throughput and low latency. TriSAS extends the cur-
rent SAS service model and essentially ensures the safety,
fairness, auditability, and efficiency of spectrum allocations
and SAS operation.

e We propose a novel allocation evaluation algorithm (AEA) to
evaluate the fairness and spectrum utilization efficiency of
spectrum allocations from different SAS servers and help the
system decide on a final selection. This algorithm can also
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serve as a benchmarking tool for general SAS performance
evaluation and may be of independent interest.

e We implemented a prototype of TriSAS. Extensive experi-
ment results show that TriSAS is a practical inter-SAS co-
ordination solution in handling large input volumes with a
small processing latency.

2 BACKGROUND

2.1 Spectrum Access System

The FCC has designated the Citizens Broadband Radio Service
(CBRS) band [24], a 150 MHz frequency band between 3.55 GHz
to 3.7 GHz, to accommodate the shared spectrum usage between
federal and non-federal users [24]. The users get access to this spec-
trum resource according to a three-tiered framework approved by
the FCC, with the incumbent federal users being positioned at the
highest tier, the non-federal Priority Access License (PAL) holders
at the middle tier and the non-federal General Authorized Access
(GAA) users at the lowest tier. At the heart of this new shared spec-
trum usage paradigm is an automatic spectrum coordinator, named
the Spectrum Access System (SAS), which dynamically allocates
spectrum to users at various tiers and controls the operation and
management of the spectrum usage. The SAS ensures that lower
tier users cannot cause harmful interference to higher tier users,
and at the same time boosts the spectrum utilization efficiency.
SASs are implemented by different SAS administrators designated
by the FCC and deployed on their SAS servers. Currently, different
SAS administrators manage their own subscribers and allocation al-
gorithms. They take spectrum access requests from their spectrum
users and respond with transmission grants indicating whether
the requests have been approved as the result of their spectrum
allocation algorithms.

2.2 Blockchain-based SAS

The unique properties of blockchain, i.e., decentralization, trans-
parency, and consensus-based security, make it a potential enabler
to future spectrum management [28]. Recent works have proposed
several blockchain-based, decentralized SASs to realize secure and
verifiable dynamic spectrum access.

Ariyarathna et al. [3] propose a smart contract-based SAS that
mainly focuses on creating and trading “spectrum tokens” based on
Ethereum. This work adopts the SAS admins as a centralized party
and does not consider the problems (coordination, fault tolerance,
etc.) introduced by the current decentralized SAS settings. Zhang
et al. [34] propose an enhanced smart contract-based dynamic spec-
trum sharing system, as well as a novel consensus mechanism. This
work also incorporates the privacy-preserving consideration of
users into their design. However, although this explores the use of a
smart contract to implement the allocation, which results in a fault-
tolerant allocation among participants, it still adopts the single SAS
administrator model and fails to address the challenges introduced
by decentralized SAS settings. Grissa et al. [12] introduce TrustSAS,
a secure and privacy-preserving SAS that combines state-of-the-art
cryptography with the blockchain technique. However, for inter-
SAS coordination, TrustSAS only uses the blockchain (the global
chain in their design) as a record-keeping board to accept any al-
location proposals proposed by a cluster of users, who are usually
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Table 1: A comparison between different blockchain-based SAS.

Blockchain’s Who curate  Fault-tolerant ~ CBRS-SAS Inter-SAS Allocation ~ Algorithm
Scheme role blockchain allocation compatibility coordination generation  diversity
CPAS [10] N/A N/A No Yes Yes (Full dump) Off-chain Yes
Ariyarathna et al. [3] Rule/Record Keeping Third Party No No No On-chain No
Zhang et al. [34] Allocation/Record Keeping  Prior Users Yes No No On-chain No
TrustSAS [12] Record Keeping GAA Users No Yes Yes (Classic BFT)  Off-chain Yes
BDSAS [31, 32] Allocation/Record Keeping ~ SAS Servers Yes Yes Yes (Classic BFT)  On-chain No
TriSAS Record Keeping SAS Servers Yes Yes Yes Off-chain Yes

governed by a single SAS administrator. In a situation where differ-
ent clusters of users (SAS administrator) have overlapped serving
areas, which unfortunately is the current fact, cannot prevent a
selfish cluster from proposing unfair or even fake allocations in
favor of himself. Xiao et al. [32] propose BD-SAS, a fault-tolerant,
decentralized SAS that uses a two-layer blockchain system where
the global chain is used for spectrum regulation compliance and
smart contract-based local chains are used in individual spectrum
zones for automating spectrum allocation. However, BD-SAS still
relies on smart contracts to perform on-chain spectrum allocation,
which is neither efficient nor enables allocation algorithm diversity.

2.3 Blockchain Database

The blockchain database is an emerging technology that com-
bines blockchain’s decentralization, Byzantine fault tolerance, and
data immutability properties, with distributed databases’ query,
high throughput, and low latency properties. Blockchain databases
are mostly deployed in small-scale private networks consisting of
multiple or tens of peers who know each other’s identities. These
networks enforce strict access control policies and only autho-
rized entities can participate in the network. Examples include
Bigchaindb [22] and Couchdb [2]. Compared to classical cryptocur-
rency and smart contract systems, blockchain databases are not
purposed for realizing a full-fledged payment system. Instead, they
are customized to handle a larger volume of data transmission and
storage across different nodes, while at the same time maintain-
ing the fault-tolerance property for common database operations.
Whenever a data processing operation (e.g., insert, modify, and
query) is received by a peer, it leverages the underlying reliable
broadcast mechanism to forward it to all peers to ensure that every
node maintains the same immutable ledger.

