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ABSTRACT

Information about the absolute Galois group GK of a number field K is

encoded in how it acts on the étale fundamental group π of a curve X

defined over K. In the case that K = Q(ζn) is the cyclotomic field and X

is the Fermat curve of degree n ≥ 3, Anderson determined the action of

GK on the étale homology with coefficients in Z/nZ. The étale homology

is the first quotient in the lower central series of the étale fundamental

group. In this paper, we determine the Galois module structure of the

graded Lie algebra for π. As a consequence, this determines the action of

GK on all degrees of the associated graded quotient of the lower central

series of the étale fundamental group of the Fermat curve of degree n, with

coefficients in Z/nZ.

1. Introduction

Let X be the Fermat curve of degree n, where n ≥ 3. Consider the cyclotomic

field K = Q(ζn); let K be its algebraic closure, and let GK be its absolute

Galois group. Anderson described the action of GK on the étale homology

H1(X ;Z/nZ) with coefficients in Z/nZ of the base change XK of X to K (the

base change is suppressed in the notation H1(X ;Z/nZ)); more precisely, he

analyzed the GK -action on the relative homology H1(U, Y ;Z/nZ) of the open

affine Fermat curve U = {(x, y) : xn + yn = 1} relative to the set Y of the 2n

cusps with xy = 0.

The main result of [DPSW16, Sections 4–5] is that Anderson’s description

uniquely determines the action of GK on H1(U, Y ;Z/nZ) when n is prime. In

[DPSW18, Theorem 1.1], the authors find an explicit formula for the action

of each σ ∈ GK on H1(U, Y ;Z/nZ) when n is a prime satisfying Vandiver’s

conjecture.

Let π = [π]1 = π1(X) be the étale fundamental group of XK , and for m ≥ 2,

let [π]m be the mth subgroup of the lower central series

π = [π]1 ⊃ [π]2 ⊃ [π]3 ⊃ · · · ,

defined so that [π]m = [π, [π]m−1] is the closure of the subgroup generated by

commutators of elements of π with elements of [π]m−1. For example, there is a

canonical isomorphism of GK -modules H1(X ;Z/nZ) ∼= π/[π]2 ⊗ Z/nZ, and as

a group π/[π]2 ⊗Z/nZ ∼= (Z/nZ)2g, where g = (n− 1)(n− 2)/2 is the genus of

the Fermat curve.
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In this paper, we describe the action of GK on each of the higher graded

quotients [π]m/[π]m+1 ⊗ Z/nZ in the lower central series filtration of π, with

coefficients in Z/nZ; when n is prime, this description determines the action

uniquely. One motivation for this work is that it sheds light on the 2-nilpotent

quotient of the étale fundamental group of the Fermat curve, because of the

exact sequence:

(1.a) 1 → [π]2/[π]3 ⊗ Z/nZ → π/[π]3 ⊗ Z/nZ → π/[π]2 ⊗ Z/nZ → 1.

To state the results more precisely, consider the graded Lie algebra

gr(π) =
⊕

m≥1

[π]m/[π]m+1

associated with the lower central series for π, ([Laz54, Ser65]), which is equipped

with its GK-action. The group µn × µn acts on X by multiplying x and y

by nth roots of unity, and therefore acts GK -equivariantly on π. Let F be

the free profinite group on 2g generators, and consider its graded Lie algebra

gr(F ) =
⊕

m≥1 grm(F ). It follows from work of Labute in [Lab70, Theorem,

page 17] that there is an element ρ of weight 2 such that

gr(π) ∼= gr(F )/〈ρ〉.

The right-hand side may be equipped with a Galois action by identifying gr(F )

with the étale fundamental group of the open complement inXK of aK-rational

point, and the isomorphism may be chosen to be the one induced from the

inclusion of the open subscheme. It thus respects the Galois actions on both

sides. This Galois action is determined by the action on

gr1(F ) ∼= gr1(π) ∼= H1(X ; Ẑ)

by [MKS04, Section 5.7, Corollary 5.12 (v)].

In Theorem 1.1, we determine the isomorphism class of gr(π) as a graded Lie

group with action of µn×µn. Since gr(F ) is generated in degree 1, it suffices to

obtain a complete description of the ideal 〈ρ〉 ⊂ gr(F ) and the action of µn×µn

on it.

