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ABSTRACT
Suppose C is a cyclic Galois cover of the projective line branched at the three
points 0, 1, and ∞. Under a mild condition on the rami!cation, we determine
the structure of the graded Lie algebra of the lower central series of the
fundamental group of C in terms of a basis which is well-suited to studying
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1. Introduction

In this companion paper to [3], the main goal is to determine information about the étale fundamental
group of a cyclic Belyi curve using its lower central series. To explain the meaning of this, we !rst provide
some background.

Suppose X is a smooth projective curve of genus g de!ned over a number !eld K. Let K̄ be the algebraic
closure of K and suppose that XK̄ is connected. Let π = [π ]1 = π1(X) be the étale fundamental group
and let H1(X) be the étale homology group of XK̄ .

For m ≥ 2, let [π ]m be the mth subgroup of the lower central series π = [π ]1 ⊃ [π ]2 ⊃ [π ]3 ⊃ · · · ;
speci!cally, [π ]m = [π , [π ]m−1] is the closure of the subgroup generated by commutators of elements
of π with elements of [π ]m−1. Then H1(X) ∼= [π ]1/[π ]2.

Consider the graded Lie algebra gr(π) = ⊕m≥1[π ]m/[π ]m+1 of the lower central series for π , [7,
11]. Let F be the free pro!nite group on 2g generators and consider its graded Lie algebra gr(F) =
⊕m≥1grm(F). By [6, Theorem, p. 17], there is an element ρ of weight 2 such that

gr(π) ∼= gr(F)/〈ρ〉.

Thus gr(π) is determined by the subgroup 〈ρ〉. By [5, Corollary 8.3],

[π ]2/[π ]3 ∼= (H1(X) ∧ H1(X)) /Im(C ),

where

C : H2(X) → H1(X) ∧ H1(X) (1.1)
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2 J. DUQUE-ROSERO AND R. PRIES

is the dual map to the cup product map H1(X) ∧ H1(X) → H2(X). Since H2(X) ∼= Z(1), the image
Im(C ) is cyclic. A generator # for Im(C ) is called a classifying element.

There is a formula for # in terms of a set of generators of the fundamental group of X that satis!es
certain properties; see (2.3) for details. In the context of étale homology groups, we would like additional
information, speci!cally the following.

Goal 1.1. Find a formula for a classifying element using a basis for H1(X) which is well-suited for
studying the action of the absolute Galois group GK and the action of Aut(X).

In [3], the authors realized this goal when X = Xn : xn + yn = zn is the Fermat curve of degree n, for
any integer n ≥ 3. When n = p is an odd prime satisfying Vandiver’s conjecture, and K = Q(ζp) is the
cyclotomic !eld, then the information about the action of GK on H1(Xp, Z/pZ) comes from [1] and [2].

In this paper, we realize Goal 1.1 when X = Wn,k is a cyclic Belyi curve, namely a curve with a"ne
equation

vn = u(1 − u)k, (1.2)

for any odd integer n and integer k with 1 ≤ k ≤ n−2. This curve admits a Galois µn-cover φ : Wn,k →
P1 branched at 3 points 0, 1, and ∞. We restrict to the case that the cover is totally rami!ed at the
rami!cation points η0, η1, and η∞; this is true if and only if gcd(n, k(k + 1)) = 1; in particular, it is true
for all 1 ≤ k ≤ n − 2 if n is prime.

The main result of the paper is Theorem 3.5; writing W = Wn,k, we determine a classifying element
# ∈ H1(W) ∧ H1(W) for all such pairs (n, k). This determines the isomorphism class of gr(π) as a
graded Lie group with the action of µn ⊂ Aut(W).

Here is some notation needed to state the result. Let U = W − η∞, where η∞ is the unique point
not on the a"ne chart (1.2). In Section 2, we de!ne some loops E1, . . . , En−1 in the fundamental group
π1(U) (2.6). Let [E1], . . . , [En−1] denote the images of E1, . . . , En−1 in the homology group H1(U). In
Corollary 4.5, we prove that these form a basis for H1(U). This basis for gr1(F) ∼= H1(W) ∼= H1(U)

yields a basis for gr2(F) ∼= H1(W) ∧ H1(W) given by {[Ei] ∧ [Ej] | 1 ≤ i < j ≤ n − 1}. We state our
main result in terms of that basis.

Theorem A (Theorem 3.5). Suppose 1 ≤ k ≤ n − 2 and gcd(n, k(k + 1)) = 1. Let W be the smooth
projective curve with a!ne equation vn = u(1 − u)k.

Let c be the integer such that 1 ≤ c ≤ n − 1 and c is the multiplicative inverse of k + 1 modulo n. Then
a classifying element # for W is given by

# =
∑

1≤I<J≤n−1
cI,J[EI] ∧ [EJ],

where

cI,J =
{

−1 if J − I ≡ j(k + 1) − 1 mod n, or
+1 if J − I ≡ j(k + 1) mod n,

for some j such that 1 ≤ j ≤ c − 1; and cI,J = 0 otherwise.

For the proof, we !rst rely on Lemma 2.1, which states that a formula for # can be found by expressing
a loop L around η∞ as a product of commutators of elements in π1(U). Then the main ingredients of
the proof are the topology and Galois theory of branched coverings. In Section 3, we use these to !nd
a combinatorial formula for L; the formula is !rst described using edges that generate the fundamental
groupoid of U with respect to {η0, η1}, and then re-expressed in terms of the loops E1, . . . , En−1.

