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Bayesian optimization (BO) is a sequential optimization strategy that is increasingly
employed in a wide range of areas such as materials design. In real-world applications,
acquiring high-fidelity (HF) data through physical experiments or HF simulations is the
major cost component of BO. To alleviate this bottleneck, multi-fidelity (MF) methods
are used to forgo the sole reliance on the expensive HF data and reduce the sampling
costs by querying inexpensive low-fidelity (LF) sources whose data are correlated with
HF samples. However, existing multi-fidelity BO (MFBO) methods operate under the fol-
lowing two assumptions that rarely hold in practical applications: (1) LF sources
provide data that are well correlated with the HF data on a global scale, and (2) a
single random process can model the noise in the MF data. These assumptions dramatically
reduce the performance of MFBO when LF sources are only locally correlated with the HF
source or when the noise variance varies across the data sources. In this paper, we view
these two limitations and uncertainty sources and address them by building an emulator
that more accurately quantifies uncertainties. Specifically, our emulator (1) learns a sepa-
rate noise model for each data source, and (2) leverages strictly proper scoring rules in reg-
ularizing itself. We illustrate the performance of our method through analytical examples
and engineering problems in materials design. The comparative studies indicate that our
MFBO method outperforms existing technologies, provides interpretable results, and can
leverage LF sources which are only locally correlated with the HF source.
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1 Introduction

Bayesian optimization (BO) is a sequential and sample-efficient
global optimization technique that is increasingly used in the opti-
mization of expensive-to-evaluate (and typically black-box) func-
tions [1-3]. BO has two main ingredients: an emulator which is
typically a Gaussian process (GP) and an acquisition function
(AF) [4,5]. The first step in BO is to train an emulator on some
initial data. Then, an auxiliary optimization is solved to determine
the new sample that should be added to the training data. The objec-
tive function of this auxiliary optimization is the AF whose evalu-
ation relies on the emulator. Given the new sample, the training
data are updated and the entire emulation-sampling process is
repeated until the convergence conditions are met [6-9].
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Although BO is a highly efficient technique, the total cost of opti-
mization can be substantial if it solely relies on the accurate but
expensive high-fidelity (HF) data source. To mitigate this issue,
multi-fidelity (MF) techniques are widely adopted [10-14] where
one uses multiple data sources of varying levels of accuracy and
cost in BO. The fundamental principle behind MF techniques is
to exploit the correlation between low-fidelity (LF) and HF data
to decrease the overall sampling costs [11,15,16]. Compared to
single-fidelity BO (SFBO), the choice of the emulator is more
important in multi-fidelity BO (MFBO) due to the MF nature of
the data. In this regard, we note that most works on SFBO or
MFBO leverage variations of Gaussian processes (GPs) for emula-
tions since in scarce data regimes other methods such as probabilis-
tic neural networks suffer overfitting, over confidence, or long
training times [6,17-21].

Over the past two decades, many MFBO strategies have been
proposed. However, each of these methods has some major draw-
backs that are mainly rooted in their emulation strategy which
fails to consider some features of MF data sets. For example,
many existing MF techniques require prior knowledge about the
hierarchy of LF data sources [22-26] and hence they break down
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when one does not know the relative accuracy of the LF sources.
The MF modeling methods defined in Refs. [26-29] struggle to
capture intricate correlations among different fidelities as separate
emulators are trained for each data source. Kennedy and
O’Hagan’s bi-fidelity approach and its extensions [30-33] are
limited to bi-fidelity cases and presume simple bias forms (e.g.,
an additive function [30,34-36]) for the LF sources. Co-Kriging
and its extensions [23,37-42] fail to accurately capture cross-source
correlations. Botorch [43] which is a widely popular MFBO
packages is sensitive to the sampling costs (where highly inexpen-
sive LF sources are heavily sampled which, in turn, causes numer-
ical and convergence issues) and also requires a prior knowledge
about the hierarchy of data sources. The above-reviewed methods
also fail to directly handle categorical variables which frequently
arise in applications such as materials design.

The recent work in Ref. [44] addresses most of the above limita-
tions with two contributions. First, it achieves MF emulation via
latent map Gaussian processes (LMGPs) which can simultaneously
fuse any number of data sources, do not require any prior knowl-
edge about the hierarchy of the data sources, can handle categorical
variables, and do not use any simplification assumptions (e.g., linear
correlation among sources, additive biases, etc.) while fusing MF
data sets. Second, it quantifies the information value of LF and
HF samples differently to consider the MF nature of the data
while exploring the search space. The AF used in Ref. [44] is
cost-aware in that it considers the sampling cost in quantifying
the value of HF and LF data points. Henceforth, we refer to this
method as MFBO.

While MFBO performs quite well, it shares two limitations with
other MFBO methods. To demonstrate the first one, we consider
a simple 1D example in Fig. 1 where each of the two LF sources
is more correlated with the HF function in half of the domain. Spe-
cifically, LF1 and LF2 are only correlated with the HF source in the
left and right regions, respectively, see Fig. 1(a). Before starting
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BO, the first step in MFBO is excluding highly biased LF sources
from BO with the rationale that they can steer the search process
in the wrong direction. This decision is made based on the fidelity
manifold that LMGP learns using the initial data. In this manifold,
each data source is encoded with a point and distances between
these points are inversely related to the global correlations
between the corresponding data sources, see Fig. 1(b) and
Ref. [44]. So, based on Fig. 1(b), the HF source is barely correlated
with the LF sources even though they are close to the HF function in
half of the domain (since eliminating both sources converts the BO
into a single-fidelity process in this example, we assume that MFBO
only excludes LF2 and samples from the other two sources as
shown in Fig. 1(a)). This is obviously a sub-optimal decision as it
precludes the possibility of leveraging an LF source that is valuable
in a small portion of the search space which may include the global
optimum of the HF source (in the example of Fig. 1(a), MFBO
should ideally leverage LF2 but mostly sample from it in the x>5
region). Hence, the first limitation of existing methods is their
inability to leverage LF sources which are only locally correlated
with the HF source.

The second limitation of existing MFBO methods (including
MFBO) is that they assume all sources are corrupted with the
same noise process (with unknown noise variance). However, MF
datasets typically have different levels of noise especially if some
sources represent deterministic computer simulations while others
are physical experiments [45,46]. In such applications, the emula-
tors used in existing MFBO methods overestimate the uncertainties
associated with the noise-free data sources which, in turn, adversely
affects the exploration property of BO.

In this paper, we introduce MFBOy, which addresses the two
aforementioned limitations of existing technologies because it (1)
never discards an LF source (regardless of the magnitude of its
global bias with respect to the HF source) to leverage it in parts
of the domain where its samples are locally correlated with the
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Fig. 1 Comparison between MFBO and MFBO,: HF data are noisy (6n0ise = 1) and expensive while the LF data
are deterministic and cheap (sampling costs from the HF and two LF sources are 10/1/1). In this example, LF1 is
more correlated with the HF source for x <5 while LF2 has a higher fidelity for x > 5: (a) demonstrates the sam-
pling history of MFBO assuming LF2 is excluded from the sampling process (see the text for the reason),
(b) visualizes the fidelity manifold learnt by an LMGP that is trained on the initial data. Each point in this man-
ifold encodes a data source and the distances among these points quantify global correlations among the cor-
responding data sources, (c) MFBOy, is proposed in this paper and effectively explores the space via LF
samples which are either highly correlated with HF data, or provide small function values, and (d) MFBO, out-
performs MFBO in finding the optimum of HF source (y*) for various initial conditions (the large noise variance
of HF data causes both approaches to have some errors upon convergence). Initial data are not shown in

(a) and (c).
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HF data, and (2) estimates a separate noise process for each data
source. More specifically, we view these two limitations as uncer-
tainty sources and we address them by reformulating the training
process of MFBO,’s emulator to improve it’s uncertainty quantifi-
cation (UQ) ability. We argue that this improvement in the emulator
helps MFBO in balancing exploration and exploitation more effec-
tively. Figure 1(c) schematically demonstrates the advantages of
MFBOy, over MFBO in a 1D example where there are one HF and
two LF sources. As it can be observed the LF sources are mostly
sampled where they either are well correlated with the HF source,
or provide attractive function values (e.g., very small values in min-
imization). The advantages of MFBO, over MFBO in finding the
optimum of HF (y*) hold over various initializations, see Fig. 1(d).

