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THE BOUNDARY OF THE p-RANK 0 STRATUM OF THE MODULI

SPACE OF CYCLIC COVERS OF THE PROJECTIVE LINE

EKIN OZMAN , RACHEL PRIES and COLIN WEIR

Abstract. We study the p-rank stratification of the moduli space of cyclic

degree ! covers of the projective line in characteristic p for distinct primes p

and !. The main result is about the intersection of the p-rank 0 stratum with

the boundary of the moduli space of curves. When ! = 3 and p ≡ 2 mod 3

is an odd prime, we prove that there exists a smooth trielliptic curve in

characteristic p, for every genus g, signature type (r,s), and p-rank f satisfying

the clear necessary conditions.

§1. Introduction

Suppose Y is a smooth projective connected curve of genus g defined over an algebraically

closed field k of characteristic p > 0. The p-rank of Y is the integer f such that pf is the

number of p-torsion points of the Jacobian of Y. It is known that 0≤ f ≤ g.

Let g ≥ 2. Consider the moduli space Mg of smooth curves of genus g over k and its

Deligne–Mumford compactification Mg. Consider the boundary δMg =Mg−Mg of Mg;

its points represent singular stable curves of genus g.

It is a compelling problem to understand the geometry of the p-rank f stratum M
f

g of

Mg. For example, in most cases, it is not known whether M
f

g is irreducible.

It is known, by [10, Th. 2.3], that every irreducible component of M
f

g has dimension

2g− 3+ f . By [4, Lem. 3.2], every irreducible component of M
f

g contains an open dense

subset which lies in Mf
g . It follows that there exists a smooth curve of genus g and p-rank

f defined over Fp for every prime p and pair of integers g and f such that 0≤ f ≤ g.

The proof of [10, Th. 2.3] uses properties of the intersection of the p-rank strata with

the boundary. By [10, Lem. 2.5] (see also [4, Cor. 3.6]), every irreducible component S of

the p-rank 0 stratum M
0

g intersects δMg; specifically:

(i) S contains points that represent chains of g (supersingular) elliptic curves and

(ii) S intersects every irreducible component of δMg.

Analogously, for odd p, one can study the p-rank f stratum H
f

g of the moduli space

Hg of hyperelliptic curves of genus g. By [11, Prop. 2], every irreducible component of H
f

g

has dimension g−1+f . Every irreducible component of H
f

g contains an open dense subset

which lies in Hf
g [5, Lem. 3.2]. It follows that there exists a smooth hyperelliptic curve of

genus g and p-rank f defined over Fp for every odd prime p and pair of integers g and f

such that 0≤ f ≤ g.
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The proof of these facts for the hyperelliptic locus also uses the intersection of the p-rank

strata with the boundary δHg =Hg −Hg. Every irreducible component S of the p-rank 0

stratum H
0

g intersects δHg by [5, Th. 3.11]; specifically:

(i)’ S contains points that represent trees of g (supersingular) elliptic curves.

However, it is not known whether S intersects every irreducible component of δHg.

In this paper, for an odd prime " with " $= p, we study analogous questions about the

p-ranks of curves that admit a Z/"Z-cover of the projective line P1. Let T!,g denote the

moduli space of such Z/"Z-covers, and let T !,g denote its compactification. The irreducible

components of T!,g are indexed not only by the degree " and the genus g, but also by the

discrete data of the inertia type, which determines the signature type. In Proposition 4.1,

we compute a lower bound for the dimension of each irreducible component of the p-rank

strata of T!,g, in terms of the signature type.

The first topic we study is how the p-rank 0 stratum T
0

!,g of the moduli space

T !,g intersects the boundary δMg. The first main result of the paper is the following

theorem.

Theorem 1.1 [See Theorem 4.3]. Every irreducible component S of T
0

!,g contains a

point representing a curve of compact type which has at least dim(S)+1 components.

The geometric conclusion from Theorem 1.1 is not as strong as the analogous result in

the hyperelliptic case. This prevented us from using Theorem 1.1 to find the dimension of

the irreducible components of T f
!,g in general (see Remark 4.4 and §7.2).

For this reason, in §5, we specialize to the case " = 3. In Proposition 5.9, for all g ≥ 2

and all primes p ≥ 5, we generalize a result of Bouw by proving that every component of

the moduli space of trielliptic curves of genus g contains a curve whose p-rank is not the

maximum. Then we prove the following theorem.

Theorem 1.2 [See Theorem 5.11]. For every odd p ≡ 2 mod 3, every g ∈ N, every

trielliptic signature type (r,s) for g, and every f (satisfying the clear necessary conditions

that f is even and 0 ≤ f ≤ 2min(r,s)), there exists a smooth trielliptic curve defined over

Fp with genus g, signature type (r,s), and p-rank f; furthermore, the dimension of at least

one irreducible component of the p-rank f stratum of T3,g,(r,s) equals the lower bound from

Proposition 4.1.

In Corollary 6.4, we strengthen Theorem 1.2 when g is small for all odd primes p ≡

2 mod 3 using an application of Theorem 1.1.

§2. Background

In this section, we include necessary material about cyclic covers and the p-rank.

2.1 Stable Z/!Z-covers of a genus zero curve

Let k be an algebraically closed field of characteristic p > 0, and let S be an irreducible

scheme over k. Let G= Z/"Z be a cyclic group of odd prime order " $= p. Let G∗ =G−{0}.

Let ψ : Y → S be a semi-stable curve. If s ∈ S, let Ys denote the fiber of Y over s. Let

SingS(Y ) be the set of z ∈ Y for which z is a singular point of the fiber Yψ(z).

A mark RΞ on Y/S is a closed subscheme of Y −SingS(Y ) which is finite and étale over

S. The degree of RΞ is the number of points in any geometric fiber of RΞ → S. A marked

semi-stable curve (Y/S,RΞ) is stably marked if every geometric fiber of Y satisfies the
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following condition: for each irreducible component Y0 of genus zero, #(Y0 ∩ (SingS(Y )∪

RΞ)) ≥ 3. (If the fibers of Y/S have genus 1, we also assume that the degree of RΞ is

positive.)

Consider a G-action ι0 : G ↪→ AutS(Y ) on Y. Let R denote the ramification locus of

Y → Y/ι0(G). The smooth ramification locus is Rsm := R− (R∩SingS(Y )). We say that

(Y/S, ι0) is a stable G-curve if Y/S is a semi-stable curve, if ι0 :G ↪→AutS(Y ) is an action

of G, if Rsm is a mark on Y/S, and if (Y/S,Rsm) is stably marked.

If z ∈ SingS(Y ), let Yz,1 and Yz,2 denote the two components of the formal completion of

Yψ(z) at z. A stable G-curve (Y/S, ι0) is admissible if the following conditions are satisfied

for every geometric point z ∈R∩SingS(Y ):

1. ι0(1) stabilizes each branch Yz,i;

2. z is a ramification point of the restriction of ι0 to Yz,i; and

3. the characters of the action of ι0 on the tangent spaces of Yz,1 and Yz,2 at z are

inverses.

Suppose that (Y/S, ι0) is an admissible stable G-curve. Then Y/ι0(G) is also a stably

marked curve [8, Prop. 1.4]. The mark on Y/ι0(G) is the smooth branch locus Bsm, which

is the (reduced subscheme of) the image of Rsm under the morphism Y → Y/ι0(G). Let n

be the degree of Rsm (the number of smooth ramification points). We suppose from now

on that Y/ι0(G) has arithmetic genus 0. By the Riemann–Hurwitz formula, the arithmetic

genus of each fiber of Y is

g = (n−2)("−1)/2. (1)

2.2 The inertia type and signature type

Let s be a geometric point of S, and let a be a point of the fiber Rsm,s. Then G= Z/"Z

acts on the tangent space of Ys at a via a character χa : G → k∗. In particular, there

is a unique choice of γa ∈ (Z/"Z)∗ so that χa(1) = ζ
γa

! . We say that γa is the canonical

generator of inertia at a. The inertia type of (Y/S, ι0) is the multiset γ = {γa | a ∈Rsm,s}.

It is independent of the choice of s. By Riemann’s existence theorem, there exists a

cover (Y, ι0) with inertia type {γa | a ∈ Rsm,s} if and only if
∑

a∈Rsm,s
γa = 0 ∈ Z/"Z

[24, Th. 2.13].

A labeling of a mark RΞ of degree n is a bijection η between {1, . . . ,n} and the irreducible

components of RΞ. A labeling of an admissible stable G-curve (Y/S, ι0) is a labeling η of

Rsm. There is an induced labeling η0 : {1, . . . ,n}→Bsm.

