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Confidence intervals based on the central limit theorem (CLT) are a cor-
nerstone of classical statistics. Despite being only asymptotically valid, they
are ubiquitous because they permit statistical inference under weak assump-
tions and can often be applied to problems even when nonasymptotic infer-
ence is impossible. This paper introduces time-uniform analogues of such
asymptotic confidence intervals, adding to the literature on confidence se-
quences (CS)—sequences of confidence intervals that are uniformly valid
over time—which provide valid inference at arbitrary stopping times and
incur no penalties for “peeking” at the data, unlike classical confidence in-
tervals which require the sample size to be fixed in advance. Existing CSs
in the literature are nonasymptotic, enjoying finite-sample guarantees but not
the aforementioned broad applicability of asymptotic confidence intervals.
This work provides a definition for “asymptotic CSs” and a general recipe
for deriving them. Asymptotic CSs forgo nonasymptotic validity for CLT-like
versatility and (asymptotic) time-uniform guarantees. While the CLT approx-
imates the distribution of a sample average by that of a Gaussian for a fixed
sample size, we use strong invariance principles (stemming from the seminal
1960s work of Strassen) to uniformly approximate the entire sample average
process by an implicit Gaussian process. As an illustration, we derive asymp-
totic CSs for the average treatment effect in observational studies (for which
nonasymptotic bounds are essentially impossible to derive even in the fixed-
time regime) as well as randomized experiments, enabling causal inference
in sequential environments.

1. Introduction. The central limit theorem (CLT) is arguably the most widely used re-
sult in applied statistical inference, due to its ability to provide large-sample confidence in-
tervals (CI) and p-values in a broad range of problems under weak assumptions. Examples
include (a) nonparametric estimation of means, such as population proportions, (b) maximum
likelihood and other M-estimation problems, and (c) modern semiparametric causal inference
methodology involving (augmented) inverse propensity score weighting [6, 18, 33, 45]. Cru-
cially, in some of these problems such as doubly robust estimation in observational studies,
nonasymptotic inference is typically not possible, and hence the CLT yields asymptotic CIs
for an otherwise unsolvable inference problem.

While the CLT makes efficient statistical inference possible in a broad array of problems,
the resulting Cls are only valid at a prespecified sample size n, invalidating any inference that
occurs at data-dependent stopping times, for example under continuous monitoring. Cls that
retain validity in sequential environments are known as confidence sequences (CS) [7, 30] and
can be used to make decisions at arbitrary stopping times (e.g., while adaptively sampling,
continuously peeking at the data, etc.). CSs are an inherently nonasymptotic notion, and thus
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essentially every published CS is nonasymptotic, including various recent state-of-the-art
constructions in different settings [12, 14, 47, 50].

This paper presents a new notion: an “asymptotic confidence sequence.” For the familiar
reader, this might at first sound like an oxymoron. Further, it is not obvious how to posit
a definition that is simultaneously sensible and tractable, meaning whether it is possible to
develop such asymptotic CSs (whatever it may mean). We believe that we have formulated the
“right” definition, because we accompany it with a universality result that parallels the CLT—
a universal asymptotic CS that is valid under the exact same moment assumptions required
by the CLT, and exploits certain time-uniform central limit theory to arrive at boundaries that
one would use if the data were Gaussian. This enables the construction of asymptotic CSs in
a myriad of new situations where the distributional assumptions are weak enough to remain
out of the reach of nonasymptotic techniques even in fixed-time settings. The width of this
universal asymptotic CS scales with the variance of the data, just like the empirical variance
used in the CLT—such variance-adaptivity is only achievable for nonasymptotic methods in
very specialized settings [50]. Before proceeding, let us first briefly review some notation and
key facts about CSs.

1.1. Time-uniform confidence sequences (CSs). Consider the problem of estimating the
population mean p = IE(Y7) from a sequence of i.i.d. data (¥;)72, = (Y1, Y2, ...) that are ob-
served sequentially over time. A nonasymptotic (1 —a)-Cl for pis a set! Cn =C Y1,.... Y
with the property that

(1) VneN, Pue Cn) >1—a, orequivalently, VneN, P(u¢ C",,) < o

The coverage guarantee (1) of a CI is only valid at some prespecified sample size n, which
must be decided in advance of seeing any data—peeking at the data in order to determine the
sample size constitutes ““p-hacking.” However, it may be restrictive to fix n beforehand, and
even if sample size calculations are carried out based on prior knowledge, it is impossible to
know a priori whether n will be large enough to detect some signal of interest: after collecting
the data, one may regret collecting too little data or much more than necessary.

CSs provide the flexibility to choose sample sizes data-adaptively while controlling the
type-I error rate (see Figure 1). Formally, a CS is a sequence of CIs (C )i such that

2) PVteN, u e CH)>1—a, or equivalently, P(JreN:u ¢ C)) <a.

The statements (1) and (2) look similar but are markedly different from the data analyst’s or
experimenter’s perspective. In particular, employing a CS has the following implications:

(a) The CS can be (optionally) updated whenever new data become available;
(b) Experiments can be continuously monitored, adaptively stopped, or continued;
(c) The type-I error is controlled at all stopping times, including data-dependent times.

In fact, CSs may be equivalently defined as CIs that are valid at arbitrary stopping times, that
is,

P(uwe C,)>1—a forany stopping time T.

A proof of this equivalence can be found in Howard et al. [14], Lemma 3.

As mentioned before, while nonparametric CSs have been developed for several problems,
they have thus far been nonasymptotic. Nonasymptotic inference for means of random vari-
ables requires strong assumptions on the distribution of the data [1]. These assumptions often

I'We use overhead dots C,, to denote fixed-time (pointwise) Cls and overhead bars C; for time-uniform CSs.
2Here and throughout, let N:= {1, 2, ...} and Ny := N U {0}.
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FIG. 1. The left plot shows one run of a single experiment: an asymptotic CS alongside an asymptotic CI for
a parameter of interest (in this case, the average treatment effect (ATE) of 0.4, an example we expand on in
Section 3). The true value of the ATE is covered by the CS simultaneously from time 30 to 10,000. On the other
hand, the CI fails to cover the true ATE at several points in time. By repeating such an experiment hundreds of
times, one obtains the right plot which displays the cumulative probability of miscoverage—that is, the probability
of the CS or Cl failing to capture the true ATE at any time up to t. Notice that the CI error rate begins at o = 0.1
and quickly grows, while the CS error rate never exceeds o =0.1.

take the form of a parametric likelihood [12, 48], known bounds on the random variables
themselves [14, 50], on their moments [47], or on their moment generating functions [14].

These added distributional assumptions make existing CSs quite unlike CLT-based Cls
which (a) are universal, meaning they take the same form—up to a change in influence
functions—and are computed in the same way for most problems, and (b) are often appli-
cable even when no nonasymptotic CI is known, such as in doubly robust inference of causal
effects in observational studies. Our work bridges this gap, bringing properties (a) and (b)
to the anytime-valid sequential regime by making one simple modification to the usual Cls.
Just as CLT-based CIs yield approximate inference for a wide variety of problems in fixed-n
settings, our paper yields the same for sequential settings.

1.2. Contributions and outline. 'We begin by rigorously defining “asymptotic confidence
sequences” (AsympCSs) in Definition 2.1 and providing a general recipe to derive explicit
AsympCSs that are as easy to implement and apply as CLT-based ClIs in Section 2.3. Us-
ing this recipe, we develop a Lindeberg-type AsympCS that is able to capture time-varying
means under martingale dependence (Section 2.4). Furthermore, in Section 2.5, we give a
definition of asymptotic time-uniform coverage (akin to coverage of asymptotic CIs) and
show how sequences of our AsympCSs enjoy this property. In Section 3, we illustrate how
the AsympCSs of Section 2.1 enable asymptotically anytime-valid semiparametric inference
for causal effects in both randomized experiments and observational studies (Section 3). To
be clear, we are not focused on deriving new semiparametric estimators; we simply demon-
strate how semiparametric causal inference—a problem for which no known CSs exist in
the observational setting—can now be tackled in fully sequential environments using the ex-
isting state-of-the-art estimators combined with our AsympCSs (Theorems 3.1 and 3.2). In
Section 4, we provide a simulation study to illustrate empirical widths and miscoverage rates
of AsympCSs and compare them to some existing (nonasymptotic) CSs in the literature.
Finally, in Section 5 we apply the AsympCSs of Section 3 to a real observational data set
by sequentially estimating the effects of fluid intake on 30-day mortality in sepsis patients.
Proofs, additional results and discussions, and an R package can be found in the Supplemen-
tary Material [49]. In sum, this work expands the scope of anytime-valid inference by tackling
sequential estimation problems under CLT-like moment assumptions and guarantees.
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2. Asymptotic confidence sequences. We first define what it means for a sequence of
intervals to form an asymptotic confidence sequence (AsympCS). Then, we derive a “univer-
sal” AsympCS in the sense that the AsympCS does not depend on any features of the distri-
bution beyond its mean and variance.’ Much like classical asymptotic confidence intervals
based on the CL]T, this universal AsympCS fundamentally relies on Gaussian approximation.
However, in this setting, the particular type of central limit theory being invoked is that of
strong invariance principles, where an implicit Gaussian process is coupled with a partial
sum with probability one (more details are provided in Section 2.2.2). Finally, similar to CIs
based on martingale CLTs, we derive a Lindeberg-type martingale AsympCS that can track a
moving average of conditional means.

2.1. Defining asymptotic confidence sequences. Here, we define and present “asymptotic
confidence sequences” as time-uniform analogues of CLT-based asymptotic Cls, making sim-
ilarly weak moment assumptions and providing a universal closed-form boundary.

