ISRAEL JOURNAL OF MATHEMATICS TBD (2023), 1-33
DOI: 10.1007/s11856-023-2571-2

THE GALOIS ACTION ON THE LOWER CENTRAL SERIES
OF THE FUNDAMENTAL GROUP
OF THE FERMAT CURVE

BY
RACHEL DaAvis

Department of Mathematics, University of Wisconsin-Madison
480 Lincoln Drive, Madison, WI 53706, USA
e-mail: rachel. davisQuisc.edu
AND

RACHEL PRIES*

Department of Mathematics, Colorado State University
Fort Collins, CO 80523-1874, USA
e-mail: pries@colostate.edu

AND
KIRSTEN WICKELGREN™*
Department of Mathematics, Duke University

Campus Box 90320, Durham, NC 27708-0320, USA
e-mail: kirsten.wickelgren@duke. edu

* Pries was supported by NSF grants DMS-15-02227 and DMS-19-01819.
** Wickelgren was supported by an American Institute of Mathematics five year

fellowship and NSF grants DMS-1406380, DMS-1552730, and DMS-2001890.
Received August 14, 2018 and in revised form February 14, 2022



2 R. DAVIS, R. PRIES AND K. WICKELGREN Isr. J. Math.

ABSTRACT

Information about the absolute Galois group G of a number field K is
encoded in how it acts on the étale fundamental group 7« of a curve X
defined over K. In the case that K = Q((») is the cyclotomic field and X
is the Fermat curve of degree n > 3, Anderson determined the action of
Gk on the étale homology with coefficients in Z/nZ. The étale homology
is the first quotient in the lower central series of the étale fundamental
group. In this paper, we determine the Galois module structure of the
graded Lie algebra for w. As a consequence, this determines the action of
G on all degrees of the associated graded quotient of the lower central
series of the étale fundamental group of the Fermat curve of degree n, with
coefficients in Z/nZ.

1. Introduction

Let X be the Fermat curve of degree n, where n > 3. Consider the cyclotomic
field K = Q(¢,); let K be its algebraic closure, and let Gk be its absolute
Galois group. Anderson described the action of Gx on the étale homology
H(X;Z/nZ) with coefficients in Z/nZ of the base change Xz of X to K (the
base change is suppressed in the notation H;(X;Z/nZ)); more precisely, he
analyzed the G g-action on the relative homology H; (U, Y;Z/nZ) of the open
affine Fermat curve U = {(z,y) : ™ + y™ = 1} relative to the set Y of the 2n
cusps with zy = 0.

The main result of [DPSW16, Sections 4-5] is that Anderson’s description
uniquely determines the action of Gx on Hy (U,Y;Z/nZ) when n is prime. In
[DPSW18, Theorem 1.1], the authors find an explicit formula for the action
of each ¢ € Gg on Hy(U,Y;Z/nZ) when n is a prime satisfying Vandiver’s
conjecture.

Let 7 = [r]; = m1(X) be the étale fundamental group of X4, and for m > 2,
let [7],n be the mth subgroup of the lower central series

T=[rl1 D[rl2 D A3 D,

defined so that |7, = [, []m—1] is the closure of the subgroup generated by
commutators of elements of = with elements of [r],,—1. For example, there is a
canonical isomorphism of Gg-modules Hy(X;Z/nZ) = w/[n]s ® Z/nZ, and as
a group 7/ [r]a ® Z/nZ = (Z/nZ)?9, where g = (n — 1)(n — 2)/2 is the genus of
the Fermat curve.
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In this paper, we describe the action of G on each of the higher graded
quotients [7]m,/[7]m+1 ® Z/nZ in the lower central series filtration of m, with
coefficients in Z/nZ; when n is prime, this description determines the action
uniquely. One motivation for this work is that it sheds light on the 2-nilpotent
quotient of the étale fundamental group of the Fermat curve, because of the
exact sequence:

(1L.a) 1 — [7]2/[7]s ®Z/NZ — 7/[7]3 @ Z/nZ — 7/[w]s @ Z/nZ — 1.

To state the results more precisely, consider the graded Lie algebra

gr(m) = €D [l / [T)n+1

m>1

associated with the lower central series for 7, ([Laz54, Ser65]), which is equipped
with its Gi-action. The group p, X p, acts on X by multiplying = and y
by mth roots of unity, and therefore acts Gi-equivariantly on 7. Let F be
the free profinite group on 2g generators, and consider its graded Lie algebra
gr(F) = @,,>1 g, (F). It follows from work of Labute in [Lab70, Theorem,
page 17] that ‘there is an element p of weight 2 such that

gr(m) = gr(F)/(p)-

The right-hand side may be equipped with a Galois action by identifying gr(F')
with the étale fundamental group of the open complement in X of a K-rational
point, and the isomorphism may be chosen to be the one induced from the
inclusion of the open subscheme. It thus respects the Galois actions on both
sides. This Galois action is determined by the action on

gr1(F) = gry (r) = Hy(X;2)

by [MKS04, Section 5.7, Corollary 5.12 (v)].

In Theorem 1.1, we determine the isomorphism class of gr(m) as a graded Lie
group with action of p, X p,,. Since gr(F') is generated in degree 1, it suffices to
obtain a complete description of the ideal @ C gr(F) and the action of p, X fin,
on it.

Furthermore, when n is prime, we determine the isomorphism class of
gr(m) ® Z/nZ as a graded Lie algebra with p, X pu, X Ggi-action. This gives

the stated application of determining the action of Gk on each of the higher
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graded quotients [7]y,/[7]m+1 ® Z/nZ. For this, it suffices to use the descrip-
tion of the ideal (p) C gr(F) from Theorem 1.1 together with the action of G
on [r]1/[r]2 ® Z/nZ from our earlier result in [DPSW18, Theorem 1.1].
To find the ideal (p) C gr(F), we use the isomorphism of G x-modules [Hai97,
Corollary 8.3]
[w]2/[mls = (Hi (X) A Ha(X)/Im(%),

where
(1.b) € :Hao(X) — Hi(X) AH (X)

is the dual map to the cup product H!(X) A H}(X) — H?(X).

The image Im (%) is cyclic since Ha(X) = Z(1). We use the basis of H;(X)
as a Z-module from [Ejd19, Theorem 1.2], see (4.1), which interacts well with
the fun, X pp-action. This basis gives an isomorphism grq (F) = H;(X), which
in turn induces an isomorphism gro(F) = H;(X) A H1(X). We may therefore
compute p as an element of Hi(X) A H1(X), and any generator of Im(%) is a
valid choice for p.

We note that Hy (X)) is a quotient of Hy (U), which is a subspace of the relative
homology H; (U,Y). For all integers n > 3, we determine p as the image of an
element A in Hy (U)AH; (U), with the result expressed in terms of a basis {[E; ;]}
for Hy(U) defined in Section 4.1, Lemma 4.1. This basis is convenient because
we know the action of u, X p, and G on its elements.

THEOREM 1.1: For n > 3, a generator p for Im(%) is given by the image
in Hy (X) A Hy(X) of the following element A of Hy(U) AHy(U):
A= Z E(ilajla i2aj2)[Ei17j1] A [Ei2,j2]’
1§i1§i2§n71
1<j1,j2<n—1
(i1,51)#(i2,52)
where
1 ifjg*le’L'Q*il;c'LO IIlOd?’L*].7
€(i1,d1,42,J2) =< =1 ifjo—j1+1=i3—i1#0 mod n — 1,
0 otherwise.
The action of the absolute Galois group G on the homology of the Fermat
curve is the subject of several foundational papers, including [Tha86], [And87],

[AI88], [And89], and [Col89]. Let n = p be an odd prime. Let L be the
splitting field of 1 — (1 — 2z”)P. In [And87, Section 10.5], Anderson proved that
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the action of Gk on the relative homology H;(U,Y’; Z/pZ) factors through the
finite Galois extension L/K and gave a theoretical formulation for the action
of ¢ € @ = Gal(L/K). From [And87, Section 10.5] and the result of Labute
quoted above, it follows that the action of Gx on [7]y,/[]m+1 ® Z/pZ factors
through @ = Gal(L/K), for any m > 2.

