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ABSTRACT
Over the past ten years, many di�erent approaches have been
proposed for di�erent aspects of the problem of resources man-
agement for long running, dynamic and diverse workloads such
as processing query streams or distributed deep learning. Partic-
ularly for applications consisting of containerized microservices,
researchers have attempted to address problems of dynamic selec-
tion of, for example: types and quantities of virtualized services
(e.g., IaaS/VMs), horizontal and vertical scaling of di�erent microser-
vices, assigning microservices to VMs, task scheduling, or some
combination thereof. In this context, we argue that online opti-
mization frameworks like simulated annealing are highly suitable
for exploration of the trade-o�s between performance (SLO) and
cost, particularly when the complex workloads and cloud-service
o�erings vary over time. Based on a macroscopic objective that
combines both performance and cost terms, annealing facilitates
light-weight and coherent policies of exploration and exploitation.
In this paper, we �rst give some background on simulated annealing
and then experimentally demonstrate its usefulness for container
sizing using microservice benchmarks. We conclude with a discus-
sion of how the basic annealing platform can be applied to other
resource-management problems, hybridized with other methods,
and accommodate user-speci�ed rules of thumb.
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1 INTRODUCTION AND MOTIVATION
Resource management in the public cloud typically involves select-
ing available services spanning compute, storage and networking
to minimize cost (or “cloud spend” [7, 29]) subject to workload
Service-Level Objectives (SLOs, i.e., performance requirements).
The problem is particularly challenging when serving a plurality
of complex time-varying workloads. For a given set of job streams,
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the optimal service suite may involve a cluster composed of a va-
riety of services. Even within services of the same type, resource
instances can vary greatly. For example, VMs can have di�erent
amounts and types of memory, CPU cores, hardware accelerators,
cross connects (e.g., PCIe, NVLink), and networking. In some cases,
users can optionally pay to collocate VMs on the same physical
server or to provision networking resources connecting their VMs
to storage.1

Deploying application software using a microservice architec-
ture, e.g., [5, 20, 28, 35], has the advantage of modular code design
and maintenance. Some microservices can be used by di�erent ap-
plications. Also, each microservice can be executed in a separate,
light-weight container.

Particularly in an edge cloud setting where operating costs are
high, the user may wish to economize by explicitly provisioning
containerized microservices (vertical scaling)2 and replicating mi-
croservices (horizontal scaling) as necessary. Data locality issues
may be involved in how containers are assigned to VMs. Di�erent
task scheduling policies have been proposed which can be imple-
mented on cluster managers such as Kubernetes (K8s) [16, 19]. In
addition, a default task scheduler and a task assignment policy to
containerize microservices can be augmented with simple rules of
thumb, e.g., to exploit data locality [23] and to address persistent
straggler tasks [25]3.

For complex, diverse and dynamic workloads incident to a cluster,
deciding a cloud service suite and a container-sizing and replication
policy are di�cult tasks (even if, e.g., a default task scheduling is
used), and a typical user (cloud tenant/customer) may provide little
more guidance than “macroscopic” service-level objectives (SLOs)
and a cost budget.

1.1 Deep Learning Versus Online Optimization
For some time, Deep neural networks (DNNs) have been suggested
by researchers as a way to dispense cluster-management advice
even when the workloads are complex and dynamic, e.g., [6, 24, 28].
For such complex problems, (supervised) deep learning requires a
vast training dataset which is typically produced by an extensive
“depth of search” study. Such training datasets are often manually

1There are similar e�cient resource allocation challenges in “bare metal” and private
data center scenarios where virtualized public-cloud services are not in play.
2In [28], it’s argued that provisioning containers can prevent resource starvation of
bottleneck microservices toward improving total job execution times, compared to
simply relying on the VM’s OS to schedule component tasks as they arrive in a “best
e�ort” fashion without considering end-to-end job execution times.
3Also, rather than relying on a default mechanism of a cluster manager (e.g., K8s), a
user may wish to control how microservices are “packed” into the VMs of their cluster,
to both economize on the number of VMs and, again, to address data locality issues as
a job’s tasks are executed as a sequence of microservices.
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curated. Moreover, deep learning requires choosing among a va-
riety DNN architectures and sizes and training hyperparameters.
For cluster-management advice, DNN’s input would need to in-
clude a description of the user’s current workload and of the their
performance and cost constraints, i.e., their SLOs. The workload
description could be the parameters of a general-purpose workload
model (which may need to be periodically re-estimated to account
for distributional changes in the job arrival process, or the jobs
themselves, of a non-stationary workload). If the advice concerned
speci�c cloud services and how to use them, then the DNN may
need to be re�ned or retrained whenever the services change (in-
cluding just the terms of their service-level agreements (SLAs)).
Moreover, DNN re�nement may be required if the user’s workload
changes so that it is anomalous with respect to those represented
by the (current) training dataset. (Such problems are sometimes
called online “model drift.”) Such DNN re�nement (a.k.a. online
reinforcement or active learning) typically requires producing a
new batch of training samples.

