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ABSTRACT

Empirical studies of large gatherings and natural disasters have revealed two impor-
tant features of dense crowds: extremely high crowd pressure and crowd turbulence.
In this study, a mixed-type continuum model for multidirectional pedestrian flow
was developed that explicitly considered the phase transition of different anticipation
characteristics under different densities. Non-hyperbolicity was used to model the
strong instabilities during crowd turbulence. In addition, by estimating the aggre-
gated crowd pressure, the proposed model could clarify the effects of both force
chains and panic sentiment, phenomena commonly observed during crowd disasters.
The non-hyperbolic partial differential equations were solved using the mixed-type
finite different method, and Eikonal equations were solved using the fast sweeping
method. Finally, the continuum model was applied to a real-world scenario and
validated through comparison with empirical observations. Overall, the proposed
model is an efficient tool for evaluating crowd management strategies to predict and
assess the crowd state.
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1. Introduction

Over the past two decades, crowd disasters have caused thousands of deaths worldwide
(Still 2022). Such disasters commonly occur during religious gatherings, such as the
2015 Saudi Arabia Hajj Disaster (2,431 deaths), and large-scale events, such as the
2010 Love Parade disaster (652 injuries) and 2022 Seoul Halloween crush (156 deaths).
The high fatalities resulting from such disasters are a primary concern for governments
and event organizers, and researchers have made significant efforts to design realistic
simulations that can be used to strategically prevent such tragedies.

Figure 1 shows a general framework for describing the mechanism of crowd disasters
based on a review of empirical studies of crowd disasters (Helbing and Mukerji 2012;

CONTACT S. C. WONG Email: hhecwsc@hku.hk



Benedictus 2015; Haghani et al. 2019). The two important features of crowd dynamics
that distinguish dangerous situations from normal pedestrian flow are high crowd
pressure and crowd turbulence. During crowd disasters, fatalities typically occur due
to suffocation, induced by high crowd pressure, and stampedes, which result from
turbulence. Crowd pressure and turbulence can be mathematically modeled and must
be thoroughly studied. However, it is challenging to describe the aggregating feature of
pushing forces, and thus, only a few models can quantitatively reproduce high crowd
pressure, which has been estimated to range from 1,000 N/m to 2,000 N/m during
crowd disasters (Dickie and Wanless 1993; Smith and Lim 1995). Moreover, it is difficult
to establish a model that can reflect the stability of pedestrian movement under normal
situations and reproduce crowd turbulence in dangerous situations.
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Figure 1.: The mechanism of crowd disasters involves three stages. The first stage
pertains to the root causes. In the second stage, panic sentiment gradually increases,
and a crowd accumulates, forming an amplifying feedback circle. The formation of this
circle represents the critical process that may lead to a crowd disaster. The third stage
is characterized by falling, trampling, and fatalities owing to direct causes (marked in
red). With increasing crowd pressure and limited oxygen, physically vulnerable people
are likely to be the first to succumb to coma, suffocation, or organ failure, which are
the direct causes of death in most cases.

Many mathematical models have been developed to describe normal pedestrian
dynamics, including microscopic (Helbing, Farkas, and Vicsek 2000; Langston, Masling,
and Asmar 2006; Moussaid, Helbing, and Theraulaz 2011) and macroscopic models
(Hughes 2002; Jiang, Zhou, and Tian 2015; Bain and Bartolo 2019). These models can
successfully reproduce commonly observed phenomena, such as lane formation and stop-
and-go waves. Macroscopic models are preferred for describing denser crowds because
they can simulate the collective behavior of pedestrians in a dense crowd system, which
can be analogized to the observations in real crowd disasters. Furthermore, macroscopic
models are efficient and have low data requirements (Jiang et al. 2011; Cao et al. 2015).
Recently, macroscopic models have been applied to reproduce the dense high-pressure
crowds that form during crowd disasters with explicit consideration of the effect of
panic on pedestrian behaviors (Zhao et al. 2019; Liang, Du, and Wong 2021). However,
these models have not been able to reproduce the high crowd pressure and crowd
turbulence phenomena when applied to real crowd disasters. Therefore, in this study, a
novel higher-order macroscopic model was developed for multidirectional pedestrian



flow to simulate the crowd pressure and crowd turbulence observed in crowd disasters.

The proposed model was applied to the 2010 Love Parade disaster scenario, and
the results were compared with the observed data using video analysis technology. In
general, when comparing simulation results with empirical data, it is challenging to
quantify observed phenomena, such as crowd turbulence. Krausz and Bauckhage (2012)
proposed a method to detect crowd dynamics from videos in an automated manner.
Rather than directly measuring the crowd density or speed from videos, this approach
identifies variables that describe the state of crowd movement (e.g., congestion and
stop-and-go waves). Similarly, levels of chaotic movement, such as turbulence pressure
(Helbing, Johansson, and Al-Abideen 2007) and velocity entropy (VE) (Wang et al.
2019), have been used as indicators of crowd turbulence. In this study, the particle
image velocimetry method (PIV) (Thielicke and Sonntag 2021) was introduced to
derive the VE from video recordings. The effectiveness of the multidirectional model
was validated through qualitative evaluations of the simulation results and quantitative
comparison of the video recordings with the simulation results.

