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LOCAL CHARACTERISTIC DECOMPOSITION FREE HIGH
ORDER FINITE DIFFERENCE WENO SCHEMES FOR
HYPERBOLIC SYSTEMS ENDOWED WITH A COORDINATE
SYSTEM OF RIEMANN INVARIANTS*

ZIYAO XU' AND CHI-WANG SHU?

Abstract. The weighted essentially non-oscillatory (WENO) schemes are popular high or-
der numerical methods for hyperbolic conservation laws. When dealing with hyperbolic systems,
WENO schemes are usually used in cooperation with the local characteristic decomposition, as the
component-wise WENO reconstruction/interpolation procedure often produces oscillatory approxi-
mations near shocks. In this paper, we investigate local characteristic decomposition free WENO
schemes for a special class of hyperbolic systems endowed with a coordinate system of Riemann in-
variants. We apply the WENO procedure to the coordinate system of Riemann invariants instead of
the local characteristic fields to save the expensive computational cost on local characteristic decom-
position but meanwhile maintain the essentially non-oscillatory performance. Due to the nonlinear
algebraic relation between the Riemann invariants and conserved variables, it is difficult to obtain
the cell averages of Riemann invariants directly from those of conserved variables, and vice versa,
thus we do not use the finite volume WENO schemes in this work. The same difficulty is also faced in
the traditional Shu-Osher lemma [25] based finite difference schemes, as the computation of fluxes is
based on reconstruction as well. Therefore, we adopt the alternative formulation of finite difference
WENO scheme [13, 24] in this paper, which is based on interpolation for nodal values. The efficiency
and good performance of our method are demonstrated by extensive numerical tests, which indicate
the coordinate system of Riemann invariants is a good alternative of local characteristic fields for
the WENO procedure.

Key words. hyperbolic systems, coordinate system of Riemann invariants, alternative formu-
lation of finite difference WENO schemes, local characteristic decomposition free

MSC codes. 65M06

1. Introduction. It haslong been recognized that, the solutions of nonlinear hy-
perbolic equations can develop discontinuities (shocks) in finite time, even if the initial
condition is smooth. Such a phenomenon greatly challenges the robustness of high or-
der numerical methods, as spurious oscillations typically appear near shocks in numer-
ical approximations (the Gibbs phenomenon), and may blow/mess up the simulation
in later times. There have been numerous high order numerical methods developed
to address this issue, among which the essentially non-oscillatory (ENO)/weighted
essentially non-oscillatory (WENO) schemes have gained great success and have been
widely used in applications.

The ENO methods, first developed by Harten et al. [10], use adaptive strategy
to choose the smoothest stencil among several candidates to reconstruct the solution
from its cell averages, hence the methods yield essentially non-oscillatory approxima-
tion near shocks. The original ENO scheme was based on the framework of finite
volume methods, where the numerical fluxes at cell interfaces are obtained through
reconstructed solution. Later, Shu and Osher proposed the finite difference ENO
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2 ZIYAO XU AND CHI-WANG SHU

scheme in [24] based on ENO interpolation for nodal values and high order finite
difference approximation for spatial derivatives of fluxes, which saves considerable
computational cost in multi-dimensions, as the derivatives can be approximated di-
mension by dimension in finite difference schemes. Their subsequent work in [25]
developed a simpler finite difference ENO scheme based on the Shu-Osher lemma
to approximate the fluxes at cell interfaces by standard reconstruction for fluxes at
grid points. The WENO methods were developed upon ENO, with the idea of using
a convex combination of all candidate stencils rather than only one stencil in the
original ENO scheme. In the pioneer work of WENO schemes, Liu et al. [14] used
linear weights to combine the candidate stencils in r-th order ENO schemes to yield
(r 4+ 1)-th order of accuracy. It was later improved by Jiang and Shu [12] to achieve
(2r — 1)-th order of accuracy on the same stencils, by adopting nonlinear weights
based on smoothness indicators designed for optimal accuracy in smooth regions and
essentially non-oscillatory fashion near discontinuities. Thereafter, intensive modifi-
cations and improvements of the WENO procedure have been developed, e.g. the
mapped WENO [11], WENO-Z [4, 6], modified WENO to handle negative weights
[21], multi-resolution WENO [31], Hermite WENO [19], among other variants. Both
finite volume [10] and finite difference [24, 25] frameworks for ENO can be used with
the above WENO procedures. In our work, we use the classic WENO-JS procedure
[12], as it is most widely used and relatively simple to code. For more details about the
history and development of ENO and WENO methods, one can refer to the surveys
[22, 23].

The ENO/WENO methods perform very well for scalar conservation laws as they
achieve uniformly high order accuracy in smooth regions and resolve shocks sharply
with essentially non-oscillatory quality. However, when dealing with hyperbolic sys-
tems, the component-wise ENO/WENO procedure often produces oscillatory results
near shocks, especially when waves corresponding to different characteristic fields in-
teract, such as in Riemann problems. The primary approach to resolve this problem
is to apply the ENO/WENO procedure to the local characteristic fields of the system
obtained by local characteristic decomposition for the conserved variables/fluxes, and
transform the results back to the conserved variables/fluxes afterwards. Below, we
briefly review how the WENO methods for hyperbolic systems are used in cooper-
ation with the local characteristic decomposition. For the ease of comparison with
the algorithm to be developed in this paper, we demonstrate it as per example of the
alternative formulation of finite difference WENO scheme developed in [13] from [24],
which will be introduced with more details in Section 3.

We consider the hyperbolic system of m (m > 1) components

(1.1) u; + f(u), =0,

in one space dimension, where u = (u1,...,u;,) € R™ are the conserved variables
and f(u) = (fi(u),..., fm(u)) € R™ are the fluxes. Now and henceforth, we use bold
face font to denote vectors or matrices.

