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ABSTRACT
To facilitate dynamic spectrum sharing, the FCC has designated

certified SAS administrators to implement their own spectrum ac-

cess systems (SASs) that manage the shared spectrum usage in the

novel CBRS band. As a premise, different SAS servers must conduct

periodic inter-SAS coordination to synchronize service states and

avoid allocation conflicts. However, SAS servers may inevitably

stop service for regular upgrades, crash down, or even perform

maliciously that deviate from the normal routines, posing a funda-

mental operation security problem — the system shall be robust

against these faults to guarantee secure and efficient spectrum shar-

ing service. Unfortunately, the incumbent inter-SAS coordination

mechanism, CPAS, is prone to SAS failures and does not support

real-time allocation. Recent proposals that rely on blockchain smart

contracts or state machine replication mechanisms to realize fault-

tolerant inter-SAS coordination require all SASs to follow a unified

allocation algorithm. They however face performance bottlenecks

and cannot accommodate the current fact that different SASs hold

their own proprietary allocation algorithms.

In this work, we propose TriSAS—a novel inter-SAS coordination

mechanism to facilitate secure, efficient, and dependable spectrum

allocation that is fully compatible with the existing SAS infrastruc-

ture. TriSAS decomposes the coordination process into two phases

including input synchronization and decision finalization. The first
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phase ensures participants share a common input set while the

second one fulfills a fair and verifiable spectrum allocation selec-

tion, which is generated efficiently via SAS proposers’ proprietary

allocation algorithms and evaluated by a customized designed al-

location evaluation algorithm (AEA), in the face of no more than

one-third of malicious participants. We implemented a prototype

of TriSAS on the AWS cloud computing platform and evaluated its

throughput and latency performance. The results show that TriSAS

achieves high transaction throughput and low latency under vari-

ous practical settings.
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1 INTRODUCTION
The radio spectrum is an important and scarce resource for wire-

less communications. To accommodate the ever-increasing volume

and variety of spectrum users in the commercial setting, spectrum
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regulatory agencies in the US, notably the Federal Communications

Commission (FCC) and National Telecommunications and Informa-

tion Administration (NTIA) have opened up previously exclusive

spectrum bands for more flexible shared use by the public [18],

culminating in a paradigm of dynamic spectrum sharing (DSS). The

Spectrum Access System (SAS), mandated by the FCC for managing

spectrum sharing in the 3.55- 3.7 GHz Citizens Broadband Radio

Service (CBRS) band [24], is currently the most promising DSS-

enabling technology and has started commercial deployment in

2020. At its core, SASs are implemented and operated by certified

service providers, called SAS administrators, to allocate spectrum
usage resources (location, time, bands, power) to commercial spec-

trum users per request while ensuring the pre-emptive access right

of incumbent users (e.g., military radars, satellite stations, and other

federal users). Multiple SAS administrators have been approved

by the FCC for the CBRS ecosystem, including Google, Federated

Wireless, Sony, Amdocs, and CommScope.

1.1 Inter-SAS Coordination Problem
The SAS administrators have been certified to manage the CBRS

band usage of their customers (spectrum users) through proprietary

SAS servers. They overlap in geographical service areas, a situa-

tion similar to that of current mobile network operators (MNOs).

However, unlike the current MNOs where each MNO operates

in its own licensed spectrum bands, all SAS administrators serve

their customers in the same CBRS band. This brings a fundamental

inter-SAS coordination problem—the SAS administrators should

be coordinated so that their customers do not receive the same or

significantly overlapping allocations (location, time, bands, power).

Failing to address this problem leads to service de-synchronization

and allocation conflicts, which could result in harmful interference

between spectrum users. Unfortunately, this is strictly prohibited

by the current WInnForum Standards [29] because any interference

that exceeds the pre-defined threshold can disrupt the spectrum

sharing service of the whole area.

However, during the operation of the SAS, some SAS servers may

inevitably deviate from normal routines because of server crashes,

regular system upgrades, or even malicious hacking. As a result,

these SAS servers exhibit arbitrary behaviors and can be treated as

Byzantine nodes. For example, SAS servers may become offline and

stop service for a certain period because of regular maintenance.

Malicious SAS servers may purposely modify or lie for some shared

information to gain excessive spectrum resources in the shared

CBRS band. To provide a sound and sustainable spectrum sharing

service, the SAS system shall be able to overcome these issues

and ensure that the system operates smoothly even if a portion of

the server fails. More specifically, the already committed spectrum

allocation transactions shall not be revoked or modified even if

their proposed servers crash down, and the malicious servers shall

not jeopardize the coordination procedure of the honest servers.

Moreover, when these crashed or malicious servers go online, they

shall be able to recover their operation status and retrieve the

records from the honest servers.

The Coordinated Periodic Activities for SASs (CPAS) procedure,

as specified in the Wireless Innovation Forum (WInnForum) stan-

dard [10], is the only incumbent inter-SAS coordination mechanism

used in practice. This mechanism requires SAS administrators to

perform a full-dump-style synchronization of SAS service states

on a daily basis, from 3 AM to 6 AM U.S. Eastern Time, so that

they can provide non-conflicting spectrum allocations to users the

next day. However, this overnight message-exchange protocol nei-

ther considers the possible presence of malicious SASs nor meets

with real-time performance expectations of the dynamic spectrum

sharing service.

To tackle these issues, recent literature has proposed using the

blockchain and distributed ledger technology to construct fault-

tolerant SASs and inter-SAS coordination schemes [3, 12, 31, 34].

They either use the blockchain to bootstrap a distributed spec-

trum database [3, 12], or leverage smart contracts’ flexible pro-

gramming interfaces to implement spectrum allocation and other

business logic [31, 32, 34]. The blockchain-based solutions can also

provide auditability by maintaining an immutable ledger of spec-

trum operations across all participants. In [31, 32] particularly, the

fault-tolerant inter-SAS coordination is fulfilled by the blockchain

system’s built-in Byzantine fault-tolerant (BFT) consensus, which

essentially realizes a state machine replication (SMR) in that all SAS

servers follow the same spectrum allocation algorithm and curate

a unified ledger for all spectrum users. In this way, the non-faulty

servers can synchronize and process new requests sequentially,

instead of exchanging all service data in a full-dump style (as in

the case of CPAS).

Limitations of Blockchain/SMR-based SAS:While provid-

ing consensus-driven security and immutable records of spectrum

access, the above blockchain-based SASs and SMR-based inter-

SAS coordination schemes do not represent a practical solution in

the recently deployed SAS ecosystem. First and foremost, the SAS

administrators are competitive commercial entities and manage

their own service subscribers and adopt proprietary allocation algo-

rithms which could be commercial secrets. As a result, there is no

unified allocation algorithm among different SAS administrators,

and their managed SAS servers cannot be treated as replicated state

machines. Moreover, implementing complex allocation algorithms

in blockchain smart contracts and executing them could face pro-

hibitive on-chain costs, since the spectrum allocation algorithm

can be highly complex, such as using graph coloring-based [33],

reinforcement learning-based [1] or optimization-based approach

[14] to derive a fair and effective spectrum allocation. Therefore,

instead of replicating the same spectrum sharing service across dif-

ferent entities, it is imperative for the SASs to adopt a coordination

mechanism that can ensure a unified and fair spectrum allocation

among all participating SASs without having all parties pre-agree

on any allocation algorithm. To avoid situations in that malicious

or selfish SAS plays favoritism towards its own customers, security

properties including fault-tolerance, immutability, and auditability

of spectrum allocations should also be observed.