For these reasons, it’s di�cult to make fair comparisons between
online optimization methods and those based on DNNs. (Indeed, it’s
often di�cult to fairly compare di�erent DNN based approaches.)
We instead point out some qualitative di�erences.

In contrast to online optimization methods, DNNs are very costly
to train and re�ne and are di�cult to precisely reproduce by other
parties [11], but once trained, DNNs can perform inference much
more quickly. The cost of creating and curating training datasets
and the reproducibility issues of DNNs are typically not explained
in articles advocating deep learning approaches. Considering how
these training datasets are produced by searching the space of pos-
sible decisions/advice they could make, their formation is not un-
related to an online optimization process which includes breadth
of search. (An online optimization method could conceivably be
used to identify training samples for deep learning or re�nement.)
Also, online optimization methods respond more quickly to online
“model drift” and do not require modeling the workload.

1.2 Online Optimization Methods
Recently, researchers and practitioners have explored the use of
other traditional but more light-weight and adaptable means of
decision-making (including using model-based adaptive control,
PID control, and Markov decision processes) where DNNs play only
a partial role at most, e.g., [30, 38]. For example, particle-swarm
type optimization has been used for load balancing, e.g., [31]. Also,
genetic algorithms (GAs), e.g., [36, 37], have been used to explore
the service suite and dynamically react to changes in the workload
and service o�erings. But exploration under GAs is rather ad-hoc,
like random search.

Simulated annealing (or just annealing) [1, 10, 15] has been
widely used for complex, non-convex optimization problems, in-
cluding for practical applications, since its development in the
1980s. Annealing is suitable for the foregoing resource manage-
ment problems which operate in a highly dynamic environment
over an inde�nite time horizon. Annealing can more quickly react
to detected changes in operating conditions by simply increasing its
temperature parameter to more aggressively (broadly) search the
parameters it controls (and/or by expanding its “local neighborhood”

sets). Annealing’s local neighborhood set can be adjusted to accom-
modate rules of thumb. Also, annealing can be hybridized with a GA
or random search to improve breadth of search, or hybridized with,
e.g., a Tabu search mechanism to improve local-search e�ciency.
Thus, we herein employ annealing as a representative method of
online optimization.

In this paper, we take an annealing approach to the problem
of sizing the containers within its VMs for a plurality of di�erent
streaming workloads. Annealing works to minimize a macroscopic
objective that can account for factors like current job execution
times and the cost per unit time of the existing cluster. While it
can operate both o�ine (e.g., [33]) and online (runtime), our focus
is on the latter. We apply online annealing to the container-sizing
problem of amicroservice workload relying on the default container
assignment mechanism of the K8s cluster manager. Experimental
results are reported for these prototypes.

2 BACKGROUND
2.1 Annealing
Simulated annealing was introduced in the 1980s as a generic frame-
work to minimize a complicated function . : ⇡ ! R over a very
large discrete bounded domain ⇡ , where “complicated" here means
that . has plural local minima in addition to global ones and ⇡ may
be a �nite discretization of a continuous domain.

A local neighborhood function a (G) for all G 2 ⇡ is de�ned,
where G 8 a (G). A collection of possible transitions between G and
elements of a (G) are also de�ned, often taken as all equally likely
as assumed in the following (i.e., each with uniform probability
1/|a (G) |). A key requirement of the neighborhood function a is that
it has to produce a connected graph in ⇡4. Typically, the neighbor-
hood function ensures only incremental one-step changes to the
current con�guration state, but this is not a requirement.

Given . , a , one can de�ne an annealing Markov chain on ⇡ at
temperature g > 0 with transition probabilities from G to G 0 2 a (G)
being:

1
|a (G) | exp

✓
�max{. (G 0) � . (G), 0}

g

◆
.

