MATHEMATICS OF COMPUTATION

Volume 93, Number 345, January 2024, Pages 347-381
https://doi.org/10.1090/mcom/3891

Article electronically published on August 31, 2023

DOUBLY ISOGENOUS GENUS-2 CURVES WITH D4,-ACTION
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ABSTRACT. We study the extent to which curves over finite fields are charac-
terized by their zeta functions and the zeta functions of certain of their covers.
Suppose C and C’ are curves over a finite field K, with K-rational base points
P and P’, and let D and D’ be the pullbacks (via the Abel-Jacobi map) of the
multiplication-by-2 maps on their Jacobians. We say that (C, P) and (C’, P’)
are doubly isogenous if Jac(C') and Jac(C’) are isogenous over K and Jac(D)
and Jac(D’) are isogenous over K. For curves of genus 2 whose automorphism
groups contain the dihedral group of order eight, we show that the number of
pairs of doubly isogenous curves is larger than naive heuristics predict, and we
provide an explanation for this phenomenon.

1. INTRODUCTION

The isogeny class of the Jacobian of a (smooth, projective, geometrically con-
nected) curve over a field K is an invariant of the curve, and it is natural to wonder
whether this invariant is strong enough to always distinguish two curves from one
another. The answer is no — distinct isogenous elliptic curves provide abundant
counterexamples. Even when we restrict attention to curves of larger genus, the
answer remains no, as over finite fields curves that are Galois conjugates of one
another have the same zeta function (which in this case characterizes the isogeny
class of the Jacobian). Furthermore, Smith [19] showed that even in characteristic
0 there exist nonisomorphic curves C' and C’ of arbitrarily large genus with Jac(C')
isogenous to Jac(C’). Later, Mestre [12,13] proved that such pairs of curves exist
for every genus in characteristic 0; in particular, for every g > 1 there is a family of
dimension g + 1 of pairs of hyperelliptic curves of genus g with a 2-power isogeny
between their Jacobians. Thus the isogeny class of the Jacobian is not an invariant
that can always distinguish two curves from one another.

The question becomes more interesting when we restrict to low-dimensional fam-
ilies of curves. One motivation is a connection with deterministic algorithms for
factoring polynomials over finite fields. Suppose there are an open subset U of Al
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348 VISHAL ARUL ET AL.

and an abelian scheme A over U such that for all sufficiently large primes p, the
zeta functions of the specialization of A to the elements of U(F,) are distinct. Poo-
nen [17], extending earlier work of Kayal, showed that if such a scheme A exists,
then there is a deterministic algorithm that, given a finite field F, and a polynomial
f € F,[t], will produce the irreducible factors of f in time polynomial in log ¢ and
deg f.

Motivated by this observation, Sutherland and Voloch [20] considered curves over
finite fields, and asked whether curves could be distinguished from one another (up
to Galois conjugacy) by their zeta functions together with the zeta functions of
certain of their covers. If so, then the Jacobians of these curves and their covers
could be used in Poonen’s argument. One of the families of covers they studied was
obtained by considering maximal unramified abelian 2-extensions of curves, as will
now describe.

Let (C, P) be a pointed curve over a field K, that is, a curve over K provided
with a K-rational point. Let C — C be the pullback of the multiplication-by-2 map
on Jac(C) via the embedding C — Jac(C') that sends P to the identity. We say
that two curves C and C’ over K are isogenous if their Jacobians are isogenous over
K, and we say that two pointed curves (C, P) and (C', P’) are doubly isogenous
if C and C’ are isogenous and C and C’ are isogenous. (Similar definitions can
be made using pullbacks of other isogenies of the Jacobian; following Sutherland
and Voloch, we focus here on the multiplication-by-2 map because it is perhaps the
simplest nontrivial choice.)

As we noted above, if K is a finite field then C' and C’ are isogenous if and
only if they have the same zeta function over K. One can use arithmetic statistics
to develop heuristics for the number of pairs of pointed curves (C, P) and (C’, P’)
that are isogenous or doubly isogenous. The hope is to identify families of curves
such that no two members are expected to be doubly isogenous, and then prove
that expectation and obtain a deterministic factoring algorithm. As a first step, we
would like to gather data to test whether our heuristics are reasonable, and to that
end we study families for which the heuristics suggest that there do exist doubly
isogenous pairs.

In as-yet-unpublished work, Howe, Sutherland, and Voloch studied genus-2
curves having an automorphism of order 3; the full automorphism group of these
curves contains the dihedral group of order 12. They gave a heuristic for the number
of such curves over finite fields of characteristic not 2 or 3 that are doubly isogenous.
Their data showed that the number of such pairs was larger than expected. This
over-abundance was explained by the existence of a pair of doubly isogenous pointed
curves over the number field Q(v/29); for every prime p of this number field, the
reductions of these curves modulo p give a pair of doubly isogenous pointed curves
having an automorphism of order 3.

We explore another instance of this problem, working over a field K of charac-
teristic not 2 containing a primitive 4th root of unity. We consider curves of genus
2 with an automorphism p of order 4. The automorphism groups of these curves
contain the dihedral group of order 8. We study their elementary abelian 2-group
covers, in some cases restricting to the situation where the Weierstrass points of
the genus-2 curves are K-rational. An imprecise summary of our main results is
that, taking K = F, for a prime ¢ = 1 mod 4:
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(1) The number of pairs of such curves over F; whose Jacobians are isogenous
over F, grows as expected; see Theorem 4.6 and Table 2

(2) The number of pairs of such curves that are “[1 — p*]-isogenous” over F,
grows as expected; see Example 5.6 and Table 3(B). (The terminology is
explained in Example 5.6, but roughly speaking, the definition of being
[1 — p*]-isogenous is the same as that of being doubly isogenous, except the
multiplication-by-2 map on Jac(C) is replaced by a degree-4 endomorphism
of Jac(C).)

(3) The number of pairs of such curves that are doubly isogenous over F,
is larger than expected; see Lemma 5.4 and Table 3(A). We explain this
discrepancy in Section 6 by finding unexpected relationships between the
Prym varieties of certain covers.

We remark that this family of curves is Moonen’s fourth special family [16]. It
would be interesting to study isogenies between curves in the other special families
of Moonen.

Conventions. A curve over a field K is a smooth projective geometrically con-
nected 1-dimensional variety over K. If C' is a curve over a field K, then Aut(C) is
the group of K-rational automorphisms of C; if L is an extension field of K, then
Aut,(C) is the group of L-rational automorphisms of C.

2. THE FAMILY OF GENUS-2 CURVES WITH D4-ACTION

Let K be a field of characteristic not 2. In this section, we find an equation
that describes every genus-2 curve over K whose automorphism group contains
the dihedral group D4 of order 8. We also show that the Jacobian of a genus-2
curve with D, contained in its automorphism group is isogenous to the square of
an elliptic curve.

We fix a presentation of the dihedral group of order 8:

Dy = {(a,b|a® = b* = (ab)* = 1).
We let € denote the automorphism of Dy that interchanges a and b.

Notation 2.1. A curve with Dy-action is a curve Z together with an embedding
e: Dy — Aut(Z). We say that two curves with Dy-action (Z,€) and (Z',€') are
isomorphic if there is a K-rational isomorphism ¢: Z — Z’ such that the following

diagram commutes:

Aut(Z) —— = Aut(Z')
Srspodop !
Let Z denote the set of K-isomorphism classes of genus-2 curves with Dj-action
over K. Using Igusa’s classification [8, §8] of the automorphism groups of genus-2
curves, we check that if (Z,¢) is a genus-2 curve with Dy-action, then e((ab)?) is
the hyperelliptic involution.

Remark 2.2. It (Z,¢) is a curve with Dy-action and « is an automorphism of Z,
we let €* denote the inclusion Dy < Aut(Z) that sends x to ae(z)a!. Note
that a: Z — Z then gives a morphism of pairs (Z,€) — (Z,€*), which shows that
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conjugating € by an automorphism of Z does not change the isomorphism class of
the pair (Z,€).

2.1. A family of genus-2 curves with Dj-action. Let ¢ and s be elements of
K with ¢ # 0 and s # £2, and let Z be the genus-2 curve

(2.1) Z: yr=c(@®+1)(z* +s2? +1).

The hyperelliptic involution x of Z is given by (z,y) — (z, —y). The curve Z also
has other K-rational involutions, including

o: ((E,y) = (—l',y) and T ((E,y) = (1/$,y/1'3)
Let p = o7, so that p takes (z,y) to (—1/z,y/23). We note that p?> = k. The

group G generated by ¢ and 7 is isomorphic to D4. More precisely, we specify an
inclusion

(2.2) €: Dy — Aut(Z2),
a— o,
b— 1.

Thus, Equations (2.1) and (2.2) give us a family of genus-2 curves with Dy-action.

Remark 2.3. When s € {—6, —1, 14}, the curve (2.1) has geometric automorphism
group strictly larger than Dy; using Igusa’s classification [8, §8], we can show that
all other values of s give curves with geometric automorphism group isomorphic to
Dy.

2.2. Classifying genus-2 curves with Dj-action up to isomorphism.

Lemma 2.4. Let (Z',€') be a genus-2 curve over K with Dy-action. Then there are
values ¢, s € K such that the curve with Dy-action (Z,€) given by (2.1) and (2.2)
is isomorphic to (Z',€'). The value of s is unique, and the value of ¢ is unique up
to multiplication by elements of K*2.

Proof. Let a = €'(a), let 8 = € (b), and let ¢ be the hyperelliptic involution on Z’.
The quotient of Z’ by « has genus 1 because o # . The Riemann—Hurwitz formula
shows that a has two geometric fixed points. If P is one of these fixed points, then
tP =1aP = P, so (P is fixed by o as well.

We claim that P # +P. To see this, consider the Vj-subgroup H = («, ). The
stabilizer of any point under H is the decomposition group of the corresponding
place in the geometric cover Z’ — Z’/H. This decomposition group is cyclic since
the extension is tamely ramified. Hence, no fixed point of « is fixed by ¢.

Consider the quotient P! = Z’/(1). The two fixed points of a are P and P.
These two points map to the same point @ in P! and @ must be K-rational. Since
a and B both commute with ¢, they descend to automorphisms @ and 5 of P'. The
point @ is one of the fixed points of the involution @, so both fixed points of @ must
be K-rational. By choosing the coordinate x on P! appropriately, we may assume
that the fixed points of @ are x = 0 and * = oo. This means that an equation for
VARTS

y2 = a6x6 + a4x4 + a2x2 + aop,
for some constants ag, as, a4, a6 € K, and in this model « sends (z,y) to (—z,y).

Since (3)? = ¢ and ¢ induces the trivial automorphism on P!, we see that af

is an involution of P!, implying that @ and B commute. This means that 5 must
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be a linear fractional transformation of the form = — d/x for some d € K*. Since
the fixed points of 3 are also K-rational, d is a square in K *. By scaling = by Vd,
we may assume that d = 1. This implies that ag = a¢ and a4 = a9, so that an
equation for Z’ is
y2 = a0x6 + a2$4 +asx® + aop,

and so that 3 sends (z,y) to (1/z,y/2%). Let ¢ = ag and s = aa/ag, and let (Z,¢)
be the genus-2 curve with Dy-action given by (2.1) and (2.2). Our model for Z’
gives us an isomorphism (Z’,€') — (Z, €).

Demanding that the fixed points of @ be 0 and co and that the fixed points of
B be 1 and —1 completely specifies the standard hyperelliptic model for Z’, up to
scaling y by a constant. These scalings modify ¢ by multiplication by a square in
K. This proves the final statement of the lemma. O

Lemma 2.5. The two curves
Z:yt =c@®+ 1) (2 + sz +1) and Z':y* = (2® + 1) (a* + 5'2? +1)

are isomorphic to one another if and only if either ¢ = ¢ (in KX /K*?) and s’ = s,
or ¢ =2c(s+2) (in K*/K*?) and (s' + 2)(s + 2) = 16.

Note that Lemma 2.5 says that every curve of the form given by Equation (2.1)
has exactly one other model of the same form, unless s = —6 and —2 is a square,
in which case the lemma claims that the given model is unique.