1.2 Our Solution
In this work, we propose TriSAS: a trustworthy, robust, and effi-

cient inter-SAS coordination mechanism that achieves the above

goals while being backward compatible with the existing SAS frame-

work. TriSAS’s core mission is to facilitate independent SAS servers

to generate fair and auditable spectrum allocations for their users
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in an efficient manner while ensuring correctness against selfish

and even malicious SAS servers. Catering to the heterogeneity of

spectrum allocation algorithms among different SAS servers, we

decompose the inter-SAS coordination into a two-phase process—

the input data synchronization phase and the decision finalization

phase. We use a blockchain database as a key component for the

secure and efficient handling of spectrum requests from all users.

For the input synchronization phase, we require all servers to

store their input requests in the blockchain database proactively.

The blockchain database automatically converts the requests to in-

put transactions and uses a reliable broadcast mechanism to deliver

the transactions to all other SAS servers securely. This phase en-

sures that all participants share a common input set. In the decision

finalization phase, each SAS server first pulls the common input set

from the blockchain database and computes its allocation proposal

locally via its proprietary allocation algorithm, which is stored in

the blockchain database and reliably broadcasted to other parties.

To avoid any SAS from playing favoritism towards its own users,

we design a voting sub-phase to allow all SAS servers to agree on

the best allocation proposal. We propose an allocation evaluation

algorithm (AEA), which balance between the spectrum utilization

rate and allocation fairness, for the SASs to evaluate different al-

locations following pre-agreed evaluation criteria. An allocation

receiving a high score needs to boost spectrum usage efficiency

and ensure allocation fairness at the same time. The servers vote

for their preferred allocation according to the scores obtained from

AEA. The allocation that is voted by the majority of the servers is

elected as the final allocation result. TriSAS stores all the transac-

tions in an immutable ledger for potential audits. In general, TriSAS

can tolerate one-third of SAS servers being Byzantine.

We implemented TriSAS on the AWS cloud computing platform

with the Bigchaindb [22] serving as the blockchain database. We

deployed a network of servers in different areas across the U.S. to

simulate real-world deployments of the SAS. We evaluated the per-

formance of TriSAS with respect to different input rates and pulling

intervals. We focused on the throughput and latency performance

of TriSAS and the experiment results show that TriSAS can achieve

scalable performance under practical settings.

In summary, this paper makes the following contributions:

• We identify the inter-SAS coordination problem and its

unique challenges of achieving operation security while ac-

commodating the diversity of allocation algorithms across

distributed SAS servers in the current CBRS ecosystem.

• We propose TriSAS, a new inter-SAS coordination mech-

anism to address these challenges. TriSAS is resilient to

Byzantine SAS servers when their number does not exceed

one-third of the total population and at the same time keeps

high throughput and low latency. TriSAS extends the cur-

rent SAS service model and essentially ensures the safety,

fairness, auditability, and efficiency of spectrum allocations

and SAS operation.

• We propose a novel allocation evaluation algorithm (AEA) to

evaluate the fairness and spectrum utilization efficiency of

spectrum allocations from different SAS servers and help the

system decide on a final selection. This algorithm can also

serve as a benchmarking tool for general SAS performance

evaluation and may be of independent interest.

• We implemented a prototype of TriSAS. Extensive experi-

ment results show that TriSAS is a practical inter-SAS co-

ordination solution in handling large input volumes with a

small processing latency.

2 BACKGROUND
2.1 Spectrum Access System

The FCC has designated the Citizens Broadband Radio Service

(CBRS) band [24], a 150 MHz frequency band between 3.55 GHz

to 3.7 GHz, to accommodate the shared spectrum usage between

federal and non-federal users [24]. The users get access to this spec-

trum resource according to a three-tiered framework approved by

the FCC, with the incumbent federal users being positioned at the

highest tier, the non-federal Priority Access License (PAL) holders

at the middle tier and the non-federal General Authorized Access

(GAA) users at the lowest tier. At the heart of this new shared spec-

trum usage paradigm is an automatic spectrum coordinator, named

the Spectrum Access System (SAS), which dynamically allocates

spectrum to users at various tiers and controls the operation and

management of the spectrum usage. The SAS ensures that lower

tier users cannot cause harmful interference to higher tier users,

and at the same time boosts the spectrum utilization efficiency.

SASs are implemented by different SAS administrators designated

by the FCC and deployed on their SAS servers. Currently, different

SAS administrators manage their own subscribers and allocation al-

gorithms. They take spectrum access requests from their spectrum

users and respond with transmission grants indicating whether

the requests have been approved as the result of their spectrum

allocation algorithms.

2.2 Blockchain-based SAS
The unique properties of blockchain, i.e., decentralization, trans-

parency, and consensus-based security, make it a potential enabler

to future spectrum management [28]. Recent works have proposed

several blockchain-based, decentralized SASs to realize secure and

verifiable dynamic spectrum access.

Ariyarathna et al. [3] propose a smart contract-based SAS that

mainly focuses on creating and trading “spectrum tokens” based on

Ethereum. This work adopts the SAS admins as a centralized party

and does not consider the problems (coordination, fault tolerance,

etc.) introduced by the current decentralized SAS settings. Zhang

et al. [34] propose an enhanced smart contract-based dynamic spec-

trum sharing system, as well as a novel consensus mechanism. This

work also incorporates the privacy-preserving consideration of

users into their design. However, although this explores the use of a

smart contract to implement the allocation, which results in a fault-

tolerant allocation among participants, it still adopts the single SAS

administrator model and fails to address the challenges introduced

by decentralized SAS settings. Grissa et al. [12] introduce TrustSAS,

a secure and privacy-preserving SAS that combines state-of-the-art

cryptography with the blockchain technique. However, for inter-

SAS coordination, TrustSAS only uses the blockchain (the global

chain in their design) as a record-keeping board to accept any al-

location proposals proposed by a cluster of users, who are usually
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Table 1: A comparison between different blockchain-based SAS.

Blockchain’s Who curate Fault-tolerant CBRS-SAS Inter-SAS Allocation Algorithm

Scheme role blockchain allocation compatibility coordination generation diversity

CPAS [10] N/A N/A No Yes Yes (Full dump) Off-chain Yes

Ariyarathna et al. [3] Rule/Record Keeping Third Party No No No On-chain No

Zhang et al. [34] Allocation/Record Keeping Prior Users Yes No No On-chain No

TrustSAS [12] Record Keeping GAA Users No Yes Yes (Classic BFT) Off-chain Yes

BDSAS [31, 32] Allocation/Record Keeping SAS Servers Yes Yes Yes (Classic BFT) On-chain No

TriSAS Record Keeping SAS Servers Yes Yes Yes Off-chain Yes

governed by a single SAS administrator. In a situation where differ-

ent clusters of users (SAS administrator) have overlapped serving

areas, which unfortunately is the current fact, cannot prevent a

selfish cluster from proposing unfair or even fake allocations in

favor of himself. Xiao et al. [32] propose BD-SAS, a fault-tolerant,

decentralized SAS that uses a two-layer blockchain system where

the global chain is used for spectrum regulation compliance and

smart contract-based local chains are used in individual spectrum

zones for automating spectrum allocation. However, BD-SAS still

relies on smart contracts to perform on-chain spectrum allocation,

which is neither efficient nor enables allocation algorithm diversity.

