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1. Introduction

In this companion paper to [3], the main goal is to determine information about the étale fundamental
group of a cyclic Belyi curve using its lower central series. To explain the meaning of this, we first provide
some background.

Suppose X is a smooth projective curve of genus g defined over a number field K. Let K be the algebraic
closure of K and suppose that Xz is connected. Let 7 = [rr]; = m1(X) be the étale fundamental group
and let H; (X) be the étale homology group of Xz.

For m > 2,let [ ],, be the mth subgroup of the lower central series7 = [7]; D [7], D [7]3 D -+
specifically, [ ], = [, [ ]m—1] is the closure of the subgroup generated by commutators of elements
of w with elements of [7],,—1. Then H;(X) = [ ]1/[7]2.

Consider the graded Lie algebra gr(w) = @>1[7 /[ Im+1 of the lower central series for =, [7,
11]. Let F be the free profinite group on 2g generators and consider its graded Lie algebra gr(F) =
®m=18r,,(F). By [6, Theorem, p. 17], there is an element p of weight 2 such that

gr(m) = gr(F)/(p).
Thus gr(r) is determined by the subgroup {p). By [5, Corollary 8.3],
[7]2/[]s = (H1(X) A Hi1(X)) /Im(%),
where

€ - H)(X) - Hi(X) AH1(X) (1.1)

CONTACT Rachel Pries @ pries@colostate.edu @ Colorado State University, Fort Collins, CO.
© 2024 Taylor & Francis Group, LLC



2 J. DUQUE-ROSERO AND R. PRIES

is the dual map to the cup product map H'(X) A H'(X) — H2(X). Since Hp(X) = Z(1), the image
Im(%) is cyclic. A generator A for Im(%) is called a classifying element.

There is a formula for A in terms of a set of generators of the fundamental group of X that satisfies
certain properties; see (2.3) for details. In the context of étale homology groups, we would like additional
information, specifically the following.

Goal 1.1. Find a formula for a classifying element using a basis for H; (X) which is well-suited for
studying the action of the absolute Galois group Gk and the action of Aut(X).

In [3], the authors realized this goal when X = X,;: x" 4+ y" = z" is the Fermat curve of degree #, for
any integer n > 3. When n = p is an odd prime satisfying Vandiver’s conjecture, and K = Q(¢)) is the
cyclotomic field, then the information about the action of Gk on Hi (X, Z/pZ) comes from [1] and [2].

In this paper, we realize Goal 1.1 when X = W, is a cyclic Belyi curve, namely a curve with affine
equation

V= u(l — uk, (1.2)

for any odd integer n and integer k with 1 < k < n— 2. This curve admits a Galois j,-cover ¢: W, —
P! branched at 3 points 0, 1, and co. We restrict to the case that the cover is totally ramified at the
ramification points 79, 171, and 7o this is true if and only if ged(n, k(k + 1)) = 1; in particular, it is true
foralll < k < n—2ifnis prime.

The main result of the paper is Theorem 3.5; writing W = W, &, we determine a classifying element
A € Hi (W) A Hi(W) for all such pairs (1, k). This determines the isomorphism class of gr(xr) as a
graded Lie group with the action of u,, C Aut(W).

Here is some notation needed to state the result. Let U = W — 14, where 7 is the unique point
not on the affine chart (1.2). In Section 2, we define some loops Ej, . . ., E,—; in the fundamental group
w1 (U) (2.6). Let [E1], . ..,[E,—1] denote the images of Ej, ..., E,_; in the homology group H; (U). In
Corollary 4.5, we prove that these form a basis for H; (U). This basis for gr, (F) = Hy(W) = H;(U)
yields a basis for gr,(F) = Hij(W) A Hi(W) given by {[E;] A [Ej] | 1 < i < j < n— 1}. We state our
main result in terms of that basis.

Theorem A (Theorem 3.5). Suppose 1 < k < n — 2 and gcd(n, k(k + 1)) = 1. Let W be the smooth
projective curve with affine equation v = u(1 — w)k.

Let ¢ be the integer such that 1 < ¢ < n — 1 and c is the multiplicative inverse of k + 1 modulo n. Then
a classifying element A for W is given by

A=Y eylENAIE]L

1<I<]J<n-1

where

S —1 ifJ—I=jlk+1)—1modn, or
A IS if] — I =j(k+ 1) modn,

for some j such that 1 < j < c¢— 1; and c;j = 0 otherwise.

For the proof, we first rely on Lemma 2.1, which states that a formula for A can be found by expressing
aloop L around 7 as a product of commutators of elements in 71 (U). Then the main ingredients of
the proof are the topology and Galois theory of branched coverings. In Section 3, we use these to find
a combinatorial formula for L; the formula is first described using edges that generate the fundamental
groupoid of U with respect to {19, 71}, and then re-expressed in terms of the loops E1, ..., E,—1.

