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THE BOUNDARY OF THE p-RANK 0 STRATUM OF THE MODULI
SPACE OF CYCLIC COVERS OF THE PROJECTIVE LINE

EKIN OZMAN®, RACHEL PRIES® anxp COLIN WEIR

Abstract. We study the p-rank stratification of the moduli space of cyclic
degree £ covers of the projective line in characteristic p for distinct primes p
and ¢. The main result is about the intersection of the p-rank 0 stratum with
the boundary of the moduli space of curves. When ¢ =3 and p =2 mod 3
is an odd prime, we prove that there exists a smooth trielliptic curve in
characteristic p, for every genus g, signature type (r,s), and p-rank f satisfying
the clear necessary conditions.

81. Introduction

Suppose Y is a smooth projective connected curve of genus ¢ defined over an algebraically
closed field k of characteristic p > 0. The p-rank of Y is the integer f such that p/ is the
number of p-torsion points of the Jacobian of Y. It is known that 0 < f <g.

Let g > 2. Consider the moduli space M, of smooth curves of genus g over k and its
Deligne-Mumford compactification M,. Consider the boundary M, = M, — M, of My;
its points represent singular stable curves of genus g.

It is a compelling problem to understand the geometry of the p-rank f stratum ﬂg of

Mg. For example, in most cases, it is not known whether Mﬁ is irreducible.
It is known, by [10, Th. 2.3], that every irreducible component of ﬂg has dimension

2g—3+ f. By [4, Lem. 3.2], every irreducible component of Mﬁ contains an open dense
subset which lies in ./\/lg. It follows that there exists a smooth curve of genus ¢ and p-rank
[ defined over F,, for every prime p and pair of integers g and f such that 0 < f <g.

The proof of [10, Th. 2.3] uses properties of the intersection of the p-rank strata with
the boundary. By [10, Lem. 2.5] (see also [4, Cor. 3.6]), every irreducible component S of
the p-rank 0 stratum M(; intersects 0 M 4; specifically:

(i) S contains points that represent chains of g (supersingular) elliptic curves and

(ii) S intersects every irreducible component of .M.

Analogously, for odd p, one can study the p-rank f stratum ﬁg of the moduli space
M4 of hyperelliptic curves of genus g. By [11, Prop. 2], every irreducible component of ﬁg

has dimension g — 1+ f. Every irreducible component of ﬁ; contains an open dense subset
which lies in Hg [5, Lem. 3.2]. It follows that there exists a smooth hyperelliptic curve of
genus g and p-rank f defined over F, for every odd prime p and pair of integers g and f
such that 0 < f <g.
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The proof of these facts for the hyperelliptic locus also uses the intersection of the p-rank
strata with the boundary 0H, = H, —H4. Every irreducible component S of the p-rank 0

stratum ﬂg intersects dH, by [5, Th. 3.11]; specifically:

(i)> S contains points that represent trees of g (supersingular) elliptic curves.

However, it is not known whether S intersects every irreducible component of dH,.

In this paper, for an odd prime ¢ with £ # p, we study analogous questions about the
p-ranks of curves that admit a Z/¢Z-cover of the projective line P!. Let Ty, denote the
moduli space of such Z/¢Z-covers, and let ’77'@79 denote its compactification. The irreducible
components of 7; , are indexed not only by the degree ¢ and the genus g, but also by the
discrete data of the inertia type, which determines the signature type. In Proposition 4.1,
we compute a lower bound for the dimension of each irreducible component of the p-rank
strata of 7y 4, in terms of the signature type.

The first topic we study is how the p-rank 0 stratum 7'279 of the moduli space
Ty intersects the boundary §M,. The first main result of the paper is the following
theorem.

THEOREM 1.1 [See Theorem 4.3]. Ewvery irreducible component S of 7’2,g contains a
point representing a curve of compact type which has at least dim(S)+ 1 components.

The geometric conclusion from Theorem 1.1 is not as strong as the analogous result in
the hyperelliptic case. This prevented us from using Theorem 1.1 to find the dimension of
the irreducible components of 77 , in general (see Remark 4.4 and §7.2).

For this reason, in §5, we specialize to the case ¢ = 3. In Proposition 5.9, for all g > 2
and all primes p > 5, we generalize a result of Bouw by proving that every component of
the moduli space of trielliptic curves of genus g contains a curve whose p-rank is not the
maximum. Then we prove the following theorem.

THEOREM 1.2 [See Theorem 5.11]. For every odd p =2 mod 3, every g € N, every
trielliptic signature type (r,s) for g, and every f (satisfying the clear necessary conditions
that f is even and 0 < f < 2min(r,s)), there exists a smooth trielliptic curve defined over
F, with genus g, signature type (r,s), and p-rank f; furthermore, the dimension of at least
one irreducible component of the p-rank f stratum of T3 4 (rs) equals the lower bound from
Proposition j.1.

In Corollary 6.4, we strengthen Theorem 1.2 when g is small for all odd primes p =
2 mod 3 using an application of Theorem 1.1.

§2. Background

In this section, we include necessary material about cyclic covers and the p-rank.

2.1 Stable Z/€Z-covers of a genus zero curve

Let k& be an algebraically closed field of characteristic p > 0, and let S be an irreducible
scheme over k. Let G =Z/{Z be a cyclic group of odd prime order ¢ # p. Let G* = G —{0}.

Let ¢ :Y — S be a semi-stable curve. If s € .S, let Y, denote the fiber of ¥ over s. Let
Singg(Y’) be the set of z € Y for which z is a singular point of the fiber Yy .).

A mark Rz on Y/S is a closed subscheme of Y — Sing¢(Y') which is finite and étale over
S. The degree of Rz is the number of points in any geometric fiber of Rz — .S. A marked
semi-stable curve (Y/S,Rz) is stably marked if every geometric fiber of Y satisfies the
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following condition: for each irreducible component Y of genus zero, #(Yp N (Singg(Y) U
R=)) > 3. (If the fibers of Y/S have genus 1, we also assume that the degree of Rz is
positive.)

Consider a G-action g : G — Autg(Y) on Y. Let R denote the ramification locus of
Y — Y/uy(G). The smooth ramification locus is Rsy, := R— (RN Singg(Y)). We say that
(Y/S, ) is a stable G-curve if Y/S is a semi-stable curve, if ¢o : G — Autg(Y') is an action
of G, if Ry, is a mark on Y/S, and if (Y/S, Rsn) is stably marked.

If z € Singg(Y'), let Y, ;1 and Y, » denote the two components of the formal completion of
Yy () at z. A stable G-curve (Y/S,10) is admissible if the following conditions are satisfied
for every geometric point z € RN Singg(Y):

1. ¢o(1) stabilizes each branch Y, ;;

2. z is a ramification point of the restriction of ¢y to Y, ;; and

3. the characters of the action of ¢y on the tangent spaces of Y, ; and Y, at z are
inverses.

Suppose that (Y/S,¢p) is an admissible stable G-curve. Then Y/io(G) is also a stably
marked curve [8, Prop. 1.4]. The mark on Y/io(G) is the smooth branch locus Bgy,, which
is the (reduced subscheme of) the image of Rgy, under the morphism Y — Y/io(G). Let n
be the degree of Rgy (the number of smooth ramification points). We suppose from now
on that Y/io(G) has arithmetic genus 0. By the Riemann—-Hurwitz formula, the arithmetic
genus of each fiber of Y is

g=Mn-2)(-1)/2. (1)

2.2 The inertia type and signature type

Let s be a geometric point of S, and let a be a point of the fiber Ry, ;. Then G =7Z/(Z
acts on the tangent space of Y; at a via a character y, : G — k*. In particular, there
is a unique choice of v, € (Z/0Z)* so that x,(1) = (). We say that ~, is the canonical
generator of inertia at a. The inertia type of (Y/S, 1) is the multiset ¥ = {7, | @ € Rgm s }-
It is independent of the choice of s. By Riemann’s existence theorem, there exists a
cover (Y,ip) with inertia type {7, | @ € Rem s} if and only if ) Yo =0€Z/NL
24, Th. 2.13).