2.3 Blockchain Database
The blockchain database is an emerging technology that com-

bines blockchain’s decentralization, Byzantine fault tolerance, and

data immutability properties, with distributed databases’ query,

high throughput, and low latency properties. Blockchain databases

are mostly deployed in small-scale private networks consisting of

multiple or tens of peers who know each other’s identities. These

networks enforce strict access control policies and only autho-

rized entities can participate in the network. Examples include

Bigchaindb [22] and Couchdb [2]. Compared to classical cryptocur-

rency and smart contract systems, blockchain databases are not

purposed for realizing a full-fledged payment system. Instead, they

are customized to handle a larger volume of data transmission and

storage across different nodes, while at the same time maintain-

ing the fault-tolerance property for common database operations.

Whenever a data processing operation (e.g., insert, modify, and

query) is received by a peer, it leverages the underlying reliable

broadcast mechanism to forward it to all peers to ensure that every

node maintains the same immutable ledger.

3 SYSTEM MODEL
3.1 System Architecture

Geographical Concepts: Following the definition of the WIn-

nForum Standard [29] and previous works [31, 32], we consider

spectrum sharing zone as a unit spectrummanagement geo-location

areas in which SAS administrators can realize all spectrum sharing

functions including spectrum request, response, allocation, and

inter-SAS coordination. In practice, a zone usually refers to a US

county. Different spectrum sharing zones operate independently

and spectrum allocations in one zone will not affect the allocations

of others. But all spectrum zones are subject to global regulations

where the global refers to the entire spectrum jurisdiction such as

the US continent. In this paper, we focus on the spectrum sharing

system within one zone as spectrum sharing is conducted on a

per-zone basis. We define five types of participants in the spectrum

sharing system, as shown in Figure 1.

Spectrum Users operate one or more CBSDs (base stations)

in the system. They register themselves to their SAS administra-

tors when they first join the system and later send spectrum usage

requests to get access to spectrum resources. They are expected

to receive transmission grants, i.e. the decision about whether

their requests are granted or not. Currently, one spectrum user

only subscribes to and receives service from one SAS administra-

tor. Within one zone, there are hundreds of CBSDs, denoted by

𝐶𝐵𝑆𝐷𝑘 , (𝑘 = 1, 2, · · · ,𝑚).
ESC Sensors is a set of radio sensors deployed by either the SAS

administrators or other appointed entities that aim to detect the

presence of incumbent spectrum users such as naval radars. After

they detect the presence of incumbent users, they send ESC notifi-

cations to SAS servers and the servers suspend the transmission

grants of CBSDs that might cause interference to the incumbents.

ESC notifications usually have strict latency requirements and are

processed by each SAS server locally.

SAS Servers are deployed by the SAS administrators to coor-

dinate the spectrum usage of spectrum users. We assume there is

only one server in charge within one spectrum sharing zone for

each SAS administrator, denoted by 𝑆𝐴𝑆𝑖 , (𝑖 = 1, 2, · · · , 𝑛), where
𝑛 refers to the number of SAS administrators in the zone. In one

zone, there are typically about 4-7 SAS servers/administrators and

each SAS server has its own list of subscribers. The SAS servers are

the core components of the spectrum access systems. They contain

several key functions including database functions, coordination

functions, and proprietary allocation algorithms. Within one server,

the database function stores all the essential records including sys-

tem inputs, intermediate results, and final results. For a blockchain

database, the database function stores all the transactions in an

immutable ledger. The allocation algorithm, which is considered to

be owned by a SAS administrator who is unwilling to expose its

details because of commercial and intellectual property reasons, is

in charge of generating spectrum allocations by taking input sets

from the database function. The coordination function is in charge

of keeping state synchronization across SAS servers. It interacts

with the other two functions within its server and the other coordi-

nation functions within other servers. It is the core component of

our inter-SAS coordination mechanism.

Regulatory Entities include the NTIA and FCC. They are the

trusted entities in the system and regulate the operation of SAS
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Figure 1: TriSAS system model.

administrators. They do not participate in the spectrum sharing

service operations and only publish and enforce regulation rules in

the system. The frequency of policy upgrades is relatively low, in

the order of days and months.

External Databases provide supplemental information to SAS

servers, such as geographic information. The data size of the pulled

records from them is usually very large and the frequency of updates

is very low. For some of them, the SAS server may only pull the

records once to its cloud for the whole life cycle unless there are

significant changes. Therefore, we do not consider these records

necessary for our real-time coordination procedure.

3.2 Threat Model
The WInnForum standard stipulates the 5G spectrum sharing

system to establish a CBRS public key infrastructure (PKI) [30]. As

a result, each node in the network, including a spectrum user and

a SAS server, can sign its messages with its own private key. The

other nodes can verify the signatures with the corresponding public

key retrieved from the CBRS PKI. This prevents a network-level

attacker from eavesdropping, modifying, and forging messages (or

transactions) in the system. Unfortunately, this built-in security

mechanism cannot distinguish the messages sent by malicious

SAS servers, who are considered insider attackers and can sign

the malicious messages with their own secret keys to bypass the

cryptographic checks.

Because of crashes down, regular maintenance, and even mali-

cious hacking, we consider a portion of the SAS server may deviate

from the normal operation routine for a certain period of time.

But we assume they can eventually be fixed. Furthermore, some

selfish SAS administrators may purposely sabotage the system by

having its SAS servers send conflicting information to other SAS

servers under the current framework for their own benefit. For

example, the attacker can lie about the status of specific spectrum

transmission grants to cause a de-synchronization of the service

state between different SAS servers and further trigger allocation

conflicts, ultimately jeopardizing shared spectrum use. The attacker

when acting as a selfish administrator may configure its SAS server

to propose unfair allocations via its proprietary algorithm to give

its own clients extra spectrum resources when it is in turn.

In this work, we use “Byzantine behavior” to cover all the possi-

ble SAS server behaviors that deviate from the normal routine (i.e.,

arbitrary behaviors that do not follow the correct coordination pro-

cedure). We assume the Byzantine servers are fewer than one-third

of the total population, which follows the convention in classical

Byzantine fault tolerance problems in distributed systems [5, 6, 21].

Moreover, in current SAS ecosystems, the SAS administrators and

their managed SAS servers are certified entities. They make a profit

in the spectrum sharing market and are incentivized to follow the

FCC rules for the operation of SAS administrators, i.e., 47 CFR Part

96 [24]; failure to comply can have serious legal ramifications. The

certified and commercial nature of SAS administrators makes the

2/3 honest majority assumption achievable in practice.

Spectrum users may also behave in certain malicious ways. They

can launch DoS attacks or send falsified spectrum requests to ac-

quire excessive allocations. This requires the SAS servers to enforce

strict access control. For this work, we regard this as the responsi-

bility of individual SAS administrators and out of the scope of the

inter-SAS coordination problem.

3.3 System Goal
The inter-SAS coordinationmechanism takes input setsR𝑖 (𝑡) (𝑖 =

1, 2, · · · , 𝑛) from all SAS servers that contain all active requests and

can ensure the following properties:

• State Synchronization: The inter-SAS coordination mech-

anism is conducted periodically and after each round the

states S𝑖 (𝑡) of SAS servers shall be synchronized.
• Byzantine Resilience (Operation Security): The coordi-
nation mechanism needs to counter Byzantine servers. It

shall ensure that the honest servers function normally and

will not be affected by Byzantine servers when they consti-

tute less than 1/3 of the total population. Once the crashed

or malicious servers are recovered, they can synchronize

themselves with the honest ones easily.
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Figure 2: TriSAS workflow.

• Uniform Allocation and Record Audibility: The dis-

tributed SAS servers should agree on a uniform allocation for

each user’s spectrum request. The input sets and spectrum

allocations (along with how the agreement is reached) need

to be stored in a public immutable ledger. Every node can

get access to this ledger for audibility purposes. As a result,

any malicious behaviors can be identified and tracked in the

immutable ledger and the correspondingmalicious party can-

not deny doing so because all records are cryptographically

signed and verifiable.

