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ABSTRACT

Bayesian optimization (BO) is a sequential optimization
strategy that is increasingly employed in a wide range of areas
including materials design and drug discovery. In real world
applications, acquiring high-fidelity (HF) data is the major cost
component of BO, since most of the problems demand the use of
expensive HF simulations. To alleviate this bottleneck, multi-
fidelity (MF) methods are proposed to forgo the sole reliance on
the expensive HF data and reduce the sampling costs by
querying inexpensive low-fidelity (LF) sources whose data are
correlated with HF samples. Existing multi-fidelity BO (MFBO)
methods operate under the following two assumptions: (1)
Leveraging global (rather than local) correlation between HF
and LF sources, and (2) Associating all the data sources with the
same noise process. These assumptions dramatically reduce the
performance of MFBO when LF sources are only locally
correlated with the HF source or when the noise variance varies
across the data sources. To dispense with these incorrect
assumptions, we propose an MF emulation method that learns a
source-dependent noise process and also enables BO to leverage
highly biased LF sources which are only locally correlated with
the HF source. We illustrate the performance of our method
through analytical examples and engineering problems on
materials design.
Keywords: Bayesian optimization; multi-fidelity modeling;
emulation; heterogenous noise modeling; interval score.

1. INTRODUCTION
Bayesian optimization (BO) is a sequential and sample-
efficient global optimization technique that is increasingly used
in the optimization of expensive-to-evaluate (and typically
black-box) functions [1]. BO has two main ingredients: an
emulator which is typically a Gaussian process (GP) and an
acquisition function (AF) [2]. The first step in BO is to train an

! Corresponding author. Email: Raminb@uci.edu

emulator on some initial data. Then, an auxiliary optimization is
solved to determine the new sample that should be added to the
training data. The objective function of this auxiliary
optimization is the AF whose evaluation relies on the emulator.
Given the new sample, the training data is updated and the entire
emulation-sampling process is repeated until the convergence
conditions are met [3].

Although BO is a highly efficient technique, the total cost of
optimization can be substantial if it solely relies on the accurate
but expensive high-fidelity (HF) data source. To mitigate this
issue, multi-fidelity (MF) techniques are widely adopted [4-6]
where one uses multiple data sources of varying levels of
accuracy and cost in BO. The fundamental principle behind MF
techniques is to exploit the correlation between low-fidelity (LF)
and HF data to decrease the overall sampling costs [7, 8].

Over the past two decades many multi-fidelity BO (MFBO)
strategies have been proposed which primarily differ in terms of
their emulator and AF. Most existing strategies rely on the Co-
Kriging method [9], Kennedy and O’Hagan’s bi-fidelity
approach [10], and the BoTorch package [11]. These MFBO
methods have some major drawbacks such as inability to
simultaneously leverage multiple LF sources, sensitivity to the
sampling costs (where highly inexpensive LF sources cause
numerical and convergence issues), and presuming simple bias
forms for the LF sources.

Some of these limitations are recently addressed in [12]
where the authors propose to (1) use latent map Gaussian
processes (LMGPs) for emulation, and (2) quantify the
information value of LF and HF samples differently. Their AF is
cost-aware in that it considers the sampling cost in quantifying
the value of HF and LF data points. Henceforth, we refer to this
method as MFBO,,.

While MFBO,, performs much better than competing MF
approaches, it has two main limitations which are demonstrated
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FIGURE 1 EFFECT OF HETEROGENOUS NOISE AND MODEL FIDELITY ON MFBO: HF data are noisy and expensive while the LF data are
deterministic and cheap. In this example, LF1 is more correlated with the HF source for x > 0 while LF2 correlates better with HF for x < 0. The
sampling cost of the HF and two LF sources are 1000/100/100, respectively. MFBOpg is the approach we propose in this paper to increase sampling
efficiency and solution accuracy. MFBOg more effectively explores the space (as it samples more points in x < 0) and better leverages LF1in x > 0.
As for LF2, MFBOg mostly samples from x < 0, since this region includes the optimum of LF2 and is more correlated with the HF. Initial data are
not shown in these figures. MFBO, uses both LF sources and learns a single noise process for the three sources.

with a simple 1D example in FIGURE 1. Firstlyy, MFBO,
excludes highly biased LF sources from BO with the rationale
that they can steer the search process in the wrong direction. This
exclusion is done before BO starts since the decision is made
based on the fidelity manifold of LMGP that is trained on the
initial data. However, this manifold only quantifies global
accuracy of LF sources with respect to the HF source. That is, if
an LF source is only correlated with the HF data in a small
region, MFBO,, discards it. We argue that such an early exclusion
is suboptimal since that small region may contain the global
optimum of the HF source.