In Section 5, we provide examples for arbitrary odd n and certain values of k.
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Remark 1.2. The motivation for studying covers of P1 branched at three points originates with
Grothendieck’s program for understanding the absolute Galois group of Q. The cyclic Belyi curves play
an important role in the study of Galois theory, Hurwitz spaces, and abelian varieties with complex
multiplication. Since W = Wn,k is a quotient of the Fermat curve Xn, it might be possible to prove
Theorem A with a top-down approach, using the result of [3]. In working on this problem, we realized
that there are many advantages with the direct approach, see Remark 2.4.

Remark 1.3. Theorem A is valid both for the homology with coe"cients in Z and for the étale homology
which has coe"cients in a !nite or '-adic ring. In Section 4, the proof relies on the modular symbols
of Manin [8] (and a result of Ejder [4]). However, we follow an approach which is compatible with the
results in [1] and [2] about the étale homology with coe"cients in Z/nZ and the action of the absolute
Galois group upon it, because this will be important in future applications.

A#er choosing an embedding Q ⊂ C and applying Riemann’s Existence Theorem, we may identify
the pro!nite completion of H1(U(C)) with the étale homology H1(U). Similarly, we may identify the
pro!nite completion of π1(U(C)) with the étale fundamental group π1(U). Thus we can consider the
elements E1, . . . , En−1 to be in the topological fundamental group or in the étale fundamental group;
similarly, we can consider the elements [E1], . . . , [En−1] to be in the simplicial homology or in the étale
homology. A similar comparison holds for other objects in the paper.

2. The fundamental group of cyclic Belyi curves

We describe the geometry of cyclic Belyi curves and their relationship to Fermat curves. We state some
facts about the fundamental group and the classifying element #.

Let n ≥ 3 be a positive integer. Let ζ = e2π i/n be a !xed primitive nth root of unity. Fix an integer
k, with 1 ≤ k ≤ n − 2. For simplicity, we assume throughout the paper that gcd(n, k(k + 1)) = 1; this
assumption is true if n is prime, which is the situation of future applications of this paper.

2.1. The geometry of cyclic Belyi curves

Let W = Wn,k be the smooth projective curve having a"ne equation:

vn = u(1 − u)k. (2.1)

Let η0 be the point (u, v) = (0, 0); let η1 be the point (u, v) = (1, 0). The hypothesis that gcd(n, k +
1) = 1 implies that there is a unique point η∞ on W which is not on this a"ne chart. Consider the open
a"ne subset U = W − η∞.

There is a µn-Galois cover φ : W → P1, given by φ(u, v) /→ u. The Galois group is generated by the
automorphism ε ∈ Aut(W) of order n that acts by ε((u, v)) = (u, ζv). The cover φ is totally rami!ed at
the points η0, η1, and η∞, which lie over the branch points u = 0, 1, and ∞ respectively.

By the Riemann-Hurwitz formula, the genus of W is g = (n − 1)/2.
Any µn-cover of P1 branched at three points, which is totally rami!ed at one point, admits an equation

of the form (2.1) for some k with 1 ≤ k ≤ n − 2. The condition of being totally rami!ed over the other
two branch points is equivalent to gcd(n, k(k + 1)) = 1.

2.2. The fundamental group

Throughout the paper, composition of paths and loops is denoted by the symbol · and written from le#
to right. Note that U ⊂ W is a real surface of genus g = (n − 1)/2 with 1 puncture. We choose the
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base point η1. There exist loops ai, bi for 1 ≤ i ≤ g and c∞, with base point η1, such that π1(U) has a
presentation

π1(U) = 〈ai, bi, c∞ | i = 1, . . . , g〉/
g∏

i=1
[ai, bi]c∞. (2.2)

Without loss of generality, we choose the loop c∞ to circle the puncture η∞ and to have no
set-theoretic intersection with the loops ai, bi for 1 ≤ i ≤ g. This can be arranged using a
standard gluing of a 1-punctured polygon with 4g sides, with the sides labeled consecutively by
a1, b1, a−1

1 , b−1
1 , . . . , ag , bg , a−1

g , b−1
g .

The homology group H1(U) is equipped with an intersection pairing, de!ned using Poincaré duality
and the cup product on compactly supported cohomology. Let āi, b̄i, c̄∞ denote the images of ai, bi, c∞
in H1(U). Note that c̄∞ is trivial.

Without loss of generality, we can suppose that the images of āi, b̄i in H1(U) form a standard
symplectic basis. Since U has only one puncture, there is an isomorphism H1(U) ∼= H1(W). These
two facts imply that a generator of Im(C ) as in (1.1) can be identi!ed with:

#W =
g∑

i=1
āi ∧ b̄i ∈ H1(U) ∧ H1(U). (2.3)

2.3. The second graded quotient in the lower central series

By (2.3), #W = ∑g
i=1 āi ∧ b̄i. We would like to determine #W in terms of a basis of H1(U) ∧ H1(U)

for which we have information about the action of the absolute Galois group. To do this, we investigate
the element T := ∏g

i=1[ai, bi] = c−1
∞ in π1(U).

We need the following two results. The !rst shows that #W does not depend on the representation
as a product of commutators.

Lemma 2.1. [3, Lemma 2.2] Suppose r1, . . . , rN , s1 . . . , sN are loops in U, with images r̄i, s̄i in H1(U). If
T is homotopic to [r1, s1] · · · · · [rN , sN],

then
∑g

i=1 āi ∧ b̄i = ∑N
i=1 r̄i ∧ s̄i in H1(U) ∧ H1(U).

The next lemma will help simplify later calculations.

Lemma 2.2. [3, Lemma 2.3] Suppose α, β , γ ∈ π1(U).

