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ABSTRACT 
Bayesian optimization (BO) is a sequential optimization 

strategy that is increasingly employed in a wide range of areas 
including materials design and drug discovery. In real world 
applications, acquiring high-fidelity (HF) data is the major cost 
component of BO, since most of the problems demand the use of 
expensive HF simulations. To alleviate this bottleneck, multi-
fidelity (MF) methods are proposed to forgo the sole reliance on 
the expensive HF data and reduce the sampling costs by 
querying inexpensive low-fidelity (LF) sources whose data are 
correlated with HF samples. Existing multi-fidelity BO (MFBO) 
methods operate under the following two assumptions: (1) 
Leveraging global (rather than local) correlation between HF 
and LF sources, and (2) Associating all the data sources with the 
same noise process. These assumptions dramatically reduce the 
performance of MFBO when LF sources are only locally 
correlated with the HF source or when the noise variance varies 
across the data sources. To dispense with these incorrect 
assumptions, we propose an MF emulation method that learns a 
source-dependent noise process and also enables BO to leverage 
highly biased LF sources which are only locally correlated with 
the HF source. We illustrate the performance of our method 
through analytical examples and engineering problems on 
materials design. 
Keywords: Bayesian optimization; multi-fidelity modeling; 
emulation; heterogenous noise modeling; interval score. 

1. INTRODUCTION 
Bayesian optimization (BO) is a sequential and sample-

efficient global optimization technique that is increasingly used 
in the optimization of expensive-to-evaluate (and typically 
black-box) functions [1]. BO has two main ingredients: an 
emulator which is typically a Gaussian process (GP) and an 
acquisition function (AF) [2]. The first step in BO is to train an 
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emulator on some initial data. Then, an auxiliary optimization is 
solved to determine the new sample that should be added to the 
training data. The objective function of this auxiliary 
optimization is the AF whose evaluation relies on the emulator. 
Given the new sample, the training data is updated and the entire 
emulation-sampling process is repeated until the convergence 
conditions are met [3].  

Although BO is a highly efficient technique, the total cost of 
optimization can be substantial if it solely relies on the accurate 
but expensive high-fidelity (HF) data source. To mitigate this 
issue, multi-fidelity (MF) techniques are widely adopted [4-6] 
where one uses multiple data sources of varying levels of 
accuracy and cost in BO. The fundamental principle behind MF 
techniques is to exploit the correlation between low-fidelity (LF) 
and HF data to decrease the overall sampling costs [7, 8]. 

Over the past two decades many multi-fidelity BO (MFBO) 
strategies have been proposed which primarily differ in terms of 
their emulator and AF. Most existing strategies rely on the Co-
Kriging method [9], Kennedy and O’Hagan’s bi-fidelity 
approach [10], and the BoTorch package [11]. These MFBO 
methods have some major drawbacks such as inability to 
simultaneously leverage multiple LF sources, sensitivity to the 
sampling costs (where highly inexpensive LF sources cause 
numerical and convergence issues), and presuming simple bias 
forms for the LF sources.  

Some of these limitations are recently addressed in [12] 
where the authors propose to (1) use latent map Gaussian 
processes (LMGPs) for emulation, and (2) quantify the 
information value of LF and HF samples differently. Their AF is 
cost-aware in that it considers the sampling cost in quantifying 
the value of HF and LF data points. Henceforth, we refer to this 
method as 𝑀𝐹𝐵𝑂𝛼 . 

While 𝑀𝐹𝐵𝑂𝛼  performs much better than competing MF 
approaches, it has two main limitations which are demonstrated 
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with a simple 1D example in FIGURE 1. Firstly, 𝑀𝐹𝐵𝑂𝛼  
excludes highly biased LF sources from BO with the rationale 
that they can steer the search process in the wrong direction. This 
exclusion is done before BO starts since the decision is made 
based on the fidelity manifold of LMGP that is trained on the 
initial data. However, this manifold only quantifies global 
accuracy of LF sources with respect to the HF source. That is, if 
an LF source is only correlated with the HF data in a small 
region, 𝑀𝐹𝐵𝑂𝛼  discards it. We argue that such an early exclusion 
is suboptimal since that small region may contain the global 
optimum of the HF source.  

The second limitation of 𝑀𝐹𝐵𝑂𝛼  is that it assumes all sources 
are corrupted with the same noise process (with unknown noise 
variance). However, MF datasets typically have different levels 
of noise especially if some sources represent deterministic 
computer simulations while others are physical experiments [13, 
14]. In such applications, 𝑀𝐹𝐵𝑂𝛼  overestimates the 
uncertainties which, in turn, reduces the performance of MFBO. 

To address these two limitations, we introduce 𝑀𝐹𝐵𝑂𝛽 for 
multi-fidelity cost-aware Bayesian optimization. 𝑀𝐹𝐵𝑂𝛽 has the 
same AFs as 𝑀𝐹𝐵𝑂𝛼  and can leverage an arbitrary number of LF 
sources in optimizing an HF source. Unlike 𝑀𝐹𝐵𝑂𝛼 , 𝑀𝐹𝐵𝑂𝛽 
never discards any LF sources (regardless of its bias with respect 
to the HF source) and estimates a noise process for each data 
source. We argue that 𝑀𝐹𝐵𝑂𝛽 quantifies the uncertainties more 
accurately than 𝑀𝐹𝐵𝑂𝛼  and thus achieves a higher performance 
in MFBO.  FIGURE 1 schematically demonstrates the 
advantages of 𝑀𝐹𝐵𝑂𝛽 over 𝑀𝐹𝐵𝑂𝛼  in a 1D example where 
there are one HF and two LF sources. 

The rest of the paper is organized as follows. We provide the 
methodological details in Section 2 and then evaluate the 
performance of 𝑀𝐹𝐵𝑂𝛽 via multiple ablation studies in Section 
3. We conclude the paper in Section 4 by summarizing our 
contributions and providing future research directions.  