Consider uniform grids with the grid point z; = jAx centering in the cell I; =
[a:j_%,:zrﬁ%] = [(j — $)A=,(j + 3)Az],Vj € Z. The semi-discrete (2r — 1)-th order
alternative formulation of finite difference WENO scheme for (1.1) is formulated as

dIIj 1 A A
(1.2) EJFE(@% ) =0,
where u; is the approximation to u(z;,t), fj+% = f(uj_Jrl,uL%,w-) is the nu-

merical flux, whose definition and arguments omitted for grevity will be detailed

This manuscript is for review purposes only.
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LOCAL CHARACTERISTIC DECOMPOSITION FREE WENO 3

in later sections, and uil are approximations to u(z;,1,t) from interpolants on
3 2

I; and Ij;,. We denote the WENO interpolation for a scalar-valued grid func-
tion v at Tjp1 on I; by U;+l = weno(Vj—r41,...,Vj+r—1), whose implementation
2

will be detailed in Section 3. The WENO interpolation for v]f"_ , follows from mir-
2

ror symmetry, i.e. v;il = weno(Vj4r—1,...,Vj—r41). We shall abuse the nota-

tion to also let it denote2 the component-wise WENO interpolation for vectors, e.g.
VJ.:L% = Weno(V —rqi,. .., Vitr—1)-

The flowchart of the alternative formulation of finite difference WENO algorithm
(1.2) with local characteristic decomposition, based on the nodal values {u}};ecz at
time level t", is given as follows, where the superscript n is omitted for brevity and
the computation is carried out for all j € Z:

1. Approximate the solution at z; 1 by the arithmetic meanu;, 1 = % (u; + uj+1),l

or the Roe’s average [20] satisfying f(u;y1) — f(u;) = %(uﬂé) (Wjt1 — uj),
if it is available.

2. Perform the eigendecomposition on the Jacobian matrix: g—fl (uj+ %) = RjJr%AH%

where A, 1 and R, 1 are the diagonal matrix containing all eigenvalues and
the eigenmatrix consist of a complete set of eigenvectors as its columns, re-
spectively, of the Jacobian matrix.

3. Calculate the local characteristic variables: v; = R;_:l u;, on the stencils
i=j T4, ’

4. Perform the WENO interpolation for the local characteristic variables to ob-

o= +
tain Vipr = weno(V;—r4q1,...,Vjtr—1) and Vipr = Weno(Vjqr, ..., Vj—ry2).
5. Transform the local characteristic variables back to the conserved variables:
+ _ +
Yp1 = RJ+%VJ‘+§'

6. Calculate the numerical fluxes f;, 1 to evolve the scheme (1.2) in time.
As we can see, the steps 1, 2, 3 and 5 are extra costs due to the local characteristic
decomposition. In particular, there are 2r matrix-vector multiplications at every
cell interface x; +1 at the step 3, which is responsible for most of the floating point
operations.

There have been some attempts on avoiding or reducing the costs on local char-
acteristic decomposition in numerical schemes, meanwhile maintaining the essentially
non-oscillatory performance, but only limited successes were achieved. In [12], Jiang
and Shu computed the weights in WENO from entropy and pressure instead of the
characteristic variables for Euler systems, to reduce part of the operations in local
characteristic decomposition. In [30], Zheng et al. argued that at the contact dis-
continuity on interface of two-medium flow, direct WENO interpolation for primary
variables is better than component-wise interpolation for conserved variables, but lo-
cal characteristic decomposition was still applied therein to the primitive variables to
get more satisfactory results. Low order central schemes [16, 15] can be used without
local characteristic decomposition. However, the local characteristic decomposition
is still necessary to control spurious oscillations when orders of the schemes are high
[17].

In this work, we propose an efficient implementation of finite difference WENO
schemes that is local characteristic decomposition free, for a special class of hyperbolic
systems endowed with a coordinate system of Riemann invariants. Examples of such
systems include all two-component hyperbolic systems and some multi-component
systems to be introduced in Section 2. The key idea of the method is to apply the
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4 ZIYAO XU AND CHI-WANG SHU

WENO procedure to the nodal values of the coordinate system of Riemann invariants,
which are (one-to-one) nonlinear algebraic functions of the conserved variables, and
transform the interpolated values back to the conserved variables in the calculation
of fluxes. The improvement in efficiency is due to the fact that, the characteristic
decomposition for the WENO procedure is calculated locally, namely the conserved
variables/fluxes at every node need to be projected onto local characteristic fields
by different inverse eigenmatrices at different cell interfaces, while the Riemann in-
variants have definite algebraic relation with the conserved variables thus only need
to be calculated once per node. A comparison of floating point operations in these
two methods are shown in Appendix A. The good non-oscillatory performance of
such treatment is justified by both theoretical properties of hyperbolic systems and
numerical tests.

Due to the nonlinearity of the algebraic relation between Riemann invariants
and conserved variables/fluxes, we cannot use any reconstruction based numerical
schemes like the finite volume WENO or the traditional Shu-Osher lemma based
finite difference WENO, as we cannot directly transfer the cell averages between
Riemann invariants and conserved variables/fluxes. On the other hand, the transform
between nodal values is straightforward, thus we adopt the alternative formulation
of finite difference WENO scheme [13], which is based on WENO interpolation for
nodal values. Its implementation will be demonstrated in Section 3. For detailed
introduction and comparison with the traditional finite difference WENO for the
alternative formulation, one can refer to [13].

The rest of the paper is organized as follows. In Section 2, we review the definition
of Riemann invariants and their important properties, and give examples of hyperbolic
systems endowed with a coordinate system of Riemann invariants. In Section 3, we
give a detailed description for our algorithm. We use numerical tests in Section 4 to
demonstrate the efficiency and good performance of our methods. Finally, we end up
with some concluding remarks in Section 5.

2. Riemann invariants. In this section, we review the definition and important
properties of Riemann invariants of hyperbolic system of conservation laws.