Proof of Lemma 2.5. If either of the given relations among c, ¢’ and s, s’ hold, it is
easy to check that the two curves are isomorphic to each other. The isomorphism
in the second case is given by (z,y) — ((z +1)/(z — 1),y/(z — 1)?).

On the other hand, suppose we have a curve Z as in the lemma. We would like to
see how many other models it has that are also of the form given by Equation (2.1).
Notation 2.1, Remark 2.2, and Lemma 2.4 show that these models correspond to
the embeddings of Dy into Aut(Z), up to conjugation by Aut(Z), so we just need
to count the number of such embeddings up to conjugacy.

If s ¢ {—6,—1,14} then Aut(Z) = D4 by Remark 2.3. The outer automorphism
group of Dy has two elements, so there are two embeddings of Dy into Aut(Z) up
to conjugation and hence two models of the form (2.1). These are accounted for by
the two models in the lemma.

If s € {—1, 14}, then by computing Igusa invariants and consulting [8, §8] we find
that Autg(Z) is a certain group of order 24, so Aut(Z) is a subgroup of this group
that contains Dy. By enumeration, we find that for each such subgroup G there
are two conjugacy classes of embedding D4 < G. Once again, these are accounted
for by the two models in the lemma.

When s = —6, we find from Igusa that Autz(Z) is either a certain group Ggs
of order 48 (if K has characteristic not 5) or a certain group Gagg of order 240 (if
K has characteristic 5). Both of these groups contain a unique subgroup Gig of
order 16. For every subgroup G of Gug or Gayg that contains Dy, we find that the
number of conjugacy classes of embeddings D; — G is equal to 2 if G does not
contain G1g, and is equal to 1 if G does contain G1g.

In terms of the model y? = c(2? + 1)(z* — 622 + 1) for Z, the group Gyg is
generated by the involutions ¢ and 7 together with the automorphism v of order 8
given by (z,y) — ((z —1)/(z+1),2v/=2y/(x +1)3). We see that Gy is contained
in Aut(Z) if and only if —2 is a square in K. Combined with the results of the
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preceding paragraph, we find two models for Z when —2 is not a square, and one
otherwise. ]

2.3. An invariant of the curve Z. Lemma 2.5 shows that two curves Z and Z’
of the form given by Equation (2.1) are geometrically isomorphic to one another if
and only if either s’ = s or ' = (—2s + 12)/(s + 2). The function

(s—2)* s+s

(2.3) 16)i= 4y =1~ g

is stable under the involution s <+ s’ and is rational of degree 2, so it gives a
geometric invariant for the curve Z.

2.4. Structure of the Jacobian of the curve Z. In this section, we consider
the quotients of Z by the noncentral involutions of Dy.
Let E be the elliptic curve defined by

(2.4) E: 9y =clzx+1)(z? +sz+1).

Lemma 2.6. The quotient of Z by each of the involutions (x,y) — (—x,xy) is
isomorphic to E, and Jac(Z) is isogenous to E?.

Proof. The quotient of Z by the involution (z,y) — (—z,y) is clearly E.
To find the quotient by (z,y) — (—xz, —y), it helps to rewrite the equation for Z
as
2?y? = ca® (2 + 1) (z* + s2® + 1).

Since zy and 22 are both fixed by the involution, the quotient is given by the
equation
y? = ca(x + 1) (2 + sz +1).

If we replace (z,y) with (1/z,y/2?), we obtain (2.4) and hence the second quotient
is isomorphic to F.

These two involutions generate a subgroup of Aut(Z) isomorphic to the Klein
four-group. The product of these involutions is the hyperelliptic involution x; the
quotient of Z by k is the projective line. By [10, Theorem C|, Jac(Z) is isogenous

to the product of the Jacobians of the three quotients, thus Jac(Z) ~ Jac(E)? =
E2. U

Let s’ = (=2s+12)/(s+2) and ¢/ = 2¢(s + 2), and let E’ be the elliptic curve
E': =@+ 1)(a® + sz +1).
Note that there is a 2-isogeny E — E’ given by

1 2z+s)(xz—1) 4 (2*+2zx+s-—1)
(x,y)'—><s+2 (z+1) "s+2 (z+1)2 y)’

whose kernel contains the 2-torsion point P = (—1,0) of E. The kernel of the dual
isogeny E' — E contains the 2-torsion point P’ = (—1,0) of E’.

Lemma 2.7. The quotient of Z by each of the involutions (z,y) — (1/z,+y/x>)
1s isomorphic to E'.
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Proof. Replacing = with (z+1)/(x—1) and y with y/(z —1)3 in the equation for Z,
we find that Z can also be written as

= (@ + 1) (z* + 522 +1).
The two involutions (z,y) — (1/z, +y/x?) in the original model become the involu-
tions (z,y) — (—x, Fy) in the new model. The result follows from Lemma 2.6. O

Lemma 2.6 says that there is an isogeny E? — Jac(Z), but we can be much more
precise.

Proposition 2.8. Let E be as above, let P = (—1,0) € E[2], and let Q and
R be the other two geometric points of order 2 on E. Let ¢: E[2] — E[2] be
the automorphism that fizes P and swaps Q and R. Then there is an isogeny
p: E x E — Jac(Z) whose kernel is the graph of v, and the pullback via ¢ of the
principal polarization on Jac(Z) is twice the product polarization on E x E.

Proof. Because there is a degree-2 map Z — E, the general theory set out in [11, §2]
shows that there are an elliptic curve F', an isomorphism v¢: E[2] — F[2], and an
isogeny E x F' — Jac(Z) satisfying the conclusion of the proposition. The explicit
construction carried out in [5, §3] shows that F' = E and that % is the isomorphism
specified in the statement. ([l

In fact, almost every pair (E, P) consisting of an elliptic curve E over K and a
K-rational 2-torsion point arises in this way.

Proposition 2.9. Let E be an elliptic curve over K with a rational point P of
order 2. Then there is a genus-2 curve Z over K with Dy-action that gives rise
to this (E, P) as above if and only if E does not have a geometric automorphism
a # +1 that fizes P.

Proof. Given an E and a P as in the statement of the proposition, we may choose a
model y? = x(22 +ax+b) for E so that P is the point (0,0). Let ¢: E[2] — E[2] be
the automorphism that fixes P and swaps the other two points of order 2. If there is
no geometric automorphism of F that restricts to ¢ on E[2], then the construction
of [5, Proposition 4, p. 324] produces a genus-2 curve Z of the form (2.1), and we
check that the E and P produced by this curve as above are the F and P we started
with.

If there is a geometric automorphism « of E that restricts to 1, then the geo-
metric isogeny p: E x E — E x E that takes (U,V) to (U+a"*(V),V —a(U)) has
kernel equal to the graph of ¥, and the pullback via ¢ of the product polarization
is twice the product polarization. If there were a curve Z that gave rise to (E, P),
then by Proposition 2.8 the polarized Jacobian of Z would be geometrically iso-
morphic to E x E with the product polarization, which is impossible. To complete
the proof, we just need to observe that over fields of characteristic not 2, every au-
tomorphism a # +1 of an elliptic curve that fixes one point of order 2 necessarily
swaps the other two. O

2.5. Related families of genus-2 curves with Dj-action. If K is algebraically
closed, Cardona and Quer [2, Proposition 2.1] show that every genus-2 curve Y
with Aut(Y') 2 Dy is a member of the family

Y,: y2=x5+x3—|—vm,
where v € K \ {0,1/4,9/100}.
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The advantage of this family is that every geometric isomorphism class of a curve
with automorphism group D, corresponds to exactly one value of v, as opposed to
the family Z in (2.1). The disadvantage is that the automorphisms of this curve
are not necessarily defined over the field generated by the parameter v.

Moonen [16] studied cyclic covers of P! given by monodromy data. One of the
twenty families of curves that appear in his work is the cyclic degree-4 cover of P!
given by

Xr: 2t=z(z—-1)%*x-T)>

The curve X has genus 2 and Autz(X7) = Dy for a generic choice of T. This
model makes the order-4 automorphism very apparent, but the hyperelliptic struc-
ture is not as clearly visible.

3. THE 2-TORSION AND UNRAMIFIED ELEMENTARY ABELIAN 2-COVERS

In this section, we study unramified elementary abelian 2-covers of the curves Z
defined by (2.1). Throughout this section, we assume all Weierstrass points of Z
are defined over K. Let ¢ be a primitive fourth root of unity in K. Then Z can be
given by

(3.1) Z: yv=clz-0O+@—-t)(x+t)(xz—1/t)(x+1/t), where
(3.2) s=—(t*+ 1)/t

3.1. Unramified elementary abelian 2-covers. Let P € Z(K) be the Weier-
strass point ({,0). Since there is a K-rational automorphism of Z taking P to
(—¢,0), the choice of ¢ does not affect the K-isomorphism class of the 2-covers we
construct. Note that P and (—(,0) are distinguished from the other Weierstrass
points of Z by the fact that they form an orbit of size 2 under the action of Dyg;
the other Weierstrass points form an orbit of size 4.

Definition 3.1. Let tp: Z — Jac(Z) be the Abel-Jacobi embedding that sends
Q € Z(K) to the divisor class [Q — P]. Let 7%: Z — Z be the pullback of the
multiplication-by-2 map on Jac(Z) by tp: Z — Jac(Z).

Our assumption that the Weierstrass points of Z are K-rational implies that
the cover Jac(Z) — Jac(Z) given by the multiplication-by-2 map is Galois, with
Galois group isomorphic to Jac(Z)[2] & (Z/2Z)*; the group Jac(Z)[2] acts on the
cover by translation. Since m° is defined as a pullback of this cover, 7° is also
Galois, with Galois group canonically isomorphic to Jac(Z)[2]. In fact, geometric
class field theory shows that we can recognize 7° as the maximal unramified abelian
extension of Z with Galois group of exponent 2 in which the base point P = ({,0)
splits completely.

Definition 3.2. For a subgroup H of Jac(Z)[2], let ZH pe the quotient of Z by
H. Let 7 : ZH — Z be the quotient cover.

For example, Z° = Z and Z7@El = 7z More generally, the degree of /!
equals the index of H in Jac(Z)[2]. Since Jac(Z)[2] is abelian, 7 is Galois with

Galois group isomorphic to Jac(Z)[2]/H. Furthermore, the genus of ZH equals
[Jac(Z)[2] : H] + 1 by the Riemann—Hurwitz formula.
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Remark 3.3. If we pick a different basepoint P’ instead of P and keep track of
the basepoint dependence by labeling the 2-covers as Zp and Z pr, and if we let
Q € Jac(Z)(K) be a point with 2Q = P — P’, then translation by Q on Jac(Z)(K)
yields a geometric isomorphism from Zp to Zp. We will prove in the following
paragraph that there exists an elementary abelian 2-extension L of K of degree at
most 24 such that Q € Jac(Z)(L), so this translation isomorphism will be defined
over L. In particular, when K is a finite field, then L is at worst a quadratic
extension of K, and the curve Zp/ is a (possibly trivial) quadratic twist of A p.
From now on, we fix the base point to be P = (¢, 0) for all 7.

The following argument was provided by Bjorn Poonen. The obstruction to di-
viding a point of Jac(Z)(K) by 2 lies in H'(K, Jac(Z)[2]). Since all the Weierstrass
points are defined over K, we know that Jac(Z)[2] & u3 as a Galois module. Hence,
the obstruction to dividing P’ — P by 2 lies in H'(K, Jac(Z)[2]) = (H* (K, u2))* =
(K*/K*?)4, so there exists an elementary abelian 2-extension L/K of degree at
most 2% such that the image of this class in H(L, Jac(Z)[2]) = (L* /L*?)% is trivial.
When K is a finite field of characteristic not 2, over its unique elementary abelian
2-extension L, this obstruction class vanishes. Thus Z pr is a quadratic twist of Z p.