A labeling of a mark Rz of degree n is a bijection n between {1,...,n} and the irreducible
components of R=. A labeling of an admissible stable G-curve (Y/S,u) is a labeling 7 of
Rgp. There is an induced labeling 7o : {1,...,n} — Bgm.

If (Y/S,t0,n) is a labeled G-curve, the class vector is the map of sets v: {1,...,n} - G*
such that (i) = v,;). We write v = (v(1),...,7(n)). If 7 is a class vector, we denote its
inertia type by 7: G* — Z>o where 7(h) =#{i |1 <i <n, (i) = h} for all h € G*.

Let ¢y € k be a primitive ¢th root of unity. The automorphism ¢¢(1) induces an action
on H°(Y,,Q'). Let L; be the (j-eigenspace of H?(Y,,Q'), for 0 <i < {¢—1. There is an
eigenspace decomposition:

QERsm,s

H(Y,, QY =i L.

Let s; = dim(£;). Then £y = {0} and sg = 0 since Y/1o(G) has genus 0. The signature type
is (s1,...,80-1). It is locally constant on S. For an integer ¢, let (£) =% —[£] denote the

fractional part of %.
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LEMMA 2.1. Forl1<i</-1,

n _a
i =—1 ).
S +;< 7 )

Proof. This can be found in [19, Lem. 2.7, §3.2], or deduced from earlier results [7, Lem.
4.3] (the negative sign does not appear for the action on Q) or [13, Prop. 1]. U

2.3 Restrictions on the p-rank

Let p1,, be the kernel of Frobenius on G,,,. The p-rank of a semi-abelian variety A’ over k
is far = dimp, Hom(p,, A’). If A" is an extension of an abelian variety A by a torus 7, then
far = fa+rank(T).

For an abelian variety A, the p-rank can also be defined as the integer f4 such that the
number of p-torsion points in A(k) is p/4. If A has dimension g4, then 0 < f4 < ga. The
p-rank of a stable curve Y is that of Pic’(Y).

Recall that ¢ # p is prime. Let e be the order of p in the multiplicative group (Z/¢Z)*.

LEMMA 2.2. Suppose that Y — P}, is a Z/{Z-cover. Let f be the p-rank of Y.

1. Then f is divisible by e, the order of p modulo .
2. If£>3 orif£=3 and p=1mod 3, then f#g—1.

Proof. The action of Z/¢Z on Y induces an action of ¢, on J = Jac(Y") and its p-divisible
group J[p>]. So Z[(] — End(J[p>]). If (¢,d) is a pair of relatively prime nonnegative
integers, and A =d/(c+d), let G, denote a p-divisible group of codimension ¢, dimension
d, and thus height ¢+ d. By [18], the Dieudonné-Manin classification, there is an isogeny
of p-divisible groups J[p>=] ~ @ ,\GT(A). The action of (; stabilizes every slope factor GT(A)
of J[p*>]. Hence, Z[(s] — End(GT(A)). If m(X) > 0, this yields an inclusion Q({r) ® Qp —
Mat,,,(»)(Dx) where Dy is the Q,-division algebra with Brauer invariant A € Q/Z.

1. If A=0, then m(\) = f. Let L, be the completion of L = Q(¢,) at a prime lying above
p. Then [L, : Q,] = e divides m(\).

2. Suppose f = g—1. Then the slope 1/2 factor of J[p°] is the p-divisible group of a
supersingular elliptic curve. So Q({s) C E where E is the endomorphism algebra of a
supersingular elliptic curve. Then FE is a quaternion algebra ramified exactly at oo, p.
The only number fields contained in E are quadratic fields inert or ramified at p. This
gives a contradiction if £ > 3 or if £ =3 and p =1 mod 3. O

The p-rank of Y equals the stable rank of the Cartier operator C. If w € H O(Y,Q1), then
C(¢J'w) = ¢{C(w). Then C(L;) C L,(;) where o is the permutation of Z/¢Z — {0} which

5. The cycle structure of o is determined by the splitting of p in Z[(,]. Recall

sends 7 to p~
that e is the order of p modulo ¢. There are (¢ —1)/e primes of Z[(,] lying over p with
residual degree e. Each orbit of C on {£;} has cardinality e. Let O denote the set of orbits.
The contribution to the p-rank from each of the e eigenspaces in an orbit o € O is bounded
by the minimum of s; = dim(£;) for £; in o.

Bouw used these ideas to find an upper bound on the p-rank, which depends only on p,
£, and the inertia type 7; it is

B(y):=» e-min{s; | L; € o}. (2)

0€0
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THEOREM 2.3 (Bouw). The integer B(7¥) is an upper bound for the p-rank of a Z/0Z-
cover of P with inertia type 5 [7, p. 300, (1)]. This upper bound B(¥) occurs as the p-rank
of a ZJ0Z-cover of P* with inertia type 7 if p>€(n—3) [7, Th. 6.1], or if p= =41 mod ¢ [7,
Props. 7.4 and 7.8], or if n=4 [7, Prop. 7.7].

§3. The moduli space of Z/£Z-covers and its boundary

In this section, we introduce the material needed to study p-ranks of cyclic covers from
a moduli-theoretic approach. Recall that G = Z/{Z.

3.1 Moduli spaces of stable Z/¢Z-covers
We define moduli functors on the category of schemes over k whose S-points represent
the listed objects:

1. Te4: admissible stable G-curves (Y/S, 1) with Y/S of genus g.

2. 7379: (Y/S, ) as above, together with a labeling 7 of the smooth ramification locus.

3. ﬁyg;t: (Y/S,t,m) as above, together with a mark Rz of degree t such that (Y/S,Rz) is
stably marked.

Let Ty,4 C Te,4 be the sublocus representing smooth G-curves.

Let v:{1,...,n} — (Z/¢Z)* be a class vector of length n =n(v). By (1), v determines
the genus g = g(vy) = (n—2)(¢—1)/2. Let 72,7 C 7~2,g be the substack for which (Y/S,t0,n)
has class vector 7. Let T~ C T4 be the substack for which (Y/S,.) has inertia type 7.

If two class vectors v and v yield the same inertia type, so that ¥ =7, then there is
a permutation w of {1,...,n} such that 4 = yow. This relabeling of the branch locus
yields an isomorphism ’7}77 ~ ﬁwow. Suppose v and 4/ differ by an automorphism of G, so
that there exists 7 € Aut(G) such that v/ = 70~. This relabeling of the G-action yields an
isomorphism 7~27,7 ~ ’72’7.07.

LEMMA 3.1. 1. 7~ng and 7},9 are smooth, proper Deligne—Mumford stacks over k.
2. To,q is open and dense in 'Tg,g.
3. The forgetful functor 'ﬁw — T is étale and Galois.
4. 77‘5,7 is an irreducible component of T .
5. The dimension of Ty is n—3.

Proof. See [3, Lems. 2.2-2.4]. 0

3.2 Clutching maps

We review the clutching maps kg, 4, and Ay, 4, of [15]. Each of these is the restriction
of a finite, unramified morphism between moduli spaces of labeled curves. They can be
described in terms of their images on S-points for an arbitrary k-scheme S. We give explicit
descriptions only for sufficiently general S-points and defer to [15] for complete definitions.
A stable curve Y has compact type if its dual graph is a tree or, equivalently, if PicO(Y) is
represented by an abelian scheme.

For i = 1,2, let 7; denote a class vector with length n; =n;(v;) and let g; = g(7s)-

3.2.1. Clutching maps (compact type)

There is a closed immersion [15, Cor. 3.9]

Kgi,gs - Magisty X Mgty = Mg igoity +5—2-
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This clutching map glues two curves Y;/S and Y3/S together to form a curve Y/S by
identifying the last section of Y7 and the first section of Y5 in an ordinary double point.