In [DPSW18, Theorem 1.1] and [DPSW16, Theorem 1.1], we made a com-
pletely explicit calculation of the Q-action on Hy (U,Y;Z/pZ) when p is an odd
prime satisfying Vandiver’s conjecture.! Our main motivation for Theorem 1.1
is that the G g-module [rr]2/[7]3 occurs as the coefficient group in a map that
measures an obstruction for rational points:

(52 : H1 (GK, Hl(X)) — Hz(GK, [71‘]2/[71‘]3).
For this reason, we highlight the following result.

COROLLARY 1.2: Combining [DPSW18, Theorem 1.1] with Theorem 1.1 yields
an explicit computation of [r]2/[7]3 ® Z/pZ as a G g-module when p is an odd
prime satisfying Vandiver’s conjecture.

Section 7 contains several applications. In Section 7.1, we give an independent
verification for the formula for p if p = 5, using the fact that p satisfies certain
invariance properties under the action of Aut(X) and Gal(L/Q). Using these
invariance properties, if p = 5, we also compute that the dimension of the Gg-
invariant subspace of Hy (X;Z/57Z) is 2; see Example 7.7. This provides a new
proof of a result of Tzermias [Tze97, Corollary 2].

In Section 7.3, we consider the short exact sequence

0— (Z/pZ)p — H1(X;Z/pZ) NH1 (X Z/pZ) — [7)2/[7]s ® Z/pZ — 0.
Since @ fixes p, this yields a long exact sequence
0 — (Z/pZ)p — H(Q; Ha (X3 Z/pZ) N Ky (X Z/pL))
= HO(Q; [w)2/[)s ® Z/pZ) % H'(Q: (Z/pL)p).
If p = 5, as an application of Corollary 1.2, we compute that the dimension of the

G g-invariant subspace of Hy (X;Z/5Z) AH1(X;Z/5Z) (vesp. [r]2/[r]3 ® Z/57Z)
is 35 (resp. 34). This shows that the coboundary map ¢ in (1.c) is trivial if p = 5,

(1.c)

see Example 7.8; this is a non-trivial fact since p | |Q].

1 Vandiver’s Conjecture states that p does not divide the order of the class group of
Q¢ + C;l). It is true for all regular primes p and all primes less than 163 million.
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2. The fundamental group of the Fermat curve

Let ¢ = ¢, = €™/ (resp. € = €™/™) be a primitive nth (resp. 2nth) root of
unity.

Consider the Fermat curve X of exponent n with equation ™ + y" = 2.
Let Zy be the set of n points where z = 0. Consider the open affine sub-
set U = X — Zy. In Sections 24, the field of definition is the complex numbers;
let X := X(C) and U :=U(C) = {(z,y) € C* | 2" + y" = 1}.

2.1. THE FUNDAMENTAL GROUP AND THE DEFINITION OF A. Note that U
n—1
2
point b = (0,1). There exist loops a;, 2; for 1 <i<gande¢; for 0 <j<n-—1,

is a real surface of genus g = ( ) with n punctures. We choose the base

with base point b, such that 71 (U) has a presentation

g n—1
(2d) mU)={a;,z,¢j:i=1,...,9,57=0,...,n— 1>/H[ai,zi] H ¢
i=1 j=0
Let a;,Z;,¢; denote the images of a;,z;,¢; in Hy(U). Hy(U) is equipped
with an intersection pairing, which may be defined using Poincaré duality
H;(U) = HL(U) and the cup product on compactly supported cohomology.
We can suppose that
(1) the loop ¢; circles the puncture [¢7 : € : 0] € Zo;
(2) each ¢; pairs trivially with a;, z;; each ¢; pairs trivially with ¢; for ¢ # j;
(3) and the images of a;, z; in Hy(X) form a standard symplectic basis.
Item (2) may be arranged by choosing loops ¢; whose images have no set-
theoretic intersection with each other or with the loops a;, z; for 1 <i<g. This in
turn can be arranged using a standard gluing of an n-punctured polygon with 4¢
sides, with the sides labeled consecutively by a1, z1,a; ', 21 .. ., ag, 2, agt, 2zt
The set {¢;} generates the kernel of H; (U) — H;(X). Define

(2.6) A:iai/\fiGHl(U)/\Hl(U).
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Let [m1(U)]2 = [m(U), m(U)] and [71(U)]5 = [71(U), [71(U)]2]. Consider the
map
C:Hy(U) AHL(U) = [m(U)]2/[m(U)]s,
which takes the simple wedge r A s to the (equivalance class of the) commutator
of a lift of » and a lift of s to elements of 7 (U). Since U is not proper, C' is an
isomorphism. Recall the definition of € from (1.b).

LEMMA 2.1: The image of A under the map A?(Hy(U) — Hy (X)) is a generator
of ITm(%).

Proof. By definition, % is the dual of the cup product pairing. Since the images
of a;, z; form a standard symplectic basis, the image of % is generated by the
image of Y_, @; A z; under the map A%(H;(U) — H;y (X)), which is the image
of A by definition. ]

Lemma 2.1 shows that the image of A under the map A?(H;(U) — Hy(X))
is a valid choice for p, and we henceforth let p denote this image.

2.2. THE SECOND GRADED QUOTIENT IN THE LOWER CENTRAL SERIES. By
(2.e), A = 7 a; A z. Our goal is to determine A in terms of a basis
of Hy(U) AH;y(U) for which we know the action of the absolute Galois group.
In order to do this, we investigate the element T := [[7_,[a;, 2] in 71 (U). Note
that T = (cpoci0---0c,_1) %

The next lemma shows that A does not depend on the representation as a
product of commutators.

LEMMA 2.2: Suppose r1,...,TN,S1,--.,SN are loops in U, with images T;,5;
in Hy(U). If
T is homotopic to [ri,s1] 0o [rn,sn],
then Y9_ a; Az = SN 7 A5 in Hy(U) AH, (U).
Proof. By hypothesis, in w1 (U),
(2.) [a1,z1]) 0 -+ 0 ag, zg] = [r1,81] 0+ o [rNn, SN].

Note that both sides of the equation are elements of [m1(U)]2. Therefore (2.f)
holds in [m1(U))2/[m1(U)]3. Under the inverse of the isomorphism C, (2.f) be-
comes Y9_ a; Az =N 7 As in Hy(U)AH (U).

The next lemma is key for simplifying later calculations.
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LEMMA 2.3: Suppose a, 3,y € m(U).

(1) If ay € [m1(U)]2, then ya € [m1(U)]2, and ary and ya have the same
image in [m1(U)]2/[m1(U)]s.

(2) If y~tayB € [m1(U)]2, then af € [m1(U)]s, and the difference between
the images of y“1ayB and af in [m1(U)]2/[m1(U)]3 is ¥ A (—a).

Proof. (1) Note that ya = a~t(ay)a. If ay € [m1(U)]2, then ya € [m1(U)]2 be-

cause the commutator subgroup is normal. Also ay and o have the same image

in [m1 (U)]2/[m1(U)]s because conjugation acts trivially on [m1 (U)]z2/[m1(U)]s.
(2) In ™ (U),

1

[y ey, = (v ey (v

1 1

a“ly Tt =Ttaya T = [y ol

1 1 1

avyB. In particular, if v~ tays is in [m1(U)]2, then so

So [y tay,v]aB =y~

is af.
Since U is affine,

(71 (U)]2/[m1(U)]s = Hi (U) AHL(U).

In [71(U))2/[r1(U)]3, the difference between the images of v~ layf and af is

the image of [y~ Lay,7]. Since [y tavy,v] = [y~ 1, al, this image is —y A, which

equals v A (—a). |

2.3. ELEMENTS OF THE FUNDAMENTAL GROUPOID. Recall that
U:=UC)={(z,y) [z" +y" =1}

and Y is the set of 2n points such that zy = 0. We compute in the fundamental

groupoid 71 (U, Y") of U with respect to the base points in Y. Let 8 be the path

in U, which begins at the base point by = b = (0,1) and ends at dy = (1,0),

given by

(2.g) B=(¥t, V1=t fortel01].