3.2. Decomposition of the Jacobian. In this section, we determine the isogeny
decomposition of Jac(Z) over K.

Definition 3.4. Given a cover w: V — Z, let Prym™ denote the Prym variety of 7,
that is, the identity component of the kernel of the induced norm homomorphism
Jac(V) — Jac(Z). There is a K-isogeny Jac(V) ~ Jac(Z) x Prym” .

Definition 3.5. For a subgroup H of Jac(Z)[2], we set Prym” := Prym’rH7 where
7H is the cover defined in Definition 3.2.

Proposition 3.6. Let Z be a genus-2 curve with Dy-action whose Weierstrass
points are defined over K. For every H C Jac(Z)[2], there is an isogeny

(3.3) Jac(Z") ~ E? x H Prym® .

HCH'CJac(2)[2]
[Jac(Z)[2]:H']=2

Proof. Let G = Jac(Z)[2] and r = [G : H|, and enumerate the index-2 subgroups of
G containing H by H{, -+, H,_;. We apply [10, Theorem C] to the {H}} together
with H and G. More precisely, we define

H! fori=1,...r—1, -1 fori=1,...r—1,
H,=¢H fori=r, and n; =<1 fori=r,
G fori=r+1, r—2 fori=r+1.

Let g;; be the genus of ZHi#i. The group H; H; must be one of H{,--- ,H/_,, H,G.
We know from Riemann-Hurwitz that the genus of Z¥ is r 4 1, the genus of each

ZHi s 3, and the genus of 7% is 2. Using this information and some casework, we
see that

2 ifi£jandi,j <r—1,
3 ifi=j<r-—1,
gij =43 ifi<r—landj=r,ori=randj<r-—1,
r+1 ifi=j=mr
2 ifiorjisr—+1.
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We check the conditions to apply [10, Theorem C]: first, H; H; = H; H; is satisfied
because G is abelian; and second, Y . n;g;; = 0 for all j € {1,...,r + 1} by our
computations above. Therefore the conclusion of [10, Theorem C] holds, namely,
there exists a K-isogeny

H Jac(gHi)"i ~ H Jac(ZHf)_”f,
n; >0 nj<0
which for us becomes
Jac(Z7) x (Jac(Z))" 2~ ] Jac(Z™).

HCH'CJac(Z)[2]
[Jac(Z)[2]):H']=2

Now we substitute Jac(Z#') ~ Jac(Z) x Prym™’, cancel (Jac(Z))"~2 from both
sides, and substitute Jac(Z) ~ E? (from Lemma 2.6) to finish. O

3.3. The Weil pairing.

Definition 3.7. Let R = {(,—(,t,—t,1/t,—1/t}. For r € R, let W, denote the
Weierstrass point (r,0) of Z.

Lemma 3.8. If D € Jac(Z)[2], then there exist u,v € R such that D = [W,, —W,].

Proof. We know Jac(Z)[2] is generated by [W, — W¢] for r € R\ {(} with the
single relation ) [W, — W;] = 0. The conclusion follows from a straightforward
computation. ([l

Definition 3.9. Let es(+, ) denote the Weil pairing on Jac(Z)[2], which takes values
in {1} C K*. For every subgroup H of Jac(Z)[2], define H* by

H' :={S € Jac(Z2)[2] : e2(Q,S)=1forall Q€ H}.

For later use, we give an explicit description of the Weil pairing on 2-torsion
points.

Lemma 3.10. For nonzero elements [W,,, —W,,| and [W,,, —W.,] of Jac(Z)[2](K),
we have es([(Wy, =W, ], W, — Wa,|) = —1 if and only if #({u1,v1 }N{uz, v2}) = 1.

Proof. This is a direct calculation using a well-known formula for the Weil pairing
(see [4, Theorem 1]). O

Proposition 3.11. Let H' be an index-2 subgroup of Jac(Z)[2] and let U = [W,, —
W,] be the generator of (H')*. Define a € K*/K*? by

_JdC=u)(C—v)  if & {u v},

a:= :
HTER\{U,’U}(C - T) Zf( € {U, U}'

Let E' be the genus-1 curve given by the equation y? = aHTeR\{%U}(x — 7). Then
there is a K-isogeny PryrnH/ ~ Jac(E").
Proof. Let fo = ac(z —u)(z —v) and f1 = a[],cp\ (4,0} (@ — 1), and consider the

V,-diagram of function fields

K(x,vfo, V1)
K(xv\/JTO) K(:L‘,vfofﬂ K(xv\/f_l)
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If we let C be the genus-0 curve y? = fy, the diagram above gives us a Vj-diagram
of curves

(3.4)

where Y is the curve with function field K (x, v/fo,v/f1). The value of a was chosen
so that the point 2 = ¢ of P! splits in one of the extensions C' — P! and E' — P!
and ramifies in the other, and it follows that the Weierstrass point P = (¢,0) of
Z splits in the quadratic extension ¥ — Z. Since ¥ — Z is a Galois extension
with group of exponent 2 in which P splits completely, it must be a subextension
of Z — Z, which as we noted earlier is the maximal such extension. This tells us

that the element fy of K(Z)* is a square in K(Z)*.
In fact, we see that the map U — fy defines an injective homomorphism
v: Jac(2)[2] = (K(2)* N K(Z)*?)/K(Z)*2.

If we let G be the latter group, then Kummer theory says that there is a perfect
pairing

Gal(Z/Z) x G — {+1} C K*.
In particular, #G = # Gal(Z/Z) = # Jac(Z)[2], so the injective homomorphism
7 is an isomorphism. This isomorphism, together with the canonical isomorphism
Jac(Z)[2] 2 Gal(Z/Z), turns the Kummer pairing into a perfect pairing

Jac(Z)[2] x Jac(Z)[2] — {£1}.
As is observed in [4, §2], this pairing is in fact the Weil pairing; this can be seen

by using the explicit formula for the natural pairing of the m-torsion of an abelian
variety with that of its dual [14, §16] and the fact that the pullback of the Abel-

Jacobi map Z — Jac(Z) is equal to —A~!: J@) — Jac(Z), where A: Jac(Z) —
Jm) is the canonical polarization on Jac(Z) [15, Lemma 6.9 and Remark 6.10(c)].

From this we conclude the cover Y — Z is w2 . Furthermore, we see from
Diagram (3.4) and [10, Theorem C] that Jac(Y") ~ Jac(Z) x Jac(E"), so Prym”’ ~
Jac(E"). O

3.4. The Dj-action on the factors of Jac(Z). Applying Proposition 3.11 to the
fifteen index-2 subgroups of Jac(Z)[2] yields fifteen elliptic curves.

Definition 3.12. Given a nonzero U € Jac(Z)[2], let Ey be the elliptic curve
obtained by applying Proposition 3.11 to the index-2 subgroup (U)*. If v and v
are the unique elements of R such that U is equal to the divisor class [W,, — W, ] =
(W, — W.,], we also write Ey, .y for Ey.

Corollary 3.13. There is a K-isogeny
Jac(Z) ~ E* x | [ Ev,
U

where the product is over nonzero U € Jac(Z)[2].

Proof. Combine Proposition 3.6 with H = 0 and Proposition 3.11. O
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Proposition 3.14. The set of nonzero elements of Jac(Z)[2] breaks up into six
orbits under the action of Dy, as listed in Table 1. For each U in an orbit, the
table presents a value a € K* as in Proposition 3.11, and values of A\ and d such
that Ey is isomorphic to y? = dx(x — 1)(x — \).

TABLE 1. The fifteen elliptic curves Ey for nonzero U € Jac(Z)[2],
labeled as in Definition 3.12, grouped in their orbits under the
action of D4y. The value of a is as in Proposition 3.11, and the
values of A\ and d are such that Ey is also isomorphic to 3% =
dx(x—1)(x—X). Recall that each Ey can be recovered as the Prym
variety of the double cover of Z associated, as in Proposition 3.11,
to the subgroup H' C Jac(Z)[2] that pairs trivially with U under
the Weil pairing.

Orbit Point

label label a A d
1 {¢, ¢ 1 482 /(12 +1)2 1
2A  {t,—t} c(t?* +1) AC/(E+ )2 c(t?+1)
{1/t,—1/t} c(t* +1)

2B {—t,—1/t} Cat(t>+1) 22 -1)/(t+¢)? (> +1)
{t, 1/t} Cet(t* 4+ 1)

2C  {t,—1/t} (et -1 c(t?+1)
{—t,1/t} Cet

4A - {¢,1/t} Ctt+¢) =2¢t/(t - ¢)? ¢
{¢, -t} (t+¢)
{=¢, —1/t} Cet(t —¢) =2Ct/(t = ()? Ce(t® +1)
{_Cat} C(t - C)

4B {¢.t} (t—¢) 20t/(t +¢)? ¢
{¢.-1/t} it =)
{~¢,—t} c(t+¢) 20t/(t+¢)* Ce(t* +1)
{—¢. 1/t} Cet(t + Q)

Proof. The generators ¢ and 7 of the Dy subgroup of Aut(Z) act on the curve

labels via

o({u,v}) = {-u,—v} and 7({u,v}) = {1/u,1/v},
so the grouping into orbits is clear. The value of a is determined via Proposi-
tion 3.11, and the associated A and d are computed by applying a linear fraction
transformation to put the curve E’ from Proposition 3.11 into Legendre form. [

Remark 3.15. Suppose an element o € Aut(Z) takes U € Jac(Z)[2] to V. If a does
not fix the base point (¢,0) by which we embedded Z into Jac(Z), then a does
not necessarily provide a K-rational isomorphism between Ey and Ey, because
the base point determines the appropriate twist of the elliptic curve associated to a
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2-torsion point. We see this, for example, in Orbits 4A and 4B: each of these orbits
has two different values of d.

Remark 3.16. The order-4 automorphism of Z induces an order-4 automorphism ¢
of Jac(Z), such that multiplication by 2 factors as (1 — ¢)(1+ (). A natural object
of study is the degree-4 cover of Z whose Jacobian contains orbits 1 and 2C; it
arises as Z when H := Ker(1 — (). See Sections 5 and 6 for more details.

4. HEURISTICS FOR ISOGENOUS CURVES

Let g be a power of an odd prime p and let K = [, be a finite field of order
q. In this section, we consider genus-2 curves Z over K having the property that
Dy C Aut(Z). We study unordered pairs of nonisomorphic curves of this type
whose Jacobians are isogenous to one another. The main result of this section is
Theorem 4.6, which gives upper and lower bounds for the number of these unordered
pairs in terms of q.

4.1. The moduli space of genus-2 curves with D -action. Recall from Nota-
tion 2.1 that Z is the set of K-isomorphism classes of objects (Z,¢), where Z is a
genus-2 curve over K and where e: Dy — Aut(Z) is an embedding. Let Z denote
the set of K-isomorphism classes of genus-2 curves over K such that Dy C Aut(Z2),
and let v: Z — Z be the forgetful morphism taking the object (Z, ¢) to the curve
Z. At the beginning of Section 2 we defined £ to be the involution of D, that swaps
the generators a and b. We can define an involution on Z as well, by sending (Z, €)
to (Z, €€).

Notation 4.1. Let X be the set of isomorphism classes of objects (E, P), where F
is an elliptic curve over K and P is a K-rational point of order 2 on . Two such
objects (E1, P1) and (FEs, Py) are isomorphic if there is a K-rational isomorphism
E1 — E2 taking P1 to PQ.

Let x be the involution on X that sends a pair (F, P) to the pair (E’, P'), where
E’ = E/(P) and where P’ is the generator of the kernel of the dual isogeny E' — E.
Let X_g C X be the subset consisting of those objects (E, P) such that E has a
K -rational endomorphism 3 with 32 = —2 for which 3(P) = 0. Let X_4, C X be
the subset consisting of those (E, P) such that F has a geometric automorphism o
satisfying a? = —1 for which a(P) = P. Finally, let X’ = X'\ X_4. The involution
x on X restricts to an involution on X”.

In Section 2.4, we associated to every genus-2 curve with Dy-action (Z,€) an
elliptic curve E and a 2-torsion point P on E. Thus there is a map pu: Z — X that
sends the isomorphism class of (Z,€) to that of (E, P).

