
LOCAL CHARACTERISTIC DECOMPOSITION FREE HIGH1

ORDER FINITE DIFFERENCE WENO SCHEMES FOR2

HYPERBOLIC SYSTEMS ENDOWED WITH A COORDINATE3

SYSTEM OF RIEMANN INVARIANTS∗4

ZIYAO XU† AND CHI-WANG SHU‡5

Abstract. The weighted essentially non-oscillatory (WENO) schemes are popular high or-6
der numerical methods for hyperbolic conservation laws. When dealing with hyperbolic systems,7
WENO schemes are usually used in cooperation with the local characteristic decomposition, as the8
component-wise WENO reconstruction/interpolation procedure often produces oscillatory approxi-9
mations near shocks. In this paper, we investigate local characteristic decomposition free WENO10
schemes for a special class of hyperbolic systems endowed with a coordinate system of Riemann in-11
variants. We apply the WENO procedure to the coordinate system of Riemann invariants instead of12
the local characteristic fields to save the expensive computational cost on local characteristic decom-13
position but meanwhile maintain the essentially non-oscillatory performance. Due to the nonlinear14
algebraic relation between the Riemann invariants and conserved variables, it is difficult to obtain15
the cell averages of Riemann invariants directly from those of conserved variables, and vice versa,16
thus we do not use the finite volume WENO schemes in this work. The same difficulty is also faced in17
the traditional Shu-Osher lemma [25] based finite difference schemes, as the computation of fluxes is18
based on reconstruction as well. Therefore, we adopt the alternative formulation of finite difference19
WENO scheme [13, 24] in this paper, which is based on interpolation for nodal values. The efficiency20
and good performance of our method are demonstrated by extensive numerical tests, which indicate21
the coordinate system of Riemann invariants is a good alternative of local characteristic fields for22
the WENO procedure.23
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1. Introduction. It has long been recognized that, the solutions of nonlinear hy-27

perbolic equations can develop discontinuities (shocks) in finite time, even if the initial28

condition is smooth. Such a phenomenon greatly challenges the robustness of high or-29

der numerical methods, as spurious oscillations typically appear near shocks in numer-30

ical approximations (the Gibbs phenomenon), and may blow/mess up the simulation31

in later times. There have been numerous high order numerical methods developed32

to address this issue, among which the essentially non-oscillatory (ENO)/weighted33

essentially non-oscillatory (WENO) schemes have gained great success and have been34

widely used in applications.35

The ENO methods, first developed by Harten et al. [10], use adaptive strategy36

to choose the smoothest stencil among several candidates to reconstruct the solution37

from its cell averages, hence the methods yield essentially non-oscillatory approxima-38

tion near shocks. The original ENO scheme was based on the framework of finite39

volume methods, where the numerical fluxes at cell interfaces are obtained through40

reconstructed solution. Later, Shu and Osher proposed the finite difference ENO41
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2 ZIYAO XU AND CHI-WANG SHU

scheme in [24] based on ENO interpolation for nodal values and high order finite42

difference approximation for spatial derivatives of fluxes, which saves considerable43

computational cost in multi-dimensions, as the derivatives can be approximated di-44

mension by dimension in finite difference schemes. Their subsequent work in [25]45

developed a simpler finite difference ENO scheme based on the Shu-Osher lemma46

to approximate the fluxes at cell interfaces by standard reconstruction for fluxes at47

grid points. The WENO methods were developed upon ENO, with the idea of using48

a convex combination of all candidate stencils rather than only one stencil in the49

original ENO scheme. In the pioneer work of WENO schemes, Liu et al. [14] used50

linear weights to combine the candidate stencils in r-th order ENO schemes to yield51

(r + 1)-th order of accuracy. It was later improved by Jiang and Shu [12] to achieve52

(2r − 1)-th order of accuracy on the same stencils, by adopting nonlinear weights53

based on smoothness indicators designed for optimal accuracy in smooth regions and54

essentially non-oscillatory fashion near discontinuities. Thereafter, intensive modifi-55

cations and improvements of the WENO procedure have been developed, e.g. the56

mapped WENO [11], WENO-Z [4, 6], modified WENO to handle negative weights57

[21], multi-resolution WENO [31], Hermite WENO [19], among other variants. Both58

finite volume [10] and finite difference [24, 25] frameworks for ENO can be used with59

the above WENO procedures. In our work, we use the classic WENO-JS procedure60

[12], as it is most widely used and relatively simple to code. For more details about the61

history and development of ENO and WENO methods, one can refer to the surveys62

[22, 23].63

The ENO/WENO methods perform very well for scalar conservation laws as they64

achieve uniformly high order accuracy in smooth regions and resolve shocks sharply65

with essentially non-oscillatory quality. However, when dealing with hyperbolic sys-66

tems, the component-wise ENO/WENO procedure often produces oscillatory results67

near shocks, especially when waves corresponding to different characteristic fields in-68

teract, such as in Riemann problems. The primary approach to resolve this problem69

is to apply the ENO/WENO procedure to the local characteristic fields of the system70

obtained by local characteristic decomposition for the conserved variables/fluxes, and71

transform the results back to the conserved variables/fluxes afterwards. Below, we72

briefly review how the WENO methods for hyperbolic systems are used in cooper-73

ation with the local characteristic decomposition. For the ease of comparison with74

the algorithm to be developed in this paper, we demonstrate it as per example of the75

alternative formulation of finite difference WENO scheme developed in [13] from [24],76

which will be introduced with more details in Section 3.77

We consider the hyperbolic system of m (m > 1) components78

(1.1) ut + f(u)x = 0,79

in one space dimension, where u = (u1, . . . , um) ∈ R
m are the conserved variables80

and f(u) = (f1(u), . . . , fm(u)) ∈ R
m are the fluxes. Now and henceforth, we use bold81

face font to denote vectors or matrices.82

Consider uniform grids with the grid point xj = j∆x centering in the cell Ij =83

[xj− 1
2
, xj+ 1

2
] = [(j − 1

2 )∆x, (j + 1
2 )∆x], ∀j ∈ Z. The semi-discrete (2r − 1)-th order84

alternative formulation of finite difference WENO scheme for (1.1) is formulated as85

(1.2)
duj

dt
+

1

∆x

(

f̂j+ 1
2
− f̂j− 1

2

)