Throughout this section, let 0 < i < nm—1land 0 < j < n-—1 1Ttis
sometimes convenient to think of i and j as elements of Z/nZ. Let b; = (0,¢7)
and d; = (¢*,0). Consider the automorphisms €, e; € Aut(U) defined by

60(1',y) - (grvy) and 61($,y) = ("Eacy)

Consider the path in U, which begins at b; and ends at d;, given by

(2.h) eij = €pél .
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Consider the loop E; ; in U, formed by the composition of four paths, where
path composition is written from left to right:

Ei,j = €0,0 © (eoyj)il o} €i,5 e} (61'70)71
Then F; ; proceeds through the following points:
bo’—>d0l—>bj'—>dil—>bo.

If i = 0, then E; ; is trivial in the fundamental groupoid. The converse is
also true; see Lemma 4.1 below.

3. A formula for the classifying element

The main goal of this section is to find a formula for (cg,c1,...,c,_1)"! in
terms of the elements E; ; in the fundamental groupoid 71 (U,Y"). The formula
is stated in Section 3.4 and proved to be correct in Proposition 3.6. The reason
for finding this formula is that

g
T= H[ai, 2] = (cpocro--0cy_1)7 !

is in the class of the boundary of a disk in the Fermat curve that contains Zj,
the set of n points where z = 0. At the end of the section, in Proposition 3.9, we
analyze the ordering of the loops E; ; in T' combinatorially. In Section 5, we will
use the material in this section and Section 2.2 to find an explicit formula for
the element A € Hy(U) AH;(U) whose image in Hy (X) A Hy(X) is p, in terms
of a basis on which we understand the action of the absolute Galois group.

3.1. SHEETS OF A COVER. Let V = A!(C). Consider the map p : U — V
given by (z,y) — x. Let ¢ = €2™/™. Then p is a ju,-Galois cover, where the
generator ¢ of u, acts via ((z,y) = (z, Cy).

The cover g is ramified at {(z,y) = (¢*,0) | i = 0,...,n — 1} and branched
at {x = ¢* | i = 0,...,n — 1}. The pre-images of x = 0 in U are the
points b; = (0,¢7) for 0 < j <n — 1.

The equation for the curve is y™ = f(z) where f(z) = —[[;", Yz — ¢t
separable. This implies that the inertia type of p is the n-tuple (1,1,..., 1).
This means that the canonical generator of inertia at each ramification point
is . In other words, the chosen generator of the Galois group of g acts on a

uniformizer at each ramification point by the same root of unity (.
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Let w; be the path in V given by x = ¢* {/t for t € [0, 1]. Let
Vo=V —{w; |0<i<n-—1}.

Let

U® =p L(V°).
The restriction of p to U® is unramified. This is because the monodromy around
each root of unity is multiplication by (, so a loop going around all n of the roots
of unity is multiplication by (™, which is trivial. Therefore, the monodromy
action of m1(V*°) is trivial on U®°, proving that the restriction of p to U° is
unramified. Thus U° is a disjoint union of n sheets.

In order to label these sheets, we define the following notation, for 0 <¢<n—1.
Let r; be the ray @ = (*/t for t € [0,00). We define the angular segment, or
sector, R; to be the intersection of a small neighborhood of z = 0 in V° with
the segment of V° bounded by 7;_1 modn and r;. In other words, for some
small e, € R0,

Ri={$=T€IOEVO|(’L'—l)?%<9<i2%,0<7“<60}.

For 0 < 14,5 < n—1, we denote by R; ; the intersection of a small neighborhood
of bj = (0,¢7) with U° N p~!(R;). We label by Uy, the sheet containing Ry, o,
for0<k<n-1.

Thus our small neighborhood of b; = (0, ¢?) intersected with U® is the disjoint
union of the n neighborhoods R” for 0 < ¢ < n—1. Since we may choose to
base fundamental groups at a point b; or at a simply connected neighborhood
of b;, we can think of b; as a base point divided into n pieces, one piece on each
sheet Uy, or as n different tangential basepoints.

In Lemma 3.2, we determine the value of k such that the sheet U}, contains R; ;
when j # 0.

3.2. THE cusps WITH z = 0. Recall that Z, is the set of n points of X

where z = 0. Let € = ¢™/n

be a primitive nth root of —1. The points of Zj
have projective coordinates z, = [(¥: €: 0] for 0 < k < n — 1. The unramified
cover U° — V° extends to an unramified cover U° U Zy — V° U {oo}. The
next result shows that the boundary of the sheet Uy contains exactly one point

of Zo.

LEMMA 3.1: The point zy is contained in the boundary of the sheet Uy.
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Proof. Consider the ray Qy in U° given by (z,y) = (e '¢F/t, Y1 +1) for
t € (0,00). Ast — 0, it approaches b = (0,1) and it is contained in the
sheet Uy. As t — 0o, the value of z/y on Q) approaches

Jim eV T+t =1

The point zj is at the end of the ray @ and is thus contained in the sheet Uy.R

Figure 1.

3.3. Loops IN THE COVER. The information from the inertia type indicates
how to glue the sheets Uy together along the paths e; ; to obtain a ramified
cover of Riemann surfaces. Recall that the canonical generator of inertia at
each ramification point is (.

Consider a loop L; in V, with starting point x = 0, which makes a coun-
terclockwise circle around the path w;, starting in the region R; and ending
in R;41. Note that L; depends only on the value of ¢ modulo n. Define L; ;
to be the lift of L; to a path in U° which starts at the point b; = (0,¢7). By
the definition of the inertia type, L; ; ends at the point b;41 = (0,¢’*'). Note
that L; ; is homotopic to the composition of paths

Lij=eijo(eijr1) "t (0,¢7) = (¢F,0) = (0,¢7).
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The next result determines which of the lifts Ri, ; of the sector R; are on each
sheet Uy.

LEMMA 3.2: With notation as above, Rw C Uy if and only if i — j = k.

Proof. By definition, Rk,O C Uk. The path L; ; is contained in a unique sheet.
Since L;; starts in R;; and ends in R;y1 41, then these neighborhoods are
contained in the same sheet. ]

Note that U° = U —{e; ; | 0 < i,5 <n—1}. In order to reconstruct the rami-
fied cover of Riemann surfaces U — V', we need to glue the sheets {Uj fo<k<n—1
together along the missing segments; specifically, we glue R;; and R,y ; to-
gether along the edge e; ; for 0 < 4,5 <n —1.

3.4. LIFTING OF A STAR SHAPE. Recall that path composition is written from
left to right. For 0 < /£ < n — 1, define a loop in V' by

(31) Sg = Lnfl (¢] LnflJrl O-+--0 Ln—é—i—(n—l)-
Each loop Sy traces in a counterclockwise direction along the outside of the

slits {w;} and forms an n-pointed star shape. Each is homotopic to a large
circle in V° traced in a counterclockwise direction.

Definition 3.3: For 0 </ <n—1, let S’g denote the unique lift under p of Sy to
a loop in U with starting point by = (0,1). Let S := Sg0S; 0---0S,_1.

By the proof of Lemma 3.2, Sy is contained in U,_,. Later, we will see
that S € [r1(U)]2; see Remark 4.5.

LEMMA 3.4: For 0 < /¢ <n —1, the loop gg is homotopic to

G —1 —1 —1
Se=e_goo(e—r1) ce_pr1,10(e—pq12) O 0€_pyn_1,n-10(€—r4n-1,0)
or, equivalently, Ly, 400 Lyp—¢11,10 Ln—gy220 -0 Ly _py(m_1)n—1-

Proof. The loop Sy is homotopic to the composition of 2n of the edges e; ;
and (e; ;)~'. Because of the inertia type of p, this composition involves loops
of the form L; j = e; j o (e; j+1)'. The condition that Sy is contained in U, _,
implies that its initial edge is the path e_y o from (0,1) to ((7*,0). Thus the
initial loop is L,,—s0 = e—_g 00 (e—g1)~t. Consider the loop Ly j» coming after
the loop L; ;. Then ¢/ =i+ 1 because Sy circles counterclockwise around the
point (¢, 0). Also j' = j + 1 because the starting point (0,¢7") of Ly j is the
same as the ending point (0,¢) of L; ;. |
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For example, So passes around the points in this order:
(0,1) = (1,0) = (0,¢) = (¢,0) = (0,¢%) = -~ = ("7, 0) = (0,1),
and
So = €0,00 (€01) " oer10(er1a) o oen 110 (en10) "

3.5. COMPARISON WITH LOOPS AROUND CUSPS WITH z = 0. We prove that S
is path homotopic to the boundary of a disk containing the n cusps of Zy and
that Sy can be taken to be the loop (¢n—¢)~ ! in a standard presentation of 71 (U)
(a presentation of the form (2.d)). For 0 < j <n —1,let z; = [(/: €: 0].