Proposition 4.2. The map p is injective and has image X'. It takes the involution
(Z,€) — (Z,€€) of Z to the involution x on X'. The map v: Z — Z that sends
(Z,€) to Z is 2-to-1, unless (Z, €) is fized by & or, equivalently, unless u(Z,e) € X_g.

Proof. Let (E,P) € X. By Proposition 2.9, there exists (Z,¢) € Z such that
w(Z,e) = (E, P) if and only if there is no automorphism « # +1 of F that fixes P.
Combining this with the observation that an automorphism a # 41 of an elliptic
curve in characteristic not 2 that fixes a 2-torsion point must have order 4, we find
that (F, P) is in the image of p if and only if it lies in X”.

Next we show that a genus-2 curve with Dy-action (Z,€) can be recovered from
its image (£, P) under pu. To see this, we first write down a short Weierstrass
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model for E such that P is the point (0,0). Such a model is of the form y? =
2(2? + dx + e), and the model is unique up to scaling x and y. The coefficient e is
nonzero because the model is nonsingular, and d is also nonzero, because otherwise
the map (z,y) — (Cz, —y) would be an automorphism of order 4 that fixes P, and
E has no such automorphisms because (F, P) lies in X’. There is a unique way to
scale x so that the model becomes y? = cx(2? + fo— f) for ¢, f € K* with f # —4;
the value of f is unique, and the value of ¢ is unique up to squares. Replacing z with
x + 1 transforms the model into y? = c(z + 1)(2% + sz + 1), where s = f + 2 # +2
and where P = (—1,0). We have shown that (F, P) determines unique values of
s € K and c € K*/K*2, and these values determine a unique genus-2 curve with
D,-action, via Equations (2.1) and (2.2), so  is injective.

Lemmas 2.6 and 2.7 show that if u(Z,e) = (E, P) then u(Z,e€) = (E', P'), so u
takes the involution (Z,€) — (Z,€€) to x.

The fact that v is 2-to-1 except for the objects (Z,¢) that are isomorphic to
(Z, €€) follows from Lemma 2.5 and its proof. By the preceding statements, (Z,¢)
and (Z, e€) are isomorphic if and only if (E, P) is fixed by x, meaning that (F, P)
and (E’, P') are isomorphic. This is true if and only if £ has an endomorphism £,
whose kernel is generated by P, such that 52 = 2u for a unit u in End(E). The
only possibilities are that: (i) 8 = +1 4+ ¢ where ¢ € Aut(E) with ¢? = —1, in
which case (E, P) ¢ X', or (ii) 3 satisfies 8% = —2. O

Remark 4.3. As the preceding proof shows, the curves Z € Z that have only one
preimage in Z correspond to the exceptional curves in Lemma 2.5, that is, the
curves with s = —6 when —2 is a square. We note that when s = —6 the associated
elliptic curve F has j-invariant 8000, which is the unique root of the Hilbert class
polynomial for Z[y/—2]. The endomorphisms 8 € End(E) with 82 = —2 kill the
2-torsion point P = (—1,0), and these endomorphisms are K-rational if and only
if —2 is a square.

Remark 4.4. We can view Z as the coarse moduli space for objects (Z,€) as in
Notation 2.1. Similarly, we can view X as the coarse moduli space Y7(2) = Y5(2),
namely the modular curve X (2) with its cusp removed. Then, under the embedding
Z < Yp(2) the involution associated to Z — Z is the Fricke involution on Yy(2).
The language of moduli spaces is not useful to us here since these are not fine
moduli spaces and we need to keep track of the field of definition of the objects.

4.2. Counting isogenous pairs of curves with D -action.

Definition 4.5. Let P(q) denote the number of unordered pairs {Z7, Z2}, where
Z1,Zy € Z are not isomorphic to one another and Jac(Z;) and Jac(Z2) are isoge-
nous.

Theorem 4.6 determines the rate of growth of P(g) up to logarithmic factors.

Theorem 4.6. There are constants di,ds > 0 such that for all odd prime powers
q>7,
d1¢*? < P(q) < daq*/*(log )*(loglog q)*.

If the generalized Riemann hypothesis holds, there is a constant d3 > 0 such that
P(q) < d3¢*’*(loglog q)°.

Remark 4.7. Direct calculation shows that P(q) = 0 for ¢ = 3, 5, and 7, so the
hypothesis that ¢ > 7 in Theorem 4.6 is necessary.
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Before we get to the proof of Theorem 4.6, we present some definitions and
lemmas that we will need.

Proposition 2.8 shows that if Z is a genus-2 curve over K with Dj-action, then
Jac(Z) is isogenous to E?, where E is an elliptic curve with a rational 2-torsion
point. Since E has a rational point of order 2, #E(K) is even, and since ¢ is odd,
the trace of Frobenius for F must also be even. This shows that the Weil polynomial
of Jac(Z) is of the form (2? — tx + ¢)?, for an even integer ¢ with t* < 4q.

Deﬁnit_ion 4.8. For each even integer ¢ with t> < 4q, let M (g, t) denote the number
of Z € Z whose Weil polynomial is (z? —tz+q)?, and let N(g,t) denote the number
of elliptic curves over K with trace t.

Lemma 4.9. For all odd prime powers ¢ and even integers t with t*> < 4q we have
M(g,t) < 3N(g,1).

Proof. For each curve Z € Z with Weil polynomial (22 — tx + ¢)2, choose an
embedding e€: Dy — Aut(Z). Proposition 4.2 shows that (Z, €) gives rise to a unique
pair (E, P) with trace(E) = t, so M(q,t) is at most the number of such pairs. Since
an elliptic curve has at most three rational points of order 2, we have M (q,t) <
3N(q,t). O

Lemma 4.10. There is a constant dy such that for all odd prime powers q and
even integers t with t? < 4q, we have

N(q,t) < ds+/q(log q)(loglog q)*.

If the generalized Riemann hypothesis holds, there is a constant ds such that for all
odd prime powers q and even integers t with t? < 4q, we have

N(g,t) < ds\/g(loglog ).

Proof. This follows from the formulas for N (g, t) found in [18, Theorem 4.6, pp. 194—
196]), combined with the bounds on Kronecker class numbers found in [1, Lemma
4.4, p. 49]. O

Proof of Theorem 4.6. Clearly,

P = Y (M) = S a2 X a2

t2<4q t2<4q t2<4q
t even t even t even

The number of even ¢ with t? < 4q is at most 2,/q + 1. By the Cauchy—Schwarz
inequality,

M(q,1))*
ZM(Q>t)2 > (Z (Q7 )) ,
v+ 1)
where each sum is over the set of even ¢ with t?> < 4¢. By Lemma 2.5, the sum of
the M(q,t) is either ¢ — 2 or ¢ — 3, so
q—3)?% g2
P(q) = (@3
227 +1) 2
From this we can show that P(q) > ¢%/2/23 for ¢ > 17. By direct computation we
find that P(9) = 6, P(11) = 3, and P(13) = 6, so we have P(q) > ¢*/2/23 for all
q>T.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



362 VISHAL ARUL ET AL.

To prove the upper bounds on P(gq), we use Lemmas 4.9 and 4.10 to see that

Plg) =) <M(§’t)) < % > N(gt)

t2<4q t2<4q

t even t even

]1 d% q(log q)*(loglog ¢)* in general;
<Z@/g+1] |
2 @2 q(loglog q)° if GRH holds.
The upper bounds in the theorem follow. (Il

4.3. Gathering data. Proposition 4.2 and the ideas in Section 4.2 allow us to
quickly compute the exact value of P(q) when ¢ is not too large. The subtleties in
the computation include computing the objects (F, P) that lie in X_g and in X_y4,
and, for each even trace ¢, determining the number of elliptic curves with trace
t that have exactly one point of order 2 and the number that have exactly three
points of order 2. This latter question is answered by noting that an elliptic curve
with Frobenius endomorphism 7 has three rational points of order 2 if and only if
(m —1)/2 lies in its endomorphism ring, and by noting that the number of curves
with trace ¢t and with a given endomorphism ring can be computed from a class
number; see [18, Theorem 4.5, p. 194].

Further details of our method of computing P(g) can be found in the comments
of the Magma code we used to do so, which can be found as supplementary material
with the arXiv version of this paper as well as on the fourth author’s web page:
http://ewhowe.com/papers/paper51.html.

For 15 < n < 24, we computed the values of P(q)/q*/? for the 1024 odd prime
powers ¢ closest to 2. For each of these sets of 1024 prime powers we also com-
puted the standard deviation and the minimum and maximum values of P(q)/q>/2.
These values are presented in Table 2. From Theorem 4.6 and this data, it seems
reasonable to model P(q) as growing like a constant times /2.

TABLE 2. Data for isogenous curves. For each n, we give the
mean, standard deviation, and extremal values of P(q)/q*/?, where
q ranges over the 1024 odd prime powers closest to 2".

n Mean S.d. Max Min

15 0.42025 0.01958 0.45974 0.38473
16 0.42188 0.01949 0.45828 0.38732
17 0.42270 0.01953 0.45792 0.38845
18 0.42394 0.01939 0.45914 0.38996
19 0.42406 0.01955 0.45865 0.39078
20 0.42464 0.01917 0.45862 0.39105
21 0.42514 0.01942 0.45851 0.39203
22 0.42577 0.01922 0.45830 0.39248
23 0.42527 0.01937 0.45843 0.39262
24 0.42557 0.01938 0.45853 0.39276

Remark 4.11. The quantity P(q) was defined so that it counts the number of un-
ordered pairs {Z1, Z>} of nonisomorphic curves with Ds-action and with isogenous
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Jacobians, because clearly Z; and Zs will have isogenous Jacobians if in fact they
are the same curve. There’s another “easy” way that two curves can have isogenous
Jacobians: If Z; and Z5 are curves over a proper extension Iy of ), that are Galois
conjugates of one another, their Jacobians will be isogenous to one another via some
power of the Frobenius isogeny. If ¢ = p°©, these Galois conjugate pairs account for
O(e2q) of all the isogenous pairs over F,, which is an increasingly small fraction
of the value of P(q) as ¢ — oco. However, when we consider the more uncommon
doubly isogenous pairs in later sections, we will want to specifically exclude Galois
conjugate pairs from our counts.

5. INITIAL HEURISTICS AND DATA FOR DOUBLY ISOGENOUS CURVES

By Theorem 4.6, the number of unordered pairs {Z1, Z2} of genus-2 curves over
K =T, with Ds-action and with isogenous Jacobians is proportional to ¢*/2, up to
logarithmic factors. The frequency naturally decreases if, in addition, we require
that Z; and Zs be doubly isogenous. In this section, we present our initial heuristic
about the expected number of doubly isogenous curves over F, and some data that
we use to test the heuristic.

Remark 5.1. Recall that we associate to a pointed curve (C, P) the cover C—cC
obtained as the pullback of the multiplication-by-2 map on Jac(C) by the Abel-
Jacobi map corresponding to the base point P. We say that two pointed curves
(C1, P1) and (Cy, Py) are doubly isogenous if (the Jacobians of) Cy and Cy are
isogenous and (the Jacobians of) 51 and 6'2 are isogenous. When we are considering
a genus-2 curve with Dy-action and with all Weierstrass points rational, there is a
natural choice for a base point: one of the two Weierstrass points whose stabilizer
under the D4 action has size 4. (As we saw in Section 3.1, it does not matter
which of these two Weierstrass points we choose, because they give isomorphic
covers.) Throughout the rest of this paper, in accordance with Remark 3.3, when
we say without further comment that two genus-2 curves with Dy-action are doubly
isogenous, we mean with respect to this choice of base point.

5.1. An initial heuristic for doubly isogenous curves. As we noted in Re-
mark 4.11, two curves Z; and Z, over a finite field K are trivially doubly isogenous
if they are Galois conjugates of one another. This observation influences Definition
5.2.

Definition 5.2. Let 6(¢) be the number of unordered pairs {Z7,Z2} of doubly
isogenous curves over F,, where Z; and Z; are genus-2 curves with D4-action and
all Weierstrass points rational, and where Z; and Z, are not Galois conjugates of
one another.