2. METHODS 
In this section, we first provide  some background on LMGP 

and MF modeling with LMGP in Section 2.1 and Section 2.2, 
respectively. We then propose our efficient mechanism for 
inversely learning a noise process for each data source in Section 
2.3 . Next, we introduce the cost-aware AF of 𝑀𝐹𝐵𝑂𝛽 in Section 
2.4. Finally, in Section 2.5 we elaborate on our idea that 
improves the uncertainty quantification (UQ) capabilities of 
LMGPs and, in turn, benefits MFBO.  

 
2.1 Latent Map Gaussian Process (LMGP) 

Gaussian processes (GPs) are emulators which assume the 
training data come from a multivariate normal distribution with 
parametric mean and covariance functions. Following this 
assumption, the training data can be modeled as: 

 
𝑦(𝒙) = 𝛽 +  𝜉(𝒙) (1) 

where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑑𝑥]
𝑇 is the input vector, 𝑦(𝒙) is the 

output, 𝛽 is an unknown coefficient, and 𝜉(𝒙) is a zero-mean GP 
with the covariance function: 
 

𝑐𝑜𝑣( 𝜉(𝒙), 𝜉(𝒙′)) = 𝑐(𝒙, 𝒙′ ) =  𝜎2𝑟(𝒙, 𝒙′) (2) 

where 𝜎2 is the variance of the process and 𝑟(∙,∙) is the 
parametric correlation function. In this paper we use the 
Gaussian correlation function defined as: 
 

𝑟(𝒙, 𝒙′) = exp {−∑10𝜔𝑖

𝑑𝑥

𝑖=1

 (𝑥𝑖 − 𝑥𝑖
′)2} 

 

(3) 

where 𝝎 = [𝜔1, 𝜔2, … , 𝜔𝑑𝑥  ]
𝑇 are the scale parameters. GP 

modeling highly depends on the choice of the correlation 

FIGURE 1 EFFECT OF HETEROGENOUS NOISE AND MODEL FIDELITY ON MFBO: HF data are noisy and expensive while the LF data are 
deterministic and cheap. In this example, LF1 is more correlated with the HF source for 𝑥 > 0 while LF2 correlates better with HF for 𝑥 < 0. The 
sampling cost of the HF and two LF sources are 1000/100/100, respectively. 𝑀𝐹𝐵𝑂𝛽 is the approach we propose in this paper to increase sampling 
efficiency and solution accuracy. 𝑀𝐹𝐵𝑂𝛽 more effectively explores the space (as it samples more points in 𝑥 < 0) and better leverages LF1 in  𝑥 > 0. 
As for LF2, 𝑀𝐹𝐵𝑂𝛽 mostly samples from 𝑥 < 0, since this region includes the optimum of LF2 and is more correlated with the HF. Initial data are 
not shown in these figures. 𝑀𝐹𝐵𝑂𝛼 uses both LF sources and learns a single noise process for the three sources.  
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function which measures the distance between any two points. 
To directly use GPs in MF modeling, we follow [15] who convert 
MF modeling to a manifold learning problem via LMGPs which 
are extensions of GPs that can handle categorical data [16] while 
providing a visualizable manifold that can be used to interpret 
the correlation among data sources.  

Denoting the categorical inputs by 𝒕 = [𝑡1, 𝑡2, … , 𝑡𝑑𝑡]
𝑇 where 

variable 𝑡𝑖 has 𝑙𝑖 distinct levels, LMGP maps each combination 
of the categorical levels to a point in a learned quantitative 
manifold. To this end, LMGP assigns a unique vector to each 
combination of the categorical variables and then learns a linear 
transformation that maps these unique vectors into a compact 
manifold with dimensionality 𝑑𝑧: 

 
𝒛(𝒕) =  𝜻(𝒕)𝑨 (4) 

 
where 𝒕 denotes a specific combination of the categorical 
variables, 𝒛(𝒕) is the 1 ×  𝑑𝑧 posterior latent representation of 𝒕, 
𝜻(𝒕) is a unique prior vector representation of 𝒕, and 𝑨 is a 
rectangular matrix that maps 𝜻(𝒕) to 𝒛(𝒕). In this paper, grouped 
one-hot encoding is used to generate the prior vectors and hence 
the dimensionality of 𝜻(𝒕) and 𝑨 are 1 × ∑ 𝑙𝑖

𝑑𝑡
𝑖=1  and ∑ 𝑙𝑖

𝑑𝑡
𝑖=1  ×

 𝑑𝑧, respectively. These mapped points encode the data source 
and can be directly embedded in the correlation function as:  
 

𝑟(𝒖, 𝒖′) = exp {−∑10𝜔𝑖

𝑑𝑥

𝑖=1

 (𝑥𝑖 − 𝑥𝑖
′)2} 

× exp {−∑(𝑧𝑖(𝒕) − 𝑧𝑖(𝒕
′))

2
𝑑𝑧

𝑖=1

 } 

 

(5) 

 

 
where 𝒖 = [𝒙;  𝒕] and 𝒛(𝒕) = [𝑧1(𝒕), 𝑧2(𝒕),… , 𝑧𝑑𝑧(𝒕)] is the 
location in the learned latent space corresponding to the specific 
combination of the categorical variables denoted by 𝒕. 

LMGP estimates the hyperparameters (𝛽, 𝑨,𝝎, 𝜎2) via 
maximum a posteriori (MAP) and then uses the conditional 
distribution formulas to predict the response distribution at the 
arbitrary point 𝒖 with the following mean and variance: 

 
𝔼[𝑦(𝒖)] = 𝜇(𝒖) =  𝛽̂ +  𝒓𝑇(𝒖) 𝑹−1(𝒚 − 𝟏𝑛×1𝛽̂) 

 
  (6) 

𝑐(𝑦(𝒖), 𝑦(𝒖)) =  𝜎2(𝒖)

= 𝜎̂2(1 − 𝒓𝑇(𝒖)𝑹−1𝒓(𝒖)
+ (𝑔(𝒖))2(𝟏1×𝑛𝑹

−1𝟏𝑛×1)
−1)  

 

(7) 

where 𝑛 is number of training samples, 𝔼 denotes expectation, 
𝟏𝑎×𝑏 is an 𝑎 × 𝑏 matrix of ones, 𝒓(𝒖) is an 𝑛 × 1 vector with the 
𝑖𝑡ℎelement 𝑟(𝒖𝑖, 𝒖), 𝑹 is an 𝑛 × 𝑛 matrix with 𝑅𝑖𝑗 = 𝑟(𝒖𝑖 , 𝒖𝑗), 
and 𝑔(𝒖) = 1 − 𝟏1×𝑛𝑹

−1𝒓(𝒖).   
 