We see that a possible transition from the current state G to the
next state G 0 is “accepted" with positive probability even when
the objective . is increased, i.e., when . (G 0) > . (G), and always
accepted when . (G 0)  . (G) – this is the “heat bath" rule. When
the temperature parameter g increases, this acceptance probability
increases, i.e., there is more exploration and less exploitation which
is particularly useful when trying to avoid poor local minima. If
the temperature g is initially su�ciently high and slowly (loga-
rithmically) decreases to zero over time, it can be shown that the
(time-inhomogeneous) Markov chain . will converge in probabil-
ity to its global minimum on ⇡ [1]. But this limiting result is not
very useful in practice. Even early on, some authors pointed out
that it may be better not to thus “cool" the annealing chain [10],
particularly when considering a �nite time-horizon. If the temper-
ature is �xed g > 0 and the neighborhoods all have the same size
(|a (G) | is a constant function of G 2 ⇡) then (time-homogeneous)

4That is, the Markov chain resulting from the “base" transition probabilities associated
with the neighborhood function is “irreducible". These transition probabilities should
be chosen so that the base Markov chain is also time-reversible [1].
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Markov chain . has (Gibbs) stationary distribution proportional to
exp(�. (G)/g). Note that as the temperature g ! 0, only transitions
that reduce . are accepted, i.e., pure exploitation.

In the past, annealing was successfully applied to complex opti-
mization problems such as placement and routing of VLSI circuits
and large-scale bin-packing problems [22].

2.2 Kubernetes
Kubernetes (K8s) is an open-source container orchestration plat-
form. It has gained popularity due to its ability to automate the
deployment, scaling, andmanagement of containerized applications
in complex distributed systems. A K8s deployment is an abstrac-
tion layer that manages the creation, scaling, and updating of pods,
which are the smallest deployable units in K8s. Deployments pro-
vide a declarative way to manage the state of the application, ensur-
ing that the desired number of replicas is always available. Pods, on
the other hand, are single instances of a containerized application
that run in a shared environment. They provide a lightweight and
�exible way to manage containers and their resources. Each pod has
a unique IP address and a set of shared resources, including storage
volumes and network interfaces. By setting resource requests and
limits, K8s can allocate resources more e�ciently and ensure that
each pod has enough resources to run e�ectively.

The K8s Application Programming Interface (API) is an interface
that enables developers to manage K8s resources by providing a
mechanism to create, read, update, and delete resources, such as
deployments, pods, and services. To update resources requests and
limits, developers can use the K8s API directly or the kubectl
command-line tool. The API enables developers to retrieve the
current deployment con�guration, modify the resources requests
and limits in the con�guration �le, and subsequently update the
deployment. The K8s API ensures that the updated deployment
is automatically rolled out to the cluster, maintaining the desired
state of the system. In this paper, we exploit the API to size the
di�erent deployments of microservices with the resource requests
of the annealing process.

3 EXPERIMENTAL EVALUATION -
CONTAINER SIZING FOR MICROSERVICES

3.1 Experimental Set-Up
For our container sizing experiments (Figure 1), we use CloudLab
[4] to set up a cluster of r320 nodes. Speci�cally, we con�gure the
cluster to have �ve nodes, with one node serving as the Kubernetes
master and three nodes as Kubernetes workers. Additionally, we
designated one node as the workload generator, which also includes
the annealing process that communicated with the Kubernetes API
at the master node to adjust and modify the resources allocated
(con�gurations) to the deployments. We run our experiments on
two microservice applications provided by DeathStarBench [5] (us-
ing helm-chart): Social Network and Hotel Reservation. The former
is an implementation of a social media network that allows users to
read, post, and react to social media posts, whereas the latter is an
implementation of a browser-based application that allows users to
search and make reservations for hotels. We employ the annealing
approach to size the resources allocated to microservices’ deploy-
ments. We generate the workload for the two microservices using

wrk2 [26], along with workload generator scripts (the benchmark
provides both). In addition, we use Locust [3] to generate a mixture
of request types provided by the microservice benchmark.

3.2 De�ning the Annealing Objective
We de�ne the objective function as.= = C= +_(*cpu +*mem) where
C= is the average execution time for epoch=,*cpu and*mem are CPU
and memory utilization, respectively, and _ > 0 is a user-speci�ed
factor that weighs the average latencies of the requests against the
utilization of resources by the microservices. For experiments of
this section, we set _ = 1, which we empirically found to be suitable
for our demonstrations.