3 SYSTEM MODEL

3.1 System Architecture

Geographical Concepts: Following the definition of the WIn-
nForum Standard [29] and previous works [31, 32], we consider
spectrum sharing zone as a unit spectrum management geo-location
areas in which SAS administrators can realize all spectrum sharing
functions including spectrum request, response, allocation, and
inter-SAS coordination. In practice, a zone usually refers to a US
county. Different spectrum sharing zones operate independently
and spectrum allocations in one zone will not affect the allocations
of others. But all spectrum zones are subject to global regulations
where the global refers to the entire spectrum jurisdiction such as
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the US continent. In this paper, we focus on the spectrum sharing
system within one zone as spectrum sharing is conducted on a
per-zone basis. We define five types of participants in the spectrum
sharing system, as shown in Figure 1.

Spectrum Users operate one or more CBSDs (base stations)
in the system. They register themselves to their SAS administra-
tors when they first join the system and later send spectrum usage
requests to get access to spectrum resources. They are expected
to receive transmission grants, i.e. the decision about whether
their requests are granted or not. Currently, one spectrum user
only subscribes to and receives service from one SAS administra-
tor. Within one zone, there are hundreds of CBSDs, denoted by
CBSDy, (k=1,2,---,m).

ESC Sensors is a set of radio sensors deployed by either the SAS
administrators or other appointed entities that aim to detect the
presence of incumbent spectrum users such as naval radars. After
they detect the presence of incumbent users, they send ESC notifi-
cations to SAS servers and the servers suspend the transmission
grants of CBSDs that might cause interference to the incumbents.
ESC notifications usually have strict latency requirements and are
processed by each SAS server locally.

SAS Servers are deployed by the SAS administrators to coor-
dinate the spectrum usage of spectrum users. We assume there is
only one server in charge within one spectrum sharing zone for
each SAS administrator, denoted by SAS;, (i = 1,2,-- -, n), where
n refers to the number of SAS administrators in the zone. In one
zone, there are typically about 4-7 SAS servers/administrators and
each SAS server has its own list of subscribers. The SAS servers are
the core components of the spectrum access systems. They contain
several key functions including database functions, coordination
functions, and proprietary allocation algorithms. Within one server,
the database function stores all the essential records including sys-
tem inputs, intermediate results, and final results. For a blockchain
database, the database function stores all the transactions in an
immutable ledger. The allocation algorithm, which is considered to
be owned by a SAS administrator who is unwilling to expose its
details because of commercial and intellectual property reasons, is
in charge of generating spectrum allocations by taking input sets
from the database function. The coordination function is in charge
of keeping state synchronization across SAS servers. It interacts
with the other two functions within its server and the other coordi-
nation functions within other servers. It is the core component of
our inter-SAS coordination mechanism.

Regulatory Entities include the NTIA and FCC. They are the
trusted entities in the system and regulate the operation of SAS
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Figure 1: TriSAS system model.

administrators. They do not participate in the spectrum sharing
service operations and only publish and enforce regulation rules in
the system. The frequency of policy upgrades is relatively low, in
the order of days and months.

External Databases provide supplemental information to SAS
servers, such as geographic information. The data size of the pulled
records from them is usually very large and the frequency of updates
is very low. For some of them, the SAS server may only pull the
records once to its cloud for the whole life cycle unless there are
significant changes. Therefore, we do not consider these records
necessary for our real-time coordination procedure.

3.2 Threat Model

The WInnForum standard stipulates the 5G spectrum sharing
system to establish a CBRS public key infrastructure (PKI) [30]. As
a result, each node in the network, including a spectrum user and
a SAS server, can sign its messages with its own private key. The
other nodes can verify the signatures with the corresponding public
key retrieved from the CBRS PKI. This prevents a network-level
attacker from eavesdropping, modifying, and forging messages (or
transactions) in the system. Unfortunately, this built-in security
mechanism cannot distinguish the messages sent by malicious
SAS servers, who are considered insider attackers and can sign
the malicious messages with their own secret keys to bypass the
cryptographic checks.

Because of crashes down, regular maintenance, and even mali-
cious hacking, we consider a portion of the SAS server may deviate
from the normal operation routine for a certain period of time.
But we assume they can eventually be fixed. Furthermore, some
selfish SAS administrators may purposely sabotage the system by
having its SAS servers send conflicting information to other SAS
servers under the current framework for their own benefit. For
example, the attacker can lie about the status of specific spectrum
transmission grants to cause a de-synchronization of the service
state between different SAS servers and further trigger allocation
conflicts, ultimately jeopardizing shared spectrum use. The attacker
when acting as a selfish administrator may configure its SAS server
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to propose unfair allocations via its proprietary algorithm to give
its own clients extra spectrum resources when it is in turn.

In this work, we use “Byzantine behavior” to cover all the possi-
ble SAS server behaviors that deviate from the normal routine (i.e.,
arbitrary behaviors that do not follow the correct coordination pro-
cedure). We assume the Byzantine servers are fewer than one-third
of the total population, which follows the convention in classical
Byzantine fault tolerance problems in distributed systems [5, 6, 21].
Moreover, in current SAS ecosystems, the SAS administrators and
their managed SAS servers are certified entities. They make a profit
in the spectrum sharing market and are incentivized to follow the
FCC rules for the operation of SAS administrators, i.e., 47 CFR Part
96 [24]; failure to comply can have serious legal ramifications. The
certified and commercial nature of SAS administrators makes the
2/3 honest majority assumption achievable in practice.