2.2 Multi-fidelity Emulation via LMGP 

The first step to MF emulation with LMGP is to augment 
the inputs with the additional categorical variable 𝑠 that indicates 
the sources of sample, i.e., 𝑠 = {′1′, ′2′, … , ′𝑑𝑠′ } where the 𝑗𝑡ℎ  

element corresponds to source 𝑗 for 𝑗 = 1,… , 𝑑𝑠. Then, the 
training data from all sources are concatenated and used in 
LMGP to build an MF emulator. We refer the readers to [17] for 
more detail but note here that in case the input variables already 
contain some categorical features (see Section 3.2 for an 
example), we endow LMGP with two manifolds where one 
encodes the fidelity variable 𝑠 while the other manifold encodes 
the rest of the categorical variables.  

Oune, Bostanabad [18] show that LMGPs have the 
following primary advantages over other MF emulators: (1) they 
provide a more flexible and accurate mechanism to build MF 
emulators since they learn the relations between the sources in a 
nonlinear manifold, (2) they learn all the sources quite accurately 
rather than just emulating the HF source, and (3) they provide a 
visualizable global metric for comparing the relative 
discrepancies/similarities among the data sources. 
 
2.3 Source-dependent Noise Modeling 

The presence of noise significantly affects the performance 
of BO, and incorrectly modeling it can cause over-exploration or 
under-exploration of the search space. To mitigate the effects of 
noise in BO, we reformulate LMGPs to independently model a 
noise process for each data source. This reformulation can 
improve the accuracy of the model in noisy regions and, in turn, 
guide the search toward the global optimum when the modeled 
is deployed in MFBO. 

To model noise in GPs, the nugget or jitter parameter, 𝛿, is 
used [19] to replace 𝑹 with 𝑹𝛿 = 𝑹 + 𝛿𝑰 where 𝑰 is an 
𝑛 ×  𝑛 identity matrix. With this approach, the estimated 
stationary noise variance in the data is 𝛿𝜎2 and the mean and 
variance formulations in Eq. (6) and Eq. (7) are modified by 
using 𝑹𝛿  instead of 𝑹.  

Although incorporating this modification in the correlation 
matrix can enhance the performance of the emulator and BO in 
single-fidelity (SF) problems, it does not yield the same benefits 
in MF optimization. This is likely because of the dissimilar 
nature of the data sources and their corresponding noises. When 
dealing with multiple sources of data, each source may suffer 
from different levels and types of noise. Consider a bi-fidelity 
dataset where the HF data comes from an experimental setup and 
is subject to measurement noise, while the LF data is generated 
by a deterministic computer code which has a systematic bias 
due to missing physics. In this case, using only one nugget 
parameter in LMGP for MF emulation is obviously not an 
optimum choice.  

To address this issue effectively, we propose to use multiple 
nugget parameters in the emulator. Specifically, we define the 
nugget vector 𝜹 = [𝛿1, 𝛿2, … , 𝛿𝑑𝑠] and update the correlation 
matrix as follows: 
 

𝑹𝛿 = 𝑹+ 𝑵𝛿  (8) 

where 𝑵𝛿  denotes an 𝑛 × 𝑛 diagonal matrix whose 
(𝑖, 𝑖) 𝑡ℎ element is the nugget element corresponding to the data 
source of the 𝑖𝑡ℎ sample. For instance, suppose the 𝑖𝑡ℎ sample 
(𝒖𝑖) is generated by source 𝑑𝑠. Then, (𝑖, 𝑖) 𝑡ℎ element of 𝑵𝛿  is 
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𝛿𝑑𝑠. When training the LMGP, we use Eq. (8) to build the 
correlation matrix and jointly estimate all the parameters via 
MAP as: 
  

[𝛽̂, 𝜎̂, 𝝎,̂ 𝑨̂, 𝜹̂] = argmin
𝛽,𝜎,𝝎,𝑨,𝜹

  𝐿𝑀𝐴𝑃 = 

argmin
𝛽,𝜎,𝝎,𝑨,𝜹

 ( 
𝑛

2
log(𝜎2) +  

1

2
 log (|𝑹𝛿|

+  
1

2𝜎2
(𝒚 − 𝟏𝑛×1𝛽)

𝑇𝑹𝛿
−1(𝒚

− 𝟏𝑛×1𝛽) + log ( 𝑝(∙)
𝛽,𝜎,𝝎,𝑨,𝜹

   )) 

 

(9) 

 
where 𝑝(∙) is the prior of the hyperparameters. We define 
independent priors for each parameter where 
𝝎𝑖~𝑁(−3,3), 𝛽~𝑁(0,1), 𝑨𝑖𝑗~𝑁(0,3), 𝜎~𝐿𝑁(0,3)2, and 
𝜹𝑖~𝐿𝐻𝑆(0,0.01)3 [20].   
 
2.4 Multi-source Cost-aware Acquisition Function  

The choice of AF is crucial in MFBO since it must consider 
the biases of LF data and source-dependent sampling costs in 
addition to balancing exploration and exploitation. To capture 
these goals, separate AFs are defined in [17] for LF and HF 
sources with a focus on exploration and exploitation, 
respectively.  