The second limitation of MFBO, is that it assumes all sources
are corrupted with the same noise process (with unknown noise
variance). However, MF datasets typically have different levels
of noise especially if some sources represent deterministic
computer simulations while others are physical experiments [13,
14]. In such applications, MFBO, overestimates the
uncertainties which, in turn, reduces the performance of MFBO.

To address these two limitations, we introduce MFBOg for
multi-fidelity cost-aware Bayesian optimization. MFBOp has the
same AFs as MFBO, and can leverage an arbitrary number of LF
sources in optimizing an HF source. Unlike MFBO,, MFBOg
never discards any LF sources (regardless of its bias with respect
to the HF source) and estimates a noise process for each data
source. We argue that MFBOp quantifies the uncertainties more
accurately than MFBO,, and thus achieves a higher performance
in MFBO. FIGURE 1 schematically demonstrates the
advantages of MFBOg over MFBO, in a 1D example where
there are one HF and two LF sources.

The rest of the paper is organized as follows. We provide the
methodological details in Section 2 and then evaluate the
performance of MFBOp via multiple ablation studies in Section
3. We conclude the paper in Section 4 by summarizing our
contributions and providing future research directions.

2. METHODS

In this section, we first provide some background on LMGP
and MF modeling with LMGP in Section 2.1 and Section 2.2,
respectively. We then propose our efficient mechanism for
inversely learning a noise process for each data source in Section
2.3 . Next, we introduce the cost-aware AF of MFBOg in Section
2.4. Finally, in Section 2.5 we elaborate on our idea that
improves the uncertainty quantification (UQ) capabilities of
LMGPs and, in turn, benefits MFBO.

2.1 Latent Map Gaussian Process (LMGP)

Gaussian processes (GPs) are emulators which assume the
training data come from a multivariate normal distribution with
parametric mean and covariance functions. Following this
assumption, the training data can be modeled as:

y(x) =B+ &) M

where x = [x1,X;, ..., Xg]T is the input vector, y(x) is the
output, 8 is an unknown coefficient, and & (x) is a zero-mean GP
with the covariance function:

COU( f(x),f(x’)) =c(x,x') = o?r(x,x") )

where o2 is the variance of the process and 7() is the
parametric correlation function. In this paper we use the
Gaussian correlation function defined as:

dx
r(x,x') = exp {—Z 109t (x; — x{)z} 3)
i=1

where @ = [wq, Wy, ..., wg, |7 are the scale parameters. GP
modeling highly depends on the choice of the correlation
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function which measures the distance between any two points.
To directly use GPs in MF modeling, we follow [15] who convert
MF modeling to a manifold learning problem via LMGPs which
are extensions of GPs that can handle categorical data [16] while
providing a visualizable manifold that can be used to interpret
the correlation among data sources.

Denoting the categorical inputs by t = [t;, t;, ..., t4.]T where
variable t; has [; distinct levels, LMGP maps each combination
of the categorical levels to a point in a learned quantitative
manifold. To this end, LMGP assigns a unique vector to each
combination of the categorical variables and then learns a linear
transformation that maps these unique vectors into a compact
manifold with dimensionality dz:

z(t) = (DA 4)

where t denotes a specific combination of the categorical
variables, z(t) is the 1 X dz posterior latent representation of t,
{(t) is a unique prior vector representation of ¢, and A4 is a
rectangular matrix that maps {(t) to z(t). In this paper, grouped
one-hot encoding is used to generate the prior vectors and hence
the dimensionality of {(t) and 4 are 1 X Y%, [; and Y%, I; X
dz, respectively. These mapped points encode the data source
and can be directly embedded in the correlation function as:

dx
r(u,u’) = exp {—Z 1090 (x; — x{)zl
i=1

dz
X exp {—Z(zi(t) — Zl-(t’))2 ]

where u = [x; t] and z(t) = [z,(t), z5(L), ..., 24, ()] is the
location in the learned latent space corresponding to the specific
combination of the categorical variables denoted by t.