Spectrum users may also behave in certain malicious ways. They
can launch DoS attacks or send falsified spectrum requests to ac-
quire excessive allocations. This requires the SAS servers to enforce
strict access control. For this work, we regard this as the responsi-
bility of individual SAS administrators and out of the scope of the
inter-SAS coordination problem.

3.3 System Goal

The inter-SAS coordination mechanism takes input sets R; (¢) (i =
1,2,---,n) from all SAS servers that contain all active requests and
can ensure the following properties:

o State Synchronization: The inter-SAS coordination mech-
anism is conducted periodically and after each round the
states S;(t) of SAS servers shall be synchronized.

¢ Byzantine Resilience (Operation Security): The coordi-
nation mechanism needs to counter Byzantine servers. It
shall ensure that the honest servers function normally and
will not be affected by Byzantine servers when they consti-
tute less than 1/3 of the total population. Once the crashed
or malicious servers are recovered, they can synchronize
themselves with the honest ones easily.
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Figure 2: TriSAS workflow.

Uniform Allocation and Record Audibility: The dis-
tributed SAS servers should agree on a uniform allocation for
each user’s spectrum request. The input sets and spectrum
allocations (along with how the agreement is reached) need
to be stored in a public immutable ledger. Every node can
get access to this ledger for audibility purposes. As a result,
any malicious behaviors can be identified and tracked in the
immutable ledger and the corresponding malicious party can-
not deny doing so because all records are cryptographically
signed and verifiable.

e Fairness and Efficiency: The coordination mechanism
needs to be performed in real-time without adding too much
overhead and latency. The processing latency shall be smaller
than the periodical communication interval between CBSDs
and servers (300 seconds) under practical input rates (about
30 requests per minute). The coordination mechanism also
needs to ensure that the final allocations are voted by a 2/3
majority of servers to avoid potential unfair allocations. To
avoid imposing a large on-chain execution overhead, the
proprietary allocation algorithms shall be executed locally.

4 COORDINATION MECHANISM

4.1 Mechanism Overview

TriSAS is a two-phase mechanism including the input synchro-
nization and decision finalization phases, as shown in Figure 2.
For each SAS server, the input synchronization phase is triggered
whenever there are new device registration requests or spectrum
usage requests. The input synchronization phase needs to ensure
that all SAS servers share a common input set R(t), which is the
union of all the SAS servers’ individual input sets, i.e. R(t) =

T Ri(t)(i = 1,2,---,n). This set is stored in an immutable
ledger in the blockchain database and can be used in the decision-
finalization phase to generate spectrum allocations.
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The decision finalization phase is in charge of generating spec-
trum allocations and finalizing one of them as the valid allocation
that is favored by a 2/3 majority of SAS servers. This phase re-
quires the coordination function within the servers to periodically
(with interval T) check whether there are new transactions in the
common input set R(t). The decision finalization phase is trig-
gered when these proposers find new input transactions in the
common input set. Within one interval, there can be one or more
proposers, depending on how many SAS administrators are propos-
ing spectrum allocations. The decision finalization phase needs to
be finished within the interval T and can accomplish periodical
synchronizations of SAS server states S;(¢).

SAS server’s state Sj(t) contains three types of records, the
common input set R(t), the proposed allocation set A(¢), and the
vote set V(t). These are stored in the immutable ledger of the
blockchain database in the form of transactions and data blocks.
All participants can get access to the ledger for audit purposes.
Each data block contains a hash value of previous blocks and any
modification of already committed blocks can be detected.

4.2 Input Synchronization

The SAS servers take the requests from the spectrum users as
the inputs to the system. Different SAS administrators have their
own input set R; (t) The input set consists of requests signed by

CBSDs, denoted by rCBSD R
time. The number of requests increases monotonically with respect
to time ¢, i.e. [Input;(t)| o< ¢.

For each server, when the coordination function receives a re-
quest from spectrum users, it first transfers the request to the cor-
responding input transaction by formatting the request into the
blockchain database’s standard and signing the transaction with
its own private key. As a result, the device registration requests

are transferred to registration transactions that contain the device

where tgen refers to request generation
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identity, antenna characteristics, power level, and location infor-
mation. The transactions are signed by their origin CBSDs and the
enrolled SAS server, denoted by Reg;x =< idjopices antenna, power,
loc, sigcBsDy $igsas; >-

Similarly, the spectrum usage requests are transferred to re-
quest transactions that contain device identity, request spectrum
ranges, request time and duration, and are also signed by their
origin CBSDs and the enrolled SAS server. We denote them as
Reqix =< idgepice> Tange, treq, duration, sigcpspy Sigsas; >

After the transactions are generated, the coordination function
sends the transactions to the blockchain database. The coordination
function can either send the transactions immediately whenever
new ones arrive or can buffer the transactions into batches before
sending them. The blockchain database, upon receiving the trans-
actions, organizes the messages into data blocks. The underlying
consensus mechanisms of the blockchain database, such as PBFT [6]
or Tendermint [5], ensure that these blocks are reliably broadcasted
and stored by all honest SAS servers, i.e. the blocks are commit-
ted. The coordination function receives a commit confirmation
message when all data blocks are committed, indicating that the
input synchronization phase is finalized and the requests have been
stored in an immutable ledger. Notably, the SAS servers cannot
modify or forge the registrations and spectrum usage transactions
because they cannot forge the signatures of the CBSDs. Detailed
step-by-step algorithm of this phase is summarized in algorithm 1.