As seen in [3, §2.3], the clutching map extends to the moduli space of labeled Z/¢Z-curves
as follows. Let g = g1 + g2 and n =n; +ns — 2 and

Y= (’Yl(l)?' . 771(n1 - 1)772(2)7' . 772(n2))'

If (Y:/S,0.,:,m:) is a labeled G-curve with class vector ~;, for i = 1,2, then the clutched curve
Y/S has genus g and admits a G-action ¢ and a labeling 1 with class vector . Moreover,
Y/S can be deformed to a smooth G-curve if and only if the G-action is admissible, that
is, if and only if 1 (n1) and ~2(1) are inverses [8, Prop. 2.2]. In this situation, we write

Kgi,92 * 7~zﬂ'1 x ’737’72 - ’727’7'
By [6, Ex. 9.2.8], Pic’(Y) ~ Pic’(Y}) x Pic®(Y3). In particular, the p-rank of Y is

fY)=f)+ f(Yz). (3)

The signature type of (Y/S,10) is the sum of those for (Y;/S,0.).
For 1 <g; <g—1, let Ay [Te5] be the image of kg, g, in T, where go = g— g1 and
(71,72) ranges over the appropriate admissible pairs of class vectors.

3.2.2. Clutching maps (non-compact type)

In this case, let g=g1+g2+ (¢ —1) and n=ny +ng and v = (y1(1),...,71(n1),72(1),..-,
~2(n2)). The other clutching maps are

Agiogs Tﬂﬁl;l X Tﬁﬁz;l - Tfﬁ'

To define Ay, g4,, consider a Z/¢Z-curve (Y;/S,10,) with a mark P;, for ¢ =1,2. One can
glue these curves together to form a curve Y/S by identifying the orbits of P, and P; in ¢
ordinary double points. (Specifically, identify to1(g)(P1) and g 2(g)(P2) for g € G.) Then
Y/S admits a G-action ¢y and has inertia type 7.

Since Y7 and Y5 intersect in more than one point, the curve Y/S has non-compact type.
By [6, Ex. 9.2.8], Pic’(Y) is an extension

0— Z — Pic’(Y) — Pic®(Y7) x Pic’(Y3) — 0,
where Z is an (¢ —1)-dimensional torus. Thus, Y has genus g and the p-rank of Y is

FY)=f(V1)+ f(Y2) +(£—1). (4)

There is an action of Z/¢Z on Z, and each of the nontrivial eigenspaces has dimension 1;
we define the signature type of Z to be (1,...,1). The signature type of (Y/S,¢) is the sum
of those for (Y;/S,t,;) and Z.

For 0< gy <g—({—1), let Z,,[Tey] C Tey be the image of Ay, ,4,, Where go =g —g1 —
(¢—1) and (71,72) ranges over the appropriate pairs of class vectors. Let Ao[T¢,4] be the

union of 24, [T¢,4] for 0 < g1 < g—(£—1). Then Ag[T 4] is the set of moduli points of stable
Z/0Z-curves of genus g which are not of compact type.
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3.3 Components and dimension of the boundary

The boundary of T 4 is 672,y =T 0, — Tt,g- If g > 2, then 67; 4 is the union of A; = A;[T ¢ 4]
for 1 <i<g—1and Z; =5;[Ty,] for 0<i<g—(¢—1), some of which may be empty. Note
that A; and Ay _; (resp. Z; and Z,_;_(,—1)) are the same substack of 7@79.

If S is a stack with a map S — T, let A;[S] =8 X7, Ai[Te,4]- So, Ai[ﬁ,g] = 73’9 X7,

A;. Similar notation is used for =;.
LEMMA 3.2. Every irreducible component of 9T ¢, has dimension dim(7g,4) — 1.

Proof. Let W be an irreducible component of §7;,. There is an inertia type 7 such
that W is either a component of (i) A;[7; 5] for some 0 <i < g—1 or (ii) E;[7¢ 5] for some
0<i<g—(¢—1). By Lemma 3.1(5), it suffices to show that dim(W)=n —4.

Case (i): In this case, a generic point of W is the moduli point of a singular curve Y
with two irreducible components Y; and Y5 intersecting in one ordinary double point 3. Let
7, be the inertia type of the restriction of the Z/¢Z-action to Y;, and let n; = n(7,). Then
ni+ne —2 =mn since y is a ramification point for the two restrictions. So

dim(W) = dim(7¢5,) +dim(Tey,) = (n1 —3) +(n2 —3) =n1 +ny —6 =n — 4.

Case (ii): In this case, a generic point of W is the moduli point of a singular curve Y
with two irreducible components Y7 and Ys, of genera i and g —i— (¢ — 1) intersecting at one
unramified Z/¢Z-orbit. Let 7, be the inertia type of the restriction of the Z/¢Z-action to
Y;, and let n; = n(7,). Then ny 4+ng =n. There is a one-dimensional choice of an unramified
orbit on each of Y7 and Y5. So,

dim(W) = dim(T¢5,) + 1 +dim(T¢5,) +1= (n1 —3) +(n2 —3) +2=n—4. 0
The next result is used to find an upper bound on the dimension of the p-rank strata.
PROPOSITION 3.3. If S C Ty, has the property that S intersects A;, then
dim(S) < dim(A;[S]) + 1.

Proof. A smooth proper stack has the same intersection-theoretic properties as a smooth
proper scheme [23, p. 614]. In particular, if two closed substacks of 7'9 intersect, then the
codimension of their intersection is at most the sum of their codimensions. Now, A;[T 4]
is a closed substack of T 4. It suffices to consider the case that S is closed. Thus,

codim(A;[S],Te,4) < codim(A;, T ¢,4) + codim(S, T ¢q).
The result follows from Lemma 3.2 since codim(A;,T¢,4) = 1. 0

3.4 The p-rank stratification

If A is a semi-abelian scheme over a Deligne-Mumford stack &, then there is a
stratification S = US/ by locally closed reduced substacks such that s € S/ (k) if and only
if f(As) = f [14, Th. 2.3.1] (see also [4, Lem. 2.1]). For example, 72; is the locally closed
reduced substack of 7y, whose points represent smooth Z/{Z-curves of genus g with p-
rank f.

We use the following notation for the p-rank f stratum of the boundary: Ai[?&g]f =
(Ai[Te.4])’. These strata are easy to describe using the clutching maps. First, if 1 <i<g—1,
then (3) implies that A; [77'g,g]f is the union of the images of ﬁf; X ’720;_1- under k; 4_; as
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(f1, f2) ranges over all pairs (satisfying Lemma 2.2) such that
0< /1<%, 0< fo<g—i, and fi+ fa=f.
Second, if f>2 and 0<i<g—(¢/—1), then (4) implies that Z;[T¢ 4]/ is the union of the

images of 77’5’11-;1 x?gfg_(g_l)_i;l under A; ¢ (o—1)—; as (f1, f2) ranges over all pairs (satisfying
Lemma 2.2) such that

0<fi<i, 0< fo<g—((—1)—4, and fi+ fo=f—({—1).

3.5 Shimura varieties
We briefly review some notation about Shimura varieties that we need in §§5.3 and 6.2.
We refer to [17, §3.3] for a longer explanation.

NoOTATION 3.4. Let ¢ be an odd prime. Consider an inertia type 7 for £. It determines
the number of branch points n = n(¥) and the genus g = ¢g(¥) as in (1) for a Z/{Z-cover
Y — P! with inertia type 7. Furthermore, it determines the signature type of the cover as
in Lemma 2.1.

Recall that T,~ is the moduli space of Z/¢Z-covers Y — P! with inertia type 7. By
Lemma 3.1, T, is irreducible and has dimension n(y) — 3.

NOTATION 3.5. Let A, be the moduli space of principally polarized abelian varieties of
dimension g. Consider the image of Ty~ in A,. Let Z= = Z(¢,n,¥) be the closure of this
image; its points represent Jacobians of curves (smooth or of compact type) that admit a
Z/0Z-cover of P! with inertia type 7.

Attached to the data of £ and the signature type, there is a PEL-type Shimura variety
Sh. Let ¥5 = X(¢,n,7) be the irreducible component of Sh that contains Z.

84. Intersection of the p-rank 0 stratum with the boundary

In this section, we study the geometry of the p-rank stratification on the moduli space
of cyclic degree £ covers of the projective line.

Recall that p is a prime such that p # £ and e is the order of p modulo ¢. The formula
for the upper bound B(%) for the p-rank of a cover with inertia type 7 is in (2). Let f be a
multiple of e such that 0 < f < B(¥). Define e =1 if p=1 mod ¢ and € = 0 otherwise.

We first give a lower bound on the dimension of the p-rank strata.