PROPOSITION 3.5: The loop Sy is homotopic to the clockwise loop bounding a
disk containing z,_g.

Proof. Note that V° is homeomorphic to A' — {0} and S, is homotopic to
a counterclockwise loop around 0. Thus Sy is homotopic to a clockwise loop
around oco. By definition, the lift Sy of Sy is a loop in U, _¢. The restriction
of ¢ to U,_y yields a homeomorphism U, _; — V°. Thus S is a clockwise loop
around the point missing from U,_,. By Lemma 3.1, this point is z,_g. |

ProPOSITION 3.6: The loop S is homotopic to the boundary of a disk in the Fer-
mat curve which contains the n points where z = 0; it follows that we may take a

presentation of the form (2.d) where Sy=(c,_;)~' and S=(c10--- oc,_10¢p) "

In the following proof, it is convenient to use a small ball around by as our
basepoint by (which we may do because balls are simply connected). The inter-
section of this ball with Ri,o will then be called the fractional point of by in the
region Ri,O-

Proof. The loop 5'0 in Uy starts and ends at the fractional point by in the
region Ro,o- With a small homotopy adjustment, the end of So can cross the
path e,_1,0 rather than return to the point by. Since the sheet Up is glued
to the sheet U,_; along the edge e,—1,0, this yields an ending point in the
region Rnfl,o near the fractional point by in the sheet U,,_.

The loop Sy in U,_; starts and ends at the fractional point by in the re-
gion Rn—l,O- With a small homotopy adjustment, the end of Sy can cross the
path e,_g 0 rather than return to the point by. Since the sheet U,,_; is glued
to the sheet U,_o along the edge e, 2, this yields an ending point in the
region Rn,ZO near the fractional point by in the sheet U, .
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We continue in this way through all the loops SpoSi0-08, 1. Finally,
with a small homotopy adjustment, the end of S,_1 crosses the path 0,0 and
returns to the region RQO in Uy. Thus S is path homotopic to a loop in the
Fermat curve X composed of n paths each contained on a single Uy, of the form
shown in Figure 3.5 for n = 3.

This path divides X into an external and internal piece, where the internal
piece contains the ramification points {d; | 0 < i < n — 1}, and the external
piece contains Zy and is homeomorphic to a disk. (To see that the external
piece is homeomorphic to a disk, note the following. The external piece is the
union of n pieces, each homotopic to a wedge, which are glued together along
the edges of the wedges. The picture for n = 3 is illustrated in Figure 3.5.)

Applying Proposition 3.5, it follows that we can take a presentation of the
form (2.d) where

Sy = (o)™t

Thus

2

1

Zo

Figure 2.
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1

The difference between (copocyo---c,—1) L and (c;o---0c,_10co) "t is not

significant by Lemma 2.3(1).

LEMMA 3.7: Let S* (resp. S;) be the element of w1 (U) obtained by substitut-
ing E; ; for the path e; ; in S (resp. Sy). Then S* and S (resp. S; and S;) are
homotopic in w1 (U).

Proof. We fix the path eg g o ea} from by to b;, the initial point of e; ;. We fix
the path e; o from by to d;, the final point of e; ;. In the composition of paths,
after completing each path e; ;, we return to the base point by and then return
to the initial point of the next path. This does not change the homotopy class.
The statement can also be proven using algebraic cancelation. |

3.6. COMBINATORIAL ANALYSIS. By Proposition 3.6, the loop S is homotopic
to the boundary of a disk in the Fermat curve which contains the n points
where z = 0. By Lemma 3.7, the loop S* also has this property. So the goal
is to find the image of S* in [m1(U)]2/[71(U)]3 in terms of the elements E; ;.
By Lemma 2.3(2), this is possible if we have a complete understanding of the
edges in between E; jl and E; ; in S*. We describe this combinatorially in this
section.

LEMMA 3.8: The loop S is the composition of 2n? paths, with each path €;j
and each path (e; j)~' occurring exactly once.

Proof. Immediate from Lemma 3.4. |
We begin a combinatorial analysis of the ordering of the elements E; ; and Eifjl

in S*, viewed as a cycle, rather than a word. For1 < j<n—1land0 <a <n-—2,
let § + a be the unique value in {1,...,n— 1} congruent to j + a modulo n — 1.

PROPOSITION 3.9: The ordering of the elements F; ; and E;)jl in the cycle S*
satisfies the following:

(1) The edges between Efi and Ej 1 are:
fii=Es10(Ey) o 0B, 1n20(Ep1,-1)""

2) The edges between E} and E, ; are:
1,5 5J

—1 —1
fi=Eyz0(Bygn)™ o0 By i gmms o (B jrms) ™



16 R. DAVIS, R. PRIES AND K. WICKELGREN Isr. J. Math.

(3) For1<4,j <n—1, the edges E; ;; between E;jl and E; ; with i’ > i
are:

Eyjo withi<i <n-—1landi —j =i—j+1modn—1;
and
(B )™t withi<i <n—1andi —j =i— jmodn— 1.

Proof. Ttem (1) is a special case of (2), which is a special case of (3), which
follows from Lemma 3.4. ]

4. The homology of the Fermat curve

The homology of the Fermat curve has been studied from many perspectives;
see, e.g., [Gro78, appendix] and [Lim91, Section 4]. By [Gro78, Theorem 1,
appendix], Hy(X) is a cyclic Aj-module, where Ay = Z[u, X py], and the
annihilator of Hy(X) in Ay can be found in [Gro78, page 210] and [Lim9l,
Proposition 4.1]. The facts about the structure of H;(U) and H;(X) in this
section will be familiar to the experts.

In Sections 4 and 5, we consider homology with coefficients in Z; however, we
follow an approach which is compatible with the results in [And87], [DPSW16],
and [DPSW18] about the étale homology with coefficients in Z/nZ and the
action of the absolute Galois group upon it; see Section 6.

Consider the relative homology H; (U,Y), viewed as a groupoid with one ob-
ject. To study H;(U), we use the homomorphism of groupoids from 7 (U,Y)
to Hy(U,Y), which sends composition to addition; we denote this homomor-
phism by — — [—].

4.1. A BASIS FOR THE HOMOLOGY OF X. Let Ay = Z[un X u,] and let [€]o
and [e]; denote the generators of i, X f,. Let A1 = (([e]o — 1)([e]1 — 1)) C Ay
denote the augmentation ideal.

Let [e; ;] (resp. [E;;]) denote the class of e;; (resp. E; ;) in the relative
homology H; (U,Y). Let 8 denote the class of [eg ] and recall that

[ei 5] = [€lp[e]{ B-
Also

(44) [Ei ] = [eo,0] — [ei0] — [eo,;] + [ei]-
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Using modular symbols, Ejder proves in [Ejd19, Theorem 1.2] that a basis
for Hy(X) is given by

(4X) A -[do) (1 —[)B1<i<n—2,0<j<n-2}
In our notation, that means that a basis for Hy(X) is given by

(4.) {ebei[Eia] |1<i<n—2,0<j<n-—2}

4.2. FACTS ABOUT THE HOMOLOGY OF THE AFFINE CURVE. Next we find a
basis for Hy (U).

LEMMA 4.1: The elements [E; ;] from (4.j) are in Hy(U) and the set
{[Eijl11<i,j<n-1}
is a basis for Hy(U) as a Z-module.

Proof. The first claim is true because [E; ;] is the image of a path in the fun-
damental groupoid starting and ending at the same point.
We first show that {[E;;] | 1 < 4,5 < n — 1} is a basis for Hy(U;Z/nZ).

There is an isomorphism
Hi(U,Y;Z/nZ) =2 Ay @ (Z/nZ),

taking 5 — 1, [And87, Theorem 6]. Thus {[e;;] | 0 <4,j < n — 1} is a basis
for Hy(U,Y;Z/nZ).