4.3 Decision Finalization

The decision finalization phase is launched with interval T by
SAS servers (proposers) denoted by SAS; where j € {1,2,---, p}
and p is the number of proposers. This phase is asynchronous with
the input synchronization phase. This phase has three sub-phases:
allocation generation, allocation voting, and allocation decision.

4.3.1  Allocation Generation. The coordination functions of SAS
proposers periodically pull a common input set R(ty,,;) from the
blockchain database to launch the allocation generation process,
where tp,,; refers to the record pulling time. The pulled input
set, R(fpy11), contains all the active requests before the pulling
time ,,,;. With this common input set, the proposers generate
spectrum allocations according to their own proprietary algorithms
Algj. We define the set of allocations of a SAS proposer as A;(t)
and the newest allocations at t,,,1; is A (¢y,11)- By definition, we
have Aj(tyun) = Algj(R(tpur))- Aj(tpun) contains the server’s
replies to spectrum usage requests, indicating whether they are
granted. If a spectrum usage request is not granted, the allocation
may provide recommended operation parameters including the
power level and spectrum band(s).

There are many allocation algorithms customized for the spec-
trum allocation problem including simple first-come-first-served
(FCFS) allocation, greedy approaches, graph coloring [11], rein-
forcement learning [1], and optimization-based algorithms [14].

Within each proposer, the allocation algorithm is usually a sepa-
rate function from the coordination function. This enables the SAS
servers to execute complex allocation algorithms offline without the
need to consume on-chain computation resources. The coordination
function obtains allocation result A ; (t,,,;) from the algorithm and

405

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Algorithm 1 TriSAS-Phase 1: Input Synchronization

Requirement: The number of servers is n, and the desired number
of faults to counter f satisfies f < [ % |.

Ensure: All SAS administrators have the same input set.

1: procedure INPUT SYNCHRONIZATION

2: function REQUEST CONVERSION AND BROADCAST

3 fori in {1,2,---,n}, each server SAS; do

4 Get Req;x/Regix = Convert(rgEng).
5 Broadcast Req¢x or Regx to others.
6: Store received Req;x or Reg;y to the ledger.
7 end for
8 end function
9

: end procedure

generates the allocation transactions Alloc;x accordingly. Each al-
location transaction is bound with a request transaction, containing
the pulling time, its generation time, the id of the request transac-
tion it replies to, the decision (whether the spectrum usage request
is granted and if not, some recommended alternative spectrum
resources), the id of the allocation result it belongs to, and the sig-
nature of its generator. The allocation transaction can be expressed
as Allocsy =< tpulls tgen, idReth, decision, idﬂj(tpu”), sigSAsj >.
The coordination function within each server sends the allocation
transactions to the blockchain database in a batch and waits for the
commit confirmations from it to conclude this sub-phase.

4.3.2  Allocation Voting. Upon receiving the commit confirmations
of the proposed allocation transactions, the coordination function
broadcasts voting requests to all SAS servers. The voting request
messages do not contain any operation parameters and only serve
as notifications. They are signed by the proposer’s private key and
the recipients can verify their authenticity. The other SAS servers,
upon receiving the voting requests, serve as the voters and start
the allocation voting sub-phase to generate replies.

Allocation Evaluation Algorithm. The Allocation Evaluation
Algorithm (AEA) evaluates the performance of spectrum allocations.
It takes the request set R(#y,,;) and allocations A (tp,11) as the
input and produces scores indicating the performance of different
allocations, i.e. s = AEA(A; (tpu1r), R(tpuir))-

For each spectrum user, A (t,,,;) contains the feedback about
whether its request is granted. There could be spectrum usage con-
flicts between different spectrum requests, and AEA first checks
whether A (t,,11) resolves these conflicts, i.e. whether A; (tpu11)
satisfies the interference and priority requirements. A proper al-
location shall ensure that the lower tier users cause no harmful
interference to higher tier users. If an allocation cannot pass this
check, it will get a zero score. For the allocations that have passed
the checking process, AEA evaluates their performance in terms
of spectrum utilization rate and fairness. We assume the numbers
of spectrum usage requests from SAS servers are I3, Iy, - - -, I,. The
numbers of granted spectrum usage requests in allocation Ajj (¢,11)
are 91,92, - - , gn. Note that g; < I; because not all the requests are
necessarily granted.
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We define the spectrum utilization rate as the ratio between
granted requests and original requests:
U= Z?:l gi

Z?=l li

For fairness measurement, we choose the well-established Jain’s
fairness index [15]. Considering H = (g—l1 % e ?—”) as the request
grant rate of all SAS servers. We define the fairness metric as:

1

(21, %)
V= ————
nxp ()7

In the ideal situation if the allocation is totally fair, the fairness
metric v = 1. In the worse case if the allocation is totally unfair, the
fairness metric v = %