(1) If αγ ∈ [π1(U)]2, then γα ∈ [π1(U)]2, and αγ and γα have the same image in the quotient
[π1(U)]2/[π1(U)]3.

(2) If γ −1αγβ ∈ [π1(U)]2, then αβ ∈ [π1(U)]2, and the di"erence between the images of γ −1αγβ and
αβ in [π1(U)]2/[π1(U)]3 is γ ∧ (−α).

2.4. The fundamental groupoid

More generally, we consider the fundamental groupoid π1(U, {η0, η1}) of U with respect to the points
η0 and η1. Let βW be the path in U, which begins at the base point η0 and ends at η1, given by

βW =
(

t, n
√

t(1 − t)k
)

for t ∈ [0, 1]. (2.4)

Here the symbol n
√

t(1 − t)k denotes the real-valued and positive nth root.
Recall that ε((u, v)) = (u, ζv). For 0 ≤ i ≤ n − 1, we de!ne a path in U, which begins at η0 and ends

at η1 by
ei = εiβW . (2.5)
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De!ne τ = β−1
W , where the inverse of a path is the path traversed in the opposite direction. Note that

e−1
i = εiβ−1

W .
We de!ne some loops in U with base point η1: for 0 ≤ i ≤ n − 1, let

Ei := e−1
i · e0 = εiτ · τ−1. (2.6)

The loop Ei implicitly depends on k. Note that

Ei · E−1
j = e−1

i · e0 · e−1
0 · ej = e−1

i · ej. (2.7)

If i = 0, then Ei is trivial in π1(U, {η0, η1}). Corollary 4.5 shows that the converse is true.

2.5. Comparison with the Fermat curve

It is well-known that W = Wn,k is a quotient of the Fermat curve Xn : xn + yn = zn of degree n (see, e.g.
[9, Chapter 8]). Let ZF be the set of n points where z = 0 on Xn. The open a"ne subset UF = Xn − ZF
is given by the set of points (x, y) such that xn + yn = 1.

In [3, (2.g)], the authors de!ned a path β in UF . We remark that βW is the image of β under the map
UF → U that takes (x, y) to (xn, xyk).

The automorphism group of Xn contains two automorphisms ε0 and ε1 of order n that commute;
these act by ε0((x, y)) = (ζx, y) and ε1((x, y)) = (x, ζy). Let H = Hn,k be the subgroup of Aut(Xn)

generated by h = ε0ε
−k−1 mod n
1 .

Lemma 2.3. The cyclic Belyi curve Wn,k is the quotient of the Fermat curve Xn of degree n by Hn,k. The
#ber of Xn over η∞ is the set of n points in ZF; the #ber of Xn over η0 (resp. η1) is the set of n points on UF
where x = 0 (resp. y = 0).

Proof. There is a well-de!ned inclusion from the function !eld of Wn,k to the function !eld of Xn
determined by u /→ xn and v /→ xyk. This inclusion has degree n. The !rst claim follows since u
and v are !xed by h. The claims about the !bers follow by calculation.

Remark 2.4. Here are the reasons that proving Theorem 3.5 with a top-down approach would be more
complicated.

First, the combinatorial description of the loop in Section 3 is substantially easier than the description
of n loops in [3]. This is because the cover φ : W → P1 has degree n, rather than n2 = deg(Xn → P1),
and also because there is one point η∞ of W above ∞ rather than the n points of ZF . The theoretical
description of the boundary of a simple closed disk containing η∞ is easier than that for the boundary
of a simple closed disk in Xn containing the n points of ZF .

Second, in Section 4, the homology group H1(W) is a subspace of a free module of rank one over
Z[µn], while H1(Xn) is a subquotient of a free module of rank one over the more complicated group
ring Z[µn × µn]. The formula for #W in (2.3) is easier than for the Fermat curve where there is a non-
trivial homomorphism ∧2H1(UF) → ∧2H1(Xn).

Third, the next lemma shows that the chosen basis elements of H1(Xn) have slightly complicated
images in terms of the chosen basis elements of H1(W). For these reasons, the formula in Theorem 3.5
is easier to write down and prove using a direct approach.

Recall from [3, Section 2.3], the de!nitions of the paths {ei,j}0≤i,j≤n−1 in UF and the loops

Ei,j = e0,0 · (e0,j)
−1 · ei,j · (ei,0)

−1.

By [3, Lemma 4.1], the images of {[Ei,j]}1≤i,j≤n−1 form a basis for H1(UF).

Lemma 2.5. Under the map π1(UF) → π1(U) induced by the map UF → U:
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(1) The image of ei,j in π1(U, {η0, η1}) is ei+jk.
(2) The image of Ei,j in π1(U) is e0 · e−1

jk · ei+jk · e−1
i , which starts and ends at η0.

(3) The adapted loop e−1
jk · ei+jk · e−1

i · e0, which starts and ends at η1, equals Ejk · E−1
i+jk · Ei.

Proof. This follows from the equalities u = xn and v = xyk in the proof of Lemma 2.3.

3. The classifying element of the Belyi curve

We continue to study the curve W = Wn,k with a"ne equation vn = u(1 − u)k. Recall that T =∏g
i=1[ai, bi] = c−1

∞ is in the homotopy class of the boundary of a disk in W that contains the point η∞.
In Proposition 3.3, we !nd a loop homotopic to T written in terms of the elements Ei in π1(U). We then
analyze the ordering of the loops Ei in T combinatorially. This enables us to !nd an explicit formula for
# ∈ H1(U)∧ H1(U), using a basis on which we have some information about the action of the absolute
Galois group, see Theorem 3.5.