In Section 5, we provide examples for arbitrary odd # and certain values of k.
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Remark 1.2. The motivation for studying covers of P! branched at three points originates with
GrothendiecK’s program for understanding the absolute Galois group of Q. The cyclic Belyi curves play
an important role in the study of Galois theory, Hurwitz spaces, and abelian varieties with complex
multiplication. Since W = W, is a quotient of the Fermat curve X,,, it might be possible to prove
Theorem A with a top-down approach, using the result of [3]. In working on this problem, we realized
that there are many advantages with the direct approach, see Remark 2.4.

Remark 1.3. Theorem A is valid both for the homology with coeflicients in Z and for the étale homology
which has coefficients in a finite or £-adic ring. In Section 4, the proof relies on the modular symbols
of Manin [8] (and a result of Ejder [4]). However, we follow an approach which is compatible with the
results in [1] and [2] about the étale homology with coefficients in Z/nZ and the action of the absolute
Galois group upon it, because this will be important in future applications.

After choosing an embedding Q C C and applying Riemann’s Existence Theorem, we may identify
the profinite completion of H; (U(C)) with the étale homology H; (U). Similarly, we may identify the
profinite completion of 71 (U(C)) with the étale fundamental group 71 (U). Thus we can consider the
elements Ey, ..., E,_; to be in the topological fundamental group or in the étale fundamental group;
similarly, we can consider the elements [E;],...,[E,—1] to be in the simplicial homology or in the étale
homology. A similar comparison holds for other objects in the paper.

2. The fundamental group of cyclic Belyi curves

We describe the geometry of cyclic Belyi curves and their relationship to Fermat curves. We state some
facts about the fundamental group and the classifying element A.

Let n > 3 be a positive integer. Let ¢ = ¢*""/" be a fixed primitive nth root of unity. Fix an integer
k, with 1 < k < n — 2. For simplicity, we assume throughout the paper that ged(n, k(k + 1)) = 1; this
assumption is true if # is prime, which is the situation of future applications of this paper.

2.1. The geometry of cyclic Belyi curves

Let W = W, be the smooth projective curve having affine equation:
V= u(l — wk. 2.1)

Let 179 be the point (1, v) = (0,0); let n; be the point (1, v) = (1,0). The hypothesis that gcd(n, k +
1) = 1 implies that there is a unique point 7o, on W which is not on this affine chart. Consider the open
affine subset U = W — ).

There is a j1,-Galois cover ¢: W — P!, given by ¢ (1, v) — u. The Galois group is generated by the
automorphism € € Aut(W) of order » that acts by € ((#, v)) = (1, {v). The cover ¢ is totally ramified at
the points 19, 171, and 10, which lie over the branch points u = 0, 1, and co respectively.

By the Riemann-Hurwitz formula, the genus of Wis g = (n — 1)/2.

Any ju,,-cover of P! branched at three points, which is totally ramified at one point, admits an equation
of the form (2.1) for some k with 1 < k < n — 2. The condition of being totally ramified over the other
two branch points is equivalent to ged(n, k(k + 1)) = 1.

2.2. The fundamental group

Throughout the paper, composition of paths and loops is denoted by the symbol - and written from left
to right. Note that U C W is a real surface of genus ¢ = (n — 1)/2 with 1 puncture. We choose the
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base point 7;. There exist loops a;, b; for 1 < i < g and ¢, with base point 11, such that 71(U) has a
presentation

g
m1(U) = (@i biscoo | i=1,...,8)/ [ [1ai bilcco- (2.2)
i=1

Without loss of generality, we choose the loop ¢ to circle the puncture 5o, and to have no
set-theoretic intersection with the loops a;,b; for 1 < i < g. This can be arranged using a
standard gluing of a 1-punctured polygon with 4g sides, with the sides labeled consecutively by
a, by, al_l, bl_l, .. .»Ag, by, agfl, bg_l.

The homology group H; (U) is equipped with an intersection pairing, defined using Poincaré duality
and the cup product on compactly supported cohomology. Let a;, b;, ¢eo denote the images of aj, b, coo
in Hy (U). Note that ¢ is trivial.

Without loss of generality, we can suppose that the images of @; b; in H;(U) form a standard
symplectic basis. Since U has only one puncture, there is an isomorphism H;(U) = H;(W). These
two facts imply that a generator of Im(%¢’) as in (1.1) can be identified with:

g
Aw = Ab; € Hi(U) AHy (V). (2.3)

i=1

2.3. The second graded quotient in the lower central series

By (2.3), Aw = Z‘;g:l a; A bi. We would like to determine Ay in terms of a basis of H; (U) A H; (U)
for which we have information about the action of the absolute Galois group. To do this, we investigate
the element T := ]—[‘f:l [ai, bi] = c;ol in 1 (U).

We need the following two results. The first shows that Ay does not depend on the representation
as a product of commutators.

Lemma 2.1. [3, Lemma 2.2] Suppose 11, ...,N,S1 ..., SN are loops in U, with images 7;,s; in Hy (U). If
T is homotopic to [ry,s1] - - - - [rnssnls
then 35_ @i Abi = Y on | 7i A5 in Hi(U) A Hy(U).