If (Y/S, ι0,η) is a labeled G-curve, the class vector is the map of sets γ : {1, . . . ,n}→G∗

such that γ(i) = γη(i). We write γ = (γ(1), . . . ,γ(n)). If γ is a class vector, we denote its

inertia type by γ :G∗ → Z≥0 where γ(h) = #{i | 1≤ i≤ n, γ(i) = h} for all h ∈G∗.

Let ζ! ∈ k be a primitive "th root of unity. The automorphism ι0(1) induces an action

on H0(Ys,Ω
1). Let Li be the ζi!-eigenspace of H0(Ys,Ω

1), for 0 ≤ i ≤ "− 1. There is an

eigenspace decomposition:

H0(Ys,Ω
1) =⊕!−1

i=0 Li.

Let si = dim(Li). Then L0 = {0} and s0 = 0 since Y/ι0(G) has genus 0. The signature type

is (s1, . . . , s!−1). It is locally constant on S. For an integer t, let 〈 t
!
〉 = t

!
−- t

!
. denote the

fractional part of t
!
.
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Lemma 2.1. For 1≤ i≤ "−1,

si =−1+
n∑

j=1

〈
−iaj
"

〉.

Proof. This can be found in [19, Lem. 2.7, §3.2], or deduced from earlier results [7, Lem.

4.3] (the negative sign does not appear for the action on O) or [13, Prop. 1].

2.3 Restrictions on the p-rank

Let µp be the kernel of Frobenius on Gm. The p-rank of a semi-abelian variety A′ over k

is fA′ = dimFp
Hom(µp,A

′). If A′ is an extension of an abelian variety A by a torus T, then

fA′ = fA+rank(T ).

For an abelian variety A, the p-rank can also be defined as the integer fA such that the

number of p-torsion points in A(k) is pfA . If A has dimension gA, then 0 ≤ fA ≤ gA. The

p-rank of a stable curve Y is that of Pic0(Y ).

Recall that " $= p is prime. Let e be the order of p in the multiplicative group (Z/"Z)×.

Lemma 2.2. Suppose that Y → P1
k is a Z/"Z-cover. Let f be the p-rank of Y.

1. Then f is divisible by e, the order of p modulo ".

2. If "> 3 or if "= 3 and p≡ 1 mod 3, then f $= g−1.

Proof. The action of Z/"Z on Y induces an action of ζ! on J =Jac(Y ) and its p-divisible

group J [p∞]. So Z[ζ!] ↪→ End(J [p∞]). If (c,d) is a pair of relatively prime nonnegative

integers, and λ= d/(c+d), let Gλ denote a p-divisible group of codimension c, dimension

d, and thus height c+d. By [18], the Dieudonné–Manin classification, there is an isogeny

of p-divisible groups J [p∞]∼⊕λG
m(λ)
λ . The action of ζ! stabilizes every slope factor G

m(λ)
λ

of J [p∞]. Hence, Z[ζ!] ↪→ End(G
m(λ)
λ ). If m(λ) > 0, this yields an inclusion Q(ζ!)⊗Qp ↪→

Matm(λ)(Dλ) where Dλ is the Qp-division algebra with Brauer invariant λ ∈Q/Z.

1. If λ= 0, then m(λ) = f . Let Lp be the completion of L=Q(ζ!) at a prime lying above

p. Then [Lp :Qp] = e divides m(λ).

2. Suppose f = g− 1. Then the slope 1/2 factor of J [p∞] is the p-divisible group of a

supersingular elliptic curve. So Q(ζ!) ⊂ E where E is the endomorphism algebra of a

supersingular elliptic curve. Then E is a quaternion algebra ramified exactly at ∞,p.

The only number fields contained in E are quadratic fields inert or ramified at p. This

gives a contradiction if "> 3 or if "= 3 and p≡ 1 mod 3.

The p-rank of Y equals the stable rank of the Cartier operator C. If ω ∈H0(Y,Ω1), then

C(ζpi! ω) = ζi!C(ω). Then C(Li) ⊂ Lσ(i) where σ is the permutation of Z/"Z− {0} which

sends i to p−1i. The cycle structure of σ is determined by the splitting of p in Z[ζ!]. Recall

that e is the order of p modulo ". There are ("− 1)/e primes of Z[ζ!] lying over p with

residual degree e. Each orbit of C on {Li} has cardinality e. Let O denote the set of orbits.

The contribution to the p-rank from each of the e eigenspaces in an orbit o ∈O is bounded

by the minimum of si = dim(Li) for Li in o.

Bouw used these ideas to find an upper bound on the p-rank, which depends only on p,

", and the inertia type γ; it is

B(γ) :=
∑

o∈O

e ·min{si | Li ∈ o}. (2)
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Theorem 2.3 (Bouw). The integer B(γ) is an upper bound for the p-rank of a Z/"Z-

cover of P1 with inertia type γ [7, p. 300, (1)]. This upper bound B(γ) occurs as the p-rank

of a Z/"Z-cover of P1 with inertia type γ if p≥ "(n−3) [7, Th. 6.1], or if p=±1 mod " [7,

Props. 7.4 and 7.8], or if n= 4 [7, Prop. 7.7].

§3. The moduli space of Z/!Z-covers and its boundary

In this section, we introduce the material needed to study p-ranks of cyclic covers from

a moduli-theoretic approach. Recall that G= Z/"Z.

3.1 Moduli spaces of stable Z/!Z-covers

We define moduli functors on the category of schemes over k whose S -points represent

the listed objects:

1. T !,g: admissible stable G-curves (Y/S, ι0) with Y/S of genus g.

2. T̃!,g: (Y/S, ι0) as above, together with a labeling η of the smooth ramification locus.

3. T̃!,g;t: (Y/S, ι,η) as above, together with a mark RΞ of degree t such that (Y/S,RΞ) is

stably marked.

Let T!,g ⊂ T !,g be the sublocus representing smooth G-curves.

Let γ : {1, . . . ,n}→ (Z/"Z)∗ be a class vector of length n = n(γ). By (1), γ determines

the genus g = g(γ) = (n−2)("−1)/2. Let T̃!,γ ⊂ T̃!,g be the substack for which (Y/S, ι0,η)

has class vector γ. Let T !,γ ⊂ T !,g be the substack for which (Y/S, ι0) has inertia type γ.

If two class vectors γ and γ′ yield the same inertia type, so that γ = γ′, then there is

a permutation - of {1, . . . ,n} such that γ′ = γ ◦-. This relabeling of the branch locus

yields an isomorphism T̃!,γ 4 T̃!,γ◦'. Suppose γ and γ′ differ by an automorphism of G, so

that there exists τ ∈Aut(G) such that γ′ = τ ◦γ. This relabeling of the G-action yields an

isomorphism T̃!,γ 4 T̃!,τ◦γ .

Lemma 3.1. 1. T̃!,g and T !,g are smooth, proper Deligne–Mumford stacks over k.

2. T!,g is open and dense in T !,g.

3. The forgetful functor T̃!,γ → T !,γ is étale and Galois.

4. T !,γ is an irreducible component of T !,g.

5. The dimension of T!,γ is n−3.

Proof. See [3, Lems. 2.2–2.4].

3.2 Clutching maps

We review the clutching maps κg1,g2 and λg1,g2 of [15]. Each of these is the restriction

of a finite, unramified morphism between moduli spaces of labeled curves. They can be

described in terms of their images on S -points for an arbitrary k -scheme S. We give explicit

descriptions only for sufficiently general S -points and defer to [15] for complete definitions.

A stable curve Y has compact type if its dual graph is a tree or, equivalently, if Pic0(Y ) is

represented by an abelian scheme.

For i= 1,2, let γi denote a class vector with length ni = ni(γi) and let gi = g(γi).

3.2.1. Clutching maps (compact type)

There is a closed immersion [15, Cor. 3.9]

κg1,g2 :Mg1;t1 ×Mg2;t2 →Mg1+g2;t1+t2−2.
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This clutching map glues two curves Y1/S and Y2/S together to form a curve Y/S by

identifying the last section of Y1 and the first section of Y2 in an ordinary double point.

As seen in [3, §2.3], the clutching map extends to the moduli space of labeled Z/"Z-curves

as follows. Let g = g1+g2 and n= n1+n2−2 and

γ = (γ1(1), . . . ,γ1(n1−1),γ2(2), . . . ,γ2(n2)).

If (Yi/S, ι0,i,ηi) is a labeled G-curve with class vector γi, for i=1,2, then the clutched curve

Y/S has genus g and admits a G-action ι0 and a labeling η with class vector γ. Moreover,

Y/S can be deformed to a smooth G-curve if and only if the G-action is admissible, that

is, if and only if γ1(n1) and γ2(1) are inverses [8, Prop. 2.2]. In this situation, we write

κg1,g2 : T̃!,γ1
× T̃!,γ2

→ T̃!,γ .