• Fairness and Efficiency: The coordination mechanism

needs to be performed in real-time without adding too much

overhead and latency. The processing latency shall be smaller

than the periodical communication interval between CBSDs

and servers (300 seconds) under practical input rates (about

30 requests per minute). The coordination mechanism also

needs to ensure that the final allocations are voted by a 2/3

majority of servers to avoid potential unfair allocations. To

avoid imposing a large on-chain execution overhead, the

proprietary allocation algorithms shall be executed locally.

4 COORDINATION MECHANISM
4.1 Mechanism Overview

TriSAS is a two-phase mechanism including the input synchro-

nization and decision finalization phases, as shown in Figure 2.

For each SAS server, the input synchronization phase is triggered

whenever there are new device registration requests or spectrum

usage requests. The input synchronization phase needs to ensure

that all SAS servers share a common input set R(𝑡), which is the

union of all the SAS servers’ individual input sets, i.e. R(𝑡) =⋃𝑛
𝑖=1 R𝑖 (𝑡) (𝑖 = 1, 2, · · · , 𝑛). This set is stored in an immutable

ledger in the blockchain database and can be used in the decision-

finalization phase to generate spectrum allocations.

The decision finalization phase is in charge of generating spec-

trum allocations and finalizing one of them as the valid allocation

that is favored by a 2/3 majority of SAS servers. This phase re-

quires the coordination function within the servers to periodically

(with interval 𝑇 ) check whether there are new transactions in the

common input set R(𝑡). The decision finalization phase is trig-

gered when these proposers find new input transactions in the

common input set. Within one interval, there can be one or more

proposers, depending on how many SAS administrators are propos-

ing spectrum allocations. The decision finalization phase needs to

be finished within the interval 𝑇 and can accomplish periodical

synchronizations of SAS server states S𝑖 (𝑡).
SAS server’s state S𝑖 (𝑡) contains three types of records, the

common input set R(𝑡), the proposed allocation set A(𝑡), and the

vote set V(𝑡). These are stored in the immutable ledger of the

blockchain database in the form of transactions and data blocks.

All participants can get access to the ledger for audit purposes.

Each data block contains a hash value of previous blocks and any

modification of already committed blocks can be detected.

4.2 Input Synchronization
The SAS servers take the requests from the spectrum users as

the inputs to the system. Different SAS administrators have their

own input set R𝑖 (𝑡). The input set consists of requests signed by

CBSDs, denoted by 𝑟
𝑡𝑔𝑒𝑛

𝐶𝐵𝑆𝐷𝑘
, where 𝑡𝑔𝑒𝑛 refers to request generation

time. The number of requests increases monotonically with respect

to time 𝑡 , i.e. |𝐼𝑛𝑝𝑢𝑡𝑖 (𝑡) | ∝ 𝑡 .

For each server, when the coordination function receives a re-

quest from spectrum users, it first transfers the request to the cor-

responding input transaction by formatting the request into the

blockchain database’s standard and signing the transaction with

its own private key. As a result, the device registration requests

are transferred to registration transactions that contain the device

404



TriSAS: Toward Dependable Inter-SAS Coordination with Auditability ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

identity, antenna characteristics, power level, and location infor-

mation. The transactions are signed by their origin CBSDs and the

enrolled SAS server, denoted by𝑅𝑒𝑔𝑡𝑥 =< 𝑖𝑑𝑑𝑒𝑣𝑖𝑐𝑒 , 𝑎𝑛𝑡𝑒𝑛𝑛𝑎, 𝑝𝑜𝑤𝑒𝑟,

𝑙𝑜𝑐, 𝑠𝑖𝑔𝐶𝐵𝑆𝐷𝑘
, 𝑠𝑖𝑔𝑆𝐴𝑆𝑖 >.

Similarly, the spectrum usage requests are transferred to re-

quest transactions that contain device identity, request spectrum

ranges, request time and duration, and are also signed by their

origin CBSDs and the enrolled SAS server. We denote them as

𝑅𝑒𝑞𝑡𝑥 =< 𝑖𝑑𝑑𝑒𝑣𝑖𝑐𝑒 , 𝑟𝑎𝑛𝑔𝑒, 𝑡𝑟𝑒𝑞, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑠𝑖𝑔𝐶𝐵𝑆𝐷𝑘
, 𝑠𝑖𝑔𝑆𝐴𝑆𝑖 >.

After the transactions are generated, the coordination function

sends the transactions to the blockchain database. The coordination

function can either send the transactions immediately whenever

new ones arrive or can buffer the transactions into batches before

sending them. The blockchain database, upon receiving the trans-

actions, organizes the messages into data blocks. The underlying

consensus mechanisms of the blockchain database, such as PBFT [6]

or Tendermint [5], ensure that these blocks are reliably broadcasted

and stored by all honest SAS servers, i.e. the blocks are commit-

ted. The coordination function receives a commit confirmation

message when all data blocks are committed, indicating that the

input synchronization phase is finalized and the requests have been

stored in an immutable ledger. Notably, the SAS servers cannot

modify or forge the registrations and spectrum usage transactions

because they cannot forge the signatures of the CBSDs. Detailed

step-by-step algorithm of this phase is summarized in algorithm 1.

4.3 Decision Finalization
The decision finalization phase is launched with interval 𝑇 by

SAS servers (proposers) denoted by 𝑆𝐴𝑆 𝑗 where 𝑗 ∈ {1, 2, · · · , 𝑝}
and 𝑝 is the number of proposers. This phase is asynchronous with

the input synchronization phase. This phase has three sub-phases:

allocation generation, allocation voting, and allocation decision.

4.3.1 Allocation Generation. The coordination functions of SAS

proposers periodically pull a common input set R(𝑡𝑝𝑢𝑙𝑙 ) from the

blockchain database to launch the allocation generation process,

where 𝑡𝑝𝑢𝑙𝑙 refers to the record pulling time. The pulled input

set, R(𝑡𝑝𝑢𝑙𝑙 ), contains all the active requests before the pulling

time 𝑡𝑝𝑢𝑙𝑙 . With this common input set, the proposers generate

spectrum allocations according to their own proprietary algorithms

𝐴𝑙𝑔 𝑗 . We define the set of allocations of a SAS proposer as A 𝑗 (𝑡)
and the newest allocations at 𝑡𝑝𝑢𝑙𝑙 is A 𝑗 (𝑡𝑝𝑢𝑙𝑙 ). By definition, we

have A 𝑗 (𝑡𝑝𝑢𝑙𝑙 ) = 𝐴𝑙𝑔 𝑗 (R(𝑡𝑝𝑢𝑙𝑙 )). A 𝑗 (𝑡𝑝𝑢𝑙𝑙 ) contains the server’s
replies to spectrum usage requests, indicating whether they are

granted. If a spectrum usage request is not granted, the allocation

may provide recommended operation parameters including the

power level and spectrum band(s).

There are many allocation algorithms customized for the spec-

trum allocation problem including simple first-come-first-served

(FCFS) allocation, greedy approaches, graph coloring [11], rein-

forcement learning [1], and optimization-based algorithms [14].