LMGP estimates the hyperparameters (f,4, w,d?) via
maximum a posteriori (MAP) and then uses the conditional
distribution formulas to predict the response distribution at the
arbitrary point u with the following mean and variance:

(&)

Ey@)] = u@) = B+ r" @ R (¥ — 15:ap) (6)

c(y(w),y(w) = o%(w) (7
=621 —rT(W)R r(u)
+ (W) * (1R 1,,)7™)

where n is number of training samples, E denotes expectation,
1,xp is an a X b matrix of ones, r(u) is an n X 1 vector with the
ithelement r(u!,u), R is an n X n matrix with Rij = r(ul,u)),
and g(u) =1 — 1, R r(u).

2.2 Multi-fidelity Emulation via LMGP

The first step to MF emulation with LMGP is to augment
the inputs with the additional categorical variable s that indicates
the sources of sample, i.e., s = {'1’,'2/,...,'ds’ } where the jt*

element corresponds to source j for j =1,...,ds. Then, the
training data from all sources are concatenated and used in
LMGP to build an MF emulator. We refer the readers to [17] for
more detail but note here that in case the input variables already
contain some categorical features (see Section 3.2 for an
example), we endow LMGP with two manifolds where one
encodes the fidelity variable s while the other manifold encodes
the rest of the categorical variables.

Oune, Bostanabad [18] show that LMGPs have the
following primary advantages over other MF emulators: (1) they
provide a more flexible and accurate mechanism to build MF
emulators since they learn the relations between the sources in a
nonlinear manifold, (2) they learn all the sources quite accurately
rather than just emulating the HF source, and (3) they provide a
visualizable global metric for comparing the relative
discrepancies/similarities among the data sources.

2.3 Source-dependent Noise Modeling

The presence of noise significantly affects the performance
of BO, and incorrectly modeling it can cause over-exploration or
under-exploration of the search space. To mitigate the effects of
noise in BO, we reformulate LMGPs to independently model a
noise process for each data source. This reformulation can
improve the accuracy of the model in noisy regions and, in turn,
guide the search toward the global optimum when the modeled
is deployed in MFBO.

To model noise in GPs, the nugget or jitter parameter, &, is
used [19] to replace R with Rs = R+ &I where I is an
n X nidentity matrix. With this approach, the estimated
stationary noise variance in the data is §02 and the mean and
variance formulations in Eq. (6) and Eq. (7) are modified by
using R instead of R.

Although incorporating this modification in the correlation
matrix can enhance the performance of the emulator and BO in
single-fidelity (SF) problems, it does not yield the same benefits
in MF optimization. This is likely because of the dissimilar
nature of the data sources and their corresponding noises. When
dealing with multiple sources of data, each source may suffer
from different levels and types of noise. Consider a bi-fidelity
dataset where the HF data comes from an experimental setup and
is subject to measurement noise, while the LF data is generated
by a deterministic computer code which has a systematic bias
due to missing physics. In this case, using only one nugget
parameter in LMGP for MF emulation is obviously not an
optimum choice.

To address this issue effectively, we propose to use multiple
nugget parameters in the emulator. Specifically, we define the
nugget vector 8 = [§4,0,,...,045] and update the correlation
matrix as follows:

R6:R+N5 (8)

where Ngs denotes an nXn diagonal matrix whose
(i, 1) t" element is the nugget element corresponding to the data
source of the i*" sample. For instance, suppose the it" sample
(u') is generated by source ds. Then, (i, i) t* element of N is
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84s- When training the LMGP, we use Eq. (8) to build the
correlation matrix and jointly estimate all the parameters via
MAP as:
[8,6,@,4,8] = argmin Ly,p =

b’,a,w,A,c‘i

argmin log(az) + = log (IRs| )

B.0,0w,A386

+i( ~ 1B R
o2 y nx1 S5 y

v, )

B.o.wAS

where p(+) is the prior of the hyperparameters. We define
independent  priors for each  parameter = where
w'~N(-3,3),3~N(0,1),AY~N(0,3),6~LN(0,3)2, and
8'~LHS(0,0.01)3 [20].