3.1. Gluing sheets of an unrami!ed cover

Recall that φ : W → P1 is the µn-Galois cover given by (u, v) /→ u. The cover φ is branched at {u =
0, 1, ∞} and is rami!ed at {η0 = (0, 0), η1 = (1, 0), η∞}. In this section, we remove some paths in W
and P1 in order to work with an unrami!ed cover.

Given the equation vn = u(1 − u)k, the inertia type of φ is the 3-tuple (1, k, −(1 + k)). This means
that the canonical generators of inertia at η0, η1, and η∞ are ζ 1, ζ k, and ζ−1−k, respectively. In other
words, the chosen generator ε of the Galois group of φ acts on a uniformizer at each rami!cation point
by this root of unity, respectively.

We make a slit cut along the positive real line in P1(C) from u = 1 to u = 0 and another from u = 1
to u = ∞. We choose a base point u1 close to u = 1 and in the lower half plane; a technical term for this
is a tangential base point at u = 1. We also make a short slit cut t from u = u1 to u = 1.

Let P◦ be the complement of these three slit cuts in P1(C). Let W◦ be the complement of the 3n paths
in W that lie above these three slit cuts.

Lemma 3.1. The restriction φ : W◦ → P◦ is unrami#ed.

Proof. The monodromy around u = 0, 1, ∞ is multiplication by ζ 1, ζ k, and ζ−(k+1), respectively. So
a loop going around all 3 of these points is multiplication by 1. Therefore, the monodromy action of
π1(P◦) on W◦ is trivial, which proves the claim.

Thus W◦ is a disjoint union of n connected components, which are called sheets. We need to label
the regions of P1 near the slit cuts and the edges along the boundary of W◦. It might be helpful to look
at Figure 1 for reference.

For the regions of P1: let N denote the region of the upper half plane which is close to the positive
real axis; let E denote the region of the lower half plane which is close to the values u ≥ 1 on the real
axis; and let S denote the region of the lower half plane which is close to the values 0 ≤ u ≤ 1 on the
real axis.

For the edges along the boundary of W◦, we start by labeling the unique edge τ of W◦ having the
following property: it is on the path βW ; and it is on the right hand-side as one travels from η1 to η0,
meaning that it lies above N rather than S.

Let 0 ≤ i < n. The action of εi on W◦ allow us to label n of the edges as εiτ ; these are the edges
that lie above the interval [0, 1] in N. Furthermore, we label by Ri the sheet of W◦ that contains εiτ . In
each sheet Ri: we label by εiα the unique edge that lies above the ray [1, ∞) in N; and we label by εiξ
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the unique edge that lies above t in S. This completes the labeling of one side of each of the 3n slit cuts
in W◦.

The inertia type gives the information needed to glue the sheets together along the slit cuts to obtain
the rami!ed cover φ of Riemann surfaces.

Lemma 3.2. For 0 ≤ i < n:

(1) The edge εiτ on Ri glues with the unique edge in Ri−1 mod n that lies above the interval [0, 1] in S.
(2) The edge εiα on Ri glues with the unique edge in Ri−(k+1) mod n that lies above the interval [1, ∞) in E.
(3) The edge εiξ on Ri glues with the unique edge in Ri that lies above t in E.

Proof. (1) Imagine a simple closed loop around η0 that crosses the edge εiτ ; as one travels around this
loop in a counterclockwise direction, the fact that the generator of inertia at η0 is ζ 1 implies that
one passes from the sheet Ri−1 mod n to the sheet Ri. Thus the edge εiτ on Ri must be glued with the
unique edge in Ri−1 mod n that lies above the interval [0, 1] in S.

(2) Imagine a simple closed loop around η∞ that crosses the edge εiα; as one travels around this loop in
a counterclockwise direction, the fact that the generator of inertia at η∞ is ζ−(k+1) implies that one
passes from the sheet Ri to the sheet Ri−(k+1) mod n. Thus the edge εiα on Ri must be glued with the
unique edge in Ri−(k+1) mod n that lies above the interval [1, ∞) in E.

(3) Imagine a simple closed loop around a li# of t that crosses the edge εiξ ; as one travels around this
loop in a counterclockwise direction, one should stay on the same sheet since t is not a branch point.
Thus the edge εiξ on Ri must be glued to the unique edge in Ri that lies above the interval t in E.

3.2. Lifting of a loop

Let H+ be the upper half plane and H− be the lower half plane. Let ũ1 be the li# of the base point u1
which is on ξ in R0. In this section, all loops in P1(C) (resp. W(C)) have base point u1 (resp. ũ1).

In P1(C), consider a counterclockwise simple closed loop Z◦ around ∞. It is homotopic to a clockwise
simple closed loop Z that !rst crosses from H− to H+ at some point in Ru<0 and then crosses from H+

to H− at some point in Ru>1. Without loss of generality, we can suppose that this last crossing occurs at
an arbitrarily large value of u.

Let Z̃◦ be a li# of Z◦ to W. Let Z̃ be a li# of Z to W.
Our goal now is to describe the loop Z̃ in terms of the edges εiτ , and then in terms of the loops Ei,

for 0 ≤ i < n. Recall that ei = εiτ and Ei = εiτ · τ−1. For 0 ≤ j ≤ n − 1, let

Lj := εj(n−k−1)+1τ · (εj(n−k−1)τ )−1 = Ej(n−k−1)+1 · E−1
j(n−k−1), (3.1)

where the second equality follows from (2.7). Let

L := L0 · L1 · · · · · Ln−1.

We view L as a word in {Ei, E−1
i }0≤i<n, including the elements E0, E−1

0 as placeholders even though they
are trivial in homology.