Within each proposer, the allocation algorithm is usually a sepa-

rate function from the coordination function. This enables the SAS

servers to execute complex allocation algorithms offline without the

need to consume on-chain computation resources. The coordination

function obtains allocation resultA 𝑗 (𝑡𝑝𝑢𝑙𝑙 ) from the algorithm and

Algorithm 1 TriSAS-Phase 1: Input Synchronization

Requirement: The number of servers is𝑛, and the desired number

of faults to counter 𝑓 satisfies 𝑓 ≤ ⌊𝑛
3
⌋.

Ensure: All SAS administrators have the same input set.

1: procedure Input Synchronization

2: function Reqest Conversion and Broadcast

3: for 𝑖 in {1, 2, · · · , 𝑛}, each server 𝑆𝐴𝑆𝑖 do
4: Get 𝑅𝑒𝑞𝑡𝑥/𝑅𝑒𝑔𝑡𝑥 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡 (𝑟𝑡𝑔𝑒𝑛

𝐶𝐵𝑆𝐷𝑘
).

5: Broadcast 𝑅𝑒𝑞𝑡𝑥 or 𝑅𝑒𝑔𝑡𝑥 to others.

6: Store received 𝑅𝑒𝑞𝑡𝑥 or 𝑅𝑒𝑔𝑡𝑥 to the ledger.

7: end for
8: end function
9: end procedure

generates the allocation transactions 𝐴𝑙𝑙𝑜𝑐𝑡𝑥 accordingly. Each al-

location transaction is bound with a request transaction, containing

the pulling time, its generation time, the id of the request transac-

tion it replies to, the decision (whether the spectrum usage request

is granted and if not, some recommended alternative spectrum

resources), the id of the allocation result it belongs to, and the sig-

nature of its generator. The allocation transaction can be expressed

as 𝐴𝑙𝑙𝑜𝑐𝑡𝑥 =< 𝑡𝑝𝑢𝑙𝑙 , 𝑡𝑔𝑒𝑛, 𝑖𝑑𝑅𝑒𝑞𝑡𝑥 , 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑖𝑑A 𝑗 (𝑡𝑝𝑢𝑙𝑙 ) , 𝑠𝑖𝑔𝑆𝐴𝑆 𝑗
>.

The coordination function within each server sends the allocation

transactions to the blockchain database in a batch and waits for the

commit confirmations from it to conclude this sub-phase.

4.3.2 Allocation Voting. Upon receiving the commit confirmations

of the proposed allocation transactions, the coordination function

broadcasts voting requests to all SAS servers. The voting request

messages do not contain any operation parameters and only serve

as notifications. They are signed by the proposer’s private key and

the recipients can verify their authenticity. The other SAS servers,

upon receiving the voting requests, serve as the voters and start

the allocation voting sub-phase to generate replies.

Allocation Evaluation Algorithm. The Allocation Evaluation

Algorithm (AEA) evaluates the performance of spectrum allocations.

It takes the request set R(𝑡𝑝𝑢𝑙𝑙 ) and allocations A 𝑗 (𝑡𝑝𝑢𝑙𝑙 ) as the
input and produces scores indicating the performance of different

allocations, i.e. 𝑠 = AEA(A 𝑗 (𝑡𝑝𝑢𝑙𝑙 ),R(𝑡𝑝𝑢𝑙𝑙 )).
For each spectrum user, A 𝑗 (𝑡𝑝𝑢𝑙𝑙 ) contains the feedback about

whether its request is granted. There could be spectrum usage con-

flicts between different spectrum requests, and AEA first checks

whether A 𝑗 (𝑡𝑝𝑢𝑙𝑙 ) resolves these conflicts, i.e. whether A 𝑗 (𝑡𝑝𝑢𝑙𝑙 )
satisfies the interference and priority requirements. A proper al-

location shall ensure that the lower tier users cause no harmful

interference to higher tier users. If an allocation cannot pass this

check, it will get a zero score. For the allocations that have passed

the checking process, AEA evaluates their performance in terms

of spectrum utilization rate and fairness. We assume the numbers

of spectrum usage requests from SAS servers are 𝑙1, 𝑙2, · · · , 𝑙𝑛 . The
numbers of granted spectrumusage requests in allocationA 𝑗 (𝑡𝑝𝑢𝑙𝑙 )
are 𝑔1, 𝑔2, · · · , 𝑔𝑛 . Note that 𝑔𝑖 ≤ 𝑙𝑖 because not all the requests are

necessarily granted.
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We define the spectrum utilization rate as the ratio between

granted requests and original requests:

𝑢 =

∑𝑛
𝑖=1 𝑔𝑖∑𝑛
𝑖=1 𝑙𝑖

(1)

For fairness measurement, we choose the well-established Jain’s

fairness index [15]. Considering H = ( 𝑔1
𝑙1
,
𝑔2
𝑙2
, · · · , 𝑔𝑛

𝑙𝑛
) as the request

grant rate of all SAS servers. We define the fairness metric as:

𝑣 =
(∑𝑛

𝑖=1
𝑔𝑖
𝑙𝑖
)2

𝑛
∑𝑛
𝑖=1 (

𝑔𝑖
𝑙𝑖
)2

(2)

In the ideal situation if the allocation is totally fair, the fairness

metric 𝑣 = 1. In the worse case if the allocation is totally unfair, the

fairness metric 𝑣 = 1

𝑛 .

The final evaluation score 𝑠 can be expressed as a function of

𝑢 and 𝑣 , i.e. 𝑠 = 𝑓 (𝑢, 𝑣). Different application scenarios may apply

different 𝑓 () to satisfy their unique requirements. For example, 𝑠

can be the multiplication of the utilization rate 𝑢 and fairness score

𝑣 , i.e. 𝑠 = 𝑢𝑣 , indicating the area the allocation covers in the (𝑢, 𝑣)
space, as well as serving as a metric to evaluate an allocation. Or

the users can set a fairness threshold to only accept allocations that

obtain a higher fairness score than the threshold 𝑡ℎ. In this case,

𝑓 (𝑢, 𝑣) =
{
𝑢 if 𝑣 ≥ 𝑡ℎ

0 if 𝑣 < 𝑡ℎ
.

The voters generate voting transactions based on their local

calculation of scores through the AEA. Each voting transaction

contains the id of the allocation it votes for, the score, its gener-

ation time, and the signature from its generator. The transaction

can be expressed as: 𝑉𝑜𝑡𝑒𝑡𝑥 =< 𝑖𝑑A 𝑗 (𝑡𝑝𝑢𝑙𝑙 ) , 𝑠, 𝑡𝑔𝑒𝑛, 𝑠𝑖𝑔𝑆𝐴𝑆𝑖 >. The

coordination function within each voter sends the voting transac-

tions to the blockchain database, which are stored in the ledger and

reliably broadcasted to others. After the coordination function gets

commit confirmations from the blockchain database, it replies to

the proposer with a voting reply message. The proposer waits for

𝑛 − 𝑓 replies and upon receipt, broadcasts a voting confirmation

message to conclude this sub-phase.

Within each server, the allocation generation sub-phase and the

allocation voting sub-phase take place concurrently. This means a

server can both serve as a proposer to generate new allocation pro-

posals and serve as a voter to vote for others’ allocation proposals at

the same time. The number of proposers 𝑝 is a known parameter for

every SAS server. If the number 𝑝 equals 𝑛, all SAS servers propose

allocations to compete with each other; and if equals one, there is

only one proposer and all the others serve as voters to approve the

allocations proposed by it.