Following the idea of proposing an AF with a focus on 
exploration for the LF sources, the AF of the 𝑗𝑡ℎ LF source (𝑗 ≠
𝑙, 𝑙 denotes the HF source) is defined as the exploration part of 
expected improvement (EI) in 𝑀𝐹𝐵𝑂𝛼: 
 

𝛾𝐿𝐹(𝒖; 𝑗) =  𝜎𝑗(𝒖)𝜙(
𝑦𝑗
∗ − 𝜇𝑗(𝒖)

𝜎𝑗(𝒖)
) 

(10) 

 
where 𝑦𝑗∗ is the best function value in the obtained dataset from 
source 𝑗 and 𝜙(∙) denotes the probability density function (PDF) 
of the standard normal variable. 𝜎𝑗(𝒖) and 𝜇𝑗(𝒖) are the standard 
deviation and mean, respectively, of point 𝒖 from source 𝑗 which 
we estimate via:   
 

𝜇(𝒖) = 
𝛽̂ +  𝒓𝑇(𝒖) 𝑹𝛿

−1(𝒚 − 𝟏𝑛×1𝛽̂) 
 

(11) 

 
𝑐(𝑦(𝒖), 𝑦(𝒖)) =  𝜎2(𝒖)

= 𝜎̂2 (1 − 𝒓𝑇(𝒖)𝑹𝛿
−1𝒓(𝒖)

+ (𝑔(𝒖))
2
(𝟏1×𝑛𝑹𝛿

−1𝟏𝑛×1)
−1
)

+ 𝛿̂𝑗   

 
 

(12) 

 
where  𝑔(𝒖) = 1 − 𝟏1×𝑛𝑹𝛿

−1𝒓(𝒖) and 𝛿̂𝑗 is the estimated 
nugget parameter for source 𝑗.    

 
2 Log-Normal 
3 Log-Half-Horseshoe with zero lower bound and scale parameter 0.01. 

As probability of improvement (PI) is computationally 
efficient and emphasizes exploitation, 𝑀𝐹𝐵𝑂𝛼  utilizes it as the 
AF for the HF data source. Accordingly, 𝑀𝐹𝐵𝑂𝛽  uses PI for the 
HF source (source 𝑙 ) with the new standard deviation and mean 
calculated based on the Eq. (11) and Eq. (12): 
 

𝛾𝐻𝐹(𝒖; 𝑙) =  𝜓(
 𝜇𝑙(𝒖)− 𝑦𝑙

∗

𝜎𝑙(𝒖)
) 

(13) 

 
where 𝜓(∙) is the cumulative density function (CDF) of the 
standard normal distribution. 

In each iteration of BO, we first use the mentioned AFs to 
solve 𝑑𝑠 auxiliary optimizations to find the candidate points with 
the highest acquisition value from each source. We then scale 
these values by the corresponding sampling costs to obtain the 
following composite AF:  

 
𝛾𝑀𝐹𝐵𝑂𝛽

(𝒖; 𝑗) = 

{
 
 

 
 𝛾𝐿𝐹(𝒖; 𝑗)

𝑂(𝑗)
   𝑗 = 1,… , 𝑑𝑠  𝑎𝑛𝑑  𝑗 ≠ 𝑙

𝛾𝐻𝐹(𝒖; 𝑙)

𝑂(𝑙)
                  𝑗 = 𝑙

 

 

(14) 

 

 
where 𝑂(𝑗) is the cost of acquiring one sample from source 𝑗. 
We determine the final candidate point (and the source that it 
should be sampled from) via: 
 

[𝒖𝑘+1, 𝑗𝑘+1] =  argmax
𝒖,𝑗

  𝛾𝑀𝐹𝐵𝑂𝛽
(𝒖; 𝑗) (15) 

2.5 Emulation for Exploration  
The composite AF in Eq. (14quantifies the information value 

of LF samples via Eq. (10) whose value scales with the 
prediction uncertainties, i.e., 𝜎(𝒖). The source-dependent noise 
modeling of Section 2.3 improves LMGP’s ability in learning 
the uncertainty by introducing a few more hyper-parameters. 
However, the added hyperparameters may result into overfitting 
and, in turn, deteriorate the predicted uncertainties [21, 22].  

A related issue is the effect of large local biases of LF sources 
which can inflate the uncertainty quite substantially and, as a 
result, increase 𝛾𝐿𝐹(𝒖; 𝑗). This increase causes MFBO to 
repeatedly sample from the biased LF sources (see FIGURE 1 
where 𝑀𝐹𝐵𝑂𝛼  takes quite a lot of samples from LF1 in the 𝑥 <
0 region while LF1 is quite biased for 𝑥 < 0). Such repeated 
samplings reduce the efficiency of MFBO and may cause 
numerical issues or even convergence to a suboptimal solution. 

To address the above issues simultaneously, we argue that the 
training process of the emulator should increase the importance 
of UQ which directly affects the exploration part of MFBO. To 
this end, we leverage strictly proper scoring rules while training 
LMGPs.  

Scoring rules are standard methods for evaluating 
probabilistic predictions [23, 24]. In short, scoring rules evaluate 
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a probabilistic prediction by assigning the numerical score 𝑐 to 
it. The scoring rule of an emulator is (strictly) proper if matching 
the predicted distribution with the underlying sample distribution 
(uniquely) maximizes the expected score for any sample [25]. 

The probabilistic nature of LMGP’s prediction motivates us 
to use the negatively oriented interval score (hereafter denoted 
by IS) to evaluate the UQ capabilities of LMGPs. We choose IS 
since it is robust to outliers, rewards narrow prediction intervals, 
and is flexible in the choice of desired coverage levels [26, 27]. 

IS is a special case of quantile prediction that penalizes the 
model for each observation (𝑦(𝒖𝑖)) that is not inside the 
(1 − 𝜐) ∗ 100% prediction interval. The lower (ℒ𝑖) and upper 
(𝒰𝑖) endpoints of this prediction interval for the 𝑖𝑡ℎ observation 
are their predictive quantiles at levels 𝜐

2
 and 1 −

𝜐

2
, respectively. 

So, we calculate the IS as: 
 

𝐼𝑆𝜐 = 
1

𝑛
∑(𝒰𝑖 − ℒ𝑖) +

2

𝜐
(ℒ𝑖 − 𝑦(𝒖𝑖))

𝑛

𝑖=1

𝟙{𝑦(𝒖𝑖)  <  ℒ𝑖}

+  
2

𝜐
(𝑦(𝒖𝑖) − 𝒰𝑖) 𝟙{𝑦(𝒖𝑖) > 𝒰𝑖} 

 

(16) 

where 𝟙{∙} is an indicator function which is 1 if its condition 
holds and zero otherwise [28, 29]. We use 𝜐 = 0.05  (95% 
prediction interval), so 𝒰𝑖= 𝜇(𝒖𝑖) + 1.96 𝜎(𝒖𝑖) and ℒ𝑖= 
𝜇(𝒖𝑖) − 1.96 𝜎(𝒖𝑖).   