= 0,86

where uj is the approximation to u(xj , t), f̂j+ 1
2

= f̂(u−
j+ 1

2

,u+
j+ 1

2

, · · · ) is the nu-87

merical flux, whose definition and arguments omitted for brevity will be detailed88
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LOCAL CHARACTERISTIC DECOMPOSITION FREE WENO 3

in later sections, and u±
j+ 1

2

are approximations to u(xj+ 1
2
, t) from interpolants on89

Ij and Ij+1. We denote the WENO interpolation for a scalar-valued grid func-90

tion v at xj+ 1
2
on Ij by v−

j+ 1
2

= weno(vj−r+1, . . . , vj+r−1), whose implementation91

will be detailed in Section 3. The WENO interpolation for v+
j− 1

2

follows from mir-92

ror symmetry, i.e. v+
j− 1

2

= weno(vj+r−1, . . . , vj−r+1). We shall abuse the nota-93

tion to also let it denote the component-wise WENO interpolation for vectors, e.g.94

v−
j+ 1

2

= weno(vj−r+1, . . . ,vj+r−1).95

The flowchart of the alternative formulation of finite difference WENO algorithm96

(1.2) with local characteristic decomposition, based on the nodal values {un
j }j∈Z at97

time level tn, is given as follows, where the superscript n is omitted for brevity and98

the computation is carried out for all j ∈ Z:99

1. Approximate the solution at xj+ 1
2
by the arithmetic mean uj+ 1

2
= 1

2 (uj + uj+1),100

or the Roe’s average [20] satisfying f(uj+1)− f(uj) =
∂f
∂u

(uj+ 1
2
) (uj+1 − uj),101

if it is available.102

2. Perform the eigendecomposition on the Jacobianmatrix: ∂f
∂u

(uj+ 1
2
) = Rj+ 1

2
Λj+ 1

2
R−1

j+ 1
2

,103

where Λj+ 1
2
and Rj+ 1

2
are the diagonal matrix containing all eigenvalues and104

the eigenmatrix consist of a complete set of eigenvectors as its columns, re-105

spectively, of the Jacobian matrix.106

3. Calculate the local characteristic variables: vi = R−1
j+ 1

2

ui, on the stencils107

i = j − r + 1, . . . , j + r.108

4. Perform the WENO interpolation for the local characteristic variables to ob-109

tain v−
j+ 1

2

= weno(vj−r+1, . . . ,vj+r−1) and v+
j+ 1

2

= weno(vj+r , . . . ,vj−r+2).110

5. Transform the local characteristic variables back to the conserved variables:111

u±
j+ 1

2

= Rj+ 1
2
v±
j+ 1

2

.112

6. Calculate the numerical fluxes f̂j+ 1
2
to evolve the scheme (1.2) in time.113

As we can see, the steps 1, 2, 3 and 5 are extra costs due to the local characteristic114

decomposition. In particular, there are 2r matrix-vector multiplications at every115

cell interface xj+ 1
2
at the step 3, which is responsible for most of the floating point116

operations.117

There have been some attempts on avoiding or reducing the costs on local char-118

acteristic decomposition in numerical schemes, meanwhile maintaining the essentially119

non-oscillatory performance, but only limited successes were achieved. In [12], Jiang120

and Shu computed the weights in WENO from entropy and pressure instead of the121

characteristic variables for Euler systems, to reduce part of the operations in local122

characteristic decomposition. In [30], Zheng et al. argued that at the contact dis-123

continuity on interface of two-medium flow, direct WENO interpolation for primary124

variables is better than component-wise interpolation for conserved variables, but lo-125

cal characteristic decomposition was still applied therein to the primitive variables to126

get more satisfactory results. Low order central schemes [16, 15] can be used without127

local characteristic decomposition. However, the local characteristic decomposition128

is still necessary to control spurious oscillations when orders of the schemes are high129

[17].130

In this work, we propose an efficient implementation of finite difference WENO131

schemes that is local characteristic decomposition free, for a special class of hyperbolic132

systems endowed with a coordinate system of Riemann invariants. Examples of such133

systems include all two-component hyperbolic systems and some multi-component134

systems to be introduced in Section 2. The key idea of the method is to apply the135
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4 ZIYAO XU AND CHI-WANG SHU

WENO procedure to the nodal values of the coordinate system of Riemann invariants,136

which are (one-to-one) nonlinear algebraic functions of the conserved variables, and137

transform the interpolated values back to the conserved variables in the calculation138

of fluxes. The improvement in efficiency is due to the fact that, the characteristic139

decomposition for the WENO procedure is calculated locally, namely the conserved140

variables/fluxes at every node need to be projected onto local characteristic fields141

by different inverse eigenmatrices at different cell interfaces, while the Riemann in-142

variants have definite algebraic relation with the conserved variables thus only need143

to be calculated once per node. A comparison of floating point operations in these144

two methods are shown in Appendix A. The good non-oscillatory performance of145

such treatment is justified by both theoretical properties of hyperbolic systems and146

numerical tests.147

Due to the nonlinearity of the algebraic relation between Riemann invariants148

and conserved variables/fluxes, we cannot use any reconstruction based numerical149

schemes like the finite volume WENO or the traditional Shu-Osher lemma based150

finite difference WENO, as we cannot directly transfer the cell averages between151

Riemann invariants and conserved variables/fluxes. On the other hand, the transform152

between nodal values is straightforward, thus we adopt the alternative formulation153

of finite difference WENO scheme [13], which is based on WENO interpolation for154

nodal values. Its implementation will be demonstrated in Section 3. For detailed155

introduction and comparison with the traditional finite difference WENO for the156

alternative formulation, one can refer to [13].157

The rest of the paper is organized as follows. In Section 2, we review the definition158

of Riemann invariants and their important properties, and give examples of hyperbolic159

systems endowed with a coordinate system of Riemann invariants. In Section 3, we160

give a detailed description for our algorithm. We use numerical tests in Section 4 to161

demonstrate the efficiency and good performance of our methods. Finally, we end up162

with some concluding remarks in Section 5.163

2. Riemann invariants. In this section, we review the definition and important164

properties of Riemann invariants of hyperbolic system of conservation laws.165

We consider the hyperbolic system (1.1), with u = (u1, . . . , um)T the conserved166

variables taking values in an open set O ⊂ R
m, and f(u) = (f1(u), . . . , fm(u))T a167

smooth flux function on O. From hyperbolicity, the Jacobian matrix ∂f
∂u

has a com-168

plete set of eigenvectors r1(u), r2(u), . . . , rm(u) corresponding to the real eigenvalues169