Consider the augmentation ideal A; ® Z/nZ C Ay QZ/nZ. f « € Ay RZ/nZ,
write a = ), 5 a;; [e]i[e]%. One can check that o € Ay ® Z/nZ if and only if
the rows and columns of the matrix [a; ;] sum to 0 modulo n. By [DPSW16,
Proposition 6.2], Hy(U;Z/nZ) =2 Ay ® Z/nZ.

The element [e; ;] appears in [E; ;] if and only if ¢/ = ¢ and j/ = j. It
follows that {[E; ;] |1 <i,7 <n — 1} is a set of linearly independent elements
in Hy (U,Y; Z/nZ), and thus also in H; (U; Z/nZ). Their span contains n(("=1)%)
elements of Hy (U;Z/nZ). Since Hy(U;Z/nZ) has rank (n—1)2, this span is the
entirety of Hy (U; Z/nZ). This completes the proof that {[E; ;] | 1 <4,j < n—1}
is a basis for Hy(U;Z/nZ).

It follows that {[E;;] | 1 < i,j < n — 1} is a set of linearly independent
elements in Hy (U). Consider the span of the image of this set in H;(X). This
span contains [F1 1] and is a A;-module, thus contains [¢]}[e]][E1.1]. By (4.1),
the image of this set spans Hy (X).
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To complete the proof, we need to show that {[E; ;]| 1 <i,j <n—1} spans
the kernel of Hy(U) — H;(X). A basis for the kernel is {¢; | 0 < j <n —1}.
By Proposition 3.5, the loop S, is homotopic to the clockwise loop bounding
a disk containing z,_,. Thus a basis for the kernel is the set of images of gg
in H;(U). By Lemma 3.4, S; is homotopic to a loop with a formula written
in terms of e; ;. By Lemma 3.7, the same is true after replacing e; ; by E; ;.
Also E; j =0 if ij = 0. Thus the set of images of Sy in H1(U) is generated by
{[Ei;]|1<4,j <n—1}. This completes the proof. 1

By Lemma 4.1, there is an injection Hy(U) A H1(U) — A; Az A1 and an
isomorphism
Hl(U)/\Hl(U) — Ay Nz Aq.

LEMMA 4.2: Consider the index set
I:{(ilajlaiQan) |1 S il;iQajlan S n— 13 z'1 S i2a
(4.m)
and if i1 = ig then j; < ja}.
Then Hy(U) AH1(U) is a free Z-module with basis
{[Eihjl] N [Ei2,j2] | (ilajlaiQ’jQ) € I}
Proof. By Lemma 4.1, H;(U) is a free Z-module of rank m := (n — 1)? with
basis {[E4, ;] | 1 <i1,51 <n—1}. Then H1(U) AH;(U) is a free Z-module of
rank (7;) Because z Aw = —w A z and z A z = 0, a basis is given by the set
of simple wedges [E;, j,| A [Ei, j,] with 41 < 45 and (i1, j1) # (42, j2), which is
indexed by I. ]

4.3. FACTS ABOUT THE HOMOLOGY OF THE PROJECTIVE CURVE. We char-
acterize Hy (X) A H1(X) as a quotient of Hy(U) A Hy(U) both for theoretical
reasons and for the computational applications in Sections 7.1-7.3.

LEMMA 4.3: Let S be the kernel of Hi(U) — Hi(X). Then the kernel
of Hi(U) AH1(U) — H1(X) AHy(X) equals S AHy(U).

Proof. Since Hy(X) is a free module, the quotient map H;(U) — H;(X) splits,
giving a direct sum decomposition Hy(U) = Hy(X) @ S, where S, H;(X)
and H; (U) are all free modules. The wedge of the direct sum decomposes as

Hy (U) AHL (U) 2 (Hy (X) AHL (X)) @ (H (X)AS) @ (S AS),

showing the claim. ]
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We need an explicit description of Hy(X) as a quotient of Hy(U) for the
computational applications in Sections 7.1-7.3. Define 7; € Ay by the formula

(4.n) v = ey (1= [el) (1 + [elolel + -~ + [lgHeT).
LEMMA 4.4: The set {v;5|1<i<n—1} is a basis for
S =Ker(H; (U) — H; (X)).

Proof. By Proposition 3.5, a basis for the kernel of Hy (U) — H; (X) is the set of
images of Sy in H;(U). Using Lemma 3.4, one can check that .0 is the image
of Sy under the map 71 (U) — Hy(U). Thus {8 |1 <i <n — 1} is a basis for
the kernel of H; (U) — H;(X). |

Remark 4.5: Since v, is the image of Sy, one can see that the image of S
is L yy8 = 0. Thus § € [m (U)]2.

4.4. PROPERTIES OF THE CLASSIFYING ELEMENT p. The classifying element
p € Hi(X) AH; (X) satisfies the following invariance property for the geometric
action of automorphisms in Aut(X). See Proposition 6.2 for an invariance
property for the arithmetic action of automorphisms in the absolute Galois
group Gg.

PROPOSITION 4.6: Let p be a generator for the image of
If ¢ € Aut(X), then ¢(p) = p.

Proof. Every algebraic automorphism ¢ of X is orientation-preserving and pre-
serves the fundamental class in Ho(X). It follows that ¢ preserves the funda-
mental class in Ho(X). |

By [Tze95], or [Leo96], if n > 4, then |[Aut(X)| = 6n?. We will apply Propo-
sition 4.6 to:

(1) The automorphisms ¢g([z:y:2])=[Cx:y:z] and ¢1([x:y:z])=[x: y: 2]
which act on Hy(U,Y") via multiplication by [e]op and [e]; respectively.
So p is invariant under the action of A;.

(2) The transposition 7([z : y : 2]) = [y : = : z]; after using f to fix an
isomorphism between A; and Hy(U,Y), then 8 acts on H1(U,Y) by the
ring automorphism of A; that switches [e]p and [e]1. So p is symmetric.

(3) The 3-cycle w([z : y : z]) = [z : —z : y]; this automorphism does not
stabilize U and Y.
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5. Main result

In this section, we complete the analysis of the structure of gr(w) as a graded
Lie algebra, by finding a formula for the element A € Hy (U)AH;(U) that maps
to p € H1(X) AHi(X). Then we give some examples for n = 3,4, 5.

5.1. PROOF OF THE MAIN RESULT. By Lemma 4.2, with I defined as in (4.m),
H,(U) AH1(U) is a free Z-module with basis

{[Eilvjl] A [Eiz,jz] | (il,jlai27j2) € I}

Thus there exist €(i1,71,%2,j2) € Z, such that A € Hy(U) A H1(U) can be
uniquely represented as the linear combination

A= Y elin,fryiz, j2)[Ei, i) A By o).

(41,J1,92,52) €1

Theorem 1.1 follows immediately from the next result.

THEOREM 5.1: In Hy(U) A Hy(U), the coefficient €(i1,j1,12,j2) of the basis
element [E;, ;] A [Ei, j,] in A is

1 if jo —j1 =io — i1 Z0mod n — 1,
6(i1,j1,i2,j2) = -1 1f]27]1+1 E’L'inl ;é()modnf ].,

0 otherwise.

Proof. Recall that T = [[%_,[a;, 2] = (cooc1 0+ 0cp—1)"'. By Lemma 2.2,
if ri,...,7N,81,...,88 € m(U) are such that T = [r1,$1] o --- o [rn, sn],
then A = vazl 7 A5 in Hy(U) A Hi(U). By Proposition 3.6, S is homo-

I and

topic to (c1o0---0¢,_10¢p)~ L. The difference between (cgocyo---cp_1)”
(cpo---0cu_10c¢) " is not significant by Lemma 2.3(1); thus S and T have
the same image in Hy (U) A Hy (U).

By Lemma 3.7, S* is homotopic to S. It thus suffices to express S* as a prod-
uct of commutators. By Lemma 2.3(2), the image of S* in [m1(U)]2/[m1(U)]5
depends only on the ordering of the edges in between E; jl and E; ; in S*. We
may view S* as a cycle rather than a word, meaning that the last element
precedes the first one. By Proposition 3.9, the ordering of the elements E; ;

and E;jl in S* is
(E;% ofioFE11)0 (Ef% ofaoFjg)o0---0 (Ei}Fl 0 frno10E1n_1),

where f; is defined in Proposition 3.9.
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By Lemma 2.3(2), A is the sum of

(5.0) [Eva] A (=f1) 4+ [Erna] A (= fao1),
and the image of
fi=fioofu

in Hy (U) AH1(U).