4.3.3 Allocation Decision. The final allocation decision step waits

for the voting confirmation replies from all committed (≤ 𝑝) alloca-

tions, i.e. those that had sent a voting request message before, until

a timeout threshold. The SAS servers select the valid allocation

with the highest scoreA𝑓 𝑖𝑛𝑎𝑙 (𝑡𝑝𝑢𝑙𝑙 ) as the final selected allocation.
In this context, valid means there are at least 𝑓 + 1 identical votes

from different servers stored in the ledger. The servers broadcast

the id of the final selected allocation 𝑖𝑑A𝑓 𝑖𝑛𝑎𝑙 (𝑡𝑝𝑢𝑙𝑙 ) in the voting de-

cision message and upon receiving 𝑓 + 1 identical results signed by

different servers, pull A𝑓 𝑖𝑛𝑎𝑙 (𝑡𝑝𝑢𝑙𝑙 ) from the database and reply to

Algorithm 2 TriSAS-Phase 2: Decision Finalization

Requirement: The number of servers is 𝑛, the number of pro-

posers is 𝑝 , and the desired number of faults to counter 𝑓

satisfies 𝑓 ≤ ⌊𝑛
3
⌋.

Ensure: The SAS system is robust against 𝑓 Byzantine faults and

all SAS admins obtain a unified, fair, and verifiable spectrum

allocation plan.

1: procedure Decision Finalization

2: function Allocation Generation

3: for 𝑗 in {1, 2, · · · , 𝑝}, each server 𝑆𝐴𝑆 𝑗 do
4: Pull common input set 𝑅(𝑡𝑝𝑢𝑙𝑙 ).
5: Get 𝐴 𝑗 (𝑡𝑝𝑢𝑙𝑙 ) = 𝐴𝑙𝑔 𝑗 (𝑅(𝑡𝑝𝑢𝑙𝑙 )).
6: Get 𝐴𝑙𝑙𝑜𝑐𝑡𝑥 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡 (𝐴 𝑗 (𝑡𝑝𝑢𝑙𝑙 )).
7: Broadcast 𝐴𝑙𝑙𝑜𝑐𝑡𝑥 to others.

8: Store received 𝐴𝑙𝑙𝑜𝑐𝑡𝑥 to the ledger.

9: end for
10: end function
11: function Allocation Voting—Proposers

12: for 𝑗 in {1, 2, · · · , 𝑝}, each server 𝑆𝐴𝑆 𝑗 do
13: Broadcast voting requests to voters.

14: Wait for 𝑛 − 𝑓 voting transactions 𝑉𝑜𝑡𝑒𝑡𝑥 .

15: Broadcast voting confirmations to voters.

16: end for
17: end function
18: function Allocation Voting—Voters

19: for 𝑖 in {1, 2, · · · , 𝑛}, each server 𝑆𝐴𝑆𝑖 do
20: Calculate score 𝑠 = AEA(A 𝑗 (𝑡𝑝𝑢𝑙𝑙 ),R(𝑡𝑝𝑢𝑙𝑙 )) upon

receiving voting request.

21: Broadcast the voting scores to others.

22: end for
23: end function
24: function Allocation Decision

25: for 𝑖 in {1, 2, · · · , 𝑛}, each server 𝑆𝐴𝑆𝑖 do
26: Wait for 𝑝 confirmations from all proposers.

27: Select the best allocation A𝑓 𝑖𝑛𝑎𝑙 (𝑡𝑝𝑢𝑙𝑙 ) from 𝑝 pro-

posed allocations.

28: Broadcast the identity 𝑖𝑑A𝑓 𝑖𝑛𝑎𝑙 (𝑡𝑝𝑢𝑙𝑙 ) .
29: Wait for 𝑓 + 1 identical identities.

30: Pull A𝑓 𝑖𝑛𝑎𝑙 (𝑡𝑝𝑢𝑙𝑙 ) from the ledger and replies final

results to the clients.

31: end for
32: end function
33: end procedure

the users, which conclude the whole coordination process. Detailed

step-by-step algorithm of this phase can be found in algorithm 2.

In summary, from the spectrum users’ perspective, a valid trans-

mission grant corresponds to the following list of transactions: a

registration transaction 𝑅𝑒𝑔𝑡𝑥 containing device and physical op-

eration information, a request transaction 𝑅𝑒𝑞𝑡𝑥 containing the

spectrum usage request, an allocation transaction 𝐴𝑙𝑙𝑜𝑐𝑡𝑥 showing

the spectrum usage decision, at least 𝑓 + 1 identical vote transac-

tions𝑉𝑜𝑡𝑒𝑡𝑥 showing the validity of the allocation, and at least 𝑓 +1
identical voting decision messages showing SAS servers’ endorse-

ments. Note that the voting decision messages do not necessarily
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… …

Immutable Ledger Data BlocksTransactions

𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡 𝑓𝑓 + 1 identical 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡
Transmission grant for a certain CBSD

𝑓𝑓 + 1 decision messages

Figure 3: The data structure of a valid transmission grant.

need to be stored in the immutable ledger because the stored alloca-

tion and voting transactions are enough for checking the integrity

and correctness of the voting process. The honest servers will get

correct results even if the last id broadcasting and verification is

not there i.e. they directly pull the final results back to clients after

the selection step. We keep it in the coordination process to prevent

Byzantine servers from forcing their subscribers to transmit in the

unauthorized band(s) to jeopardize the operation of others because

with this step the clients shall only consider a transmission grant

to be valid if and only if there are at least 𝑓 + 1 endorsements from

the SAS servers which Byzantine nodes cannot accomplish.

With all these transactions and messages, the users know that

the spectrum usage decisions they have received are reliable and

agreed upon by the majority of the servers. The users can verify the

transactions and decisions in the blockchain ledger.We demonstrate

the data structure of a valid transmission grant in Figure 3.

4.4 Analysis
State Synchronization. The coordination function waits for the

blockchain database to reply with a commit confirmation each time

it sends a transaction. Because the blockchain database itself has an

underlying Byzantine fault-tolerant consensus mechanism, which

has been well investigated and proved such as PBFT and Tender-

mint, all the transactions are stored in distributed immutable ledgers

across all servers. The stateS𝑖 (𝑡), including the input records 𝑅𝑖 (𝑇 ),
allocation records, and vote records are synchronized when the

coordination process is accomplished.

Decision Correctness. Each proposed allocation receives 𝑛 − 𝑓

replies from the voters (including the proposer himself) before

it proceeds. Among them at most 𝑓 votes are malicious. When

𝑛 ≥ 3𝑓 + 1, the remaining 𝑛 − 2𝑓 honest votes are identical and

take up the majority. Therefore, by majority voting, the Byzantine

servers cannot affect voting scores of honest allocations. However,

the proposers themselves can be Byzantine and propose allocations.

But a Byzantine allocation proposed by a Byzantine server cannot

have a higher score 𝑠 than normal allocations, otherwise, it is a cor-

rect allocation. As a result, Byzantine allocations cannot be selected

as the final allocation and the decision correctness is ensured. Our

mechanism has a timeout threshold, which means different servers

need to be synchronized. We consider this assumption to be prac-

tical because current telecommunication networks usually have

stringent time synchronization requirements and many protocols

such as the network time protocol (NTP) [23] and precision time

protocol (PTP) [9] are used for this purpose.

Complexity. We denote the number of servers as 𝑛 and the

number of CBSDs as𝑚. Themessage complexity of our coordination

Table 2: Round trip times (in milliseconds) among nodes in
different areas.