λ1(u) ≤ λ2(u) ≤ . . . ≤ λm(u), for all u ∈ O.170

The Riemann invariants of the hyperbolic system (1.1) is defined as follows [26]:171

Definition 2.1. An i-Riemann invariant (1 ≤ i ≤ m) of the hyperbolic system172

(1.1) is a scalar-valued function w(u) on O, such that ∇w(u)·ri(u) = 0, ∀u ∈ O, where173

ri(u) is an eigenvector of the Jacobian matrix ∂f
∂u

corresponding to the eigenvalue174

λi(u).175

Riemann invariants are closely related to the Riemann problem, which is a Cauchy176

problem of the hyperbolic system (1.1) with the initial condition177

(2.1) u(x, 0) =

{

ul, x < 0

ur, x > 0
,178

where ul and ur are constant states. It is well-known that the solution u(x, t) of the179

Riemann problem typically develops from the initial discontinuity at the origin into180

m+1 constant states in sector regions separated by the i-shock, contact or rarefaction181

This manuscript is for review purposes only.



LOCAL CHARACTERISTIC DECOMPOSITION FREE WENO 5

wave, for i = 1, 2, . . . ,m, which is a characterization of the fundamental behavior of182

solutions of hyperbolic systems involving discontinuities. An important property of183

Riemann invariants across waves is stated as follows [26]:184

Theorem 2.2. The change of an i-Riemann invariant w of the hyperbolic system185

(1.1) across an i-shock wave is of third order in ǫ, i.e. |w(ul)−w(ur)| = O(ǫ3), where186

ul and ur are the states on the left and right sides of the i-shock, respectively, and187

ǫ = |λi(ul) − λi(ur)| is a measure of the strength of the i-shock. In addition, the188

i-Riemann invariant is unchanged across an i-rarefaction or contact wave.189

Roughly speaking, the i-Riemann invariant is unchanged or almost unchanged across190

an i-wave, consult Figure 1, where h, hu are the conserved variables, and w1, w2 are191

the 1 and 2-Riemann invariants, respectively, in a Riemann problem of the shallow192

water equations (2.3).
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Fig. 1: Conserved variables and Riemann invariants in a Riemann problem of the
shallow water equations

193
The WENO interpolation/reconstruction procedure performs very well if there194

is only one discontinuity in the stencil. However, the results turn out to be less195

satisfactory when there are multiple shocks in the stencil. The property of Riemann196

invariants in Theorem 2.2 gives us a hint to perform the WENO procedure on the197

1, 2-Riemann invariants of hyperbolic systems when m = 2, as there is only one major198

discontinuity in each Riemann invariant in Riemann problems. We shall show in199

the numerical section that such a treatment yields very satisfactory non-oscillatory200

results.201

A direct extension of the above approach to hyperbolic systems with m ≥ 3 is to202

perform the WENO procedure on m variables, each of which only admits one major203
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6 ZIYAO XU AND CHI-WANG SHU

jump in stencils. An ideal choice is the coordinate system of Riemann invariants,204

which is defined as follows [7]:205

Definition 2.3. The system (1.1) is endowed with a coordinate system of Rie-206

mann invariants if there exist m scalar-valued functions w1(u), w2(u), . . . , wm(u) on207

O such that,208

∇wi(u) · rj(u) = δi,j , i, j = 1, 2, . . . ,m,209

where δ is the Kronecker delta, rj(u) is an eigenvector of the Jacobian matrix ∂f
∂u

cor-210

responding to the eigenvalue λj(u), 1 ≤ j ≤ m. The variables (w1(u), w2(u), . . . , wm(u))211

are called a coordinate system of Riemann invariants of (1.1).212

To this end, we give some examples of hyperbolic systems of conservation laws213

endowed with a coordinate system of Riemann invariants.214

Example 2.1. The linear hyperbolic system215

(2.2) ut +Aux = 0,216

where A = RΛR−1 for some diagonal matrix Λ and eigenmatrix R, has a coordinate217

system of Riemann invariants (w1, w2, . . . , wm) with wi(u) = liu, 1 ≤ i ≤ m, where218

li is the i-th row of R−1.219

Example 2.2. The shallow water equations in one dimension220

(2.3)

(

h

hu

)

t

+

(

hu

hu2 + 1
2gh

2

)

x

= 0221

where h is the water height, u is the velocity of the fluid, and g is the gravitational222

constant, is endowed with a coordinate system of Riemann invariants (w1, w2) =223

(u+ 2
√
gh, u− 2

√
gh).224

The shallow water equations in two dimensions225

(2.4)





h

hu

hv





t

+





hu

hu2 + 1
2gh

2

huv





x

+





hv

huv

hv2 + 1
2gh

2





y

= 0,226

where u and v are velocities of the fluid in x and y directions, respectively, has co-227

ordinate systems of Riemann invariants (w1, w2, w3) = (u − 2
√
gh, v, u + 2

√
gh) and228

(w1, w2, w3) = (v−2
√
gh, u, v+2

√
gh) in x and y directions, respectively, in the sense229

that the states of fluid are constant in the other direction (in this case, the system is of230

the form of one dimensional equations, which is known as the split multi-dimensional231

problem).232

Example 2.3. The hyperbolic system of electrophoresis of m components233

(2.5) ∂tui + ∂x

(

ciui
∑n

j=1 uj

)

= 0, i = 1, 2, . . . ,m,234

where c1 < c2 < · · · < cm are positive constants, is endowed with a coordinate system235

of Riemann invariants (w1, w2, . . . , wm), where wi ∈ (ci, ci+1) is the solution of the236

equation
∑m

j=1
uj

cj−w
= 0, for i = 1, 2, . . . ,m− 1, and wm =

∑m

j=1
uj

cj
.237

This system models the separation of ionized chemical compounds in solution238

driven by an electric filed, where ci and ui denote the electrophoretic mobility and239

concentration of the i-th component, respectively, see [2] for more details about its240

physical backgrounds.241
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Example 2.4. The hyperbolic system of planar electromagnetic waves in nonlin-242

ear isotropic dielectrics243

(2.6)