We consider the hyperbolic system (1.1), with u = (u1, ..., u,)? the conserved
variables taking values in an open set O C R™, and f(u) = (fi(u),..., fm(u)? a
smooth flux function on O. From hyperbolicity, the Jacobian matrix % has a com-
plete set of eigenvectors ry(u),rz(u), ..., ry,(u) corresponding to the real eigenvalues
A1(u) < Az(u) < ... < Ap(u), forallueO.

The Riemann invariants of the hyperbolic system (1.1) is defined as follows [26]:

DEFINITION 2.1. An i-Riemann invariant (1 < i < m) of the hyperbolic system
(1.1) is a scalar-valued function w(u) on O, such that Vw(u)-r;(u) = 0, Yu € O, where
r;(u) is an eigenvector of the Jacobian matrix % corresponding to the eigenvalue
>\i (u)

Riemann invariants are closely related to the Riemann problem, which is a Cauchy
problem of the hyperbolic system (1.1) with the initial condition

uy, =<0
2.1 u(z,0) =
(2.1) (2,0) {u” T

where u; and u, are constant states. It is well-known that the solution u(x,t) of the
Riemann problem typically develops from the initial discontinuity at the origin into
m+1 constant states in sector regions separated by the i-shock, contact or rarefaction
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LOCAL CHARACTERISTIC DECOMPOSITION FREE WENO 5

wave, for ¢ = 1,2,...,m, which is a characterization of the fundamental behavior of
solutions of hyperbolic systems involving discontinuities. An important property of
Riemann invariants across waves is stated as follows [26]:

THEOREM 2.2. The change of an i-Riemann invariant w of the hyperbolic system
(1.1) across an i-shock wave is of third order in ¢, i.e. |w(w)—w(u,)| = O(e®), where
u; and u, are the states on the left and right sides of the i-shock, respectively, and
e = |Ni(w) — Ni(u,)| is a measure of the strength of the i-shock. In addition, the
i-Riemann invariant is unchanged across an i-rarefaction or contact wave.

Roughly speaking, the i-Riemann invariant is unchanged or almost unchanged across
an i-wave, consult Figure 1, where h, hu are the conserved variables, and w;, ws are
the 1 and 2-Riemann invariants, respectively, in a Riemann problem of the shallow
water equations (2.3).

(a) Water depth h (b) Discharge hu

(c¢) 1-Riemann invariant w1 = u—2+/gh(d) 2-Riemann invariant w2 = u+2+/gh

Fig. 1: Conserved variables and Riemann invariants in a Riemann problem of the
shallow water equations

The WENO interpolation/reconstruction procedure performs very well if there
is only one discontinuity in the stencil. However, the results turn out to be less
satisfactory when there are multiple shocks in the stencil. The property of Riemann
invariants in Theorem 2.2 gives us a hint to perform the WENO procedure on the
1, 2-Riemann invariants of hyperbolic systems when m = 2, as there is only one major
discontinuity in each Riemann invariant in Riemann problems. We shall show in
the numerical section that such a treatment yields very satisfactory non-oscillatory
results.

A direct extension of the above approach to hyperbolic systems with m > 3 is to
perform the WENO procedure on m variables, each of which only admits one major

is manuscript is for review purposes only.
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6 ZIYAO XU AND CHI-WANG SHU

jump in stencils. An ideal choice is the coordinate system of Riemann invariants,
which is defined as follows [7]:

DEFINITION 2.3. The system (1.1) is endowed with a coordinate system of Rie-
mann invariants if there exist m scalar-valued functions wi(u), we(u),. .., wy,(w) on
O such that,

Vw;(a) -rj(u) =6, 1,j=12,....m,

where § is the Kronecker delta, rj(u) is an eigenvector of the Jacobian matric g—lfl cor-
responding to the eigenvalue Aj(u),1 < j < m. The variables (wi(u), w2 (u),. .., wy(u))j

are called a coordinate system of Riemann invariants of (1.1).

To this end, we give some examples of hyperbolic systems of conservation laws
endowed with a coordinate system of Riemann invariants.

ExaMPLE 2.1. The linear hyperbolic system
(2.2) u; + Au, =0,

where A = RAR™! for some diagonal matriz A and eigenmatriz R, has a coordinate
system of Riemann invariants (wy,ws, ..., wy) with w;(u) = Lu,1 < i < m, where
1; is the i-th row of R™L.

ExXaAMPLE 2.2. The shallow water equations in one dimension

h hu
2.3 + =0

where h is the water height, u is the velocity of the fluid, and g is the gravitational
constant, is endowed with a coordinate system of Riemann invariants (wy,ws) =
(u+ 2y gh,u — 24/gh).

The shallow water equations in two dimensions

h hu hv
(2.4) hu + | hu? + 1gh? + huv =0,
hv J, huv N hv? + %gh2 ’

where u and v are velocities of the fluid in x and y directions, respectively, has co-
ordinate systems of Riemann invariants (w1, ws, ws) = (u — 2+/gh,v,u + 2v/gh) and
(w1, we,w3) = (v—2v/gh, u,v+2+/gh) in x and y directions, respectively, in the sense
that the states of fluid are constant in the other direction (in this case, the system is of
the form of one dimensional equations, which is known as the split multi-dimensional
problem).

EXAMPLE 2.3. The hyperbolic system of electrophoresis of m components

CiU; _
(2.5) Ot +0p | =—— | =0, i=1,2,....,m,
> j=1Uj
where ¢c1 < co < -+ < ¢y are positive constants, is endowed with a coordinate system
of Riemann invariants (wy,wa, ..., Wwy), where w; € (¢;,cip1) s the solution of the
equation E;nzl CJUTJw =0, fori=1,2,....m—1, and wy, = 22”:1 7:—]]

This system models the separation of ionized chemical compounds in solution
driven by an electric filed, where c¢; and u; denote the electrophoretic mobility and
concentration of the i-th component, respectively, see [2] for more details about its
physical backgrounds.
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242 EXAMPLE 2.4. The hyperbolic system of planar electromagnetic waves in nonlin-
243 ear isotropic dielectrics

By ‘I’/(T)D
B Y p

244 (2.6) D? + \I/’T(r)Bl =0,
Dy J, Vg

215  where B = (By, B2)T is the magnetic induction, D = (D1, D3) is the electric displace-

246 ment, U(r) is the electromagnetic energy, and r = \/B? + B3 + D} + D3, is endowed

247 with a coordinate system of Riemann invariants (wy,wsa, ws, wy).