2. Problem statement

Predictive management of heterogeneous crowd movement during large events such
as parades, matches, or tourism gatherings is important but challenging. In these
situations, pushing and fear can lead to chaos and confusion, making it difficult to
predict unstable movement under panic situations. The problem is particularly acute
when there are multidirectional pedestrian streams, which aggravate the congestion
and increase the collision forces. Addressing these challenges requires a robust model to
describe the evolution of crowd states based on explicit mechanisms on crowd pressure
and crowd turbulence.

Based on the unidirectional pedestrian model that considered pushing forces and
panic effect (Liang, Du, and Wong 2021), this study further investigates the moving
characteristics of multidirectional pedestrian flows through a fundamental diagram
under intersecting situations (Wong et al. 2010). More importantly, the anticipation as-
sumption is further developed to capture the ”phase transition” of pedestrian movement
between different density levels. As shown in Figure 2(a) and presented by Johansson
et al. (2008), the crowd disasters exhibit chaotic movements in a region with a clear
boundary, indicating a very different crowd state with strong instability, i.e., crowd
turbulence. According to Helbing, Johansson, and Al-Abideen (2007), upon falling into
this situation (Figure 2(b)), a crowd disaster is likely to happen.

The observed phenomena brought out two questions on the current hydrodynamic
models for pedestrian flow. First, from the perspective of physical meaning, individuals
are less likely to think independently during crowd turbulence, which questions the
existence of the anticipation term in the acceleration equation (1). Second, from
the perspective of mathematical formulation, the strong instability questions the
applicability of hyperbolic systems after phase transition: If h'(p) is nonpositive, the
Euler equation set can be parabolic or elliptic, which requests the development of
mixed-type solution algorithm. To address these problems, the main aim of this study
is to develop a mixed-type model and corresponding numerical algorithms to capture
the phase-transition characteristic in crowd disasters.
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(a) 2010 Love Parade disaster (Loveparade (b) 2006 Hajj disaster (Helbing, Johansson,
2011) and Al-Abideen 2007)

Figure 2.: Obsrvation of ”phase transition” during crowd disasters. (a) A long-term
photograph between 16:38:10 and 16:38:20 (Loveparade 2011). (b) Evolution of ” Tur-
bulence Pressure” (TP) during 2006 Hajj disaster, which is an indicator to quantify
crowd turbulence (Helbing, Johansson, and Al-Abideen 2007).
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where @amp describes the anticipation effect.

3. Model description

This section describes the assumptions incorporated into the novel continuum model
framework for multidirectional pedestrian flow to reproduce the complex crowd phe-
nomena in real crowd disasters, i.e., crowd pressure and turbulence. Please refer to
Appendix C for the definitions of symbols and functions used in this study.

3.1. Assumptions

Assumption 1. The pedestrians are divided into K groups with characteristic crowd
dynamics that follow the continuity of mass and momentum.

The local density of the k-th pedestrian group, p(k) is defined as the number
of pedestrians within a unit area. Vék) = (uék),vék)) is the expected speed vector,
i.e. the equilibrium pedestrian velocity when the effect of physical contact is not
considered, with u. and ve denoting the velocities in the x and y directions, respectively.
vk — (u(k), v(k)) is the actual speed vector, defined as the actual average pedestrian
velocity, with 4 and v representing the velocities in the  and y directions, respectively.
The movement of each pedestrian group follows fluid dynamics concepts, and the set
of continuity equations is applied. For convenience, the following notation is defined:
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where ng) = 9([p; pu; pv]*)) /Ot is the change in mass and momentum; FP =

A([pu; pu® + Pr; puv]®) /0z and Gék) = d([pv, puv, pv® + P1]*¥)) /9y indicate the gradi-
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ents of flow vectors in the x and y dimension respectively; Stk) — [0,5; 5|, where
the second and third components indicate the crowd forces along the x and y directions,

respectively; Pl(k) = h(p®) is the traffic pressure, which is assumed to result in the
psychological consciousness of pedestrians attempting to maintain distance from others
in the same group; and m indicates the average mass of a single pedestrian, which is
assumed to be a constant in this study.

Assumption 2. The responses of pedestrians to variations in the density of a given
group are characterized as follows: in low- and high-density groups, pedestrians respond
promptly and slowly, respectively, and pedestrians is unable to respond in extremely
high-density groups.

The traffic pressure in the one-dimensional (1D) higher-order continuum framework
is a pseudo-pressure that describes the response of pedestrians to the variations in the
density of the k-th pedestrian group, as expressed in Equation (3). Both the 1D model
and two-dimensional (2D) higher-order continuum model consider hyperbolicity and
isotropy, but route choices are made simultaneously in the latter model (Jiang et al.
2010). Therefore, the traffic pressure assumption is designed with consideration of the
1D anticipation characteristics of the pedestrian group, as discussed in the following
text.