The final evaluation score s can be expressed as a function of
u and v, i.e. s = f(u,v). Different application scenarios may apply
different f() to satisfy their unique requirements. For example, s
can be the multiplication of the utilization rate u and fairness score
v, i.e. s = uv, indicating the area the allocation covers in the (u,v)
space, as well as serving as a metric to evaluate an allocation. Or
the users can set a fairness threshold to only accept allocations that
obtain a higher fairness score than the threshold th. In this case,

u ifox>th
fluo) = {O ifo <th’

The voters generate voting transactions based on their local
calculation of scores through the AEA. Each voting transaction
contains the id of the allocation it votes for, the score, its gener-
ation time, and the signature from its generator. The transaction
can be expressed as: Votery, =< idﬂj(tpu”), S, tgen, Sigsas; >. The
coordination function within each voter sends the voting transac-
tions to the blockchain database, which are stored in the ledger and
reliably broadcasted to others. After the coordination function gets
commit confirmations from the blockchain database, it replies to
the proposer with a voting reply message. The proposer waits for
n — f replies and upon receipt, broadcasts a voting confirmation
message to conclude this sub-phase.

Within each server, the allocation generation sub-phase and the
allocation voting sub-phase take place concurrently. This means a
server can both serve as a proposer to generate new allocation pro-
posals and serve as a voter to vote for others’ allocation proposals at
the same time. The number of proposers p is a known parameter for
every SAS server. If the number p equals n, all SAS servers propose
allocations to compete with each other; and if equals one, there is
only one proposer and all the others serve as voters to approve the
allocations proposed by it.

@)

4.3.3  Allocation Decision. The final allocation decision step waits
for the voting confirmation replies from all committed (< p) alloca-
tions, i.e. those that had sent a voting request message before, until
a timeout threshold. The SAS servers select the valid allocation
with the highest score A rinq1 (tpy11) as the final selected allocation.
In this context, valid means there are at least f + 1 identical votes
from different servers stored in the ledger. The servers broadcast
the id of the final selected allocation id 4 finat (Epurt) 11 the voting de-
cision message and upon receiving f + 1 identical results signed by
different servers, pull A fpq1(tpy1) from the database and reply to
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Algorithm 2 TriSAS-Phase 2: Decision Finalization

Requirement: The number of servers is n, the number of pro-
posers is p, and the desired number of faults to counter f
satisfies f < [ 5 ].

Ensure: The SAS system is robust against f Byzantine faults and
all SAS admins obtain a unified, fair, and verifiable spectrum
allocation plan.

1: procedure DECISION FINALIZATION

2 function ALLOCATION GENERATION

3 for j in {1,2,---,p}, each server SAS; do

4 Pull common input set R(Z,y1)-

5: Get Aj(tpuir) = Alg;j(R(tpunn))-

6: Get Allocsx = Convert(Aj(tpuir))-

7 Broadcast Alloc to others.

8 Store received Alloc;x to the ledger.

9 end for

10: end function

11: function ALLOCATION VOTING—PROPOSERS

12: for j in {1,2,---,p}, each server SAS; do

13: Broadcast voting requests to voters.

14: Wait for n — f voting transactions Votex.

15: Broadcast voting confirmations to voters.

16: end for

17: end function

18: function ALLOCATION VOTING—VOTERS

19: fori in {1,2,---,n}, each server SAS; do

20: Calculate score s = AEA(Aj (tpu11), R(tpurr)) upon
receiving voting request.

21: Broadcast the voting scores to others.

22 end for

23: end function

24: function ALLOCATION DECISION

25: fori in {1,2,---,n}, each server SAS; do

26: Wait for p confirmations from all proposers.

27: Select the best allocation A f;pq (¢py11) from p pro-
posed allocations.

28: Broadcast the identity id Afinat (tputt)”

29: Wait for f + 1 identical identities.

30: Pull Afginar(tpuir) from the ledger and replies final
results to the clients.

31 end for

32: end function

33: end procedure

the users, which conclude the whole coordination process. Detailed
step-by-step algorithm of this phase can be found in algorithm 2.
In summary, from the spectrum users’ perspective, a valid trans-
mission grant corresponds to the following list of transactions: a
registration transaction Reg;, containing device and physical op-
eration information, a request transaction Req;x containing the
spectrum usage request, an allocation transaction Alloc;y showing
the spectrum usage decision, at least f + 1 identical vote transac-
tions Vote;x showing the validity of the allocation, and at least f+1
identical voting decision messages showing SAS servers’ endorse-
ments. Note that the voting decision messages do not necessarily
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Figure 3: The data structure of a valid transmission grant.

need to be stored in the immutable ledger because the stored alloca-
tion and voting transactions are enough for checking the integrity
and correctness of the voting process. The honest servers will get
correct results even if the last id broadcasting and verification is
not there i.e. they directly pull the final results back to clients after
the selection step. We keep it in the coordination process to prevent
Byzantine servers from forcing their subscribers to transmit in the
unauthorized band(s) to jeopardize the operation of others because
with this step the clients shall only consider a transmission grant
to be valid if and only if there are at least f + 1 endorsements from
the SAS servers which Byzantine nodes cannot accomplish.

With all these transactions and messages, the users know that
the spectrum usage decisions they have received are reliable and
agreed upon by the majority of the servers. The users can verify the
transactions and decisions in the blockchain ledger. We demonstrate
the data structure of a valid transmission grant in Figure 3.