248 If we define a, b, p, q by pe*® = % (Bz + Dy — i(By — D3)) and ge®® = % (=B2+ D1 +i(By + Dg)),l
249  then wi; = a,wy = b, and ws, w4 are the 1,2-Riemann invariants of the smaller hy-

250  perbolic system

'(r)
251 (2.7) <p)t+< J/(ng ) =0, r=+vp*+q¢.

2 3. The algorithms. In this section, we overview the WENO-JS interpolation,
3 and establish our algorithms in the framework of alternative formulation of finite
1 difference WENO scheme in one and two space dimensions. We shall assume the
5 grids are uniform and, for simplicity, only consider periodic boundaries.

6 3.1. Overview of the WENO-JS interpolation. The (2r—1)-th order WENO-J}
7 JS interpolation for a scalar-valued grid function v is described as follows.

8 First, we define the small stencils Sy = {®j_r+k,...,Zj—14k} to calculate the

9 (r — 1)-th order polynomial interpolant p(k) (x) of von I, for k=1,2,...,7, and the
260  big stencil So = Uy_; Sk = {%j—rt1,...,Zj4r—1} to calculate the (2r — 2)-th order
261 polynomial interpolant p(®) (z) of v on I j, such that

o k

262 p( )(xj—r-i-k-l-m—l) = Vj—r4+k+m—-1, M= 17 27 RS
263 for k=1,2,...,r, and

o 0

264 pl )($j—r+m) =Uj_pgm, m=12,...,2r—1,

265 so that we yield

(3.1)
266 v;f’;) — (k) (zj41) = Tl a v i1 = v(@p1) + oA, k=1,2,...,r
267 and
268 (3.2) U;L(O%) =pl® (xj_,_%) = i’}/kv;f? = v(a:j+%) +O(Az*h),

k=1

269  where {75 }}_, are the so-called optimal linear weights with vy, > 0, for k =1,2,...,r
270 [5) and Y _; v =1, and {ag,if) m.k—1 are constant coefficients.
271 Then, we introduce the nonlinear weights {wy}}._;, which is designed in the prin-

272 ciple that, in smooth regions wy is close to 7 to achieve optimal accuracy while,

This manuscript is for review purposes only.
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8 ZIYAO XU AND CHI-WANG SHU

if containing discontinuities, wy, is close to zero to minimize the contribution of the
stencil containing discontinuities in WENO interpolation:

Wi ~ Vi
3.3 Wp=—=——, Wr=——, k=12,... 1
) P N
where € is a small positive number, e.g. ¢ = 1075, to avoid the case of linear weights
being divided by zero, and {fx}},_, are the smoothness indicators of the polynomial

interpolant p®)(z) on I;:

4

r 2
(3.4) Br = Z Azl /l (%p(m (x)) dx.
(=1 J

Finally, the WENO-JS interpolation ’UJ; . is calculated by

- —(k
(3.5) Vi = Zwkvjjf%).
k=1
For instance, in the fifth order (r = 3) WENO-JS interpolation, we have
—1 3 5 15
Uity TR T gl g
v @ = —lv- + —v; + §v-
gty g T gl
v 3 = §v‘ + §v‘ — =Uj
j+% 8 J 4 Jj+1 ] j+2
and
1 5 )
71_165 72_85 73_165
and
13 1
b= E(’Uj_g — 201 + Uj)2 + Z(Uj_z —4vj_1 + 3Uj)2,
13 1
B2 = T3 (Wi = 20 4+ 0540)" + 7 (021 = Vi)’
13

1
(Uj - 2’Uj+1 + ’Uj+2)2 + Z(3vj - 4’Uj+1 + Uj+2)2.

Bs =15
For expressions of smoothness indicators in higher order WENO-JS interpolations,
one can refer to [3].

3.2. The algorithm in one dimension. For the domain [z,, z;], we take the
uniform partition x4 = 9 < 1 < ... < 2§y = 23, and denote Azx = x; — z;_1,
r;1 = %(:Cj_l +x;), for j = 1,2,...,N. In the finite difference WENO scheme,
we seek u; to approximate u(z;,t), and ujiJr ; to approximate the solution at z; 1

2
from I; and 41, respectively. For the ease of writing, we shall use subscript indices
exceeding the domain in the cyclic sense.

The semi-discrete (2r — 1)-th order alternative formulation of finite difference
WENO scheme for the hyperbolic system (1.1) in one dimensions is given by (1.2), in
which we define

r—1
. _ m 82m
(3.6) fvg = h(uj+%,uj+%) + Z azmA* (3:62’" f)j+1 ’
2

m=1
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298 where h(-,-) is the numerical flux based on exact or approximate Riemann solvers,
299 e.g. the Godunov flux, the Lax-Friedrichs flux, or the HLLC-type fluxes, among
‘ : _ _1 _ 7 _ __ 31 _ 127 _
300 others7,3and the coefﬁmenjcs a2 = —57,04 = Fzgg 46 = 967650 48 = 154828800,@0.—
)l —o=oaseasgor - - - are obtained through Taylor expansion to approximate the spacial
12 derivative of flux with high accuracy, see [24].
)3

Following the practice in [18, 13], we calculate uJ 1 in h(u;

eyl ) by WENO

1 interpolation, while use simple central difference to approxunate the spatlal derivatives
5 of f in the remaining terms to save computational costs, as these terms contain at
6 least Az? in the coefficients, which is expected to contribute much less oscillations. To
7 attain enough accuracy, we use the stencil {;_,4+1,...,2;,..., %1, } in the central

SN 3 . . 82771
308 difference approximation for (Wf) e

309 For instance, in the fifth order finite difference WENO, we use

0? 1 5 13 17 17 13 5
—f =— | ——=f1; —f; —f, — —f; —fi0— —f;
(axg )j+§ A2 < 48 2 + 1691 T 94 T gpliHt + 1692 7 13 a+3) )

ot 1 /1 3 3 1
(@f)]_i_é = m <§fj2 - §fj71 + fj + fj+1 - 5fj+2 + 5fj+3> .