K (p*))
(5

o, vk L yEg vk 4 aX,U(k) = RHS. (3)

The irrationality of traffic pressure, intended to maintain hyperbolicity, has been
criticized in the “brake or accelerate” case since it was introduced in the Payne-Witham
(PW) model (Aw and Rascle 2000). In densely crowded situations, the effective prop-
agation of information cannot be guaranteed due to the unpredictable behavior of
pedestrians, such as irregular movement Helbing, Johansson, and Al-Abideen (2007)
and panic behavior Helbing and Mukerji (2012). To address this problem, the pro-
posed model considers three types of pressure—density relationships in the context of
anticipation characteristics:

e In a low-density group (p(k) < po), the movement state in the k-th pedestrian
group (Vl(k) in Figure 3(a)) is influenced by the density in neighboring regions.
In particular, pedestrians try to lower their speed to avoid dense crowds nearby,
even when Vz(k) is large. Therefore, the traffic pressure strictly increases with the
density, as in many PW-type models.

e In a high-density group (p¥) > p1), pedestrians (Vg(k) in Figure 3(a)) experience
compression, and their behavior is highly unstable when brake or acceleration
is uncertain and independent of V;l(k) (Loveparade 2011; Johansson et al. 2008).
Moreover, the presence of a dense crowd narrows the perceptions of pedestri-

ans, and information cannot be efficiently propagated (Figure 3(b)), leading to



nonpositive ' (p*)).

e In a medium-density group (pg < ptF) < p1)he movement characteristics are
determined through in-between physiological anticipation. Thus, the value of the
anticipation term h’(p™*)) is smaller than that in the low-density situation.
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(a) problem of “brake or accelerate” (b) propagation of information

Figure 3.: Information propagation in the k-th pedestrian stream. (a) Example

1D case: Four pedestrians with velocity V;(k) (i = 1,2,3,4) are assumed with three
“brake or accelerate” preferences based on the local density. (b) The characteristic
speeds determined from Equation (3) generate three characteristic lines that determine
the propagation area of the local density information over space and time.

This phase transition in crowd dynamics yields a segmented relationship between the
density and sonic speed ¢, as in Equation (4), that can be applied in the 2D isotropic
continuum model.

€0, p(k) < £0
W(p®) = c= < co/2, po<p® < py (4)
07 p(k) > P

Assumption 3. Panic sentiment influences not only the pushing behavior but also
the walking pattern on the fundamental diagram (FD). In general, more panic-stricken
pedestrians walk faster and push harder.

The influence of panic sentiment on pushing behavior has been observed in many
crowd disasters (Helbing et al. 2005; Haghani et al. 2019). In the unidirectional model
proposed by Liang, Du, and Wong (2021), panic sentiment is assumed to influence
only the pushing behavior. However, pedestrians in high-density crowds typically
wish to walk over two times faster than that in the normal condition because of the
panic sentiment Helbing, Farkas, and Vicsek (2000), generating a second peak on the
flow—density curve Helbing, Johansson, and Al-Abideen (2007). Denote the overall
density as p =), o) the following speed—density relationship is applied based on the
FD form proposed by Wong et al. (2010) for normal multidirectional pedestrian flow.

FEQ) = vl exp(—1"p?) x [T expls™ (1 — cos i) (p9)?] (5)
=1



with ’yik)@) = fyék)(l — 0k 4+ vék)é(k), where ’yék) and 7,2’“) are the first parameters in

the FD for calm and mass panic situations, respectively; vék) is the second parameter
in the FD; and ;1 denotes the intersecting angle of the expected movement directions
of the ¢-th and k-th pedestrian stream, which is determined by the instantaneous speed
distribution of the two pedestrian groups: (Q®, Q")) = x(Q®W, QMk)).

The parameters for calm situations have typically been calibrated through on-
site experiments (Wong et al. 2010), and only limited experimental studies have
been conducted on the heterogeneity and panic influence. Therefore, in this study,
empirical values are used for real crowd disasters. The simulation results are noted to
be quantitatively consistent and can provide guidance for future experimental studies.

Assumption 4. The pushing force generated in the collision area is homogeneous, and
a penalty is introduced to account for the collisions of different pedestrian streams.

Pushing force is generated only after the critical density is reached, which allows
for physical contact. In this scenario, the mean walking speed gradually decreases as
the standard deviation increases in the unidirectional and bidirectional flows (Lee and
Lam 2006). The pushing direction may be highly unstable owing to the surrounding
effects, such as the physical interactions. Therefore, the pushing force in a unit area
is considered to be balanced by the different pedestrian streams, and its direction is
the same as the joint speed direction. Thus, the pressure model (Liang, Du, and Wong
2021) in the unidirectional case can be applied to the more general multidimensional
case through the following Eikonal equation:

(k)Y .
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where « is the relaxation factor, defined in Equation (7), p(p) indicates the relationship
between the pushing capacity and density; and 6% (z,y,t) € [0,1] describes the panic
sentiment.
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3.2. Model formulation

The mixed-type continuum model is formulated as a set of partial differential equa-
tions (PDEs) with appropriate initial and boundary conditions. Because the model
corresponds to a multidirectional flow system, the PDE set for each pedestrian stream
includes the conservation laws of mass and momentum; expected speed with pressure

(k) (k)
o

potential; and inflow boundary I';”, outflow boundary I'j;” and common solid boundary

I'y conditions.