The term ‘““asymptotic confidence sequence” may at first seem paradoxical. Indeed, ever
since their introduction by Robbins and collaborators [7, 21, 22], CSs have been defined
nonasymptotically, satisfying the time-uniform guarantee in equation (2). So how could a
bound be both time-uniform and asymptotically valid? We clarify this critical point soon,
with an analogy to classical asymptotic CIs. Similar to asymptotic CIs, AsympCSs trade
nonasymptotic guarantees for (a) simplicity and universality, and (b) the ability to tackle a
much wider variety of problems, especially those for which there is no known nonasymptotic
CS. Said differently, AsympCSs trade finite sample validity for versatility (exemplified in
Section 3 with a particular emphasis on modern causal inference).

Indeed, there is a clear desire for (asymptotically) time-uniform methods with CLT-like
simplicity and versatility, especially in the context of causal inference. For example, Jo-
hari et al. [15], Section 4.3, use a Gaussian mixture sequential probability ratio test (SPRT)
to conduct A/B tests (i.e. randomized experiments) for data coming from (non-Gaussian)
exponential families and mentions that CLT approximations hold at large sample sizes. Sim-
ilarly, Yu, Lu and Song [51] develop a mixture SPRT for causal effects in generalized linear
models, where they say that their likelihood ratio forms an “approximate martingale,” mean-
ing its conditional expectation is constant up to a factor of exp{op(1)}. Moreover, Pace and
Salvan [27] suggest using Robbins’ Gaussian mixture CS as a closed-form “approximate CS”
and they demonstrate through simulations that the time-uniform coverage guarantee tends to
hold in the asymptotic regime. However, all of these approaches justify time-uniform infer-
ence with op(-) approximations that only hold at a fixed, pre-specified sample size, and yet
inferences are being carried out at data-dependent sample sizes. This section remedies the
tension between fixed-n approximations and time-uniform inference by defining AsympCSs
such that Gaussian approximations must hold almost surely for all sample sizes simultane-
ously. The AsympCSs we define will also be valid in a wide range of nonparametric scenarios
(beyond exponential families, parametric models, and so on).

To motivate the definition of an AsympCS that follows, let us briefly review the CLT in the

batch (nonsequential) setting. Suppose Y1, ..., Y, ~ P with mean E(Y;) = u and variance
var(Y]) = o2. Then the standard CLT-based CI for « (with known variance o) takes the form
X . N (1 —a/2)
3) Cn:= [ﬂni%n]E[Mn :EU-—/:|,
Jn

3We use “universal” in the same way that the CLT and law of large numbers are considered universal, as they
describe macroscopic behaviors that are independent of most microscopic details of the system.
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where [i, is the sample mean and ®~'(1 — «/2) is the (I — «/2)-quantile of a standard
Gaussian N (0, 1) (e.g., for @ = 0.05, we have ®1(0.975) &~ 1.96). The classical notion of
“asymptotic validity” is

liminfP(u € Cy)>1—a.

While the above is the standard definition of an asymptotic CI, one could have arrived at an
alternative definition by noting the following rather strong statement that can be made under
the same conditions: there exist* i.i.d. standard Gaussians Zi, ..., Z, ~ N (0, 1) such that

1 & 1 &
(4) ~2 (Yi—w/o=—3 Zi+oe(l/¥/n).
i=1 i=1

From this vantage point, we note that the CI in (3) has the additional guarantee that there in
fact exists an (unknown) nonasymptotic (1 — a)-CI [fi,, == B},] such that

5) B /B, > 1.

We deliberately highlight the above property of asymptotic Cls because it ends up serving as a
natural starting point for defining asymptotic confidence sequences. In particular, we will de-
fine AsympCSs so that an analogous approximation to (5) holds uniformly over time, almost
surely. Statements like (4) are known as “couplings” and appear in the literature on strong
approximations and invariance principles where similar guarantees can indeed be shown to
hold almost surely and at faster rates under additional moment assumptions [10, 19, 20].

DEFINITION 2.1 (Asymptotic confidence sequences). Let 7 be a totally ordered infinite
set (denoting time) that has a minimum value #g € 7. We say that the intervals (@ — Ly, @; +
U:):eT centered at the estimators (é\t)th with nonzero bounds L;, U; > 0, Vr € 7 form
a (1 — a)-asymptotic confidence sequence (AsympCS) for a sequence of real parameters
(6;):e7 if there exists a (typically unknown) nonasymptotic (1 —«)-CS (5, —L7, é\, +U)ieT
for (6;);e7—that is, satisfying

PVteT,6, €0, — L6 +U])>1—a,
and such that L, U; become arbitrarily precise almost-sure approximations to Ly and U;":

LY/L; 251 and Uf/U 25 1.

In words, Definition 2.1 says that an AsympCS (C¢);<7 centered at (5,) re7 1s an arbitrarily
precise approximation of some nonasymptotic CS (C});c7 centered at (5,),67 as t — oo.
Throughout the paper, we will mostly focus on the case where 7 = Ny with 75 = 0.

It is important to note that alternate definitions fail to be coherent in different ways. As
one example, we could have hypothetically defined a sequence of intervals (C;(«));cT to be
a (I — o)-AsympCS if limsup,, ,  P(3t > m : u ¢ C;(a)) < a, analogously to asymptotic
CIs which satisfy limsup,,_, ., P(u ¢ Cn(@)) < . In words, we could have posited that if
we just start peeking late enough, then the probability of eventual miscoverage would indeed
be below «. Unfortunately, even for nonasymptotic CSs constructed at any level «’ € (0, 1),
the former limit is zero, so this inequality would be vacuously true, regardless of «’, even if
a’ > o. However, we do show that sequences of our AsympCSs satisfy a guarantee of this
type (see Section 2.5), but we delay those definitions until later as they are more involved.

4Technically, writing (4) may require enriching the probability space so that both Y and Z can be defined (but
without changing their laws). See Einmahl [10], Equation (1.2), for a precise statement.
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By virtue of being defined in terms of their limiting behavior, one can obviously construct
AsympCSs (as well as asymptotic confidence intervals) with nonsensical finite-sample be-
havior. It is thus imperative that if a practitioner decides to employ an asymptotic method,
they do so with the understanding that its effectiveness relies on it exploiting some well-
approximated nonasymptotic phenomenon, and that its limiting behavior should be viewed
as a rigorous manifestation of a guiding principle rather than a panacea.

REMARK 1 (Why almost surely?). One may wonder why it is necessary to define Asym-
pCSs so that LY/L; — 1 almost surely (rather than in probability, for example). Since CSs
are bounds that hold uniformly over time with high probability, convergence in probability
Ly/L; =1+ op(1) is not the right notion of convergence, as it only requires that the approx-
imation term op(1) be small with high probability for sufficiently large fixed ¢, but not for all
t uniformly. It is natural to try to extend convergence in probability to time-uniform conver-
gence with high probability—that is, sup~, (L} /L) = 1 + op(1)—but it turns out that this
is in fact equivalent to almost-sure convergence L} /L; =1+ 0,5.(1); see Appendix B.3.

Going forward, we may omit “a.s.” from 0, 5. (-) and O, (-) and instead simply write o(-)
and O (-), respectively to simplify notation. Now that we have defined AsympCSs as time-
uniform analogues of asymptotic Cls, we will explicitly derive AsympCSs for the mean of
i.i.d. random variables with finite variances (i.e., under the same assumptions as the CLT).

2.2. Warmup: AsympCSs for the mean of i.i.d. random variables. 'We now construct an
explicit AsympCS for the mean of i.i.d. random variables by combining a variant of Robbins’
(nonasymptotic) Gaussian mixture boundary [30] with Strassen’s strong approximation theo-
rem [39]. Before presenting the result, let us review Robbins’ boundary and Strassen’s result,
and discuss how they can be used in conjunction to arrive at the AsympCS in Theorem 2.2.

2.2.1. Robbins’ Gaussian mixture boundary. The study of CSs began with Herbert Rob-
bins and colleagues [7, 21, 22, 30, 31], leading to several fundamental results and techniques
including the famous Gaussian mixture boundary for partial sums of i.i.d. Gaussian random
variables [30] (see also Howard et al. [14], §3.2) which we recall here. Suppose (Zt)?i1 are
i.i.d. standard Gaussian random variables. Then for any p > 0,

1< 12+ 1 12+ 1
(6) P(Hrzl:'?zzi 3/ 2, log( - ) <a

i=1

Notice that the above boundary scales as O (+/logt/t) for any p > 0. In fact, Robbins [30],
equation 11, noted that (6) holds not only for Gaussian random variables, but for those that
are 1-sub-Gaussian, and hence pre-multiplying the boundary by o yields a o-sub-Gaussian
time-uniform concentration inequality, serving as a time-uniform analogue of Chernoff or
Hoeffding inequalities. The connections between these fixed-time and time-uniform concen-
tration inequalities are made explicit in Howard et al. [14]. Nevertheless, Eg. (6) requires a
priori knowledge of o > 0 unlike CLT-based CIs which we aim to emulate in the (asymptot-
ically) time-uniform regime. The following strong Gaussian approximation due to Strassen
[39] will serve as a technical tool allowing the nonasymptotic sub-Gaussian bound in (6) to
be applied to partial sums of arbitrary random variables with finite variances.

2.2.2. Strassen’s strong approximation. Strassen [39] initiated the study of “strong ap-
proximation” (also called strong invariance principles or strong embeddings) which blos-
somed into an active and impactful corner of probability theory research over the subsequent
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years, culminating in now-classical results such as the Koml6s—Major—Tusnddy embeddings
[19, 20, 24] and other related works [5, 26, 40].