The next lemma will help simplify later calculations.

Lemma 2.2. [3, Lemma 2.3] Suppose o, B,y € w1 (U).

(1) If ay € [m(U)ly, then ya € [m1(U)la, and ay and yo have the same image in the quotient

[1(W)]2/[71(U)]5.
2) Ify tayB € [m1(U)]y, then af € [71(U)],, and the difference between the images of y "‘ay 8 and

af in[m(U)]/[mi(U)]zisy A (—a).

2.4. The fundamental groupoid

More generally, we consider the fundamental groupoid 71 (U, {19, n1}) of U with respect to the points
no and ;. Let Bw be the path in U, which begins at the base point 19 and ends at 1, given by

Bw = (t, NETO t)k) for t € [0,1]. (2.4)

Here the symbol v/#(1 — t)k denotes the real-valued and positive nth root.
Recall that € ((4,v)) = (4, ¢v). For 0 < i < n — 1, we define a path in U, which begins at 1y and ends
at n; by

e = eiﬁw. (2.5)
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Define t = ,BV_VI, where the inverse of a path is the path traversed in the opposite direction. Note that
-1 i p—1
e; =¢€'By .
We define some loops in U with base point n;: for 0 <i < n — 1, let

E; := efl ceg =€t -t7h (2.6)

The loop E; implicitly depends on k. Note that

-1 _ -1 -1 -1
Ei-Ej =e; -e-e -e=¢e ¢ (2.7)

If i = 0, then E; is trivial in 771 (U, {no, n1}). Corollary 4.5 shows that the converse is true.

2.5. Comparison with the Fermat curve

It is well-known that W = W, is a quotient of the Fermat curve X,,: x” + y" = z" of degree n (see, e.g.
[9, Chapter 8]). Let Zr be the set of n points where z = 0 on X,,. The open affine subset Ur = X,, — Zp
is given by the set of points (x, y) such that x" 4 y" = 1.

In [3, (2.g)], the authors defined a path 8 in Ur. We remark that By is the image of § under the map
Ur — U that takes (x, y) to (x”,xyk).

The automorphism group of X,, contains two automorphisms €p and €; of order n that commute;
these act by €9((x,9)) = (¢x,y) and €;((x,¥)) = (x,{y). Let H = H, ) be the subgroup of Aut(Xy)

k! mod n

generated by h = g€,

Lemma 2.3. The cyclic Belyi curve Wy, is the quotient of the Fermat curve X, of degree n by H, x.. The
fiber of X,, over N is the set of n points in Zg; the fiber of X,, over ng (resp. 1) is the set of n points on Ug
where x = 0 (resp. y = 0).

Proof. There is a well-defined inclusion from the function field of W,k to the function field of X,
determined by u + x" and v > x)y*. This inclusion has degree n. The first claim follows since u
and v are fixed by h. The claims about the fibers follow by calculation. O

Remark 2.4. Here are the reasons that proving Theorem 3.5 with a top-down approach would be more
complicated.

First, the combinatorial description of the loop in Section 3 is substantially easier than the description
of n loops in [3]. This is because the cover ¢: W — P! has degree n, rather than n* = deg(X,, — P!),
and also because there is one point 1o, of W above co rather than the n points of Zg. The theoretical
description of the boundary of a simple closed disk containing 1 is easier than that for the boundary
of a simple closed disk in X}, containing the n points of Zf.

Second, in Section 4, the homology group H; (W) is a subspace of a free module of rank one over
Zljtn], while H; (X},) is a subquotient of a free module of rank one over the more complicated group
ring Z[py X fn]. The formula for Ay in (2.3) is easier than for the Fermat curve where there is a non-
trivial homomorphism A?H; (Ur) — AZH;(X,,).

Third, the next lemma shows that the chosen basis elements of H; (X,,) have slightly complicated
images in terms of the chosen basis elements of H; (W). For these reasons, the formula in Theorem 3.5
is easier to write down and prove using a direct approach.

Recall from [3, Section 2.3], the definitions of the paths {e;j}o<ij<n—1 in Ur and the loops

—1 —1
Eij=e0- (e0) " -eij-(eio) -

By [3, Lemma 4.1], the images of {[E;;]}1<ij<n—1 form a basis for H; (UF).

Lemma 2.5. Under the map w1 (Ur) — m1(U) induced by the map Up — U:
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(1) The image of e;j in 71 (U, {no, m}) is ejyjk.
(2) The image of E;j in w1 (U) is e - ejzl “€itjk el._l, which starts and ends at ny.

(3) The adapted loop eﬁ(l “eitjk - efl - eg, which starts and ends at 11, equals Ejj, - E;_ljk - E;.

Proof. This follows from the equalities # = x" and v = x* in the proof of Lemma 2.3. O

3. The classifying element of the Belyi curve

We continue to study the curve W = W, with affine equation v" = u(l — u)k. Recall that T =
]_[‘i»g=1 [ai, bi] = c;ol is in the homotopy class of the boundary of a disk in W that contains the point 7.
In Proposition 3.3, we find a loop homotopic to T written in terms of the elements E; in 7, (U). We then
analyze the ordering of the loops E; in T combinatorially. This enables us to find an explicit formula for
A € Hi(U) AH;(U), using a basis on which we have some information about the action of the absolute
Galois group, see Theorem 3.5.