2.4 Multi-source Cost-aware Acquisition Function

The choice of AF is crucial in MFBO since it must consider
the biases of LF data and source-dependent sampling costs in
addition to balancing exploration and exploitation. To capture
these goals, separate AFs are defined in [17] for LF and HF
sources with a focus on exploration and exploitation,
respectively.

Following the idea of proposing an AF with a focus on
exploration for the LF sources, the AF of the jt* LF source (j #
[, I denotes the HF source) is defined as the exploration part of
expected improvement (EI) in MFBO,,:

- pj(w) (10)

N )
gj

Yir(W;j) =

where y; is the best function value in the obtained dataset from
source j and ¢(+) denotes the probability density function (PDF)
of the standard normal variable. g;(u) and u;(u) are the standard
deviation and mean, respectively, of point u from source j which
we estimate via:

X p) = i
B+ (W) Rs™ (¥ — 1 B) (11)

c(yw),yw) = o*(w)

— 62 (1 _ rT(u)R(;_lr(u) (12)
+ (9(”))2(11><nR6_11n><1)_1)
+6;

where g(u) =1— 1,,,Rs *r(u) and Sj is the estimated
nugget parameter for source j.

2 Log-Normal
? Log-Half-Horseshoe with zero lower bound and scale parameter 0.01.

As probability of improvement (PI) is computationally
efficient and emphasizes exploitation, MFBO,, utilizes it as the
AF for the HF data source. Accordingly, MFBOg uses PI for the
HF source (source [ ) with the new standard deviation and mean
calculated based on the Eq. (11) and Eq. (12):

w(w)— YL*) (13)
g (w)

where ¥(-) is the cumulative density function (CDF) of the
standard normal distribution.

In each iteration of BO, we first use the mentioned AFs to
solve ds auxiliary optimizations to find the candidate points with
the highest acquisition value from each source. We then scale
these values by the corresponding sampling costs to obtain the
following composite AF:

Yur(w; 1) = ¥(

YmFBOg w)) =

(VLF (w; ))
o)
o)

j=1,..,ds and j # 1 (14)
j=1

where 0(j) is the cost of acquiring one sample from source j.
We determine the final candidate point (and the source that it
should be sampled from) via:

k+1 -k+1]

[, j

= argmax Yyrpo, (W;J) (15)
uj

2.5 Emulation for Exploration

The composite AF in Eq. (14quantifies the information value
of LF samples via Eq. (10) whose value scales with the
prediction uncertainties, i.e., o(u). The source-dependent noise
modeling of Section 2.3 improves LMGP’s ability in learning
the uncertainty by introducing a few more hyper-parameters.
However, the added hyperparameters may result into overfitting
and, in turn, deteriorate the predicted uncertainties [21, 22].

A related issue is the effect of large local biases of LF sources
which can inflate the uncertainty quite substantially and, as a
result, increase y,p(u;j). This increase causes MFBO to
repeatedly sample from the biased LF sources (see FIGURE 1
where MFBO,, takes quite a lot of samples from LF1 in the x <
0 region while LF1 is quite biased for x < 0). Such repeated
samplings reduce the efficiency of MFBO and may cause
numerical issues or even convergence to a suboptimal solution.

To address the above issues simultaneously, we argue that the
training process of the emulator should increase the importance
of UQ which directly affects the exploration part of MFBO. To
this end, we leverage strictly proper scoring rules while training
LMGPs.

Scoring rules are standard methods for evaluating
probabilistic predictions [23, 24]. In short, scoring rules evaluate
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a probabilistic prediction by assigning the numerical score ¢ to
it. The scoring rule of an emulator is (strictly) proper if matching
the predicted distribution with the underlying sample distribution
(uniquely) maximizes the expected score for any sample [25].
The probabilistic nature of LMGP’s prediction motivates us
to use the negatively oriented interval score (hereafter denoted
by IS) to evaluate the UQ capabilities of LMGPs. We choose IS
since it is robust to outliers, rewards narrow prediction intervals,
and is flexible in the choice of desired coverage levels [26, 27].
IS is a special case of quantile prediction that penalizes the
model for each observation (y(u')) that is not inside the
(1 —v) * 100% prediction interval. The lower (£!) and upper
(U') endpoints of this prediction interval for the i*" observation
are their predictive quantiles at levels % and 1 — g, respectively.