4.4 Analysis

State Synchronization. The coordination function waits for the
blockchain database to reply with a commit confirmation each time
it sends a transaction. Because the blockchain database itself has an
underlying Byzantine fault-tolerant consensus mechanism, which
has been well investigated and proved such as PBFT and Tender-
mint, all the transactions are stored in distributed immutable ledgers
across all servers. The state S;(¢), including the input records R; (T),
allocation records, and vote records are synchronized when the
coordination process is accomplished.

Decision Correctness. Each proposed allocation receives n — f
replies from the voters (including the proposer himself) before
it proceeds. Among them at most f votes are malicious. When
n > 3f + 1, the remaining n — 2f honest votes are identical and
take up the majority. Therefore, by majority voting, the Byzantine
servers cannot affect voting scores of honest allocations. However,
the proposers themselves can be Byzantine and propose allocations.
But a Byzantine allocation proposed by a Byzantine server cannot
have a higher score s than normal allocations, otherwise, it is a cor-
rect allocation. As a result, Byzantine allocations cannot be selected
as the final allocation and the decision correctness is ensured. Our
mechanism has a timeout threshold, which means different servers
need to be synchronized. We consider this assumption to be prac-
tical because current telecommunication networks usually have
stringent time synchronization requirements and many protocols
such as the network time protocol (NTP) [23] and precision time
protocol (PTP) [9] are used for this purpose.

Complexity. We denote the number of servers as n and the
number of CBSDs as m. The message complexity of our coordination
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Table 2: Round trip times (in milliseconds) among nodes in
different areas.

Node Location 1 2 3 4 |5
1 Lab (N.Virginia) - - - - -
2 AWS (N.Virginia) | 7 - - - -
3 AWS (Ohio) | 215 | 11.2 | - R
4 AWS (California) | 84 | 60.6 | 51.4 - -
5 AWS (Oregon) 72 63.5 48 20.2 | -

mechanism is O(n?). The memory consumption is (n + 2)m + n?,

or considering m >> n is O(mn). More specifically, within one
coordination round the ledger stores m registration transactions
Reg;x, m request transactions Req;x, n proposed allocations with
each one containing m replies (allocsx) to the requests and n® vote
transactions Vote;y.

5 EXPERIMENTAL RESULTS

5.1 Experiment Setting

We implemented a prototype of TriSAS on the Amazon AWS
cloud computing platform. Our system consisted of {4, 7, 10, 13} EC2
instances serving as SAS servers and one desktop in our lab serv-
ing as spectrum users. Each server instance was an EC2 T2.Large
node that had two vCPUs, one 8GB memory, and one 32GB disk.
They were located in four different areas across the U.S., including
northern Virginia, Ohio, Oregon, and northern California. This
simulated the real-life deployment of SAS servers because in re-
ality servers of different SAS administrators are deployed in their
own data centers across the country. The network latency between
the desktop in our lab and cloud servers is shown in Table 2. We
chose Bigchandb as the blockchain database. Each server installed
a Bigchaindb implementation and we configured them together
to form a Bigchaindb network. Bigchaindb is a representative and
well-documented blockchain database. We leveraged the Python
programming interface of Bigchaindb, i.e. the Python driver of
Bigchaindb to implement our coordination mechanism. Bigchaindb
provides two types of transaction templates including the create
transaction template and transfer transaction template. We used the
create template for the registration transaction Reg;x and the trans-
fer template for the other types of transactions, i.e. Req¢x, Allocy
and Vote;y. The contents of these transactions were included in
the asset field and metadata field of the templates. Bigchaindb uses
the Tendermint consensus mechanism as the underlying consensus
protocol. Upon initialization, the Tendermint consensus mechanism
generates a pair of elliptic curve-based public and private keys for
each participant. We used this key pair to identify nodes and sign
transactions.

The key evaluation metrics are the system’s throughput and
latency under a certain volume of input traffic. Within a real-life
spectrum sharing zone, which is typically a county, there are about
400 CBSDs and each of them can send a request to the server
per heartbeat interval, which by the WInnForum standard is a 300-
second interval [29]. Together this contributes to 80 transactions per
minute (TPM) input rate. This is the maximum input rate because
most of the time the CBSDs just send a heartbeat message without
any meaningful content. We can expect the usual traffic volume to
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Figure 4: Input synchronization throughput and latency performance. When n={4, 7, 10, 13}, the system can tolerate {1, 2, 3, 4}

Byzantine faults.

130 130
v~ 90 TPM (max) J119.02 v 64 TPM (max)

110 —— 60 TPM . 110 —— 60 TPM J112.48
—— 30TPM —— 30TPM

90 90

81.04

70
70

50
50

Finalization Time (s)

30
30

10

10

30 60 90

Pulling interval (s)

120 30 60 90

Pulling interval (s)

120

(a) n = 4: 4 servers in the network. (b) n = 7:7 servers in the network.

Figure 5: Decision finalization latency performance. When n={4,

be on a scale of 10 TPM. In our experiment, we conducted stress
tests for the system and chose the following input rates: {30, 60, 90,
120, 150, 180} TPM. Each request contained its desired spectrum
bands and location. We assumed there are 100 locations and 15
spectrum bands (one band is 10 MHz), and each time a request
randomly asked for three to five bands and one location.

Latency is another important evaluation metric, especially for
the second decision finalization phase. This is because the second
phase is conducted periodically and must be finished within the in-
terval T, otherwise, the coordination mechanism fails. The decision
finalization interval is expected to be shorter than the heartbeat
interval (300s) because if this is guaranteed, the users can get real-
time replies in the next heartbeat communication with servers. In
our experiment, we chose the interval as {30, 60, 90, 120} seconds
under a fixed input rate.