Having defined the IS, we now formulate the new objective 
function for training LMGPs where 𝐼𝑆0.05 is used as a penalty 
term during hyperparameter estimation to increase the focus on 
UQ. Since the effectiveness of this penalization mechanism 
depends on the value of the posterior, we introduce an adaptive 
coefficient whose magnitude depends on the posterior value. 
With this penalty term, we estimate the hyperparameters of 
LMGP via: 
 

[𝛽̂, 𝜎̂, 𝝎,̂ 𝑨̂, 𝜹̂] = argmin
𝛽,𝜎,𝝎,𝑨,𝜹

  𝐿𝑀𝐴𝑃

+ 𝜀|𝐿𝑀𝐴𝑃| × 𝐼𝑆0.05  

 
(17) 

 
where |∙| denotes the absolute function and 𝜀 is a user-defined 
scaling parameter. In this paper, we use 𝜀 = 0.08.   

3. RESULTS AND DISCUSSION 
We demonstrate the performance of 𝑀𝐹𝐵𝑂𝛽 on two analytic 

examples (details in TABLE 1) and two real-world problems. In 
each case, we compare the results against those of 𝑀𝐹𝐵𝑂𝛼  and 
single-fidelity BO (𝑆𝐹𝐵𝑂). While 𝑆𝐹𝐵𝑂 uses EI as its AF, 
𝑀𝐹𝐵𝑂𝛽 and 𝑀𝐹𝐵𝑂𝛼  use the AFs introduced in Section 2.4.  

We assume that the cost of querying any of the data sources 
is much higher than the computational costs of BO (i.e., fitting 
LMGP and solving the auxiliary optimization problem). 
Therefore, we compare the methods based on their capability to 
identify the global optimum of the HF source and the overall data 
collection cost. By comparing these methods, we aim to 

demonstrate: (1) the advantages of estimating noise process for 
each data source, (2) that using IS improves the prediction which 
also enhances the convergence of BO (our defined AFs highly 
rely on the quality of the prediction), and (3) that deploying IS 
eliminates the need for excluding highly biased fidelity sources.  

We use the same stop conditions across the three methods to 
clearly demonstrate the benefits of our two contributions. In 
particular, the optimization is stopped when either of the 
following happens: (1) the overall sampling cost exceeds a pre-
determined maximum budget, or (2) the best HF sample does not 
change over 50 iterations. The maximum budget for the 
analytical examples is 40000 units, while it is 1000 and 1800 for 
the two real-world examples as their data collection cost is much 
lower than that of analytical ones.  
 
3.1 Analytical Examples 

We consider two analytical examples (Wing, Borehole) with 
the dimensionality of 10 and 8, respectively. To challenge the 
convergence and better illustrate the power of separate noise 
estimation, we only add noise to the HF data (the noise variance 
is defined based on the range of each function and is shown in 
TABLE 1). Both examples are single response and details 
regarding their formulation, initialization, and sampling cost is 
presented in TABLE 1. To assess the robustness of the results 
and quantify the effect of random initial data, we repeat the 
optimization process 20 times for each example with each of the 
three methods (all initial data are generated via Sobol sequence).  

In each example, the relative root mean squared error 
(RRMSE) is calculated between LF sources and their 
corresponding HF source based on 1000 samples to show the 
relative accuracy of the LF sources (presented in TABLE 1). 
Based on these numbers, in Borehole, unlike Wing, the source 
ID, true fidelity level (based on the RRMSEs), and sampling cost 
are not related. For instance, although the first LF source is the 
most expensive one, it has the least accuracy. 

𝑀𝐹𝐵𝑂𝛼  excludes the highly biased LF sources from BO 
before any new samples are obtained. This exclusion is done 
based on the latent map of the LMGP model that is trained on 
the initial data. FIGURE 2 shows the latent maps of Wing and 
Borehole examples where Source 1 represents the HF source, 
and the rest of the Sources represent LF ones. As shown in 
FIGURE 2, while all the fidelity sources of Wing are beneficial  
(since the points encoding the LF sources are very close to the 
HF point), the first two LF sources of Borehole are not correlated 
enough with the HF (their latent positions are distant from that 
of the HF) and hence are excluded in 𝑀𝐹𝐵𝑂𝛼 . However, 
𝑀𝐹𝐵𝑂𝛽  does not require this exclusion  because it leverages the 
biased LF sources merely in the regions that they are correlated 
with the HF source. In this paper, we do not exclude the biased 
sources in 𝑀𝐹𝐵𝑂𝛼  to better compare it with our proposed 
method. 

FIGURE 3 summarizes the convergence history of each 
example by depicting the best HF sample found by each method 
versus its accumulated sampling cost. As we expect, MF 
methods (𝑀𝐹𝐵𝑂𝛽 and 𝑀𝐹𝐵𝑂𝛼) outperform SFBO in Wing 
(FIGURE 3a) by leveraging the inexpensive LF sources that are 
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globally correlated with the HF, leading them to better 
convergence performance with lower cost. However, the 
superior performance of 𝑀𝐹𝐵𝑂𝛽 is more obvious in Borehole 
with biased data sources.  

 In Borehole (FIGURE 3b), all the thin red curves (𝑀𝐹𝐵𝑂𝛼) 
are straight lines, except for two curves. This means that for 18 
repetitions, the optimization process fails to improve. The reason 
behind this lack of improvement is that 𝑀𝐹𝐵𝑂𝛼  fails to handle 
local correlation of the LF sources, and samples unvaluable 
points that steer the optimization to the wrong direction. 
Consequently, 𝑀𝐹𝐵𝑂𝛼  cannot find any efficient HF sample with 
large enough information value to compensate for its high 
sampling cost which results in the lack of improvement. 
Conversely, all the thin green curves (𝑀𝐹𝐵𝑂𝛽) converge to a 
value very close to the ground truth. In addition, 𝑀𝐹𝐵𝑂𝛽 yields 
almost the same convergence value as SFBO, but with lower 
computational cost. This instance further demonstrates the 
effectiveness of our proposed AFs, since SFBO is very accurate 
due to only sampling from HF and not dealing with local biases. 