B1

B2

D1

D2









t

+











−Ψ′(r)
r

D2
Ψ′(r)

r
D1

Ψ′(r)
r

B2

−Ψ′(r)
r

B1











x

= 0,244

where B = (B1, B2)
T is the magnetic induction, D = (D1, D2) is the electric displace-245

ment, Ψ(r) is the electromagnetic energy, and r =
√

B2
1 +B2

2 +D2
1 +D2

2, is endowed246

with a coordinate system of Riemann invariants (w1, w2, w3, w4).247

If we define a, b, p, q by peia = 1√
2
(B2 +D1 − i(B1 −D2)) and qeib = 1√

2
(−B2 +D1 + i(B1 +D2)),248

then w1 = a, w2 = b, and w3, w4 are the 1, 2-Riemann invariants of the smaller hy-249

perbolic system250

(2.7)

(

p

q

)

t

+

(

Ψ′(r)
r

p

−Ψ′(r)
r

q

)

x

= 0, r =
√

p2 + q2.251

3. The algorithms. In this section, we overview the WENO-JS interpolation,252

and establish our algorithms in the framework of alternative formulation of finite253

difference WENO scheme in one and two space dimensions. We shall assume the254

grids are uniform and, for simplicity, only consider periodic boundaries.255

3.1. Overview of the WENO-JS interpolation. The (2r−1)-th orderWENO-256

JS interpolation for a scalar-valued grid function v is described as follows.257

First, we define the small stencils Sk = {xj−r+k, . . . , xj−1+k} to calculate the258

(r − 1)-th order polynomial interpolant p(k)(x) of v on Ij , for k = 1, 2, . . . , r, and the259

big stencil S0 = ∪r
k=1Sk = {xj−r+1, . . . , xj+r−1} to calculate the (2r − 2)-th order260

polynomial interpolant p(0)(x) of v on Ij , such that261

p(k)(xj−r+k+m−1) = vj−r+k+m−1, m = 1, 2, . . . , r,262

for k = 1, 2, . . . , r, and263

p(0)(xj−r+m) = vj−r+m, m = 1, 2, . . . , 2r − 1,264

so that we yield265

(3.1)

v
−(k)

j+ 1
2

= p(k)(xj+ 1
2
) =

r
∑

m=1

a(k)m vj−r+k+m−1 = v(xj+ 1
2
) +O(∆xr), k = 1, 2, . . . , r,266

and267

(3.2) v
−(0)

j+ 1
2

= p(0)(xj+ 1
2
) =

r
∑

k=1

γkv
−(k)

j+ 1
2

= v(xj+ 1
2
) +O(∆x2r−1),268

where {γk}rk=1 are the so-called optimal linear weights with γk ≥ 0, for k = 1, 2, . . . , r269

[5] and
∑r

k=1 γk = 1, and {a(k)m }rm,k=1 are constant coefficients.270

Then, we introduce the nonlinear weights {ωk}rk=1, which is designed in the prin-271

ciple that, in smooth regions wk is close to γk to achieve optimal accuracy while,272
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8 ZIYAO XU AND CHI-WANG SHU

if containing discontinuities, wk is close to zero to minimize the contribution of the273

stencil containing discontinuities in WENO interpolation:274

(3.3) ωk =
ω̃k

∑r
m=1 ω̃m

, ω̃k =
γk

(βk + ǫ)2
, k = 1, 2, . . . , r,275

where ǫ is a small positive number, e.g. ǫ = 10−6, to avoid the case of linear weights276

being divided by zero, and {βk}rk=1 are the smoothness indicators of the polynomial277

interpolant p(k)(x) on Ij :278

(3.4) βk =

r
∑

ℓ=1

∆x2ℓ−1

∫

Ij

(

dℓ

dxℓ
p(k)(x)

)2

dx.279

Finally, the WENO-JS interpolation v−
j+ 1

2

is calculated by280

(3.5) v−
j+ 1

2

=

r
∑

k=1

ωkv
−(k)

j+ 1
2

.281

For instance, in the fifth order (r = 3) WENO-JS interpolation, we have282

v
−(1)

j+ 1
2

=
3

8
vj−2 −

5

4
vj−1 +

15

8
vj ,

v
−(2)

j+ 1
2

= −1

8
vj−1 +

3

4
vj +

3

8
vj+1,

v
−(3)

j+ 1
2

=
3

8
vj +

3

4
vj+1 −

1

8
vj+2,

283

and

γ1 =
1

16
, γ2 =

5

8
, γ3 =

5

16
,

and284

β1 =
13

12
(vj−2 − 2vj−1 + vj)

2 +
1

4
(vj−2 − 4vj−1 + 3vj)

2,

β2 =
13

12
(vj−1 − 2vj + vj+1)

2 +
1

4
(vj−1 − vj+1)

2,

β3 =
13

12
(vj − 2vj+1 + vj+2)

2 +
1

4
(3vj − 4vj+1 + vj+2)

2.

285

For expressions of smoothness indicators in higher order WENO-JS interpolations,286

one can refer to [3].287

3.2. The algorithm in one dimension. For the domain [xa, xb], we take the288

uniform partition xa = x0 < x1 < . . . < xN = xb, and denote ∆x ≡ xj − xj−1,289

xj− 1
2
= 1

2 (xj−1 + xj), for j = 1, 2, . . . , N . In the finite difference WENO scheme,290

we seek uj to approximate u(xj , t), and u±
j+ 1

2

to approximate the solution at xj+ 1
2

291

from Ij and Ij+1, respectively. For the ease of writing, we shall use subscript indices292

exceeding the domain in the cyclic sense.293

The semi-discrete (2r − 1)-th order alternative formulation of finite difference294