Furthermore, when n is prime, we determine the isomorphism class of

gr(π) ⊗ Z/nZ as a graded Lie algebra with µn × µn × GK -action. This gives

the stated application of determining the action of GK on each of the higher
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graded quotients [π]m/[π]m+1 ⊗ Z/nZ. For this, it suffices to use the descrip-

tion of the ideal 〈ρ〉 ⊂ gr(F ) from Theorem 1.1 together with the action of GK

on [π]1/[π]2 ⊗ Z/nZ from our earlier result in [DPSW18, Theorem 1.1].

To find the ideal 〈ρ〉 ⊂ gr(F ), we use the isomorphism of GK-modules [Hai97,

Corollary 8.3]

[π]2/[π]3 ∼= (H1(X) ∧H1(X))/Im(C ),

where

(1.b) C : H2(X) → H1(X) ∧H1(X)

is the dual map to the cup product H1(X) ∧ H1(X) → H2(X).

The image Im(C ) is cyclic since H2(X) ∼= Z(1). We use the basis of H1(X)

as a Z-module from [Ejd19, Theorem 1.2], see (4.l), which interacts well with

the µn × µn-action. This basis gives an isomorphism gr1(F ) ∼= H1(X), which

in turn induces an isomorphism gr2(F ) ∼= H1(X) ∧ H1(X). We may therefore

compute ρ as an element of H1(X) ∧ H1(X), and any generator of Im(C ) is a

valid choice for ρ.

We note that H1(X) is a quotient of H1(U), which is a subspace of the relative

homology H1(U, Y ). For all integers n ≥ 3, we determine ρ as the image of an

element∆ in H1(U)∧H1(U), with the result expressed in terms of a basis {[Ei,j ]}

for H1(U) defined in Section 4.1, Lemma 4.1. This basis is convenient because

we know the action of µn × µn and GK on its elements.

Theorem 1.1: For n ≥ 3, a generator ρ for Im(C ) is given by the image

in H1(X) ∧H1(X) of the following element ∆ of H1(U) ∧H1(U):

∆ =
∑

1≤i1≤i2≤n−1
1≤j1,j2≤n−1
(i1,j1) %=(i2,j2)

ε(i1, j1, i2, j2)[Ei1,j1 ] ∧ [Ei2,j2 ],

where

ε(i1, j1, i2, j2) =















1 if j2 − j1 ≡ i2 − i1 .≡ 0 mod n− 1,

−1 if j2 − j1 + 1 ≡ i2 − i1 .≡ 0 mod n− 1,

0 otherwise.

The action of the absolute Galois group GK on the homology of the Fermat

curve is the subject of several foundational papers, including [Iha86], [And87],

[AI88], [And89], and [Col89]. Let n = p be an odd prime. Let L be the

splitting field of 1− (1− xp)p. In [And87, Section 10.5], Anderson proved that
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the action of GK on the relative homology H1(U, Y ;Z/pZ) factors through the

finite Galois extension L/K and gave a theoretical formulation for the action

of q ∈ Q = Gal(L/K). From [And87, Section 10.5] and the result of Labute

quoted above, it follows that the action of GK on [π]m/[π]m+1 ⊗ Z/pZ factors

through Q = Gal(L/K), for any m ≥ 2.

In [DPSW18, Theorem 1.1] and [DPSW16, Theorem 1.1], we made a com-

pletely explicit calculation of the Q-action on H1(U, Y ;Z/pZ) when p is an odd

prime satisfying Vandiver’s conjecture.1 Our main motivation for Theorem 1.1

is that the GK-module [π]2/[π]3 occurs as the coefficient group in a map that

measures an obstruction for rational points:

δ2 : H1(GK ,H1(X)) → H2(GK , [π]2/[π]3).

For this reason, we highlight the following result.

Corollary 1.2: Combining [DPSW18, Theorem 1.1] with Theorem 1.1 yields

an explicit computation of [π]2/[π]3 ⊗ Z/pZ as a GK-module when p is an odd

prime satisfying Vandiver’s conjecture.