311 If the hyperbolic system (1.1) is endowed with a coordinate system of Riemann
312 invariants w with the one-to-one algebraic relation w = w(u) and u = u(w) to the
313 conserved variables u, the (2r — 1)-th order alternative formulation of finite difference
314 WENO scheme based on the nodal values {u’ §V:1 at time level t" is given as follows,
315 where the superscript n is omitted for simplicity and computation is carried out for
316 allj=1,2,...,N:

317 1. Calculate the coordinate system of Riemann invariants w; = w (u])

310

318 2. Perform the WENO interpolation introduced in Section 3.1 on {WJ} _, to ob-
319 tain wj+% = weno(W;_,41,...,W;t,—1) and Wj+% = weno(Wj4r, . . W]_T+2).I
320 3. Transform the results back to the conserved variables by ui =u (W;EJr 1 )
321 4. Calculate the numerical fluxes f; j+1 to evolve the scheme (1 2) in time.

322 To this end, we would like to 1ntroduce the time-marching approach used the

323 algorithm. For the ODE system,
324 (3.7) u; = L(u),

325 which is obtained from the semi-discrete finite difference scheme, we adopt the 4-th
326 order 5 stage strong stability preserving Runge-Kutta (SSPRK(4,5)) method [27],
u® = u” 4 0.39175222700392A¢L(u™),
u® = 0.44437049406734u™ + 0.55562950593266uV) + 0.36841059262959AtL(u?)),
u® = 0.62010185138540u" + 0.37989814861460u'? + 0.25189177424738AtL(u?),
u® = 0.17807995410773u” + 0.82192004589227u'® + 0.54497475021237AtL(u®),
u™t! = 0.00683325884039u™ + 0.51723167208978u'? + 0.12759831133288u'®) + 0.34833675773694u')
+ 0.08460416338212AtL(u'®) + 0.22600748319395A¢L(u®), [

w
no
~

328 where u™ and u™*! are solutions at the time level t* and t"*!, respectively, and

320 At = "t — " We refer to [8] and [9] for more details about the strong stability

w W
NN DN

This manuscript is for review purposes only.



10 ZIYAO XU AND CHI-WANG SHU

preserving (SSP), also called the total variation diminishing (TVD), Runge-Kutta or
multi-step time discretization approaches.

In the numerical section, we shall use WENO schemes with spatial accuracy higher
than fourth order (the temporal accuracy), as in applications it is usually the spatial
accuracy that restricts the resolution of simulations.

3.3. The algorithm in two dimensions. For the two dimensional domain
[Za, ] X [Ya,yp), We take the uniform partition z, = z9 < 21 < -+ < y = @p
and y, = yo < y1 < --- < ym = Y in x and y directions, respectively, and denote
by Az = x; — x;_1, Ti1 = %(xi_l +a;) fori =1,2,...,N, and Ay = y; — y,_1,
Y1 = %(yj,l +y;) for j =1,2,...,M. We seek u; ; to approximate u(x;,y;,t),
and ui;j and uf#% to approximate u(xH%,yj,t) and u(z;, yH%,t), respectively,
from different sides, in the finite difference WENO schemes.

The semi-discrete (2r — 1)-th order alternative formulation of finite difference

WENO scheme for the hyperbolic system
(3.8) u; + f(u), +g(u), =0,

in two dimensions is formulated as

dui,j 1 - - 1 N N
(39) it ay (Bens—fss) + 55 (Bey —8y) =0

fori=1,2,...,N,57 =1,2,..., M, where the fluxes are defined the same way as in
one dimensional case, thanks to the advantage of finite difference schemes.

If the z-split problem of (3.8) is endowed with a coordinate system of Riemann
invariants w and the y-split problem of (3.8) is endowed with a coordinate system
of Riemann invariants v, the algorithm based on the nodal values {u?)j ZN:’%:l at
time level t™ is given as follows, where the superscript n is omitted for brevity and
computation is carried out for alli =1,2,...,N,j=1,2,..., M:

1. Calculate the coordinate systems of Riemann invariants w; ; = w (u; ;) and
Vij =V (uw-).
2. Perform the WENO interpolation introduced in Section 3.1 on {Wi,j}fv;{\f[jzl

N,M . 4
and {v; ;},1 ., toobtain w_, , . = weno(W;_rq1,..., Witr_1;), W, 1 .=
»J it+3,] it+3,]
- _ +
Weno(me-, e 7Wi7rr+21j), and Vi i1 = WenO(Viﬁj,Tle, e 7Vi,j+r71)7 V.. 1
It 35 ,J+3
Weno(Vi jyr, .-+ Vijri2).
+ + + +
. Calculate u; S =u|w; Jandu’ , , =ulv . .
3. C i+ 3.7 ( z+%u) i,j+3 Bt
4. Calculate the numerical fluxes f; 1 ; and §; ;1 to evolve the scheme (3.9)
27 2 2
in time.

We adopt the same time marching approach in the algorithm as in the one space
dimension.