By [6, Ex. 9.2.8], Pic0(Y )4 Pic0(Y1)×Pic0(Y2). In particular, the p-rank of Y is

f(Y ) = f(Y1)+f(Y2). (3)

The signature type of (Y/S, ι0) is the sum of those for (Yi/S, ι0,i).

For 1 ≤ g1 ≤ g− 1, let ∆g1 [T !,γ ] be the image of κg1,g2 in T !,γ , where g2 = g− g1 and

(γ1,γ2) ranges over the appropriate admissible pairs of class vectors.

3.2.2. Clutching maps (non-compact type)

In this case, let g = g1+g2+("−1) and n= n1+n2 and γ = (γ1(1), . . . ,γ1(n1),γ2(1), . . . ,

γ2(n2)). The other clutching maps are

λg1,g2 : T !,γ1;1×T !,γ2;1 → T !,γ .

To define λg1,g2 , consider a Z/"Z-curve (Yi/S, ι0,i) with a mark Pi, for i = 1,2. One can

glue these curves together to form a curve Y/S by identifying the orbits of P1 and P2 in "

ordinary double points. (Specifically, identify ι0,1(g)(P1) and ι0,2(g)(P2) for g ∈ G.) Then

Y/S admits a G-action ι0 and has inertia type γ.

Since Y1 and Y2 intersect in more than one point, the curve Y/S has non-compact type.

By [6, Ex. 9.2.8], Pic0(Y ) is an extension

0→ Z → Pic0(Y )→ Pic0(Y1)×Pic0(Y2)→ 0,

where Z is an ("−1)-dimensional torus. Thus, Y has genus g and the p-rank of Y is

f(Y ) = f(Y1)+f(Y2)+("−1). (4)

There is an action of Z/"Z on Z, and each of the nontrivial eigenspaces has dimension 1;

we define the signature type of Z to be (1, . . . ,1). The signature type of (Y/S, ι) is the sum

of those for (Yi/S, ι0,i) and Z.

For 0 ≤ g1 ≤ g− ("− 1), let Ξg1 [T !,g] ⊂ T !,g be the image of λg1,g2 , where g2 = g− g1−

("− 1) and (γ1,γ2) ranges over the appropriate pairs of class vectors. Let ∆0[T !,g] be the

union of Ξg1 [T !,g] for 0≤ g1 ≤ g−("−1). Then ∆0[T !,g] is the set of moduli points of stable

Z/"Z-curves of genus g which are not of compact type.
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3.3 Components and dimension of the boundary

The boundary of T !,g is δT!,g = T !,g−T!,g. If g≥ 2, then δT!,g is the union of∆i =∆i[T !,g]

for 1≤ i≤ g−1 and Ξi = Ξi[T !,g] for 0≤ i≤ g− ("−1), some of which may be empty. Note

that ∆i and ∆g−i (resp. Ξi and Ξg−i−(!−1)) are the same substack of T !,g.

If S is a stack with a map S → T !,g, let ∆i[S] = S×
T !,g

∆i[T !,g]. So, ∆i[T̃!,g] = T̃!,g×T !,g

∆i. Similar notation is used for Ξi.

Lemma 3.2. Every irreducible component of ∂T !,g has dimension dim(T!,g)−1.

Proof. Let W be an irreducible component of δT!,g. There is an inertia type γ such

that W is either a component of (i) ∆i[T!,γ ] for some 0≤ i≤ g−1 or (ii) Ξi[T!,γ ] for some

0≤ i≤ g− ("−1). By Lemma 3.1(5), it suffices to show that dim(W ) = n−4.

Case (i): In this case, a generic point of W is the moduli point of a singular curve Y

with two irreducible components Y1 and Y2 intersecting in one ordinary double point y. Let

γi be the inertia type of the restriction of the Z/"Z-action to Yi, and let ni = n(γi). Then

n1+n2−2 = n since y is a ramification point for the two restrictions. So

dim(W ) = dim(T!,γ1
)+dim(T!,γ2

) = (n1−3)+(n2−3) = n1+n2−6 = n−4.

Case (ii): In this case, a generic point of W is the moduli point of a singular curve Y

with two irreducible components Y1 and Y2, of genera i and g− i−("−1) intersecting at one

unramified Z/"Z-orbit. Let γi be the inertia type of the restriction of the Z/"Z-action to

Yi, and let ni = n(γi). Then n1+n2 = n. There is a one-dimensional choice of an unramified

orbit on each of Y1 and Y2. So,

dim(W ) = dim(T!,γ1
)+1+dim(T!,γ2

)+1 = (n1−3)+(n2−3)+2 = n−4.

The next result is used to find an upper bound on the dimension of the p-rank strata.

Proposition 3.3. If S ⊂ T !,g has the property that S intersects ∆i, then

dim(S)≤ dim(∆i[S])+1.

Proof. A smooth proper stack has the same intersection-theoretic properties as a smooth

proper scheme [23, p. 614]. In particular, if two closed substacks of T g intersect, then the

codimension of their intersection is at most the sum of their codimensions. Now, ∆i[T !,g]

is a closed substack of T !,g. It suffices to consider the case that S is closed. Thus,

codim(∆i[S],T !,g)≤ codim(∆i,T !,g)+codim(S,T !,g).

The result follows from Lemma 3.2 since codim(∆i,T !,g) = 1.

3.4 The p-rank stratification

If A is a semi-abelian scheme over a Deligne–Mumford stack S, then there is a

stratification S = ∪Sf by locally closed reduced substacks such that s ∈ Sf (k) if and only

if f(As) = f [14, Th. 2.3.1] (see also [4, Lem. 2.1]). For example, T f
!,g is the locally closed

reduced substack of T!,g whose points represent smooth Z/"Z-curves of genus g with p-

rank f.

We use the following notation for the p-rank f stratum of the boundary: ∆i[T !,g]
f :=

(∆i[T !,g])
f . These strata are easy to describe using the clutching maps. First, if 1≤ i≤ g−1,

then (3) implies that ∆i[T !,g]
f is the union of the images of T̃ f1

!,i × T̃ f2
!,g−i under κi,g−i as
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(f1,f2) ranges over all pairs (satisfying Lemma 2.2) such that

0≤ f1 ≤ i, 0≤ f2 ≤ g− i, and f1+f2 = f.

Second, if f ≥ 2 and 0≤ i ≤ g− ("−1), then (4) implies that Ξi[T !,g]
f is the union of the

images of T
f1
!,i;1×T

f2
!,g−(!−1)−i;1 under λi,g−(!−1)−i as (f1,f2) ranges over all pairs (satisfying

Lemma 2.2) such that

0≤ f1 ≤ i, 0≤ f2 ≤ g− ("−1)− i, and f1+f2 = f − ("−1).

3.5 Shimura varieties

We briefly review some notation about Shimura varieties that we need in §§5.3 and 6.2.

We refer to [17, §3.3] for a longer explanation.

Notation 3.4. Let " be an odd prime. Consider an inertia type γ for ". It determines

the number of branch points n = n(γ) and the genus g = g(γ) as in (1) for a Z/"Z-cover

Y → P1 with inertia type γ. Furthermore, it determines the signature type of the cover as

in Lemma 2.1.

Recall that T !,γ is the moduli space of Z/"Z-covers Y → P1 with inertia type γ. By

Lemma 3.1, T !,γ is irreducible and has dimension n(γ)−3.

Notation 3.5. Let Ag be the moduli space of principally polarized abelian varieties of

dimension g. Consider the image of T !,γ in Ag. Let Zγ = Z(",n,γ) be the closure of this

image; its points represent Jacobians of curves (smooth or of compact type) that admit a

Z/"Z-cover of P1 with inertia type γ.

Attached to the data of " and the signature type, there is a PEL-type Shimura variety

Sh. Let Σγ = Σ(",n,γ) be the irreducible component of Sh that contains Zγ .

§4. Intersection of the p-rank 0 stratum with the boundary

In this section, we study the geometry of the p-rank stratification on the moduli space

of cyclic degree " covers of the projective line.

Recall that p is a prime such that p $= " and e is the order of p modulo ". The formula

for the upper bound B(γ) for the p-rank of a cover with inertia type γ is in (2). Let f be a

multiple of e such that 0≤ f < B(γ). Define ε= 1 if p≡ 1 mod " and ε= 0 otherwise.

We first give a lower bound on the dimension of the p-rank strata.

Proposition 4.1. Suppose the p-rank f stratum T
f

!,γ is non-empty, and let S be an

irreducible component of it. Then

dim(S)≥ dim(T !,γ)− (B(γ)−f)/e+ ε. (5)

Proof. The p-ranks which occur on T !,γ are multiples of e by Lemma 2.2 and are at

most B(γ) by Theorem 2.3. Furthermore, if p≡ 1 mod ", then e=1 and f $= g−1=B(γ)−1

by Lemma 2.2. So the number of integers f ′ such that f < f ′ ≤B(γ) which can occur as the

p-ranks for points of T !,γ is at most (B(γ)−f)/e+ ε. The statement is then an immediate

application of the purity result of Oort [20, Lem. 1.6] which states that if the p-rank changes,

then it does so on a subspace of codimension 1.