Section 7 contains several applications. In Section 7.1, we give an independent

verification for the formula for ρ if p = 5, using the fact that ρ satisfies certain

invariance properties under the action of Aut(X) and Gal(L/Q). Using these

invariance properties, if p = 5, we also compute that the dimension of the GQ-

invariant subspace of H1(X ;Z/5Z) is 2; see Example 7.7. This provides a new

proof of a result of Tzermias [Tze97, Corollary 2].

In Section 7.3, we consider the short exact sequence

0 → (Z/pZ)ρ → H1(X ;Z/pZ) ∧H1(X ;Z/pZ) → [π]2/[π]3 ⊗ Z/pZ → 0.

Since Q fixes ρ, this yields a long exact sequence

(1.c)
0 → (Z/pZ)ρ → H0(Q; H1(X ;Z/pZ) ∧H1(X ;Z/pZ))

→ H0(Q; [π]2/[π]3 ⊗ Z/pZ)
δ→ H1(Q; (Z/pZ)ρ).

If p = 5, as an application of Corollary 1.2, we compute that the dimension of the

GK -invariant subspace of H1(X ;Z/5Z)∧H1(X ;Z/5Z) (resp. [π]2/[π]3 ⊗Z/5Z)

is 35 (resp. 34). This shows that the coboundary map δ in (1.c) is trivial if p = 5,

see Example 7.8; this is a non-trivial fact since p | |Q|.

1 Vandiver’s Conjecture states that p does not divide the order of the class group of

Q(ζp + ζ−1
p ). It is true for all regular primes p and all primes less than 163 million.
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2. The fundamental group of the Fermat curve

Let ζ = ζn = e2πi/n (resp. ε = eπi/n) be a primitive nth (resp. 2nth) root of

unity.

Consider the Fermat curve X of exponent n with equation xn + yn = zn.

Let Z0 be the set of n points where z = 0. Consider the open affine sub-

set U = X − Z0. In Sections 2–4, the field of definition is the complex numbers;

let X := X(C) and U := U(C) = {(x, y) ∈ C2 | xn + yn = 1}.

2.1. The fundamental group and the definition of ∆. Note that U

is a real surface of genus g =
(n−1

2

)

with n punctures. We choose the base

point b = (0, 1). There exist loops ai, zi for 1 ≤ i ≤ g and cj for 0 ≤ j ≤ n− 1,

with base point b, such that π1(U) has a presentation

(2.d) π1(U) = 〈ai, zi, cj : i = 1, . . . , g, j = 0, . . . , n− 1〉/
g
∏

i=1

[ai, zi]
n−1
∏

j=0

cj .

Let āi, z̄i, c̄j denote the images of ai, zi, cj in H1(U). H1(U) is equipped

with an intersection pairing, which may be defined using Poincaré duality

H1(U) ∼= H1
c(U) and the cup product on compactly supported cohomology.

We can suppose that

(1) the loop cj circles the puncture [ζj : ε : 0] ∈ Z0;

(2) each c̄j pairs trivially with āi, z̄i; each c̄j pairs trivially with c̄i for i .= j;

(3) and the images of āi, z̄i in H1(X) form a standard symplectic basis.

Item (2) may be arranged by choosing loops cj whose images have no set-

theoretic intersection with each other or with the loops ai, zi for 1≤ i≤g. This in

turn can be arranged using a standard gluing of an n-punctured polygon with 4g

sides, with the sides labeled consecutively by a1, z1, a
−1
1 , z−1

1 , . . . , ag, zg, a−1
g , z−1

g .

The set {c̄j} generates the kernel of H1(U) → H1(X). Define

(2.e) ∆ =
g

∑

i=1

āi ∧ z̄i ∈ H1(U) ∧H1(U).
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Let [π1(U)]2 = [π1(U),π1(U)] and [π1(U)]3 = [π1(U), [π1(U)]2]. Consider the

map

C : H1(U) ∧H1(U) → [π1(U)]2/[π1(U)]3,

which takes the simple wedge r∧s to the (equivalance class of the) commutator

of a lift of r and a lift of s to elements of π1(U). Since U is not proper, C is an

isomorphism. Recall the definition of C from (1.b).