4. Numerical tests. In this section, we study the accuracy, efficiency and es-
sentially non-oscillatory performance of the algorithm established in the previous sec-
tions, and compare them with those of the component-wise and local characteristic de-
composition based WENO methods. For convenience, the component-wise WENO, lo-
cal characteristic decomposition based WENO and Riemann invariants based WENO
methods shall be abbreviated to CW-WENO, LCD-WENO and RI-WENO, respec-
tively. We adopt the Lax-Friedrichs flux as the lowest order term in the flux (3.6).
The numerical tests are carried out for examples given in Section 2, except for the first
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one, as the RIFWENO and LCD-WENO are exactly the same for linear hyperbolic
systems. The CFL conditions are taken as At = ﬁAz in one dimensional tests
and At = ﬁAw in two dimensional tests, unless otherwise stated, where Ap.x
is the maximum absolute value of eigenvalues of the numerical solution. The CFL
conditions are taken smaller than usual in the tests as we are mainly concerned with
the performance of the spatial discretization and would like to reduce the influence of
the time discretization by reducing the time step size. As the only difference among
the CW-WENO, LCD-WENO and RI-WENO are the variables used in the WENO

interpolation, their CFL constraints for stability are the same.

EXAMPLE 4.1. (Accuracy and efficiency)

In this example, we compare the accuracy and efficiency of RI-WENQO with those
of the CW-WENO and LCD-WENO for the one dimensional shallow water equations
(2.3).

It is easy to verify that, if v(z,t) is a classic solution of the inviscid Burgers’

3
of the shallow water equations with the gravitational constant g =

equation vy + (% L= 0, then h(z,t) = gv*(z,t) and u(z,t) = 2v(z,t) are solutions

%, thus we let
v(z,0) = Lsin(z) + 1 to determine the corresponding initial conditions of h and u.
We set the the domain Q = [0,27] and enforce the periodic boundary condition in

2r—1

the tests. The CFL conditions are taken as At = ﬁAajT in accuracy tests to

observe the designed spatial accuracy, and the terminal time is T = 0.1.

The errors and orders of convergence of CW-WENQO, RI-WENO and LCD-WENO}
for h are given in Table 1, from which we can clearly observe that RI-WENO has the
same orders of convergence as those of CW-WENO.

Moreover, we compare the CPU times of CW-WENO, RI-WENO and LCD-
WENO on different grids for different orders. The code is run on Oscar[l] with 1
core and 8 GB memory, and we count the CPU times by taking the average of 1000
trials of the complete computation. The results are given in Table 2, from which we
can see that RI-WENQO has roughly the same efficiency as CW-WENO while reduces
considerable computational costs from LCD-WENO.

EXAMPLE 4.2. (Shallow water equations in one dimension)

In this test, we compare the essentially non-oscillatory performance of RI-WENO
with that of CW-WENO and LCD-WENO for the shallow water equations (2.3) in
one dimension.

We first solve a Riemann problem with g = 10 and the initial condition

0.125, =<0
h(z,0) = ! . ul,0) =0,
1.000, >0
on the domain Q = [—5,5] with the partition N = 200. The plots of h of different

methods at T = 1 are compared in Figure 2, where the reference solution are given by
the exact Riemann solver.
We then solve a periodic boundary problem with g =1 and the initial condition

h(2.0) 20, 0<z<10 w(2,0) = 0
T s, 10<2<20 ] I

on the domain Q = [0,20] with the partition N = 200. The plots of h of different
methods at T = 20 are compared in Figure 3, where the reference solution is obtained

from the fifth order LCD-WENO on a grid containing 10000 cells.

This manuscript is for review purposes only.
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(a) CW-WENO, r = 3 (b) RLWENO, r = 3 (¢) LCD-WENO, r = 3

- Lcowenor

(j) CW-WENO, r = 6 (k) REWENO, r = 6 (1) LCD-WENO, r = 6

Fig. 2: Solution h of different WENO methods for the Riemann problem in Example
4.2.

This manuscript is for review purposes only.



LOCAL CHARACTERISTIC DECOMPOSITION FREE WENO 13

method CW-WENO RI-WENO LCD-WENO
T N LY error order L'error order L!'error order
3 20 5.08 E-04 - 1.07E-04 - 1.29E-03

40 1.53E-05 5.06 3.12E-06 5.10 9.23E-05 3.80
80 4.12E-07  5.22 9.18E-08 5.08 6.03E-06 3.94
160 1.16E-08  5.16  2.79E-09 5.04 3.64E-07 4.05
200 3.71E-09 5.09 9.28E-10 4.93 1.23E-07 4.87
4 10 4.09E-03 - 8.43E-04 - 4.53E-03 -
20 7.82E-05 5.71 6.90E-06 6.93 2.88E-04 3.98
40 7.66E-07 6.67 6.42E-08 6.75 1.78E-05 4.01
60 5.81E-08 6.36 5.61E-09 6.01 3.63E-06 3.92
5 10 1.75E-03 - 3.42E-04 - 2.12E-03 -
20 8.11E-06 7.76  8.91E-07 858 3.89E-05 5.77
30 1.87E-07 9.30 2.04E-08 9.32 3.26E-06 6.12
40 1.41E-08 9.00 1.28E-09 9.62 3.65E-07 7.61
6 12 2.11E-04 - 3.86E-05 - 2.84E-04 -
20 1.93E-06 9.20 2.68E-07 9.73  9.25E-06  6.70
30 1.89E-08 11.40 2.92E-09 11.15 4.76E-07 7.32
40 9.34E-10 1046 1.09E-10 11.41 3.81E-08 8.78

Table 1: Accuracy of h of different WENO methods in Example 4.1

method ~CW-WENO RI-WENO LCD-WENO
N CPU time (s) CPU time (s) CPU time (s)