We formulate a heuristic to estimate d(q) that we label as “naive” because it
turns out not to match the data we gathered. Later in the paper, we explain this
discrepancy and improve the heuristic.

Naive Heuristic 5.3. For a fized odd prime power q, we model the double-isogeny
class of Z as a siz-tuple of independent random elliptic curves over F,.

Justification. By Corollary 3.13, if all of the Weierstrass points of Z are rational
then Jac(Z) decomposes into a sum of 17 elliptic curves, two of which are E. The
remaining 15 elliptic curves fall into six orbits under the action of Dy, as in Table 1.
The elliptic curve in Orbit 2C' does not depend on s.
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Suppose Z; and Zs are genus-2 curves with Dy-action, lying over elliptic curves
F4 and FEs as in Lemma 2.6. For Z; and Z5 to be doubly isogenous over K, there
must be six geometric isogenies of elliptic curves, one between F; and Es and an
additional five for the nonconstant orbits. (These five isogenies may be between
orbits with different labels; for example, orbit 2A for one curve may be isogenous
to orbit 2B for the other. This only affects the probability that that the five
isogenies exist by a constant factor.) With positive probability, a geometric isogeny
Jac(Zy) ~ Jac(Z,) comes from a K-rational isogeny, because all the elliptic curves
have a bounded number of twists. Thus it is reasonable to model the double-isogeny
class of Z as six random elliptic curves. O

Let n be the number of isomorphism classes of genus-2 curves over K with
Dy-action and rational Weierstrass points. It follows from the parametrization in
terms of the variable ¢ given in (3.1) that n < ¢; the exact count is irrelevant for
our purposes. Choose n six-tuples of random elliptic curves over F,, and denote
them by (E;1,... E;¢) for i € {1,...,n}. Define the set

S,:={(,j):i#jand B;, ~ Ej, fora=1,2,...,6} C{1,...,n}>

Lemma 5.4. The expected value of #S, (which is the prediction of Naive Heuris-
tic 5.3 for the number of pairs of doubly isogenous curves) satisfies

E(#5S,) < 1/q.

Proof. There are ©(q?) pairs of (i, ), and in Section 4 we showed the probability
of two random elliptic curves over F, being isogenous is O(q~/?). O

Thus Naive Heuristic 5.3 predicts that the “expected value” of §(q) is < 1/q. As
we will see, this does not match the data we gathered; the assumption that the 6
elliptic curves are independent does not turn out to be completely accurate.

5.2. Data that does not support the naive heuristic. In order to calculate
0(q) for specific values of ¢, we first want to enumerate all isomorphism classes
of genus-2 curves Z over K = F, with Dy-action and with all Weierstrass points
rational. To do so, we vary ¢ in (3.1). Letting s = —(t* + 1)/t? and taking into
account the involution s +» ', we see that the following values of ¢ give isomorphic
curves:

o) b (D) S50 52,

To enumerate isomorphism classes, we fix an ordering of the elements of K and
only consider values of ¢ for which s # +2 (so Z is nonsingular) and for which ¢ is
the smallest of the values in (5.1). We then include the curve Z from (3.1) and its
standard quadratic twist in our enumeration. If w is a fixed quadratic nonresidue
of K, that means we look at

= (2> +1)(z* +s22 +1) and y® =w(z? +1)(z* + s2® +1).
(Recall from Lemma 2.5 that if s = —6 and —2 is not a square in K, the curve
Z is isomorphic to its standard quadratic twist. However, when s = —6 we have
t = +1 4 /2, so when the Weierstrass points of Z are rational, the exceptional case
in Lemma 2.5 does not occur.)

In Table 3(A), we present some data that we collected by enumerating doubly
isogenous pairs. For n ranging from 15 to 23, we considered the 1024 primes
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TABLE 3. The total number of unordered pairs of doubly isogenous
curves and [1 — p*]-isogenous curves over F, for the 1024 primes
q = 1 mod 4 closest to 2™, restricting to curves with all Weierstrass
points rational

A Data for doubly B Data for [1 — p*]-

isogenous curves isogenous curves
n  Examples n  Examples
15 820 15 11690160
16 580 16 23837994
17 407 17 48443688
18 282 18 97608276
19 218 19 196343212
20 138 20 394584130
21 100 21 793839836
22 58 22 1588282776
23 42 23 3172154548

¢ = 1 mod 4 closest to 2" and computed the sum of §(g) over these values of g.
According to Naive Heuristic 5.3 and Lemma 5.4, we would expect this sum to
have rate of growth of the form ¢/2" for some constant ¢. In particular, we would
expect the sum to approximately halve as we increase n by 1. This is not what
we observe. We explain this discrepancy in the next section by finding several
families of coincidences that cause doubly isogenous pairs to occur more often than
predicted.

We can similarly develop heuristics for covers corresponding to subgroups of
Jac(2)[2].

Definition 5.5. Let H be a subgroup of Jac(Z)[2]. We say that Z; and Z, are
H-isogenous if Jac(Z;) and Jac(Zs) are isogenous and Jac(ZH) and Jac(Z) are
isogenous, where ZH and ZI are as defined in Definition 3.2.

(When H = 0 we recover the definition of doubly isogenous curves.)

Proposition 3.6 gives a decomposition of J ac(Z H)and Table 1 lets us identify the
elliptic curves appearing in this decomposition. In particular, if m is the number of
different nonconstant orbits of elliptic curves corresponding to the 2-torsion points
in H', then we expect

(5.2) #{H-isogenous pairs /F,} < qB3—m/2,

Example 5.6. For example, take H := Ker(1 — p*), where p is the automorphism
of order 4 defined in Section 2.1. The cover Z¥ — Z has degree four, and since
(1 — p*)? = —2p*, it is isomorphic to the pullback of the endomorphism 1 — p* on
Jac(Z) via the embedding Z — Jac(Z). When Z; and Z; are H-isogenous for this
H, we say that Z; and Z, are [1 — p*]-isogenous. The Jacobian Jac(ZH) contains
orbits 1 and 2C (in addition to E?). Since Orbit 2C is constant, m = 1 and we
only need a single coincidence for J ac(Z{{ ) and J ac(Zf ) to be isogenous. Thus we
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expect

(5.3) #{[1 — p*]-isogenous pairs /F,} < q.

We expect the total number of pairs of [1 — p*]-isogenous curves for the 1024 primes
q = 1 mod 4 closest to 2™ to have rate of growth c-2" for some constant ¢, and this

is supported by the data in Table 3(B), as the number of pairs roughly doubles as
we increase n by 1.

6. FAMILIES WITH UNEXPECTED COINCIDENCES

Naive Heuristic 5.3 predicts that the “expected value” of d(q) is on the order of
1/q, where §(q) is the number of nonconjugate pairs {Z1, Z2} of doubly isogenous
curves over a finite field F, with Z; and Z genus-2 curves with Dy-action and all
Weierstrass points rational. As seen in Table 3(A), the data we collected does not
seem to reflect this rate of growth. In this section, we find a number of families of
coincidences that explain this discrepancy and we formulate a more sophisticated
heuristic for the number of such pairs, which will be supported by the data in
Section 7.

6.1. j-Invariants for orbits. We begin by computing the j-invariants of the ellip-
tic curves appearing in Table 1; the middle column of Table 4 gives these j-invariants
in terms of the parameter ¢. For our computations, it will be convenient to note
that we can also express these j-invariants in terms of the quantity

wi= (1/2)(t - 1/4),
as is shown in the third column of Table 4. This new parametrization simplifies
our computations in Section 6.2, because I = (u + 1/u)? is a quartic function of u
instead of a degree-8 function of t. We omit the proofs of the following two facts.

TABLE 4. The j-invariants for the elliptic curves in Table 1 in
terms of ¢ and u = 3(t —1/t)

j-invariant, in terms j-invariant, in terms

Orbit of the variable t of the variable u
) 24(t8 +14t* +1)3 28(ut +u? +1)3
(t5 — )4 ut(u? +1)2
oA —24(t* — 1442 +1)3 —26(u? — 3)3
t2(t2 + 1)4 (u2 + 1)2
B 26(3t* — 102 + 3)3 26(3u? —1)3
(t2 = 1)2(t2 + 1)* (u3 4 u)?
2C 1728 1728
A —26(t% —2¢t3 — 612 + 2¢t +1)3 —28(u? = Cu—1)3
(3 —1)*(t — ¢)* (u? = Cu)?
B —20(¢* + 2¢t* — 6t — 2(t + 1)* —2%(u? 4 (u —1)°
(B3 —)2(t+ ¢)* (u? + Cu)?
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Lemma 6.1. Replacing u with —u, 1/u, or —1/u does not change the value of I.
Lemma 6.2. The elliptic curve E defined by Equation (2.4) has j-invariant

Bt —12+1)°  20(4u? +1)°
t4(t2 _ 1)2 - u2 )

and is isomorphic to y* = dx(xz — 1)(z — \), where X\ = t? and d = c(t* + 1).

6.2. Finding generic geometric isogenies. In this subsection, we work over an
algebraically closed field K of characteristic not 2. Our goal is to find families of
ordered pairs (Z1, Z3) of genus-2 curves over K with Dy-action that have a higher-
than-expected chance of being doubly isogenous. For example, we might search
for families where the elliptic curves in some of the orbits listed in Table 1 for Z;
are automatically isogenous to those in some of the orbits for Z;. We carry out
this search by using classical modular polynomials ®,, € Z[z,y]. (Recall that the
polynomial ®,, has the property that there is a geometric cyclic n-isogeny between
two elliptic curves over an arbitrary field K if and only if the j-invariants j; and
j2 of the two curves satisfy ®,,(j1,72) = 0; see [7], [9].)

Let Z; and Z5 be two genus-2 curves over K with Dy-action, and let I; and I be
their respective invariants; see Section 2.3. We can write each Z; in the form (3.1);
that is, there are ¢;,t; € K such that Z; is given by

6.1) Zi: Y =cle- Qe+ —t)(e+t) (@ —1/t) (e +1/t)
= ci(z? + 1) (z* + 5,22 + 1),

where s; = —(t} +1)/t2. Since K is algebraically closed, we may take ¢; = ca = 1.

As we observed in Section 6.1, the orbit labels for Z; and Z; are determined by
the values of u; = (1/2)(t; — 1/t;), which satisfy I; = (u; + 1/u;)?. It follows that
u1 and uy are reasonable parameters to use for the families we construct.

To find families of ordered pairs (71, Z3) with a cyclic isogeny of degree n between
specified orbits, we work over the algebraic closure K of the 2-variable function field
Q(¢)(u1,uz), and consider the curves Z; and Z; with parameters t1,t5 € K such
that u; = (1/2)(t; — 1/t;). Given an orbit for Z; and an orbit for Z,, we can plug
the appropriate formulas for the j-invariants of the orbits into ®,, in order to obtain
an expression in w; and we which is zero if and only if there is a cyclic n-isogeny
between the curves in the given orbits.

Example 6.3. Let us calculate conditions under which the Orbit 1 elliptic curve for
7, is geometrically isomorphic to the Orbit 1 elliptic curve for Z,. This calculation
is simpler than most, because the j-invariants of the Orbit 1 elliptic curves can in
fact be expressed directly in terms of the invariants of Z; and Z5; namely, the Orbit
1 j-invariant for each curve is 256 - (I; — 1)3/I;. We see that the two j-invariants
are equal if and only if

(I =1)3I, — (I, = 1)1, = 0.

The expression on the left-hand side factors as the product of I#Io+ 1112 —3I1 15 +1
and Il — IQ.
We compute that the condition 11212 + 11I22 — 3115 +1 =0 is equivalent to

(uf +u3 + 1) (uius + uf + 1) (uius + u3 + 1) (ufu3 + ui +u3) = 0.
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Example 6.4. Let us consider the relation between u; and us that is satisfied
exactly when the elliptic curves in Orbit 2A of Z; are 2-isogenous to the elliptic
curves in Orbit 2B of Z;. We will not write down the full polynomial relation in u
and ug because it involves 94 terms. We do observe that it factors over Q(¢) into
nine irreducible polynomials; one of these irreducible factors is uu3 +u? + 1, which
also appears in Example 6.3! Thus, if the single relation u3u2 + u? + 1 = 0 holds,
the Orbit 1 curve for Z; is isomorphic to the Orbit 1 curve for Zs, and the Orbit
2A curve for Z; is 2-isogenous to the Orbit 2B curve for Z5. This is an unexpected
coincidence!