WENO scheme for the hyperbolic system (1.1) in one dimensions is given by (1.2), in295

which we define296

(3.6) f̂j+ 1
2
= h(u−

j+ 1
2

,u+
j+ 1

2

) +

r−1
∑

m=1

a2m∆x2m

(

∂2m

∂x2m
f

)

j+ 1
2

,297
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where h(·, ·) is the numerical flux based on exact or approximate Riemann solvers,298

e.g. the Godunov flux, the Lax-Friedrichs flux, or the HLLC-type fluxes, among299

others, and the coefficients a2 = − 1
24 , a4 = 7

5760 , a6 = − 31
967680 , a8 = 127

154828800 , a10 =300

− 73
3503554560 , . . ., are obtained through Taylor expansion to approximate the spacial301

derivative of flux with high accuracy, see [24].302

Following the practice in [18, 13], we calculate u±
j+ 1

2

in h(u−
j+ 1

2

,u+
j+ 1

2

) by WENO303

interpolation, while use simple central difference to approximate the spatial derivatives304

of f in the remaining terms to save computational costs, as these terms contain at305

least ∆x2 in the coefficients, which is expected to contribute much less oscillations. To306

attain enough accuracy, we use the stencil {xj−r+1, . . . , xj , . . . , xj+r} in the central307

difference approximation for
(

∂2m

∂x2m f
)

j+ 1
2

.308

For instance, in the fifth order finite difference WENO, we use309

(

∂2

∂x2
f

)

j+ 1
2

=
1

∆x2

(

− 5

48
fj−2 +

13

16
fj−1 −

17

24
fj −

17

24
fj+1 +

13

16
fj+2 −

5

48
fj+3

)

,

(

∂4

∂x4
f

)

j+ 1
2

=
1

∆x4

(

1

2
fj−2 −

3

2
fj−1 + fj + fj+1 −

3

2
fj+2 +

1

2
fj+3

)

.

310

If the hyperbolic system (1.1) is endowed with a coordinate system of Riemann311

invariants w with the one-to-one algebraic relation w = w(u) and u = u(w) to the312

conserved variables u, the (2r−1)-th order alternative formulation of finite difference313

WENO scheme based on the nodal values {un
j }Nj=1 at time level tn is given as follows,314

where the superscript n is omitted for simplicity and computation is carried out for315

all j = 1, 2, . . . , N :316

1. Calculate the coordinate system of Riemann invariants wj = w (uj).317

2. Perform the WENO interpolation introduced in Section 3.1 on {wj}Nj=1 to ob-318

tainw−
j+ 1

2

= weno(wj−r+1, . . . ,wj+r−1) andw+
j+ 1

2

= weno(wj+r , . . . ,wj−r+2).319

3. Transform the results back to the conserved variables by u±
j+ 1

2

= u
(

w±
j+ 1

2

)

.320

4. Calculate the numerical fluxes f̂j+ 1
2
to evolve the scheme (1.2) in time.321

To this end, we would like to introduce the time-marching approach used the322

algorithm. For the ODE system,323

(3.7) ut = L(u),324

which is obtained from the semi-discrete finite difference scheme, we adopt the 4-th325

order 5 stage strong stability preserving Runge-Kutta (SSPRK(4, 5)) method [27],326

u(1) = un + 0.39175222700392∆tL(un),

u(2) = 0.44437049406734un+ 0.55562950593266u(1)+ 0.36841059262959∆tL(u(1)),

u(3) = 0.62010185138540un+ 0.37989814861460u(2)+ 0.25189177424738∆tL(u(2)),

u(4) = 0.17807995410773un+ 0.82192004589227u(3)+ 0.54497475021237∆tL(u(3)),

un+1 = 0.00683325884039un+ 0.51723167208978u(2)+ 0.12759831133288u(3)+ 0.34833675773694u(4)

+ 0.08460416338212∆tL(u(3)) + 0.22600748319395∆tL(u(4)),

327

where un and un+1 are solutions at the time level tn and tn+1, respectively, and328

∆t = tn+1 − tn. We refer to [8] and [9] for more details about the strong stability329

This manuscript is for review purposes only.



10 ZIYAO XU AND CHI-WANG SHU

preserving (SSP), also called the total variation diminishing (TVD), Runge-Kutta or330

multi-step time discretization approaches.331

In the numerical section, we shall useWENO schemes with spatial accuracy higher332

than fourth order (the temporal accuracy), as in applications it is usually the spatial333

accuracy that restricts the resolution of simulations.334

3.3. The algorithm in two dimensions. For the two dimensional domain335

[xa, xb] × [ya, yb], we take the uniform partition xa = x0 < x1 < · · · < xN = xb336

and ya = y0 < y1 < · · · < yM = yb in x and y directions, respectively, and denote337

by ∆x ≡ xi − xi−1, xi− 1
2
= 1

2 (xi−1 + xi) for i = 1, 2, . . . , N , and ∆y ≡ yj − yj−1,338

yj− 1
2
= 1

2 (yj−1 + yj) for j = 1, 2, . . . ,M . We seek ui,j to approximate u(xi, yj , t),339

and u±
i+ 1

2
,j

and u±
i,j+ 1

2

to approximate u(xi+ 1
2
, yj , t) and u(xi, yj+ 1

2
, t), respectively,340

from different sides, in the finite difference WENO schemes.341

The semi-discrete (2r − 1)-th order alternative formulation of finite difference342

WENO scheme for the hyperbolic system343

(3.8) ut + f(u)x + g(u)y = 0,344

in two dimensions is formulated as345

(3.9)
dui,j

dt
+

1

∆x

(

f̂i+ 1
2
,j − f̂i− 1

2
,j

)

+
1

∆y

(

ĝi,j+ 1
2
− ĝi,j− 1

2

)

= 0,346

for i = 1, 2, . . . , N, j = 1, 2, . . . ,M , where the fluxes are defined the same way as in347

one dimensional case, thanks to the advantage of finite difference schemes.348

If the x-split problem of (3.8) is endowed with a coordinate system of Riemann349

invariants w and the y-split problem of (3.8) is endowed with a coordinate system350

of Riemann invariants v, the algorithm based on the nodal values {un
i,j}N,M

i=1,j=1 at351

time level tn is given as follows, where the superscript n is omitted for brevity and352

computation is carried out for all i = 1, 2, . . . , N, j = 1, 2, . . . ,M :353

1. Calculate the coordinate systems of Riemann invariants wi,j = w (ui,j) and354

vi,j = v (ui,j).355

2. Perform the WENO interpolation introduced in Section 3.1 on {wi,j}N,M
i=1,j=1356

and {vi,j}N,M
i=1,j=1 to obtainw−

i+ 1
2
,j
= weno(wi−r+1,j , . . . ,wi+r−1,j), w

+
i+ 1

2
,j
=357

weno(wi+r,j , . . . ,wi−r+2,j), and v−
i,j+ 1

2

= weno(vi,j−r+1, . . . ,vi,j+r−1), v
+
i,j+ 1

2

=358

weno(vi,j+r , . . . ,vi,j−r+2).359

3. Calculate u±
i+ 1

2
,j
= u

(

w±
i+ 1

2
,j

)

and u±
i,j+ 1

2

= u
(

v±
i,j+ 1

2

)