In his 1964 paper, Strassen [39], §2, used the Skorokhod embedding [38] (see also [3],
p- 513) to obtain a strong invariance principle which connects asymptotic Gaussian behavior
with the law of the iterated logarithm. Concretely, let (Y;)72, be an infinite sequence of i.i.d.
random variables from a distribution P with mean p and variance o2. Then, on a potentially
richer probability space,’ there exist standard Gaussian random variables (Z;)72, whose par-
tial sums are almost-surely coupled with those of (¥;)7°, up to iterated logarithm rates, that
is,

t t
©) Y i—w/o =Y Z

i=1 i=1

Notice that the law of the iterated logarithm states that | Yt_,(Y; — n)/o| = O(/tloglog?)
while (7) states that the same partial sum is almost-surely coupled with an implicit Gaussian
process—that is, replacing O (-) with o(-). It may be convenient to divide by ¢ and interpret (7)
on the level of sample averages rather than partial sums, in which case the right-hand side
becomes o(+/loglogz/t). Let us now describe how Strassen’s strong approximation can be
combined with Robbins’ Gaussian mixture boundary to derive an AsympCS under finite
moment assumptions akin to the CLT.

=o(,/tloglog?) almost surely.

2.2.3. The Gaussian mixture asymptotic confidence sequence. Given the juxtaposition of
(6) and (7), the high-level approach to the derivation of AsympCSs becomes clearer. Indeed,
the essential idea behind Theorem 2.2 is as follows. By Strassen’s strong approximation, we
couple the partial sums S, := Y ¢_,(¥; — u)/o with implicit partial sums G, := Y }_, Z;
of Gaussians (Z;);2,, and then use Robbins’ mixture boundary to obtain a time-uniform
high-probability bound on the deviations of |G|, noting that the coupling rate o(+/f loglogt)
is asymptotically dominated by the concentration rate O (4/tlogt), leading to asymptotic
validity in the formal sense of Definition 2.1.

THEOREM 2.2 (Gaussian mixture asymptotic confidence sequence). Suppose (Y;)72, ~
P is an infinite sequence of i.i.d. observations from a distribution P with mean u and finite

variance. Let [i; := % > i_, Y be the sample mean, and 3,2 = % i, Yi2 — (f1;)? the sample
variance based on the first t observations. Then, for any prespecified constant p > 0,

— = P+ tp% + 1
(8) CY =, +BY):= <ut :l:cr,\/ 2,7 10g( " ))

forms a (1 — a)-AsympCS for |1.

The proof of Theorem 2.2 is in Appendix A.1. We can think of p > 0 as a user-chosen
tuning parameter which dictates the time at which (8) is tightest, and we discuss how to easily
tune this value in Appendix B.2. A one-sided analogue of (8) can be found in Appendix B.1.

While (8) may look visually similar to Robbins’ (sub)-Gaussian mixture CS [30]—written
explicitly in Howard et al. [14], equation (14),—it is worth pausing to reflect on how they
are markedly different. First, Robbins’ CS is a nonasymptotic bound that is only valid for

SA richer probability space may be needed to describe Gaussian random variables, if for example, (Y,)‘t’i 1
are {0, 1}-valued on a probability space whose probability measure is dominated by the counting measure. This
construction of a richer probability space imposes no additional assumptions on (Y,);’i 1> and is only a technical
device used to rigorously couple two sequences of random variables, and appears in essentially all papers on
strong invariance principles, not just Strassen [39].
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o -sub-Gaussian random variables, meaning Eexp{A(Y; — EY})} < exp{o>A?/2} for some a
priori known o > 0, while Theorem 2.2 does not require the existence of a finite MGF at
all (much less a known upper bound on it). Second, Robbins’ CS uses this known (possibly
conservative) o in place of &; in (8), and thus it cannot adapt to an unknown variance, while
(8) always scales with /var(Y1). In simpler terms, Theorem 2.2 is an asymptotically time-
uniform analogue of the CLT in the same way that Robbins’ CS is a time-uniform analogue
of a sub-Gaussian concentration inequality (e.g., Hoeffding’s inequality [11, 13]).

It is important not to confuse Theorem 2.2 with a martingale CLT as the latter still gives
fixed-time ClIs in the spirit of the usual CLT but under different assumptions on the martingale
difference sequence (however, we do present an analogue of Theorem 2.2 under martingale
dependence in Proposition 2.5).

2.2.4. An asymptotic confidence sequence with iterated logarithm rates. As a conse-
quence of the law of the iterated logarithm, a confidence sequence for u centered at fi; cannot
have an asymptotic width smaller than O (\/loglog?/¢). This is easy to see since

hmsupm -1
t—o00 0+/2loglogt

This raises the question as to whether C, tg can be improved so that the optimal asymptotic
width of O(4/loglog?/¢) is achieved. Indeed, we can replace Robbins’ Gaussian mixture
boundary with Howard et al. [14], equation (2), (or virtually any other Gaussian boundary
for that matter) in the proof of Theorem 2.2 to derive such an AsympCS, but as the authors
discuss, mixture boundaries such as the one in Theorem 2.2 may be preferable in practice,
because any bound that is tighter “later on” (asymptotically) must be looser “early on” (at
practical sample sizes) due to the fact that all such bounds have a cumulative miscoverage
probability < «. This is formally a concern for nonasymptotic CSs, but only applies to Asym-
pCSs insofar as they are asymptotic approximations of nonasymptotic bounds. Nevertheless,
we present an AsympCS with an iterated logarithm rate here for completeness.

PROPOSITION 2.3 (Iterated logarithm asymptotic confidence sequences). Under the
same conditions as Theorem 2.2,

. . [loglog(2r) + 0.7210g(10.4/ax)
CfE(P«z:I:‘Bf)::(Mt:I:U,-lﬂ\/ £08 i) )

t
forms a (1 — a)-AsympCS for 1.

We omit the proof of Proposition 2.3 as it proceeds in a similar fashion to that of Theo-
rem 2.2. In fact, both of these AsympCSs are simply instantiations of a more general recipe
for deriving AsympCSs by combining strong approximations with time-uniform boundaries
for the approximating process, an approach that we discuss in the following section.

2.3. A general recipe for deriving asymptotic confidence sequences. The proofs of both
Theorem 2.2 and Proposition 2.3 follow the same general structure, combining strong ap-
proximations with time-uniform boundaries along with some other almost-sure asymptotic
behavior. Abstracting away the details specific to these particular results, we provide the fol-
lowing four general conditions under which many AsympCSs can be derived, including those
from the previous section but also Lyapunov- and Lindeberg-type AsympCS that we will state
in Section 2.4).

In what follows, let 7 be a totally ordered infinite set that includes a minimum value
1o € T (for example, one may think about 7 as R=? or Ny with #o = 0) and let (@),67— be a
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sequence of estimators for the real-valued parameters (6;);c7. Then, consider the following
four conditions where we use the “Condition G-X” enumeration as a mnemonic for the Xt
condition in the section on General recipes for AsympCSs).

CONDITION G-1 (Strong approximation). On a potentially enriched probability space,
there exists a process (Z;);eT starting at Z,, = 0 that strongly approximates (6; — 0;);c7 up
to a rate of (ry)iet, i.€.

©)] ©0; — é\;) — Z; = O(r;) almost surely.

CONDITION G-2 (Boundary for the approximating process). There exist L >0 and
Ut > 0 foreacht €T so that [— L,, Ut teT forms a (1 —a)-boundary for the process (Z;) et
given in (9):

(10) P(VteT,Z e[-L;,Ul)>1—a.

CONDITION G;3 (Strong apBroximation rate). The approximation rate (r¢);e in (9) is
faster than both (L;);e1 and (Uy):e7 in (10), that is,

ry = O(Z, A ﬁ,) almost surely.

_ CONDITION G-4 (Almost-sure approximate boundary). The (1 — «)-boundary [—it,
UilieT for (Z))se7 is almost-surely approximated by the sequence [—L;, Ui eT, that is,

L)L, 251 and U,JU, 25 1.

Deriving new AsympCSs then reduces to the conceptually simpler but nevertheless non-
trivial task of satisfying the requisite conditions above. For example, in the previous section,
we satisfied Condition G-1 via Strassen [39], Condition G-2 via Robbins [30], Condition G-3
via the combination of Strassen [39] and Robbins [30], and Condition G-4 via the strong law
of large numbers (SLLN). The only difference between Theorem 2.2 and Proposition 2.3 was
in what boundaries were being used for [L;, U;];e7 and [E,, ﬁ,],eT. More generally, under
Conditions G-1-G-4, we have the following abstract theorem for AsympCSs.

THEOREM 2.4 (An abstract AsympCS for well-approximated processes). Let T be a
totally ordered infinite set containing a minimal element ty € T and let (0;);c7 be a real-
valued process. Under Conditions G-1-G-4,

[6; — L;,6; + U]

forms a (1 — a)-AsympCS for 6; meaning there exists (on a potentially enriched probability
space) some nonasymptotic (1 —a)-CS [6; — L}, 6; + U} l;eT for (0;)ieT, that is,

P(VteT,0, €0, — L6, +U])=1—«a
such that

LY/L, 251 and USJU 25 1.