Lemma 2.1: The image of∆ under the map ∧2(H1(U) → H1(X)) is a generator

of Im(C ).

Proof. By definition, C is the dual of the cup product pairing. Since the images

of āi, z̄i form a standard symplectic basis, the image of C is generated by the

image of
∑g

i=1 āi ∧ z̄i under the map ∧2(H1(U) → H1(X)), which is the image

of ∆ by definition.

Lemma 2.1 shows that the image of ∆ under the map ∧2(H1(U) → H1(X))

is a valid choice for ρ, and we henceforth let ρ denote this image.

2.2. The second graded quotient in the lower central series. By

(2.e), ∆ =
∑g

i=1 āi ∧ z̄i. Our goal is to determine ∆ in terms of a basis

of H1(U) ∧H1(U) for which we know the action of the absolute Galois group.

In order to do this, we investigate the element T :=
∏g

i=1[ai, zi] in π1(U). Note

that T = (c0 ◦ c1 ◦ · · · ◦ cn−1)−1.

The next lemma shows that ∆ does not depend on the representation as a

product of commutators.

Lemma 2.2: Suppose r1, . . . , rN , s1, . . . , sN are loops in U , with images r̄i, s̄i
in H1(U). If

T is homotopic to [r1, s1] ◦ · · · ◦ [rN , sN ],

then
∑g

i=1 āi ∧ z̄i =
∑N

i=1 r̄i ∧ s̄i in H1(U) ∧H1(U).

Proof. By hypothesis, in π1(U),

(2.f) [a1, z1] ◦ · · · ◦ [ag, zg] = [r1, s1] ◦ · · · ◦ [rN , sN ].

Note that both sides of the equation are elements of [π1(U)]2. Therefore (2.f)

holds in [π1(U)]2/[π1(U)]3. Under the inverse of the isomorphism C, (2.f) be-

comes
∑g

i=1 āi ∧ z̄i =
∑N

i=1 r̄i ∧ s̄i in H1(U) ∧ H1(U).

The next lemma is key for simplifying later calculations.
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Lemma 2.3: Suppose α,β, γ ∈ π1(U).

(1) If αγ ∈ [π1(U)]2, then γα ∈ [π1(U)]2, and αγ and γα have the same

image in [π1(U)]2/[π1(U)]3.

(2) If γ−1αγβ ∈ [π1(U)]2, then αβ ∈ [π1(U)]2, and the difference between

the images of γ−1αγβ and αβ in [π1(U)]2/[π1(U)]3 is γ ∧ (−α).

Proof. (1) Note that γα = α−1(αγ)α. If αγ ∈ [π1(U)]2, then γα ∈ [π1(U)]2 be-

cause the commutator subgroup is normal. Also αγ and γα have the same image

in [π1(U)]2/[π1(U)]3 because conjugation acts trivially on [π1(U)]2/[π1(U)]3.

(2) In π1(U),

[γ−1αγ, γ] = (γ−1αγ)γ(γ−1α−1γ)γ−1 = γ−1αγα−1 = [γ−1,α].

So [γ−1αγ, γ]αβ = γ−1αγβ. In particular, if γ−1αγβ is in [π1(U)]2, then so

is αβ.

Since U is affine,

[π1(U)]2/[π1(U)]3 ∼= H1(U) ∧H1(U).

In [π1(U)]2/[π1(U)]3, the difference between the images of γ−1αγβ and αβ is

the image of [γ−1αγ, γ]. Since [γ−1αγ, γ] = [γ−1,α], this image is −γ∧α, which
equals γ ∧ (−α).

2.3. Elements of the fundamental groupoid. Recall that

U := U(C) = {(x, y) | xn + yn = 1}

and Y is the set of 2n points such that xy = 0. We compute in the fundamental

groupoid π1(U, Y ) of U with respect to the base points in Y . Let β be the path

in U , which begins at the base point b0 = b = (0, 1) and ends at d0 = (1, 0),

given by

(2.g) β = ( n
√
t, n
√
1− t) for t ∈ [0, 1].