5.2 Input Synchronization Performance

In Figure 4 we demonstrate the experiment results of the input
synchronization phase. The figures show the throughput and la-
tency performance when the network size increases from n = 4 to
n = 13, which can tolerate 1 to 4 Byzantine faults. We can observe
that their output throughput rates are monotonically increasing
and follow a linear relationship with respect to the input rates.
This implies that the system throughput has not yet reached its
bottleneck and may increase even with larger input rates. We can
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7, 10, 13}, the system can tolerate {1, 2, 3, 4} Byzantine faults.

also observe that, for all settings, the system throughput is almost
identical to the input rate, showing that the request messages can
be processed in real time without buffering.

The latency of the input synchronization phase, i.e. the time
interval between the transactions proposal and commitment, is
very stable when the network size n = 4 and n = 7. It is about 550
milliseconds for every input rate. But when the network becomes
larger, the latency increases to 800 milliseconds to 1 second when
n = 10 and n = 13. We consider this to be because larger networks
impose more communication overhead for the system, resulting in
longer processing delays.

5.3 Decision Finalization Performance

In Figure 5 we demonstrate the performance of the decision
finalization phase. In the experiment, we mainly focused on the
latency performance of this phase. We changed the size of the
network from n = 4 to n = 13. For each network size, we checked
the system’s performance with respect to a normal input rate (10 or
30 TPM) to its maximum stable input rate, which was obtained as
the maximum input rate that keeps the processing latency smaller
than the interval T, meaning that the decision finalization phase
can be finished within the interval.

For each case, we can observe that the processing latency is
significantly increased when the input rate changes from the nor-
mal rate to the maximum rate for a fixed polling interval. This is
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Figure 6: Latency performance of TriSAS and BD-SAS under
different network sizes and input rates.

because a higher input rate contributes to a larger number of re-
quest messages R(t), which consumes more processing time for the
transaction commitments and allocation generations. For a fixed
input rate, we can observe that the latency linearly increased with
respect to the polling interval. This is because the system gets more
requests for larger pulling intervals and needs more time to pro-
cess them. When the network size becomes larger, we find that
the performance decreases as the system has smaller maximum
stable input rates and longer processing latency. For example, the
maximum stable input rate decreases from 90 TPM to 64 TPM when
n increases from 4 to 7; and if we fixed the input rate to 30 TPM,
the processing latency when n = 7 is significantly larger than that
ofn=4.

5.4 Benchmark Comparison

We compared the performance of our mechanism with BD-SAS
[32], another blockchain-based decentralized SAS following the
setting that the system processes the requests sequentially one by
one instead of the current default periodical batch-based processing
routine to make fair comparisons because BD-SAS does not support
the second way. We demonstrate the performance of TriSAS and
BD-SAS in figure 6. We focused on the average latency of both
mechanisms to process one request.

We observe that when the network size increases from n = 4 to
n = 13, BD-SAS keeps a very stable processing latency at about 2.2
seconds, while TriSAS has a larger latency that increases from 7.32
seconds to 13.73 seconds under 30 TPM input rate. For a fixed n = 7
network, we find that BD-SAS’s processing latency is still stable at
about 2.3 seconds while TriSAS’s latency varies from 9.04 seconds
to 12.56 seconds. From the result, we find that TriSAS imposes a
much larger overhead than BD-SAS. We consider this is because
BD-SAS adopts a much simpler service model as it relies on smart
contracts to fulfill the spectrum assignment and cannot implement
complex allocation algorithms, execute them off-chain, or allow
algorithm diversity, which is crucial for inter-SAS coordination.

5.5 Fairness Performance

We conducted a simulation to evaluate the performance of sev-
eral allocation algorithms including first-come-first-serve (FCFS),
spectrum greedy, number greedy, and biased allocation algorithms
with our AEA algorithm. FCFS means that if two requests ask for
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Figure 7: Evaluation performance of different allocation al-
gorithms.

the usage of the same spectrum band in one location, the earlier
request is approved and the latter one is rejected. Spectrum greedy
means that if two requests have conflicts, the one with larger spec-
trum bands wins. Number greedy means that the algorithm tries to
maximize the number of granted requests. The biased allocation
algorithm tries to maximize the total number of grants for a certain
server. We assumed there were 300 spectrum usage requests toward
100 locations with each one asking for a random amount of spec-
trum band(s). We repeated the simulation for 100 trials and within
each trial, every allocation algorithm generated one allocation to
obtain an AEA score. We considered the average performance of
the 100 trails as the final performance of each allocation algorithm.

We demonstrate the experiment result in figure 7. We first plot
the (u,v) map, i.e. the utilization rate and fairness score map of
the four allocation algorithms. For fairness performance, we can
observe that the biased allocation algorithm achieves the lowest
score, which is consistent with our intuition. For the utilization
rate, the number greedy allocation algorithm achieves the best
performance. To further provide overall unified and quantitative
measurements for different algorithms, we calculate two different
l(; 1?2 i ;Z, with the first one
indicating the area the algorithms covered in the (u, v) map, and the
second one enforcing a fairness threshold. We can observe that the
number greedy algorithm achieves the best performance for both
two scores. Therefore, if the SAS administrators use the aforemen-
tioned allocation algorithms to generate spectrum allocations, the
one employing the number greedy algorithm shall win the voting
phase with the highest probability. We clarify that in reality, the

AEA scores as s; = uv and sy = {
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SAS administrators may use much more complex allocation algo-
rithms than the four we mentioned. However, they can still use AEA
to evaluate their performance and fulfill the decision-finalization
phase in our design.