We provide a short proof of Theorem 2.4 in Appendix A.2. Note that the lower boundaries
given by L} and L; are not the same, but rather L7} is constructed from L, (and similarly
for U} and U,). In the following section, we will use the general recipe of Theorem 2.4 to
obtain AsympCSs for time-varying means from non-i.i.d. random variables under martingale
dependence akin to the Lindeberg CLT [3, 23].
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2.4. Lindeberg- and Lyapunov-type AsympCSs for time-varying means. The results in
Theorem 2.2 and Proposition 2.3 focused on the situation where the observed random vari-
ables are i.i.d. as this is one of the most commonly studied regimes in statistical inference.
One may also be interested in the case where means and variances do not remain constant
over time, or where observations are dependent. We will now show that an analogue of Theo-
rem 2.2 holds for random variables with time-varying means and variances under martingale
dependence. In this case, rather than the AsympCS covering some fixed p, it covers the av-
erage conditional mean thus far: i, := 1 Zl_l i—to be made precise shortly.®

Given the additional complexity 1ntroduced by considering time-varying conditional dis-
tributions, we will first explicitly spell out the conditions required to achieve a time-varying
analogue of Theorem 2.2. Suppose (¥;);2 is a sequence of random variables with conditional
means and variances given by u; := ]E(Y,lYI’ _1) and otz ;= var(Y;| Y{ _1), respectively where
we use the shorthand Y1’ ~1 for {Y1, ..., Y;_1}. First, we require that the average conditional
variance ot =1 Z i—1 aiz either does not vanish, or does so superlinearly; equivalently, we
require that the cumulative conditional variance diverges almost surely.

CONDITION L-1 (Cumulative variance diverges almost surely). Foreacht > 1, let 0,2 =
Var(YtlYf _1) be the conditional variance of Y;. Then

V= Zof — 00 almost surely.

i=l

Condition L-1 can also be interpreted as saying that the average conditional variance

~2 =1 Z i~ 02 does not vanish faster than 1 / ¢t (if at all), meaning 3,2 = wys.(1/1). For

example COHdlthIl L-1 would hold if 52 25 0 2 for some a > 0 or in the i.i.d. case where

012 = 022 =...=07. Second, we requlre a Lindeberg-type uniform integrability condition on

the tail behavior of (¥;)72,

CONDITION L-2 (Lindeberg-type uniform integrability). There exists some 0 < k < 1
such that

SVEL(Y: — w)* (Y — ) > VOIY{ ]
Z R < o0 almost surely.

=1 t

Notice that Condition L-2 is satisfied if all conditional g™ moments are almost surely
uniformly bounded for some ¢ > 2, meaning 1/K < E(|Y; — M,|q|Y1t71) < K a.s. for all
t > 1 and for some constant K > 0, or more generally under a Lyapunov-type condition that
states Y00 [E(|Y; — e >0 Y171 1V, 2] < 00 as. for some 8 > 0.7 Third and finally, we
require a consistent variance estimator.

CONDITION L-3 (Consistent variance estimation). Let 672 be an estimator of &2 con-
structed using Y1, ..., Y; such that

(11) Rl

6Throughout this section and the remainder of the paper, we use the overhead tilde (e.g., i, 67, and c t) to
emphasize that these quantities can change over time. For example, Figure 2 explicitly displays means and CSs
with sinusoidal behaviors resembling a tilde.

7We show that the Lyapunov-type condition implies Condition L-2 in Appendix B.5.
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Note that in the i.i.d. case, (11) would hold using the sample variance by the SLLLN. More
generally for independent but non-identically distributed data, Condition L-3 holds as long
as the variation in means vanishes—that is, % le (i — ﬁ,)2 = o(1)—but we will expand
on this later in Corollary 2.6. Given Conditions L-1, L-2, and L-3, we have the following
AsympCS for the time-varying conditional mean ji; := % i i

PROPOSITION 2.5 (Lindeberg-type Gaussian mixture martingale AsympCS).  Let (Y;)72

be a sequence of random variables with conditional mean j; == E(Y;| Ylt ~1Y and conditional

variance 0,2 = Var(Y,lYlt _1). Then under Assumptions L-1, L-2, and L-3, we have that

/\2 2 A2 2
~ o~ . tofpc+1 tofpc+1
Cr= (U £B;) = (Mzi\/ ttzpz 10( ta2 ))

forms a (1 — a)-AsympCS for the running average conditional mean fi; = % S i

At a high level, the proof of Proposition 2.5 (found in Appendix A.3) follows from the
general AsympCS procedure of Theorem 2.4 by using Condition L-2 and Strassen’s 1967
strong approximation [40] (not to be confused with his 1964 [39] result that we used in The-
orem 2.2) to satisfy Conditions G-1 and G-3, and a variant of Robbins’ mixture martingale
for non-i.i.d. random variables along with Conditions L-1 and L-3 to satisfy Conditions G-2
and G-4. _

Notice that if the data happen to be i.i.d., then (C;)72, is asymptotically equivalent to

(C, tg )72, given in Theorem 2.2 (here, “asymptotic equivalence” simply means that the ratio
of the two boundaries converges a.s. to 1). In other words, Proposition 2.5 is valid in a more
general (non-i.i.d.) setting, but will essentially recover Theorem 2.2 in the i.i.d. case. Figure 2
illustrates what C; may look like in practice. Note that when (¥;);2, are independent with
U1 = M2 =+ = [lx, and 012 =02=...= 0*2, it is nevertheless the case that 5, forms a
(1 — a)-AsympCS for p, under the same assumptions as Theorem 2.2. In this sense, we
can view (C;)72, as “robust” to deviations from independence and stationarity.® A one-sided
analogue of Proposition 2.5 is presented in Proposition B.2 within Appendix B.1.

0.75

0.50 . (o}

CH

Confidence sequence for I

)
G

10 10%° 10° 10%° 10*
Time t

FIG. 2. A 90%-AsympCS for the time-varying mean [i; using Proposition 2.5 with p optimized for t* = 500
based on the exact solution of Appendix B.2. Here, we have set iy := %(1 —sin(2log(e + 10¢))/log(e + 0.01¢))
to produce the sinusoidal behavior of [i;. Notice that C uniformly captures [i;, adapting to its nonstationarity.

8Here, the term “robust” should not be interpreted in the same spirit as “doubly robust,” where the latter is
specific to the discussions surrounding functional estimation and causal inference in Section 3.
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As a near-immediate corollary of Proposition 2.5, we have the following Lyapunov-type
AsympCS under independent but non-identically distributed random variables.

COROLLARY 2.6 (Lyapunov-type AsympCS). Suppose (Y;):2, is a sequence of inde-
pendent random variables with individual means and variances given by u; := E(Y;) and

0,2 :=var(Yy), respectively. Suppose that in addition to Condition L-1 and the Lyapunov-type

condition Y72 [E|Y; — w; RasyNAY 2+8 ] < 00, we have the following regularity conditions:

E|Y2 ]Ey2|1+5 - 1< ~ ~
(12) Z: <00, i2=o(V,) as., and ;2}#rﬁhf20®ﬂ
i=1

l

for some B € (0, 1). In other words, the higher moments of (Y;){2 |, the running mean [i;, and
the cumulative “variation in means” 1(,u, ,ut) all cannot diverge too quickly relative
to (Vi);72,. Then using the sample varlance for @, ot , G forms a (1 — a)-AsympCS for the
running average mean fl; := y Zle Wi

Clearly, the conditions of (12) are trivially satisfied if the (2 + 28)™ absolute central mo-
ments are uniformly bounded over time and if the means converge. Since Conditions L-1 and
L-2 hold by the assumptions of Corollary 2.6, the proof in Appendix A.4 simply shows how
the conditions in (12) imply Condition L-3.

As suggested by Section 2.3, we can combine Theorem 2.4 with essentially any other
Gaussian boundary, and indeed there are others that can yield Lindeberg- and Lyapunov-type
AsympCSs but we do not enumerate any more here, though we do mention one inspired by
Robbins [30], equation (20), in passing in Section 2.6. The next section discusses how all of
the aforementioned AsympCSs satisfy a certain formal asymptotic coverage guarantee.

2.5. Asymptotic coverage and type-I error control. 'While the AsympCSs derived thus far
serve as sequential analogues of CLT-based Cls, it is not immediately obvious whether the
bounds introduced in the previous section enjoy similar asymptotic coverage (equivalently,
type-I error) guarantees. We will now give a positive answer to this question by showing that
after appropriate tuning, our AsympCSs have asymptotic (1 — «)-coverage uniformly for all
t > m as m — o0 (to be formalized in Definition 2.7).

Recall that the coverage of CLT-based Cls is at least (1 — «) in the limit:

(13) liminfP(u € Cp) > 1 — a,
n—oo

but what is the right time-uniform analogue of (13)? Since any single AsympCS will simply
have some coverage, we provide the following definition as a time-uniform analogue of (13)
for sequences of sets that start later and later. In the definition that follows, m > 1 will play
the role of an “initial peeking time” and time-uniformity will be provided with respect to all
t>m.

DEFINITION 2.7 (Asymptotic time-uniform coverage). For each m € N, let (C,(m))?2,,
be a sequence of sets, and let o € (0, 1) be the desired miscoverage level. We say that
(C;(m))2,, has asymptotic time-uniform (1 — o)-coverage for (ju;);2 if

(14) lggi&ﬂ?’(‘v’t >m, u; € Cy(m)) > 1 —a,

and we say that this coverage is sharp if the above inequality holds with equality and the limit
infimum is replaced by a limit.
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To the best of our knowledge, the existing literature lacks a concrete definition of asymp-
totic time-uniform coverage (or type-I error control) like Definition 2.7, but sequences of
AsympCSs satisfying (14) have been implicit in Robbins [30] and Robbins and Siegmund
[31], and the followup work of Bibaut, Kallus and Lindon [2]. In what follows, we pro-
vide (sharp) coverage guarantees for our AsympCSs. Furthermore, in Section 2.6 we strictly
improve on aforementioned bounds by Robbins [30] and Robbins and Siegmund [31]. Fur-
thermore, we note that a bound Bibaut, Kallus and Lindon [2] is in a certain sense equivalent
to one that we provide here.