Proposition 3.3. The loop c∞ is homotopic to L.

Proof. The loop c∞ is homotopic to Z̃, because Z̃ is homotopic to Z̃◦, which is a counterclockwise simple
closed loop around η∞. So it su"ces to prove the formula for Z̃.

The loop Z̃ in W covers the loop Z in P1 exactly n times. This is because it is homotopic to the simple
closed loop Z̃◦ around the point η∞, which is a rami!cation point for φ with rami!cation degree n. Each
revolution begins above S, then goes above N, then switches sheets and goes above E.
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The loop Z̃ starts on the sheet R0. Then it crosses the edge α onto the sheet Rn−(k+1), where it swings
by the point εn−(k+1)ũ1. That completes one of the n revolutions. The next revolution is similar but starts
on the sheet Rn−(k+1). So the subindex on each path increases by n − (k + 1) a#er each revolution.

The !rst revolution is homotopic to a path that traces in a clockwise direction along the outside of
the slits, going near the following points, in this order:

ũ1 /→ η1 /→ η0 /→ η1 /→ η∞ /→ η1 /→ εn−(k+1)ũ1.

This path is the composition of the following paths, written from le# to right, with the !rst four on the
sheet R0 and the last two on the sheet Rn−(k+1):

ξ−1 · ετ · τ−1 · α · α−1 · εn−(k+1)ξ .

The paths α and α−1 cancel. Also the last path εn−(k+1)ξ on the !rst revolution cancels with the !rst
path on the next revolution, and the !rst path ξ−1 on the !rst revolution cancels with the last path on
the last revolution; so these paths can be ignored, leaving only L0.

Thus Z̃ is homotopic to L0 · εn−(k+1)L0 · · · · · ε(n−1)(n−(k+1))L0. By (3.1), the equation for Lj+1 is
εn−(k+1)Lj. Thus Z̃ is homotopic to L0 · L1 · · · · · Ln−1.

3.3. Combinatorial analysis of loop

We need a combinatorial analysis of the ordering of the edges in the loop L. We say that a loop Ej (or
E−1

j ) is between E−1
i and Ei if it is written between them a#er cyclically permuting the loops so that E−1

i
is the le#most loop in L.

Recall that gcd(n, k + 1) = 1. Let c ∈ {1, . . . , n − 1} be such that c ≡ (k + 1)−1 mod n. Note that
c(n − k − 1) ≡ n − 1 mod n.

Proposition 3.4. Let 0 ≤ i < n. The loops between E−1
i and Ei in L are

{
Ei+j(n−k−1)+1, E−1

i+j(n−k−1)

}

1≤j≤c−1
.

Proof. It su"ces to prove the result when i = 0 by symmetry. When i = 0, the claim is that the loops in
L between E−1

0 and E0 in L are Ej(n−k−1)+1 and E−1
j(n−k−1) for 1 ≤ j ≤ c − 1.

To see this, consider the ordering of the loops in L:
sheet 0: L0 = ετ · τ−1 = E1 · E−1

0 ;
sheet n − k − 1: L1 = ε(n−k−1)+1τ ·

(
εn−k−1τ

)−1 = E(n−k−1)+1 · E−1
n−k−1;

sheet 2(n − k − 1): L2 = ε2(n−k−1)+1τ ·
(
ε2(n−k−1)τ

)−1 = E2(n−k−1)+1 · E−1
2(n−k−1);

and continuing on to sheet c(n − k − 1): Lc = τ ·
(
εn−1τ

)−1 = E0 · E−1
n−1.

The loop E0 occurs !rst on the sheet c(n − k − 1). The result follows because the stated loops are the
ones that occur in L1, . . . , Lc−1.

3.4. Main result

Theorem 3.5. Let n and k be integers with 1 ≤ k ≤ n − 2 and gcd(n, k(k + 1)) = 1. Let W be the smooth
projective curve with a!ne equation vn = u(1 − u)k.

Let c be the integer such that 1 ≤ c ≤ n − 1 and c is the multiplicative inverse of k + 1 modulo n. Then
the classifying element # for W is given by

# =
∑

1≤I<J≤n−1
cI,J[EI] ∧ [EJ],
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where

cI,J =
{

−1 if J − I ≡ j(k + 1) − 1 mod n, or
+1 if J − I ≡ j(k + 1) mod n,

for some j such that 1 ≤ j ≤ c − 1; and cI,J = 0 otherwise.

Proof. By Proposition 3.3, the loop c∞ is homotopic to L. By Lemma 2.1, we can determine the image of
L in [π1(U)]2/[π1(U)]3 by writing it as a product of commutators. By applying Lemma 2.2 repeatedly,
this image is determined by the ordering of the loops in L; speci!cally, if E′ lies between E−1

i and Ei, then
−[Ei] ∧ [E′] appears in the image. By Proposition 3.4, the image contains the terms

−[Ei] ∧ [Ei+j(n−k−1)+1] = −[Ei] ∧ [Ei−j(k+1)+1] = [Ei−j(k+1)+1] ∧ [Ei],
and

+[Ei] ∧ [Ei+j(n−k−1)] = [Ei] ∧ [Ei−j(k+1)] = −[Ei−j(k+1)] ∧ [Ei],
for 1 ≤ j ≤ c − 1.

Since T = c−1
∞ , we negate the coe"cients once more; (this is not crucial, since this only scales #).

Thus cI,J = −1 if J − I = j(k + 1) − 1 and cI,J = 1 if J − I = j(k + 1) for some 1 ≤ j ≤ c − 1, and
cI,J = 0 otherwise.