PROPOSITION 4.1. Suppose the p-rank f stratum 77'577 is non-empty, and let S be an
irreducible component of it. Then

dim(S) > dim(T )~ (B(7) — f)/e +e. (5)

Proof. The p-ranks which occur on 7,5 are multiples of e by Lemma 2.2 and are at
most B(%) by Theorem 2.3. Furthermore, if p=1mod ¢, thene=1and f#g—1=B(%)—1
by Lemma 2.2. So the number of integers f’ such that f < f’ < B(¥) which can occur as the
p-ranks for points of 7~ is at most (B(¥) — f)/e+ €. The statement is then an immediate
application of the purity result of Oort [20, Lem. 1.6] which states that if the p-rank changes,
then it does so on a subspace of codimension 1. U

REMARK 4.2. For £ > 5, the lower bound on the right-hand side of (5) is positive only
when f is large relative to g. For example, if =5 and p =1 mod 5, then it is —g/2+ f.
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. -0 .
In the next result, assuming that the p-rank 0 stratum 7, is non-empty, we show
that it intersects the boundary deeply (in the sense that the intersection contains points
corresponding to reducible curves with many components).

THEOREM 4.3. Suppose S is an irreducible component of the p-rank O stratum 77‘2,7
of Tes. Let 0 =dim(S). Then there exists n € S such that the curve Y, of compact type
represented by n is reducible, with at least o 4+ 1 components, such that the Z/{Z-action
stabilizes and acts nontrivially on each component.

Before proving this theorem, we explain its significance.

REMARK 4.4. 1. Recall that o >dim(7,~) — B(¥)/e+ ¢ by Proposition 4.1. So, for each
irreducible component of the p-rank 0 stratum, Theorem 4.3 guarantees the existence
of a point representing a curve that is reducible, with many components. The existence
of a degenerate point of this type can be helpful for studying the p-rank 0 strata. We
illustrate this with several applications in §6.2.

2. Theorem 4.3 is a generalization of [5, Th. 3.11(c)], which is the case ¢ = 2. Suppose
£=2 and g > 2, in which case there is a unique inertia type 7 for hyperelliptic curves of
genus ¢. In this case, Theorem 4.3 applies to an irreducible component S of the p-rank
0 stratum of the locus of hyperelliptic curves of genus g. By [11, Prop. 2], o0 = dim(S) =
g—1. So Theorem 4.3 shows that S contains a point representing a curve that has g
components (each of which has genus 1 and is thus a supersingular elliptic curve); this
is the conclusion of [5, Th. 3.11(c)].

3. In contrast, when ¢ is odd, then usually o < g — 1. Thus, Theorem 4.3 does not imply
that 77’25 contains a point representing a reducible curve with g components. This makes
it harder to study the case when /¢ is odd.

4. Tt is not possible to prove Theorem 4.3 using results on the boundary of the moduli
space of n-marked curves of genus 0. The reason is that the relationship between the
p-rank and the location of the branch points is extremely complicated. As an example
of this, see the case that { =3 and g = 2 studied in Lemma 7.1. In other words, it is not
clear how to maintain the p-rank 0 condition when deforming the curve by moving the
branch points.

Proof. (Proof of Theorem /.3). The proof is by induction on the number of branch
points n = n(7). This is equivalent to induction on the genus g = g(7), because g = (n —
2)(¢—1)/2. For the base case, when n =3 and g = (£ —1)/2, the statement is vacuous since
T~ has dimension 0.

Suppose that the statement is true for all inertia types 7" for which the genus ¢’ is less
than ¢g. Let 7 be an inertia type for which the genus is g, and let & be an irreducible
component of 77'25. When o = 0, the statement is vacuous.

Suppose o > 0. Since Ty 5 is affine, § intersects a boundary component of 77'55. The points
of § represent curves whose p-rank is 0, and hence (4) implies that S does not intersect Ay.
Thus, S intersects A; for some 1 <j < g—1. A point of A;[S] represents a curve having at
least two components (which completes the proof when o =1).

By Proposition 3.3, dim(A;[S]) > o —1. A point 7y of A;[S] is in the image of a clutching
morphism. Specifically, there is an admissible pair of inertia types 7;,7%,, and points &; €
7251_, for i =1,2, such that 1y = k;,4—;(&1,&2). Since S is an irreducible component of 77'25,
there is an irreducible component I'; of 7}@,, for i = 1,2, such that x; ,—;(I'1,T'2) C A,[S].
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Note that g(7;) < g. Let 0, = dim(I';). Then o1 4+ 02 > 0 — 1. By the inductive hypothesis,
for i = 1,2, there exists n; € I'; such that the curve Y), of compact type represented by 7; has
at least 0; +1 components. Then & 4—;(n1,72) € A;[S] has at least (01 +1)+(02+1) >0+1
components. U

85. Trielliptic covers

In this section, we specialize to the case ¢ = 3. Suppose p # 3 is prime. We study the
p-ranks of trielliptic curves, which are Z/3Z-covers of P'. Suppose g > 2 and (r,s) is a
signature type for g.

In Proposition 5.9, for all primes p > 5, we prove that there exists a trielliptic curve
Y defined over F, of genus g and signature (r,s) whose p-rank is smaller than the upper
bound B(r,s).

In Theorem 5.11, when p =2 mod 3 is odd, we prove that every integer f satisfying the
necessary conditions from Lemma 2.2 occurs as the p-rank of a trielliptic curve Y defined
over Fp of genus g and signature (r,s); in addition, we prove that there is an irreducible
component of 7'gf () whose dimension equals the lower bound from Proposition 4.1.

5.1 Notation for trielliptic covers
Suppose (Y/S,1) is a smooth trielliptic curve. The Z/3Z-cover 1 : Y — P! has an
equation of the form:

dy do

v =[@—an [J -8~ (6)

i=1 i=1
Without loss of generality, we assume that 1 is not branched at co. The number of branch
points of ¢ is n = dy +ds and the genus of Y is g = d; +do — 2. The inertia type of ¢ is
F=(1,...,1,2,...,2).
—— ——
dy da

LEMMA 5.1 [3, Lem. 2.7]. The set of inertia types 7 for a trielliptic curve (Y/S,to) of
genus g is in bijection with {(dy,ds) | dy,ds € ZZ°, dy +ds = g+2, dy +2ds =0 mod 3}.

There is a Z/3Z-eigenspace decomposition H°(Y,Q3.) = £1 & Ly where w € L; if (30w =
Ciw. The signature type of (Y/S,10) is (r,s) where r = dim(£;) and s = dim(L3).

If (Y/S,u0) is a trielliptic curve, then so is (Y/S,t) where t4(1) = 19(2). Replacing ¢
with ¢, exchanges the values of d; and ds and the values of r and s.

DEFINITION 5.2. A trielliptic signature for g € N is a pair (r,s) of integers with r+s =g,
and 0 < max{r,s} <2min{r,s}+1.

The next result follows from Lemma 2.1

LEMMA 5.3. There is a bijection between trielliptic signatures (r,s) for g and inertia
types of 7./3Z-Galois covers of P! of genus g given by the formulae

dl :2T—8+1, Clg =2s—r+1.
In other words, 7 = (2dy +d2 —3)/3 and s = (dy +2d2 — 3)/3.

EXAMPLE 5.4 (Signature (1,0), inertia type 7 = (1,1,1)). There is a unique smooth
elliptic curve which is trielliptic. It has p-rank 0 when p =2 mod 3 and p-rank 1 when
p=1mod 3.
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Proof. By [22, Th. 10.1], an elliptic curve with automorphism of order 3 has j-invariant 0.
The result follows from [22, Exer. V.5.7 and Exam. V.4.4]. 0

5.2 Components of the moduli space and maximal p-rank

Let (7, s) be a trielliptic signature for ¢g. Let 7 be the inertia type given by 7(i) = d; where
d; are as in Lemma 5.3. Let f be an integer 0 < f < g satisfying the conditions of Lemma
2.2, namely, f is even if p=2mod 3 and f#¢g—1 if p=1 mod 3.

Consider the moduli space 7, sy = T35 of smooth trielliptic curves with signature (r,s)

and inertia type 7. For f as above, let ’7'(]; 5 denote the p-rank f stratum of 7, 5). Similarly,

define 77’{7,75) by replacing the word smooth by stable.
The next result is a special case of Proposition 4.1.