Throughout this section, let 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n − 1. It is

sometimes convenient to think of i and j as elements of Z/nZ. Let bj = (0, ζj)

and di = (ζi, 0). Consider the automorphisms ε0, ε1 ∈ Aut(U) defined by

ε0(x, y) = (ζx, y) and ε1(x, y) = (x, ζy).

Consider the path in U , which begins at bj and ends at di, given by

(2.h) ei,j = εi0ε
j
1β.
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Consider the loop Ei,j in U , formed by the composition of four paths, where

path composition is written from left to right:

Ei,j = e0,0 ◦ (e0,j)−1 ◦ ei,j ◦ (ei,0)−1.

Then Ei,j proceeds through the following points:

b0 2→ d0 2→ bj 2→ di 2→ b0.

If ij = 0, then Ei,j is trivial in the fundamental groupoid. The converse is

also true; see Lemma 4.1 below.

3. A formula for the classifying element

The main goal of this section is to find a formula for (c0, c1, . . . , cn−1)−1 in

terms of the elements Ei,j in the fundamental groupoid π1(U, Y ). The formula

is stated in Section 3.4 and proved to be correct in Proposition 3.6. The reason

for finding this formula is that

T =
g
∏

i=1

[ai, zi] = (c0 ◦ c1 ◦ · · · ◦ cn−1)
−1

is in the class of the boundary of a disk in the Fermat curve that contains Z0,

the set of n points where z = 0. At the end of the section, in Proposition 3.9, we

analyze the ordering of the loops Ei,j in T combinatorially. In Section 5, we will

use the material in this section and Section 2.2 to find an explicit formula for

the element ∆ ∈ H1(U) ∧H1(U) whose image in H1(X) ∧H1(X) is ρ, in terms

of a basis on which we understand the action of the absolute Galois group.

3.1. Sheets of a cover. Let V = A1(C). Consider the map ℘ : U → V

given by (x, y) 2→ x. Let ζ = e2πi/n. Then ℘ is a µn-Galois cover, where the

generator ζ of µn acts via ζ(x, y) = (x, ζy).

The cover ℘ is ramified at {(x, y) = (ζi, 0) | i = 0, . . . , n − 1} and branched

at {x = ζi | i = 0, . . . , n − 1}. The pre-images of x = 0 in U are the

points bj = (0, ζj) for 0 ≤ j ≤ n− 1.

The equation for the curve is yn = f(x) where f(x) = −
∏n−1

i=0 (x − ζi)1 is

separable. This implies that the inertia type of ℘ is the n-tuple (1, 1, . . . , 1).

This means that the canonical generator of inertia at each ramification point

is ζ. In other words, the chosen generator of the Galois group of ℘ acts on a

uniformizer at each ramification point by the same root of unity ζ.
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Let wi be the path in V given by x = ζi n
√
t for t ∈ [0, 1]. Let

V ◦ = V − {wi | 0 ≤ i ≤ n− 1}.

Let

U◦ = ℘−1(V ◦).

The restriction of ℘ to U◦ is unramified. This is because the monodromy around

each root of unity is multiplication by ζ, so a loop going around all n of the roots

of unity is multiplication by ζn, which is trivial. Therefore, the monodromy

action of π1(V ◦) is trivial on U◦, proving that the restriction of ℘ to U◦ is

unramified. Thus U◦ is a disjoint union of n sheets.

In order to label these sheets, we define the following notation, for 0≤ i≤n−1.

Let ri be the ray x = ζi n
√
t for t ∈ [0,∞). We define the angular segment, or

sector, Ri to be the intersection of a small neighborhood of x = 0 in V ◦ with

the segment of V ◦ bounded by ri−1 mod n and ri. In other words, for some

small ε◦ ∈ R>0,

Ri =
{

x = reIθ ∈ V ◦ | (i − 1)
2π

n
< θ < i

2π

n
, 0 < r < ε◦

}

.

For 0 ≤ i, j ≤ n− 1, we denote by R̃i,j the intersection of a small neighborhood

of bj = (0, ζj) with U◦ ∩ ℘−1(Ri). We label by Uk the sheet containing R̃k,0,

for 0 ≤ k ≤ n− 1.