Remark 3.6. The coe"cient cI,J is nonzero if exactly one of EJ and E−1
J is between EI and E−1

I in this
loop, indicating that there is a nontrivial commutator involving these elements. Speci!cally, cI,J = 1 for
the ordering EI , EJ , E−1

I , E−1
J and cI,J = −1 for the ordering EI , E−1

J , E−1
I , EJ .

Remark 3.7. If gcd(j, n) = 1, then it is possible to compare the classifying elements for the inertia types
(j, jk, −j(k+1)) and (1, k, −(k+1)). Speci!cally, when we replace Ei by Eji mod n in the classifying element
for the former, we obtain the classifying element of the latter. For example, #5,(3,1,1) = −[E1] ∧ [E2] −
[E2] ∧ [E3] − [E3] ∧ [E4]. Replacing Ei by E3i mod 5, we obtain the same result as for #5,(1,2,2).

It is also possible to compare the classifying elements a#er a permutation of the three elements of the
inertia type, but this involves a more complicated linear transformation on the homology.

3.5. Examples when n = 5

First, suppose that k = 1. The le#-hand side of Figure 1 shows this example in detail. The colors and
letters a – e in the !gure represent the gluing of the sheets.

In Section 3.3, we consider a simple closed loop L◦ going counterclockwise around the point ∞ in
P1. The loop illustrated in the base of the diagram is homotopic to L◦. We li# L◦ to a loop L in W. The
loop L is homotopic to the following composition of paths:

ετ · τ−1 · ε4τ · (ε3τ )−1 · ε2τ · (ετ )−1 · τ · (ε4τ )−1 · ε3τ · (ε2τ )−1.
The order of the path is labeled in the !gure with steps 1–6. Recall that Ei = εiτ · τ−1 for 0 ≤ i ≤ 4.

Note that E0 is trivial. Then L is homotopic to:
E1 · E4 · E−1

3 · E2 · E−1
1 · E−1

4 · E3 · E−1
2 .

The ordering of the loops in L implies the following formula when n = 5 and k = 1:
# = [E1] ∧ (−[E2] + [E3] − [E4]) + [E2] ∧ (−[E3] + [E4]) + [E3] ∧ (−[E4]).

This formula agrees with Theorem 3.5.
For comparison, suppose k = 2. The right-hand side of Figure 1 shows the gluing of the sheets. In

this case, L is homotopic to the following composition of paths:
ετ · τ−1 · ε3τ · (ε2τ )−1 · τ · (ε4τ )−1 · ε2τ · (ετ )−1 · ε4τ · (ε3τ )−1.
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Figure 1. Examples: n = 5 and k = 1 on the left and k = 2 on the right.

So L is homotopic to:

E1 · E3 · E−1
2 · E−1

4 · E2 · E−1
1 · E4 · E−1

3 .

From this, we can deduce for n = 5 and k = 2 that:

# = E1 ∧ (−[E3] + [E4]) + E2 ∧ (−[E4]).

4. Modular symbols and basis for homology

Fix an integer n. Let Wk := Wn,k denote the smooth projective curve with a"ne equation vn = u(1−u)k,
where k is such that 1 ≤ k ≤ n−2 with gcd(n, k(k+1)) = 1. We describe the homology group H1(Wk, Z)

using Manin’s theory of modular symbols from [8], following the approach of Ejder [4]. In Corollary 4.5,
we prove that a basis for H1(Wk, Z) as a Z-module is given by {[Ei] | 1 ≤ i ≤ n − 1}.
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4.1. A modular description of Wk

In PSL2(Z), consider the congruence subgroup .(2) and its commutator .(2)′. Let

A :=
[

1 2
0 1

]
, and B :=

[
1 0
2 1

]
. (4.1)

Let /(n) := 〈An, Bn, .(2)′〉. Note that /(n) ⊂ /k, where /k is the congruence subgroup

/k :=
〈
AB−(k−1) mod n, An, Bn, .(2)′

〉
. (4.2)

Let H denote the upper half plane. There is an isomorphism between the modular curve X/(n) :=
H̄//(n) and the Fermat curve Xn : xn + yn = zn by [10, Section 3]. We now give a similar description
of Wk.

Lemma 4.1. The curve Wk is isomorphic to X/k := H̄//k. The index of /(n) in /k is n.

Proof. Possibly a#er adjusting the isomorphism X/(n)
∼= Xn, we can identify A with the automorphism

ε0(x, y, z) = (ζx, y, z) and B with the automorphism ε1(x, y, z) = (x, ζy, z), as in [4, Section 3.3]. The
!rst statement is true because Wk is the quotient of Xn by 〈ε0ε

−(k−1) mod n
1 〉. The second statement follows

since n = deg(Xn → Wk).

Let π : H̄ → H̄//k be the projection map.
The modular description of Wk allows us to use modular symbols to describe H1(Wk, Z) as follows. A

modular symbol is the image of a geodesic from α to β in Wk(C) for some α, β in P1(Q) and it is denoted
by {α, β}. By [8, Sections 1.3 and 1.5], every g ∈ /k determines a modular symbol [g] = {αg , βg} where
αg := g · 0 and βg := g · i∞. Manin proved [8, Proposition 1.4 & Proposition 1.6] that the elements of
H1(Wk, Z) are !nite sums of the form

∑
m nm[gm] where

∑
m nm(π(βgm) − π(αgm)) = 0 for nm ∈ Z.

We now compute generators for the group of modular symbols of Wk.

Lemma 4.2. With A and B as in (4.1), the sets /kArBs and /kAr+mBs−m(k−1) mod n are the same right
coset of /k in .(2) for any 1 ≤ m ≤ n − 1. In particular, the right coset /kArBs equals /kAr+ks. A set of
representatives for the cosets of /k in .(2) is given by /kAr for 0 ≤ r ≤ n − 1.