The rest of the paper is organized as follows. We provide the
methodological details in Sec. 2 and then evaluate the performance
of MFBOy via multiple ablation studies in Sec. 3. In Sec. 3, we also
visualize how strategic sampling in MFBOy,, driven by accurate
uncertainty quantification and effective handling of biased data
sources, results in its superior performance compared to MEBO.
This is demonstrated through two real-world high-dimensional
material design examples with noisy and highly biased data
sources. We conclude the paper in Sec. 4 by summarizing our con-
tributions and providing future research directions.

2 Methods

In this section, we first provide some background on LMGP and
MF modeling with LMGP in Secs. 2.1 and 2.2, respectively. We
then propose our efficient mechanism for inversely learning a
noise process for each data source in Sec. 2.3. Next, we introduce
the cost-aware AF of MFBOy, in Sec. 2.4. Finally, in Sec. 2.5 we
elaborate on our idea that improves the UQ capabilities of
LMGPs and, in turn, benefits MFBO.

2.1 Latent Map Gaussian Process. GPs are emulators which
assume the responses or outputs in the training data come from a
multivariate normal distribution with parametric mean and covari-
ance functions that depend on the inputs. Based on this assumption,
the following equation can be written:

y(x) =p + &x) (1)

where x = [x1, X2, . .., xq,]7 is the input vector, y(x) is the output, S
is an unknown coefficient, and &(x) is a zero-mean GP with the
covariance function:

cov(é), Ex))=cx,x)= or(x,x) 2)

where 6 is the variance of the process and r(-, ) is the parametric
correlation function which measures the distance between any two
input vectors. In this paper, we use the Gaussian correlation func-
tion defined as

dx
r(x, x') = exp { = 107 (xi - x;)z} 3)
i=1

where @ = [, wa, . .., w4 ]! are the scale parameters. To directly
use GPs in MF modeling, we follow Ref. [47] who convert MF
modeling to a manifold learning problem via LMGPs which are
extensions of GPs that can handle categorical data [48] while pro-
viding a visualizable manifold that can be used to interpret the
global correlations among the data sources.

Denoting the categorical inputs by £ =1y, t, ..., 141" where var-
iable #; has /; distinct levels, LMGP maps each combination of the
categorical levels to a point in a learned quantitative manifold. To
this end, LMGP assigns a unique vector to each combination of
the categorical variables and then uses a parametric function to
map these unique vectors into a compact manifold with dimension-
ality dz. Assuming a linear transformation is used in LMGP, the
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mapping operation reads as

2 =E0A “

where ¢ denotes a specific combination of the categorical variables,
z(#) is the 1 x dz posterior latent representation of ¢, £(¢) is a unique
prior vector representation of ¢, and A is a rectangular matrix
that maps &(#) to z(¢). In this paper, grouped one-hot encoding is
used to generate the prior vectors and hence the dimensionality of
&o) and A are 1x Y% [, and Y%, [; x dz, respectively. These
mapped points can now be directly embedded in the correlation
function as

dx dz
rw,w)=expi— Y 107 (=X = @O -z ()
i=1

i=1

where u = [x; t]and z(f) = [z1(¢), 22(F),..., z4;(®)] is the location in
the learned latent space corresponding to the specific combination
of the categorical variables denoted by ¢.

LMGP estimates the hyperparameters (8, A, @, ¢%) via maxi-
mum a posteriori (MAP) which, assuming dz=2, provides point-
estimates for dx+2x Z?;  li +2 variables. Upon parameter
estimation, LMGP uses the conditional distribution formulas to
predict the response distribution at the arbitrary point u# with the fol-
lowing mean and variance:

Ely@)] = p@) = +r" @Ry — Lixip) (6)

@), yw) = o*w) =6 (1 — r" @R 'r(w)) (7

where n is number of training samples, E denotes expectation, 1,
is an a x b matrix of ones, r(u) is an n x 1 vector with the ith element
r(u', u), and R is an nx n matrix with R;=r(u’, u’).

2.2 Multi-Fidelity Emulation Via LMGP. The first step to
MF emulation with LMGP is to augment the inputs with the addi-
tional categorical variable s that indicates the source of a sample,
ie, s={'1,'2,..., 'ds’} where the jth element corresponds to
source j for j=1, ..., ds. Subsequently, the training data from all
sources are concatenated and used in LMGP to build an MF emu-
lator. Upon training, to predict the objective value of at point x
from source j, x is concatenated with the categorical variable s
that corresponds to source j and fed into the trained LMGP. We
refer the readers to Ref. [44] for more detail but note here that in
case the input variables already contain some categorical features
(see Sec. 3.2 for an example), we endow LMGP with two manifolds
where one encodes the fidelity variable s while the other manifold
encodes the rest of the categorical variables. While this choice
does not noticeably affect the accuracy of LMGP during test
time, it increases interpretability. For instance, we use the learned
manifold for the categorical variables in Sec. 3.2 to show the trajec-
tory of BO in the design space.

It has been recently shown [48] that LMGPs have the following
primary advantages over other MF emulators: (1) they provide a
more flexible and accurate mechanism to build MF emulators
since they learn the relations between the sources in a nonlinear
manifold, (2) they learn all the sources quite accurately rather
than just emulating the HF source, and (3) they provide a visualiz-
able global metric for comparing the relative discrepancies/similar-
ities among the data sources.

2.3 Source-Dependent Noise Modeling. The presence of
noise significantly affects the performance of BO and incorrectly
modeling it can cause over-exploration or under-exploration of
the search space. To mitigate the effects of noise in BO, we refor-
mulate LMGPs to independently model a noise process for each
data source. This reformulation improves emulation accuracy and,
in turn, improves the search process when LMGP is deployed in
MFBO.

JUNE 2024, Vol. 146 / 061703-3



To model noise in GPs, the nugget or jitter parameter, J, is used
[49] to replace R with Rs =R + 6I where I is an nxn identity
matrix. With this approach, the estimated stationary noise variance
in the data is 56> and the mean and variance formulations in Eqgs. (6)
and (7) are modified by using R; instead of R.

Although incorporating this modification in the correlation
matrix can enhance the performance of the emulator and BO in
single-fidelity (SF) problems, it does not yield the same benefits
in MF optimization. This is likely because of the dissimilar nature
of the data sources and their corresponding noises. When dealing
with multiple sources of data, each source may suffer from different
levels and types of noise. Consider a bi-fidelity dataset where the
HF data come from an experimental setup and are subject to mea-
surement noise, while the LF data are generated by a deterministic
computer code which has a systematic bias due to missing physics.
In this case, using only one nugget parameter in LMGP for MF
emulation is obviously not an optimum choice.