Node Location 1 2 3 4 5

1 Lab (N.Virginia) - - - - -

2 AWS (N.Virginia) 7 - - - -

3 AWS (Ohio) 21.5 11.2 - - -

4 AWS (California) 84 60.6 51.4 - -

5 AWS (Oregon) 72 63.5 48 20.2 -

mechanism is O(𝑛2). The memory consumption is (𝑛 + 2)𝑚 + 𝑛2,
or considering 𝑚 >> 𝑛 is O(𝑚𝑛). More specifically, within one

coordination round the ledger stores𝑚 registration transactions

𝑅𝑒𝑔𝑡𝑥 ,𝑚 request transactions 𝑅𝑒𝑞𝑡𝑥 , 𝑛 proposed allocations with

each one containing𝑚 replies (𝑎𝑙𝑙𝑜𝑐𝑡𝑥 ) to the requests and 𝑛2 vote

transactions 𝑉𝑜𝑡𝑒𝑡𝑥 .

5 EXPERIMENTAL RESULTS
5.1 Experiment Setting

We implemented a prototype of TriSAS on the Amazon AWS

cloud computing platform. Our system consisted of {4, 7, 10, 13} EC2

instances serving as SAS servers and one desktop in our lab serv-

ing as spectrum users. Each server instance was an EC2 T2.Large

node that had two vCPUs, one 8GB memory, and one 32GB disk.

They were located in four different areas across the U.S., including

northern Virginia, Ohio, Oregon, and northern California. This

simulated the real-life deployment of SAS servers because in re-

ality servers of different SAS administrators are deployed in their

own data centers across the country. The network latency between

the desktop in our lab and cloud servers is shown in Table 2. We

chose Bigchandb as the blockchain database. Each server installed

a Bigchaindb implementation and we configured them together

to form a Bigchaindb network. Bigchaindb is a representative and

well-documented blockchain database. We leveraged the Python

programming interface of Bigchaindb, i.e. the Python driver of

Bigchaindb to implement our coordination mechanism. Bigchaindb

provides two types of transaction templates including the create
transaction template and transfer transaction template. We used the

create template for the registration transaction 𝑅𝑒𝑔𝑡𝑥 and the trans-
fer template for the other types of transactions, i.e. 𝑅𝑒𝑞𝑡𝑥 , 𝐴𝑙𝑙𝑜𝑐𝑡𝑥
and 𝑉𝑜𝑡𝑒𝑡𝑥 . The contents of these transactions were included in

the asset field and metadata field of the templates. Bigchaindb uses

the Tendermint consensus mechanism as the underlying consensus

protocol. Upon initialization, the Tendermint consensus mechanism

generates a pair of elliptic curve-based public and private keys for

each participant. We used this key pair to identify nodes and sign

transactions.

The key evaluation metrics are the system’s throughput and

latency under a certain volume of input traffic. Within a real-life

spectrum sharing zone, which is typically a county, there are about

400 CBSDs and each of them can send a request to the server

per heartbeat interval, which by the WInnForum standard is a 300-

second interval [29]. Together this contributes to 80 transactions per

minute (TPM) input rate. This is the maximum input rate because

most of the time the CBSDs just send a heartbeat message without

any meaningful content. We can expect the usual traffic volume to
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(a) 𝑛 = 4: 4 servers in the network.
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(b) 𝑛 = 7: 7 servers in the network.
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(c) 𝑛 = 10: 10 servers in the network.
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(d) 𝑛 = 13: 13 servers in the network.

Figure 4: Input synchronization throughput and latency performance. When n={4, 7, 10, 13}, the system can tolerate {1, 2, 3, 4}
Byzantine faults.
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(b) 𝑛 = 7: 7 servers in the network.
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Figure 5: Decision finalization latency performance. When n={4, 7, 10, 13}, the system can tolerate {1, 2, 3, 4} Byzantine faults.

be on a scale of 10 TPM. In our experiment, we conducted stress

tests for the system and chose the following input rates: {30, 60, 90,

120, 150, 180} TPM. Each request contained its desired spectrum

bands and location. We assumed there are 100 locations and 15

spectrum bands (one band is 10 MHz), and each time a request

randomly asked for three to five bands and one location.

Latency is another important evaluation metric, especially for

the second decision finalization phase. This is because the second

phase is conducted periodically and must be finished within the in-

terval𝑇 , otherwise, the coordination mechanism fails. The decision

finalization interval is expected to be shorter than the heartbeat

interval (300s) because if this is guaranteed, the users can get real-

time replies in the next heartbeat communication with servers. In

our experiment, we chose the interval as {30, 60, 90, 120} seconds

under a fixed input rate.

5.2 Input Synchronization Performance
In Figure 4 we demonstrate the experiment results of the input

synchronization phase. The figures show the throughput and la-

tency performance when the network size increases from 𝑛 = 4 to

𝑛 = 13, which can tolerate 1 to 4 Byzantine faults. We can observe

that their output throughput rates are monotonically increasing

and follow a linear relationship with respect to the input rates.

This implies that the system throughput has not yet reached its

bottleneck and may increase even with larger input rates. We can

also observe that, for all settings, the system throughput is almost

identical to the input rate, showing that the request messages can

be processed in real time without buffering.

The latency of the input synchronization phase, i.e. the time

interval between the transactions proposal and commitment, is

very stable when the network size 𝑛 = 4 and 𝑛 = 7. It is about 550

milliseconds for every input rate. But when the network becomes

larger, the latency increases to 800 milliseconds to 1 second when

𝑛 = 10 and 𝑛 = 13. We consider this to be because larger networks

impose more communication overhead for the system, resulting in

longer processing delays.

5.3 Decision Finalization Performance
In Figure 5 we demonstrate the performance of the decision

finalization phase. In the experiment, we mainly focused on the

latency performance of this phase. We changed the size of the

network from 𝑛 = 4 to 𝑛 = 13. For each network size, we checked

the system’s performance with respect to a normal input rate (10 or

30 TPM) to its maximum stable input rate, which was obtained as

the maximum input rate that keeps the processing latency smaller

than the interval 𝑇 , meaning that the decision finalization phase

can be finished within the interval.

For each case, we can observe that the processing latency is

significantly increased when the input rate changes from the nor-

mal rate to the maximum rate for a fixed polling interval. This is
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Figure 6: Latency performance of TriSAS and BD-SAS under
different network sizes and input rates.

because a higher input rate contributes to a larger number of re-

quest messages R(𝑡), which consumes more processing time for the

transaction commitments and allocation generations. For a fixed

input rate, we can observe that the latency linearly increased with

respect to the polling interval. This is because the system gets more

requests for larger pulling intervals and needs more time to pro-

cess them. When the network size becomes larger, we find that

the performance decreases as the system has smaller maximum

stable input rates and longer processing latency. For example, the

maximum stable input rate decreases from 90 TPM to 64 TPMwhen

𝑛 increases from 4 to 7; and if we fixed the input rate to 30 TPM,

the processing latency when 𝑛 = 7 is significantly larger than that

of 𝑛 = 4.

5.4 Benchmark Comparison
We compared the performance of our mechanism with BD-SAS

[32], another blockchain-based decentralized SAS following the

setting that the system processes the requests sequentially one by

one instead of the current default periodical batch-based processing

routine to make fair comparisons because BD-SAS does not support

the second way. We demonstrate the performance of TriSAS and

BD-SAS in figure 6. We focused on the average latency of both

mechanisms to process one request.

We observe that when the network size increases from 𝑛 = 4 to

𝑛 = 13, BD-SAS keeps a very stable processing latency at about 2.2

seconds, while TriSAS has a larger latency that increases from 7.32

seconds to 13.73 seconds under 30 TPM input rate. For a fixed 𝑛 = 7

network, we find that BD-SAS’s processing latency is still stable at

about 2.3 seconds while TriSAS’s latency varies from 9.04 seconds

to 12.56 seconds. From the result, we find that TriSAS imposes a

much larger overhead than BD-SAS. We consider this is because

BD-SAS adopts a much simpler service model as it relies on smart

contracts to fulfill the spectrum assignment and cannot implement

complex allocation algorithms, execute them off-chain, or allow

algorithm diversity, which is crucial for inter-SAS coordination.