6 DISCUSSION

Scalability. In this work, we mainly focus on the spectrum
sharing problem within one zone. However, in reality, the SAS
administrators may conduct spectrum scheduling and inter-SAS co-
ordination in many zones across different areas simultaneously. In
this case, the number of spectrum users and input volume is signif-
icantly increased. The bottleneck of the current implementation is
that we use the Amazon EC2 computing instances and these nodes
have limited computation and memory resources. Their computa-
tion and memory power is only comparable to a daily-used desktop
and certainly can not handle very large user numbers and input
volume. On the bright side, all the SAS administrators are major
corporate entities with access to high-performance computing clus-
ters. Therefore, we can expect them to have enough resources to
handle large-scale and complex inter-SAS coordination problems.

Complex allocation algorithm. For the spectrum allocation
algorithm, our current implementation only considered linear-
complexity allocation algorithms. We observe that there exist more
complex allocation algorithms that utilize optimization techniques
to achieve high allocation efficiency and fairness [14]. In this regard,
TriSAS can incorporate these complex algorithms in a straightfor-
ward fashion since it enables different SAS servers to use propri-
etary algorithms. Nonetheless, how to accomplish the vote-and-
selection process within a hard time limit, especially when different
SAS servers finish allocation generation at disparate times, is an
outstanding issue and we leave this problem to future work.

SAS client privacy. In our scheme, we assume each SAS server
disseminates its local client requests to all other servers, allowing all
honest SAS servers to receive the same super-set of client requests.
In practice, however, different SAS providers may be reluctant to
share their client data with each other, at least in its original form,
to protect the competitive advantage of their algorithms and the
privacy of locally subscribed clients. To address this privacy con-
cern, we identify two potential extensions of TriSAS. First, a SAS
server may anonymize or obfuscate sensitive information about
client requests, such as device ID and location, while preserving a
high level of allocation accuracy. Differential privacy techniques
can be used to help each client establish a privacy budget [8]. Sec-
ond, a SAS server may employ a server-level trusted execution
environment (TEE) solution, such as Intel SGX [7] and AMD SEV
[16], to compute over confidential client requests (to decrypt inside
the TEE enclave with keys secretly provisioned from other SAS
servers). A program integrity proof can be provided to other SAS
servers through remote attestation. Meanwhile, how to manage the
decryption keys among SAS servers would require a secure design.

7 RELATED WORK

State Machine Replication and BFT Consensus. When it
comes to realizing a fault-tolerant distributed computing service
that achieves uniform decision among participants, state machine
replication (SMR) is heralded as the de facto paradigm [4, 6, 26],
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where a consortium of replicated servers provides consistent com-
putation service in response to a sequence of client requests, despite
a certain portion of faulty servers. Based on the type of faults they
address, the SMR-based consensus protocols can be classified into
crash fault-tolerant (CFT) consensus protocols and Byzantine fault-
tolerant (BFT) consensus protocols. Paxos [20], Raft [13] and Zab
[25] are typical CFT consensus protocols. They can tolerate crashed
faults when the majority of the servers behave. Many industrial
distributed computing systems such as Apache Hadoop [27] and
Apache Kafka [19] use them as the fundamental consensus mech-
anisms. The BFT consensus protocols address Byzantine failures,
which exhibit arbitrary behaviors due to malicious hacks, device
crashes, and network failures. Compared to CFT consensus proto-
cols requiring crash faults to comprise less than half of the total
population, BFT consensus protocols counter Byzantine faults when
their population is less than one-third. PBFT [6], Zyzzyva [17], and
Tendermint [5] are well-known BFT consensus protocols.

Blockchain-based SAS. Prior works have explored using block-
chain smart contract to implement a spectrum allocation mecha-
nism directly [3, 31] or to aid the current SAS server in query ag-
gregation and allocation publication [12, 34]. It is further explored
in TrustSAS [12] and BD-SAS [31] that a two-layer blockchain
framework may provide further scalability benefits. However, as
we have discussed in Section 2, blockchain-based SASs have certain
limitations and cannot fully address the inter-SAS coordination
problem.

8 CONCLUSION

In this paper, we investigate the inter-SAS coordination problem
in the 5G spectrum sharing system. We identify the drawbacks of
the WInnForum CPAS standard as it is unable to provide secure
and efficient inter-SAS coordination service. We further analyze
the current blockchain-based SAS solutions and identify their limi-
tations of being unable to allow different SAS servers to have their
own proprietary allocation algorithms, as well as failing to enable
efficient off-chain execution of them. To address this problem, we
propose TriSAS, a two-phase coordination mechanism that not only
provides security guarantees on inter-SAS coordination but also
ensures high throughput and low processing latency in generating
spectrum allocations to clients. We implemented a prototype of
TriSAS on the Amazon cloud computing platform and conducted ex-
tensive experiments to evaluate its performance. The results show
that TriSAS can be practically used in real-life systems. This work
contributes to the state-of-the-art in inter-SAS coordination and
communication, an important problem that is often ignored by
the community. This problem may also involve commercial, public
policy, and enforcement activities, which together contribute to a
healthy spectrum-sharing market.
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