To address this issue effectively, we propose to use multiple
nugget parameters in the emulator. Specifically, we define the
nugget vector & =[6;, &, ...,04;] and update the correlation
matrix as follows:

R,s =R +N,s (8)

where N denotes an n x n diagonal matrix whose (i, i)th element is
the nugget element corresponding to the data source of the ith
sample. For instance, suppose the ith sample (u") is generated by
source ds. Then, (i, i)th element of N is §4,. With this modification,
the estimated stationary noise variance for the samples in each data
source is 5,62

Then, we use Eq. (8) to build the correlation matrix of LMGP and
jointly estimate all the parameters via MAP as

[p. 5. @ 4. 8] = argmin T log (¢?) + 5 log (IRs))
p.o? A

1
+530 — MRy~ Mp+log (P())

p.o2w, A6
&)

where p(-) is the prior of the hyperparameters. We define indepen-
dent priors for each parameter where w; ~ N(=3, 3), f~ N(0, 1), A;
~N(, 1), 6*> ~LN(0, 1),> and &; ~ LHS(0, 0.01)* [50]. Our multi-
noise approach increases the number of LMGP’s hyperpara-
meters to dx+2 X Z?;l l; + 2 + ds. We highlight that the above
formulations cannot learn an input-dependent noise variance
which requires the nugget to be a function of x. We make this
choice due to the fact that our emulator is used in small-data appli-
cations where modeling an input-dependent noise can result into
overfitting since it increases the number of hyperparameters by
at least ds x dx.

2.4 Multi-Source Cost-Aware Acquisition Function. The
choice of AF is crucial in BO as it guides the sampling process
by balancing exploration and exploitation. Exploration involves
searching unseen regions (where the emulator naturally provides
large prediction intervals) while exploitation focuses on regions
of the input space where good designs are already observed. A
mere focus on exploitation causes convergence to local optima
while excessive exploration increases the sampling costs and
delays the convergence. The choice of AF is even more important
in MFBO, since the AF must consider the biases of LF data and
source-dependent sampling costs in addition to balancing explora-
tion and exploitation. To capture these goals, separate AFs are
defined in Ref. [44] for LF and HF sources where the cheap LF
sources are primarily used for exploration while the expensive HF

?Log-Normal.
3Log—Hadf—Horseshoe with zero lower bound and scale parameter 0.01.
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samples are maximally exploited. Following this idea, the AF of
the jth LF source (j#1, [ denotes the HF source) is defined as the
exploration part of the expected improvement (EI) in MEBO

()
yoe (s ) = oj(u)p (M>

10
) (10)

where y7 is the best function value obtained so far from source j and
¢(-) denotes the probability density function of the standard normal
variable. oju) and p;u) are the standard deviation and mean,
respectively, of point u from source j which we estimate via

pw) = +r" @R;' vy — L) (11)

c(y@), ym)) = o’ @) =6*(1 = r" @R} 'rw)) + 5;

MFBO utilizes improvement as the AF for the HF data source since it
is computationally efficient and emphasizes exploitation. Accord-
ingly, MFBOy uses improvement for the HF source (source /)
with the new mean calculated based on the Eq. (11)

12)

rar@; = p @) = y; 13)

In each iteration of BO, we first use the mentioned AFS to solve ds
auxiliary optimizations to find the candidate points with the highest
acquisition value from each source. We then scale these values by
the corresponding sampling costs to obtain the following composite
AF:

. %(’;)]) J=00,.... ds|& j#1
}/MFBOUQ(M; = yur; D) =] e
o(l) -

where O(j) is the cost of acquiring one sample from source j. We
determine the final candidate point (and the source that it should
be sampled from) at iteration k+ 1 via

[, ] = argmax yyeo,, @ ) (15)
u,j

2.5 Emulation for Exploration. The composite AF in Eq.
(14) quantifies the information value of LF samples via Eq. (10)
whose value scales with the prediction uncertainties, i.e., o(u).
The source-dependent noise modeling of Sec. 2.3 improves
LMGP’s ability in learning the uncertainty by introducing a few
more hyperparameters. However, the added hyperparameters
may result in overfitting and, in turn, deteriorate the predicted
uncertainties [51,52]. A related issue is the effect of large local
biases of LF sources which can inflate the uncertainty quite substan-
tially and, as a result, increase y; (u; j). This increase causes MFBO
to repeatedly sample from the biased LF sources. Such repeated
samplings reduce the efficiency of MFBO and may cause numerical
issues (due to ill-conditioning of the covariance matrix) or even
convergence to a sub-optimal solution.

To address the above issues simultaneously, we argue that
the training process of the emulator should increase the importance
of UQ which directly affects the exploration part of MFBO. To
this end, we leverage strictly proper scoring rules while training
LMGPs.

Scoring rules [53] evaluate a probabilistic prediction by assigning
a numerical score to it. The scoring rule of an emulator is (strictly)
proper if matching the predicted distribution with the underlying
sample distribution (uniquely) maximizes the expected score for
any sample. The probabilistic nature of LMGP’s prediction moti-
vates us to use the negatively oriented interval score (hereafter
denoted by IS) to evaluate the UQ capabilities of LMGPs. We
choose 1S since it is robust to outliers, rewards narrow prediction
intervals, and is flexible in the choice of desired coverage levels
[54,55]. IS is a special case of quantile prediction that penalizes
the model for each observation that is not inside the (1 —v) X
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100% prediction interval. The lower (£') and upper U’ endpoints of
this prediction interval for the ith observation are their predictive
quantiles at levels v/2 and 1 —v/2, respectively. So, we calculate
the IS as

1 ) 2 . . )
IS, = ;Z U =L+ (L =yl {y@) <L)
i=1

+%(y(u") —UNL{yw)>U'} (16)
where 1{-} is an indicator function which is 1 if its condition holds
and zero otherwise [56,57]. We use v=0.05 (95% prediction inter-
val), so U’ = u(’) + 1.960(u’) and L' = u(u’) — 1.960’).

Having defined the IS, we now formulate the new objective
function for training LMGPs where ISjs is used as a penalty
term during hyperparameter estimation to increase the focus on
UQ. Since the effectiveness of this penalization mechanism
depends on the value of the posterior, we introduce an adaptive
coefficient whose magnitude depends on the posterior value. With
this penalty term, we estimate the hyperparameters of LMGP via

[ﬂ, 32, 6, A, 1= argmm Lyap + 8|LMAP| X IS()_()5 (17)
B.otwAS

where || denotes the absolute function and & is a user-defined
scaling parameter. In this paper, we use € =0.08 for all of our
examples.

3 Results and Discussion

We demonstrate the performance of MFBOyg on two analytic
examples (see Table 1 in the Supplementary Information available
in the Supplemental Materials on the ASME Digital Collection for
details on functional forms, size of initial data, sampling costs, and
number of LF sources and their accuracy with respect to the HF
source) and two real-world problems. For analytic examples, we
compare the results against Botorch, MFBO, and SFBO.
MFBOy, and MFBO use the AFs introduced in Sec. 2.4 while
SFBO uses EI as its AF and LMGP as its emulator. Botorch
employs single-task multi-fidelity GP and knowledge gradient as
its emulator and AF, respectively [58,59]. All the baselines
except Botorch are also used for engineering examples.
Botozrch is not applicable to them since it cannot handle categor-
ical variables and also the y; values determined by Botorch are
not obtained through direct sampling from the available data sets
(rather, the samples are obtained by optimizing the learned
posterior).

We assume that the cost of querying any of the data sources is
much higher than the computational costs of BO (i.e., fitting
LMGP and solving the auxiliary optimization problem). Therefore,
we compare the methods based on their capability to identify the
global optimum of the HF source and the overall data collection
cost. By comparing these methods, we aim to demonstrate: (1)
the advantages of estimating noise process for each data source,
(2) that using IS improves the accuracy of LMGP and, in turn,
enhances the convergence of BO (since our defined AFs highly
rely on the quality of the prediction), and (3) that deploying IS elim-
inates the need for excluding highly biased LF sources from BO.