Remark 4.2. For "≥ 5, the lower bound on the right-hand side of (5) is positive only

when f is large relative to g. For example, if "= 5 and p≡ 1 mod 5, then it is −g/2+f .



THE p-RANK 0 STRATUM OF THE MODULI SPACE OF CYCLIC COVERS 9

In the next result, assuming that the p-rank 0 stratum T
0

!,γ is non-empty, we show

that it intersects the boundary deeply (in the sense that the intersection contains points

corresponding to reducible curves with many components).

Theorem 4.3. Suppose S is an irreducible component of the p-rank 0 stratum T
0

!,γ

of T !,γ. Let σ = dim(S). Then there exists η ∈ S such that the curve Yη of compact type

represented by η is reducible, with at least σ+1 components, such that the Z/"Z-action

stabilizes and acts nontrivially on each component.

Before proving this theorem, we explain its significance.

Remark 4.4. 1. Recall that σ≥ dim(T !,γ)−B(γ)/e+ε by Proposition 4.1. So, for each

irreducible component of the p-rank 0 stratum, Theorem 4.3 guarantees the existence

of a point representing a curve that is reducible, with many components. The existence

of a degenerate point of this type can be helpful for studying the p-rank 0 strata. We

illustrate this with several applications in §6.2.

2. Theorem 4.3 is a generalization of [5, Th. 3.11(c)], which is the case " = 2. Suppose

"= 2 and g ≥ 2, in which case there is a unique inertia type γ for hyperelliptic curves of

genus g. In this case, Theorem 4.3 applies to an irreducible component S of the p-rank

0 stratum of the locus of hyperelliptic curves of genus g. By [11, Prop. 2], σ = dim(S) =

g− 1. So Theorem 4.3 shows that S contains a point representing a curve that has g

components (each of which has genus 1 and is thus a supersingular elliptic curve); this

is the conclusion of [5, Th. 3.11(c)].

3. In contrast, when " is odd, then usually σ < g− 1. Thus, Theorem 4.3 does not imply

that T
0

!,γ contains a point representing a reducible curve with g components. This makes

it harder to study the case when " is odd.

4. It is not possible to prove Theorem 4.3 using results on the boundary of the moduli

space of n-marked curves of genus 0. The reason is that the relationship between the

p-rank and the location of the branch points is extremely complicated. As an example

of this, see the case that "= 3 and g = 2 studied in Lemma 7.1. In other words, it is not

clear how to maintain the p-rank 0 condition when deforming the curve by moving the

branch points.

Proof. (Proof of Theorem 4.3). The proof is by induction on the number of branch

points n = n(γ). This is equivalent to induction on the genus g = g(γ), because g = (n−

2)("−1)/2. For the base case, when n= 3 and g = ("−1)/2, the statement is vacuous since

T!,γ has dimension 0.

Suppose that the statement is true for all inertia types γ′ for which the genus g′ is less

than g. Let γ be an inertia type for which the genus is g, and let S be an irreducible

component of T
0

!,γ . When σ = 0, the statement is vacuous.

Suppose σ> 0. Since T!,γ is affine, S intersects a boundary component of T !,γ . The points

of S represent curves whose p-rank is 0, and hence (4) implies that S does not intersect ∆0.

Thus, S intersects ∆j for some 1≤ j ≤ g−1. A point of ∆j [S] represents a curve having at

least two components (which completes the proof when σ = 1).

By Proposition 3.3, dim(∆j [S])≥ σ−1. A point η0 of ∆j [S] is in the image of a clutching

morphism. Specifically, there is an admissible pair of inertia types γ1,γ2, and points ξi ∈

T̃!,γi
, for i= 1,2, such that η0 = κj,g−j(ξ1,ξ2). Since S is an irreducible component of T

0

!,γ ,

there is an irreducible component Γi of T̃!,γi
, for i= 1,2, such that κj,g−j(Γ1,Γ2)⊂∆j [S].
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Note that g(γi)< g. Let σi =dim(Γi). Then σ1+σ2 ≥ σ−1. By the inductive hypothesis,

for i=1,2, there exists ηi ∈Γi such that the curve Yηi
of compact type represented by ηi has

at least σi+1 components. Then κj,g−j(η1,η2)∈∆j [S] has at least (σ1+1)+(σ2+1)≥ σ+1

components.

§5. Trielliptic covers

In this section, we specialize to the case " = 3. Suppose p $= 3 is prime. We study the

p-ranks of trielliptic curves, which are Z/3Z-covers of P1. Suppose g ≥ 2 and (r,s) is a

signature type for g.

In Proposition 5.9, for all primes p ≥ 5, we prove that there exists a trielliptic curve

Y defined over Fp of genus g and signature (r,s) whose p-rank is smaller than the upper

bound B(r,s).

In Theorem 5.11, when p≡ 2 mod 3 is odd, we prove that every integer f satisfying the

necessary conditions from Lemma 2.2 occurs as the p-rank of a trielliptic curve Y defined

over Fp of genus g and signature (r,s); in addition, we prove that there is an irreducible

component of T f

g,(r,s) whose dimension equals the lower bound from Proposition 4.1.

5.1 Notation for trielliptic covers

Suppose (Y/S, ι0) is a smooth trielliptic curve. The Z/3Z-cover ψ : Y → P1 has an

equation of the form:

y3 =

d1∏

i=1

(x−αi)

d2∏

i=1

(x−βi)
2. (6)

Without loss of generality, we assume that ψ is not branched at ∞. The number of branch

points of ψ is n = d1+ d2 and the genus of Y is g = d1+ d2− 2. The inertia type of ψ is

γ = (1, . . . ,1︸ ︷︷ ︸
d1

,2, . . . ,2︸ ︷︷ ︸
d2

).

Lemma 5.1 [3, Lem. 2.7]. The set of inertia types γ for a trielliptic curve (Y/S, ι0) of

genus g is in bijection with {(d1,d2) | d1,d2 ∈ Z≥0, d1+d2 = g+2, d1+2d2 ≡ 0 mod 3}.

There is a Z/3Z-eigenspace decomposition H0(Y,Ω1
Y ) = L1⊕L2 where ω ∈ Li if ζ3 ◦ω =

ζi3ω. The signature type of (Y/S, ι0) is (r,s) where r = dim(L1) and s= dim(L2).

If (Y/S, ι0) is a trielliptic curve, then so is (Y/S, ι′0) where ι′0(1) = ι0(2). Replacing ι0
with ι′0 exchanges the values of d1 and d2 and the values of r and s.

Definition 5.2. A trielliptic signature for g ∈N is a pair (r,s) of integers with r+s= g,

and 0≤max{r,s}≤ 2min{r,s}+1.

The next result follows from Lemma 2.1

Lemma 5.3. There is a bijection between trielliptic signatures (r,s) for g and inertia

types of Z/3Z-Galois covers of P1 of genus g given by the formulae

d1 = 2r−s+1, d2 = 2s− r+1.

In other words, r = (2d1+d2−3)/3 and s= (d1+2d2−3)/3.

Example 5.4 (Signature (1,0), inertia type γ = (1,1,1)). There is a unique smooth

elliptic curve which is trielliptic. It has p-rank 0 when p ≡ 2 mod 3 and p-rank 1 when

p≡ 1 mod 3.
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Proof. By [22, Th. 10.1], an elliptic curve with automorphism of order 3 has j -invariant 0.

The result follows from [22, Exer. V.5.7 and Exam. V.4.4].

5.2 Components of the moduli space and maximal p-rank

Let (r,s) be a trielliptic signature for g. Let γ be the inertia type given by γ(i) = di where

di are as in Lemma 5.3. Let f be an integer 0≤ f ≤ g satisfying the conditions of Lemma

2.2, namely, f is even if p≡ 2 mod 3 and f $= g−1 if p≡ 1 mod 3.

Consider the moduli space T(r,s) = T3,γ of smooth trielliptic curves with signature (r,s)

and inertia type γ. For f as above, let T f

(r,s) denote the p-rank f stratum of T(r,s). Similarly,

define T
f

(r,s) by replacing the word smooth by stable.

The next result is a special case of Proposition 4.1.

Proposition 5.5. Suppose S is an irreducible component of T
f

(r,s). If p≡ 2 mod 3, then

dim(S)≥max{r,s}−1+f/2. If p≡ 1 mod 3 and f < g, then dim(S)≥ f .

We first consider the case of maximal p-rank. Define B(r,s) = g if p ≡ 1 mod 3 and

B(r,s) = 2min{r,s} if p ≡ 2 mod 3. By Theorem 2.3, the p-rank of a trielliptic curve of

signature (r,s) satisfies f ≤B(r,s).