In order to obtain asymptotic time-uniform coverage, we need a stronger variant of Con-
dition L-3 so that variances are estimated at polynomial rates (rather than at arbitrary rates).

CONDITION L-3-5 (Polynomial rate variance estimation). There exists some 0 <n < 1
such that

(52"

(15) Gl—57 = 0( ) almost surely.

Note that while Condition L-3-5 is stronger than Condition L-3, it is still quite mild.
For instance, if &2 is uniformly bounded, then (15) simply requires that > — 52 = o(t"~!)
(i.e., strong consistency at any polynomial rate, potentially much slower than r~'/2). More-
over, in the i.i.d. case with at least (2 4 §) finite absolute moments, Condition L-3-n always
holds by the SLLNs of Marcinkiewicz and Zygmund [25].

Our goal now is to show that sequences of AsympCSs given in Proposition 2.5 have asymp-
totic time-uniform coverage, and we will achieve this by effectively tuning them for later and
later start times. Recall that Appendix B.2 allows us to choose the parameter p > 0 so that
the AsympCS is tightest at some particular time—we will now choose p;, based on the first
peeking time m as

—2loga +log(—2loga) +1 4
G2mlog(m V e) ’

pm = p(Gamlog(m V e)) E\/

Then, let (C; (m))72,, be the Gaussian mixture AsympCS with p,, plugged into the expression
of the boundary for all r > m:

~2 2 ~2 2
~ t 1 t 1
(16) Eim) = (mil T g1 ).
o

o3

In other words, (C; (m))72,, should be thought of as an AsympCS that only starts after time
m, and is vacuous beforehand. The following theorem formalizes the coverage guarantees
satisfied by this sequence of AsympCSs as m — oco.

THEOREM 2.8 (Asymptotic (1 — «)-coverage for Gaussian mixture AsympCSs). Given
the same setup as Proposition 2.5 and Conditions L-1, L-2, and L-3-n, the AsympCSs
(ét(m))j’im given in (16) have sharp asymptotic (1 — a)-coverage for [i; = %Zf.:l Wi as
m — 00, meaning

lim P(Vt>m, ji, € Ci(m))=1—a.

m—00

9In fact, pm can be replaced by p((?,%,mdm) where (dm)fnozl is any positive increasing sequence diverging to
0.
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The proof can be found in Appendix A.7. Clearly, when the mean is constant—i.e. 1] =
u2 = - -+ = u,—the above also holds for the running intersection of intervals (), <;<; Cs(m).
Notice that in the ii.d. setting, as m — oo, (C;(m));2,, is asymptotically equivalent to

(CY (m))22, given by

_ ez +1 p2 +1
m

where p,, := p(mlog(m V e)). A quick inspection of the proof will reveal that (17) also
satisfies the coverage guarantee provided in Theorem 2.8 under the condition that Ef —
af > (0 almost surely. In summary, (17) can be thought of as an analogue of (16) for the
AsympCSs that were derived in Theorem 2.2.

2.6. Asymptotic confidence sequences using Robbins’ delayed start. As is clear from
Theorem 2.4, virtually any boundary for Gaussian observations can be used to derive an
AsympCS as long as an appropriate strong invariance principle can be applied under the given
assumptions—indeed, Theorem 2.2, Proposition 2.3, Proposition 2.5, and Corollary 2.6 are
all instantiations of the general phenomenon outlined in Theorem 2.4.

Another AsympCS that may be of interest to practitioners is one that leverages Robbins’
CS for means of Gaussian random variables with a delayed start time [30], equation (20).
In a nutshell, Robbins calculated a lower bound on the probability that a centered Gaussian
random walk would remain within a particular two-sided boundary for all times ¢t > m given
some starting time m > 1. That is, he showed that for i.i.d. Gaussians (Z;)7°; with mean zero

and variance o2, letting G; := Zle Zi/o, and for any a > 0,

(18) P(Vi = m: |Gyl < \/1(a? +log(t/m))) = 1 — Aa),

where A(a) :=2(1 — ®(a) + a¢(a)) and ® and ¢ are the CDF and PDF of a standard
Gaussian, respectively. In particular, setting a € (0, 00) so that A(a) = « yields a two-sided
(1 — a)-boundary for the Gaussian random walk (G,)72 , and indeed, a solution to A(a) =«
always exists and is trivial to compute due to the fact that A is strictly decreasing, starting at
A(0) =1 and lim,_, o0 A(a) = 0. In a followup paper, Robbins and Siegmund [31] extended
the ideas of Robbins [30] to a large class of boundaries for Wiener processes so that the
probabilistic inequality in (18) can be shown to be an equality when |G| is replaced by the
absolute value of a Wiener process (which would imply the inequality in (18) for i.i.d. stan-
dard Gaussians as a corollary). Using this fact within the general framework of Theorem 2.4
combined with the strong invariance principle of Strassen [40] and the techniques found in
the proof of Theorem 2.8 yields the following result.

PROPOSITION 2.9 (Delayed-start AsympCS). Consider the same setup as Theorem 2.8
so that (Y;);2, have conditional means and variances given by pi; :=E(Y;|Y 1’ 71) and O’tz =

Var(YzlYlt_l). Then under Conditions L-1, L-2, and 1.-3, we have that for any m > 1,

(19) CPS(m) = (A, £61y/1~! - [a? + log(152/ (m52))]) if t =m

(and all of R otherwise) forms a (1 —a)- AsympCSfor L, where a is chosen so that A(a) = «.
Furthermore, under Condition L-3-n, CDs (m) has sharp asymptotic time-uniform (1 — o)-
coverage in the sense of Definition 2.7.

The proof is provided in Appendix A.9. Similar to the relationshlp between Theorem 2.8
and (17), we have that if variances happen to converge G, — 02 > 0 almost surely, then as a
corollary of Proposition 2.9, the sequence (CDS*(m)) 2, given by

(20) CPS*(m) := (7 £61, /171 - (a? + log(t/m))) fort = m
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has asymptotic time-uniform coverage as in Definition 2.7. This can be seen as a generaliza-
tion and improvement of results implied by Robbins [30] and Robbins and Siegmund [31],
and has connections to Bibaut, Kallus and Lindon [2]. We elaborate on these below.

2.6.1. Relationship to Robbins and Siegmund. Informally, Robbins and Siegmund [31],
Theorem 2(i), show that for independent and identically distributed random variables
(Y1), ~ P with mean zero and unit variance (without loss of generality), the probability
of their scaled partial sums S; := >!_, ¥; exceeding a particular boundary behaves like a
rescaled Wiener process exceeding that boundary. Consequently, for i.i.d. data with known
variance, their result combined with Robbins’ delayed start [30], equation (20), implies an
asymptotic coverage guarantee (in the sense of Definition 2.7) for @Ds* given in (20) but
with &; replaced by the true o. As such, (20) should be thought of as a generalization of their
boundary when variances are unknown under martingale dependence. Nevertheless, Proposi-
tion 2.9 is strictly more general, allowing for variances to never converge.

2.6.2. Relationship to Bibaut, Kallus and Lindon [2]. In version 1 of Bibaut, Kallus
and Lindon [2], the authors derive a particular AsympCS and show that sequences thereof
satisfy an asymptotic coverage guarantee in the same sense as Definition 2.7. That bound
resembles—but is always looser than—a corollary of Proposition 2.9 in (20) for a fixed
m > 1; see Claim B.1. Nevertheless, it was their asymptotic type-I error results that inspired
us to show that the same guarantees hold for the bounds in (16), (19), and (20), and with our
explicit conditions on how variances are allowed to diverge in the former two, rather than their
implicit conditions (or sufficient conditions in special cases) through almost-surely conver-
gent variance-stabilized pseudo-outcomes. Nevertheless, one can always apply our bounds to
these same variance-stabilized pseudo-outcomes to weaken these implicit assumptions. After
our advances, the second version of their paper introduced a bound called the “running maxi-
mum likelihood SPRT” (rmlSPRT) which is identical to the corollary of Proposition 2.9 found
in (20) (modulo differences in variance estimation techniques); see Claim B.2. Since the ex-
act connections may not be obvious to the reader, we derive them explicitly in Appendix B.7.
Despite their rmISPRT being identical to (20), we remark that their paper focuses on testing
guarantees and contains several additional interesting investigations including a sophisticated
analysis of the expected rejection time, enriching the landscape of asymptotic anytime-valid
methodology.

3. Illustration: causal effects and semiparametric estimation. Given the groundwork
laid in Section 2, we now demonstrate the use of AsympCSs for conducting anytime-valid
causal inference. Since it is an important and thoroughly studied functional, we place a partic-
ular emphasis on the average treatment effect (ATE) for illustrative purposes but we discuss
how these techniques apply to semiparametric functional estimation more generally along-
side a delta method for AsympCSs in Section 3.5. The literature on semiparametric functional
inference often falls within the asymptotic regime and hence AsympCSs form a natural time-
uniform extension thereof.