.360

4. Calculate the numerical fluxes f̂i+ 1
2
,j and ĝi,j+ 1

2
to evolve the scheme (3.9)361

in time.362

We adopt the same time marching approach in the algorithm as in the one space363

dimension.364

4. Numerical tests. In this section, we study the accuracy, efficiency and es-365

sentially non-oscillatory performance of the algorithm established in the previous sec-366

tions, and compare them with those of the component-wise and local characteristic de-367

composition basedWENOmethods. For convenience, the component-wise WENO, lo-368

cal characteristic decomposition based WENO and Riemann invariants based WENO369

methods shall be abbreviated to CW-WENO, LCD-WENO and RI-WENO, respec-370

tively. We adopt the Lax-Friedrichs flux as the lowest order term in the flux (3.6).371

The numerical tests are carried out for examples given in Section 2, except for the first372
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LOCAL CHARACTERISTIC DECOMPOSITION FREE WENO 11

one, as the RI-WENO and LCD-WENO are exactly the same for linear hyperbolic373

systems. The CFL conditions are taken as ∆t = 1
10λmax

∆x in one dimensional tests374

and ∆t = 1
5λmax

∆x in two dimensional tests, unless otherwise stated, where λmax375

is the maximum absolute value of eigenvalues of the numerical solution. The CFL376

conditions are taken smaller than usual in the tests as we are mainly concerned with377

the performance of the spatial discretization and would like to reduce the influence of378

the time discretization by reducing the time step size. As the only difference among379

the CW-WENO, LCD-WENO and RI-WENO are the variables used in the WENO380

interpolation, their CFL constraints for stability are the same.381

Example 4.1. (Accuracy and efficiency)382

In this example, we compare the accuracy and efficiency of RI-WENO with those383

of the CW-WENO and LCD-WENO for the one dimensional shallow water equations384

(2.3).385

It is easy to verify that, if v(x, t) is a classic solution of the inviscid Burgers’386

equation vt +
(

v2

2

)

x
= 0, then h(x, t) = 4

9v
2(x, t) and u(x, t) = 2

3v(x, t) are solutions387

of the shallow water equations with the gravitational constant g = 1
4 , thus we let388

v(x, 0) = 1
2 sin(x) + 1 to determine the corresponding initial conditions of h and u.389

We set the the domain Ω = [0, 2π] and enforce the periodic boundary condition in390

the tests. The CFL conditions are taken as ∆t = 1
10λmax

∆x
2r−1

4 in accuracy tests to391

observe the designed spatial accuracy, and the terminal time is T = 0.1.392

The errors and orders of convergence of CW-WENO, RI-WENO and LCD-WENO393

for h are given in Table 1, from which we can clearly observe that RI-WENO has the394

same orders of convergence as those of CW-WENO.395

Moreover, we compare the CPU times of CW-WENO, RI-WENO and LCD-396

WENO on different grids for different orders. The code is run on Oscar[1] with 1397

core and 8GB memory, and we count the CPU times by taking the average of 1000398

trials of the complete computation. The results are given in Table 2, from which we399

can see that RI-WENO has roughly the same efficiency as CW-WENO while reduces400

considerable computational costs from LCD-WENO.401

Example 4.2. (Shallow water equations in one dimension)402

In this test, we compare the essentially non-oscillatory performance of RI-WENO403

with that of CW-WENO and LCD-WENO for the shallow water equations (2.3) in404

one dimension.405

We first solve a Riemann problem with g = 10 and the initial condition406

h(x, 0) =

{

0.125, x < 0

1.000, x > 0
, u(x, 0) = 0,407

on the domain Ω = [−5, 5] with the partition N = 200. The plots of h of different408

methods at T = 1 are compared in Figure 2, where the reference solution are given by409

the exact Riemann solver.410

We then solve a periodic boundary problem with g = 1 and the initial condition411

h(x, 0) =

{

2.0, 0 < x < 10

1.5, 10 < x < 20
, u(x, 0) = 0,412

on the domain Ω = [0, 20] with the partition N = 200. The plots of h of different413

methods at T = 20 are compared in Figure 3, where the reference solution is obtained414

from the fifth order LCD-WENO on a grid containing 10000 cells.415
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(b) RI-WENO, r = 3
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(c) LCD-WENO, r = 3

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

reference solution

CW-WENO7

(d) CW-WENO, r = 4
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(e) RI-WENO, r = 4
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(f) LCD-WENO, r = 4
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(g) CW-WENO, r = 5
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(h) RI-WENO, r = 5
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(i) LCD-WENO, r = 5
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(j) CW-WENO, r = 6
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(k) RI-WENO, r = 6
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(l) LCD-WENO, r = 6

Fig. 2: Solution h of different WENO methods for the Riemann problem in Example
4.2.
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method CW-WENO RI-WENO LCD-WENO

r N L1 error order L1 error order L1 error order

3 20 5.08E-04 - 1.07E-04 - 1.29E-03 -
40 1.53E-05 5.05 3.12E-06 5.10 9.23E-05 3.80
80 4.12E-07 5.22 9.18E-08 5.08 6.03E-06 3.94
160 1.16E-08 5.16 2.79E-09 5.04 3.64E-07 4.05
200 3.71E-09 5.09 9.28E-10 4.93 1.23E-07 4.87

4 10 4.09E-03 - 8.43E-04 - 4.53E-03 -
20 7.82E-05 5.71 6.90E-06 6.93 2.88E-04 3.98
40 7.66E-07 6.67 6.42E-08 6.75 1.78E-05 4.01
60 5.81E-08 6.36 5.61E-09 6.01 3.63E-06 3.92

5 10 1.75E-03 - 3.42E-04 - 2.12E-03 -
20 8.11E-06 7.76 8.91E-07 8.58 3.89E-05 5.77
30 1.87E-07 9.30 2.04E-08 9.32 3.26E-06 6.12
40 1.41E-08 9.00 1.28E-09 9.62 3.65E-07 7.61