Proposition 5.6 [Bouw]. If p $= 3, then there exists a smooth trielliptic curve with

signature (r,s) and p-rank fmax :=B(r,s). The p-rank fmax strata T fmax

(r,s) is open and dense

in T(r,s).

Proof. The first statement is a special case of [7, Props. 7.4 and 7.8]. The second

statement follows since T(r,s) is irreducible and the p-rank is lower semi-continuous.

5.3 Base cases

Moonen proved there are exactly 20 families of cyclic covers of P1 that are special, meaning

that the image of the family under the Torelli morphism is open and dense in the associated

unitary Shimura variety; these are listed as M [1]–M [20] in [19, Table 1]. In [17, §§4–6], the

authors computed the Newton polygons occurring on these families. In [17, Th. 5.11] and

[16, Th. 7.1], they proved that each of these Newton polygons occurs for the Jacobian of a

smooth curve in the family, except possibly the supersingular ones when p is small.

For trielliptic covers, there are three families that are special: M [3], M [6], and M [10].

Since the p-rank is an invariant of the Newton polygon, we can find the dimension of the

p-rank strata of these families. When the Newton polygon is supersingular (which happens

only when f = 0), we can remove the requirement that p >> 0 in all but one case.

The results below for the signature (r,s) are also true for the signature (s,r).

Lemma 5.7. 1. M [3] (Signature (1,1), inertia type γ = (1,1,2,2)).

If p≥ 5 and f = 0, then T 0
(1,1) is non-empty of dimension 0.

2. M [6] (Signature (2,1), inertia type γ = (1,1,1,1,2)).

If p≡ 1 mod 3 and f = 0,1, then T f

(1,2) is non-empty of dimension f.

If p≡ 2 mod 3 and f = 0, then T f

(1,2) is non-empty of dimension 1.

3. M [10] (Signature (3,1), inertia type γ = (1,1,1,1,1,1)).

If p≡ 1 mod 3 and f = 0,1,2, then T f

(1,3) is non-empty of dimension f (if p >> 0 when

f = 0).

If p≡ 2 mod 3 and f = 0, then T 0
(1,3) is non-empty of dimension 2.
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Proof. The Newton polygons for the curves in the family are listed on [17, p. 19].

1. When f = 0, then the Newton polygon of a curve in the family is supersingular. If

p ≡ 1 mod 3, the result follows from [17, Th. 5.11]. The main idea is that, because of

Example 5.4, a supersingular curve in the family must be smooth.

When p ≡ 2 mod 3 is odd, the result follows from Lemma 7.1 (or [16, Th. 7.1] when

p >> 0).

2. When p≡ 1 mod 3, the result follows from [17, Th. 5.11]; note that the Newton polygon

has slopes 1/3 and 2/3 when f = 0.

When p≡ 2 mod 3, the result follows from [16, Th. 7.1] when p>> 0. Here is an argument

that removes the hypothesis p >> 0. Let S be an irreducible component of the p-rank 0

locus T
0

(2,1). Then dim(S) = 1 because T (2,1) has dimension 2 and its generic geometric

point represents a curve with p-rank 2. The intersection of S with the boundary is

contained in κ1,2(T̃
0
(1,0)× T̃ 0

(1,1)), but that only has dimension 0, so the generic geometric

point of S represents a smooth curve.

3. When p≡ 1 mod 3, the result follows from [16, Th. 7.1]; we do not know how to remove

the hypothesis p >> 0 when f = 0.

When p≡ 2 mod 3, then T 0
(1,3) is non-empty of dimension 2 by [17, Th. 5.11].

For the family M [10], we consider the unitary Shimura variety Sh attached to the data

of "= 3 and the signature type (3,1). As in §3.5, let Σ be the irreducible component of Sh

which contains the Torelli locus.

Proposition 5.8. Suppose p ≡ 2 mod 3. For the family M [10], the p-rank 0 stratum

Σ
0 of Σ is irreducible and thus T 0

(1,3) is irreducible.

Proof. For each generic geometric point of Σ0, we consider the Newton polygon ν of the

abelian variety represented by this point. Applying the Kottwitz method (see [17, §4.3 and

table on p. 19]) shows that ν has slopes 1/4 and 3/4 when p≡ 2 mod 3; in particular, it is

not supersingular. The hypotheses of [1, Th. 1.1] are satisfied; the conclusion of that result

is that the stratum of Σ with Newton polygon ν is irreducible. Since this stratum is open

and dense in Σ
0, this implies that Σ0 is irreducible.

Since the family M [10] is special, the image of T(3,1) is open and dense in Σ. It follows

that T 0
(3,1) is open and dense in Σ

0. Thus, T 0
(3,1) is irreducible as well.

5.4 Trielliptic curves whose p-rank is not maximal

The next result extends Proposition 5.6 by showing, for each prime p≥ 5, that there exist

trielliptic curves of each signature type (r,s) whose p-rank is not the maximum B(r,s).

Recall that B(r,s) = 2min{r,s} when p≡ 2 mod 3 and B(r,s) = r+s when p≡ 1 mod 3.

Proposition 5.9. Let p ≥ 5 and g ≥ 2. Let (r,s) be a trielliptic signature for g.

Then T
B(r,s)−2
(r,s) is non-empty, and each of its irreducible components has dimension g− 2

(codimension 1 in T(r,s)). Thus, there exists a smooth trielliptic curve with signature (r,s)

and p-rank f =B(r,s)−2.

Proof. Recall that dim(T(r,s)) = g−1 and the generic geometric point of T(r,s) represents

a trielliptic curve with p-rank B(r,s) by Proposition 5.6. If T
B(r,s)−2
(r,s) is non-empty, then,

by definition, each of its generic geometric points represents a smooth trielliptic curve

with signature (r,s) and p-rank f = B(r,s)−2. Furthermore, if S is one of the irreducible
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components of T
B(r,s)−2
(r,s) , then dim(S) ≤ g− 2 and Proposition 5.5 implies that dim(S) ≥

g−2, so dim(S) = g−2.

It thus suffices to prove that T
B(r,s)−2
(r,s) is non-empty. Without loss of generality, suppose

r ≤ s. The proof is by induction on r.

If r = 1, then 1 ≤ s ≤ 3. If r = 1 and s = 1, then B(1,1)− 2 = 0 and the result follows

from Lemma 5.7(1) (deferred to Lemma 7.1(1) when p ≡ 2 mod 3). If r = 1 and s = 2,

then B(1,2)−2 = 1 when p≡ 1 mod 3 and B(1,2)−2 = 0 when p≡ 2 mod 3 and the result

follows from Lemma 5.7(2). If r = 1 and s= 3, then B(1,3)−2 = 2 when p≡ 1 mod 3 and

B(1,3)−2 = 0 when p≡ 2 mod 3, and the result follows from Lemma 5.7(3).

Now, suppose 2≤ r ≤ s.

Case 1: Suppose s ≤ 2r. Then (r− 1, s− 1) is a valid trielliptic signature. Note that

B(r− 1, s− 1) = B(r,s)− 2. Let S1 be an irreducible component of T 0
(1,1), which is non-

empty when p ≥ 5 by Lemma 5.7(1). Let S2 be an irreducible component of T
B(r−1,s−1)
(r−1,s−1) ,

which is non-empty by Proposition 5.6. Consider an irreducible component S̃1 of T̃
0
(1,1) lying

above S1 and an irreducible component S̃2 of T̃
B(r−1,s−1)
(r−1,s−1) lying above S2.

When (r,s) = (1,1), then d1 = d2 = 2 are both positive. Thus, without loss of generality,

we can choose S̃1 (the labeling of the ramification points) so that the clutching situation

below is admissible:

κ2,g−2 : S̃1× S̃2 → T
B(r,s)−2

(r,s) .

Let K = κ2,g−2(S̃1× S̃2). By construction, K is contained in ∆2[T
B(r,s)−2

(r,s) ].

LetW be an irreducible component of T
B(r,s)−2

(r,s) which contains K. By the same reasoning

as the first paragraph of the proof, dim(W ) = g−2. On the other hand, since dim(S̃1) = 0

and dim(T̃(r−1,s−1)) = g−3, it follows that

dim(K) = dim(S̃1)+dim(T̃(r−1,s−1)) = g−3.

Thus, the generic point of W is not contained in K.

By construction, the generic point of S1 represents a smooth curve. The generic point of

T
B(r−1,s−1)

(r−1,s−1) represents a smooth curve by Proposition 5.6 and Lemma 3.2. So the generic

point of W is not contained in any other boundary component. Thus, the generic point of

W represents a smooth curve and T
B(r,s)−2
(r,s) is non-empty, with irreducible components of

dimension g−2.