3.1. Gluing sheets of an unramified cover

Recall that ¢: W — P! is the 11,,-Galois cover given by (u,v) +— u. The cover ¢ is branched at {u =
0,1, 00} and is ramified at {ny = (0,0),n1 = (1,0), Nso}. In this section, we remove some paths in W
and P! in order to work with an unramified cover.

Given the equation v" = u(1 — u)k, the inertia type of ¢ is the 3-tuple (1, k, —(1 + k)). This means
that the canonical generators of inertia at 19, 1, and 1 are ¢1, ck and ¢ 717K, respectively. In other
words, the chosen generator € of the Galois group of ¢ acts on a uniformizer at each ramification point
by this root of unity, respectively.

We make a slit cut along the positive real line in P! (C) from u = 1 to u = 0 and another from u = 1
to u = 00. We choose a base point u; close to # = 1 and in the lower half plane; a technical term for this
is a tangential base point at u = 1. We also make a short slit cut ¢ from u = u; tou = 1.

Let P° be the complement of these three slit cuts in P! (C). Let W° be the complement of the 3n paths
in W that lie above these three slit cuts.

Lemma 3.1. The restriction ¢: W° — P° is unramified.

Proof. The monodromy around u = 0, 1, 00 is multiplication by ¢!, ¢¥, and ¢ ~*+D, respectively. So
a loop going around all 3 of these points is multiplication by 1. Therefore, the monodromy action of
71 (P°) on W° is trivial, which proves the claim. O

Thus W* is a disjoint union of n connected components, which are called sheets. We need to label
the regions of P! near the slit cuts and the edges along the boundary of W°. It might be helpful to look
at Figure 1 for reference.

For the regions of P!: let N denote the region of the upper half plane which is close to the positive
real axis; let E denote the region of the lower half plane which is close to the values 4 > 1 on the real
axis; and let S denote the region of the lower half plane which is close to the values 0 < u < 1 on the
real axis.

For the edges along the boundary of W°, we start by labeling the unique edge v of W*° having the
following property: it is on the path Bw; and it is on the right hand-side as one travels from 7, to 7o,
meaning that it lies above N rather than S.

Let 0 < i < n. The action of €’ on W* allow us to label 7 of the edges as €'t; these are the edges
that lie above the interval [0, 1] in N. Furthermore, we label by R; the sheet of W*° that contains eit. In
each sheet R;: we label by €’ the unique edge that lies above the ray [1, o) in N; and we label by €&
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the unique edge that lies above ¢t in S. This completes the labeling of one side of each of the 3# slit cuts
in W°.

The inertia type gives the information needed to glue the sheets together along the slit cuts to obtain
the ramified cover ¢ of Riemann surfaces.

Lemma 3.2. For0 <i < n:

(1) The edge efr on R; glues with the unique edge in R;_1 mod » that lies above the interval [0,1] in S.
(2) The edge 61'05 on R; glues with the unique edge in Ri_ (k41) mod » that lies above the interval [1, 00) in E.
(3) The edge €'€ on R; glues with the unique edge in R; that lies above t in E.

Proof. (1) Imagine a simple closed loop around 7 that crosses the edge €'; as one travels around this
loop in a counterclockwise direction, the fact that the generator of inertia at 7o is ¢! implies that
one passes from the sheet R;_| mod » to the sheet R;. Thus the edge €'t on R; must be glued with the
unique edge in Rj_; mod » that lies above the interval [0, 1] in S.

(2) Imagine a simple closed loop around 7 that crosses the edge €’a; as one travels around this loop in
a counterclockwise direction, the fact that the generator of inertia at 7o is gy implies that one
passes from the sheet R; to the sheet Ri_(x+1) mod n- Thus the edge €'a on R; must be glued with the
unique edge in Ri_(x+1) mod » that lies above the interval [1, o0) in E.

(3) Imagine a simple closed loop around a lift of ¢ that crosses the edge €'&; as one travels around this
loop in a counterclockwise direction, one should stay on the same sheet since ¢ is not a branch point.
Thus the edge €’& on R; must be glued to the unique edge in R; that lies above the interval t in E.

O

3.2. Lifting of aloop

Let H' be the upper half plane and H™ be the lower half plane. Let i1 be the lift of the base point u,
which is on & in Ry. In this section, all loops in P!(C) (resp. W(C)) have base point u; (resp. up).

In P!(C), consider a counterclockwise simple closed loop Z, around co. It is homotopic to a clockwise
simple closed loop Z that first crosses from H~ to H* at some point in R¥<? and then crosses from H+
to H~ at some point in R¥>!. Without loss of generality, we can suppose that this last crossing occurs at
an arbitrarily large value of u.

Let Z, be alift of Z, to W. Let Z be a lift of Z to W.