3.2.1. Mass and momentum conservation

Equation (8) presents the conservation laws of mass and momentum for the k-th
pedestrian group.
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3.2.2.  FEquilibrium speed considering pressure potential

Two static Eikonal equations are introduced to take into account the route strategy
and aggregated pushing potential.
First, this predictive user-equilibrium model is applied to determine the expected

movement direction ng) = (vg, z/y)(k)7 as indicated in Equation (10).
VoM = g(p) +1/f9(Q); oM =0 it (w,y) T}y (10a)
v = -V /|Vel| (10b)

where g(p) indicates the local discomfort cost associated with high density.
Second, the crowd pressure for the overall pedestrian flow is determined through
Equation (11).

max(6(F) - p(p) (k),, (k)
HV(ZQ>H: 2 Mpve oy a0 )

! p

where « is the relaxation factor, defined in Equation (7), p(p) indicates the relationship
between pushing capacity and density, and §*) [0, 1] describes the panic sentiment.

3.3.  Analytical properties

This section demonstrates the mixed-type analytical property that consists of both
hyperbolicity and non-hyperbolicity. Based on these analytical properties, the ability
of the model to simulate the instability /turbulence phenomena observed in crowd
disasters is demonstrated. Moreover, the analytical property is consistent with that in
the unidirectional case if the multidirectional system is homogeneous.

Proposition 1. The Euler equation set for the k-th pedestrian group is strictly
hyperbolic if p*) < p; but non-hyperbolic (parabolic or elliptic) if p*) > p;.



According to the model formulation, the characteristics of flux vectors in each
pedestrian group depend on only the crowd states of the individual group. Thus, the
hyperbolicity is independent. For the k-th pedestrian group, the Jacobians of F*) and
G®) are

0 1 o™ 0 o0 11W
IVQW) = |~ +1 20 0 . IZQP)=] —w v w (12)
—uv voou —v 4K 0 2

For any real linear combination «;J g_f ) +5J g), the three eigenvalues are

)\1 = alu(k) + ,Blv(k), )\273 = alu(k) + ﬁﬂ)(k) + (OJZQ + B?)h, (13)

Clearly, if b’ > 0, the two eigenvalues are real and distinct, and the system is strictly
hyperbolic. Otherwise, the system is parabolic or elliptic because there are not enough
eigenvectors. According to the segment function in Equation ((4)), the Euler equation
set in this model is strictly hyperbolic if p*) < p; but non-hyperbolic if p¥) > p;.

Proposition 2. Linear stability is maintained if (1) p®) < p; and (2) sonic speed ¢ is
adequately large.

First, the continuum theory in Equation (8) for each pedestrian stream (k =

1,2,3..., K) is rewritten as the following set of Euler equations:
k
,01(5 ) Ve (ka(k)) =0 1) V) (14)
k k) VB -y
Vg ) 4+ (VO . 7) VR 4 2 fok) = Yo

where Vg;) = Vék) — 12 VB iy the equilibrium speed defined with consideration of

mop
the pressure effect.
Small perturbations of density and speed are added to the steady state ( p(()k), V((]k))
of k-th pedestrian stream, which are considered to be exponential and are expressed as

in Equation (15).

(k) — ~_is-ct+wt] (k)
{p [po + pe ] (15)

V&) — [VO + {/eis-erwt](k)

By substituting the permutations into Equation (14) and ignoring the nonlinear
terms, the following linear equation set (16) can be obtained.

(k)

AR =0 (16)
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where
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To maintain stability, the real parts of w derived from det(A®*)) = 0 must be
nonpositive, and thus:

24 (k)
[02(3% + 53) — <,oo <815(§L;p) + 525(;);7))) ] >0 (18)

Remark 1. If ¢ <0, linear stability is no longer maintained in the given pedestrian
stream.

0 vep .
If ¢ > 0, (815(:;7;’0 + 82(:;)7;,))2 < (sf+ 8%)(5(6u;p))2 + (6(;;;,9))2)‘ Thus, the linear

stability of the pedestrian stream holds only if ¢ satisfies the following condition:

(k) 0 (Vg;))

2 <c (19)

(5p(k) -

Remark 2. The linear stability of the multidirectional problem holds only if all groups
of pedestrians (k= 1,2,3..., K) satisfy Equation (19).

Proposition 3. If the pedestrian streams are homogeneous with identical boundary

conditions, the dynamics of multidirectional systems ng) equal those in an integrated
unidirectional system (>, Q).

In this analysis, the dynamics at the initial time point are proven to be identical, and
the following dynamics are analogous. Owing to the homogeneity of pedestrian streams,
identical equilibrium walking speeds are derived using Equation (20) by substituting
identical parameters and ¢;; = 0 in Equation(5).

Vel = IVl = vp exp(=mp%) (20)
Correspondingly, the cost potential derived from Equation (10) and pressure potential

derived from Equation (11) are identical for all pedestrian streams. Therefore, the
Euler equation sets in Equation (14) are identical to

(k) (kv
pi + V- (p"VIT) =0
, oo, k=12 K 21
{‘ 7§k) (‘ (k) V) V) L 2Y0% _ V-V (21)

p(k) - T

Given that ¢ is constant or linearly dependent on p*), multiply the Euler momentum
equation in each equation set by p) and integrate the two Euler equations. The

10



following Euler equation set can be derived:
(Qv)t + (Qv : V) Qy + CQV/) = M

where p = 3, p®) and Q, = 3, (¥ V*®)). Equation (22) is equivalent to the dynamics
of (34 Q): under the same initial values and boundary conditions.