Note that Eq; and B ]1 do not appear in f for any j. Thus the coefficient
of [E1 ;] A [Ei, j,] is zero unless E;, ;, or its inverse appears in f;. In partic-
ular, it is zero if i = 1. For 45 # 1, by the definition of f;, the coefficient
of [E1;] A\ [Eiyjp) 18 +1if jo —ido = j — 1 and is —1 if jo — iy = j — 2. This
is equivalent to the coefficient being +1 if jo — j; =42 — 1 Z 0mod n — 1 and
being —1 if jo — j1 +1 =iy — 41 Z 0 mod n — 1, which is the claimed statement
for i; = 1.

Furthermore, the ordering of the edges in the cycle f is the same as for the
cycle S*, except the edges e; ; and ei} do not appear. Using Proposition 3.9(3)
and repeating the argument shows that the statement is true for i = 2. The
result follows by induction. ]

Remark 5.2: For p = 5, we were able to independently verify using Magma that
the image of A generates (p) in H; (X) A Hy (X); see Section 7.1. This uses the
invariance properties from Propositions 4.6 and 6.2 and the explicit formulas
for the Galois action from [DPSW18, Theorem 1.1], [DPSW16, Theorem 1.1].

Remark 5.3: The combinatorial description of A € Hy (U)AH;(U) can be related
with the ring of cliques as follows. Consider the graph whose vertices are indexed
by the (n — 1)? elements [E; ;] of the basis of H;(U). Place these vertices
on n — 1 levels indexed by the value of j —imodn — 1 € {0,...,n — 2}.
Elements [E;, j,|A[E;, j,] of Hi(U)AH;(U) can be indexed by a subset of edges
in this graph. The elements in A yield the complete graph K, _; on each level;
also each vertex on level 7 is connected to n—2 vertices from levels i—1 mod n—1
and ¢+ 1 modn — 1.

5.2. EXAMPLES. In Sections 5.2.1-5.2.3, we illustrate the process of finding A
when n = 3,4, 5; of course, the results match the formula for A found in Theo-
rem 1.1.
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5.2.1. The case n = 3. Let ¢ = e2>™1/3. By Lemma 3.4:
So = (0,1) = (1,0) = (0,¢) = (¢,0) = (0,¢*) = (¢2,0) = (0,1)
=e€0,0© 667% oey0 efé o0eg20 657(1);
S1=(0,1) = (¢%,0) = (0,¢) = (1,0) = (0,¢*) = (¢,0) = (0, 1)

—1 —1 -1,
= 6210 (¢] 6271 (¢] 6011 (¢] 6072 (¢] 6112 [¢] 6170,

and
S2=(0,1) = (¢,0) = (0,) = (¢*,0) = (0,¢*) = (1,0) = (0,1)
=€1,00€]10€210€550€020 €.
By Lemma 3.7,

S*:EoﬁooEO_&oElyloEiéoEgygoEQ_jé
oEgﬁooEQf%oEoﬁloEOf%oElygoEié
OELOOE;%oE2,1oE£%oEO720E&é

=FE1 OE;%OEZQOEQ%OELQOE;%OE211 OE£21.

By Lemma 2.3(1), in [m1(U)]2/[71(U)]s, the image of S* is the same as the
image of

(Ei{oEy10E;30E11)0(EfyoEys0E;] ok ).
By Lemma 2.3(2),
A=FEi 1N (E22—F1)+ E12N(Ey1 — E232)
=F1 1 NEyo—E11ANEy1 +E12NEy1 —Ey 2N\ Eops.
5.2.2. The case n = 4. Let ¢ = e2™1/4. By Lemma 3.4:
So=(0,1)= (1,00 (0,) = (¢, 00— (0,¢*) = (¢%,0) = (0,¢*) = (¢*,0) = (0, 1)

=e€0,0 oeo_& oeq1 oel_é 0e22 er_é 0e330 e?:é;
Sy =(0,1)—(¢%0)—(0,¢)—(1,0)(0,¢%) (¢, 0)(0,¢%)—(¢,0) (0, 1)

_ 1 1 1 —1,
=€3,00€3710€0,10€520°€1,20€730€230 €,

Sa =(0,1)—(¢%,0)—(0,¢)—(¢*,0)—(0,¢%)—(1,0)—(0,¢*) (¢, 0)— (0, 1)

—1 —1 —1 —1.
=€2,00° 62,1 ©e310 63,2 ©€p,2 0 60,3 ©€1,30 6170,
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and
S3 = (0, 1) (¢, 0) > (0,¢) = (¢2,0) = (0,¢?) = (¢%,0) = (0,¢%) = (1,0) (0, 1)
=e1,00 ef& 0e210 e;é 0e320 e;é 0e€p,30 e(;(l).
By Lemma 3.7:
S* :ElyloEi%oEZQoEié OE3130E;i0E172OE;§OE213
oE;j0E310E5,0E 1 30E joEy10Ey,0F350FE;;3.

By Lemma 2.3(1), in [r1(U)]2/[71(U)]s, the image of S* is the same as the
image of

(BEfioEs10E;30E350E;50E11)0(E 30E50E,30E330E;] 0E) ;)
o(Ej30Ey30E; {o0Es;0E;)0kEs).
By Lemma 2.3(2):
A=Fi1 N (Ea2—FEs1+ E33— Es»)
+ Ei12 A (Ba3 — Eao+ E31 — E33)

5.2.3. The case n=>5. Let ¢ = ¢*™!/5. By Lemma 3.4:
S’O = (07 1)’_)(17 0)’_)(07 C)’_)(Cv 0)’_)(07 CQ)'_}(§27 0)
= (0,¢%) = (¢%,0)(0,¢*) = (¢*,0)—~(0,1)
=€0,00667%O€1,1 061_,5062,2062_,§0€3,3O€g:}1064,406;(1);
gl = (07 1)’_)(447 0)’_)(07 C)’_)(]'? 0)’_)(07 C2)'_>(§a 0)
= (0,¢%) = (¢%,0)(0,¢*) = (¢%,0)—~(0,1)
=e400 e;} 0ep,1 0 eaé 0e1,20 eié 0e230 65,}1 0e340 63:(1);
S’2 = (Oa 1)’_> (C3a 0)’_> (Oa C)’_) (C4a O)H(Oa 42)'_>(1a 0)
= (0,¢%) = (¢,0)(0,¢) = (¢3,0)—(0,1)

-1 —1 —1 —1 -1,
=€3,0° 6371 0€4,10 64,2 ©€p,2©0 60,3 ©€1,30 61,4 0€240 62,0,
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S5 =(0,1)—(¢%,0)—(0,)—(¢*,0)—(0,¢?) = (¢*, 0)
= (0,¢%) > (1,0)0(0,¢) = (¢, 0) (0, 1)

_ -1 1 1 1 —1,
=€200€510€310€390€420€430€030€,,40€1,40E€E;

and
S1=(0,1)(¢,0)=(0,0) = (¢2,0) = (0,¢*) = (¢*,0)
= (0,¢%) = (¢, 0) (0, ¢*) =+ (1,0) (0, 1)
=e100 61_& 0e210 62_é 0e320 egé 0e430 64_,411 0ep4 0 60—,(1)'
By Lemma 3.7:

S* :E1,1OE1_1%oE212oEQ_éoE373<>Eg—7ioE474
OE;iOEl,zoEiéOEz,goEiioEgA
OE3_7%OE4,1OE4_,21OE1,3OE1_,iOE274
oEQ_ioEgJoEg_,QloE4,goE4_,310E174

OE;%OEQJOE;,% OEg,QOEr;éOE;LgOE;i.
By Lemma 2.3(1)—(2), in [r1(U)]2/[71(U)]s, the image of S* is

A=FE1N(—Es1+Es2—E392+E33—Es3+ Esa)
+E12AN(—FEs2+ Es3—E33+FEsqa— Ega+ Esn)

+Ei3N(—Es3+FEss—FEs4+FE31—Es1+ Es»)
+E1 4N (—FE24+ Es1 —E31+E30— Es0+ Ey3)
+FE21 AN(—E31+E32—Ey2+ Ey3)
+EsoN(—E32+ E33—Es3+ Ey4)

+ Es3AN(—E33+ Esa—Esq+FE41)
+FEoaN(—E34+E31—Ey1+ Eyp)

+ E31 A (—=FEs1+ Eyp)

+ E3oA(—FEs2+ Ey3)

+ E33AN(—FEy3+ Ey4)

+ Es4AN(Ey1 — Ega).
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6. The étale homology and action of the absolute Galois group

Let K = Q({,). We consider X and U as curves over K. Let Y C U be the
set of 2n points where zy = 0. In this section, we denote the étale fundamental
group by 71(U), the étale homology by H;(U), and the relative étale homology
by Hy (U, Y).