Thus our small neighborhood of bj = (0, ζj) intersected with U◦ is the disjoint

union of the n neighborhoods R̃i,j for 0 ≤ i ≤ n − 1. Since we may choose to

base fundamental groups at a point bj or at a simply connected neighborhood

of bj, we can think of bj as a base point divided into n pieces, one piece on each

sheet Uk, or as n different tangential basepoints.

In Lemma 3.2, we determine the value of k such that the sheet Uk contains R̃i,j

when j .= 0.

3.2. The cusps with z = 0. Recall that Z0 is the set of n points of X

where z = 0. Let ε = eπI/n be a primitive nth root of −1. The points of Z0

have projective coordinates zk = [ζk : ε : 0] for 0 ≤ k ≤ n − 1. The unramified

cover U◦ → V ◦ extends to an unramified cover U◦ ∪ Z0 → V ◦ ∪ {∞}. The

next result shows that the boundary of the sheet Uk contains exactly one point

of Z0.

Lemma 3.1: The point zk is contained in the boundary of the sheet Uk.
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Proof. Consider the ray Qk in U◦ given by (x, y) = (ε−1ζk n
√
t, n
√
1 + t) for

t ∈ (0,∞). As t → 0, it approaches b = (0, 1) and it is contained in the

sheet Uk. As t → ∞, the value of x/y on Qk approaches

lim
t→∞

ε−1ζk
n
√
t/ n

√
1 + t = ε−1ζk.

The point zk is at the end of the ray Qk and is thus contained in the sheet Uk.

Figure 1.

3.3. Loops in the cover. The information from the inertia type indicates

how to glue the sheets Uk together along the paths ei,j to obtain a ramified

cover of Riemann surfaces. Recall that the canonical generator of inertia at

each ramification point is ζ.

Consider a loop Li in V , with starting point x = 0, which makes a coun-

terclockwise circle around the path wi, starting in the region Ri and ending

in Ri+1. Note that Li depends only on the value of i modulo n. Define Li,j

to be the lift of Li to a path in U◦ which starts at the point bj = (0, ζj). By

the definition of the inertia type, Li,j ends at the point bj+1 = (0, ζj+1). Note

that Li,j is homotopic to the composition of paths

Li,j = ei,j ◦ (ei,j+1)
−1 : (0, ζj) 2→ (ζi, 0) 2→ (0, ζj+1).
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The next result determines which of the lifts R̃i,j of the sector Ri are on each

sheet Uk.

Lemma 3.2: With notation as above, R̃i,j ⊂ Uk if and only if i− j = k.

Proof. By definition, R̃k,0 ⊂ Uk. The path Li,j is contained in a unique sheet.

Since Li,j starts in R̃i,j and ends in R̃i+1,j+1, then these neighborhoods are

contained in the same sheet.

Note that U◦ = U−{ei,j | 0 ≤ i, j ≤ n−1}. In order to reconstruct the rami-

fied cover of Riemann surfaces U → V , we need to glue the sheets {Uk}0≤k≤n−1

together along the missing segments; specifically, we glue Ri,j and Ri+1,j to-

gether along the edge ei,j for 0 ≤ i, j ≤ n− 1.

3.4. Lifting of a star shape. Recall that path composition is written from

left to right. For 0 ≤ , ≤ n− 1, define a loop in V by

(3.i) S$ = Ln−$ ◦ Ln−$+1 ◦ · · · ◦ Ln−$+(n−1).

Each loop S$ traces in a counterclockwise direction along the outside of the

slits {wi} and forms an n-pointed star shape. Each is homotopic to a large

circle in V ◦ traced in a counterclockwise direction.

Definition 3.3: For 0 ≤ , ≤ n− 1, let S̃$ denote the unique lift under ℘ of S$ to

a loop in U with starting point b0 = (0, 1). Let S̃ := S̃0 ◦ S̃1 ◦ · · · ◦ S̃n−1.

By the proof of Lemma 3.2, S̃$ is contained in Un−$. Later, we will see

that S̃ ∈ [π1(U)]2; see Remark 4.5.