Case 2: Suppose s= 2r+1. Then (r−1, s−2) is a valid trielliptic signature. Note that

B(r−1, s−2) = 2(r−1) when p≡ 2 mod 3 and B(r−1, s−2) = g−3 when p≡ 1 mod 3. Let

f ′ =0 when p≡ 2 mod 3 and f ′ =1 when p≡ 1 mod 3. Then f ′+B(r−1, s−2)=B(r,s)−2.

Let S1 be an irreducible component of T f ′

(1,2), which is non-empty by Lemma 5.7(2). Let

S2 be an irreducible component of T
B(r−1,s−2)
(r−1,s−2) , which is non-empty by Proposition 5.6.

When (r,s) = (1,2), then d1 = 1 and d2 = 4, which are both positive. We repeat the

argument above, making an admissible clutching of the following form:

κ3,g−3 : S̃1× S̃2 → T
B(r,s)−2

(r,s) .

The rest of the proof is the same.
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Remark 5.10. When p = 2, then T 0
(1,1) is empty, as shown in Lemma 7.1(2). When

p = 2, it is still true that T
0

(1,1) is non-empty (of dimension 0); the same proof as for

Proposition 5.9 shows that T
B(r,s)−2

(r,s) is non-empty and each of its irreducible components

has dimension g−2 (codimension 1 in T (r,s)), but it is not clear whether any of its points

represents a smooth curve.

The case when p= 3 is described in Proposition 7.4.

5.5 Existence of trielliptic curves with given p-rank

In this section, suppose p ≡ 2 mod 3. In this case, the necessary conditions on the p-

rank are that f is even and 0 ≤ f ≤ 2min(r,s). For every signature type and for all odd

p≡ 2 mod 3, we prove that every p-rank f satisfying the necessary conditions occurs for a

smooth trielliptic curve of that signature in characteristic p. If S is an irreducible component

of T
f

(r,s), recall from Proposition 5.5 that dim(S)≥max{r,s}−1+f/2.

Theorem 5.11. Let p≡ 2 mod 3 be odd, and let g≥ 2. Let (r,s) be a trielliptic signature

for g. Suppose 0 ≤ f ≤ 2min{r,s} is even. Then there exists a smooth trielliptic curve of

genus g defined over Fp with signature type (r,s) and p-rank f. More generally, T f

(r,s) is non-

empty and contains an irreducible component S = Sf

(r,s) with dim(S) =max{r,s}−1+f/2.

Proof. The first statement about the existence of the trielliptic curve with signature

type (r,s) and p-rank f is equivalent to the statement that T f

(r,s) is non-empty.

To prove this, without loss of generality, suppose r ≤ s. The proof is by induction on r,

with the result being true for r = 1 by Proposition 5.6 when f = 2 and Lemma 5.7 when

f = 0. Suppose the result is true for all trielliptic signatures (r1, s1) with 1≤ r1 < r.

Let (r2, s2) be either (i) (1,2) or (ii) (1,1), with choice (i) mandated if s = 2r+1 and

choice (ii) mandated if s= r. Let g2 = r2+s2. Let r1 = r−r2 and s1 = s−s2, and g1 = r1+s1.

Note that (r1, s1) is a trielliptic signature for g1 and r1 ≤ s1.

By the hypothesis, 0 ≤ f ≤ 2r is even. Let f2 be either (a) 2 or (b) 0, with choice (a)

mandated if f = 2r and choice (b) mandated if f = 0. Let f1 = f − f2. Then 0 ≤ f1 ≤ 2r1
and f1 is even.

It follows that T fi
(ri,si)

is non-empty and contains an irreducible component Si with

dim(Si) = si− 1+ fi/2 (by the inductive hypothesis when i = 1, Propositions 5.6 and 5.9

when i = 2). One can add a labeling of the smooth ramification points by choosing an

irreducible component S̃i of T̃(ri,si) above Si.

By construction, K = κg1,g2(S̃1× S̃2) is contained in T
f

(r,s) and

dim(K) = dim(S1)+dim(S2) = s−2+f/2.

Then K is contained in a component W of T
f

(r,s). By Proposition 5.5, dim(W )≥ s−1+f/2.

By Proposition 3.3, dim(W )≤ s−1+f/2. Thus, dim(W ) = s−1+f/2.

Finally, the generic point of W is not contained in K. Since the generic points of S1 and

S2 represent smooth curves (this requires the hypothesis p $= 2 for case (ii)), the generic

point of W is not contained in any other boundary component. Thus, the generic point of

W represents a smooth curve. It follows that S =W ∩T f

(r,s) is open and dense in W and

thus is non-empty with dimension s−1+f/2.
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Remark 5.12. When p≡ 1 mod 3, we were not able to prove an analogue of Theorem

5.11. Then main reason is that if f < g and if S is an irreducible component of T
f

(r,s), then

Proposition 5.5 states that dim(S) ≥ f . When f = 0, the expected dimension is 0, which

makes it difficult to work with the p-rank 0 stratum inductively.

§6. Cases where all p-rank 0 strata have the same dimension

Suppose p ≡ 2 mod 3 is odd. Let g ≥ 2. Let (r,s) be a trielliptic signature for g. Let f

be an even integer such that 0≤ f ≤ 2min{r,s}. If S is an irreducible component of T f

(r,s),

then dim(S)≥max{r,s}−1+f/2 by Proposition 5.5.

We proved in Theorem 5.11 that T f

(r,s) is non-empty and contains an irreducible

component with dim(S) = max{r,s}− 1+ f/2. Motivated by a result in the hyperelliptic

case [11, Prop. 2], we tried to prove that every component of T f

(r,s) has the same dimension.

This is true when min{r,s}= 1 by Lemma 5.7. In this section, we prove it is also true when

min{r,s}= 2 (see Corollary 6.4).

Here are some of the reasons the trielliptic case is more difficult than the hyperelliptic

case. First, it is possible that there are components of T
f

r,s that are fully contained in the

boundary. This does not happen in the hyperelliptic case by [5, Lem. 3.2]. We describe this

in §7.2.

Second, in the hyperelliptic case, every irreducible component of the p-rank 0 stratum

H
0

g contains the moduli point of a tree of g (supersingular) elliptic curves [5, Th. 3.11(c)].

The analogous result in the trielliptic case is weaker. By Theorem 4.3, every irreducible

component of T
0

(r,s) contains the moduli point of a tree of max{r,s} trielliptic curves, but

max{r,s} is strictly less than g.

6.1 Balanced degenerations

In this section, we introduce balanced degenerations which are helpful for finding an

upper bound for the dimension of irreducible components. The reason for the balanced

condition is that B(r,s) is not additive in general. When p ≡ 2 mod 3 and r ≤ s, then

B(r,s) =B(r1, s1)+B(r2, s2) if and only if r1 ≤ s1 and r2 ≤ s2.

Definition 6.1. Let S be an irreducible component of T
f

(r,s) with r ≤ s. We say S

degenerates to ∆((r1, s1)
f1 ,(r2, s2)

f2) if S intersects κ(T̃ f1
(r1,s1)

× T̃ f2
(r2,s2)

).

We say the degeneration is balanced if r1 ≤ s1 and r2 ≤ s2.

In Definition 6.1, we implicitly require that (r1, s1) and (r2, s2) are trielliptic signatures,

that r1+ r2 = r and s1+s2 = s, that fi are even with 0≤ fi ≤ 2ri, and that f1+f2 ≤ f .

Proposition 6.2. Suppose S has a balanced degeneration to ∆((r1, s1)
f1 ,(r2, s2)

f2).

Suppose, for i= 1,2, that

dim(T̃ fi
(ri,si)

) = dim(T
fi
(ri,si)) = si−1+fi/2. (7)

Then dim(S) = s− 1+ f/2 and S contains κ(S1 ×S2), where Si denotes a component of

T̃ fi
(ri,si)

for i= 1,2.

Proof. By Theorem 5.5, dim(S)≥ s−1+f/2. By Proposition 3.3,

dim(S)≤ dim(T̃ f1
(r1,s1)

)+dim(T̃ f2
(r2,s2)

)+1.
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Since the degeneration is balanced, ri ≤ si. By hypothesis,

dim(T̃ fi
(ri,si)

) = dim(T
fi
(ri,si)) = si−1+fi/2.

So,

dim(S)≤ (s1−1+f1/2)+(s2−1+f2/2)+1≤ s−1+f/2.

Thus, dim(S) = s−1+f/2. Furthermore, S contains κ(S1×S2) in order for equality to

hold in the dimension count.

There is an analogous result for the other boundary components, which we do not need

in this paper. In this case, we say S degenerates to Ξ((r1, s1)
f1 ,(r2, s2)

f2) if S intersects

λ(T
f1
(r1,s1);1 × T̃ f2

(r2,s2);1
). In this case, we allow (r1, s1) = (0,0) to be a valid trielliptic

signature, and require that r1+ r2 = r−1 and s1+s2 = s−1, and f1+f2 ≤ f −2.