<

3 50 1.58E-03 1.74E-03 3.55E-03
100 6.22E-03 6.52E-03 1.44E-02
150 9.94E-03 1.07E-02 2.77E-02
200 1.72E-02 1.84E-02 4.87E-02
4 50 2.78E-03 2.97E-03 5.27E-03
100 1.08E-02 1.13E-02 2.11E-02
150 2.03E-02 2.10E-02 4.35E-02
200 3.35E-02 3.69E-02 6.76E-02
5 50 3.78E-03 3.95E-03 6.50E-03
100 1.47E-02 1.52E-02 2.60E-02
150 2.88E-02 2.96E-02 5.42E-02
200 4.65E-02 5.18E-02 8.38E-02
6 50 4.84E-03 5.01E-03 7.94E-03
100 1.90E-02 1.95E-02 3.18E-02
150 3.81E-02 3.88E-02 6.71E-02
200 6.57E-02 6.76E-02 1.03E-01

Table 2: CPU times of different WENO methods in Example 4.1

416 By comparison, we observe the essentially non-oscillatory effect of RI-WENO 1is
417 much better than CW-WENO, and similar to LCD-WENO.

418 EXAMPLE 4.3. (Shallow water equations in two dimensions)
119 In this test, we compare the essentially non-oscillatory performance of RI-WENQO
120 with that of CW-WENO and LCD-WENO for the shallow water equations (2.4) in

121 two dimensions.

This manuscript is for review purposes only.
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(a) CW-WENO, r =3

- GwweNor

(d) CW-WENO, r = 4

(g) CW-WENO, r =5

(j) CW-WENO, r = 6

(b) RLWENO, r = 3

- ALwENO7

(e) REWENO, r = 4

(h) RLWENO, r = 5

(k) REWENO, r = 6

(¢) LCD-WENO, r = 3

(f) LCD-WENO, r = 4

(1) LCD-WENO, r = 6

Fig. 3: Solution h of different WENO methods for the periodic boundary problem in

Example 4.2.
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We solve a periodic boundary problem with g =1 and the initial condition

25, 0<z<10,0<y<10

20, 0<z<10,10<y <20
0.5, 10<x<20,0<y<10
1.5, 10<x<20,10<y <20

h(z,y,0) = ;o u(z,y,0) = v(z,y,0) =0,

on the domain Q = [0,20)% with N = M = 200.

The contours of h of different methods at T' = 5 are shown in Figure 4, from which
we can observe oscillations in the fourth quadrant in CW-WENO are eliminated by
RI-WENO and LCD-WENQO. Moreover, we plot the cut of h along y = 10 for different
methods, and compare them with the reference solution obtained from the fifth order
LCD-WENO on a 1000 x 1000 grid in Figure 5, from which we can see the mon-
oscillatory fashion of RI-WENO.

EXAMPLE 4.4. (Equations of electrophoresis)

In this test, we compare the essentially non-oscillatory performance of RI-WENQO
with that of CW-WENO and LCD-WENO for the electrophoresis equations (2.5).

We solve the three-component periodic boundary problem with the electrophoretic
mobilities ¢c1 = 2,co = 4,c3 =5, and the initial condition

1, O<ax<T 0.01, 0<ax<?3r
uy(z,0) = TS3 ,ug(x,0) = 5 TS ,uz(z,0) =1,
0.01, 5 <x<2m 1, o <r<2m

on the domain = [0, 27] with N = 200.

The plots of u1 of different methods at T = 0.5 are compared in Figure 6, where the
reference solution is obtained from the fifth order LCD-WENO on a grid containing
10000 cells. The results of RI-WENO apparently have much less oscillation compared
with those of CW-WENO and similar fashion with LCD-WENO.

EXAMPLE 4.5. (Fquations of planar electromagnetic wave)

In this test, we compare the essentially non-oscillatory performance of RI-WENQO
with that of CW-WENO and LCD-WENQO for the planar electromagnetic wave equa-
tions (2.6). One can check that, if the electromagnetic enerqy satisfies w =7r® for
some a > 0, the 1,2-Riemann invariants of the smaller hyperbolic system in Example
2.4 have the expressions wz(p,q) = p — ¢G~*(log %) and wy(p,q) = p + qG~(log %),
where G(-) is defined in the Appendixz B.

We solve the periodic boundary problem with oo = 2 and the initial condition

1, O<z<?2

B 0)=D 0)=D 0)=1
0, 2<£L'<4, 2($, ) 1(Ia ) 2($, ) ;

Bl({E, 0) = {

on the domain Q = [0,4] with N = 400.

The plots of D1 of different methods at T = 0.3 are compared in Figure 7, where
the reference solution is obtained from the fifth order LCD-WENO on a grid containing
10000 cells. From the comparison, we can see that RI-WENO has excellent essentially
non-oscillatory performance.

5. Concluding remarks. In this work, we establish a local characteristic de-
composition free WENO method for hyperbolic system of conservation laws endowed
with a coordinate system of Riemann invariants. We apply the WENO procedure to
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2 s 20 s 20
18 28 18 28 18
16, 25 16, 25 16
14 24 14 24 14
1 22 1 22 1
1 2 1 2 1
18 18
15 15
n n
12 12
T 1 T 1 T
0 12 14 18 18 2 0 12 14 18 18 2 0 12 14 18 18 2

(a) CW-WENO, r = 3 (b) RLWENO, r = 3 (c) LCD-WENO, r = 3

1 22 1 22 1
1 2 1 2 1
18 18
5 5
4 4
12 12
R e B B B A

0 2 w1 1w 2 0 2 w18 1w 2 0 2 w18 1w 2

(d) CW-WENO, r = 4 (e) REWENO, r = 4 (f) LCD-WENO, r = 4

J . J . J :

(g) CW-WENO, r = 5 (h) RLWENO, r = 5 (i) LCD-WENO, r = 5

. . J . J :

(j) CW-WENO, r = 6 (k) REWENO, r = 6 (1) LCD-WENO, r = 6

Fig. 4: Contours of & of difference WENO methods in Example 4.3.
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(g) CW-WENO, r = 5 (h) RLWENO, r = 5 (i) LCD-WENO, r = 5

(j) CW-WENO, r = 6 (k) REWENO, r = 6 (1) LCD-WENO, r = 6

Fig. 5: Cut of h along y = 10 of difference WENO methods in Example 4.3.
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[ eterence souion
- Lcowenos

[ eterence souion
- RHwENOS

"o T 2 3 s 5 5

(a) CW-WENO, r = 3 (b) R-WENO, r = 3

—— eterence souion
- Lcowenor

—— eterence sion
- RHweNo?