Lemma 3.4: For 0 ≤ , ≤ n− 1, the loop S̃$ is homotopic to

S̃$ = e−$,0 ◦ (e−$,1)
−1 ◦ e−$+1,1 ◦ (e−$+1,2)

−1 ◦ · · · ◦ e−$+n−1,n−1 ◦ (e−$+n−1,0)
−1,

or, equivalently, Ln−$,0 ◦ Ln−$+1,1 ◦ Ln−$+2,2 ◦ · · · ◦ Ln−$+(n−1),n−1.

Proof. The loop S̃$ is homotopic to the composition of 2n of the edges ei,j
and (ei,j)−1. Because of the inertia type of ℘, this composition involves loops

of the form Li,j = ei,j ◦ (ei,j+1)−1. The condition that S̃$ is contained in Un−$

implies that its initial edge is the path e−$,0 from (0, 1) to (ζ−$, 0). Thus the

initial loop is Ln−$,0 = e−$,0 ◦ (e−$,1)−1. Consider the loop Li′,j′ coming after

the loop Li,j. Then i′ = i + 1 because S̃$ circles counterclockwise around the

point (ζi, 0). Also j′ = j + 1 because the starting point (0, ζj
′

) of Li′,j′ is the

same as the ending point (0, ζj+1) of Li,j .
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For example, S̃0 passes around the points in this order:

(0, 1) → (1, 0) → (0, ζ) → (ζ, 0) → (0, ζ2) → · · · → (ζn−1, 0) → (0, 1),

and

S̃0 = e0,0 ◦ (e0,1)−1 ◦ e1,1 ◦ (e1,2)−1 ◦ · · · ◦ en−1,n−1 ◦ (en−1,0)
−1.

3.5. Comparison with loops around cusps with z = 0. We prove that S̃

is path homotopic to the boundary of a disk containing the n cusps of Z0 and

that S̃$ can be taken to be the loop (cn−$)−1 in a standard presentation of π1(U)

(a presentation of the form (2.d)). For 0 ≤ j ≤ n− 1, let zj = [ζj : ε : 0].

Proposition 3.5: The loop S̃$ is homotopic to the clockwise loop bounding a

disk containing zn−$.

Proof. Note that V ◦ is homeomorphic to A1 − {0} and S$ is homotopic to

a counterclockwise loop around 0. Thus S$ is homotopic to a clockwise loop

around ∞. By definition, the lift S̃$ of S$ is a loop in Un−$. The restriction

of ℘ to Un−$ yields a homeomorphism Un−$ → V ◦. Thus S̃$ is a clockwise loop

around the point missing from Un−$. By Lemma 3.1, this point is zn−$.

Proposition 3.6: The loop S̃ is homotopic to the boundary of a disk in the Fer-

mat curve which contains the n points where z = 0; it follows that we may take a

presentation of the form (2.d) where S̃$=(cn−$)−1 and S̃=(c1◦ · · · ◦cn−1◦c0)−1.

In the following proof, it is convenient to use a small ball around b0 as our

basepoint b0 (which we may do because balls are simply connected). The inter-

section of this ball with R̃i,0 will then be called the fractional point of b0 in the

region R̃i,0.

Proof. The loop S̃0 in U0 starts and ends at the fractional point b0 in the

region R̃0,0. With a small homotopy adjustment, the end of S̃0 can cross the

path en−1,0 rather than return to the point b0. Since the sheet U0 is glued

to the sheet Un−1 along the edge en−1,0, this yields an ending point in the

region R̃n−1,0 near the fractional point b0 in the sheet Un−1.

The loop S̃1 in Un−1 starts and ends at the fractional point b0 in the re-

gion R̃n−1,0. With a small homotopy adjustment, the end of S̃1 can cross the

path en−2,0 rather than return to the point b0. Since the sheet Un−1 is glued

to the sheet Un−2 along the edge en−2,0, this yields an ending point in the

region R̃n−2,0 near the fractional point b0 in the sheet Un−2.
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We continue in this way through all the loops S̃0 ◦ S̃1 ◦ · · · ◦ S̃n−1. Finally,

with a small homotopy adjustment, the end of S̃n−1 crosses the path e0,0 and

returns to the region R̃0,0 in U0. Thus S̃ is path homotopic to a loop in the

Fermat curve X composed of n paths each contained on a single Uk of the form

shown in Figure 3.5 for n = 3.