PROPOSITION 5.5. Suppose S is an irreducible component 0f’77'{r75). If p=2 mod 3, then
dim(S) > max{r,s} —1+ f/2. If p=1mod 3 and f < g, then dim(S) > f.

We first consider the case of maximal p-rank. Define B(r,s) =g if p =1 mod 3 and
B(r,s) = 2min{r,s} if p=2mod 3. By Theorem 2.3, the p-rank of a trielliptic curve of
signature (r,s) satisfies f < B(r,s).

PROPOSITION 5.6 [Bouw]. If p # 3, then there exists a smooth trielliptic curve with
signature (r,s) and p-rank fumax := B(r,s). The p-rank fumax strata ’T(J:”;" s open and dense

mn ’T(r,s) .

Proof. The first statement is a special case of [7, Props. 7.4 and 7.8]. The second
statement follows since 7, ) is irreducible and the p-rank is lower semi-continuous. U

5.3 Base cases

Moonen proved there are exactly 20 families of cyclic covers of P! that are special, meaning
that the image of the family under the Torelli morphism is open and dense in the associated
unitary Shimura variety; these are listed as M[1]-M[20] in [19, Table 1]. In [17, §§4-6], the
authors computed the Newton polygons occurring on these families. In [17, Th. 5.11] and
[16, Th. 7.1], they proved that each of these Newton polygons occurs for the Jacobian of a
smooth curve in the family, except possibly the supersingular ones when p is small.

For trielliptic covers, there are three families that are special: M([3], M[6], and M10].
Since the p-rank is an invariant of the Newton polygon, we can find the dimension of the
p-rank strata of these families. When the Newton polygon is supersingular (which happens
only when f =0), we can remove the requirement that p >> 0 in all but one case.

The results below for the signature (r,s) are also true for the signature (s,r).

LEMMA 5.7. 1. M[3] (Signature (1,1), inertia type 7 = (1,1,2,2)).
If p>5 and f =0, then ’T(? 1 is non-empty of dimension 0.
2. MI6] (Signature (2,1), inertia type 7 = (1,1,1,1,2)).
If p=1mod 3 and f=0,1, then 7?1(72) is non-empty of dimension f.
If p=2mod 3 and f =0, then 72{ 2) is non-empty of dimension 1.
3. MIJ10] (Signature (3,1), inertia type v = (1,1,1,1,1,1)).
If p=1mod 3 and f=0,1,2, then 7’({73) is non-empty of dimension f (if p >> 0 when
f=0).
If p=2mod 3 and f =0, then 72? 3) s non-empty of dimension 2.
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Proof. The Newton polygons for the curves in the family are listed on [17, p. 19].

1. When f =0, then the Newton polygon of a curve in the family is supersingular. If
p = 1 mod 3, the result follows from [17, Th. 5.11]. The main idea is that, because of
Example 5.4, a supersingular curve in the family must be smooth.

When p =2 mod 3 is odd, the result follows from Lemma 7.1 (or [16, Th. 7.1] when
p>>0).

2. When p =1 mod 3, the result follows from [17, Th. 5.11]; note that the Newton polygon

has slopes 1/3 and 2/3 when f = 0.
When p =2 mod 3, the result follows from [16, Th. 7.1] when p >> 0. Here is an argument
that removes the hypothesis p >> 0. Let S be an irreducible component of the p-rank 0
locus 77’?271). Then dim(S) =1 because T (2,1) has dimension 2 and its generic geometric
point represents a curve with p-rank 2. The intersection of S with the boundary is
contained in /{172(71(0170) X ’720171)), but that only has dimension 0, so the generic geometric
point of S represents a smooth curve.

3. When p =1 mod 3, the result follows from [16, Th. 7.1]; we do not know how to remove
the hypothesis p >> 0 when f =0.

When p =2 mod 3, then 7'8’3) is non-empty of dimension 2 by [17, Th. 5.11]. l

For the family M[10], we consider the unitary Shimura variety Sh attached to the data
of £ =3 and the signature type (3,1). As in §3.5, let ¥ be the irreducible component of Sh
which contains the Torelli locus.

PROPOSITION 5.8. Suppose p =2 mod 3. For the family MI[10], the p-rank O stratum
0 of ¥ is irreducible and thus 78 3) 8 irreducible.

Proof. For each generic geometric point of X0, we consider the Newton polygon v of the
abelian variety represented by this point. Applying the Kottwitz method (see [17, §4.3 and
table on p. 19]) shows that v has slopes 1/4 and 3/4 when p =2 mod 3; in particular, it is
not supersingular. The hypotheses of [1, Th. 1.1] are satisfied; the conclusion of that result
is that the stratum of ¥ with Newton polygon v is irreducible. Since this stratum is open
and dense in X9, this implies that X9 is irreducible.

Since the family M[10] is special, the image of 7(3 1) is open and dense in ¥. It follows
that 7'(%1) is open and dense in X°. Thus, 7?%71) is irreducible as well. U

5.4 Trielliptic curves whose p-rank is not maximal

The next result extends Proposition 5.6 by showing, for each prime p > 5, that there exist
trielliptic curves of each signature type (r,s) whose p-rank is not the maximum B(r,s).
Recall that B(r,s) = 2min{r,s} when p =2 mod 3 and B(r,s) =r+s when p =1 mod 3.

PROPOSITION 5.9. Let p > 5 and g > 2. Let (r,s) be a trielliptic signature for g.
Then TB(T )2 s non- empty, and each of its irreducible components has dimension g — 2
(codzmenszon 1 in T(rs)). Thus, there exists a smooth trielliptic curve with signature (r,s)
and p-rank f = B(r,s)—2.

Proof. Recall that dim (7, )) =g —1 and the generic geometric point of T, s) represents
a trielliptic curve with p-rank B(r,s) by Proposition 5.6. If TB(; =2 4y non-empty, then,
by definition, each of its generic geometric points represents a smooth trielliptic curve
with signature (r,s) and p-rank f = B(r,s)—2. Furthermore, if S is one of the irreducible
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components of 7'(1;327; 8)=2
g—2, s0 dim(S) =g—2.

It thus suffices to prove that 'T
r < s. The proof is by induction on 7’

If r=1,then 1<s<3. If r=1and s=1, then B(1,1)—2 =0 and the result follows
from Lemma 5.7(1) (deferred to Lemma 7.1(1) when p=2mod 3). If r =1 and s =2,
then B(1,2) —2=1 when p=1mod 3 and B(1,2) —2 =0 when p =2 mod 3 and the result
follows from Lemma 5.7(2). If r =1 and s =3, then B(1,3) —2 =2 when p =1 mod 3 and
B(1,3) —2 =0 when p =2 mod 3, and the result follows from Lemma 5.7(3).

Now, suppose 2 <r < s.

, then dim(S) < g —2 and Proposition 5.5 implies that dim(S) >

B(T 972 g non-empty. Without loss of generality, suppose

Case 1: Suppose s < 2r. Then (r—1,s—1) is a valid trielliptic signature. Note that
B(r—1,s—1) = B(r,s) — 2. Let &1 be an irreducible component of 7'((1) 1) which is non-

B(r—1,5—1)
r—1,s—1)

which is non-empty by Proposition 5.6. Consider an irreducible component Sy of 7;1 1 lying

above &1 and an irreducible component gg of ﬁf(rl 51 81) b lying above Ss.
When (7, s) :~(1, 1), then dy = dy = 2 are both positive. Thus, without loss of generality,

we can choose S; (the labeling of the ramification points) so that the clutching situation

empty when p > 5 by Lemma 5.7(1). Let Sz be an irreducible component of ’72

below is admissible:

B(r,s)—2
K2,g—2: 81 X 82 — T(T(S) -
Let K = ko g,g(g’l x S5). By construction, K is contained in A, [7'5,(2)5) 2].
Let W be an irreducible component of Tg(sr)s) ? which contains K. By the same reasoning

as the first paragraph of the proof, dim(W) = g —2. On the other hand, since dim(gl) =0
and dim(7(,_1 5-1)) = g — 3, it follows that

dim(K) = dim(8;) +dim(T(,_1,s_1)) = g — 3.