So, we calculate the IS as:
IS, = (16)
1v 2
S U - L) + S (£ -y ) 1y @) < £
i=1
2 ) ) ) )
t (@) —u") y') > U’}

where 1{-} is an indicator function which is 1 if its condition
holds and zero otherwise [28, 29]. We use v = 0.05 (95%
prediction interval), so U= u(u') +1.96 c(u’) and Li=
u(ud) — 1.96 o(ud).

Having defined the IS, we now formulate the new objective
function for training LMGPs where 1S, 5 is used as a penalty
term during hyperparameter estimation to increase the focus on
UQ. Since the effectiveness of this penalization mechanism
depends on the value of the posterior, we introduce an adaptive
coefficient whose magnitude depends on the posterior value.
With this penalty term, we estimate the hyperparameters of
LMGTP via:

[ﬁA, 6, @A, 3] = argmin Ly ,p
B.o,wAéE (17)
+ €|Lyap| X 1So.05

where |-| denotes the absolute function and ¢ is a user-defined
scaling parameter. In this paper, we use € = 0.08.

3. RESULTS AND DISCUSSION

We demonstrate the performance of MFBOg on two analytic
examples (details in TABLE 1) and two real-world problems. In
each case, we compare the results against those of MFBO, and
single-fidelity BO (SFBO). While SFBO uses EI as its AF,
MFBOg and MFBO,, use the AFs introduced in Section 2.4.

We assume that the cost of querying any of the data sources
is much higher than the computational costs of BO (i.e., fitting
LMGP and solving the auxiliary optimization problem).
Therefore, we compare the methods based on their capability to
identify the global optimum of the HF source and the overall data
collection cost. By comparing these methods, we aim to

demonstrate: (1) the advantages of estimating noise process for
each data source, (2) that using IS improves the prediction which
also enhances the convergence of BO (our defined AFs highly
rely on the quality of the prediction), and (3) that deploying IS
eliminates the need for excluding highly biased fidelity sources.

We use the same stop conditions across the three methods to
clearly demonstrate the benefits of our two contributions. In
particular, the optimization is stopped when either of the
following happens: (1) the overall sampling cost exceeds a pre-
determined maximum budget, or (2) the best HF sample does not
change over 50 iterations. The maximum budget for the
analytical examples is 40000 units, while it is 1000 and 1800 for
the two real-world examples as their data collection cost is much
lower than that of analytical ones.

3.1 Analytical Examples

We consider two analytical examples (Wing, Borehole) with
the dimensionality of 10 and 8, respectively. To challenge the
convergence and better illustrate the power of separate noise
estimation, we only add noise to the HF data (the noise variance
is defined based on the range of each function and is shown in
TABLE 1). Both examples are single response and details
regarding their formulation, initialization, and sampling cost is
presented in TABLE 1. To assess the robustness of the results
and quantify the effect of random initial data, we repeat the
optimization process 20 times for each example with each of the
three methods (all initial data are generated via Sobol sequence).

In each example, the relative root mean squared error
(RRMSE) is calculated between LF sources and their
corresponding HF source based on 1000 samples to show the
relative accuracy of the LF sources (presented in TABLE 1).
Based on these numbers, in Borehole, unlike Wing, the source
ID, true fidelity level (based on the RRMSEs), and sampling cost
are not related. For instance, although the first LF source is the
most expensive one, it has the least accuracy.

MFBO,, excludes the highly biased LF sources from BO
before any new samples are obtained. This exclusion is done
based on the latent map of the LMGP model that is trained on
the initial data. FIGURE 2 shows the latent maps of Wing and
Borehole examples where Source 1 represents the HF source,
and the rest of the Sources represent LF ones. As shown in
FIGURE 2, while all the fidelity sources of Wing are beneficial
(since the points encoding the LF sources are very close to the
HF point), the first two LF sources of Borehole are not correlated
enough with the HF (their latent positions are distant from that
of the HF) and hence are excluded in MFBO,. However,
MFBOg does not require this exclusion because it leverages the
biased LF sources merely in the regions that they are correlated
with the HF source. In this paper, we do not exclude the biased
sources in MFBO, to better compare it with our proposed
method.