Proposition 6.3. Suppose S has a balanced degeneration to Ξ((r1, s1)
f1 ,(r2, s2)

f2). For

i = 1,2, suppose (7) is true. Then dim(S) = s− 1+ f/2 and S contains λ(S1×S2), where

Si denotes a component of T
fi
(ri,si);1 for i= 1,2.

Proof. The proof is almost the same as for Proposition 6.2. For a Ξ-degeneration, recall

that s1 + s2 = s− 1, r1 + r2 = r− 1, and f1 + f2 ≤ f − 2. Marking an orbit increases the

dimension by 1, so dim(T
f1
(r1,s1);1) = si+fi/2. Then

dim(S)≤ dim(T
f1
(r1,s1);1)+dim(T

f2
(r2,s2);1)+1,

so

dim(S)≤ (s1+f1/2)+(s2+f2/2)+1≤ s−1+f/2.

6.2 A partial generalization of Proposition 5.9

When f = B(r,s)− 2, then the p-rank f stratum has codimension 1 in T(r,s), by

Proposition 5.9. When p ≡ 2 mod 3 is odd, by Theorem 5.11, T f

(r,s) is non-empty for each

0≤ f ≤ 2min{r,s} with f even.

When p ≡ 2 mod 3 is odd, we would like to generalize Proposition 5.9 by showing that

every component of the p-rank f = B(r,s)− 4 stratum has codimension 2 in T(r,s). One

reason this is hard to show is because it is not known whether the p-rank strata are nested

in each other; specifically, it is not known whether every component of the f = B(r,s)−4

stratum is contained in the closure of the f =B(r,s)−2 stratum.

In the next result, we are able to extend Proposition 5.9 in this desired way but only

under the strong restriction that min{r,s}= 2.

Corollary 6.4. Let p ≡ 2 mod 3 be odd. Let (r,s) be a trielliptic signature with

min{r,s} = 2. Let f = 0. If S is an irreducible component of T
0

(r,s), then dim(S) =

max{r,s}−1.

In the rest of the section, we prove Corollary 6.4. By symmetry, it suffices to suppose

r = 2; then s= 2,3,4,5, and we handle these cases separately.

Corollary 6.4 is an application of Theorem 4.3, which we restate in the trielliptic context:

suppose S is an irreducible component of the p-rank 0 stratum T
0

(r,s) of T (r,s); let σ =

dim(S); then there exists η ∈ S such that the curve Yη of compact type represented by η
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Picture of the singular curve Yη
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The dual graph of Yη

is reducible, with at least σ+1 components, such that the Z/3Z-action stabilizes and acts

nontrivially on each component.

6.2.1. The case r = 2 and s= 3

Lemma 6.5. If S is an irreducible component of T
0

(2,3), then dim(S) = 2.

Proof. When the signature is (2,3), the inertia type is γ = (1,1,2,2,2,2,2).

By Theorem 5.5, dim(S)≥ 2. Since T(2,3) is affine, S intersects either∆1 =∆4 or∆2 =∆3.

If S intersects ∆2, then S has a balanced degeneration to ∆((1,1)0,(1,2)0). By Lemma 5.7,

the hypothesis in (7) is true and so dim(S) = 2 by Proposition 6.2.

We assume that S does not intersect ∆2 and that dim(S)≥ 3 and find a contradiction. By

Theorem 4.3, S contains a point η representing a curve Yη with at least four components.

Since Yη has genus 5, it has three components of genus 1 and one component Y0 of genus

2 (which is possibly reducible).

In the dual graph of Yη, we replace the vertex representing Y0 by two vertices connected by

a marked edge. This is illustrated in Figure 1: the schematic represents the four components

of the curve, with the branch points marked by their canonical generators of inertia (the

admissible condition implies that the two canonical generators of inertia are inverses at

each ordinary double point); the schematic in Figure 2 represents the dual graph of Y.

The moduli point of Y is in κ(T̃ 0
(1,0)× T̃ 0

(1,3)), but this is not a balanced degeneration.

Note that dim(T̃ 0
(1,0)) = 0 and dim(T̃ 0

(1,3)) = 2 by Lemma 5.7.
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Figure 4.

The dual graph from the proof of Lemma 6.7.

By Proposition 3.3, dim(S) ≤ 3. If dim(S) = 2, the proof is complete. If dim(S) = 3,

then there is a component S1 of T̃ 0
(1,0) and a component S2 of T̃ 0

(1,3) such that S contains

κ(S1×S2).

Consider the unitary Shimura variety Sh attached to the data of "= 3 and the signature

type (1,3); let Σ be the irreducible component of Sh which contains the Torelli locus; and

let Σ0 denote the p-rank 0 stratum of Σ. By Proposition 5.8, Σ0 is irreducible.

Consider a (labeled) tree η′ of four elliptic curves (with dual graph in Figure 3); this is a

singular trielliptic curve with signature type (1,3) and p-rank 0. Its Jacobian is represented

by a point of Σ0, and thus by a point in the closure of S2. This implies that the point

κ(S1×η′) is in ∆2[S], which is a contradiction.

6.2.2. The case r = 2 and s= 4

Lemma 6.6. If S is an irreducible component of T
0

(2,4), then dim(S) = 3.

Proof. By Theorem 5.5, dim(S)≥ 3. Since T(2,4) is affine, S intersects either ∆1 or ∆2

or ∆3. Then S has a balanced degeneration to either ∆((0,1)0,(2,3)0) or ∆((1,1)0,(1,3)0)

or ∆((1,2)0,(1,2)0). The result follows from Proposition 6.2, with the hypothesis in (7)

verified by Lemmas 5.7 and 6.5.

6.2.3. The case (r,s) = (2,5)

Lemma 6.7. If S is an irreducible component of T
0

(2,5), then dim(S) = 4.

Proof. By Theorem 5.5, dim(S) ≥ 4. We assume dim(S) ≥ 5 and find a contradiction.

By Theorem 4.3, there exists a point η ∈ S such that the curve Y = Cη has at least six

components. Since Y has genus 7, it has five components of genus 1 and one component of

genus 2 (which is possibly reducible).

In the dual graph of Y, we replace the vertex representing the curve of genus 2 by two

vertices connected by a marked edge. One possibility for the dual graph is seen in Figure 4.

Regardless of the location of the marked edge, η is in κ(T̃ 0
(1,2)× T̃ 0

(1,3)). Thus, S has a

balanced degeneration to ∆((1,2)0,(1,3)0). By Proposition 6.2(1), dim(S)≤ 4, which gives

a contradiction. Hence, dim(S) = 4.
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6.2.4. The case (r,s) = (2,2)

The situation for the trielliptic signature (2,2) is more complicated; as seen in Example

7.2, ∆1[T
0

2,2] has dimension 1, which is larger than expected. To avoid issues raised by

problem, we use some results about the Shimura variety Sh attached to the data "= 3 and

signature type (2,2).

Lemma 6.8. If S is an irreducible component of T
0

(2,2), then dim(S) = 1.

Proof. If S intersects ∆2, then S has a balanced degeneration to ∆((1,1)0,(1,1)0). Then

dim(S) = 1 by Proposition 6.2(1).

Suppose that S does not intersect ∆2. Then S intersects ∆1 and S degenerates to

∆((1,0)0,(1,2)0). Then dim(S) = 1 or dim(S) = 2 by Proposition 6.2(2).

Assume dim(S) = 2. Under this assumption, we prove that S intersects ∆2, which gives

a contradiction. By Theorem 4.3, S contains a point η representing a trielliptic curve Cη of

compact type with at least three components. Then Cη has one irreducible component of

genus 2 with two elliptic tails, since S does not intersect ∆2.

Consider the Shimura variety Sh attached to the data "= 3 and signature type (2,2). Let

Σ be the irreducible component of Sh containing the image of the Torelli locus. Let S′ be

the image of S under the embedding T
0

2,2 → Σ. Then S′ is contained in the supersingular

locus N of Σ. Each of the supersingular components of Σ has dimension 2 by [12, Th. B].

It follows that S′ is a component of N. By [12, Th. 3.12], every component of N contains a

point ξ where N intersects another component of N. The point ξ parameterizes an abelian

variety A which decomposes, together with the polarization, into a direct sum of the form

A1 ⊕A2 where dim(Ai) = 2 and Z[ζ3] ⊂ End(Ai). Then A is the Jacobian of a curve in

∆2[T
0

2,2], which gives a contradiction.

§7. Concluding remarks

In Section 7.1, we complete the proof of the base case used in some results in the paper,

such as Proposition 5.9. In the remaining sections, we explain some of the reasons why

Theorem 5.11 is hard to generalize.