We use the same stop conditions across all the baselines to clearly
demonstrate the benefits of our two contributions. In particular, the
optimization is stopped when either of the following happens: (1)
the overall sampling cost exceeds a pre-determined maximum
budget, or (2) the best HF sample does not change over 50 itera-
tions. The maximum budget for the analytical examples is 40,000
units, while it is 1000 and 1800 for the two real-world examples.
These budgets are chosen based on the data collection costs.

3.1 Analytical Examples. We consider two analytical exam-
ples, Wing [60] and Borehole [61], whose input dimensionality
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is 10 and 8, respectively. To challenge the convergence and better
illustrate the power of separate noise estimation, we only add
noise to the HF data (the noise variance is defined based on the
range of each function). The added noise variance to the HF
source of Wing and Borehole are 9 and 16, respectively. Both
examples are single response and details regarding their formula-
tion, initialization, and sampling cost is presented in SI A available
in the Supplemental Materials). To assess the robustness of the
results and quantify the effect of random initial data, we repeat
the optimization process 20 times for each example with each of
the baselines (all initial data are generated via Sobol sequence).

In each example, the relative root mean squared error is calcu-
lated between LF sources and their corresponding HF source
based on 10,000 samples to show the relative accuracy of the LF
sources (presented in Table 1 in SI available in the Supplemental
Materials). Based on these ground truth numbers (which are not
used in BO), in the case of Borehole the source ID, true fidelity
level, and sampling costs are not related (e.g., although the first LF
source is the most expensive one, it has the least accuracy compared
to the HF source). In the case of Wing, however, these numbers
match (e.g., LF1 is the most accurate and expensive LF source
and is followed by LF2 and then LF3).

MFBO excludes the highly biased LF sources from BO before any
new samples are obtained (also, during BO, the initial samples from
highly biased LF sources are not used in emulation). This exclusion
is done based on the latent map of the LMGP model that is trained
on the initial data. Figure 2 shows the latent maps of Wing and
Borehole examples. As shown in Fig. 2, while all the fidelity
sources of Wing are beneficial (since the points encoding the
LF sources are very close to the HF point), the first two LF
sources of Borehole are not correlated enough with the HF
(their latent positions are distant from that of the HF) and hence
are excluded in MFBO. However, MFBOy, does not require this
exclusion because it leverages the biased LF sources merely in
the regions that they are correlated with the HF source. We also
keep the biased sources in Botorch since there is no explicit
requirement to exclude them within the package’s documentation.
In this paper, we do not exclude the biased sources from MFBO to
have a comprehensive comparison with other baseline methods
and, most notably, to effectively illustrate the impacts of our
contributions.

Figure 3 summarizes the convergence history of each example by
depicting the best HF sample (y*) found by each method versus its
accumulated sampling cost. We note that the initialization process is
identical for all MFBO methods and the reason for observing differ-
ent starting points for them is that we report y* versus cumulative
cost. More specifically, a method may take samples from any of
the sources but this action may not improve y* in which case the
cumulative cost increases while y* does not. We also note that
SFBO has a different initialization since we must use more initial
HF samples in SFBO to ensure its starting cost is comparable to
the costs of MF methods which use both HF and LF data.

As we expect, MFBOy, and MFBO outperform SFBO in Wing
(Fig. 3(a)) by leveraging the inexpensive LF sources that are glob-
ally correlated with the HF source. However, the large added noise
adversely affects the performance of Botorch in estimating the
correlation among sources. This inaccurate correlation estimation
combined with large cost differences among the data sources pre-
vents Botorch from leveraging the correlated LF sources and
causes convergence to the sub-optimal solution y* =183.72 while
the ground truth is 123.25. The superiority of MFBOy, is more
evident in the Borehole example where there are highly biased
LF sources. In Borehole (Fig. 3(b)), all the thin red curves
(MFBO) are straight lines, except for two curves. This means that
for 18 repetitions, the optimization process fails to improve. The
reason behind this failure is that MFBO cannot handle the large
bias of the LF sources and samples points that steer the optimization
in the wrong direction. Consequently, MFBO cannot find any effi-
cient HF sample with large enough information value (that justifies
its high sampling cost) which results in the lack of improvement in

JUNE 2024, Vol. 146 / 061703-5


http://dx.doi.org/10.1115/1.4064160
http://dx.doi.org/10.1115/1.4064160
http://dx.doi.org/10.1115/1.4064160
http://dx.doi.org/10.1115/1.4064160

(a)6>_<1.o s (b) 10!
8 HF 0 &8
@ LFI
! vo o2 J
hy ho 8 or
2 @ Lr
—4 B L=
o % V Le
- LF4
I A—— i
0.0 0.2 0.4 0.6 0.8 1.9 -0.5 0.0 0.5 1.0
hy x10 h

Fig. 2 Fidelity manifolds in analytic examples: The plots in (a) and (b) are obtained by fitting an LMGP to the
initial data in the Wing and Borehole examples, respectively. Due to the consistency across the 20 repetitions,
the plots are randomly chosen among them. In (b), the HF source is encoded far from LF1 and LF2 which indi-
cates that these two sources have large biases with respect to the HF source. MFBO excludes these two sources

from the BO while MFBO,, does not.

y*. Conversely, all the thin green curves (MFBOy) converge to a
value very close to the ground truth. Additionally, while efficient
sampling from LF sources improves the performance of MFBOyq,
the large added noise to the HF source adversely affects the perfor-
mance of SFBO and results in a sub-optimal convergence.

As detailed in SI B.1 available in the Supplemental Materials, we
note that unlike Botorch, the performance of MEFBO, is robust to
the sampling costs and local correlations. For instance, in
Borehole (Fig. 3(b)), Botorch estimates the optimum as y; =
7.29 while this value is y; =4.14 for MFBOy,, (the ground truth is
3.98). The reason behind this inaccuracy is that Botorch fails to
find an HF sample whose information value is large enough to
justify its high sampling cost and, as a result, cheap LF sources
are largely queried. Additionally, due to the strong bias in two of
the LF sources, Botorch fails to effectively sample them within
the correlated domain. So, LF queries do not improve y; and
Botorch stops without finding the optimum.

3.2 Real-World Datasets. In this section, we study two mate-
rials design problems where the aim is to find the composition that
best optimizes the property of interest. We do not add noise to these
two examples as they are inherently noisy. The design space of both
examples has categorical inputs (denoted by #) and we add one more
categorical variable (denoted by s) to enable data fusion as
described in Sec. 2.2. We design our LMGP to map the categorical
inputs onto two 2D manifolds (one for ¢ and the other for s) to help
with the visualization of the exploration—exploitation behavior of
BO in the design space. The HF and LF data are obtained via sim-
ulations (based on the density functional theory) with different fidel-
ity levels.

The first example is on designing a nanolaminate ternary alloy
(NTA) which is used in applications such as high-temperature

structural materials [62]. NTA is in the form of M,AX where M is
an early transition metal, A is a main group element, and X is
either carbon or nitrogen. This problem is bi-fidelity where the
goal is to find the member of NTA family with the largest bulk
modulus. The HF and LF datasets have 224 samples each and are
10-dimensional (7 quantitative and 3 categorical where the latter
have 10, 12, and 2 levels). The cost ratio between the HF and LF
sources is 10/1 and we initialize the BO with 30 HF and 30 LF
samples (the composition with the largest bulk modulus is never
in the initial data). To quantify the sensitivity of the results to the
random initial data, we repeat this process 20 times for each BO
method.