Remark 3. The homogeneous multidirectional systems and unidirectional system are
consistent only if the sonic speed ¢ is constant or linearly dependent on p(¥).

4. Mixed-type finite difference method (FDM)

Because of the existence of non-hyperbolicity, traditional numerical methods cannot be
applied to the PDE sets presented in Section 2.2. To numerically solve the problem, a
mixed-type FDM and the second-order total variation diminishing (TVD) Runge-Kutta
scheme are developed to solve the conservation equations. The Eikonal equations are
solved using the Godunov fast sweeping method (FSM).

First, Equation (8) is discretized as in Equation (23). The second-order TVD
Runge-Kutta scheme, described in Algorithm 1, is introduced for time integration. At
each time step, the crowd states including all pedestrian stream Q,, values are updated
with Qp41 until the simulation is terminated at a predefined time.

d
L*®(Q,t) = 67? =—(FP +GPM) + 8" /m
23)
X i A . (k) (

o LE®, gL _gw oy STQ)

B\t Tt/ p N T+t ij—% m

Two terms on the right-hand side of Equation (23), remain to be calculated: the
differences between the numerical fluxes and the source term.

The Godunov FSM is introduced to numerically solve the Eikonal equations, i.e.,
Equations (10) and (11). The route strategy equation, Equation (10) is a standard
Eikonal equation that can be directly calculated through Algorithm 2. The aggregated
pressure equation, Equation (11) consists of two Eikonal equations corresponding to
different regions according to the movement characteristics (Liang, Du, and Wong
2021), as in Equation (24). The solution of the Eikonal equation set is not unique.
Therefore, the FSM is applied to seek an approximation of the continuous solution
of P,, which is the physically relevant solution. In this condition, the Gauss—Seidel
iterations in Algorithm 2 can be applied simultaneously to the two Eikonal equations,
as P is continuous when sweeping from one region to another.

ka’
V| = (5 - ) |22, i Vp-(zpku’;> >0 (240)
k
(k)Y .
P max(6")) - p(p) ko k
\v(2> | = —* [2ppvell g, Sk <0 (24b)
« o p -
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Algorithm 1 Second-order TVD Runge-Kutta scheme

n < 0; Q(()k) «~0 > Initially, the simulation area is empty
to < 0O; Ato <+~ 0.01
while n = 0;t, < tpaz;n + + do
while k = 1;k < N; l<:—|—+ do
QW) At x L*)(Qy, ty)
end while
while k£ = 1; k:<N k+ + do
QY — Q)2+ QP + At, x LW(Q, t, + At,))/2
end while
At,, < CFL(h/a) > Requirement of the CFL condition
tht1 < tn + Aty
end while

Algorithm 2 Godunov Fast Sweeping Method

P(noxn,) < 10'2 > Initially, the potential is at maximum
while NIT = 0; NORM(¢™® — ¢°4) < 10~?; NIT + + do
while (7, j) in the GS sequences do
Ty  min(di—1,5, Pit1,5)
Ty < min(¢;j—1, ¢i,j+1)
if |T, —Ty| > C(ij) X h then

g min(Ty, Ty) + Ci ) % b

Z7j)

else
10— (To + Ty + /202,02 — (T, = T,)2)/2
end if
o5t < 0if (xi,y;) €'p > Fixed boundary condition during iterations
end whlle
end while

calculate V(z,y) by the central difference method

The mixed-type FDM (Algorithm 3), which considers the phase transition between
hyperbolicity and ellipticity, is used for the approximation of the numerical fluxes. In the
hyperbolic region, the eigenvalues of the Jacobi matrix are real and unique (Jacobians
of F*) over Q¥) are presented as an example in Equation(25)). The numerical fluxes
are approximated through the traditional local Lax—Friedrichs (LF) scheme on the
characteristic space.

0 1 o]®
IWQWy = |—u2+h 2u 0 (25)
—Uuv v u

and the three distinct eigenvalues are u(®), u®) 4 (),

In the non-hyperbolic region, the Jacobi matrix becomes singular, and the traditional
LF splitting is not applicable. A new splitting scheme based on (Shu 1992) is introduced
to capture instability in this multidimensional problem. First, we assume the following

12



LF splitting scheme along the x-dimension:
A1

HE(QW) = JFPQM) £ AQW), A=| (26)
A3

where A is the eigenmatrix to be determined. The Jacobian of H™ is

A 1 o 1%
Ja+(QW) = |~ +h 2u+X 0 (27)
—uv v U+ A3

and  the three eigenvalues are u + As,u + (M + X)/2 =+
\/(>\1 — )\2)2 + 4u()\1 — )\2) + 4h//2.