FIGURE 3 summarizes the convergence history of each
example by depicting the best HF sample found by each method
versus its accumulated sampling cost. As we expect, MF
methods (MFBOg and MFBO,) outperform SFBO in Wing
(FIGURE 3a) by leveraging the inexpensive LF sources that are
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FIGURE 2 FIDELITY MANIFOLDS OF ANALYTIC EXAMPLES:
The plots in (a) and (b) are obtained by fitting an LMGP to the initial
data in the Wing and Borehole examples, respectively. Due to the
consistency across the 20 repetitions, the plots are randomly chosen
among them. In (b), the HF source (Source 1) is encoded far from LF1
and LF2 which indicates that these two sources have large biases with
respect to the HF source. MFBO, excludes these two sources from the
BO while MFBOg does not.

globally correlated with the HF, leading them to better
convergence performance with lower cost. However, the
superior performance of MFBOg is more obvious in Borehole
with biased data sources.

In Borehole (FIGURE 3b), all the thin red curves (MFBO,,)
are straight lines, except for two curves. This means that for 18
repetitions, the optimization process fails to improve. The reason
behind this lack of improvement is that MFBO,, fails to handle
local correlation of the LF sources, and samples unvaluable
points that steer the optimization to the wrong direction.
Consequently, MFBO, cannot find any efficient HF sample with
large enough information value to compensate for its high
sampling cost which results in the lack of improvement.
Conversely, all the thin green curves (MFBOg) converge to a
value very close to the ground truth. In addition, MFBOg yields
almost the same convergence value as SFBO, but with lower
computational cost. This instance further demonstrates the
effectiveness of our proposed AFs, since SFBO is very accurate
due to only sampling from HF and not dealing with local biases.

FIGURE 4 illustrates the details of the accumulated
convergence cost and values of each repetition. The pink boxes
show the variations in convergence values through 20 repetitions
and the blue ones demonstrate the convergence cost. The dashed

pink line is the ground truth we aim to find. As also shown in
FIGURE 3, in all the examples, MFBOg outperforms other
methods considering convergence value and cost. As
demonstrated in FIGURE 4a, unlike MF methods, the increase
in dimensionality (8 in Borehole to 10 in Wing) adversely affects
the performance of SFBO, as it cannot find the ground truth of
Wing despite mere sampling from HF source. In addition,
utilizing beneficial information provided by the inexpensive
unbiased LF sources, causes the better performance of MFBOg
and MFBO, compared to SFBO. The lower variations in the
convergence values of MFBOg through 20 repetitions (smaller
pink boxes and whiskers) and lower convergence costs compared
to MFBO,,, further show the superiority of our proposed method;
MFBOg outperforms MFBO, even in the absence of biased
sources.

The rationale behind the lower cost of MFBO, in Borehole
(FIGURE 4b) can be attributed to the observation made for
FIGURE 3b; in 18 repetitions of Borehole, the optimization is
not improved at all. So, in all those repetitions, the optimization
meets the second stop condition and is terminated in the 50%
iteration while it is not converged. This fact is also obvious in the
long whiskers of the pink boxplots of MFBO, (high variation on

250 | —— MFBO,
a *i —— MFBO,
| SFBO
. 200 == Minimum
Y
150
123.25
1 2 3 4
Cost X 104
40 —— MFBO,
b —— MFBO,
SFBO
y* = = Minimum
20 \
3.08 _\.m__..______-______.