Our second problem is on designing hybrid organic—inorganic
perovskite (HOIP) crystals in the form of ABX3 where B is occupied
by metal cation, A can be organic or inorganic cation, and X denotes
a choice of halide [63]. In this example, our goal is to find the com-
pound with the smallest inter-molecular binding energy. There are
three datasets (one from HF and two from LF sources) which
have the same dimensionality (1 output and 3 categorical inputs
with 10, 3, and 16 levels) but different sizes. The HF dataset has
480 samples while the first and second LF datasets have 179 and
240 samples, respectively. The cost ratio between the three
sources is 15/10/5 (where the HF and LF2 sources are the most
expensive and cheapest, respectively) and we initialize the BO
with (15, 20, 15) samples for the HF and LF sources (the best com-
pound is excluded from the initial data). We repeat the BO process
20 times to assess the sensitivity of the results to the initial data. As
mentioned before, the first step in MFBO is to train an LMGP to the
initial data in each problem to exclude the highly biased sources. As
NTA has categorical variables, LMGP learns two manifolds. Based
on Fig. 4(a), the latent points of the fidelity sources of NTA are very
close in the learned fidelity manifold which indicates that there
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Fig. 3 Convergence histories in analytic examples: The plots depict the best HF sample found by each
approach (y*) versus their sampling costs accumulated during the BO iterations (the cost of initial data is
included). (a) and (b) summarize the results for the Wing and Borehole examples, respectively. The thin
curves show the convergence history of each repetition and the solid thick ones indicate the average behavior
across the 20 repetitions. In both examples, MFBO,, outperforms all other methods. The ground truth is repre-
sented by the black dashed line. (Color version online.)
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Fig.4 Fidelity manifolds in real-world examples: The plots in (a) and (b) are obtained by fitting an LMGP to the
initial data in the NTA and HOIP examples, respectively. Due to the consistency across the 20 repetitions, the
plots are randomly chosen among them. In (b), the HF source is encoded far from LF sources which indicates
that these two sources have large biases with respect to the HF source and MFBO should exclude them.
However, by excluding these sources, the problem transforms into SF, rendering it incomparable to MFBO ..
To maintain comparability with MFBO ., we retain the LF sources in MFBO.

is a high correlation between the corresponding two data sources.
However, both latent points of LF sources in HOIP are far from
the HF one so they both should be excluded due to their large
global bias. By excluding both LF sources the MF problem in
HOIP reduces to an SF one so we do not exclude the biased LF
sources from HOIP to be able to compare the performance of
MFBOyo With MEBO.

A summary of the convergence history of NTA and HOIP is
depicted in Fig. 5 by showing the best HF sample (y*) found by
each method versus its accumulated sampling cost. The initializa-
tion is the same for all the MFBO methods and observing different
starting points follows the same rationale mentioned for Fig. 3. In
Fig. 5(a), the LF sources are globally correlated with the HF
source and hence both MF methods perform better than SFBO by
using inexpensive and informative LF data. Additionally, the
higher prediction accuracy of the emulator of MFBOy results in a
more efficient sampling and faster convergence of BO in MFBOyq
compared to MFBO. Regarding the spike in the convergence plot
of MFBO in Fig. 5(a), we note that 18 repetitions converge at
costs below 500. Consequently, the thick red line (which is the
average across the 20 repetitions) becomes highly sensitive to the
convergence values after cost exceeds 500 since it is an average
of only two values. Specifically, in one of these two repetitions
the best sample found is 237 for many iterations until the cost
reaches 544 when MFBO suddenly converges to the ground truth
(i.e., 255). This sudden convergence results in the spike in the cor-
responding history and, in turn, the average behavior captured by
the thick red line.

The superiority of MFBOy, is more obvious in HOIP (see
Fig. 5(b)) which has two highly biased LF sources. In this
example, MFBO expectedly converges to a sub-optimal compound
since both LF sources are only locally correlated with the HF

(@) 255{ ==7r T r -------------------
240
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—— MFBOy,
—— MFBO
220 SFBO
=== Maximum
0.4 0.6 0.8 1.0
Cost ><1()3

source. So, the AFs fail to sample valuable points to improve the
optimization as they cannot find the region where the LF sources
are beneficial and informative. Additionally, each data source is
obtained from a distinct process so it suffers from different types
and levels of noise. Therefore, estimating a single noise for all the
data sources in MFBO reduces the emulation accuracy and further
exacerbates the performance of AFs. MFBOy, overcomes these
issues by focusing more on UQ and estimating separate noise pro-
cesses; resulting in a better performance compared to SFBO and
especially to MFBO.

The 2D manifolds in Figs. 6 and 7 demonstrate the trajectory of
BO in the categorical design space of each data source in NTA and
HOIP, respectively. The top and bottom rows of these figures cor-
respond to MFBO and MFBOy. In these manifolds, each latent point
indicates a compound and is color-coded based on the ground truth
response value (i.e., the bulk modulus) from each source. The
marker shapes in these manifolds indicate whether a compound is
part of the initial data, sampled during BO, or never seen by
LMGP. As expected, most markers are triangles which indicates
that most combinations are never tested by either MFBO or
MFBOye. The red arrows next to the legend mark the response
ranges in each data set which indicate that, unlike in Fig. 6 for
NTA, the response ranges across the three sources are quite different
in the HOIP problem.

To benefit any MFBO approach, LF sources should be sampled
in two primary regions of their input space: (1) the region that con-
tains their own optima since each data source is analyzed separately
in the auxiliary optimization problems (see Sec. 2.4 for details), and
(2) the region where the LF sources are correlated with the HF
source. These two regions may overlap with each other (as is the
case in NTA) or not (as is the case in HOIP or the 1D example in
Fig. 1(b) where MFBOy, only samples LF2 once when x<5). We
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Fig. 5 Convergence histories in real-world examples: The plots depict the best HF sample found by each
approach (y*) versus their sampling costs accumulated during the BO iterations (the cost of initial data is
included): (a) and (b) summarize the results for the NTA and HOIP, respectively. The thin curves show the con-
vergence history of each repetition and the solid thick ones indicate the average behavior across the 20 repe-
titions. In (b), MFBO fails to find the optimum due to it disability in handling biased LF sources. In both examples,
MFBOy, outperforms other methods. (Color version online.)
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Fig. 6 BO sampling history in the encoded categorical design space of NTA: The plots in the top and bottom
row illustrate the exploration—exploitation behavior of BO in MFBO and MFBO,, respectively. The left and right
columns correspond to the space of HF and LF sources, respectively. All latent points are color-coded based
on the ground truth bulk modulus from each source and the marker shapes indicate whether the compound is
part of the initial data, sampled during BO, or never seen by LMGP. The red arrows next to the legend indicate
the range of response in the two data sources. This figure effectively demonstrates how strategic sampling in
MFBOy, leads to faster convergence compared to MFEO (see text for more detailed explanations): (a) HF MFBO,
(b) LF MFRO, (c) HF MFBO,, and (d) LF MFBOy,. (Color version online.)
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Fig.7 BO sampling history in the encoded categorical design space of HOIP: The plots in the top and bottom row illustrate
the exploration—exploitation behavior of BO in MFBO and MFBO,,, respectively. The left, middle, and right columns corre-
spond to the space of HF, LF1, and LF2 sources, respectively. All latent points are color-coded based on the ground
truth binding energy from each source and the marker shapes indicate whether the compound is part of the initial data,
sampled during BO, or never seen by LMGP. The red arrows next to the legend indicate the range of responses in the
data sources. This figure demonstrates how the strategic sampling in MFBO,, enables it to find the optimum while MFBO
fails: (a) HF MFBO, (b) LF1 MFBO, (¢) LF2 MFBO,, (d) HF MFBO, (€) LF1 MFBO, and (f) LF2 MFBO. (Color version online.)
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note that exploring the correlation region (if it exists!) is crucial for
capturing the relationship between the LF and HF sources and as
shown below the effectiveness of this exploration highly depends
on the accuracy of the emulator in surrogating each source, estimat-
ing uncertainties, and identifying the correlation patterns among
different data sources.