In the following subsection we report on what we found by systematically search-
ing for such coincidences. The ideal but computationally intensive calculation would
be to work over K and consider every pair (F, F») of elliptic curves, where each
F; is either the quotient of Z; given by (2.4) or one of the curves in an orbit for Z;.
For each positive integer n in some a predetermined set of values (see Remark 6.5
for our choice), we would compute an expression in u; and us that equals zero if
and only if there is a cyclic n-isogeny between the curves in the two orbits. Then,
for every pair of such expressions, we would compute their greatest common divi-
sor. Whenever this greatest common divisor was not 1, we would find a family of
pairs (Z1, Z) of curves associated to a pair of parameters (u1,ug) where there are
multiple isogenies between the elliptic factors of Jac(Zl) and those of Jac(Zg).

It is computationally difficult to implement the above strategy because when
we substitute the rational functions for the j-invariants into all but the smallest
modular polynomials, the expressions become quite large. To reduce the size of the
coeflicients in the expressions, and to reduce the number of monomials involved,
we instead work modulo a prime p = 3 mod 4 and specialize u; to a value in F,(().
This yields rational functions in F,(¢)(u2) which fit much more easily in memory.
We are therefore looking for cyclic n-isogenies between fibers (over uz) of the family
Z5 and a fixed fiber of Z;, after reducing modulo p.

There are two risks associated to making these reductions. The first is that
we may find spurious relations, nonzero greatest common divisors that occur only
modulo p. As it happens, none of the relations we found involved modular polyno-
mials of high degree, so we were subsequently able to verify the relations we found
over the full ring Q(¢)(uy, usg).

The second risk is that we might miss a family. This could happen, for example,
if there is a relation that involves a polynomial in Q(¢)(u1, us) that reduces modulo
p to a constant, or to a polynomial like ujus whose solutions require one of the
u; to be equal to one of the forbidden values 0 or . It could also happen if we
specialize to a value of u; that makes the polynomial constant. Without knowing
more about the geometry of the possible families in characteristic zero, we are not
sure how to rule out these possibilities. We did, however, run our computation
several times, with different choices for the prime p and different choices for the
values of up, and the results did not vary. Thus, we believe we found all of the
families of coincidences involving isogenies of the degrees we considered. As we will
see in Section 7, we have found enough families to formulate an improved heuristic
that is supported by our data.

Remark 6.5. We are left to specify the degrees n of the cyclic isogenies we will
consider. We choose to look for cyclic n-isogenies for all values of n for which the
modular curve Xy(n) has genus 0 (namely, n = 1,2, 3,4,5,6,7,8,9,10,12,13, 16, 18,
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and 25) or genus 1 (namely, n = 11,14, 15,17,19, 20, 21, 24,27, 32, 36, and 49). We
chose these values so that we would find all families of coincidences given by a
relation between u; and us that defines a curve of geometric genus at most 1. To
see that these values of n will lead to all such families, note that every family we
find gives us a varying pair of elliptic curves connected by a cyclic n-isogeny, and
so comes provided with a nonconstant map to Xg(n). Since no family of genus 0 or
1 can map to a modular curve with genus larger than 1, for our goal of finding all
families defined by genus-0 and genus-1 relations between u; and us, it will suffice
for us to consider the values of n specified above.

In the end, we found sixteen families of coincidences in terms of u; and wus.
However, if we count two families as being equivalent if they produce the same
pairs (Z1, Zy) — that is, if one family can be obtained from the other by applying
transformations from Lemma 6.1 to u; and us — then we have only four equivalence
classes of families. We describe these four classes of families in the following section,
where we keep close track of fields of definition of isogenies.

Remark 6.6. A family given by a relation between u; and us can be made more
explicit by replacing each u; with (1/2)(¢; —1/t;), and then looking at an irreducible
factor of the resulting expression. For example, the relation between t; and to
obtained from the relation u? + u3 + 1 = 0 from Example 6.3 has degree 6, but it
factors into two factors of degree 1 and two factors of degree 2. One of the factors
is to — (t1. See Section 6.3.1.

6.3. Description of the families.

6.3.1. The first family. Let K be a field of characteristic not 2 that contains a
primitive 4th root of unity . For ¢ = 1,2, let ¢; and t; be elements of K* with
t} # 1, let Z; be given by (6.1), and let E; be the quotient curve

(6.2) Ei: vy =ci(z+1)(z -t} (z—1/t).

Lemma 6.7. Suppose to = (ty, and suppose (t2 + 1)(t3 + 1) and cica are squares
in K. Then over K the following statements hold:

(1) the elliptic curve in Orbit 1 for Zy is isomorphic to the elliptic curve in
Orbit 1 for Zs;

(2) the elliptic curves in Orbit 2B for Zy and the elliptic curves in Orbit 2B
for Zs are related by a degree-2 isogeny;

(3) the elliptic curves in Orbit 2C for Zy are isomorphic to those in Orbit 2C
for Zs;

(4) the elliptic curve Ey (resp. Eq) and the elliptic curves in Orbit 24 for Zy
(resp. Z1) are related by a degree-2 isogeny.

Furthermore, if K is the algebraic closure of the function field Q(t) and t; =t, then
there are no other isogenies among the orbits associated to Zy and Zs.

Lemma 6.7 could also be rephrased in terms of Prym varieties using Proposi-
tion 3.11.

Proof of Lemma 6.7. To avoid a proliferation of subscripts and to aid in visual
comprehension of various formulas, in this proof we will write ¢t and ¢ for ¢; and
c1, and we will write 7" and C for t; and co. More generally, we will use lower
case letters for variables associated with Z;, and upper case letters for variables
associated with Zs.
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Since the isomorphism classes of the curves Z; and the elliptic curves F; only de-
pend on the values of ¢ and C' up to squares, and since cC' is a square by hypothesis,
we may assume that C' = c.

By Table 1, the Orbit 1 curves for Z; and Z5 can be written as

v =xz(x—1)(z - and Y?=X(X-1)(X —-A),

respectively, where A = 4t2/(t? + 1)? and A = 4T?/(T? +1)? = —4t?/(t* — 1)°.
Then an isomorphism between the curves is given by

X=(x-)N/1-X and Y =y-(*+1)3/(t>—-1)>

This proves the first statement.
The Orbit 2B curves for Z; and Z5 can be written as

Vv =ct®?+1) - z(z-1)(z—)) and Y2=¢(T?+1) - X(X —1)(X — A),
respectively, where
2(t2 - 1) 2T -1) 282 +1)
tror ™ AT Tror T ue

Then a degree-2 isogeny from the first curve to the second is given by

¢ ((t+Qz — A+t +1))°

)\:

2(t+1)2 r—1 ’
v _ (O (E+Q%® =20+ QP + (217 - 2)
BEGEVTTNE (—1)2 '

This proves the second statement.

The Orbit 2C curves for Z; and Z, are both twists of y? = 2% — z, by c(t? + 1)
and by ¢(T? + 1), respectively. By hypothesis, (2 +1)(7? + 1) is a square in K, so
these two twists are isomorphic to one another. This proves the third statement.

By Lemma 6.2 and Table 1, we can write F; and the Orbit 2A curve for Zs as

v =ct? +1)-z(x—1)(x—-N) and YZ=¢(T?+1)- X(X —1)(X —A),

respectively, where A = t? and A = 4¢T/(T + ¢)? = 4t/(t + 1)%. Then a degree-2
isogeny from the first curve to the second is given by
1 (x +t)? 1 x? — 2
XY= . M YV e

This proves one case of the fourth statement. The proof of the other case is similar.

Finally, we check that no other pairs of elliptic curves associated to Z; and Zs
are isogenous to one another when K is the algebraic closure of Q(¢) and t; = ¢. As
we noted earlier, two elliptic curves over a field are connected by a cyclic n-isogeny
over the algebraic closure if and only if their j-invariants satisfy the n-th classical
modular polynomial ®,, € Z[z,y]. If this relation holds in K, then it will also hold
when we reduce modulo p and specialize ¢t and ¢ to specific values for which the
resulting curves are nonsingular. We take p =421, ( =29 € F,,t =19 € F,,, and
¢ =1 € F,. Computing traces shows the elliptic curves in question are all ordinary.
It follows that any geometric isogeny between them is defined already over IFpi2;
see [6, §5, p. 251]. Thus we simply compute the traces of these elliptic curves over

F,12 and observe that there are no further matches. O
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We noted in Section 5.2 that replacing ¢; with any of eight linear fractional
expressions in t; will result in a curve isomorphic to Z;, but possibly with the
labels on Orbits 2A and 2B swapped, and similarly for Orbits 4A and 4B. If we
take the relation to = (t; and apply one of these transformations to ¢; and a possibly
different one to to, we will get another family of curves satisfying the conclusions of
Lemma 6.7, possibly with the roles of various orbits swapped. There are 64 ways of
applying these eight linear fractional transformations separately to ¢; and to, but
some of these will produce equivalent relations; for example, replacing ¢; with —t;
and ty with —t5 fixes the relation t; = (t;. In fact, we obtain only 16 different
families in this way. When we multiply the 16 corresponding relations together, we
get a relation that can be expressed in terms of I; and I, namely:

(6.3) I, +L1I2 -301,+1=0.

Definition 6.8. We say that two curves Z; and Z5 with Dy-action are in the first
family if their invariants satisfy (6.3).

Remark 6.9. Equation (6.3) defines a genus-0 curve, which can be parametrized as
—(1+2)? —(1—2)?
h="r""rt, L=
2(1 - 2) 2(1+=2)
Under this parametrization, the involution swapping I; and Is corresponds to
P

Proposition 3.11 shows that each of the elliptic curves that appears in Table 1
as an isogeny factor of Z: can also be viewed as a Prym variety Prym® for a
double cover of Z; specified by an index-2 subgroup H of Jac(Z;)[2], and each such
subgroup H is determined as the set of elements of Jac(Z;)[2] that pair trivially
with a nonzero element U € Jac(Z;)[2]. Lemma 6.7 could therefore be restated in
terms of these Pryms. The labeling of these Pryms via the elements U has the
same problem as the labeling of the orbits associated to the Z;: The labels depend
on which of the eight possible values of ¢; we used to write down an equation
for Z;. However, using Prym varieties we can state a variant of Lemma 6.7 whose
hypotheses and conclusions depend only on the isomorphism classes of the curves
Z; and not on the choices we made to write them down.

Notation 6.10. Let Z be a genus-2 curve with Dy-action over a field K of char-
acteristic not 2. As we see from Table 1, there is a unique nonzero point U of
Jac(Z)[2](K) that is fixed by the action of Dy. Let H be the order-2 subgroup of
Jac(Z)[2] generated by U. In the notation of Definition 3.2, let Z = Z¥ so that
there is a degree-8 cover Z — 7 and Z has genus 9.

Proposition 6.11. Let Z; and Zs be curves with Dy-action over a field K of
characteristic not 2, and suppose Z1 and Zs lie in the first family. If Jac(Z1) and
Jac(Za) are geometrically isogenous to one another, then Jac(Zl) and Jac(Z\g) are
geometrically isogenous to one another.

Proof. We may assume that K is algebraically closed. Let ¢ be a primitive fourth
root of unity in K. Since Z; and Zy are in the first family and since K is alge-
braically closed, we can choose values of ¢; and ¢, with to = (t; such that each Z;
has a model as in (3.1) with ¢ = ¢; and with ¢ = 1. The hypotheses of Lemma 6.7
are then satisfied.
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Since Jac(Z;) and Jac(Z,) are isogenous to one another and since Jac(Z;) ~ E?
for each i, the elliptic curves E; and E5 are isogenous to one another. Lemma 6.7
then shows that the Orbit 1 curves for Z; and Z, are isogenous to one another, as
are the Orbit 2A curves, the Orbit 2B curves, and the Orbit 2C curves.