Remark 6.1: In previous sections, the homology has coefficients in Z; the étale
homology has coefficients in a finite or ¢-adic ring. After choosing an embed-
ding K C C and applying Riemann’s Existence Theorem, we may identify the
profinite completion of Hy (U(C)) with the étale homology Hy (U). Similarly, we
may identify the profinite completion of 71 (U(C)) with the étale fundamental
group 71 (U).

We therefore can consider the elements a;,z;,¢;, T, E;; to be in m(U)
and @;, Z;, ¢;, [E; ;] to be in Hy(U). Similarly, we may consider 3,e;; to be
in the étale fundamental groupoid and [e; ;] to be in Hy(U,Y). Likewise, we
can consider A to be an element of Hy(U) A Hy(U) and its image p to be an
element of Hy(X) A Hy1(X). The results in Sections 2-5 about these elements
remain true in this context as well. In particular, Theorem 1.1 is true in the
context of the étale homology.

Beginning in Section 6.2, we use the coefficients Z/nZ for the étale homology,
where n is the degree of the Fermat curve X. Asin Remark 6.1, we may identify
H,(U(C); Z/nZ) with Hy(U;Z/nZ).

6.1. AN ARITHMETIC PROPERTY OF THE ACTION.

PRrROPOSITION 6.2: If 0 € Gq, then o acts on p via the cyclotomic character:
if 0(¢) = (¢, then o(p) = (*p. In particular, if ¢ € Gk, then o acts trivially
on p.

Proof. Recall that p is a generator for the image of Ha(X) — H; (X) A Hy(X).
The map Ha(X) — Hi(X) A Hi(X) is Gg-equivariant. By Poincaré duality,
o € Gg acts on Hy(X) via the cyclotomic character. The mod n cyclotomic
character is trivial when restricted to G . [ |

6.2. PARTIAL INFORMATION ABOUT THE Gg-ACTION. Let n = p be a prime

satisfying Vandiver’s conjecture. In this section, we collect some information
about the action of Gg on Hy(U,Y;Z/pZ).
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By [And87, Section 10.5], the action of 0 € Gk on the generator
for H1(U,Y;Z/p) factors through @ = Gal(L/K). For ¢ € @, in [DPSW18,
Theorem 1.1], the authors provide a completely explicit formula for the ele-
ment By € Ay ® Z/pZ such that

qoﬁquﬁ-

Here is some partial information about how Gal(K/Q) acts on . Let a
be a primitive root modulo p. Let £ € Gal(K/Q) be the automorphism
such that £,((p) = (5. It generates Gal(K/Q) = (Z/pZ)*. By [DPSW18,
Lemma 2.2], Gal(L/Q) is a semi-direct product of the form Q x (Z/pZ)*. We
fix a lifting (1,&,) of &, in Gal(L/Q) and denote it also by &,.

Since Hy (U, Y') is stabilized by G, there exists R, € A1 such that &, (5) = R, .
Modifying the lifting of £, by ¢ € @ changes R, by multiplication by the
element B, € Ay from [DPSW18, Theorem 1.1]. By [And87, Theorem 7], R,
is symmetric, meaning invariant when ¢y and €; are switched. By [And87,
Section 9.6], R, — 1 is in the augmentation ideal (yoy;). This is because &, (5)
and [ have the same endpoints and so R, — (8 is in

Hi(U) = (yoy1)p.

Also R,Ry=Rgp.
Proposition 6.2 implies that £,(p) = ap. To state one more property of R,
we consider the permutation action on A; given by

perm, (ehel) = el
LEMMA 6.3: Let p be an odd prime and let a be a generator of (Z/pZ)*.
Then Hl(-igl)/%l perm’ (R,) = 1.

Proof. The automorphism gff /2 §s the restriction of complex conjuga-
tion to K. This fixes (3, since 3 is defined over R. By induction, we check

that & (8) = ([T/=, perm},(Ra))A. Thus

(p—1)/2—-1
ﬁzgép”/?(ﬁ):( 11 permZ(Ra))B- "
1=0

In the case that p = 5, the properties above determine the action of Gal(K/Q)
on Hy(X;Z/pZ); see Section 7.1.
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7. Examples

In Section 7.1, if n = 5, we verify the formula in Theorem 5.1 through an inde-
pendent method using invariance properties. This method provides additional
information that allows us to determine the action of Gg on Hy(X) if n = 5;
see Section 7.2. In Section 7.3, as a final application of the formula if n = 5, we
compute the dimension of the Gg-invariant subspace of [r]2/[7]3 ® Z/5Z and
use it to show a coboundary map is trivial. For the calculations in this section,
we use Magma [BCP97]; the code for our calculations is available here [Dav].

7.1. AN INDEPENDENT VERIFICATION OF THE FORMULA FOR p IF n = 5.
Recall that p is a generator of the image of Hao(X) — Hy(X) A Hi(X). We
study the subspace A of Hy(X) A H1(X) of elements that are invariant under
Aut(X) and Gk. By Propositions 4.6 and 6.2, p is contained in A. Using the
material in Section 6.2, we determine which elements of .4 may be compatible
with the action of Gal(K/Q). In Proposition 7.5, if n = 5, we verify that
there is a unique 1-dimensional subspace of Hy(X) A H;(X) determined by the
requirements from the actions of Aut(X), Gk, and Gal(K/Q), and we verify
that this subspace is the same as the one given by the formula in Theorem 1.1.

Definition 7.1: Let A be the subset of @ € H;(X) A Hy(X) that satisfy these
properties:

(1) « is invariant under the automorphisms ¢g, ¢1,7,w of X; and
(2) « is invariant under the action of o € Gk.

LEMMA 7.2: If n =5, then A is a 2-dimensional subspace of Hy (X) A Hy (X).

Proof. To find A, we first compute the actions of €, €1, 7,0 on Hy(U). Using
the exterior wedge product, we then compute their actions on Hy(U) A Hy (U).
Lemma 4.4 provides a basis for the kernel S of H; (U) — H;(X). By Lemma 4.3,
S ANH(U) is the kernel of Hy(U) AH1(U) — Hy(X) A H1(X). We find the
image in H;(X) A Hi(X) of all D € H;(U) A H1(U) that satisfy these prop-
erties: [e]oD — D, [¢)1D — D, and 7D — D are in S A Hi(U); if ¢ € Gk,
then (¢ —1)D € S AHy(U).

For the 3-cycle w € Aut(X), it is more complicated to determine the action

A~~~ ~—

of w on Hy (X) since w does not stabilize Hy (U). To check invariance under w, we
use a basis for Hy (X)) found in [Ejd19, Theorem 1.2], together with information
about how w acts on H; (X) found in [Ejd19, Section 4.3 and Proposition 5.1].
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If n is a prime p satisfying Vandiver’s conjecture, the action of ¢ € Gg
on H; (U) can be calculated. As explained in the introduction, the reason is that
the action of o factors through Q = Gal(L/K). In [DPSW18, Theorem 1.1 and
Example 3.8], we gave an explicit formula for the action of each ¢ € Q on Hy (U).
This yields an explicit formula for the action of ¢ € Q on Hy(U) A Hy(U);
for n = 5, we implemented this formula in Magma [Dav]. See Example 7.7 for
more details about this.

If n = 5, we explicitly find all of the actions above and compute in Magma
that A is a 2-dimensional subspace of Hy (X) A Hi(X). |

By Proposition 6.2, the action of Gal(K/Q) on p is compatible with the cy-
clotomic character. We consider which a € A have this compatibility property.