Thus, the generic point of W is not contained in K.

By construction, the generic point of S; represents a smooth curve. The generic point of
Tg(rl i 81) Y represents a smooth curve by Proposition 5.6 and Lemma 3.2. So the generic
point of W is not contained in any other boundary component. Thus, the generic point of
W represents a smooth curve and TBS =2 i non-empty, with irreducible components of
dimension g — 2. K

Case 2: Suppose s =27+ 1. Then (r—1,s—2) is a valid trielliptic signature. Note that
B(r—1,s—2)=2(r—1) when p=2 mod 3 and B(r—1,s—2) = g—3 when p=1 mod 3. Let
f'=0whenp=2mod 3and f'=1 whenp_ 1 mod 3. Then f'+B(r—1,s—2) = B(r,s) —2.

Let & be an irreducible component of T which is non-empty by Lemma 5.7(2). Let

(1,2)
S5 be an irreducible component of 7215_(2 81_82) 2) , which is non-empty by Proposition 5.6.

When (r,s) = (1,2), then dy =1 and ds = 4, which are both positive. We repeat the
argument above, making an admissible clutching of the following form:

K3,g—3: 81 X 82 — T(B;_(Q)S) 2.

The rest of the proof is the same. U
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REMARK 5.10. When p = 2, then 7'((1) 1) Is empty, as shown in Lemma 7.1(2). When

p =2, it is still true that 7'?1 1) is non-empty (of dimension 0); the same proof as for

.. B(r, . .
Proposition 5.9 shows that T(T(;S is non-empty and each of its irreducible components

has dimension g — 2 (codimension 1 in 77’(,n’ s)), but it is not clear whether any of its points
represents a smooth curve.
The case when p = 3 is described in Proposition 7.4.

5.5 Existence of trielliptic curves with given p-rank

In this section, suppose p = 2 mod 3. In this case, the necessary conditions on the p-
rank are that f is even and 0 < f < 2min(r,s). For every signature type and for all odd
p =2 mod 3, we prove that every p-rank f satisfying the necessary conditions occurs for a
smooth trielliptic curve of that signature in characteristic p. If S is an irreducible component
of 77'{“), recall from Proposition 5.5 that dim(S) > max{r,s} —1+ f/2.

THEOREM 5.11. Let p=2 mod 3 be odd, and let g > 2. Let (r,s) be a trielliptic signature
for g. Suppose 0 < f < 2min{r,s} is even. Then there exists a smooth trielliptic curve of
genus g defined over E) with signature type (r,s) and p-rank f. More generally, ’7'(7{ 5) s non-

empty and contains an irreducible component S = S(J;’S) with dim(S) = max{r,s} — 1+ f/2.

Proof. The first statement about the existence of the trielliptic curve with signature
type (r,s) and p-rank f is equivalent to the statement that 72{ ) is non-empty.

To prove this, without loss of generality, suppose r < s. The proof is by induction on 7,
with the result being true for r =1 by Proposition 5.6 when f =2 and Lemma 5.7 when
f =0. Suppose the result is true for all trielliptic signatures (ry,s1) with 1 <7y <r.

Let (r2,s2) be either (i) (1,2) or (ii) (1,1), with choice (i) mandated if s = 2r+1 and
choice (ii) mandated if s =r. Let go =13+ $2. Let 11 =r—7r9 and s1 = s— s9, and g1 =11 +s1.
Note that (r1,s1) is a trielliptic signature for ¢g; and r; < sy.

By the hypothesis, 0 < f < 2r is even. Let fs be either (a) 2 or (b) 0, with choice (a)
mandated if f = 2r and choice (b) mandated if f =0. Let f; = f — fo. Then 0 < f; < 2rq
and fi is even.

It follows that Tf " 5) is non-empty and contains an irreducible component S; With
dim(S;) =s; — 1+ f1/2 (by the inductive hypothesis when ¢ = 1, Propositions 5.6 and 5.
when i = 2). One can add a labeling of the smooth ramification points by choosing an
irreducible component S; of 7'(T s;) above S;.

By construction, K = kg, ,,(S1 X Sa) is contained in 77'{7“75) and
dim(K) = dim(S1) + dim(Sy) = s —2+ f/2.

Then K is contained in a component W of 77’{7"78). By Proposition 5.5, dim(W) > s—1+ f/2.
By Proposition 3.3, dim(W) < s—1+ f/2. Thus, dim(W) =s—1+ f/2.

Finally, the generic point of W is not contained in K. Since the generic points of S; and
Sy represent smooth curves (this requires the hypothesis p # 2 for case (ii)), the generic
point of W is not contained in any other boundary component. Thus, the generic point of
W represents a smooth curve. It follows that S = WOT( is open and dense in W and

thus is non-empty with dimension s —1+ f/2. O

r,s)
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REMARK 5.12. When p =1 mod 3, we were not able to prove an analogue of Theorem
5.11. Then main reason is that if f < g and if S is an irreducible component of 77'{“ s)» then
Proposition 5.5 states that dim(S) > f. When f =0, the expected dimension is 0, which
makes it difficult to work with the p-rank 0 stratum inductively.

86. Cases where all p-rank 0 strata have the same dimension

Suppose p =2 mod 3 is odd. Let g > 2. Let (r,s) be a trielliptic signature for g. Let f
be an even integer such that 0 < f < 2min{r,s}. If S is an irreducible component of ’7'(]; 5
then dim(S) > max{r,s} —1+ f/2 by Proposition 5.5

We proved in Theorem 5.11 that 'T is non-empty and contains an irreducible
component with dim(S) = max{r,s} —1 + f /2. Motivated by a result in the hyperelliptic
case [11, Prop. 2], we tried to prove that every component of T(r’s) has the same dimension.
This is true when min{r,s} =1 by Lemma 5.7. In this section, we prove it is also true when
min{r,s} =2 (see Corollary 6.4).

Here are some of the reasons the trielliptic case is more difficult than the hyperelliptic
case. First, it is possible that there are components of T'f that are fully contained in the
boundary. This does not happen in the hyperelliptic case by [5, Lem. 3.2]. We describe this
in §7.2.

Second, in the hyperelliptic case, every irreducible component of the p-rank 0 stratum
ﬁg contains the moduli point of a tree of g (supersingular) elliptic curves [5, Th. 3.11(c)].
The analogous result in the trielliptic case is weaker. By Theorem 4.3, every irreducible
component of 7'?7,78) contains the moduli point of a tree of max{r,s} trielliptic curves, but
max{r,s} is strictly less than g.

6.1 Balanced degenerations

In this section, we introduce balanced degenerations which are helpful for finding an
upper bound for the dimension of irreducible components. The reason for the balanced
condition is that B(r,s) is not additive in general. When p =2 mod 3 and r < s, then
B(r,s) = B(r1,81) + B(ra, s2) if and only if r1 <s; and rg < so.

DEFINITION 6.1. Let S be an irreducible component of 7'{7“73) with r <s. We say S
degenerates to A((r1,51)%1, (re,52)72) if S intersects H(’T(r o) X 7'({2 52))'

We say the degeneration is balanced if r1 < s and 19 < s9.

In Definition 6.1, we implicitly require that (r1,s1) and (r2,s2) are trielliptic signatures,
that r1 +7r2 =7 and s1 + s2 = s, that f; are even with 0 < f; < 2r;, and that f1 4+ fo < f.

PROPOSITION 6.2. Suppose S has a balanced degeneration to A((r1,s1),(ra,52)72).
Suppose, fori=1,2, that
dlm(’TT " )) dlm(T(r s, )) =s;— 1+ f;/2. (7)
Then dim(S) = s—1+ f/2 and S contains £(S1 x S2), where S; denotes a component of
T ) fori=12.

(TS

Proof. By Theorem 5.5, dim(S) > s— 1+ f/2. By Proposition 3.3,
dim(S) < dim(7! | ) +dim(772 )+1
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Since the degeneration is balanced, r; < s;. By hypothesis,

dim(77 | ) =dim(T(;, ) = si — 1+ fi/2.
So,
dim(S) < (s1 =14 f1/2) +(s2—1+ f2/2)+1 < s—1+ f/2.