Our goal now is to describe the loop Z in terms of the edges €'z, and then in terms of the loops E;,
for 0 < i < n. Recall that ¢; = €'t and E; = €'t - 1. For 0 <j<n-—1let

L= J=k=D+1p | (gin—k=1)y=1 _ Ej(n—k—1)+1 'Ej_(i—k—l)’ (3.1)

where the second equality follows from (2.7). Let
Li=Ly-Ly----- Lo_1.

We view L as a word in {E;, Ei_1 }o<i<n» including the elements Ey, Ej, Las placeholders even though they
are trivial in homology.

Proposition 3.3. The loop co is homotopic to L.

Proof. Theloop cs is homotopic to Z, because Z is homotopic to Z,, which is a counterclockwise simple
closed loop around 7. So it suffices to prove the formula for Z.

The loop Z in W covers the loop Z in P! exactly n times. This is because it is homotopic to the simple
closed loop Z, around the point 77,, which is a ramification point for ¢ with ramification degree n. Each
revolution begins above S, then goes above N, then switches sheets and goes above E.
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The loop Z starts on the sheet Ro. Then it crosses the edge o onto the sheet R, (x.+1), where it swings
by the point €, (x+1)%1. That completes one of the # revolutions. The next revolution is similar but starts
on the sheet R,,_(k41). So the subindex on each path increases by n — (k + 1) after each revolution.

The first revolution is homotopic to a path that traces in a clockwise direction along the outside of
the slits, going near the following points, in this order:

i e 0 e eo > > €T g
This path is the composition of the following paths, written from left to right, with the first four on the
sheet Ry and the last two on the sheet R, (k41:

gl et g o ek Dg,

The paths o and & ! cancel. Also the last path "~ **Dg on the first revolution cancels with the first
path on the next revolution, and the first path £ ! on the first revolution cancels with the last path on
the last revolution; so these paths can be ignored, leaving only L.

Thus Z is homotopic to Lo - "~ *+DL, . ... . t=D=(+I) 1, By (3.1), the equation for Ly is
e”_(k“'l)Lj. Thus Z is homotopicto L - Ly - - - - - L,_1. O

3.3. Combinatorial analysis of loop

We need a combinatorial analysis of the ordering of the edges in the loop L. We say that a loop E; (or
Ej_l) is between Ei_1 and E; if it is written between them after cyclically permuting the loops so that Ei—1
is the leftmost loop in L.

Recall that gcd(n,k + 1) = 1. Letc € {1,...,n — 1} be such that c = (k + 1)~! mod n. Note that
cn—k—1)=n—1mod n.

Proposition 3.4. Let 0 < i < n. The loops between Ei_1 and E; in L are

L. -1
{E’+]("_k_l)+1’Ei+f(”_k—1)}lsjfc—l ‘
Proof. It suffices to prove the result when i = 0 by symmetry. When i = 0, the claim is that the loops in

—1 . —1 .

L between E;, "~ and E in L are Ej(,—k—1)+1 and Ej(n—k—l) forl<j<c—1

To see this, consider the ordering of the loops in L:

sheet0: Lo = et - 17 = E; - E;

-1 _
sheetn —k — 1: Ly = e k=DFlg  (enk=10)™ =, 4 0y -E

sheet 2(n — k — 1): Ly = e2(n—k=D+1o. (62(”_k_1)1)_1 = Ey(n—k—1)+1 ’E;(L—k—l);

and continuing on to sheet c(n —k—1): L. =1 - (6”_11')_1 =E- E;il.

The loop E occurs first on the sheet c(n — k — 1). The result follows because the stated loops are the
ones that occurin Ly,...,Lq._. O]

3.4. Main result

Theorem 3.5. Let n and k be integers with 1 < k < n—2 and ged(n, k(k+ 1)) = 1. Let W be the smooth
projective curve with affine equation v = u(1 — u)k.

Let ¢ be the integer such that 1 < ¢ < n — 1 and c is the multiplicative inverse of k + 1 modulo n. Then
the classifying element A for W is given by

A= > cajlElAILE],

1<I<]J<n—1
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where

S -1 ifJ—I=jk+1)—1modn, or
YT i —I=jk+1) modn,

for some j such that 1 < j < c¢— 1; and cj = 0 otherwise.

Proof. By Proposition 3.3, the loop co is homotopic to L. By Lemma 2.1, we can determine the image of
L in [71(U)]2/[m1(U)]3 by writing it as a product of commutators. By applying Lemma 2.2 repeatedly,
this image is determined by the ordering of the loops in L; specifically, if E’ lies between Ei_1 and E;, then
—[Ei] A [E'] appears in the image. By Proposition 3.4, the image contains the terms

—LE A [Eigjin—k—1)+1] = —[E] A Ei—je+1)+1] = [Eizjiktn+1] A [Eil,

and
HE A [Eirjin—k—1)] = [Ei] A [Ei—jk+1] = —[Eimjk+1] A [Eils

forl<j<c—1
Since T = ¢!, we negate the coefficients once more; (this is not crucial, since this only scales A).
Thuscry = —1ifJ— I =jk+1)—land¢y=1if]—I=jk+ 1) forsomel <j < c¢—1,and

cry = 0 otherwise. O

Remark 3.6. The coeflicient ¢ is nonzero if exactly one of E; and Efl is between Ej and E; ! in this
loop, indicating that there is a nontrivial commutator involving these elements. Specifically, ¢;; = 1 for
the ordering Ey, Ej, EI_I, E]_1 and ¢;; = —1 for the ordering Ej, E]_I,El_l, Ej.