FIGURE 4 illustrates the details of the accumulated 
convergence cost and values of each repetition. The pink boxes 
show the variations in convergence values through 20 repetitions 
and the blue ones demonstrate the convergence cost. The dashed 

pink line is the ground truth we aim to find. As also shown in 
FIGURE 3, in all the examples, 𝑀𝐹𝐵𝑂𝛽 outperforms other 
methods considering convergence value and cost. As 
demonstrated in FIGURE 4a, unlike MF methods, the increase 
in dimensionality (8 in Borehole to 10 in Wing) adversely affects 
the performance of 𝑆𝐹𝐵𝑂, as it cannot find the ground truth of 
Wing despite mere sampling from HF source. In addition, 
utilizing beneficial information provided by the inexpensive 
unbiased LF sources, causes the better performance of 𝑀𝐹𝐵𝑂𝛽 
and 𝑀𝐹𝐵𝑂𝛼  compared to SFBO. The lower variations in the 
convergence values of 𝑀𝐹𝐵𝑂𝛽 through 20 repetitions (smaller 
pink boxes and whiskers) and lower convergence costs compared 
to 𝑀𝐹𝐵𝑂𝛼 , further show the superiority of our proposed method; 
𝑀𝐹𝐵𝑂𝛽 outperforms 𝑀𝐹𝐵𝑂𝛼  even in the absence of biased 
sources. 

The rationale behind the lower cost of 𝑀𝐹𝐵𝑂𝛼  in Borehole 
(FIGURE 4b) can be attributed to the observation made for 
FIGURE 3b; in 18 repetitions of Borehole, the optimization is 
not improved at all. So, in all those repetitions, the optimization 
meets the second stop condition and is terminated in the 50th 
iteration while it is not converged. This fact is also obvious in the 
long whiskers of the pink boxplots of  𝑀𝐹𝐵𝑂𝛼  (high variation on 

FIGURE 2 FIDELITY MANIFOLDS OF ANALYTIC EXAMPLES: 
The plots in (a) and (b) are obtained by fitting an LMGP to the initial 
data in the Wing and Borehole examples, respectively. Due to the 
consistency across the 20 repetitions, the plots are randomly chosen 
among them. In (b), the HF source (Source 1) is encoded far from LF1 
and LF2 which indicates that these two sources have large biases with 
respect to the HF source.  𝑀𝐹𝐵𝑂𝛼 excludes these two sources from the 
BO while 𝑀𝐹𝐵𝑂𝛽 does not.  

FIGURE 3 CONVERGENCE HISTORIES: The plots depict the best 
HF sample found by each approach versus their sampling costs 
accumulated during the BO iterations (the cost of initial data is 
included). (a) and (b) refer to Wing and Borehole, respectively. The thin 
curves show the convergence history of each repetition, and the solid 
thick ones indicate the average behavior across the 20 repetitions. In all 
the examples, 𝑀𝐹𝐵𝑂𝛽  outperforms 𝑀𝐹𝐵𝑂𝛼  in terms of both 
convergence value and cost. In both examples, 𝑆𝐹𝐵𝑂 performs the 
worst. The ground truth is represented by the black dashed line.  



 7 © 2022 by ASME 

the convergence values in each repetition) and the median which 
is far from the ground truth. 
 
3.2 Real-world Datasets 

In this section, we study two materials design problems 
where the aim is to find the composition that best optimizes the 
property of interest. We do not add noise to these two examples 
as they are noisy themselves. Both examples have categorical 
inputs and the HF and LF data are obtained via simulations 
(based on the density functional theory) with different fidelity 
levels. 

The first problem is bi-fidelity where the goal is to find the 
member of the nanolaminate ternary alloy (NTA) family with the 
largest bulk modulus [30]. The HF and LF datasets are 10-
dimensional (7 quantitative and 3 categorical where the latter 
have 10, 12, and 2 levels), single response with 224 samples 
each. We define the cost ratio of 10/1 for the fidelity sources and 
initialize the BO with 20 HF and 10 LF samples (the composition 
with the largest bulk modulus is excluded from the HF dataset). 
To quantify the robustness of the proposed method to the random 
initial data, we repeat this process 20 times for each BO method.   

The second problem is hybrid organic–inorganic perovskite 
(HOIP) crystals that aim to find the compound with the smallest 
inter-molecular binding energy [31]. There are 3 fidelity sources 
for this example, 1 HF and 2 LFs, with the same dimensionality 

(1 output and 3 categorical inputs with 10, 3, and 16 levels) but 
different sizes. The HF dataset has 480 samples, while the first 
and second LF sources have 179 and 240 samples, respectively. 
We assign the cost ratio of 15/10/5 to the fidelity sources and 
initialize the BO with (15, 20, 15) samples for the HF and LF 
sources, respectively (the best compound is excluded). We 
repeat the BO process 20 times to assess the robustness.  

As mentioned before, the first step in 𝑀𝐹𝐵𝑂𝛼  is to train an 
LMGP to the initial data in each problem to exclude the highly 
biased sources. As illustrated in FIGURE 5, the latent points of 
the fidelity sources of NTA are very close in the learned fidelity 
manifold which demonstrates a high correlation between its 
fidelity sources. However, both latent points of LF sources in 
HOIP are far from the HF one (Source 1), so they both should be 
excluded. By excluding both LF sources, the MF problem 
converts to the SF one, so 𝑀𝐹𝐵𝑂𝛼 is not applicable to it 
anymore. Therefore, we do not exclude the biased LF sources 
from HOIP in this paper to be able to compare the performance 
of 𝑀𝐹𝐵𝑂𝛽  with 𝑀𝐹𝐵𝑂𝛼 . 