3.3 Experimental Results
For each experiment, we deploy the microservice application to
the Kuberentes cluster while setting the resource request and limit
to the minimum con�guration for cores and memory for each de-
ployment (we set the minimum for CPU and memory to be at 0.1
CPU and 0.1 MiB). Second, we set up our workload generator to
send requests at one-minute intervals (epochs) and measure the
mean latency of the requests. After every epoch, the annealing
process evaluates the objective value and explores a random mi-
croservice to patch with a new resource request and limit at steps
of 0.1 CPU/MiB for CPU/memory. When maximum resources are
allocated, the annealing exploration phase can either modify re-
sources allocated to a random microservice, or reallocate resources
from one microservice to another.

Figure 2 depicts the response times of the read requests to the
social network application while performing annealing at di�erent
temperatures. The �gure shows that a minimizing con�guration
of the microservices resources can be quickly discovered at a rela-
tively high temperature. In practice, when a con�guration with an
acceptably small evaluated objective is found, the temperature can
be lowered, retaining the con�guration desired for a longer period
of time, as depicted in �gure 3.

Figure 4 depicts the response time of read requests made to
the social network application while performing annealing at tem-
perature g = 10. This experiment describes a scenario where an
annealing process selects and remains at a con�guration that mini-
mizes the objective value (e.g., a local minimum) for a period of time
before �nding the optimal con�guration through exploration. Note
that to �nd the globally minimizing con�guration, con�gurations
that increase the objective are �rst explored.

Figure 5 illustrates the objective values obtained through simu-
lated annealingwhen handling amixed set of social network request
types. Speci�cally, themixture comprises 25% read_home_timeline
requests, 25% read_user_timeline requests, and 50% compose_post
requests. For this experiment, we employed Locust [3] to generate
this blend of requests directed at the social network application.
The �gure highlights that, for handling a blend of workload streams,
a higher annealing temperature facilitates a quicker discovery of
an optimal con�guration, albeit with increased variations.
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Figure 1: Container sizing experimental setup.

Figure 2: Social Network: a con�guration with a minimizing
objective is found quickly at a relatively high temperature.

Figure 3: Hotel Reservation: an optimal con�guration is re-
tained at a longer period of time for annealing with relatively
low temperatures.

Figure 4: Social Network: performing annealing

Figure 5: Performing simulated annealing for a mixture of
request types incident to the social network microservice
application.

3.4 Discussion: Adaptive Temperature
Adjustment in Simulated Annealing

When a running average of the cost objective value improves, indi-
cating progress towards the desired optimization goals, the temper-
ature can be reduced. This reduction in temperature corresponds to
a decrease in the likelihood of accepting worse solutions, leading
to a more focused (depth of) search around the currently nearby
optimum. Several di�erent strategies can be employed for adaptive
temperature adjustment in SA, depending on the nature of the op-
timization problem and the speci�c cost and performance metrics
involved, for example:

• Continuous Logarithmic: The classical logarithmic (slow)
cooling schedule [1].

• Threshold Based: Prede�ned thresholds for the objective
value are establishedwith temperature changes at each thresh-
old. If the current objective value crosses a threshold, the
temperature is reduced to encourage exploitation. Alterna-
tively, if the cost objective exceeds a certain threshold, the
temperature may be increased to encourage exploration. The
method of the previous subsection is an example. For another
example, at any given threshold, temperatures can increase
exponentially (e.g., g ! 2g) and decrease additively (e.g.,
g ! (g � 1)+).

• Iteration Based: The temperature adjustment is based on
the number of iterations or the convergence behavior. For
instance, if no signi�cant in the cost objective is observed
after a certain number of iterations, the temperature can be
incremented to encourage further exploration.
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For all of the above, annealing may recall the most recent adequate
solutionG , andmay return toG when temperatures increase, bearing
in mind that G may not be adequate for the current operating
conditions. Also, some or all of the decisions of the above methods
could also be based on other statistics such as running averagemean
(rather than the current value) or variance of the cost objective.