6 12 2.11E-04 - 3.86E-05 - 2.84E-04 -
20 1.93E-06 9.20 2.68E-07 9.73 9.25E-06 6.70
30 1.89E-08 11.40 2.92E-09 11.15 4.76E-07 7.32
40 9.34E-10 10.46 1.09E-10 11.41 3.81E-08 8.78

Table 1: Accuracy of h of different WENO methods in Example 4.1

method CW-WENO RI-WENO LCD-WENO

r N CPU time (s) CPU time (s) CPU time (s)

3 50 1.58E-03 1.74E-03 3.55E-03
100 6.22E-03 6.52E-03 1.44E-02
150 9.94E-03 1.07E-02 2.77E-02
200 1.72E-02 1.84E-02 4.87E-02

4 50 2.78E-03 2.97E-03 5.27E-03
100 1.08E-02 1.13E-02 2.11E-02
150 2.03E-02 2.10E-02 4.35E-02
200 3.35E-02 3.69E-02 6.76E-02

5 50 3.78E-03 3.95E-03 6.50E-03
100 1.47E-02 1.52E-02 2.60E-02
150 2.88E-02 2.96E-02 5.42E-02
200 4.65E-02 5.18E-02 8.38E-02

6 50 4.84E-03 5.01E-03 7.94E-03
100 1.90E-02 1.95E-02 3.18E-02
150 3.81E-02 3.88E-02 6.71E-02
200 6.57E-02 6.76E-02 1.03E-01

Table 2: CPU times of different WENO methods in Example 4.1

By comparison, we observe the essentially non-oscillatory effect of RI-WENO is416

much better than CW-WENO, and similar to LCD-WENO.417

Example 4.3. (Shallow water equations in two dimensions)418

In this test, we compare the essentially non-oscillatory performance of RI-WENO419

with that of CW-WENO and LCD-WENO for the shallow water equations (2.4) in420

two dimensions.421
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(b) RI-WENO, r = 3
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(c) LCD-WENO, r = 3
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(d) CW-WENO, r = 4
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(e) RI-WENO, r = 4
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(f) LCD-WENO, r = 4
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(g) CW-WENO, r = 5
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(h) RI-WENO, r = 5
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(i) LCD-WENO, r = 5

0 2 4 6 8 10 12 14 16 18 20

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

reference solution

CW-WENO11

(j) CW-WENO, r = 6
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(k) RI-WENO, r = 6
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(l) LCD-WENO, r = 6

Fig. 3: Solution h of different WENO methods for the periodic boundary problem in
Example 4.2.
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We solve a periodic boundary problem with g = 1 and the initial condition422

h(x, y, 0) =



















2.5, 0 < x < 10, 0 < y < 10

2.0, 0 < x < 10, 10 < y < 20

0.5, 10 < x < 20, 0 < y < 10

1.5, 10 < x < 20, 10 < y < 20

, u(x, y, 0) = v(x, y, 0) = 0,423

on the domain Ω = [0, 20]2 with N = M = 200.424

The contours of h of different methods at T = 5 are shown in Figure 4, from which425

we can observe oscillations in the fourth quadrant in CW-WENO are eliminated by426

RI-WENO and LCD-WENO. Moreover, we plot the cut of h along y = 10 for different427

methods, and compare them with the reference solution obtained from the fifth order428

LCD-WENO on a 1000 × 1000 grid in Figure 5, from which we can see the non-429

oscillatory fashion of RI-WENO.430

Example 4.4. (Equations of electrophoresis)431

In this test, we compare the essentially non-oscillatory performance of RI-WENO432

with that of CW-WENO and LCD-WENO for the electrophoresis equations (2.5).433

We solve the three-component periodic boundary problem with the electrophoretic434

mobilities c1 = 2, c2 = 4, c3 = 5, and the initial condition435

u1(x, 0) =

{

1, 0 < x < π
2

0.01, π
2 < x < 2π

, u2(x, 0) =

{

0.01, 0 < x < 3π
2

1, 3π
2 < x < 2π

, u3(x, 0) = 1,436

on the domain Ω = [0, 2π] with N = 200.437

The plots of u1 of different methods at T = 0.5 are compared in Figure 6, where the438

reference solution is obtained from the fifth order LCD-WENO on a grid containing439

10000 cells. The results of RI-WENO apparently have much less oscillation compared440

with those of CW-WENO and similar fashion with LCD-WENO.441

Example 4.5. (Equations of planar electromagnetic wave)442

In this test, we compare the essentially non-oscillatory performance of RI-WENO443

with that of CW-WENO and LCD-WENO for the planar electromagnetic wave equa-444

tions (2.6). One can check that, if the electromagnetic energy satisfies Ψ′(r)
r

= rα for445

some α > 0, the 1, 2-Riemann invariants of the smaller hyperbolic system in Example446

2.4 have the expressions w3(p, q) = p− qG−1(log 1
q
) and w4(p, q) = p+ qG−1(log 1

q
),447

where G(·) is defined in the Appendix B.448

We solve the periodic boundary problem with α = 2 and the initial condition449

B1(x, 0) =

{

1, 0 < x < 2

0, 2 < x < 4
, B2(x, 0) = D1(x, 0) = D2(x, 0) = 1,450

on the domain Ω = [0, 4] with N = 400.451

The plots of D1 of different methods at T = 0.3 are compared in Figure 7, where452

the reference solution is obtained from the fifth order LCD-WENO on a grid containing453

10000 cells. From the comparison, we can see that RI-WENO has excellent essentially454

non-oscillatory performance.455

5. Concluding remarks. In this work, we establish a local characteristic de-456

composition free WENO method for hyperbolic system of conservation laws endowed457

with a coordinate system of Riemann invariants. We apply the WENO procedure to458
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16 ZIYAO XU AND CHI-WANG SHU

(a) CW-WENO, r = 3 (b) RI-WENO, r = 3 (c) LCD-WENO, r = 3

(d) CW-WENO, r = 4 (e) RI-WENO, r = 4 (f) LCD-WENO, r = 4

(g) CW-WENO, r = 5 (h) RI-WENO, r = 5 (i) LCD-WENO, r = 5

(j) CW-WENO, r = 6 (k) RI-WENO, r = 6 (l) LCD-WENO, r = 6

Fig. 4: Contours of h of difference WENO methods in Example 4.3.
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(b) RI-WENO, r = 3
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(c) LCD-WENO, r = 3
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(d) CW-WENO, r = 4
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(e) RI-WENO, r = 4
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(f) LCD-WENO, r = 4
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(g) CW-WENO, r = 5
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(h) RI-WENO, r = 5
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(i) LCD-WENO, r = 5
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(j) CW-WENO, r = 6
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(k) RI-WENO, r = 6
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(l) LCD-WENO, r = 6