Representing M = A1 — Ao, the existence and distinctness of the three eigenvalues
are ensured if

0 if >0

M= r?zaxx<—2<\u]—\/u2—h’>>+6 it n'<0 (28)

)

and

Ao = max
Q

)

M? + 4uM +4p' — M

(w + Y v, (20
2

where € is a positive value and €2 is the non-hyperbolic region in the computational

domain. In this model, / = 0 in the non-hyperbolic region. Therefore, the eigenvalues

can be expressed as

)\1:)\0+57

)\2,)\3:)\0:%35( 5

)

where ¢ takes the value 0.1 in this study. Using the three eigenvalues, the LF splitting
scheme can be processed along the x direction. The process along the y direction is
analogous.

5. Case study of Love Parade 2010

Love Parade was a popular annual dance music festival that had been held in Germany
since 1989. On July 24, 2010, a severe crowd disaster occurred during this event
in Duisburg, causing 21 fatalities and 652 injuries. A simulation was performed in
this study to reproduce the high crowd pressure and turbulence during this disaster
consistent with the empirical observations (Loveparade2010doc 2010; Helbing and
Mukerji 2012). Based on known data from empirical studies and video data, the
numerical simulation was performed over a 105 x 50 m? T-shaped area, involving six
pedestrian streams and various boundary conditions specified in Figure 4. The panic
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Algorithm 3 Mixed-type Finite Difference Method

while i = —1;i < (ny + 1);i + + do
while j =1;5 < ny;j+ + do

if PE_]?A ; < p1 then > Hyperbolic region
Decompose the characteristics of Jacobi matrix Jg(Q) = RAR™1
T¥ « r(Q", H)Q!"); T « r(QY, HFY) > Characteristic
projection ’ ’
k,H k
X | max(max(A(Q()))
= F F k,H
Typay ¢ 3T + T - aH%’j(T;?) ) > LLF Scheme
A k k A
F£+)§,j < R(Q§+)§,j)Ti+§,j
else > Non-hyperbolic region

Ak’E < [)\0 + M, )\0, )\0]T
F(k)l 4= %(Fi,j + Fi+1,j — Ak’E(Qi’j — QiJrl?j)) > LF for non-hyperbolic

1+3,]
end if
end while
end while
calculate the numerical fluxes (A}f? L1 along the y direction
FEDFD )+ HGH, -G )~ v (FR, a0

calculate cost potential Vo) (z,y) and pressure VP (z,y) through Algorithm 2
S™)  $1(VoM(z,y)) + S2(V Pa(z,y))
L(Q.t) « (SW/m - v (FM,GIV)

sentiment was defined as in Equation (31) for the 5th and 6th pedestrian streams, the
members of which attempted to exit the site from climbing up the pole and container,
respectively (see Figure 4). Table 1 summarizes the other parameters and functions,
which were set with consideration of the empirical values.

0 t < 720
§CO) (2,4, t) = { (t —720)/180 720 < ¢ < 900, (31)
1 t > 900
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Figure 4.: Model of the crowd disaster during the 2010 Love Parade. (a)
At t = 0 s, the simulation geometry (mesh size: 210 x 100) contains four pedestrian

streams. (b) At ¢ = 300 s, the boundary Fg’2) was restricted because of overcrowding
at the main ramp (Loveparade2010doc 2010). (c) At ¢t = 720 s, two new pedestrian
streams were generated: the stranded pedestrians in the blue and red regions, who
attempted to leave from the container and pole, respectively.
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Table 1: Parameters and functions used in the simulation of the 2010 Love Parade

crowd disaster.

Symbol/Function  Value Meaning

o 0.6 m/s Sonic speed

m 65 kg Average weight

£0 6 ped/m? Critical density for physical contact

p1 7 ped/m? Critical density for phase transition

Pm 10 ped/m? Maximum density

vy 1.034 m/s Free flow speed

Ye —0.08 First parameter in the FD in calm
situations

Yp —0.06 First parameter in the FD in panic
situations

Y2 —0.019 Second parameter in the FD

g(p) 0.02p? Function of the discomfort cost

p(p) 3004/max(0,p — pp)  Function of the pushing capacity

The simulation results are presented in Figure 5. The proposed model reproduced
perilous crowd states, with values comparable to those observed in crowd disasters
(Fruin 1993): The maximum density was 12.45 ped/m?, and crowd pressure was
approximately 972 N/m. The high crowd pressure occurred with turbulence in the
high-density region around the pole, where people attempted to leave the area. The
crucial crowd characteristics during crowd disasters are discussed in the following.
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Figure 5.: Simulated density evolution during 2010 Love Parade crowd disaster
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5.1. Crowd pressure

The simulation results of the crowd pressure P, illustrate the dangerous crowd states
in panic situations. In the period ¢t € [900, 1200] s, the pedestrians were densely packed,
allowing pushing forces to propagate through force chains. At ¢ = 1200 s, the maximum
aggregated pressure was 972 N/m (Figure 6(a)), and was accompanied by an extremely
high density (over 10 ped/m?) close to the pole.

Figure 6(b) shows the simulated relationship between the crowd pressure and density,
which was consistent with a notable empirical observation (Bradley 1993): Even at high
densities (approximately 7 ped/m?), the maximum pressure in the region can increase.
According to Smith and Lim (1995), an average pressure of 1,000 N/m lasting for 30 s
can cause considerable discomfort and even suffocation in a dense crowd. The proposed
model successfully reproduced such pressure levels, which were the direct cause of the
deaths in the 2010 Love Parade crowd disaster.