4 DISCUSSION AND FUTUREWORK
This paper describes an online-optimization approach (simulated
annealing) to the management of the performance and cost (re-
sources) of containers deployed to a cluster of virtual machines in
the public cloud which is agnostic to both services and dynamic
workload. Annealing has very low complexity and, at moderate
temperatures, is responsive to changes in the workload or available
service suite. Considering its ease and low cost of implementation
and reasonably good performance, simulated annealing and its vari-
ants and hybrids form a compelling class of baseline frameworks
for online resources management of clusters.

In this paper, to demonstrate its ease of deployment and use and
its good performance, we evaluated an implementation of annealing
for pod or container sizing, i.e., vertical scaling, evaluated using
Kuberenetes (K8s) for microservice workloads, with costs based on
e�ciency of use of the existing instances. In [2], we apply annealing
for VM service selection with experimental results for Apache
Spark implementations of HiBench and distributed deep learning
workloads, with costs based on AWS VM instance pricing. (Also,
an attempt is made therein to compare online optimization with
supervised learning (e.g., deep learning) methods by accounting
for the cost of forming the training dataset of the latter.) Note
that service selection can be expanded to consider the possible
bene�ts of serverless functions, e.g., [13], particularly for stateless
microservices, or to consider di�erent storage options particularly
for data intensive tasks.

As mentioned in Section 1, online simulated annealing can also
be (jointly or independently) used:

• to adjust the task-scheduling policy;
• for assigning containers or pods to VMs (rather than K8s’
default “bin packing” [19]); or

• for horizontal scaling of microservices (i.e., creation of ser-
vice replicas),

e.g.,[8, 12, 21, 27, 32, 34]. All such annealing mechanisms can work
with a common temperature parameter or separately adjustable
ones, and some obviously will need to operate at di�erent time-
scales: fast (task scheduling), moderate (container sizing, assigning
containers to VMs), slow (horizontal scaling), slowest (service se-
lection).

Rules of thumb can be easily incorporated into simulated an-
nealing neighborhood function a , e.g., to constrain assignment of
service replicas to the same VM to take advantage of statistical
multiplexing [23], or to require that certain microservices be as-
signed to VMs with GPU support, or to constrain assignment of
certain groups of di�erent microservices to the same VM to take
advantage of data locality, where the last type of requirement may
also constrain horizontal scaling.

The foregoing discussion is notmeant to suggest that annealing,
or some other method of automatic online optimization, needs to be

applied to task scheduling or for the assignment of containers/pods
to VMs. The default ones provided by, e.g., Spark and K8s (and used
in our experiments) may be adequate in some use cases. Note that
under K8s, such policies are user con�gurable [14, 16–19]. That
is, the K8s API can be used to create a�nities between certain
types of VMs and certain microservices and among microservices.
Moreover, the K8s API can be used to con�gure the “bin packer” so
that, e.g., the fewest possible VMs are used (allowing some VMs to
be released to save cost), or to balance the pods among the existing
VMs, subject to any stipulated constraints.

Simulated annealing (or another online optimization framework
like Bayesian optimization [9]) can easily be modi�ed, e.g., to re-
member the best states visited in the recent past and return to them
with lower temperature if “exploration” at higher temperatures
has not recently yielded good results (smaller objective). Also, sim-
ulated annealing can be hybridized with other known methods,
e.g., with random restart or genetic algorithms to improve breadth
of search (exploration), or by excluding recently visited states to
improve e�ciency of depth of search (exploitation).

OPEN SOURCING
The scripts we developed for our online optimization method are
posted on GitHub [2]. The repository consists of two major sections.
The �rst section focuses on service selection, employing simulated
annealing to identify optimal con�gurations at the VM service level,
as detailed in [2]. This segment encompasses performance results
from a fewHiBench workloads and an illustrative example of a deep
learning application. The accompanying scripts employed to pro-
duce the dataset and perform simulated annealing are included as
well. The second section focuses on sizing containers of the Death-
StarBench microservice applications. This segment encompasses
two di�erent software implementations of performing simulated
annealing for container sizing. The �rst implementation utilizes
wrk2, a HTTP benchmarking tool [26], to generate requests of a sin-
gle type to the microserivce application instance. At every epoch,
the script performs simulated annealing using the performance
metrics provided by wrk2. The second implementation of container
sizing uses Locust, also a HTTP benchmarking tool [3]. The work-
load generated is a mixture of di�erent types of requests incident
to the microservice application. In this software implementation,
Locust leverages wrk2’s endpoints of the microservice application
to generate the requests. In addition, our Locust implementation is
containerized and can also be deployed on a kubernetes cluster.
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