Remark 3.7. If gcd(j, n) = 1, then it is possible to compare the classifying elements for the inertia types
(j, jk, —j(k+1)) and (1, k, — (k+1)). Specifically, when we replace E; by Ej; mod » in the classifying element
for the former, we obtain the classifying element of the latter. For example, As 31,1y = —[E1] A [E2] —
[E>] A [E3] — [E3] A [E4]. Replacing E; by E3; mod 5, we obtain the same result as for As (155).

It is also possible to compare the classifying elements after a permutation of the three elements of the
inertia type, but this involves a more complicated linear transformation on the homology.

3.5. Examples whenn =5

First, suppose that k = 1. The left-hand side of Figure 1 shows this example in detail. The colors and
letters a - e in the figure represent the gluing of the sheets.

In Section 3.3, we consider a simple closed loop L, going counterclockwise around the point oo in
PL. The loop illustrated in the base of the diagram is homotopic to L,. We lift L, to aloop L in W. The
loop L is homotopic to the following composition of paths:

er-t l.etr. (453r)_1 et (E‘L’)_l ST - (e‘*r)_1 €37 (ezr)_l.

The order of the path is labeled in the figure with steps 1-6. Recall that E; = €'t - 77 for 0 < i < 4.
Note that Ej is trivial. Then L is homotopic to:

Ei-Eq-Ey' - Ey-Ef'-Ej' - Es-E)L
The ordering of the loops in L implies the following formula when n = 5and k = 1:
A = [Ei] A (—[E2] + [E3] — [Es]) + [E2] A (—[E3] + [E4]) + [E3] A (—[E4D).

This formula agrees with Theorem 3.5.
For comparison, suppose k = 2. The right-hand side of Figure 1 shows the gluing of the sheets. In
this case, L is homotopic to the following composition of paths:

er-t L.t (621')_1 ST - (641')_1 et (G‘L’)_l cetr (631’)_1.



10 J. DUQUE-ROSERO AND R. PRIES

3

7
Q
4

I]:Dl

/
/
-/
/
/
/

Figure 1. Examples:n = 5and k = 1 on the leftand k = 2 on the right.

So L is homotopic to:
Ey-Es-E,' E;'-Ey - E['-E4-E;'.
From this, we can deduce for n = 5 and k = 2 that:

A = Ey A (—[E3] + [E4]) + E2 A (—[E4D).

4. Modular symbols and basis for homology

Fix an integer n. Let Wy := W, denote the smooth projective curve with affine equation v" = u(1— uk,
where kissuchthat 1 < k < n—2with gcd(n, k(k+1)) = 1. We describe the homology group H; (W, Z)
using Manin’s theory of modular symbols from [8], following the approach of Ejder [4]. In Corollary 4.5,
we prove that a basis for H; (W, Z) as a Z-module is given by {[E;] | 1 <i <n — 1}.
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4.1. Amodular description of Wy

In PSL,(Z), consider the congruence subgroup I'(2) and its commutator I"(2)’. Let

A= |:(1) ﬂ , and B := [; (1)i| (4.1)

Let ®(n) := (A", B",T'(2)’). Note that ® (n) C P, where Py is the congruence subgroup
@) = <AB—<’<’1> modn pn pn r(z)’>. (42)

_ Let § denote the upper half plane. There is an isomorphism between the modular curve X¢ () =
$/®(n) and the Fermat curve X,;: x" + y" = 2" by [10, Section 3]. We now give a similar description
of Wy.

Lemma 4.1. The curve Wy is isomorphic to Xo, = ,S;J/CDk. The index of ®(n) in Oy is n.

Proof. Possibly after adjusting the isomorphism X¢ ;) = X, we can identify A with the automorphism

€0(x,¥,2) = ({x,,2) and B with the automorphism €; (x, ¥,2) = (x,{y,2), as in [4, Section 3.3]. The
-1

first statement is true because W is the quotient of X, by (€€, (k™) mod ™. The second statement follows

since n = deg(X,, — Wy). O

Letm: § — f)/CDk be the projection map.

The modular description of W allows us to use modular symbols to describe H; (W, Z) as follows. A
modular symbol is the image of a geodesic from « to 8 in Wy (C) for some &, # in P!(Q) and it is denoted
by {a, B}. By [8, Sections 1.3 and 1.5], every g € @ determines a modular symbol [g] = {ag, B¢} where
ag = g - 0and B, := g - ico. Manin proved [8, Proposition 1.4 & Proposition 1.6] that the elements of
H;(Wyk, Z) are finite sums of the form ) ", #,[gm] where Y, 1, (7 (Bg,) — () = 0 for ny, € Z.