1 2 3 4
Cost x10*

FIGURE 3 CONVERGENCE HISTORIES: The plots depict the best
HF sample found by each approach versus their sampling costs
accumulated during the BO iterations (the cost of initial data is
included). (a) and (b) refer to Wing and Borehole, respectively. The thin
curves show the convergence history of each repetition, and the solid
thick ones indicate the average behavior across the 20 repetitions. In all
the examples, MFBOg outperforms MFBO,in terms of both
convergence value and cost. In both examples, SFBO performs the
worst. The ground truth is represented by the black dashed line.
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FIGURE 4 ACCUMULATED COSTS AND CONVERGENCE
VALUES: The blue boxplots illustrate the accumulated costs of each
repetition, and the pink ones demonstrate their convergence values for
the three methods. The pink dashed line indicates the ground truth. (a)
and (b) refer to Wing and Borehole, respectively. In both examples, the
median of the convergence box of MFBOj is very closer to the ground
truth than that of the MFBO,, while its cost is much lower which proves
the superiority of our proposed approach.

the convergence values in each repetition) and the median which
is far from the ground truth.

3.2 Real-world Datasets

In this section, we study two materials design problems
where the aim is to find the composition that best optimizes the
property of interest. We do not add noise to these two examples
as they are noisy themselves. Both examples have categorical
inputs and the HF and LF data are obtained via simulations
(based on the density functional theory) with different fidelity
levels.

The first problem is bi-fidelity where the goal is to find the
member of the nanolaminate ternary alloy (N74) family with the
largest bulk modulus [30]. The HF and LF datasets are 10-
dimensional (7 quantitative and 3 categorical where the latter
have 10, 12, and 2 levels), single response with 224 samples
each. We define the cost ratio of 10/1 for the fidelity sources and
initialize the BO with 20 HF and 10 LF samples (the composition
with the largest bulk modulus is excluded from the HF dataset).
To quantify the robustness of the proposed method to the random
initial data, we repeat this process 20 times for each BO method.

The second problem is hybrid organic—inorganic perovskite
(HOIP) crystals that aim to find the compound with the smallest
inter-molecular binding energy [31]. There are 3 fidelity sources
for this example, 1 HF and 2 LFs, with the same dimensionality

(1 output and 3 categorical inputs with 10, 3, and 16 levels) but
different sizes. The HF dataset has 480 samples, while the first
and second LF sources have 179 and 240 samples, respectively.
We assign the cost ratio of 15/10/5 to the fidelity sources and
initialize the BO with (15, 20, 15) samples for the HF and LF
sources, respectively (the best compound is excluded). We
repeat the BO process 20 times to assess the robustness.

As mentioned before, the first step in MFBO,, is to train an
LMGP to the initial data in each problem to exclude the highly
biased sources. As illustrated in FIGURE 5, the latent points of
the fidelity sources of NT4 are very close in the learned fidelity
manifold which demonstrates a high correlation between its
fidelity sources. However, both latent points of LF sources in
HOIP are far from the HF one (Source 1), so they both should be
excluded. By excluding both LF sources, the MF problem
converts to the SF one, so MFBO, is not applicable to it
anymore. Therefore, we do not exclude the biased LF sources
from HOIP in this paper to be able to compare the performance
of MFBOg with MFBO,.

A summary of the convergence history of NT4 and HOIP is
depicted in FIGURE 6 by showing the best HF sample found by
each method versus its accumulated sampling cost. In N74
(FIGURE 6a), the LF sources are globally correlated with the
HF; consequently, MF methods perform better than SFBO by
using inexpensive and informative LF sources. Additionally,

—2

%10
S x Source 1
£y Source2
haol @ ®
a
=5
7.275 7.300 7.325 7.350 7.375 7.400
hy x10"*
x Source 1 -
1 @ Source2 [
. Source 3
hag 4
Wb
-6 —4 -2 0 2 4
hl % 10_]

FIGURE 5 FIDELITY MANIFOLDS OF REAL-WORLD
EXAMPLES: The plots in (a) and (b) are obtained by fitting an LMGP
to the initial data in the N74 and HOIP examples, respectively. Due to
the consistency across the 20 repetitions, the plots are randomly chosen
among them. In (b), MFBO, excludes LF1 and LF2 as they are encoded
far from the HF (Source 1).
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FIGURE 6 CONVERGENCE HISTORIES: The plots depict the best
HF sample found by each approach versus their sampling costs
accumulated during the BO iterations (the cost of initial data is
included). (a) and (b) refer to N74 and HOIP, respectively. The solid
thick curves indicate the average behavior across the 20 repetitions.
MFBOg performs better than MFBO, in both examples in case of

convergence value and cost.

higher prediction accuracy of the emulator of MFBOg results in
a more efficient sampling and faster convergence of BO in
MFBOg compared to MFBO,, .