1000 1000

40

35

20

800

600

400

Pressure (N/m)

800 -

600 -

400 -

200

8 9 10 11 12 13

Density (ped/mz)

(a) pressure heatmap at t = 1200 s

(b) pressure—density relationship

Figure 6.: Estimation of aggregated pushing pressure P, around the pole. (a) Pressure
distribution around the pole. (b) The pressure—density scatter shows that the pressure
has no functional relationship with the density.

5.2. Crowd turbulence

Although turbulence did not cause any pedestrians to fall during the Love Parade
disaster, chaotic movement patterns were observed around the pole in the video
recordings (Loveparade 2011). The VE (Appendix A) derived from the simulation
results was compared with that extracted from the video to demonstrate the capability
of the model in simulating crowd turbulence. The PIV method (Appendix B) was used
to quantify the crowd turbulence through video recordings. As shown in Figure 7, the
VE varied from 1.23 to 3.93 in direction entropy and from 1.74 to 3.20 in magnitude
entropy between 16:38:10-16:38:20 (see Figure 2a), when turbulent waves could be
identified from the video through a long-term photographic procedure (Johansson et al.
(2008)). During the simulation period oft = [750,1000] s, the Virtual Efficiency (VE)
was determined in the observation area, as illustrated in Appendix B. Owing to the
panic sentiment, calculated VE significantly increased from 2.13 to 4.16 in direction
entropy and from 0.94 to 2.27 in magnitude entropy, indicating chaotic movement of
the pedestrians.
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Moreover, despite the high density around the pole, the crowd continued to move.
The average velocity of 0.0265 m/s, calculated from the simulation results in the
observed area during ¢ = [750,1000] s, was similar to the value of 0.0192 m/s obtained
by the PIV method (Figure 7c). Notably, the processed results from the video recordings
were more oscillatory because the video was captured from the top and thus included
head shaking, which may have increased the instability.

Time at 16:34:12-16:35:50 16:36:20-16:37:18  16:37:32-16:38:25
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Figure 7.: Quantification of crowd turbulence during the 2010 Love Parade.
(a,b) Comparison of the VE derived through the simulation and PIV method in the
period ¢ € [750,1050] s, which is analogous to the situation between 16:34:12 and
16:38:42. (¢) Comparison of the simulated and observed evolution of average velocity.
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5.3. Model performance

The effectiveness of the model was demonstrated through the case study of the 2010 Love
Parade crowd disaster. According to empirical research and data (Loveparade2010doc
2010; Helbing and Mukerji 2012), the following characteristics of crowd dynamics
were observed during the crowd disaster, which were required to be considered in the
simulation.

Situation: The trapping of pedestrians in the T-section area was the major reason
for crowd accumulation. The increasing crowd density and prolonged waiting time
increased the panic sentiment. Pedestrians became desperate to leave the area and
tried to climb the pole and container to escape. The layout settings and boundary
conditions were designed based on this observation.

Turbulence: The pedestrians near the pole were forced to move chaotically, as
observed in the video (Loveparade 2011). This state indicated an increasing variation
in pressure among the dense crowd. This crowd feature was reproduced as crowd
turbulence through the introduction of VE.

Pressure: The first death occurred near the pole and was reported to be caused
by suffocation (Loveparade2010doc 2010). In the simulation, the crowd pressure P,
increased to nearly 1,000 N/m near the pole, which led to suffocation.

Notably, the risk-level indicators included in this study, such as crowd density, crowd
pressure, and VE, are important for establishing efficient crowd management strategies.
These indicators can represent the features of crowd dynamics during dangerous
situations. Based on the findings of the case study, the following suggestions were
identified for the police and layout designers:

Small exits should be avoided when a crowd becomes dense and panicked. Dangerous
crowd dynamics, such as high pressure and turbulence, were observed around the pole,
attributable to the pedestrians wishing to climb the pole. Thus, small or narrow exits,
such as at the pole, must be avoided, and the police must prohibit people from climbing.
In the actual situation, the police pulled pedestrians from the pole, increasing their
desperation to push and escape, thereby aggravating the situation.

By alleviating the panic sentiment, the pushing forces and thus the crowd pressure
can be decreased. During the Love Parade disaster, mobile phone connectivity was
restricted due to overload (Helbing and Mukerji 2012), making people more impatient
and panicked. To prevent similar tragedies, adequate communication services should
be provided for large events with many attendees, such as by increasing the capacity
of the base station or maintaining radio broadcasting services.

6. Conclusion

A mixed-type continuum model was developed for multidirectional pedestrian flow
to reproduce complex crowd dynamics during crowd disasters. The proposed model
can ensure stability when describing laminar multidirectional pedestrian flow and
commonly observed stop-and-go waves and simulate crowd features in high-density
conditions, such as extremely high crowd pressure and turbulence.

The analytical properties of the proposed model were explored to demonstrate its
effectiveness in describing the phase transition of crowd dynamics in multidirectional
systems. Furthermore, the consistency of the homogeneous multidirectional systems
and unidirectional system was verified.