Proof. We note that A, B ∈ .(2). Let k̃ be the unique integer such that k−1 ≡ k̃ mod n. For m = 1, we
compute:

/kArBs = /k(AB−k̃)(BsArB−sA−r)ArBs

= /k

(
Ar

(
ABs−k̃

)
A−r

(
ABs−k̃

)−1
)

ABs−k̃Ar

= /kAr+1Bs−k̃.
By recursion, we get the desired equality for any m.

The second statement follows by taking m = ks.
A set of representatives for the right cosets of /(n) in .(2) is given by {AiBj}0≤i,j≤n−1. By Lemma 4.1,

the index of /(n) in /k is n. So there are n right cosets of /k in .(2) and each of these is the union of
n cosets of /(n) in .(2). By the !rst statement, {Ar}0≤r≤n−1 is a complete set of representatives.

Let τ =
[

0 −1
1 −1

]
. The modular symbol [τ ] = {1, 0} represents a geodesic that starts at 1 and ends

at 0. To see this, we compute

τ · 0 =
[

0 −1
1 −1

] [
0
1

]
=

[−1
−1

]
= 1, and τ · i∞ =

[
0 −1
1 −1

] [
1
0

]
=

[
0
1

]
= 0. (4.3)
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We use the notation τ since [τ ] is homotopic to the class of τ = β−1
W as in (2.4).

Proposition 4.3. The group of modular symbols for /k is a free Z-module of rank n with basis

{[Arτ ] | 0 ≤ r ≤ n − 1}. (4.4)

Proof. By [4, Proposition 3.1], the group of modular symbols for the Fermat group /(n) is free of rank
n2 + 1 generated by

{[AiBjτ ] | 1 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1} ∪ {[An−1Bj] | 0 ≤ j ≤ n − 1} ∪ {[Bn−1τ ]}.

Since /(n) ⊆ /k, the set of modular symbols for /k is also generated as a Z-module by these elements.
All it remains to do is to !nd the relations between the generators. By Lemma 4.2, [AiBj] = [Ai+kj], and
so [AiBjτ ] = [Ai+kjτ ]. Thus, the modular symbols

{[Arτ ] | 0 ≤ r ≤ n − 1} ∪ {[Ar] | 0 ≤ r ≤ n − 1}
are generators for the group of modular symbols of /k.

By [4, (3.7)] and Lemma 4.2, for any 1 ≤ r ≤ n − 1, we also have the relation

[Ar] − [Ar−1] = [Ar−1τ ] − [Ar−kτ ].
Taking r = 1 shows [A] = [τ ] − [A1−kτ ]. Working inductively on i, we deduce that [Ai] is a Z-linear
combination of the elements in (4.4), completing the proof that this set generates the group of modular
symbols. The properties of being free and rank n follow because this proof uses all of the relations in [4,
Section 3].

Proposition 4.4. A basis for the homology group H1(X/k , Z) as a Z-module is

ρr := [Arτ ] − [τ ] for 1 ≤ r ≤ n − 1.

Proof. We !rst show that ρr := [Arτ ]−[τ ] is a well-de!ned element in H1(X/k , Z) for all 1 ≤ r ≤ n−1.
It su"ces to show that

π(Arτ · 0) = π(τ · 0) and π(Arτ · i∞) = π(τ · i∞).

By (4.3), the equalities are equivalent to

π(Ar · 1) = π(1) and π(Ar · 0) = π(0).

Recall that B !xes 0. So Ar · 0 = ArB−(k−1) mod n · 0 for r ∈ {1, . . . , n − 1}. By Lemma 4.2, π(Ar · 0) =
π(Ar+1 · 0). Thus π(Ar · 0) = π(Id · 0) = π(0).

For the other equality, as in [4, p. 2308], consider the degree n cover X/k → X.(2)
∼= H̄/.(2) ∼= P1.

By Lemma 4.1, this corresponds to the cover Wk → P1, given by (u, v) /→ u in a"ne coordinates. The
fact that this cover is totally rami!ed at η1 over u = 1 implies that the same is true for X/k → P1. The
elements {π(Ar ·1)}0≤r≤n−1 all lie above the point corresponding to u = 1, so it follows that π(Ar ·1) =
π(1) for all 1 ≤ r ≤ n − 1.

To see that the elements in {ρr}1≤r≤n−1 are Z-linearly independent, we assume that
∑n−1

r=1 arρr =
0, with ar ∈ Z. This implies that

∑n−1
r=1 ar[Arτ ] −

(∑n−1
r=1 ar

)
[τ ] = 0. By Proposition 4.3, the set

{[Arτ ]}0≤r≤n−1 is linearly independent, so ar = 0 for 1 ≤ r ≤ n − 1.

Corollary 4.5. The set {[Ei] | 1 ≤ i ≤ n − 1} is a basis for H1(Wk, Z) as a Z-module.

Proof. The action of A is identi!ed with ε0 and ε0((x, y)) = (ζx, y). Also ε((u, v)) = (u, ζv). Since
v = xyk, this shows that A acts like ε on Wk = X/k . Since Ei = εiτ · τ−1 and [E0] = 0, this shows that
ρi = [Ei]. The result is then immediate from Proposition 4.4.
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5. Description using invariants

As in Section 2, let W = Wn,k. In this section, we illustrate Theorem 3.5.