As shown in Fig. 6, for both MFBO and MFBO, manifolds with
very similar structures are learnt by LMGP for HF and LF data (this
was expected per Fig. 4 which indicates that the two sources are
highly correlated). For instance, for both LF and HF data, the
optimum compound is located at the top-right corner of the mani-
fold and their values are also quite close (255 for HF and 244 for
LF). This similarity indicates that MFBO and MFBOyq are both
able to learn about the HF source by sampling the space of the
LF source. However, this sampling is more effective in the case
of MFBOy since its emulator quantifies the uncertainties more accu-
rately. In particular, MFBOy correctly samples compounds from the
LF source that are mostly encoded in the top-right corner of the
manifold (see Fig. 6(d)) while MFBO tests compounds that
explore the entire design space (see Fig. 6(b)).

As shown in Fig. 7, for any of the sources and with either MFBO
or MFBOy, the compounds in the HOIP example are encoded by
LMGP into two major clusters where the smaller one contains
the optimum design. By examining these two clusters we
observe that all the compounds in the smaller cluster have
dimethylformamide (DMF) solvent. These observations are
quite interesting in that they provide engineers with insights
into the most important design variables that affect the materials
properties (e.g., DMF solvent which decreases the binding
energy in this example).

The initial HF dataset used in either MFBO or MFBOy,, (see Figs.
7(a) and 7(d)) is very small and does not have any compounds from
the small cluster that contains the optimum. However, there are
some initial samples from LF1 and LF2 in this cluster and so we
should expect BO to leverage these samples (and the fact that
they have some correlation with the unseen HF compounds) in emu-
lating the HF source and sampling compounds from it that belong to
the small cluster. While this expectation is met by MFBOq, MEBO
fails to explore the (encoded) design space that contains the
optimum HF sample. This failure is because (1) both LF sources
(especially LF1) provide smaller binding energies than the HF
source, and (2) the emulator of MFBO overestimates the
uncertainties in LF sources. The combination of these two factors
prevents MFBO to find an HF sample that is valuable enough to be
selected in Eq. (15). We refer readers to SI B.2 available in the
Supplemental Materials for more analysis on the performance of
MEFBOy; in these two examples.

4 Conclusion

In this paper, we develop a novel method to improve the perfor-
mance of multi-fidelity cost-aware BO techniques. Our method
enhances the accuracy and convergence rate of MFBO through
two main contributions. First, we enable the emulator to estimate
separate noise processes for each source of data. This feature
increases the accuracy of the trained model since different data
sources may exhibit different types and levels of noise. Second,
we define a new objective function penalized by strictly proper
scoring rules to (1) improve the prediction, (2) increase the focus
on UQ, and (3) forgo the need to exclude highly biased data
sources from BO. Our BO method, MFBOo, accommodates any
number of data sources with any levels of noise, does not require
any prior knowledge about the relative accuracy of (or relation
between) these sources, and can handle both continuous and cate-
gorical variables. In this paper, we illustrate these features via
both analytic and engineering problems.

In this work, we use two fixed AFs in each iteration. However,
one can also customize the choice of AFs for different iterations
using adaptive approaches. Additionally, the examples presented

Journal of Mechanical Design

in this paper are limited to single-objective problems and we do
not aim to exclude the effect of noise in the final solution (i.e.,
the best HF sample found is noisy). We intent to study these direc-
tions in our future works.

Acknowledgment

We appreciate the support from National Science Foundation
(award number CMMI —2238038), the Early Career Faculty grant
from NASA’s Space Technology Research Grants Program
(award number 80NSSC21K1809), and the UC National Laboratory
Fees Research Program of the University of California (Grant No.
L22CR4520).

Conflict of Interest

There are no conflicts of interest.

Data Availability Statement

The datasets generated and supporting the findings of this article
are obtainable from the corresponding author upon reasonable
request.

References

[1] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N., 2015,
“Taking the Human Out of the Loop: A Review of Bayesian Optimization,”
Proc. IEEE, 104(1), pp. 148-175.

[2] Brochu, E., Cora, V. M., and De Freitas, N., 2010, “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, With Application to Active User
Modeling and Hierarchical Reinforcement Learning,” arXiv preprint
arXiv:1012.2599.

[3] Adams, R. P., 2014, “A Tutorial on Bayesian Optimization for Machine
Learning,” Harvard University, Cambridge, MA.

[4] Frazier, P. 1., 2018, “A Tutorial on Bayesian Optimization,” arXiv preprint.

[5] Nguyen, L., 2023, “Tutorial on Bayesian Optimization”.

[6] Li, S., Xing, W., Kirby, R., and Zhe, S., 2020, “Multi-fidelity Bayesian
Optimization Via Deep Neural Networks,” Adv. Neural Inf. Process. Syst., 33,
pp. 8521-8531.

[7] Couckuyt, 1., Gonzalez, S. R., and Branke, J., 2022, “Bayesian Optimization:
Tutorial,” Proceedings of the Genetic and Evolutionary Computation
Conference Companion, Boston, MA, pp. 843-863.

[8] Frazier, P. I., and Wang, J., 2015, “Bayesian Optimization for Materials Design,”
Information Science for Materials Discovery and Design, T. Lookman, F. J.
Alexander, and K. Rajan, eds., Springer, New York City, pp. 45-75.

[9] Turner, R., Eriksson, D., McCourt, M., Kiili, J., Laaksonen, E., Xu, Z., and
Guyon, I, 2020, “Bayesian Optimization is Superior to Random Search
for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box
Optimization Challenge 2020,” 2020 Conference on Neural Information
Processing Systems, Chicago, IL, Dec. 6-12, PMLR, pp. 3-26.

[10] Song, J., Chen, Y., and Yue, Y., 2019, “A General Framework for Multi-fidelity
Bayesian Optimization With Gaussian Processes,” Proceedings of the 22nd
International Conference on Artificial Intelligence and Statistics, Naha,
Okinawa, Japan, Apr. 16-18, PMLR, pp. 3158-3167.

[11] Takeno, S., Fukuoka, H., Tsukada, Y., Koyama, T., Shiga, M., Takeuchi, 1., and
Karasuyama, M., 2020, “Multi-fidelity Bayesian Optimization With Max-Value
Entropy Search and Its Parallelization,” Proceedings of the 37th International
Conference on Machine Learning, Vienna, Austria, July 13-18, PMLR, pp.
9334-9345.

[12] Zhang, S., Lyu, W., Yang, F., Yan, C., Zhou, D., Zeng, X., and Hu, X., 2019, “An
Efficient Multi-fidelity Bayesian Optimization Approach for Analog Circuit
Synthesis,” Proceedings of the 56th Annual Design Automation Conference
2019, New York, June 2-6, pp. 1-6.

[13] Kandasamy, K., Dasarathy, G., Schneider, J., and Péczos, B., 2017, “Multi-
Fidelity ~Bayesian Optimisation ~With  Continuous  Approximations,”
Proceedings of the 34th International Conference on Machine Learning,
Sydney, Australia, Aug. 6-11, PMLR, pp. 1799-1808.

[14] Zhang, Y., Hoang, T. N., Low, B. K. H., and Kankanhalli, M., 2017,
“Information-Based Multi-fidelity Bayesian Optimization,” Neural Information
Processing Systems, Long Beach, CA, Dec. 4-9, p. 49.