[ eterence souton
- Cwwenor

"o T 2 3 s 5 5

(d) CW-WENO, r = 4

4 s ® 7

(g) CW-WENO, r = 5 (h) RLWENO, r = 5

4 s © 7

(j) CW-WENO, r = 6 (k) REWENO, r = 6 (1) LCD-WENO, r = 6

Fig. 6: Solution u; of different WENO methods in Example 4.4.
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05 T s 2 25 3 35 4

(a) CW-WENO, r = 3

—— terence souton
- GwweNor

- Lcowenos

- ALwENO7

— o
- Cwwenos

(b) R-WENO, r = 3

terence souton

05 T s 2 25 3 35 4 o

(d) CW-WENO, r = 4

— o
- AWENOS

(e) REWENO, r = 4 (f) LCD-WENO, r = 4

— retoronce souton
- Lcowenos

(j) CW-WENO, r = 6

(k) REWENO, r = 6

(1) LCD-WENO, r = 6

Fig. 7: Solution D; of different WENO methods in Example 4.5.
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the coordinate system of Riemann invariants instead of the local characteristic fields
of the hyperbolic system, thereby the efficiency is improved significantly. Due to the
nonlinear algebraic relation of Riemann invariants and conserved variables/fluxes,
we have to adopt the interpolation based alternative formulation of finite difference
WENO method. Numerical tests show that the Riemann invariants based WENO
method has optimal order of convergence and roughly the same efficiency as that of
the components-wise WENO, but its essentially non-oscillatory fashion is similar to
that of local characteristic decomposition based WENO. Since the only change made
in the proposed scheme is the variable interpolated by the WENO procedure, this new
strategy can be easily implemented in existing WENO code, and the CFL constraints
for stability and treatments for invariant domain properties in, e.g. [28, 29|, are the
same as those for classical finite difference schemes.

One major restriction of the applicability of the method in this paper is that it
can only be applied to hyperbolic systems of conservation laws endowed with coordi-
nate systems of Riemann invariants. This excludes the standard Euler equations of
compressible gas dynamics and more complex physical systems such as MHD. How-
ever, the paper highlights the importance of using high order interpolation based
algorithms such as the alternative formulation of the finite difference WENO scheme
in [13] rather than the more commonly used reconstruction based finite volume or
finite difference WENO schemes, to achieve the special purpose of obtaining high or-
der essentially non-oscillatory performance with a much reduced cost, which is novel
and may have other applications. It would be interesting to explore the possibility
of finding certain coordinate systems of approximate Riemann invariants for systems
which do not possess coordinate systems of Riemann invariants. This will be explored
in our future work.

Appendix A. A comparison of operations in LCD-WENO and RI-
WENO for one dimensional shallow water equations. We analyze and
compare the floating point operations in the local characteristic decomposition based
WENO (LCD-WENO) and Riemann invariants based WENO (RI-WENO) algorithms
for one dimensional shallow water equations in Table 3. From comparison, it is

steps LCD-WENO RI-WENO
_ 1 ] .
. TR o
or Roe’s average.
1 1
2 R(“)—L_\/g—h u—&-\/g_hJ’ w1 =u+2vgh,
1 u 1
= + R -
R'(w)= |7 2" 2Rl wa = u — 2/gh.
2 2V/gh 2R
3 vi=R Tu,i=j—r+1,...,j+r. None
4 v];% = weno(Vj—ri4i,..., Vitr—1), w];% = weno(Wj—r41,..., Wjtr—1),
v;_r+% = weno(Vjqr, ..., Vj—rt2), w;_r+% = weno(Wjir, ..., Wj—r42)
5 uilzRv_i1 u_ilzu(wj.tl)
+3 it3 Jt3 Jits
- + - + L
6 K iy iy ) f(uj+%’uj+%’ )

Table 3: Comparison of operations in LCD-WENO and RI-WENO algorithms for

one dimensional shallow water equations

clear that, R-FWENO exempts the computations at steps 1 and 3, saves computa-
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tional costs at step 2, and has exactly the same costs at steps 4, 5 and 6. (At
step 5, both algorithms use 4 multiplications and two additions, due to the relation

h:c(’wl —w2)2,u= %(’U}l +w2)7hu:h*u7 Wherec= ﬁ)

Appendix B. The definition of G(-) and computation of G7!(-) in Ex-
ample 4.5 . Let
1
g(u) = . . , u>0,
(14 B oo = /() o+ ()T ¢ el

=— (—alog 16 + (8 4 4a) logu + 4alog(1 + u?) + 2alog (

16(1+ «)
2+ a)t
(2+ a)t>

2+t
(2+a)t>> ’
where t = \/a2(u? — 1)2 + (da + 4) (u2 + 1)2.

Note that G(u) is a log-like monotone increasing concave function with ( 2o ) u? <I

a—au®+t
—a+au2+t>
—a? —4a—4+ (a® —da — 4)u® +
a? —da—4+ (—a? —da—4)u? +
—a? +4da+4+ (@® + 4o+ 4)u* +
a?+4a+4+ (—a?2+4da+du? +

+(oz+2)1og<

+(a+2)log( ,

u

24+2a
g(u) < u=? for u € (0,00), and lim,_,o+ (zfa(iu))ufl =1, limy Z(,“l) =1, thus one
242«

can compute G~ (log %) by solving u from the equation G(u) + logg = 0 based on
the Newton iteration.
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