5.5 Fairness Performance
We conducted a simulation to evaluate the performance of sev-

eral allocation algorithms including first-come-first-serve (FCFS),

spectrum greedy, number greedy, and biased allocation algorithms

with our AEA algorithm. FCFS means that if two requests ask for
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Figure 7: Evaluation performance of different allocation al-
gorithms.

the usage of the same spectrum band in one location, the earlier

request is approved and the latter one is rejected. Spectrum greedy

means that if two requests have conflicts, the one with larger spec-

trum bands wins. Number greedy means that the algorithm tries to

maximize the number of granted requests. The biased allocation

algorithm tries to maximize the total number of grants for a certain

server. We assumed there were 300 spectrum usage requests toward

100 locations with each one asking for a random amount of spec-

trum band(s). We repeated the simulation for 100 trials and within

each trial, every allocation algorithm generated one allocation to

obtain an AEA score. We considered the average performance of

the 100 trails as the final performance of each allocation algorithm.

We demonstrate the experiment result in figure 7. We first plot

the (𝑢, 𝑣) map, i.e. the utilization rate and fairness score map of

the four allocation algorithms. For fairness performance, we can

observe that the biased allocation algorithm achieves the lowest

score, which is consistent with our intuition. For the utilization

rate, the number greedy allocation algorithm achieves the best

performance. To further provide overall unified and quantitative

measurements for different algorithms, we calculate two different

AEA scores as 𝑠1 = 𝑢𝑣 and 𝑠2 =

{
𝑢 if 𝑣 ≥ 𝑡ℎ

0 if 𝑣 < 𝑡ℎ
, with the first one

indicating the area the algorithms covered in the (𝑢, 𝑣) map, and the

second one enforcing a fairness threshold. We can observe that the

number greedy algorithm achieves the best performance for both

two scores. Therefore, if the SAS administrators use the aforemen-

tioned allocation algorithms to generate spectrum allocations, the

one employing the number greedy algorithm shall win the voting

phase with the highest probability. We clarify that in reality, the
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SAS administrators may use much more complex allocation algo-

rithms than the four wementioned. However, they can still use AEA

to evaluate their performance and fulfill the decision-finalization

phase in our design.

6 DISCUSSION
Scalability. In this work, we mainly focus on the spectrum

sharing problem within one zone. However, in reality, the SAS

administrators may conduct spectrum scheduling and inter-SAS co-

ordination in many zones across different areas simultaneously. In

this case, the number of spectrum users and input volume is signif-

icantly increased. The bottleneck of the current implementation is

that we use the Amazon EC2 computing instances and these nodes

have limited computation and memory resources. Their computa-

tion and memory power is only comparable to a daily-used desktop

and certainly can not handle very large user numbers and input

volume. On the bright side, all the SAS administrators are major

corporate entities with access to high-performance computing clus-

ters. Therefore, we can expect them to have enough resources to

handle large-scale and complex inter-SAS coordination problems.

Complex allocation algorithm. For the spectrum allocation

algorithm, our current implementation only considered linear-

complexity allocation algorithms. We observe that there exist more

complex allocation algorithms that utilize optimization techniques

to achieve high allocation efficiency and fairness [14]. In this regard,

TriSAS can incorporate these complex algorithms in a straightfor-

ward fashion since it enables different SAS servers to use propri-

etary algorithms. Nonetheless, how to accomplish the vote-and-

selection process within a hard time limit, especially when different

SAS servers finish allocation generation at disparate times, is an

outstanding issue and we leave this problem to future work.

SAS client privacy. In our scheme, we assume each SAS server

disseminates its local client requests to all other servers, allowing all

honest SAS servers to receive the same super-set of client requests.

In practice, however, different SAS providers may be reluctant to

share their client data with each other, at least in its original form,

to protect the competitive advantage of their algorithms and the

privacy of locally subscribed clients. To address this privacy con-

cern, we identify two potential extensions of TriSAS. First, a SAS

server may anonymize or obfuscate sensitive information about

client requests, such as device ID and location, while preserving a

high level of allocation accuracy. Differential privacy techniques

can be used to help each client establish a privacy budget [8]. Sec-

ond, a SAS server may employ a server-level trusted execution

environment (TEE) solution, such as Intel SGX [7] and AMD SEV

[16], to compute over confidential client requests (to decrypt inside

the TEE enclave with keys secretly provisioned from other SAS

servers). A program integrity proof can be provided to other SAS

servers through remote attestation. Meanwhile, how to manage the

decryption keys among SAS servers would require a secure design.

7 RELATED WORK
State Machine Replication and BFT Consensus. When it

comes to realizing a fault-tolerant distributed computing service

that achieves uniform decision among participants, state machine

replication (SMR) is heralded as the de facto paradigm [4, 6, 26],

where a consortium of replicated servers provides consistent com-

putation service in response to a sequence of client requests, despite

a certain portion of faulty servers. Based on the type of faults they

address, the SMR-based consensus protocols can be classified into

crash fault-tolerant (CFT) consensus protocols and Byzantine fault-

tolerant (BFT) consensus protocols. Paxos [20], Raft [13] and Zab

[25] are typical CFT consensus protocols. They can tolerate crashed

faults when the majority of the servers behave. Many industrial

distributed computing systems such as Apache Hadoop [27] and

Apache Kafka [19] use them as the fundamental consensus mech-

anisms. The BFT consensus protocols address Byzantine failures,

which exhibit arbitrary behaviors due to malicious hacks, device

crashes, and network failures. Compared to CFT consensus proto-

cols requiring crash faults to comprise less than half of the total

population, BFT consensus protocols counter Byzantine faults when

their population is less than one-third. PBFT [6], Zyzzyva [17], and

Tendermint [5] are well-known BFT consensus protocols.

Blockchain-based SAS. Prior works have explored using block-
chain smart contract to implement a spectrum allocation mecha-

nism directly [3, 31] or to aid the current SAS server in query ag-

gregation and allocation publication [12, 34]. It is further explored

in TrustSAS [12] and BD-SAS [31] that a two-layer blockchain

framework may provide further scalability benefits. However, as

we have discussed in Section 2, blockchain-based SASs have certain

limitations and cannot fully address the inter-SAS coordination

problem.

8 CONCLUSION
In this paper, we investigate the inter-SAS coordination problem

in the 5G spectrum sharing system. We identify the drawbacks of

the WInnForum CPAS standard as it is unable to provide secure

and efficient inter-SAS coordination service. We further analyze

the current blockchain-based SAS solutions and identify their limi-

tations of being unable to allow different SAS servers to have their

own proprietary allocation algorithms, as well as failing to enable

efficient off-chain execution of them. To address this problem, we

propose TriSAS, a two-phase coordination mechanism that not only

provides security guarantees on inter-SAS coordination but also

ensures high throughput and low processing latency in generating

spectrum allocations to clients. We implemented a prototype of

TriSAS on the Amazon cloud computing platform and conducted ex-

tensive experiments to evaluate its performance. The results show

that TriSAS can be practically used in real-life systems. This work

contributes to the state-of-the-art in inter-SAS coordination and

communication, an important problem that is often ignored by

the community. This problem may also involve commercial, public

policy, and enforcement activities, which together contribute to a

healthy spectrum-sharing market.
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