Thus, dim(S) = s— 1+ f/2. Furthermore, S contains (S x S2) in order for equality to
hold in the dimension count. 0

There is an analogous result for the other boundary components, which we do not need
in this paper. In this case, we say S degenerates to Z((r1,51)%1, (r2,52)72) if S intersects

)\(7'{;1’51);1 X 7?[2 ). In this case, we allow (r1,s1) = (0,0) to be a valid trielliptic

r2,52);1
signature, and require that r1 +ro=r—1and s;+so=s—1, and f1+ fo < f—2.
PROPOSITION 6.3. Suppose S has a balanced degeneration to Z((r1,s1)7, (r2,52)%2). For
i=1,2, suppose (7) is true. Then dim(S) =s—1+ f/2 and S contains A(S1 x Sa), where

S; denotes a component 0f7{:’i75i)§1 fori=1,2.

Proof. The proof is almost the same as for Proposition 6.2. For a =-degeneration, recall
that s1+so=s—1, r1+ro=r—1, and f; + fo < f—2. Marking an orbit increases the
dimension by 1, so dim(?{;hsl);l) = s;+ fi/2. Then

dim(S) < dim(T (., o, y) +dim(T iy, ) + 1,
SO
dim(S) < (s1+ f1/2)+ (s2+ f2/2)+1<s—1+ f/2. O

6.2 A partial generalization of Proposition 5.9

When f = B(r,s) —2, then the p-rank f stratum has codimension 1 in 7, ), by
Proposition 5.9. When p =2 mod 3 is odd, by Theorem 5.11, 7’(];78) is non-empty for each
0 < f <2min{r,s} with f even.

When p =2 mod 3 is odd, we would like to generalize Proposition 5.9 by showing that
every component of the p-rank f = B(r,s) —4 stratum has codimension 2 in 7, ). One
reason this is hard to show is because it is not known whether the p-rank strata are nested
in each other; specifically, it is not known whether every component of the f = B(r,s) —4
stratum is contained in the closure of the f = B(r,s)—2 stratum.

In the next result, we are able to extend Proposition 5.9 in this desired way but only
under the strong restriction that min{r,s} = 2.

COROLLARY 6.4. Let p =2mod 3 be odd. Let (r,s) be a trielliptic signature with
min{r,s} =2. Let f=0. If S is an irreducible component of ??T,S), then dim(S) =
max{r,s}— 1.

In the rest of the section, we prove Corollary 6.4. By symmetry, it suffices to suppose
r=2; then s =2,3,4,5, and we handle these cases separately.

Corollary 6.4 is an application of Theorem 4.3, which we restate in the trielliptic context:
suppose S is an irreducible component of the p-rank 0 stratum 77‘?“) of 77‘(7«78); let o =
dim(S); then there exists 7 € S such that the curve Y;, of compact type represented by n
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Figure 1.

Picture of the singular curve Y,

X .\ /.
\. X
111 =x 222 =
Figure 2.

The dual graph of Y,

is reducible, with at least 0 4+ 1 components, such that the Z/3Z-action stabilizes and acts
nontrivially on each component.

6.2.1. Thecaser=2and s=3
LEMMA 6.5. If S is an irreducible component of 7(()273), then dim(S) = 2.

Proof. When the signature is (2,3), the inertia type is ¥ = (1,1,2,2,2,2,2).

By Theorem 5.5, dim(S) > 2. Since (2 3) is affine, S intersects either A; = Ay or Ap = As.
If S intersects Ao, then S has a balanced degeneration to A((1,1)°,(1,2)?). By Lemma 5.7,
the hypothesis in (7) is true and so dim(.S) = 2 by Proposition 6.2.

We assume that S does not intersect Az and that dim(S) > 3 and find a contradiction. By
Theorem 4.3, S contains a point 7 representing a curve Y, with at least four components.
Since Y, has genus 5, it has three components of genus 1 and one component Yj of genus
2 (which is possibly reducible).

In the dual graph of Y,,, we replace the vertex representing Y; by two vertices connected by
a marked edge. This is illustrated in Figure 1: the schematic represents the four components
of the curve, with the branch points marked by their canonical generators of inertia (the
admissible condition implies that the two canonical generators of inertia are inverses at
each ordinary double point); the schematic in Figure 2 represents the dual graph of Y.

The moduli point of Y is in “(7-(?,0) X 71(?73)), but this is not a balanced degeneration.

Note that dim(ﬁol’o)) =0 and dim(iag)) =2 by Lemma 5.7.
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NS

[} X

Figure 3.
A point 1’ of 7?,3

Figure 4.
The dual graph from the proof of Lemma 6.7.

By Proposition 3.3, dim(S) < 3. If dim(S) = 2, the proof is complete. If dim(S) = 3,
then there is a component S; of 7??’0) and a component Sy of 78?3) such that S contains
H(Sl X Sg)

Consider the unitary Shimura variety Sh attached to the data of £ =3 and the signature
type (1,3); let 3 be the irreducible component of Sh which contains the Torelli locus; and
let X9 denote the p-rank 0 stratum of ¥. By Proposition 5.8, 3X° is irreducible.

Consider a (labeled) tree " of four elliptic curves (with dual graph in Figure 3); this is a
singular trielliptic curve with signature type (1,3) and p-rank 0. Its Jacobian is represented
by a point of 3°, and thus by a point in the closure of Sy. This implies that the point
k(S1 xn') is in Ag[S], which is a contradiction. 0

6.2.2. The case r =2 and s =4
LEMMA 6.6. If S is an irreducible component of 77'(()274), then dim(S) = 3.

Proof. By Theorem 5.5, dim(S) > 3. Since 7(3 4) is affine, S intersects either A; or A
or Az. Then S has a balanced degeneration to either A((0,1)°,(2,3)%) or A((1,1)%,(1,3)°)
or A((1,2)%,(1,2)%). The result follows from Proposition 6.2, with the hypothesis in (7)
verified by Lemmas 5.7 and 6.5. O

6.2.3. The case (r,s) = (2,5)

LEMMA 6.7. If S is an irreducible component of 77'(0275), then dim(S) = 4.

Proof. By Theorem 5.5, dim(S) > 4. We assume dim(S) > 5 and find a contradiction.
By Theorem 4.3, there exists a point n € S such that the curve Y = C), has at least six
components. Since Y has genus 7, it has five components of genus 1 and one component of
genus 2 (which is possibly reducible).

In the dual graph of Y, we replace the vertex representing the curve of genus 2 by two
vertices connected by a marked edge. One possibility for the dual graph is seen in Figure 4.

Regardless of the location of the marked edge, n is in /i(7~'((1)’2) X ~(173)). Thus, S has a
balanced degeneration to A((1,2)%,(1,3)%). By Proposition 6.2(1), dim(S) < 4, which gives
a contradiction. Hence, dim(S) = 4. 0
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6.2.4. The case (r,s) = (2,2)

The situation for the trielliptic signature (2,2) is more complicated; as seen in Example
7.2, Al[?gz] has dimension 1, which is larger than expected. To avoid issues raised by
problem, we use some results about the Shimura variety Sh attached to the data £ =3 and
signature type (2,2).

LEMMA 6.8. If S is an irreducible component of 7(()272), then dim(S) = 1.

Proof. 1If S intersects Ay, then S has a balanced degeneration to A((1,1)%,(1,1)°). Then
dim(S) =1 by Proposition 6.2(1).

Suppose that § does not intersect As. Then S intersects A; and S degenerates to
A((1,0)°,(1,2)%). Then dim(S) =1 or dim(S) = 2 by Proposition 6.2(2).

Assume dim(S) = 2. Under this assumption, we prove that S intersects Ay, which gives
a contradiction. By Theorem 4.3, S contains a point 7 representing a trielliptic curve C;, of
compact type with at least three components. Then C), has one irreducible component of
genus 2 with two elliptic tails, since S does not intersect As.