We now compute generators for the group of modular symbols of Wy.

Lemma 4.2. With A and B as in (4.1), the sets ®,A'BS and OpATTmBs—mE D) modn gro the same right
coset of Oy in T'(2) for any 1 < m < n — 1. In particular, the right coset ®A"B° equals ®A™F. A set of
representatives for the cosets of Oy in I'(2) is given by ®rA” for0 <r <n— 1.

Proof. We note that A, B € I'(2). Let k be the unique integer such that k! = k mod n. For m = 1, we
compute:

O A'B = ®L(ABF)(BSA’BA)ATB®
- - =1 -
= @ <Af (ABS_k> AT (ABS‘k) )ABS—kAf
— q)kAr+lBs—l~<.

By recursion, we get the desired equality for any m.

The second statement follows by taking m = ks.

A set of representatives for the right cosets of ® () in I'(2) is given by {A"Bj}og,jsn,l. ByLemma4.1,
the index of ®(n) in Py is n. So there are n right cosets of @, in I'(2) and each of these is the union of

n cosets of ®(n) in I'(2). By the first statement, {A"}o<,<,—1 is a complete set of representatives. O
0 -1 .
Lett = |:1 _1i|. The modular symbol [t] = {1,0} represents a geodesic that starts at 1 and ends

at 0. To see this, we compute

N R e R R
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We use the notation t since [t] is homotopic to the class of T = ,Bv_vl asin (2.4).

Proposition 4.3. The group of modular symbols for &y is a free Z-module of rank n with basis
{[A"z]1|0<r<n-—1} (4.4)

Proof. By [4, Proposition 3.1], the group of modular symbols for the Fermat group & (#) is free of rank
n? + 1 generated by

{[ABt]|1<i<n—1,0<j<n—1JU{A"'B]|0<j<n—1}U{B" 7]}

Since ®(n) € Py, the set of modular symbols for @y is also generated as a Z-module by these elements.
Allit remains toAdo‘ is to find the relations between the generators. By Lemma 4.2, [A'B/] = [A"tH], and
so [A'Bit] = [A"%7]. Thus, the modular symbols

{IA7T]110<r<n—-1}U{[A1|0=<r<n-—1}

are generators for the group of modular symbols of ®y.
By [4, (3.7)] and Lemma 4.2, for any 1 < r < n — 1, we also have the relation

[AT] — [A 1 = [A" o] — [A7Fr).

Taking r = 1 shows [A] = [t] — [Al=k7]. Working inductively on i, we deduce that [Af] is a Z-linear
combination of the elements in (4.4), completing the proof that this set generates the group of modular
symbols. The properties of being free and rank » follow because this proof uses all of the relations in [4,
Section 3]. O

Proposition 4.4. A basis for the homology group H1(Xo,, Z) as a Z-module is
pri=[ATt]—[t] for 1 <r<n-—1

Proof. We first show that p, := [A"t] —[7] is a well-defined element in H; (X¢,, Z) forall1 <r <n—1.
It suffices to show that

7(A"T-0)=na(r-0)andw (A"t - ic0) = 7 (7 - i00).
By (4.3), the equalities are equivalent to
a(A" 1) =nm(l)and w (A" - 0) = 7(0).

Recall that B fixes 0. So A7 - 0 = ATB~(K D modn g for 1 e {1,...,n—1}.ByLemma4.2,7(A"-0) =
(A" . 0). Thus 7 (A" - 0) = 7 (Id - 0) = 7(0).

For the other equality, as in [4, p. 2308], consider the degree n cover Xo, — Xr@2) = 9 /T () =PL
By Lemma 4.1, this corresponds to the cover Wy — P!, given by (1, v) > u in affine coordinates. The
fact that this cover is totally ramified at 7; over u = 1 implies that the same is true for X, — P'. The
elements {7 (A" - 1)}o<r<n—1 all lie above the point corresponding to u = 1, so it follows that 7 (A" - 1) =
a(l)foralll <r<n-—1.

To see that the elements in {or}1<,<4—1 are Z-linearly independent, we assume that Zf;ll arpr =

0, with a, € Z. This implies that Y""! a,[A"7] — (Z:’;ll a,) [t] = 0. By Proposition 4.3, the set

r=1
{[A"T1}o<r<n—1 is linearly independent,soa, = 0for1 <r <n—1. O

Corollary 4.5. The set {[E;] | 1 < i < n — 1} is a basis for Hy (W, Z) as a Z-module.
Proof. The action of A is identified with €y and €o((x,¥)) = (¢x,y). Also €((u,v)) = (u,¢v). Since

y = xyk, this shows that A acts like € on Wy = Xg,. Since E; = el -tV and [Ey] = 0, this shows that
pi = [E;]. The result is then immediate from Proposition 4.4. ]
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5. Description using invariants

Asin Section 2, let W = W, . In this section, we illustrate Theorem 3.5.