The model was applied to simulate a real-world scenario, the 2010 Love Parade
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crowd disaster. The simulation results, such as those for the crowd pressure and crowd
turbulence, were consistent with the findings of empirical studies of crowd dynamics.
Several recently developed risk-level indicators, such as the crowd pressure and VE,
were incorporated to verify the effectiveness of the model in simulating crowd disasters.

Future research can conduct extensive experiments or site surveys to calibrate the
key parameters and functions considered in the model, such as the sonic speed, pushing
capacity, and multidirectional FDs in panic situations. Moreover, more advanced
numerical schemes can be used to increase the simulation efficiency. To prevent crowd
disasters, it is necessary to establish data-driven approaches to identify the panic
sentiment in real-time. These approaches can be combined with the proposed analytical
model for effective crowd detection and management.
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Appendix A. Velocity Entropy (VE)

To quantitatively describe the risk level of the crowd state, the VE (Huang et al. 2015)
is derived based on the speed distribution, which denotes the dispersion of the velocity
distribution in terms of magnitude and direction. A higher VE corresponds to greater
crowd instability (Wang et al. 2019). The VE has two components: magnitude entropy
E,, and direction entropy Ey, defined in Equations (A1) and (A2), respectively. The
velocity magnitude is divided into 10 bins of the same width (0.01 m/s) ranging from 0
to 0.1 m/s. The speed direction is divided into 36 bins of the same width (100) ranging
from 0 to 3600.

=3 pu g (A1)

where p,(i) = hpy(1)/N. hp(i) indicates the number of moving particles with the
velocity magnitude corresponding to the ¢-th bin. N indicates the total number of
moving particles and n; is the total number of velocity magnitude bins.

ZP@ ) logs po(j) (A2)

where pg(j) = ho(j)/N. hg(j) indicates the number of moving particles with the velocity
magnitude corresponding to the j-th bin and ng is the total number of angle bins.

Appendix B. Particle Image Velocimetry (PIV)

The video recording of Camera 13 from 16:35 to 16:40 is processed using the PIV
method (Figure B1). First, four reference points are selected according to perspective
rays in a sample video frame to ensure that these rays form a rectangle after perspective
transformation. The missing points during the transformation are filled by median
imputation, and the size of the rectangle is estimated with consideration of the following
reference objects: the width of the main ramp is approximately 25 m, and the distance
between two neighboring railings is approximately 2 m. Therefore, the rectangular
box (enclosed by red lines) is estimated to be a 12 x 12 m? square after perspective
transformation. The observation area in this study is the 3 x 3 m? region around the
pole (blue box). After choosing the observation area, a PIV tool (Thielicke and Sonntag
2021) based on the cross-correlation algorithm is introduced to calculate the speed
distribution with the time increment At = 0.2 s.
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Appendix C. List of Symbols and Functions

Table C1: List of symbols and functions used in this study

Symbol /Function Meaning

P Overall density

pk) Density of the k-th pedestrian group

00 Critical density for physical contact

p1 Critical density for phase transition

Pm Maximum density

a Relaxation factor in the eikonal equation for crowd
pressure

" First parameter in the FD

Ye First parameter in the FD in calm situations

Yp First parameter in the FD in panic situations

Y2 Second parameter in the FD

A i-th eigenvalue

() Relaxation time of the k-th pedestrian group

Vék) Normalized expected speed direction of the k-th
group of pedestrians

Pik Intersecting angle between the i-th and k-th pedes-
trian streams

) Cost potential of the k-th pedestrian group

§(k) Measurement of the panic sentiment of the k-th
pedestrian group

Fg Inflow boundary of the k-th pedestrian group

F’B Outflow boundary of the k-th pedestrian group

Iy Solid boundary

c Sonic speed

co Parameter to determine the sonic speed

E Velocity entropy

Ey Direction entropy of speed

E,, Magnitude entropy of speed

m Average mass of a pedestrian

P Traffic pressure

P Aggregated pushing pressure

t Time

Continued on next page
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Table C1: List of symbols and functions used in this study (Continued)

u(k) Velocity of the k-th pedestrian group in the x
direction
ugk) Expected velocity of the k-th pedestrian group in

the x direction
(k)

Uep Equilibrium speed with consideration of the pres-
sure effect of the k-th pedestrian group in the x
direction

vk Velocity of the k-th pedestrian group in the y
direction

vgk) Expected velocity of the k-th pedestrian group in
the y direction

véf,) Equilibrium speed with consideration of the pres-
sure effect of the k-th pedestrian group in the x
direction

v;k) Free-flow velocity in the FD

% Speed vector of the k-th pedestrian group

V’g Expected speed vector of the k-th pedestrian group

Vlép Equilibrium speed vector with consideration of the
pressure effect of the k-th pedestrian group

x Horizontal axis

Y Vertical axis

X = Ju(X) Jacobian of vector H over vector X

X — fR)(X) Function of FD of the k-th pedestrian group

x +— h(x) Function of the traffic pressure

x— g(x) Function of the discomfort cost

x — p(x) Function of the pushing capacity
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