[15] Shu, L., Jiang, P., and Wang, Y., 2021, “A Multi-fidelity Bayesian Optimization
Approach Based on the Expected Further Improvement,” Struct. Multidiscipl.
Optim., 63, pp. 1709-1719.

[16] Tran, A., Wildey, T., and McCann, S., 2020, “sMF-BO-2CoGP A Sequential
Multi-fidelity Constrained Bayesian Optimization Framework for Design
Applications,” ASME J. Comput. Inf. Sci. Eng., 20(3), p. 031007.

JUNE 2024, Vol. 146 / 061703-9


http://dx.doi.org/10.1115/1.4064160
http://dx.doi.org/10.1109/JPROC.2015.2494218
https://arxiv.org/abs/1012.2599
https://arxiv.org/abs/1012.2599
https://arxiv.org/abs/1807.02811
https://dx.doi.org/10.1007/s00158-020-02772-4
https://dx.doi.org/10.1007/s00158-020-02772-4
https://doi.org/10.1115/1.4046697

[17] Li, S., Kirby, R., and Zhe, S., 2021, “Batch Multi-fidelity Bayesian Optimization
With Deep Auto-Regressive Networks,” Adv. Neural Inf. Process. Syst., 34, pp.
25463-25475.

[18] Zhang, X., Xie, F., Ji, T., Zhu, Z., and Zheng, Y., 2021, “Multi-fidelity Deep
Neural Network Surrogate Model for Aerodynamic Shape Optimization,”
Comput. Meth. Appl. Mech. Eng., 373, p. 113485.

[19] Li, Z., Zhang, S., Li, H., Tian, K., Cheng, Z., Chen, Y., and Wang, B., 2022,
“On-Line Transfer Learning for Multi-fidelity Data Fusion With Ensemble of
Deep Neural Networks,” Adv. Eng. Inform., 53, p. 101689.

[20] Liu, D., and Wang, Y., 2019, “Multi-Fidelity Physics-Constrained Neural
Network and Its Application in Materials Modeling,” ASME J. Mech. Des.,
141(12), p. 121403.

[21] Sarkar, S., Mondal, S., Joly, M., Lynch, M. E., Bopardikar, S. D., Acharya, R.,
and Perdikaris, P., 2019, “Multifidelity and Multiscale Bayesian Framework for
High-Dimensional Engineering Design and Calibration,” ASME J. Mech. Des.,
141(12), p. 121001.

[22] Huang, D., Allen, T. T., Notz, W. L., and Miller, R. A., 2006, “Sequential Kriging
Optimization Using Multiple-Fidelity Evaluations,” Struct. Multidiscipl. Optim.,
32, pp. 369-382.

[23] Forrester, A. I., Sébester, A., and Keane, A. J., 2007, “Multi-fidelity Optimization
Via Surrogate Modelling,” Proc. R. Soc. A: Math. Phys. Eng. Sci., 463(2088),
pp- 3251-3269.

[24] Le Gratiet, L., and Cannamela, C., 2015, “Cokriging-Based Sequential Design
Strategies Using Fast Cross-Validation Techniques for Multi-fidelity Computer
Codes,” Technometrics, 57(3), pp. 418-427.

[25] Picheny, V., Ginsbourger, D., Richet, Y., and Caplin, G., 2013, “Quantile-Based
Optimization of Noisy Computer Experiments With Tunable Precision,”
Technometrics, 55(1), pp. 2—-13.

[26] Kandasamy, K., Dasarathy, G., Oliva, J. B., Schneider, J., and Péczos, B., 2016,
“Gaussian Process Bandit Optimisation With Multi-fidelity Evaluations,” Adv.
Neural Inf. Process. Syst., 29.

[27] Sun, Q., Chen, T., Liu, S., Chen, J., Yu, H., and Yu, B., 2022, “Correlated
Multi-objective Multi-fidelity Optimization for Hls Directives Design,” ACM
Trans. Des. Autom. Electron. Syst. (TODAES), 27(4), pp. 1-27.

[28] Lam, R., Allaire, D. L., and Willcox, K. E., 2015, “Multifidelity Optimization
Using Statistical Surrogate Modeling for Non-Hierarchical Information
Sources,” 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, Kissimmee, FL, Jan. 5-9, p. 0143.

[29] Winkler, R. L., 1981, “Combining Probability Distributions From Dependent
Information Sources,” Manage. Sci., 27(4), pp. 479-488.

[30] Kennedy, M. C., and O’Hagan, A., 2001, “Bayesian Calibration of Computer
Models,” J. R. Stat. Soc. Ser. B (Stat. Methodol.), 63(3), pp. 425-464.

[31] Raissi, M., and Karniadakis, G., 2016, “Deep Multi-Fidelity Gaussian Processes,”
arXiv preprint arXiv:1604.07484.

[32] Son, S.-H., Park, D.-H., Cha, K.-J., and Choi, D.-H., 2013, “Constrained Global
Design Optimization Using a Multi-fidelity Model,” 10th World Congress on
Structural and Multidisciplinary Optimization.

[33] Le Gratiet, L., 2013, “Bayesian Analysis of Hierarchical Multifidelity Codes,”
SIAM/ASA J. Uncertain. Quantif., 1(1), pp. 244-269.

[34] Eldred, M. S., Ng, L. W., Barone, M. F., and Domino, S. P., 2015, “Multifidelity
Uncertainty Quantification Using Spectral Stochastic Discrepancy Models,”
Technical Report, Sandia National Laboratory (SNL-NM), Albuquerque, NM.

[35] Olleak, A., and Xi, Z., 2020, “Calibration and Validation Framework for Selective
Laser Melting Process Based on Multi-fidelity Models and Limited Experiment
Data,” ASME J. Mech. Des., 142(8), p. 081701.

[36] Kleiber, W., Sain, S. R., Heaton, M. J., Wiltberger, M., Reese, C. S., and
Bingham, D., 2013, “Parameter Tuning for a Multi-fidelity Dynamical Model
of the Magnetosphere,” Ann. Appl. Stat., 7(3), pp. 1286-1310.

[37] Xiao, M., Zhang, G., Breitkopf, P., Villon, P., and Zhang, W., 2018, “Extended
Co-Kriging Interpolation Method Based on Multi-fidelity Data,” Appl. Math.
Comput., 323, pp. 120-131.

[38] Perdikaris, P., Venturi, D., Royset, J. O., and Karniadakis, G. E., 2015,
“Multi-fidelity Modelling Via Recursive Co-Kriging and Gaussian-Markov
Random Fields,” Proc. R. Soc. A: Math. Phys. Eng. Sci., 471(2179), p. 20150018.

[39] Zhou, Q., Wu, Y., Guo, Z., Hu, J., and Jin, P., 2020, “A Generalized Hierarchical
Co-Kriging Model for Multi-fidelity Data Fusion,” Struct. Multidiscipl. Optim.,
62, pp. 1885-1904.

061703-10 / Vol. 146, JUNE 2024

[40] Chen, C., Ran, D., Yang, Y., Hou, H., and Peng, C., 2023, “Topsis Based
Multi-fidelity Co-Kriging for Multiple Response Prediction of Structures With
Uncertainties Through Real-Time Hybrid Simulation,” Eng. Struct., 280, p.
115734.

[41] Ruan, X., Jiang, P., Zhou, Q., and Yang, Y., 2019, “An Improved Co-Kriging
Multi-fidelity Surrogate Modeling Method for Non-Nested Sampling Data,”
Int. J. Mech. Eng. Rob. Res., 8(4), pp. 1-9.