5.1. Some invariant elements of ∧2H1(W)

By Corollary 4.5, {[Ei] | 1 ≤ i ≤ n − 1} is a basis for H1(W, Z). For 1 ≤ r ≤ (n − 1)/2, in ∧2H1(W),
we de!ne

Tr :=
n−1∑

i=0
[Ei] ∧ [Ei+r].

Note that both Ei and Tr implicitly depend on k. For simplicity of notation, we write Ei rather than [Ei]
in the homology in the proofs in this section.

Lemma 5.1. The element Tr is invariant under the automorphism ε.

Proof. By (2.6), Ei = e−1
i · e0. Then ε(Ei) = Ei+1 · E−1

1 in π1(Wk). So ε(Ei) = Ei+1 − E1 in H1(Wk, Z).
We compute that

ε(Tr) =
n−1∑

i=0
ε(Ei) ∧ ε(Ei+r) =

n−1∑

i=0
(Ei+1 − E1) ∧ (Ei+r+1 − E1)

=
n−1∑

i=0
(Ei+1 ∧ Ei+r+1 − E1 ∧ Ei+r+1 + E1 ∧ Ei+1).

Then
∑n−1

i=0 (−E1 ∧ Ei+r+1 + E1 ∧ Ei+1) = 0 and so ε(Tr) = ∑n−1
i=0 Ei+1 ∧ Ei+r+1 = Tr .

5.2. Applications

By Theorem 3.5, the classifying element has the form

# =
∑

1≤i<j≤n−1
ci, j[Ei] ∧ [Ej].

In this section, we describe # using the invariant elements from Section 5.1.

Corollary 5.2. Let n, k be integers such that 1 ≤ k ≤ n−2 and gcd(n, k(k+1)) = 1. Let c ∈ {1, . . ., n−1}
be such that c ≡ (k + 1)−1 mod n. Then # = ∑

r∈Sn,k
(−Tr−1 + Tr), where

Sn,k = {r ∈ Z/nZ | r ≡ j(k + 1) mod n for some 1 ≤ j ≤ c − 1}.

Proof. This is immediate from Theorem 3.5.

Corollary 5.3. With the same hypotheses as Corollary 5.2:

(1) If k = 1, then # = ∑(n−1)/2
r=1 (−1)rTr.

(2) If k = 2, then # = ∑(n−1)/2
r=1 wrTr where wr = 1 if r ≡ 0 mod 3 and wr = −1 if r ≡ n mod 3.

(3) If k = n − 2, then # = −T1.
(4) If k = n − 3, then # = ∑(n−1)/2

r=2 (−1)r−1Tr.
(5) If k = (n − 1)/2, then # = −T(n−1)/2.
(6) If k = (n − 3)/2, then # = T(n−1)/2 − T1.
(7) If n ≡ 2 mod 3 and k = (n − 2)/3, then # = Tk+1 − Tk.

If n ≡ 1 mod 3 and k = (2n − 2)/3, then # = T(k+2)/2 − Tk/2.
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Proof. (1) If k = 1, then c = (n + 1)/2. Then r ∈ Sn,k if and only if r is even.
(2) Write c = (n + 1)/3 if n ≡ 2 mod 3 and c = (2n + 1)/3 if n ≡ 1 mod 3. Write ' = n − 3. Then

cI,J =






−1 if I − J ≡ ' + 1, 2' + 1, . . . , (c − 1)' + 1 mod n;
+1 if I − J ≡ ', 2', . . . , (c − 1)' mod n;
0 otherwise.

(3) If k = n−2, then c = n−1. In this case, we cover every sheet 0, 1, 2, . . . , n−2, n−1 in order, starting
with sheet 0 and ending with sheet n − 1. It is more convenient to consider the edges between τ and
τ−1, which are (εn−1τ )−1 and ετ . So E0 ∧ E1 and −En−1 ∧ E0 appear in #. So cI,J = −1 (resp. +1)
if J − I ≡ 1 mod n (resp. J − I ≡ n − 1 mod n) and cI,J = 0 otherwise.

(4) If k = n − 3, then c = (n − 1)/2. We omit the details.
(5) If k = (n − 1)/2, then c = 2. It follows that cI,J = −1 (resp. +1) only if J − I ≡ (n − 1)/2 mod n

(resp. (n + 1)/2 mod n).
(6) If k = (n − 3)/2, then c = n − 2. In this case, we cover all but the (n − 1)st sheet, starting with

sheet 0, then (n + 1)/2, then 1, then (n + 3)/2, etc. It is more convenient to consider the edges
between τ and τ−1, which are (εn−1τ )−1, ετ , ε(n+1)/2τ , and (ε(n−1)/2τ )−1. So cI,J = −1 if J − I ≡
(n + 1)/2 or 1 mod n, cI,J = +1 if J − I ≡ (n − 1)/2 or n − 1 mod n, and cI,J = 0 otherwise.

(7) If k = (n − 2)/3 and n ≡ 2 mod 3, (resp. k = (2n − 2)/3 and n ≡ 1 mod 3), then c = 3. Let
' = n − (k + 1) which equals (2n − 1)/3 if n ≡ 2 mod 3 and equals (n − 1)/3 if n ≡ 1 mod 3. Then
cI,J = −1 if J − I ≡ ', 2' mod n and cI,J = +1 if J − I ≡ ' + 1, 2' + 1 mod n.

Corollary 5.2 determines # for all values of k when 3 ≤ n < 11 and for all but two values of k when
n = 11. We include these two as !nal examples.

Example 5.4. If n = 11 and k = 6, then c = 8 and # = −T1 + T3 − T4.

Example 5.5. If n = 11 and k = 7, then c = 7 and # = −T1 + T2 − T3 + T5.
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