It is important to note that obtaining AsympCSs for the ATE is not as simple as di-
rectly applying the theorems of Section 2.1 to some appropriately chosen augmented inverse-
probability-weighted (AIPW) influence functions (otherwise the illustration of this section
would have been trivial). Indeed, satisfying the conditions of the aforementioned theorems—
Theorem 2.4 in particular—in the presence of infinite-dimensional nuisance parameters is
nontrivial and the analysis proceeds rather differently from the fixed-n setting. Nevertheless,
after introducing and carefully analyzing sequential sample splitting and cross-fitting (Sec-
tion 3.1), we will see that asymptotic time-uniform inference for the ATE is possible.
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To solidify the notation and problem setup, suppose that we observe a (potentially infinite)
sequence of i.i.d. variables Z;, Z», ... from a distribution P where Z; := (X, A;, ¥;) denotes
the subject’s triplet and X; € R4 are their measured baseline covariates, A; €10, 1} is the
treatment that they receive, and Y; € R is their measured outcome after treatment. Our target
estimand is the average treatment effect (ATE) v defined as

v =E(! -7,

where Y is the counterfactual outcome for a randomly selected subject had they received
treatment a € {0, 1}. The ATE i can be interpreted as the average population outcome if
everyone were treated E(Y 1Y versus if no one were treated E(Y?). Under standard causal
identification assumptions—typically referred to as consistency, positivity, and exchangeabil-
ity (see, e.g. Kennedy [18], §2.2)—we have that i can be written as a (non-counterfactual)
functional of the distribution P:

v =y (P)=E{E(Y|X,A=1)—EY|X,A=0)}.

Throughout the remainder of this section, we will operate under these identification assump-
tions and aim to derive efficient AsympCSs for i using tools from semiparametric theory. At
a high level, we will construct AsympCSs for i by combining the results of Section 2 with
sample averages of influence functions for ¢ and in the ideal case, these influence functions
will be efficient (in the semiparametric sense).

3.1. Sequential sample splitting and cross fitting. Following Robins et al. [32], Zheng
and van der Laan [52], and Chernozhukov et al. [6], we employ sample splitting (or cross
fitting) to derive an estimate fof the influence function f on a “training” sample, and eval-
uate fon values of Z; in an independent “evaluation” sample. Sample splitting sidesteps
complications introduced from “double-dipping” (i.e., using Z; to both construct fand eval-
uate f (Z;)) and simplifies the analysis of the downstream estimator. The aforementioned
authors employed sample splitting in the batch (nonsequential) regime while we are con-
cerned with settings where data are continually observed in an online stream over time, and
hence we modify the sample splitting procedure as follows. We will denote DI and Dgéal
as the “training” and “evaluation” sets, respectively. At time ¢, we assign Z; to either group
with equal probability:

DYt with probability 1/2,

Z € .
DA otherwise.

Note that at time ¢ 4 1, Z; is not re-randomized into either split—once Z; is randomly as-
signed to one of DI or Dggal, they remain in that split for the remainder of the study. In this
way, we can write DI = (Zi™, Z5™, ...) and Dol = (Z?Val, ngal, ...) and think of these
as independent, sequential observations from a common distribution IP. To keep track of how
many subjects have been randomized to D' and D at time ¢, define

T := ]Dggal] and T':=|D0|=t-T,

where we have left the dependence on ¢ implicit.

REMARK 2. Strictly speaking, under the i.i.d. assumption, we do not need to randomly
assign subjects to training and evaluation groups for the forthcoming results to hold (e.g. we
could simply assign even-numbered subjects to DI and odd-numbered subjects to Dgéal).
However, the analysis is not further complicated by this randomization, and it can be used to
combat bias in treatment assignments when the i.i.d. assumption is violated [9].
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Dy* > (A figs, 7TT’)
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FI1G. 3. A schematic illustrating sequential sample splitting. At each time step t, the new observation Z; is
randomly assigned to DI or DX with equal probability (1/2). Nuisance function estimators (/’ilT,, /’I(%,, )

, n . . —split .
are constructed using DI which then yield fr. The sample-split estimator 1//,S P defined as the sample average
% ZiT=1 fT/(Z?"al) where each Z?"al e DA,

R The “sample split” estimator would then be given by wsPht =z Zl_l fri( Zeval) where
fr is an estimate of the so-called efficient influence function (a brief review of semiparamet-
ric efficient estimators can be found in Appendix B.9) given by

l1—a

1 —m(x)

1 0 a a

Q) F@=fay = (0 = n) + (s - )y =)
Crucially, fr- takes the form of (21) but with n = (1!, u°, ) replaced by 7 = (A, A%,
Tr/)—where Ty may be an estimator 77/ of the propensity score m, or the propensity
score itself, depending on whether one is considering an observational study or random-
ized experiment—so that 77 is built solely from DX'. The sample splitting procedure for
constructing 1/1;: Pl s summarized pictorially in Figure 3. In the batch setting for a fixed sam-
ple size, fﬁ\,s Pt is often referred to as the augmented inverse probability weighted (AIPW)
estimator [34, 35] (an instantiation of so-called “one-step correction” in the semiparametrics
literature) and we adopt similar nomenclature here. However, a commonly cited downside of
sample splitting is the loss in efficiency by using T =~ ¢ /2 subjects instead of ¢+ when evalu-
ating the sample mean + Zl_l fT/(Zf"al). An easy fix is to cross-fit: swap the two samples,
using Dggal for training and DY for evaluation to recover the full sample size of t =T + T’
[6, 32, 52]. That is, construct fr solely from D&Vf] and define the cross-fit estimator {ﬁ,x as

Zz—l fT’ Zeval) +Zl—1 fT(Zlgrn)
" s

(22) U=
and the associated cross-fit variance estimate

vary (frr) + varr: (fr)

(23) var, (f) := 5 ,

where vary ( fTr) is the Dev‘ﬂ -sample variance of the pseudo outcomes ( fTr(Zeval))T , and
similarly for vary: (we dehberately omit the subscript on f in the left-hand side of (23)) For
simplicity, all of the results that follow are stated in terms of the cross-fit estimators (1//, .
With the setup of Appendix B.9 and Section 3.1 in mind, we are ready to derive AsympCSs
for i, first in randomized experiments.

3.2. Asymptotic confidence sequences in randomized experiments. Consider a sequential
randomized experiment so that a subject with covariates X has a known propensity score

m(X):=P(A=1]|X).
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Consider the cross-fit AIPW estimator fﬂ\,x as given in (22) but with estimated propensity
scores—7t7 (x) and 77 (x)—replaced by their true values 7 (x), and with 17, and 7 being
p0551b1y misspecified estimators for ©%. We will assume that ¢ converges to some function
n?, which need not C01n01de with p“. In what follows, when we use &f or f, in writing
lif —m| Ly(P) OF | f, f |,y we are ref\errlng to large-sample properties of the estimator
(and hence f; could be replaced by frs or fr without loss of generality).

THEOREM 3.1 (AsympCSs for the ATE in randomized experiments). Let fﬁ,x be the
cross-fit AIPW estimator as in (22). Suppose ||y (X) — (X)L, = o(1) for each a €
{0, 1} where i® is some function (but need not be u®), and hence || f; — f|| L,®) = o(1) for
some influence function f. Suppose that propensity scores are bounded away from 0 and 1,
i.e. m(X) €[8,1— 8] almost surely for some § > 0, and suppose that var(f(Z)) < oo. Then
for any constant p > 0,

1 241
(24) U+ Jvar (f) - \/p s tpaj )

forms a (1 — a)-AsympCS for .

The proof in Appendix A.5 combines an analysis of the almost-sure convergence of (&,X —
¥) with the AsympCS of Theorem 2.2. Notice that since &7 is consistent for a function “,
we have that f; is converging to some influence function f of the form

F@=Fa,y) =7 @ -2w) + ( ¢ _1-d ){y — ().
x)  1—mx)
In practice, however, one must choose 1. As alluded to at the beginning of Section 3, the best
possible influence function is the EIF f (z) defined in (21), and thus it is natural to attempt
to construct 1§ so that ||ﬁ — fllL,@) = o(1). The resulting AsympCSs would inherit such
optimality properties, a point which we discuss further in Appendix B.10.

Since p is simply a conditional mean function, we can use virtually any regression tech-
niques to estimate it. Here we will consider the general approach of stacking introduced by
Breiman [4] and further studied by Tsybakov [42] and van der Laan, Polley and Hubbard [44]
(see also [29]) under the names of “aggregation” and “Super Learning” respectively. In short,
stacking uses cross-validation to choose a weighted combination of K candidate predictors
where the weights are chosen based on data in held-out samples. Importantly (and under cer-
tain conditions), the stacked predictor will have a mean squared error that scales with that
of the best of the K predictors up to an additive log K term [42, 46]. This advantage can be
seen empirically in Figure 4 where the true regression functions u” and p' are nonsmooth
and nonlinear in x. Such advantages via stacking are not new—we are only highlighting the
observation that similar phenomena carry over to AsympCSs.

So far, the use of flexible regression techniques like stacking were used only for the pur-
poses of deriving sharper AsympCSs in sequential randomized experiments. In observational
studies, however, consistent estimation of nuisance functions at fast rates is essential to the
construction of valid fixed-n Cls, and indeed the same is true for AsympCSs.

3.3. Asymptotic confidence sequences in observational studies. Consider now a sequen-
tial observational study (e.g., we are able to continuously monitor (X;, A;, ¥;);2, but do not
know 7 (x) exactly, or we are in a sequentially randomized experiment with noncompliance,
etc.). The only difference in this setting with respect to setup is the fact that 7 (x) is no
longer known and must be estimated. As in the fixed-n setting, this complicates estimation
and inference. The following theorem provides the conditions under which we can construct
AsympCSs for ¢ using the cross-fit AIPW estimator in observational studies.
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FIG. 4. Three 90%-AsympCSs for the average treatment effect in a simulated randomized experiment using
different regression estimators. Notice that all three AsympCSs uniformly capture the average treatment effect \r,
but more sophisticated models do so more efficiently, with AIPW+stacking greatly outperforming IPW.