[42] Shi, R., Liu, L., Long, T., Wu, Y., and Gary Wang, G., 2020, “Multi-fidelity
Modeling and Adaptive Co-Kriging-Based Optimization for All-Electric
Geostationary Orbit Satellite Systems,” ASME J. Mech. Des., 142(2), p. 021404.

[43] Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and Wilson, A. G., 2018,
“Gpytorch: Blackbox Matrix-Matrix Gaussian Process Inference With GPU
Acceleration,” Adv. Neural Inf. Process. Syst., 31.

[44] Zanjani Foumani, Z., Shishehbor, M., Yousefpour, A., and Bostanabad, R., 2023,
“Multi-Fidelity Cost-Aware Bayesian Optimization,” Comput. Meth. Appl.
Mech. Eng., 407, p. 115937.

[45] Escamilla-Ambrosio, P. J., and Mort, N., 2003, “Hybrid Kalman Filter-
Fuzzy Logic Adaptive Multisensor Data Fusion Architectures,” Proceedings of
the 42nd IEEE Conference on Decision and Control, Maui, HI, Dec. 9-12,
Vol. 5, IEEE, pp. 5215-5220.

[46] Kreibich, O., Neuzil, J., and Smid, R., 2013, “Quality-Based Multiple-Sensor
Fusion in an Industrial Wireless Sensor Network for MCM,” IEEE. Trans. Ind.
Electron., 61(9), pp. 4903—4911.

[47] Eweis-Labolle, J. T., Oune, N., and Bostanabad, R., 2022, “Data Fusion With
Latent Map Gaussian Processes,” ASME J. Mech. Des., 144(9), p. 091703.

[48] Oune, N., and Bostanabad, R., 2021, “Latent Map Gaussian Processes for Mixed
Variable Metamodeling,” Comput. Meth. Appl. Mech. Eng., 387, p. 114128.

[49] Bostanabad, R., Kearney, T., Tao, S., Apley, D. W., and Chen, W., 2018,
“Leveraging the Nugget Parameter for Efficient Gaussian Process Modeling,”
Int. J. Numer. Meth. Eng., 114(5), pp. 501-516.

[50] Carvalho, C. M., Polson, N. G., and Scott, J. G., 2010, “The Horseshoe Estimator
for Sparse Signals,” Biometrika, 97(2), pp. 465-480.

[S51] Gal, Y., Van Der Wilk, M., and Rasmussen, C. E., 2014, “Distributed Variational
Inference in Sparse Gaussian Process Regression and Latent Variable Models,”
Adyv. Neural Inf. Process. Syst., 27.

[52] Mohammed, R. O., and Cawley, G. C., 2017, “Over-Fitting in Model Selection
With Gaussian Process Regression,” Machine Learning and Data Mining in
Pattern Recognition: 13th International Conference, MLDM 2017, New York,
NY, July 15-20, Proceedings 13, Springer, pp. 192-205.

[53] Lindley, D. V., 1982, “Scoring Rules and the Inevitability of Probability,” Int.
Stat. Rev./Revue Int. Stat., 50(1), pp. 1-11.

[54] Bracher, J., Ray, E. L., Gneiting, T., and Reich, N. G., 2021, “Evaluating
Epidemic Forecasts in an Interval Format,” PLoS Comput. Biol., 17(2),
p. €1008618.

[55] Mitchell, K., and Ferro, C., 2017, “Proper Scoring Rules for Interval Probabilistic
Forecasts,” Q. J. R. Metereol. Soc., 143(704), pp. 1597-1607.

[56] Gneiting, T., and Raftery, A. E., 2007, “Strictly Proper Scoring Rules, Prediction,
and Estimation,” J. Am. Stat. Assoc., 102(477), pp. 359-378.

[57] Mora, C., Eweis-Labolle, J. T., Johnson, T., Gadde, L., and Bostanabad, R., 2023,
“Data-Driven Calibration of Multifidelity Multiscale Fracture Models Via Latent
Map Gaussian Process,” ASME J. Mech. Des., 145(1), p. 011705 .

[58] Poloczek, M., Wang, J., and Frazier, P., 2017, “Multi-Information Source
Optimization,” Adv. Neural Inf. Process. Syst., 30.

[59] Wu, J., Toscano-Palmerin, S., Frazier, P. I., and Wilson, A. G., 2020, “Practical
Multi-fidelity Bayesian Optimization for Hyperparameter Tuning,” Proceedings
of the 35th Uncertainty in Artificial Intelligence Conference, Toronto, Canada,
PMLR, pp. 788-798.

[60] Moon, H., 2010, “Design and Analysis of Computer Experiments for Screening
Input Variables,” Ph.D. thesis, The Ohio State University, Columbus, OH.

[61] Morris, M. D., Mitchell, T. J., and Ylvisaker, D., 1993, “Bayesian Design and
Analysis of Computer Experiments: Use of Derivatives in Surface Prediction,”
Technometrics, 35(3), pp. 243-255.

[62] Cover, M., Warschkow, O., Bilek, M., and McKenzie, D., 2009, “A
Comprehensive Survey of M2ax Phase Elastic Properties,” J. Phys.: Condens.
Matter., 21(30), p. 305403.

[63] Herbol, H. C., Hu, W., Frazier, P., Clancy, P., and Poloczek, M., 2018, “Efficient
Search of Compositional Space for Hybrid Organic—Inorganic Perovskites Via
Bayesian Optimization,” npj Comput. Mater., 4(1), p. 51.

Transactions of the ASME


https://dx.doi.org/10.1016/j.cma.2020.113485
https://dx.doi.org/10.1016/j.aei.2022.101689
http://dx.doi.org/10.1115/1.4044400
http://dx.doi.org/10.1115/1.4044598
https://dx.doi.org/10.1007/s00158-005-0587-0
http://dx.doi.org/10.1098/rspa.2007.1900
http://dx.doi.org/10.1080/00401706.2014.928233
http://dx.doi.org/10.1080/00401706.2012.707580
http://dx.doi.org/10.1145/3503540
http://dx.doi.org/10.1145/3503540
http://dx.doi.org/10.1287/mnsc.27.4.479
http://dx.doi.org/10.1111/1467-9868.00294
https://arxiv.org/abs/1604.07484
http://dx.doi.org/10.1137/120884122
http://dx.doi.org/10.1115/1.4045744
http://dx.doi.org/10.1098/rspa.2015.0018
https://dx.doi.org/10.1007/s00158-020-02583-7
https://dx.doi.org/10.1016/j.engstruct.2023.115734
http://dx.doi.org/10.1115/1.4044321
http://dx.doi.org/10.1109/TIE.2013.2293710
http://dx.doi.org/10.1109/TIE.2013.2293710
http://dx.doi.org/10.1115/1.4054520
https://dx.doi.org/10.1016/j.cma.2021.114128
http://dx.doi.org/10.1002/nme.5751
http://dx.doi.org/10.1093/biomet/asq017
http://dx.doi.org/10.1371/journal.pcbi.1008618
http://dx.doi.org/10.1002/qj.3029
http://dx.doi.org/10.1198/016214506000001437
https://doi.org/10.1115/1.4055951
http://dx.doi.org/10.1080/00401706.1993.10485320
http://dx.doi.org/10.1038/s41524-018-0106-7

	1  Introduction
	2  Methods
	2.1  Latent Map Gaussian Process
	2.2  Multi-Fidelity Emulation Via LMGP
	2.3  Source-Dependent Noise Modeling
	2.4  Multi-Source Cost-Aware Acquisition Function
	2.5  Emulation for Exploration

	3  Results and Discussion
	3.1  Analytical Examples
	3.2  Real-World Datasets

	4  Conclusion
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 References