Consider the Shimura variety Sh attached to the data £ =3 and signature type (2,2). Let
Y be the irreducible component of Sh containing the image of the Torelli locus. Let S’ be
the image of S under the embedding 77'8’2 — X. Then S’ is contained in the supersingular
locus N of 3. Each of the supersingular components of ¥ has dimension 2 by [12, Th. B].
It follows that S’ is a component of N. By [12, Th. 3.12], every component of N contains a
point £ where N intersects another component of N. The point £ parameterizes an abelian
variety A which decomposes, together with the polarization, into a direct sum of the form
A1 @ Ay where dim(A;) =2 and Z[(3] C End(A;). Then A is the Jacobian of a curve in

A2[72’2], which gives a contradiction. 0

§7. Concluding remarks

In Section 7.1, we complete the proof of the base case used in some results in the paper,
such as Proposition 5.9. In the remaining sections, we explain some of the reasons why
Theorem 5.11 is hard to generalize.

7.1 A computational approach to the base case

In this section, we prove that ’T(?’l) is non-empty when p =2 mod 3 is odd; this completes
the proof of Lemma 5.7(1).

Suppose ¢ : Y — P! is a Z/{Z-cover. In [9, §§2 and 3], Elkin determines formulas for
the action of the Cartier operator C on H°(Y,Q!). The Cartier operator is a semi-linear
operator, and the p-rank is the rank of its gth iterate. For small ¢, g, and p, it is possible to
compute the p-rank from Elkin’s work. We note that there are several choices involved in
setting up the computation of iterates of the Cartier operator; these have led to mistakes
in the literature, and the reader is advised to consult [2] to avoid repeating these.

We restrict to the case that ¢ = 3. Without loss of generality, we can suppose that v
is not branched above co. As in (6), there is an equation y3 = p;(x)p2(x)? for 1, where
p1(x),p2(x) € k[z] are square-free, monic, and relatively prime. Let d; = deg(pi(x)) and
do = deg(p2(x)). From Lemma 5.3, recall that the trielliptic signature for ¢ is given by (r, s)
where r = (2d; +d2 — 3)/3 and s = (dy + 2d2 — 3) /3. Moreover, g = dy +ds — 2.
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We restrict to the case (r,s) = (1,1) and g = 2. Then H°(Y,Q') = L1 ® L5 where
Ly = (w1 :=da/y), L1 = (w1 = pa(z)dz/y?).

We suppose that p =2 mod 3; then the Cartier operator C permutes £; and L.
Let e; =(2p—1)/3 and ex = (p—2)/3. Note that e; +e2 =p—1. Let

hi(z) = p1(z) p2(2)*, ha(z) = p1(x)?pa(z)".

When r = s =1, then deg(hi(x)) = deg(ha(x)) = 2p — 2. In this case, for i = 1,2, there is
only one monomial z¢ in h;(z) such that e = —1 mod p; let A; be the coefficient of 2P~1 in
hi(z). By a special case of [9, Th. 3.4],

C(ij) = Al(x)g’l, C(W27j) = AQUJLl. (8)

LEMMA 7.1. 1. If p=2mod 3 is odd, then T(?’l) is non-empty: there exists a smooth

trielliptic curve Y over F, with genus 2 and p-rank 0.
2. If p=2, then 7‘(2 1 is empty: there does not exist a smooth trielliptic curve Y over Fa
with genus 2 and 2-rank 0.

Proof.
1. Let pi(x) =22 —1 and py(z) = 22 +1. We compute that

hi(z) = (2% — 1) (z2 + 1)

(e () ) (S (7))

Jj=0

By (8), C(w1,1) = Ajwa1 where A; is the coefficient of zP~! in hy(z). A pair (i,5)
contributes to this coefficient exactly when 2i+2j=p—1, or j = (p—1)/2—i. Thus,

€2

e ()

i=0 2

The sum has an even number of terms. One can check that the ith and (es —i)th terms
cancel, because ((p—1)/2—i)+((p—1)/2—(e2—1)) = e and because i and e3 — i have
opposite parities. Thus, A; = 0.

The same argument, with the roles of e; and es switched, shows that As = 0. Thus, C
is the zero operator (implying that Y is superspecial) and so Y has p-rank 0.

2. Let p=2. After an automorphism of P!, one can suppose that p;(z) =22 +x+1 and
p2(z) = (x —1)(x —a) for some a € Fy. Then hy(x) = p;(x) and ha(z) = pa(x), so Ay =1
and Ay = —(a+1). The determinant of the matrix of C is a+ 1. If Y has 2-rank 0,
then this determinant is zero, so a =1 mod 2. Then po(x) is not square-free, so Y is
singular. 0

Elkin provides similar formulas for any prime degree £ and inertia type 7; unfortunately,
this does not provide a viable way to study the p-rank strata when g > 2 and p is large for
any ¢, because the equations are algebraically complicated.
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7.2 Possibility of components fully contained in the boundary

Here is an important fact about the p-rank stratification of the hyperelliptic locus. When
p is odd, the generic geometric point of each irreducible component of ﬁg represents a
smooth hyperelliptic curve, by [5, Lem. 3.1].

The analogue of this fact is not true in general for the trielliptic locus. For example, when
p =2, then every point of 77'(()171) represents a singular trielliptic curve by Lemma 7.1(2).
This is the key reason for the restriction that p is odd in Proposition 5.9 and Theorem 5.11.

We give some other examples where this type of problem may occur.

ExamMpPLE 7.2. Let p=2mod 3 be odd. Let r =s=2 and f = 0. Suppose S is an
irreducible component of 7(()272). By Proposition 5.5, dim(S) > 1.

Every component Sy of 772 0) has dimension 0, and every component Sy of 772 2) has
dimension 1. This means that A, [77’(()2’2)] contains a component /@1,3(51 x S5) of dimension 1.
In other words, there is a component S of 7'[(]2,2) which has one of the following two problems:
either dim(S) > 1 (bigger than expected) or the generic point of S is contained in the
boundary of 77‘?2’2).

The reason for the problem in Example 7.2 is that the pair (1,0) and (1,2) is not balanced,
as in Definition 6.1. The inductive step for producing smooth trielliptic curves of larger genus
and given p-rank works only when the pair of signatures is balanced.

More generally, the problem seen in Example 7.2 arises when p =2 mod 3 is odd if
r<s<2r—land f<2r—2and when p=2if 3<r <s<2r-—2.

EXAMPLE 7.3. Let p=1mod 3. Let r=s=2 and f = 1. Suppose S is an irreducible
component of 73272). By Proposition 5.5, dim(S) > 1.

Every component Sy of 7??71) has dimension 0, and every component Ss of 7;1171) has
dimension 1. This means that A, [77’22’2)] contains a component /{2,2(5”1 % S5) of dimension 1.
In other words, there is a component S of ’732,2) which has one of the following two problems:

either dim(S) > 1 (bigger than expected) or the generic point of § is contained in the
boundary of 77“2272).

7.3 The wild case p=3
We include the case of trielliptic covers when p = 3.

PROPOSITION 7.4. Suppose k =F3. Then there exists a Z/37-cover of Pi. having genus g
and 3-rank 0 if and only if g 2 mod 3. For g >2 and 1 <e < g/2, there exists a Z/3Z-cover
of P}, having genus g and 3-rank 2e.

Proof. Suppose ¢ :Y — Pi is a Z/3Z-cover. Then ¢ is given by an Artin-Schreier
equation of the form y3 —y = f(z) for some f(z) € k(). Suppose dive.(f(z)) = ijo d; P;
is the pole divisor of f(z). By Artin-Schreier theory, one can suppose that 31d; for each j.
Let e; =d; +1.

The Riemann-Hurwitz formula and the Deuring—Shafarevich formula imply that the
genus of Y is g =—2+3% je; and the 3-rank of Y is 2e [21, Lem. 2.6]. Consider the
3-rank f strata .Ag of the moduli space of genus g Artin-Schreier covers of P.. By [21, Th.
1.1], the irreducible components of Ag are in bijection with partitions ijo ej of g+2 such

that e; # 1 mod 3 and the dimension of the component is g —1 — 25:0 L%JJ
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Thus, when p = 3, there exists a Z/3Z-cover of P} having genus g and 3-rank 0 if and

only if g # 2 mod 3. By an inductive argument, one can show: for g > 2 and 1 <e < g/2,
there exists a partition Z;ZO ej of g+ 2 into r+1 positive integers such that e; 1 mod 3
and thus there exists a Z/3Z-cover of P} having genus g and 3-rank 2r. O
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