Fig. 5: Cut of h along y = 10 of difference WENO methods in Example 4.3.
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(f) LCD-WENO, r = 4
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(g) CW-WENO, r = 5
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(h) RI-WENO, r = 5
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(i) LCD-WENO, r = 5
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(j) CW-WENO, r = 6
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(k) RI-WENO, r = 6
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Fig. 6: Solution u1 of different WENO methods in Example 4.4.
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(d) CW-WENO, r = 4
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(e) RI-WENO, r = 4
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(f) LCD-WENO, r = 4
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(g) CW-WENO, r = 5
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(h) RI-WENO, r = 5
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(i) LCD-WENO, r = 5
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(j) CW-WENO, r = 6
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(k) RI-WENO, r = 6
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Fig. 7: Solution D1 of different WENO methods in Example 4.5.
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the coordinate system of Riemann invariants instead of the local characteristic fields459

of the hyperbolic system, thereby the efficiency is improved significantly. Due to the460

nonlinear algebraic relation of Riemann invariants and conserved variables/fluxes,461

we have to adopt the interpolation based alternative formulation of finite difference462

WENO method. Numerical tests show that the Riemann invariants based WENO463

method has optimal order of convergence and roughly the same efficiency as that of464

the components-wise WENO, but its essentially non-oscillatory fashion is similar to465

that of local characteristic decomposition based WENO. Since the only change made466

in the proposed scheme is the variable interpolated by the WENO procedure, this new467

strategy can be easily implemented in existing WENO code, and the CFL constraints468

for stability and treatments for invariant domain properties in, e.g. [28, 29], are the469

same as those for classical finite difference schemes.470

One major restriction of the applicability of the method in this paper is that it471

can only be applied to hyperbolic systems of conservation laws endowed with coordi-472

nate systems of Riemann invariants. This excludes the standard Euler equations of473

compressible gas dynamics and more complex physical systems such as MHD. How-474

ever, the paper highlights the importance of using high order interpolation based475

algorithms such as the alternative formulation of the finite difference WENO scheme476

in [13] rather than the more commonly used reconstruction based finite volume or477

finite difference WENO schemes, to achieve the special purpose of obtaining high or-478

der essentially non-oscillatory performance with a much reduced cost, which is novel479

and may have other applications. It would be interesting to explore the possibility480

of finding certain coordinate systems of approximate Riemann invariants for systems481

which do not possess coordinate systems of Riemann invariants. This will be explored482

in our future work.483

Appendix A. A comparison of operations in LCD-WENO and RI-484

WENO for one dimensional shallow water equations. We analyze and485

compare the floating point operations in the local characteristic decomposition based486

WENO (LCD-WENO) and Riemann invariants basedWENO (RI-WENO) algorithms487

for one dimensional shallow water equations in Table 3. From comparison, it is

steps LCD-WENO RI-WENO

1
u = 1

2
(uj + uj+1),

None
or Roe’s average.

2
R(u) =

[

1 1
u−

√

gh u+
√

gh

]

, w1 = u+ 2
√
gh,

R
−1(u) =

[

1

2
+ u

2
√

gh
−

1

2
√

gh
1

2
−

u

2
√

gh

1

2
√

gh

]

. w2 = u− 2
√

gh.

3 vi = R
−1

ui, i = j − r + 1, . . . , j + r. None

4
v
−
j+ 1

2

= weno(vj−r+1, . . . ,vj+r−1), w
−
j+ 1

2

= weno(wj−r+1, . . . ,wj+r−1),

v
+

j+ 1
2

= weno(vj+r, . . . ,vj−r+2), w
+

j+ 1
2

= weno(wj+r, . . . ,wj−r+2)

5 u
±
j+ 1

2

= Rv
±
j+ 1

2

u
±
j+ 1

2

= u

(

w
±
j+ 1

2

)

6 f̂ (u−
j+ 1

2

,u+

j+ 1
2

, · · · ) f̂(u−
j+ 1

2

,u+

j+ 1
2

, · · · )

Table 3: Comparison of operations in LCD-WENO and RI-WENO algorithms for
one dimensional shallow water equations

488

clear that, RI-WENO exempts the computations at steps 1 and 3, saves computa-489
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tional costs at step 2, and has exactly the same costs at steps 4, 5 and 6. (At490

step 5, both algorithms use 4 multiplications and two additions, due to the relation491

h = c (w1 − w2)
2
, u = 1

2 (w1 + w2), hu = h ∗ u, where c = 1
16g .)492

Appendix B. The definition of G(·) and computation of G−1(·) in Ex-493

ample 4.5 . Let494

g(u) =
1

(1 + 2+α
2α )u + 2+α

2α u−1 −
√

(

2+α
2α

)2
u2 +

(

2+α
2α

)2
u−2 + 8+8α−2α2

4α2

, u > 0,495

then496

G(u) =

∫ u

1

g(y)dy

=
1

16(1 + α)

(

−α log 16 + (8 + 4α) log u+ 4α log(1 + u2) + 2α log

(

α− αu2 + t

−α+ αu2 + t

)

+ (α+ 2) log

(−α2 − 4α− 4 + (α2 − 4α− 4)u2 + (2 + α)t

α2 − 4α− 4 + (−α2 − 4α− 4)u2 + (2 + α)t

)

+(α+ 2) log

(−α2 + 4α+ 4 + (α2 + 4α+ 4)u2 + (2 + α)t

α2 + 4α+ 4 + (−α2 + 4α+ 4)u2 + (2 + α)t

))

,

497

where t =
√

α2(u2 − 1)2 + (4α+ 4)(u2 + 1)2.498

Note thatG(u) is a log-like monotone increasing concave function with
(

2+α
2+2α

)

u−1 <499

g(u) < u−1 for u ∈ (0,∞), and limu→0+
g(u)

( 2+α

2+2α )u−1
= 1, limu→∞

g(u)
u−1 = 1, thus one500

can compute G−1(log 1
q
) by solving u from the equation G(u) + log q = 0 based on501

the Newton iteration.502
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