A summary of the convergence history of NTA and HOIP is 
depicted in FIGURE 6 by showing the best HF sample found by 
each method versus its accumulated sampling cost. In NTA 
(FIGURE 6a), the LF sources are globally correlated with the 
HF; consequently, MF methods perform better than SFBO by 
using inexpensive and informative LF sources. Additionally, 

FIGURE 5 FIDELITY MANIFOLDS OF REAL-WORLD 
EXAMPLES: The plots in (a) and (b) are obtained by fitting an LMGP 
to the initial data in the NTA and HOIP examples, respectively. Due to 
the consistency across the 20 repetitions, the plots are randomly chosen 
among them. In (b), 𝑀𝐹𝐵𝑂𝛼 excludes LF1 and LF2 as they are encoded 
far from the HF (Source 1). 

FIGURE 4 ACCUMULATED COSTS AND CONVERGENCE 
VALUES: The blue boxplots illustrate the accumulated costs of each 
repetition, and the pink ones demonstrate their convergence values for 
the three methods. The pink dashed line indicates the ground truth. (a) 
and (b) refer to Wing and Borehole, respectively. In both examples, the 
median of the convergence box of 𝑀𝐹𝐵𝑂𝛽  is very closer to the ground 
truth than that of the 𝑀𝐹𝐵𝑂𝛼, while its cost is much lower which proves 
the superiority of our proposed approach.   
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higher prediction accuracy of the emulator of 𝑀𝐹𝐵𝑂𝛽 results in 
a more efficient sampling and faster convergence of BO in 
𝑀𝐹𝐵𝑂𝛽  compared to 𝑀𝐹𝐵𝑂𝛼 .  

The superiority of 𝑀𝐹𝐵𝑂𝛽 is more obvious in HOIP 
(FIGURE 6b) with biased sources. In HOIP example, as we 
expect, 𝑀𝐹𝐵𝑂𝛼  converges to a sub-optimal compound since 
both LF sources are only locally correlated with the HF source. 
So, the AFs fail to sample valuable points to improve the 
optimization as they cannot find the region where the LF sources 
are beneficial and informative. Additionally, each data source is 
obtained from a distinct process, so it suffers from different types 
and levels of noise. Therefore, estimating a single noise for all 
the data sources in 𝑀𝐹𝐵𝑂𝛼 , results in a poor emulation and 
further exacerbates the performance of AFs. 𝑀𝐹𝐵𝑂𝛽  overcomes 
these issues by focusing more on UQ and estimating separate 
noise processes, resulting in better performance, and 
outperforming 𝑀𝐹𝐵𝑂𝛼 . 

Similar to Section 3.1, we also show the details of the 
accumulated convergence cost and values of each repetition in 
FIGURE 7. In this regard, convergence of all methods to the 
ground truth in all the repetitions in NTA (FIGURE 7a), makes 
the pink boxplots become straight lines (zero variation). 
However, the two outliers in 𝑆𝐹𝐵𝑂 show its disability in finding 
the ground truth in two repetitions despite mere sampling from 

the accurate HF source. Additionally, the faster convergence of 
𝑀𝐹𝐵𝑂𝛽 compared to other methods which roots from efficient 
sampling, causes much lower convergence costs. 

In HOIP (FIGURE 7b), as shown in FIGURE 6b, 𝑀𝐹𝐵𝑂𝛼  
fails to manage the noise and biased sources, and converges to a 
sub-optimal compound. However, 𝑀𝐹𝐵𝑂𝛽 leverages the biased 
LF sources only in the regions that they provide effective 
information by taking advantage of the penalized objective 
function which significantly improves the prediction. 
Furthermore, the large variation in the convergence values of  
𝑆𝐹𝐵𝑂 and its much higher cost, further highlights the superiority 
of 𝑀𝐹𝐵𝑂𝛽  in efficiency and robustness, though the median of 
the convergence boxplot of 𝑆𝐹𝐵𝑂 is closer to the ground truth.  

4. CONCLUSION 
In this paper, we develop a novel method to improve the 

performance of multi-fidelity cost-aware BO techniques. Our 
method enhances the accuracy and convergence rate of MFBO 
through two main contributions. Firstly, we enable the emulator 
to estimate separate noise processes for each source of data. This 
feature increases the accuracy of the trained model since 
different data sources may exhibit different types and levels of 
noise. Secondly, we define a new objective function penalized 
by IS to (1) further improve the accuracy of the prediction, (2) 
increase the focus on UQ, and (3) forgo the need to exclude 
biased data sources. The main advantages of our method are its 
efficient and superior performance in the presence of highly 
biased data sources, and no required prior knowledge about the 

FIGURE 6 CONVERGENCE HISTORIES: The plots depict the best 
HF sample found by each approach versus their sampling costs 
accumulated during the BO iterations (the cost of initial data is 
included). (a) and (b) refer to NTA and HOIP, respectively. The solid 
thick curves indicate the average behavior across the 20 repetitions. 
𝑀𝐹𝐵𝑂𝛽  performs better than 𝑀𝐹𝐵𝑂𝛼  in both examples in case of 
convergence value and cost. 

FIGURE 7 ACCUMULATED COSTS AND CONVERGENCE 
VALUES: The blue boxplots illustrate the accumulated costs of each 
repetition, and the pink ones demonstrate their convergence values. The 
pink dashed line indicates the ground truth. (a) and (b) refer to NTA and 
HOIP, respectively. (a) All the methods found the ground truth in all 
iterations, so there is no variation.  
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accuracy of the data sources. We illustrate these advantages 
through analytic and real-world examples. 

We propose to use two fixed AFs in each iteration. However, 
one can also customize the choice of AFs for different iterations 
using adaptive approaches. The examples presented in this paper 
are limited to single-objective problems. In addition, in all the 
examples we report the noisy data as the result, but one can 
increase the accuracy by excluding the noise effects on the 
convergence value. We intend to explore these avenues further 

in future research, aiming to extend our proposed method to 
handle multi-objective problems with adaptive AFs. 

 
ACKNOWLEDGEMENTS 

We appreciate the support from National Science 
Foundation (award numbers OAC-2211908 and OAC-
2103708) and the Early Career Faculty grant from NASA’s 
Space Technology Research Grants Program (award number 
80NSSC21K1809). 