The superiority of MFBOg is more obvious in HOIP
(FIGURE 6b) with biased sources. In HOIP example, as we
expect, MFBO, converges to a sub-optimal compound since
both LF sources are only locally correlated with the HF source.
So, the AFs fail to sample valuable points to improve the
optimization as they cannot find the region where the LF sources
are beneficial and informative. Additionally, each data source is
obtained from a distinct process, so it suffers from different types
and levels of noise. Therefore, estimating a single noise for all
the data sources in MFBO,, results in a poor emulation and
further exacerbates the performance of AFs. MFBOg overcomes
these issues by focusing more on UQ and estimating separate
noise processes, resulting in better performance, and
outperforming MFBO,,.

Similar to Section 3.1, we also show the details of the
accumulated convergence cost and values of each repetition in
FIGURE 7. In this regard, convergence of all methods to the
ground truth in all the repetitions in N74 (FIGURE 7a), makes
the pink boxplots become straight lines (zero variation).
However, the two outliers in SFBO show its disability in finding
the ground truth in two repetitions despite mere sampling from

the accurate HF source. Additionally, the faster convergence of
MFBOg compared to other methods which roots from efficient
sampling, causes much lower convergence costs.

In HOIP (FIGURE 7b), as shown in FIGURE 6b, MFBO,
fails to manage the noise and biased sources, and converges to a
sub-optimal compound. However, MFBOg leverages the biased
LF sources only in the regions that they provide effective
information by taking advantage of the penalized objective
function which significantly improves the prediction.
Furthermore, the large variation in the convergence values of
SFBO and its much higher cost, further highlights the superiority
of MFBOg in efficiency and robustness, though the median of
the convergence boxplot of SFBO is closer to the ground truth.

4. CONCLUSION

In this paper, we develop a novel method to improve the
performance of multi-fidelity cost-aware BO techniques. Our
method enhances the accuracy and convergence rate of MFBO
through two main contributions. Firstly, we enable the emulator
to estimate separate noise processes for each source of data. This
feature increases the accuracy of the trained model since
different data sources may exhibit different types and levels of
noise. Secondly, we define a new objective function penalized
by IS to (1) further improve the accuracy of the prediction, (2)
increase the focus on UQ, and (3) forgo the need to exclude
biased data sources. The main advantages of our method are its
efficient and superior performance in the presence of highly
biased data sources, and no required prior knowledge about the
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FIGURE 7 ACCUMULATED COSTS AND CONVERGENCE
VALUES: The blue boxplots illustrate the accumulated costs of each
repetition, and the pink ones demonstrate their convergence values. The
pink dashed line indicates the ground truth. (a) and (b) refer to N74 and
HOIP, respectively. (a) All the methods found the ground truth in all
iterations, so there is no variation.
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accuracy of the data sources. We illustrate these advantages in future research, aiming to extend our proposed method to
through analytic and real-world examples. handle multi-objective problems with adaptive AFs.

We propose to use two fixed AFs in each iteration. However,
one can also customize the choice of AFs for different iterations ACKNOWLEDGEMENTS

using adaptive approaches. The examples presented in this paper We appreciate the support from National Science

are limited to single-objective problems. In addition, in all the Foundation (award numbers OAC-2211908 and OAC-
examples we report the noisy data as the result, but one can 2103708) and the Early Career Faculty grant from NASA’s
increase the accuracy by excluding the noise effects on the Space Technology Research Grants Program (award number
convergence value. We intend to explore these avenues further 8ONSSC21K1809).

APPENDIX

A Table of Numerical

TABLE 1 LIST OF ANALYTIC FUNCTIONS:n denotes the number of initial samples. The relative root mean squared error (RRMSE) of an LF
source is calculated by comparing its output to that of the HF source at 10000 random points. The cost column is the cost of obtaining a sample from
the corresponding source. The last column denotes the variance of the added noise to the HF source.
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Name 1D Formulation n RRMSE Cost variance
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