Let a be a primitive root modulo n = p. Let £, denote the automorphism
(1,&,) € Gal(L/Q) from Section 6.2. As seen in Section 6.2, the choice of
lifting does not matter when working with Gg-invariant elements. Recall
that £,(¢) = ¢*. The element « € A is compatible with the cyclotomic character
if it is the image of an element D € H;(U) A H1(U) such that

(7.p) ¢a(D) —aD € SAH (U).

As seen in Section 6.2, £,(8) = R,/ for some R, € A; such that:
(i) Ry —11is in the augmentation ideal (yoy1);
(ii) R, is symmetric; and
(i) T1%5"/* " permi(R,) =1 (Lemma 6.3).
For p > 3, properties (i)—(iii) do not determine R, but they do give partial
information.

Definition 7.3: Let R be the set of R, € A; satisfying conditions (i)—(iii).
We compute the following in Magma.
LEMMA 7.4: If n =5, then R is a set of size 125.

If n =5 and a = 2, the next result shows that we can uniquely determine (p)
from these restrictions, despite the ambiguity for R,.

PROPOSITION 7.5: Let n =5 and a = 2. There are exactly 5 elements o € A
lying under some D € H1(U) A H1(U) for which there is an R, € R such that
the pair (D, R,) satisfies (7.p). These « are exactly the multiples of the image
in Hy1(X) AHy(X) of the element A € Hy(U) AH;(U) found in Theorem 1.1.
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Proof. This follows from a Magma computation. We consider all
D e Hy(U) AH{(U) lying above A. To compute &, on D, we write D as a
sum of simple tensors D =}, D;8 A Dy 3, where T is a finite index set and
D;, D} € A;. We compute

€a(D) = perm,(D})Raf A perm,(D/)R,3. 1
teT

We do not know if the analogue of Proposition 7.5 is true for a prime n > 5.

7.2. THE ACTION OF Gg. Furthermore, if n = 5 and a = 2, we have enough
information about R, € R to determine the action of Gal(K/Q) on H; (X).

PROPOSITION 7.6: Let n =5 and a = 2. There are 25 possibilities for R, € R
from the calculation in Proposition 7.5. Each of the 25 elements R, — 1 has the
same action on Hy(X).

Proof. Magma calculation. ]

Here is one of the possibilities for R,:
Ra,0 =4[elgle]} + 4[elge]] + 2[ellelr + 3[elole]} + 4lelolelr + 4lelplelr
+ 4[elg + 4[€]5 + 4[elo €]l + Alelplelt + 2[elolel + 3[elgle]?
+ 4[elo[€]} + 4[efole]T + 4[el} + 4[e]] + 3.
Write yo = [eJo — 1 and y; = [¢]; — 1. Then
R0 = 4993 + vyt + 2u0u1 + voyi + 4uoy + 4ygy
+ 4yt + voul + 2yout + Yoyl + Aoyt + 4oyt + 2007 + 2yous + 1.
The set of 25 possibilities for R, in Proposition 7.6 is
{Ra10 + i’Ul +j1)2 | ’L,_] S {0, ey 4}},
where
v1 = 2y5ut + 3Youi + 3yous + 3usui,
va = 2y5ut + Yoyt + 2u0us + 3yeyt + 2ugy1-

Recall from Section 4.4 that R, is well-defined after making a choice of au-
tomorphism &, in Gal(L/Q) lifting the automorphism &, € Gal(K/Q). Chang-
ing &, by ¢ € Q changes R, by multiplication by the element B, € A; found
in [DPSW18, Theorem 1.1].
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Suppose § € Hy(X)%x. Then ¢ is fixed by any automorphism ¢ € Gal(L/K).
By definition, the action of ¢ on ¢ is given by multiplication by B,.
Then ByR.6 = RqB.0 = Ry6 for any ¢ € Gal(L/K). This means that the
action of Gal(L/Q) on Hy(X)%* does not depend on the choice involved in the
definition for R,.

Let J5 be the Jacobian of the Fermat curve of degree 5. Since

H,(X,Z/5Z)%" = J5(L)[5]

for a number field L, the next example can be deduced from earlier work of
Rorhlich and Tzermias. Let Jg° be the subgroup of Js of divisors of degree 0
supported at the points where xyz = 0. By [Roh77, Theorem 1],

dimz/5z(J§o) = 8
By [Tze97, Proposition, Corollary 2, page 663], J5(Q(¢5)) = J$° and

dimgz,/57(J5(Q)) = 2.

Example 7.7: If n = 5, the G g-invariant subspace of Hy(X;Z/5Z) has dimen-
sion 8, and the Gg-invariant subspace of H; (X;Z/5Z) has dimension 2.

Proof. Write n = p. The action of Gx on H;(X;Z/pZ) factors through the
field extension L/K where L is the splitting field of 1 — (1 — 2P)P. If p = 5,
there are 3 generators 79, 71,72 for @ = Gal(L/K). The formula for the action
of each of these on Hy (U;Z/5Z) can be found in [DPSW18, Example 3.8].

Let

Fix([e]ole]1) = {o € H1(U;Z/5Z) | [€|o]e]1x = a}.
By [DPSW16, Proposition 6.3], letting S = Fix([e]o[e]1),?
(7.9) H1(X;Z/5Z) = H1(U;Z/52)/S.

In Magma, we computed the action of 79, 71,72 on Hy(X;Z/5Z). To deter-
mine the G g-invariant subspace I of Hy(X;Z/5Z), we computed the intersec-
tion of the kernels of the 3 operators 7; — 1 for ¢ = 0,1, 2. For the Gg-invariant
subspace, we computed the subspace of I which is fixed by multiplication
by perm,(R,). |

2 [DPSW16, Proposition 6.3], we used the notation Stab([e]o[e]1) instead.
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7.3. AN APPLICATION ABOUT COBOUNDARIES. Let p be a prime satisfying Van-
diver’s Conjecture and let K = Q((,). In [DPSW18, Theorem 1.1], we gave an
explicit formula for the action of Gx on Hy(X;Z/pZ) = 7/[r]2 ® Z/pZ. From
the results in this paper, we obtain an explicit action of Gx on the higher
quotients [7]p, /[7]m+1 ® Z/pZ as well.

We would like to thank the referee for bringing this idea to our attention.
Consider the short exact sequence

0— (Z/pZ)p — H1(X;Z/pZ) NHy(X5Z/pZ) — [7]2/[7]3 @ Z/pZ — 0.

Since @ fixes p, this yields a long exact sequence

0 — (Z/pZ)p — H*(Q; Hy(X; Z/pZ) N Hy (X Z/pL))
7.r
= — HO(Q; [r)2/[x]s © Z/pZ) > HY(Q; (Z/pZ)p).

The fact that @ fixes p also implies that
H'(Q; (Z/pZ)p) = Hom(Q., Z/pZ) = (Z/pZ) "1/,

Given a Q-invariant element « of [n]2/[n]s ® Z/pZ, consider a lift of a to

aeHy (X;Z/pZ)NH1 (X Z/pZ). If g€ Q, then q(&) = a+s4p for some s, €Z/pZ.

Then §(«) can be identified with the homomorphism @ — Z/pZ given by g+ s,.
Recall that X has genus g = (p — 1)(p — 2)/2 and so

Hy(X;Z/pZ) NH1(X; Z/pZ)

has dimension (%Y). Thus [r]s/[r]3 ® Z/pZ has dimension (¥) — 1. If p = 5,
then g = 6 and [7]s/[n]3 ® Z/5Z has dimension 65.

Example 7.8: If p = 5, then the G k-invariant subspace of
H:(X;Z2/57) NH1(X;Z/52Z)

has dimension 35; the G g-invariant subspace of [r]2/[7]3 ® Z/57Z has dimension
34; and thus the coboundary map § in (7.r) is trivial.

Proof. From the computation in Example 7.7, we know the action of 7;
on Hy(X;Z/5Z) for i = 0,1,2. From this, we computed the action of 7;
on Hy(X;Z/5Z) NH1(X;Z/5Z) (resp. on the quotient of this by p). We then
computed the dimension of the intersection of the kernels of the 3 operators 7;—1
for ¢ = 0,1,2. This dimension, which is 35 (resp. 34), is the dimension of the
G i -invariant subspace.
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The fact that the coboundary map is trivial follows from the exact sequence

n (7.r). As an additional check (not included here), we computed the cocycle

computationally and verified that it is trivial. |
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