 
APPENDIX 
 
A Table of Numerical

 

 
Name 

Source 
ID 

 
Formulation 

 
n 

 
RRMSE 

 
Cost 

Noise 
variance 

 
 
 
 
 
 
 
 
 

Borehole 

 
 

HF 

𝟐𝝅𝑻𝒖 (𝑯𝒖 −  𝑯𝒍)

𝐥𝐧 (
𝒓
𝒓𝒘

) (𝟏 +
𝟐 𝑳𝑻𝒖

𝐥𝐧 (
𝒓
𝒓𝒘

) 𝒓𝒘
𝟐𝒌𝒘

+  
𝑻𝒖

𝑻𝒍
)
 

 
 

5 

 
 
- 

 
 

1000 
 
 

 
 

16 

 
 

LF1 

𝟐𝝅𝑻𝒖 (𝑯𝒖 −  𝟎.𝟖 𝑯𝒍)

𝐥𝐧 (
𝒓
𝒓𝒘

) (𝟏 +
𝟏 𝑳𝑻𝒖

𝐥𝐧 (
𝒓
𝒓𝒘

) 𝒓𝒘
𝟐𝒌𝒘

+  
𝑻𝒖

𝑻𝒍
)
 

 
 

5 

 
 

4.40 

 
 
100 

 
 
- 

 
 

LF2 

𝟐𝝅𝑻𝒖 (𝑯𝒖 + 𝟑𝑯𝒍)

𝐥𝐧 (
𝒓
𝒓𝒘

) (𝟏 +
𝟖 𝑳𝑻𝒖

𝐥𝐧 (
𝒓
𝒓𝒘

) 𝒓𝒘
𝟐𝒌𝒘

+ 𝟎.𝟕𝟓 
𝑻𝒖

𝑻𝒍
)
 

 
 

50 

 
 

1.54 

 
 

10 

 
 
- 

 
 

LF3 

𝟐𝝅𝑻𝒖 (𝟏.𝟏 𝑯𝒖 −  𝑯𝒍)

𝐥𝐧 (
 𝟒𝒓
𝒓𝒘

) (𝟏 +
𝟑 𝑳𝑻𝒖

𝐥𝐧 (
𝒓
𝒓𝒘

) 𝒓𝒘
𝟐𝒌𝒘

+  
𝑻𝒖

𝑻𝒍
)
 

 
 

5 

 
 

1.3 

 
 

100 

 
 
- 

 
 

LF4 

𝟐𝝅𝑻𝒖 (𝟏.𝟎𝟓 𝑯𝒖 −  𝑯𝒍)

𝐥𝐧 (
𝟐𝒓
𝒓𝒘

) (𝟏 +
𝟐 𝑳𝑻𝒖

𝐥𝐧 (
𝒓
𝒓𝒘

) 𝒓𝒘
𝟐𝒌𝒘

+  
𝑻𝒖

𝑻𝒍
)
 

 
 

50 

 
 

1.3 

 
 

10 

 
 
- 

 
 
 
 
 

Wing 

 
 

HF 
𝟎.𝟑𝟔𝒔𝒘

𝟎.𝟕𝟓𝟖𝒘𝒇𝒘
𝟎.𝟎𝟎𝟑𝟓  

𝑨

𝒄𝒐𝒔𝟐(𝚲)
 
𝟎.𝟔

𝒒𝟎.𝟎𝟎𝟔𝝀𝟎.𝟎𝟒  
𝟏𝟎𝟎𝒕𝒄
𝐜𝐨𝐬(𝚲)

 
−𝟎.𝟑

(𝑵𝒛 𝑾𝒅𝒈)𝟎.𝟒𝟗

+  𝒔𝒘𝒘𝒑 

 
 

5 

 
 
- 

 
 
1000 

 
 

9 

 
LF1 𝟎.𝟑𝟔𝒔𝒘

𝟎.𝟕𝟓𝟖𝒘𝒇𝒘
𝟎.𝟎𝟎𝟑𝟓  

𝑨

𝒄𝒐𝒔𝟐(𝚲)
 
𝟎.𝟔

𝒒𝟎.𝟎𝟎𝟔𝝀𝟎.𝟎𝟒  
𝟏𝟎𝟎𝒕𝒄
𝐜𝐨𝐬(𝚲)

 
−𝟎.𝟑

(𝑵𝒛 𝑾𝒅𝒈)𝟎.𝟒𝟗

+  𝒘𝒑 

 
5 

 
0.19 

 
 

100 

 
 
- 

 
LF2 𝟎.𝟑𝟔𝒔𝒘

𝟎.𝟖𝒘𝒇𝒘
𝟎.𝟎𝟎𝟑𝟓  

𝑨

𝒄𝒐𝒔𝟐(𝚲)
 
𝟎.𝟔

𝒒𝟎.𝟎𝟎𝟔𝝀𝟎.𝟎𝟒  
𝟏𝟎𝟎𝒕𝒄
𝐜𝐨𝐬(𝚲)

 
−𝟎.𝟑

(𝑵𝒛 𝑾𝒅𝒈)𝟎.𝟒𝟗

+  𝒘𝒑 

 
10 

 
1.14 

 
 

10 

 
 
- 

 
LF3 𝟎.𝟑𝟔𝒔𝒘

𝟎.𝟗𝒘𝒇𝒘
𝟎.𝟎𝟎𝟑𝟓  

𝑨

𝒄𝒐𝒔𝟐(𝚲)
 
𝟎.𝟔

𝒒𝟎.𝟎𝟎𝟔𝝀𝟎.𝟎𝟒  
𝟏𝟎𝟎𝒕𝒄
𝐜𝐨𝐬(𝚲)

 
−𝟎.𝟑

(𝑵𝒛 𝑾𝒅𝒈)𝟎.𝟒𝟗 
 

50 
 

5.75 
 

1 
 
- 

TABLE 1 LIST OF ANALYTIC FUNCTIONS:n denotes the number of initial samples. The relative root mean squared error (RRMSE) of an LF 
source is calculated by comparing its output to that of the HF source at 10000 random points. The cost column is the cost of obtaining a sample from 
the corresponding source. The last column denotes the variance of the added noise to the HF source. 
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