THEOREM 3.2 (AsympCSs for the ATE in observational studies). Consider the same
setup as Theorem 3.1 but with 7w (x) unknown. Suppose that regression functions and propen-
sity scores are consistently estimated in L>(P) at a product rate of o(\/logt/t), meaning

1
1% = 7 llLy@ DAL — 1), = o0/logt/1).
a=0
Moreover, suppose that || f; — fllL,) =0(1) where f is the efficient influence function (21)
and that var(f(Z)) < oo. Then for any constant p > 0, (24) forms a (1 — o)-AsympCS for

v

The proof in Appendix A.5.2 proceeds similarly to the proof of Theorem 3.1 by combining
Theorem 2.2 with an analysis of the almost-sure behavior of (@X — ). Notice that the nui-
sance estimation rate of v/log?/1 is slower than 1/4/t which is usually required in the fixed-n
regime, but we do require almost-sure convergence rather than convergence in probability.

Unlike the experimental setting of Section 3.2, Theorem 3.2 requires that i and 7; con-
sistently estimate u? and 7, respectively. As a consequence, the stacking-based AIPW Asym-
pCS is both the tightest of the three and is uniquely consistent for v (see Figure 5).

3.4. The running average of individual treatment effects. The results in Sections 3.2
and 3.3 considered the classical regime where the ATE v is a fixed functional that does not
change over time. Consider a strict generalization where distributions—and hence individual
treatment effects in particular—may change over time. In other words,

Y =E{Y! — )} CEEWIX,, A, = 1) —E(Y,|X,, A, =0)},

where the equality (x) holds under the familiar causal identification assumptions discussed
earlier. Despite the nonstationary and non-i.i.d. structure, it is nevertheless possible to derive
AsympCSs for the running average of individual treatment effects IZ, = % t_, Yi—or sim-
ply, the running average treatment effect—using the Lyapunov-type bounds of Corollary 2.6.
However, given this more general setup, the assumptions required are more subtle (but no
more restrictive) than those for Theorems 3.1 and 3.2; as such, we describe their details here
but handle the randomized and observational settings simultaneously for brevity.
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F1G. 5. Three 90%-AsympCSs for the ATE in an observational study using three different estimators—a
difference-in-means estimator, AIPW with parametric models, and AIPW with an ensemble of predictors com-
bined via stacking. Unlike the randomized setup, only the stacking ensemble is consistent, since the other two
are misspecified. Not only is the stacking-based AsympCS converging to \, but it is also the tightest of the three
models at each time step.

CONDITION ATE-1 (Regression estimator is uniformly well-behaved in L, (PP)). We as-
sume that regression estimators uf (X;) converge in Lo(IP) to any function i (X;) uniformly
forie{l,2,...}, that is,

sup ||2¢(X;) — ﬁ“(Xi)||L2(P) =o(1) foreacha€{0,1}.

1<i<oo

Condition ATE-1 simply requires that the regression estimator fif must converge to some
function £“, which need not coincide with true regression function . In the i.i.d. setting
where X1, X5, ... all have the same distribution, we would simply drop the sup; ;- ,, Ie-
covering the conditions for Theorems 3.1 and 3.2. -

CONDITION ATE-2 (Convergence of average nuisance errors). Let [if be an estimator
of the regression function u*, a € {0, 1} and 7; an estimator of the propensity score 7. We
assume that the average bias shrinks at a \/logt/t rate, that is,

| R 1 " ; logt
CONES B ORECOIPS I zAC ORYTIC ] s :"< >
a=0

i=1 t

Note that Condition Xﬁ:—z would hold in two familiar scenarios. First, in a randomized
experiment (Theorem 3.3) where 77; = 7 is known by design, we have that (25) is always zero,
satisfying Condition ATE-2 trivially. Second, in an observational study where the product of
errors || 77 (X;) — 7w (X))l L) |29 (Xi) — u*(Xi) | L,(p) vanishes at a rate faster than /log /7,
for each i and for both a € {0, 1}, we also have that their average product errors vanish at
the same rate (25). With these assumptions in mind, let us summarize how running average
treatment effects can be captured in randomized experiments.

THEOREM 3.3 (AsympCSs for the running average treatment effect). Suppose Z1, Z,,
. are independent triples Z; == (X;, As, Yy) and that Conditions ATE-1 and ATE-2 hold.
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FIG. 6. Three 90% AsympCSs for U constructed using various estimators via Theorem 3.3. Since this is a
randomized experiment, all three CSs capture r; uniformly over time with high probability. Similar to Figure 4,
however, the stacking-based AIPW estimator greatly outperforms those based on parametric models or IPW.

Finally, suppose that the conditions of Corollary 2.6 hold, but with (Y;){, replaced by the
influence functions (ﬂZ;))fil. Then

(26)

7x + \/fpzv?rz(ﬁ +1 10g<fp2vAar,<f) + 1)

t 12p2 o2

forms a (1 — a)-AsympCS for the running average treatment effect 1% = % i Vi

The proof can be found in Appendix A.6. Note that both Theorems 3.1 and 3.2 are par-
ticular instantiations of Theorem 3.3. The important takeaway from Theorem 3.3 is that un-
der some rather mild conditions on the momentsNOf (]T(Z,))?il, it is possible to derive an
AsympCS for a running average treatment effect 1, (see Figure 6 for what these look like in
practice). Nevertheless, under the commonly considered regime where the treatment effect is
constant | = Y = --- =¥, we have that (26) forms a (1 — «)-AsympCS for . Note that
unlike Theorems 3.1 and 3.2, Theorem 3.3 actually does require the use of the cross-fit AIPW
estimator @,X and would not capture U, if the sample-split version were used in its place.

REMARK 3 (Avoiding sample splitting via martingale AsympCSs). The reader may won-
der whether it is possible to simply plug in a predictable estimate of [i{ in a randomized
experiment—that is, so that ii{ only depends on Z ﬁ_l—and employ the Lindeberg-type mar-
tingale AsympCS of Proposition 2.5 in place of Corollary 2.6, thereby sidestepping the need
for sequential sample splitting and cross fitting altogether. Indeed, such an analogue of The-
orem 3.3 is possible to derive, but the conditions required are less transparent than those we
have provided above so we defer it to Appendix B.6.

3.5. Extensions to general semiparametric estimation and the delta method. The dis-
cussion thus far has been focused on deriving AsympCSs for the ATE. However, the tools
presented in this paper are more generally applicable to any pathwise differentiable func-
tional with positive and finite semiparametric information bound. Some prominent examples
in causal inference include modified interventions, complier-average effects, time-varying
effects, and controlled mediation effects, among others. Examples outside causal inference
include the expected density, entropy, the expected conditional variance, and the expected
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conditional covariance, to list a few. All of the aforementioned problems, including estima-
tion of the ATE can be written in the following general form. Suppose Z1, Z;, ... ~ Q and
let 6(Q) be some functional (such as those listed above) of the distribution Q. In the case
of a finite sample size n, 6, is said to be an asymptotically linear estimator [41] for 6 if
the centered estimator 6, — 6 can be written as a sample average of influence functions ¢
up to something vanishing in Q-probability at a rate faster than 1/4/n, or in other words
@1 —0 = % Y ad(Z) +og(l/ +/n) When the sample size is not fixed in advance, we may
analogously say that 6, is an asymptotically linear time-uniform estimator if instead,

t
(27) 0 — 0= %qu(z,-) +o(y/logt/1)
i=1

Q-almost surely, with ¢ being the same influence function as before. For example, in the case
of the ATE with (Zt)fi Shae P, we presented an efficient estimator 1;, for ¢ which took the
form of (27) with 6; = 1y, 6 =, and ¢(z) = f(z) — ¢ where f is the uncentered efficient
influence function (EIF) given in (21). In order to justify that the remainder term is indeed
o(y/logt/t), we used sequential sample splitting and additional analysis in the randomized
and observational settings. In general, as long as an estimator 6, for 6 has the form (27),
we may derive AsympCSs for 6 as a simple corollary of Theorem 2.2 with i, replaced by
@ and o; replaced by var(¢). If 5, involves nuisance parameters such as in Theorems 3.1
and 3.2, this can be handled on a case-by-case basis where sequential sample splitting and
cross fitting (Section 3.1) may be helpful. We now derive an analogue of the delta method for
asymptotically linear time-uniform estimators.

PROPOSITION 3.4 (The delta method for AsympCSs). Let 0, be an asymptotically linear
time-uniform estimator of 6 with influence function ¢ and let g : R — R be a continuously
differentiable function with first derivative g'. Then, g(é\,) is an asymptotically linear time-
uniform estimator for g(0) with influence function given by g'(0)¢ (), i.e.

. 1<
80 —56) =~ > g O)¢(Zi) + o(y/logt/1).
i=1

The short proof in Appendix A.8 is similar to the proof of the classical delta method but
with the almost-sure continuous mapping theorem used in place of the in-probability one,
and with the law of the iterated logarithm used in place of the central limit theorem.

4. Simulation studies: Widths and empirical coverage. We now discuss the results
of some simulations, the first of which illustrates the sharpness benefits of AsympCSs over
nonasymptotic CSs in randomized experiments (Figure 7), while the second displays the
empirical miscoverage rates for mean estimation as the tuning parameter p,, from Section 2.5
is tuned for larger and larger initial peeking (or “burn-in”) times (Figure 8).