~

Proposition 3.6 shows that Jac(Z;) decomposes up to isogeny as the product of
E? with the product of the Prym® /, where H' ranges over the index-2 subgroups
of Jac(Z;)[2] that contain the subgroup H = (U), where U = [W, — W_.|. Taking
duals with respect to the Weil pairing, we see that the H’ are the index-2 subgroups
such that (H')Y C H'. This means that the (H')1 are precisely the subgroups
(U"), where U’ is a nontrivial 2-torsion point that pairs trivially with U. We see
from Lemma 3.10 and Table 1 that these U’ are the labels of Orbits 1, 2A, 2B, and

2C, so each JaC(Z) is isogenous to E? times the product of the elliptic curves in

~

Orbits 1, 2A, 2B, and 2C. Therefore, the Jac(Z;) are isogenous to one another. O

Proposition 6.12. Let Z; and Zs be curves with Dy-action given as in (6.1) by
values of t; and ¢; such that ta = Ct1 and such that cicy and (3 +1)(t3+1) are both
squares. For i = 1,2, let E; be the elliptic curve given by (6.2). Suppose that F;
and Ey are isogenous to one another, and that either of the following two conditions

holds:
(1) The curve y? = Cx(x — 1)(z + 2¢t1 /(t1 — €)?) is isogenous to either
y* = Ca(e —1)(z+2(t2/(t2 = ¢)%)  or
y* = Cea(ty +1) - a(z — 1)(z + 20t/ (t2 — ()?),
and the curve y?> = (x(x — 1)(x — 2ty /(t1 + €)?) is isogenous to either
y* = Ca(z = 1)(x - 2€t2/(t2 +()*)  or
y* = Cea(t + 1) - w(x — 1)(2 = 2t2/(t2 + €)?).
(2) The curve y?> = Cx(x — 1)(z + 2¢t1 /(t1 — €)?) is isogenous to either
y' = Cae = 1)@ = 2t/ (2 +¢)?) or
y? = Cea(ts +1) - a(e — 1)(@ — 2t/ (2 + ()?),
and the curve y?> = (x(x — 1)(x — 2(t1 /(t1 + €)?) is isogenous to either
y* = Ca(e —1)(x+2(t2/(t2 = ¢)%) or
y? = Cea(ty +1) - 2z — 1)(z + 2t/ (t2 — ()?).
Then Z1 and Zy are doubly isogenous.

Proof. Since Jac(Z;) ~ E?, the assumption that Ey ~ Es implies that Jac(Z;) ~
Jac(Z3). By Lemma 6.7, the elliptic curves in Orbit 1 for Z; are isogenous to those
in Orbit 1 for Z3, and similarly for Orbits 2A and 2B. The Orbit 2C curves for Z;
and Z, are isomorphic, because each curve is the twist of y? = 23—z determined by
¢;(t? + 1), and the product of these two factors is a square. Therefore, in order for
Zy and Zs to be doubly isogenous, it suffices that the elliptic curves in Orbits 4A
and 4B for Z; are, in some order, isogenous to the Orbit 4A and 4B curves for Z5.
This is equivalent to conditions (1) and (2). O
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6.3.2. The second family. In Table 1, the four elliptic curves in Orbit 4A are not
necessarily isomorphic to one another over the base field, because there are two
possible values for the factor d that determines the twist of the curve. We will refer
to the first two curves (with d = () as the “first pair” of Orbit 4A, and the last two
curves (with d = (e(t? + 1)) as the “second pair.” Likewise, we refer to the d = ¢
curves in Orbit 4B as the first pair of that orbit, and the d = (c(t?> + 1) curves as
the second pair of that orbit.

As in the preceding subsection, for ¢ = 1 and i = 2 we let Z; and F; be the
curves given by (6.1) and (6.2). We will consider the following relation between ¢,
and ¢o:

(6.4) (t1 — O)2(ta — ¢)? = —8t1ts.

Lemma 6.13. Suppose (6.4) holds. Then:

(1) the elliptic curve in Orbit 1 for Zy and the elliptic curve in Orbit 1 for Zs
are related by a degree-2 isogeny over K;

(2) if crea(t? +1)(t3 + 1) € K*2, then the elliptic curves in Orbit 2C for Z;
are isomorphic over K to the elliptic curves in Orbit 2C for Zs;

(3) if cita(t3 + 1) € K*2, then the elliptic curves in Orbit 24 for Zy are
isomorphic over K to the first pair of elliptic curve in Orbit 4A of Zs, and
the elliptic curves in Orbit 2B for Z1 are isomorphic over K to the first
pair of elliptic curves in Orbit 4B of Zs;

(4) if creat1 (13 + 1) (13 + 1) € K*2, then the elliptic curves in Orbit 2A for Z;
are isomorphic over K to the second pair of elliptic curve in Orbit JA of
Zsy, and the elliptic curves in Orbit 2B for Z1 are isomorphic over K to the
second pair of elliptic curves in Orbit 4B of Zs;

(5) the statements obtained from (3) and (4) by interchanging the roles of Z;
and Zy also hold.

Furthermore, if K is the algebraic closure of the function field Q(t) and t; =t, then
there are no other isogenies among the orbits associated to Z1 and Zs.

Proof. We leave the proof to the reader, because it is essentially the same as the
proof of Lemma 6.7 and is mostly straightforward. The only nonobvious details
involved in the proof of the numbered statements are that if ¢1,t5 € K satisfy (6.4),
then (t1t and t1(t? — 1) and t5(t2 — 1) are all squares in K. The first of these is a
square because of (6.4) and the fact that —8¢ = (2 — 2¢)?; the second is a square
because (6.4) can be rewritten as

t(t —1) = (L+ Ot + )/ (t2 — )%

and the third is a square by symmetry.

The final statement can be proven by taking p =421, ( =29 € ), t; = 19 € ),
to =204 € Fp, and ¢; = co = 1 € [}, and comparing traces over [F,,12 as in the end
of the proof of Lemma 6.7. O

Proposition 6.14. Let Zy and Zs be curves with Dy-action given as in (6.1) by
values of t; that satisfy (6.4) and with ¢; = ((t7 + 1), and such that ty and (t; are
squares in K*. For i = 1,2, let E; be the elliptic curve given by (6.2). Suppose
that:

(1) Ey and Ey are isogenous to one another;
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(2) the first pair of curves in Orbit JA of Z1 are isogenous to the second pair
of curves in Orbit 4A for Zs; and

(3) the first pair of curves in Orbit 4B of Z1 are isogenous to the second pair
of curves in Orbit 4A for Zs.

Then Z1 and Zy are doubly isogenous.

Remark 6.15. Proposition 6.14 follows from making choices that allow us to apply
certain statements from Lemma 6.13; in particular, we make choices that imply
that c1t1(t3 + 1) and cicat2(t3 + 1)(t3 + 1) are squares. Other choices would lead
to variations of Proposition 6.14.

Proof of Proposition 6.14. From Lemma 6.13(1), the curves in Orbit 1 for Z; and
Zy are isogenous to one another. From Lemma 6.13(3), the curves in Orbits 2A and
2B for Z; are isogenous to the first pairs of Orbits 4A and 4B for Z5, respectively,
and from Lemma 6.13(5) applied to (4), the curves in Orbits 2A and 2B for Z5 are
isogenous to the second pairs of Orbits 4A and 4B for Z;, respectively.

Since Ccy (3 + 1) and (ea(t3 + 1) are both squares, ¢1(t? + 1) and ca(t2 + 1) are
in the same square class in K*. Since the first pair and second pair of Orbit 4A
for Z; are twists of one another by ¢;(t? + 1), the hypothesis (2) of the proposition
implies that the second pair of curves in Orbit 4A of Z; is isogenous to the first
pair of curves in Orbit 4A of Z;. Thus, by the preceding paragraph, the curves in
Orbit 2A for Z; are isogenous to the curves in Orbit 2A for Zs. Similarly, the first
pair and second pair of Orbit 4B for Z; are twists of one another by ¢;(t? + 1) and
the same argument shows that the curves in Orbit 2B for Z; are isogenous to the
curves in Orbit 2B for Zs.

Again as ¢;(t7 + 1) and c(t3 + 1) are in the same square class in K*, Lemma
6.13(2) implies that the curves in Orbit 2C for Z; are isomorphic to the curves in
Orbit 2C for Z5. As E1 ~ E5, we conclude that Z; and Z, are doubly isogenous. [

As in the preceding subsection, we can apply any of eight linear fractional trans-
formations to ¢; and to ty in the relation given by (6.4) to get another family that
satisfies a lemma similar to Lemma 6.13. Only four of these families are distinct.
Multiplying the polynomials defining these four families together, we find a relation
that can be expressed in terms of the invariants Iy and I of Zs and Zs:

(6.5) L1, = 16.

Definition 6.16. We say that two curves Z; and Zy with Dj-action are in the
second family if their invariants satisfy (6.5).

Remark 6.17. Equation (6.5) defines a genus-0 curve, which can be parametrized
as
4(1 — 4(1
pod=2 _4l+a)
142 1—2
Under this parametrization, the involution swapping I and Is corresponds to

Z 4y —Z.

Remark 6.18. Proposition 6.11 gives an interpretation of the first family that can
be stated in terms of the isomorphism classes of the curves, without reference to
the choices of t; and to that we make to write down the curves; this is possible
because the orbits involved in Lemma 6.7 are exactly the orbits contained in the
Prym variety of a cover that can be defined independently of the choices of ;.
There is no straightforward analog of Proposition 6.11 for the second family.
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6.3.3. The third and fourth families. We found two further families of pairs of curves
where there are more isogenies between the associated elliptic curves than expected.
They produce fewer doubly isogenous curves than the preceding two families, so
here we just summarize the results. We also simplify the exposition by assuming
in this section that the base field K is algebraically closed, so that we do not have
to worry about twists.

Let Z; and Z5 be genus-2 curves with Dy-action and with invariants I; and Is.
We say that Z; and Z3 are in the third family if we have

(6.6) P12 —3-280 1, + 221, 4+ 2121, = 0.
If Z, and Z, are in the third family, then

e the curves in Orbit 1 for Z; and Zs are 4-isogenous to one another;
e the curves in either Orbit 4A or Orbit 4B for Z; are 2-isogenous to the
curves in either Orbit 4A or Orbit 4B for Zs.

Note that (6.6) defines a curve of genus 0, which can be parametrized by
I =-322(2+1)/(z = 1), L =-322(2 —1)/(z 4+ 1)%

Under this parametrization, the involution swapping I3 and I corresponds to z <+
—z.
We say that Z; and Zs are in the fourth family if their invariants satisfy
(6.7) (I3 4+2'I71, —3-2*) Iy +281)) (I + 2* 1113 — 3 -2, I, + 2°1,) = 0.
Suppose I; and I satisfy the first factor in this expression. Then
e the curves in Orbit 1 for Z; and Zy are 2-isogenous to one another;
e one of the following holds:
— the curve E; is isomorphic to the Orbit 4A curves for Zs and the Orbit
2A curves for Z; are 2-isogenous to the Orbit 4B curves for Zs;
— the curve FE is isomorphic to the Orbit 4B curves for Z5 and the Orbit
2A curves for Z; are 2-isogenous to the Orbit 4A curves for Zs;
— the curve E; is 2-isogenous to the Orbit 4A curves for Z; and the
Orbit 2B curves for Z; are 2-isogenous to the Orbit 4B curves for Zs;
— the curve Fj is 2-isogenous to the Orbit 4B curves for Z5 and the Orbit
2B curves for Z; are 2-isogenous to the Orbit 4A curves for Z;.

If I and I satisfy the second factor in (6.7), then the roles of Z; and Z3 in the
above list are reversed. Each factor in (6.7) defines a curve of genus 0.