7.1 A computational approach to the base case

In this section, we prove that T 0
(1,1) is non-empty when p≡ 2 mod 3 is odd; this completes

the proof of Lemma 5.7(1).

Suppose ψ : Y → P1 is a Z/"Z-cover. In [9, §§2 and 3], Elkin determines formulas for

the action of the Cartier operator C on H0(Y,Ω1). The Cartier operator is a semi-linear

operator, and the p-rank is the rank of its gth iterate. For small ", g, and p, it is possible to

compute the p-rank from Elkin’s work. We note that there are several choices involved in

setting up the computation of iterates of the Cartier operator; these have led to mistakes

in the literature, and the reader is advised to consult [2] to avoid repeating these.

We restrict to the case that " = 3. Without loss of generality, we can suppose that ψ

is not branched above ∞. As in (6), there is an equation y3 = p1(x)p2(x)
2 for ψ, where

p1(x),p2(x) ∈ k[x] are square-free, monic, and relatively prime. Let d1 = deg(p1(x)) and

d2 =deg(p2(x)). From Lemma 5.3, recall that the trielliptic signature for ψ is given by (r,s)

where r = (2d1+d2−3)/3 and s= (d1+2d2−3)/3. Moreover, g = d1+d2−2.
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We restrict to the case (r,s) = (1,1) and g = 2. Then H0(Y,Ω1) = L1⊕L2 where

L2 = 〈w1,1 := dx/y〉, L1 = 〈w2,1 := p2(x)dx/y
2〉.

We suppose that p≡ 2 mod 3; then the Cartier operator C permutes L1 and L2.

Let e1 = (2p−1)/3 and e2 = (p−2)/3. Note that e1+e2 = p−1. Let

h1(x) = p1(x)
e1p2(x)

e2 , h2(x) = p1(x)
e2p2(x)

e1 .

When r = s = 1, then deg(h1(x)) = deg(h2(x)) = 2p− 2. In this case, for i = 1,2, there is

only one monomial xe in hi(x) such that e≡−1 mod p; let Ai be the coefficient of xp−1 in

hi(x). By a special case of [9, Th. 3.4],

C(ω1,j) =A1ω2,1, C(ω2,j) =A2ω1,1. (8)

Lemma 7.1. 1. If p ≡ 2 mod 3 is odd, then T 0
(1,1) is non-empty: there exists a smooth

trielliptic curve Y over Fp with genus 2 and p-rank 0.

2. If p = 2, then T 0
(1,1) is empty: there does not exist a smooth trielliptic curve Y over F2

with genus 2 and 2-rank 0.

Proof.

1. Let p1(x) = x2−1 and p2(x) = x2+1. We compute that

h1(x) = (x2−1)e1(x2+1)e2

=




e1∑

j=0

(−1)e1−j

(
e1
j

)
x2j



(

e2∑

i=0

(
e2
i

)
x2i

)
.

By (8), C(ω1,1) = A1ω2,1 where A1 is the coefficient of xp−1 in h1(x). A pair (i, j)

contributes to this coefficient exactly when 2i+2j = p−1, or j = (p−1)/2− i. Thus,

A1 =

e2∑

i=0

(−1)
p+1

6
+i

(
e1

p−1
2 − i

)(
e2
i

)
.

The sum has an even number of terms. One can check that the ith and (e2− i)th terms

cancel, because ((p−1)/2− i)+((p−1)/2− (e2− i)) = e1 and because i and e2− i have

opposite parities. Thus, A1 = 0.

The same argument, with the roles of e1 and e2 switched, shows that A2 = 0. Thus, C

is the zero operator (implying that Y is superspecial) and so Y has p-rank 0.

2. Let p = 2. After an automorphism of P1, one can suppose that p1(x) = x2+x+1 and

p2(x) = (x−1)(x−a) for some a ∈ F2. Then h1(x) = p1(x) and h2(x) = p2(x), so A1 = 1

and A2 = −(a+1). The determinant of the matrix of C is a+1. If Y has 2-rank 0,

then this determinant is zero, so a ≡ 1 mod 2. Then p2(x) is not square-free, so Y is

singular.

Elkin provides similar formulas for any prime degree " and inertia type γ; unfortunately,

this does not provide a viable way to study the p-rank strata when g > 2 and p is large for

any ", because the equations are algebraically complicated.
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7.2 Possibility of components fully contained in the boundary

Here is an important fact about the p-rank stratification of the hyperelliptic locus. When

p is odd, the generic geometric point of each irreducible component of H
f

g represents a

smooth hyperelliptic curve, by [5, Lem. 3.1].

The analogue of this fact is not true in general for the trielliptic locus. For example, when

p = 2, then every point of T
0

(1,1) represents a singular trielliptic curve by Lemma 7.1(2).

This is the key reason for the restriction that p is odd in Proposition 5.9 and Theorem 5.11.

We give some other examples where this type of problem may occur.

Example 7.2. Let p ≡ 2 mod 3 be odd. Let r = s = 2 and f = 0. Suppose S is an

irreducible component of T
0

(2,2). By Proposition 5.5, dim(S)≥ 1.

Every component S̃1 of T̃ 0
(1,0) has dimension 0, and every component S̃2 of T̃ 0

(1,2) has

dimension 1. This means that ∆1[T
0

(2,2)] contains a component κ1,3(S̃1× S̃2) of dimension 1.

In other words, there is a component S of T
0

(2,2) which has one of the following two problems:

either dim(S) > 1 (bigger than expected) or the generic point of S is contained in the

boundary of T
0

(2,2).

The reason for the problem in Example 7.2 is that the pair (1,0) and (1,2) is not balanced,

as in Definition 6.1. The inductive step for producing smooth trielliptic curves of larger genus

and given p-rank works only when the pair of signatures is balanced.

More generally, the problem seen in Example 7.2 arises when p ≡ 2 mod 3 is odd if

r ≤ s≤ 2r−1 and f ≤ 2r−2 and when p= 2 if 3≤ r ≤ s≤ 2r−2.

Example 7.3. Let p ≡ 1 mod 3. Let r = s = 2 and f = 1. Suppose S is an irreducible

component of T
1

(2,2). By Proposition 5.5, dim(S)≥ 1.

Every component S̃1 of T̃ 0
(1,1) has dimension 0, and every component S̃2 of T̃ 1

(1,1) has

dimension 1. This means that ∆1[T
1

(2,2)] contains a component κ2,2(S̃1× S̃2) of dimension 1.

In other words, there is a component S of T
1

(2,2) which has one of the following two problems:

either dim(S) > 1 (bigger than expected) or the generic point of S is contained in the

boundary of T
1

(2,2).

7.3 The wild case p = 3

We include the case of trielliptic covers when p= 3.

Proposition 7.4. Suppose k=F3. Then there exists a Z/3Z-cover of P1
k having genus g

and 3-rank 0 if and only if g $≡ 2 mod 3. For g≥ 2 and 1≤ e≤ g/2, there exists a Z/3Z-cover

of P1
k having genus g and 3-rank 2e.

Proof. Suppose φ : Y → P1
k is a Z/3Z-cover. Then φ is given by an Artin–Schreier

equation of the form y3−y = f(x) for some f(x) ∈ k(x). Suppose div∞(f(x)) =
∑e

j=0 djPj

is the pole divisor of f(x). By Artin–Schreier theory, one can suppose that 3 ! dj for each j.

Let ej = dj +1.

The Riemann–Hurwitz formula and the Deuring–Shafarevich formula imply that the

genus of Y is g = −2+
∑e

j=0 ej and the 3-rank of Y is 2e [21, Lem. 2.6]. Consider the

3-rank f strata Af
g of the moduli space of genus g Artin–Schreier covers of P1

k. By [21, Th.

1.1], the irreducible components of Af
g are in bijection with partitions

∑e

j=0 ej of g+2 such

that ej $≡ 1 mod 3 and the dimension of the component is g−1−
∑e

j=0-
dj

3 ..
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Thus, when p = 3, there exists a Z/3Z-cover of P1
k having genus g and 3-rank 0 if and

only if g $≡ 2 mod 3. By an inductive argument, one can show: for g ≥ 2 and 1 ≤ e ≤ g/2,

there exists a partition
∑r

j=0 ej of g+2 into r+1 positive integers such that ej $≡ 1 mod 3

and thus there exists a Z/3Z-cover of P1
k having genus g and 3-rank 2r.
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[6] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, Ergeb. Math. Grenzgeb. (3) [Res. Math.
Relat. Areas (3)] 21, Springer, Berlin, 1990.

[7] I. I. Bouw, The p-rank of ramified covers of curves, Compos. Math. 126 (2001), 295–322.
[8] T. Ekedahl, “Boundary behaviour of Hurwitz schemes” In The moduli space of curves (Texel Island,
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