5.1. Some invariant elements of A2Hq (W)

By Corollary 4.5, {[E;] | 1 < i < n— 1} is a basis for Hj(W,Z). For 1 < r < (n — 1)/2, in A>’H; (W),
we define
n—1
Ty =Y [El A [Eil.
i=0
Note that both E; and T, implicitly depend on k. For simplicity of notation, we write E; rather than [E;]
in the homology in the proofs in this section.

Lemma 5.1. The element T, is invariant under the automorphism €.

Proof. By (2.6), E; = ¢; ' - eg. Then €(E;) = Ei4+1 - By ! in 71 (Wg). So €(E;) = Ei1 — Ey in Hy (W, Z).
We compute that

n—1 n—1
€(Ty) = ) €(E) Ne(Biry) = ) (Eix1 — ED) A (Eigrgr — E1)
i=0 i=0
n—1
= Z(Ei+1 AEiyry1 — Ey AN Eipr1 + Er A Ejp).
i=0
Then Y 7"} (—E1 A Eiprq1 + E1 A Eip1) = 0and so €(Ty) = Y1) Eip1 A Eirpr = T O

5.2. Applications

By Theorem 3.5, the classifying element has the form
A= > ajlEIArIEL
1<i<j<n—1

In this section, we describe A using the invariant elements from Section 5.1.

Corollary 5.2. Let n, k be integers such that1 < k < n—2and gcd(n, k(k+1)) = 1. Letc € {1,...,n—1}
be such that ¢ = (k+ 1)~! mod n. Then A = Zresnk(_Tf—l + T,), where

Snk=1{r€Z/nZ | r = j(k+ 1) mod nfor somel <j<c—1}.
Proof. This is immediate from Theorem 3.5. O

Corollary 5.3. With the same hypotheses as Corollary 5.2:

(1) Ifk =1, then A = Y. V2 (<) T,
(2) If k =2, then A = 29;11)/2 wy T, where w, = 1 ifr = 0 mod 3 and w, = —1 if r = n mod 3.
(3) Ifk=n—2,then A = —Tj.
(4) Ifk=n—3,then A = Y. V2 (1)1,
(5) If k= (n—1)/2, then A = —T(n-1y/2-
(6) If k= (n—3)/2, then A = Tin-1y,2 — T1.
(7) Ifn=2mod 3andk = (n—2)/3, then A = Ty — Tk
Ifn=1mod 3 and k = (2n — 2)/3, then A = T(x12)/2 — Ty 2.
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Proof. (1) If k =1,thenc = (n+1)/2. Thenr € S, if and only if r is even.
(2) Writec=(n+1)/3ifn=2mod 3and c = 2n+ 1)/3if n = 1 mod 3. Write £ = n — 3. Then

-1 flI—J=€0+1,20+1, ..., (c—1)+1modn;
cy=3+1 ifI—]J=¢ 2¢, ..., (c—1)¢ mod n;

0 otherwise.

(3) If k = n—2,then ¢ = n—1. In this case, we cover every sheet0, 1,2, ...,n—2,n—1in order, starting
with sheet 0 and ending with sheet # — 1. It is more convenient to consider the edges between T and
=1, which are (¢""'7)~! and e7. So Eg A E; and —E,,_ A Eg appear in A. So cry = —1 (resp. +1)
if] —I=1modn (resp.] — I = n — 1 mod n) and ¢;; = 0 otherwise.

(4) If k = n — 3, then ¢ = (n — 1)/2. We omit the details.

(5) If k = (n — 1)/2, then ¢ = 2. It follows that ¢;; = —1 (resp. +1) onlyif ] — I = (n — 1)/2 mod n
(resp. (n + 1)/2 mod n).

(6) If k = (n — 3)/2, then ¢ = n — 2. In this case, we cover all but the (n — 1)st sheet, starting with
sheet 0, then (n + 1)/2, then 1, then (n + 3)/2, etc. It is more convenient to consider the edges
between t and 1, which are (" 17)7 !, e1, e ™tD/2¢ and (e~ D/27)~ 1. So cy=-—lif]—I=
(n+1)/2orlmodn,c;y=+1if] —I=(m—1)/20orn— 1 mod n, and ¢;; = 0 otherwise.

(7) Ifk = (n—2)/3and n = 2 mod 3, (resp. k = (2n — 2)/3 and n = 1 mod 3), then ¢ = 3. Let
¢ = n— (k+1) which equals (2n—1)/3 if n = 2 mod 3 and equals (n — 1) /3 if n = 1 mod 3. Then
cy=-—1lifJ]—I=¢2¢modnandcy=+1ifJ]—I=£+1,2¢{ + 1 mod n.

O

Corollary 5.2 determines A for all values of k when 3 < n < 11 and for all but two values of k when
n = 11. We include these two as final examples.

Example54. Ifn=11andk =6,thenc=8and A = —T, + T3 — T4.

Example5.5. Ifn=11andk =7,thenc=7and A = =T, + T, — T3 + T5.
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