6.4. Intersections of families. Under mild restrictions on the field K, we will
produce genus-2 curves Z; and Z with Dj-action that are very close to being
doubly isogenous. The invariants I; and I of these curves are the two roots of
2?2 — (47/16)x + 16. Since I;I, = 16, this pair of curves lies in the second family;
since

Bly+ NI3 =301, +1=16(1 + I) — 47 = 0,
the pair also lies in the first family; and since
P12 —3-280 1, +2"1 4+ 2'21, = 16% — 3 - 2% . 16 + 2'2(47/16) = 0,

the pair lies in the third family as well.
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Proposition 6.19. Let K be a field in which —1, 2, and —7 are nonzero squares,
and let ¢ € K satisfy (> = —1. In K, let
_ (1+9B+¢V/=T) _ (F1+9B+¢v-T)
tl = D) and tz = B .
For i = 1,2, let ¢; = 1, and let Z; and E; be defined by (6.1) and (6.2). Then
the invariants of Z, and Zy are the two roots of x? — (47/16)x + 16, and if Ey is
isogenous to Es, the curves Z1 and Zs are doubly isogenous.

Proof. An easy computation verifies the statement about the invariants of Zj
and ZQ.
We check that to = (t; and that (7 + 1)(t3 + 1) is equal to the square of

\/53(3 + ¢+/—T). Since c1co = 1 is also a square, the hypotheses of Lemma 6.7 are
satisfied.
We also check that (6.5) holds, and that

ti(2+1) = V2 (2450 —2V—T+(V—7)? and
eata(t+1) = V2 (5 +2¢ — V=T + 20V/=T7)2.

As we already noted, (7 + 1)(t3 + 1) is a square, so the hypotheses of statements
(1), (2), and (3) of Lemma 6.13 hold, as does the hypothesis of the variation of the
lemma’s statement (3) obtained by interchanging the roles of Z; and Z,.

Finally, we note that the first pair and the second pair of Orbit 4A for Z; are
twists of one another by ¢y (¢? + 1), while the first pair and the second pair of Orbit
4A for Z, are twists of one another by co(t3 + 1); these two twisting factors lie
in the same square class in K*. The analogous statement holds for the first and
second pairs of Orbit 4B for Z; and for Z,.

Combining the conclusions of Lemma 6.7 and Lemma 6.13 with this last obser-
vation, it is straightforward to verify that Z; and Z5 are doubly isogenous. (I

Remark 6.20. It is easy to check that the only pair (17, I3) of nonzero elements of
K that satisfies (6.3) and (6.5) is the pair from Proposition 6.19. This pair is also
the only pair to satisfy both (6.5) and (6.6). There are other pairs that satisfy the
defining equations of more than one of the four families, but in characteristic 0 the
curves with those invariants do not have as many isogeny factors in common as the
curves in Proposition 6.19.

Remark 6.21. As we noted in Remark 4.11, if two curves over a finite field are
Galois conjugates of one another, they are necessarily doubly isogenous. We check
that the values of s; (see Equation (3.2)) for the two curves in Proposition 6.19 are
51 = 64/—7 and s; = —6y/—7. Thus, if K is finite and —7 is not a square in its
prime field, the curves in the proposition are automatically doubly isogenous for an
unsurprising reason.

Example 6.22. In K = Fy3, take ¢ = 15 and +/—7 = 28, and apply Proposi-
tion 6.19. We find that t; = 107 and ¢t5 = 23, that s; = 55 and s, = 58, and
that the elliptic curves F; and Es both have trace 6, so that F; ~ Fy. This gives
an example where the curves in Proposition 6.19 are not Galois conjugates of one
another, but are doubly isogenous.

Remark 6.23. Let E; be the elliptic curve y? = (z + 1)(22 + 6/=7z + 1) over the
field K = Q(v/—7) and let E5 be its conjugate over Q. If p is a prime of K such
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that the reductions of £ and Es modulo p are isogenous, then over an extension of
the residue field of p, the two curves y? = (22 +1)(2* £64/—72% + 1) will be doubly
isogenous. By [3, Theorem 1.1], there are infinitely many such primes. However,
the two curves we obtain from such a prime will be conjugate to one another — and
hence, will give an uninteresting example — exactly when p is a prime of degree 2.

This leads to the following question: Are there infinitely many degree-1 primes
p of Q(v/—7) such that the reductions of E; and F2 modulo p are isogenous? We
suspect that the answer is yes, because if p lies over p then heuristically there is
roughly one chance out of |/p that they will be isogenous by chance, and the sum
of 1/,/p diverges. Unfortunately, we do not know how to prove that there are
infinitely many such primes.

7. HEURISTICS FOR THE FAMILIES OF COINCIDENCES

In the preceding section, we identified four families of pairs (Z7, Z2) of genus-2
curves with Dy-action where there are unexpected isogenies among a number of the
elliptic curves that appear in the decomposition (up to isogeny) of the Jacobians
Jac(Zy) and Jac(Z»). In this section, we formulate heuristics for the expected
number of doubly isogenous pairs over a finite field that occur in these families.

7.1. Counting doubly isogenous pairs in families. First, we introduce nota-
tion to keep track of the number of doubly isogenous pairs in each family; see also
Definition 5.2.

Definition 7.1. We consider unordered pairs {Z1, Zo} of doubly isogenous curves
over F,, where Z; and Z; are genus-2 curves with Dys-action and all Weierstrass
points rational, and where Z; and Z, are not Galois conjugates of one another.
For n = 1,2,3,4, let §,(q) be the number of these pairs {Z;, Zo} that lie in the
nth family. Let dp(q) be the number of these pairs {Z7, Zo} that do not lie in any
of these four families. Let 01 23(g) be the number of these pairs {Z1, Z»} that are
simultaneously in families 1, 2, and 3 — that is, the pairs whose invariants are the
two roots of x% — (47/16)x + 16.

Remark 7.2. For n > 0, each 6, (q) counts doubly isogenous pairs whose invariants
satisfy one of the four equations (6.3), (6.5), (6.6), or (6.7). We do not demand that
the doubly isogenous curves come from values of ¢ that are related to one another
as in, for example, Lemma 6.7 or Lemma 6.13.

We saw in Section 5 that Naive Heuristic 5.3 did not seem to reflect the data
that we had collected. Here we present another heuristic which better reflects the
data. In each family, let m be the number of pairs of elliptic curves required to
be isogenous to ensure double isogeny of two curves in that family; for example,
Proposition 6.12 shows that m = 3 for family 1. Then we model the double isogeny
class of a curve in that family as an m-tuple of independent elliptic curves. Given
this, as in Section 5.1, one can compute the expected number of doubly isogenous
pairs in the given families under this heuristic. By abuse of notation, we will denote
this by E(0;(q)), even though for fixed ¢, the integer 6;(g) is a fixed value and not
a random variable.
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Heuristic 7.3. The following are reasonable estimates for the “expected value” of
0n(q) for prime powers ¢ = 1 mod 4:

E(do(q)) < 1/g, E(d1(q)) < 1//4; E(d2(q)) < 1/+/4,
E(0s(q)) < 1/va,  E(bs(q)) =< 1/¢*?, and E(d123(q) < 1/1/3.

Combining these values, we expect that E(6(q)) < 1/,/3.

Justification. First we consider do(q). If we assume that there are no families of
unexpected coincidences other than the four presented in Section 6.3, then the
justification of Naive Heuristic 5.3 applies to the pairs {Z;, Z5} that are not in
these four families; this suggests that the expected value of dy(q) is O(1/q).

Next we consider 01(q), and in particular we look at the pairs of curves (71, Z5)
which can be written with to = (t; and co = ¢;. There are roughly ¢ such ordered
pairs. By Proposition 6.12, in order for such a pair to be doubly isogenous, it is
sufficient for three coincidences to hold: E; and Es should be isogenous, and one of
the two pairs of isogenies in items (1) and (2) of Proposition 6.12 should hold. We
model each of these coincidences as asking that two random elliptic curves lie in
the same isogeny class, which happens with probability ©(1/,/q). Thus, we expect
to find on the order of ¢/(y/q)* = 1/,/q doubly isogenous pairs with ¢, = (t; and
Cy = Cq.

There are other relations between t; and to that lead to Equation (6.3) holding,
and again we expect ©(1/,/q) doubly isogenous pairs that satisfy the relation. Thus,
in total, we expect ©(1/,/q) pairs of doubly isogenous pairs in the first family.

For 62(¢) the argument is similar. By Proposition 6.14, if each of three pairs of
elliptic curves is isogenous to one another, the curves Z; and Z5 in the proposition
are doubly isogenous. Again modeling these isogeny class collisions as occurring
with probability ©(1/,/q), we find that we expect ©(1/,/q) pairs of curves (Z1, Zz)
coming from pairs of values (t1,t2) satisfying (6.4).

As for the first family, there are other relations between t; and to that lead to
Equation (6.5) holding. For each such relation we again expect ©(1/,/g) doubly
isogenous pairs that satisfy the relation. Again, in total, we expect ©(1/,/q) pairs
of doubly isogenous pairs in the second family.

We skip over the third family for the moment, for reasons that will become
apparent.

For pairs {Z1, Z>} in the fourth family, we need five coincidental isogenies in order
for the curves to be doubly isogenous. This suggests that the expected number of
such curves is ©(q/q¢*/?) = ©(1/¢%/?).

Proposition 6.19 suggests that when —7 is a square in F, there is one chance out
of \/q that the two values of ¢ in the proposition give rise to a doubly isogenous pair
over I, that lies in the first, second, and third families. When —7 is a square in the
prime field the curves in this pair are not Galois conjugates of one another and so
contribute to the value of 612 3(g). For other pairs of curves whose invariants are
the roots of 2% — (47/16)z + 1 and that are not Galois conjugates of one another,
the likelihood of being doubly isogenous is less than this, so in total the expected
value of d1,23(q) is ©(1/,/q).

For pairs {Z1, Z5} in the third family, if we argue as above we see that we need
four coincidental isogenies in order for the curves to be doubly isogenous. This
suggests that the expected number of such curves is ©(g/q¢*/?) = ©(1/q). But once
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again our naive analysis needs revision, because clearly d3(q) > 61,2,3(¢). Thus, we
take the expected value of d3(q) to be ©(1/,/q). O

7.2. Comparison with data. For n = 15,...,23, we considered the 1024 primes
q with ¢ = 1 mod 4 closest to 2. For each such ¢, we found all unordered pairs
{Z1,Z5} of nonconjugate curves over F, with Dy-action and with all Weierstrass
points rational for which Z; and Zs are doubly isogenous. A given pair may appear
in more than one family. Table 5 shows which of these pairs are explained by one
(or more) of the families.

TABLE 5. Data for doubly isogenous curves. For each n, column 2
contains the total number of (unordered) pairs of doubly isogenous
curves over I, for the 1024 primes ¢ = 1 mod 4 closest to 2". The
3rd (resp. 4th) column contains the number of these in (resp. not
in) at least one family. The remaining columns contain the number
for each family.

Ina Notina
n Total Family Family F1 F2 F3 F4 (F1NnF2NnF3)

15 820 586 234 366 222 62 20 38
16 580 494 86 286 198 34 0 12
17 407 318 89 192 138 24 0 18
18 282 238 44 148 96 14 0 10
19 218 196 22 116 90 10 2 10
20 138 132 6 78 58 4 0 4
21 100 90 10 54 40 4 0 4
22 o8 58 0 40 16 2 0 0
23 42 40 2 20 20 0 0 0

As predicted by Heuristic 7.3, increasing n by two appears to roughly halve the
total number of pairs, as well as the pairs in family 1 or family 2 (and possibly in
family 3 and in the intersection of the first three families, although it is harder to
tell because the numbers are smaller). In contrast, increasing n by one appears to
roughly halve the number of pairs coming from no family. This is as expected as
O(q~?) =0(27/?) and ©(¢~ ') = ©(2™) for primes ¢ near 2. The numbers for
the fourth family drop off too rapidly to easily determine the rate of decline, but
our heuristics do at least predict that the fourth family will decrease the fastest.
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