Following the motivations of Section 3, consider the problem of average treatment effect
estimation in an experiment with {0, 1}-valued outcomes where all subjects are randomly as-
signed to treatment or control with equal probability 1/2. Since all propensity scores are given
by 1/2, the estimated influence functions appearing in and surrounding (21) lie in [—2, 2]
almost surely, and thus the techniques of Robbins [30] and Howard et al. [14] for mean esti-
mation can be used to construct nonasymptotic CSs for the ATE (as outlined by Howard et al.
[14], §4.2). Figure 7 displays confidence sets and cumulative miscoverage rates for ATE esti-
mation using (a) our AsympCSs, (b) CLT-based ClIs, (c) the sub-exponential CSs of Howard
et al. [14], §4.2, and (d) the sub-Gaussian CSs of Robbins [30]. Notice that the CLT-based
CIs have cumulative miscoverage rates that quickly diverge beyond o = 0.1 while those of
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FI1G. 7. A comparison of (1 — a) = 90% confidence sets for the ATE in a completely randomized Bernoulli
experiment. Empirical widths and miscoverage rates were computed with 1000 replications beginning at time
500. Notice that only (asymptotic and nonasymptotic) CSs have miscoverage rates below o, but AsympCSs are
the only ones that appear to sharply approach this level. The tuning parameter p,, was chosen for a start time of
m as py = p(mlog(m Vv e)) following (17).

CSs—both asymptotic and nonasymptotic—never exceed « before time 10*.!0 Moreover,
notice that nonasymptotic CSs appear to be conservative, while our AsympCSs are much
tighter and have miscoverage rates approaching « (as expected in light of Theorem 2.8).

Indeed, Figure 8 empirically and visually illustrates Theorem 2.8 by displaying the cumu-
lative miscoverage rate of (16) for estimating the mean of Uniform(0, 1) and ¢-distributed
random variables when tuned for later and later initial peeking times m € {2, 5, 10, 50, 100}.
Notice that as m increases, the cumulative miscoverage rate is uniformly contained below
a=0.1forallm <t <10°.

Uniform distribution t—distribution with 3 degrees of freedom
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FIG. 8. Cumulative miscoverage rates using (17) at level a = 0.1 to estimate the mean of i.i.d. Uniform(0, 1)
and t-distributed random variables in the left-hand and right-hand side plots, respectively. Notice that in both
cases including the heavy-tailed setting of a t-distribution with 3 degrees of freedom (so that the variance is finite
but third and higher absolute moments are all infinite), cumulative miscoverage rates do not exceed o = 0.1 even
after 105 observations as long as the first peeking time m is at least 50. It is worth remarking that asymptotic
approximations appear to “kick in” earlier for the heavy-tailed t-distribution.

10Note that a longer time horizon of 10 is considered only for AsympCSs and CLT-based CIs in Figure 1, but
the shorter horizon of 10% is used here due to the computational expense of Howard et al. [14], Thm 2, at large ¢.
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The setting considered in Figure 7 is one where AsympCSs have substantial benefits over
nonasymptotic CSs because the latter suffer due to slightly conservative almost-sure bounds
of [—2, 2] on the (estimated) influence functions, while AsympCSs can adapt to the true vari-
ance irrespective of said a priori known bounds. However, the setting where all propensity
scores are given by 1/2 is in some sense the “easiest” for nonasymptotic CSs, and the bene-
fits of AsympCSs are exaggerated when those almost-sure influence function bounds increase
relative to the true variance. Indeed, Appendix B.8 contains a more comprehensive set of sim-
ulations, including the simpler problem of univariate mean estimation for bounded random
variables as well as treatment effect estimation in randomized experiments with “personal-
ized” randomization, that is, covariate-dependent propensity scores with extreme almost-sure
bounds but small variances; see Figure 2 for details.

Finally, while Figure 7 illustrates the benefits of AsympCSs over nonasymptotic CSs with
respect to tightness, we also wish to highlight their benefits of versatility. In particular, there
are many settings for which no simulations could have been run since AsympCSs provide the
first (asymptotically) time-uniform solution in the literature. For example, as a consequence
of Bahadur and Savage [1], it is impossible to derive nonasymptotic CSs (or CIs) for the mean
of random variables without a priori known bounds on their moments. By contrast, Asym-
pCSs can (much like CLT-based Cls) handle mean estimation under finite (but unknown)
moment assumptions. It is also impossible to derive nonasymptotic CS (and Cls) for the ATE
from observational studies (without unrealistic knowledge of nuisance function estimation
errors) but Section 3.3 outlines an asymptotically time-uniform solution. In both settings, we
do not run simulations akin to Figure 7 since there do not exist prior CSs to compare to.

5. Real data application: Effects of IV fluid caps in sepsis patients. Let us now illus-
trate the use of Theorem 3.2 by sequentially estimating the effect of fluid-restrictive strategies
on mortality in an observational study of real sepsis patients. We will use data from the Med-
ical Information Mart for Intensive Care III (MIMIC-III), a freely available database consist-
ing of health records associated with more than 45,000 critical care patients at the Beth Israel
Deaconess Medical Center [17, 28]. The data contain demographics, vital signs, medications,
and mortality, among other information collected over the span of 11 years.

Following Shahn et al. [36], we aim to estimate the effect of restricting intravenous (IV)
fluids within 24 hours of intensive care unit (ICU) admission on 30-day mortality in sepsis
patients. In particular, we considered patients at least 16 years of age satisfying the Sepsis-3
definition—that is, those with a suspected infection and a Sequential Organ Failure Assess-
ment (SOFA) score of at least 2 [37]. Sepsis-3 patients can be obtained from MIMIC-III
using SQL scripts provided by Johnson and Pollard [16], but we provide detailed instruc-
tions for reproducing our data collection and analysis process in our Supplementary Material
[49]. This resulted in a total of 5231 sepsis patients, each of whom received out-of-hospital
followup of at least 90 days.

Consider IV fluid intake within 24 hours of ICU admission .Z2*". To construct a binary
treatment A € {0, 1}, we dichotomize .Z%*" so that A; = ]l(.,iﬂl.z‘“1 < 6L). 30-day mortality
Y is defined as 1 if the patient died within 30 days of hospital admission, and O otherwise.
We will consider baseline covariates X including a patient’s age and sex, whether they are
diabetic, modified Elixhauser scores [43], and SOFA scores. We consider the causal estimand

W= P(Y$24h§6L =1)— P(Y$24h>6L =1),

that is, the difference in average 30-day mortality that would be observed if all sepsis pa-
tients were randomly assigned an IV fluid level according to the lower truncated distribution
P(Z% < [|.£%* < 6L) versus the upper truncated distribution P(Z** < [|.£%* > 6L)
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FI1G. 9. Left-hand side: a 90% AsympCS used to track the average 24 h fluid intake over time. Right-hand side:
Three 90%-AsympCSs for the causal effect of capped 1V fluid intake (defined as < 6 litres) on 30-day mortality
using the same three estimators as those outlined in Figure 5. Notice that an analysis using a difference-in-means
estimator would conclude that the treatment effect is negative after observing fewer than 1500 patients.

[8]. While this is technically a stochastic intervention effect, we have that under the same
causal identification assumptions discussed in Section 3, v is identified as

v =E[{E(Y|X,A=1)—EY|X,A=0)},

the same functional considered in the previous sections. Therefore, we can estimate v un-
der the same assumptions and with the same techniques as Section 3.3. Figure 9 contains
AsympCSs for ¢ using difference-in-means, parametric AIPW, and stacking-based AIPW
estimators to demonstrate the impacts of different modeling choices on AsympCS width.
Note that these simple binary treatment and outcome variables were used for simplicity so
that the methods outlined in Section 3.3 are immediately applicable, but Section 3.5 points
out that our AsympCSs may be used to sequentially estimate other causal functionals.

The stacking-based AIPW AsympCSs cover the null treatment effect of 0 from the 1000™
to the 5231 observed patient, and thus we cannot conclude whether 6 L IV fluid caps have
an effect on 30-day mortality in sepsis patients.

Note that these stacking-based AsympCSs nearly drop below 0 after observing the 52315
patient’s outcome. If we were using fixed-time confidence intervals, the analyst would need
to resist the temptation to resume data collection (e.g., to see whether the null Hyp : ¥ =0
could be rejected with a larger sample size) as this would inflate type-I error rates as seen in
Figure 1. On the other hand, AsympCSs permit precisely this form of continued sampling.

6. Conclusion. This paper introduced the notion of an “asymptotic confidence se-
quence” as the time-uniform analogue of an asymptotic confidence interval based on the
central limit theorem. We derived an explicit universal asymptotic confidence sequence for
the mean from i.i.d. observations under weak moment assumptions by appealing to strong
invariance principles. These results were extended to the setting where observations’ distribu-
tions (including means and variances) can vary over time under martingale dependence, such
that our asymptotic confidence sequences capture a moving parameter—the running average
of the conditional means so far. We then applied the aforementioned results to the problem
of doubly robust sequential inference for the average treatment effect in both randomized
experiments and observational studies under i.i.d. sampling. Finally, we showed how these
causal applications remain valid in the non-i.i.d. setting where distributions change over time,
in which case our asymptotic confidence sequences capture a running average of individual
treatment effects. The aforementioned results will enable researchers to continuously moni-
tor sequential experiments—such as clinical trials and online A/B tests—as well as sequential
observational studies even if treatment effects do not remain stationary over time.
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SUPPLEMENTARY MATERIAL

Supplement to “Time-uniform central limit theory and asymptotic confidence se-
quences” [49] (DOI: 10.1214/24-A0S2408SUPPA; .pdf). Contains proofs of the main re-
sults, additional discussions, and figures.

Supplement to “Time-uniform central limit theory and asymptotic confidence se-
quences” (DOI: 10.1214/24-A0S2408SUPPB; .zip). An R package alongside instructions
and code to reproduce data and figures used in the main paper.
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