This path divides X into an external and internal piece, where the internal

piece contains the ramification points {di | 0 ≤ i ≤ n − 1}, and the external

piece contains Z0 and is homeomorphic to a disk. (To see that the external

piece is homeomorphic to a disk, note the following. The external piece is the

union of n pieces, each homotopic to a wedge, which are glued together along

the edges of the wedges. The picture for n = 3 is illustrated in Figure 3.5.)

Applying Proposition 3.5, it follows that we can take a presentation of the

form (2.d) where

S̃$ = (cn−$)
−1.

Thus

S̃ = (c0)
−1 ◦ (cn−1)

−1 ◦ · · · ◦ (c1)−1 = (c1 ◦ · · · ◦ cn−1 ◦ c0)−1.

Figure 2.
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The difference between (c0 ◦ c1 ◦ · · · cn−1)−1 and (c1 ◦ · · · ◦ cn−1 ◦ c0)−1 is not

significant by Lemma 2.3(1).

Lemma 3.7: Let S∗ (resp. S∗
$
) be the element of π1(U) obtained by substitut-

ing Ei,j for the path ei,j in S̃ (resp. S̃$). Then S∗ and S̃ (resp. S∗
$
and S̃$) are

homotopic in π1(U).

Proof. We fix the path e0,0 ◦ e−1
0,j from b0 to bj , the initial point of ei,j . We fix

the path ei,0 from b0 to di, the final point of ei,j. In the composition of paths,

after completing each path ei,j , we return to the base point b0 and then return

to the initial point of the next path. This does not change the homotopy class.

The statement can also be proven using algebraic cancelation.

3.6. Combinatorial analysis. By Proposition 3.6, the loop S̃ is homotopic

to the boundary of a disk in the Fermat curve which contains the n points

where z = 0. By Lemma 3.7, the loop S∗ also has this property. So the goal

is to find the image of S∗ in [π1(U)]2/[π1(U)]3 in terms of the elements Ei,j .

By Lemma 2.3(2), this is possible if we have a complete understanding of the

edges in between E−1
i,j and Ei,j in S∗. We describe this combinatorially in this

section.

Lemma 3.8: The loop S̃ is the composition of 2n2 paths, with each path ei,j
and each path (ei,j)−1 occurring exactly once.

Proof. Immediate from Lemma 3.4.

We begin a combinatorial analysis of the ordering of the elements Ei,j andE−1
i,j

in S∗, viewed as a cycle, rather than a word. For 1 ≤ j ≤ n−1 and 0 ≤ a ≤ n−2,

let j + a be the unique value in {1, . . . , n− 1} congruent to j+ a modulo n− 1.

Proposition 3.9: The ordering of the elements Ei,j and E−1
i,j in the cycle S∗

satisfies the following:

(1) The edges between E−1
1,1 and E1,1 are:

f1 := E2,1 ◦ (E2,2)
−1 ◦ · · · ◦ En−1,n−2 ◦ (En−1,n−1)

−1.

(2) The edges between E−1
1,j and E1,j are:

fj := E2,j ◦ (E2,j+1)
−1 ◦ · · · ◦ En−1,j+n−3 ◦ (En−1,j+n−2)

−1.
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(3) For 1 ≤ i, j ≤ n− 1, the edges Ei′,j′ between E−1
i,j and Ei,j with i′ ≥ i

are:

Ei′,j′ with i < i′ ≤ n− 1 and i′ − j′ ≡ i− j + 1 mod n− 1;

and

(Ei′,j′)
−1 with i < i′ ≤ n− 1 and i′ − j′ ≡ i− j mod n− 1.

Proof. Item (1) is a special case of (2), which is a special case of (3), which

follows from Lemma 3.4.

4. The homology of the Fermat curve

The homology of the Fermat curve has been studied from many perspectives;

see, e.g., [Gro78, appendix] and [Lim91, Section 4]. By [Gro78, Theorem 1,

appendix], H1(X) is a cyclic Λ1-module, where Λ1 = Z[µn × µn], and the

annihilator of H1(X) in Λ1 can be found in [Gro78, page 210] and [Lim91,

Proposition 4.1]. The facts about the structure of H1(U) and H1(X) in this

section will be familiar to the experts.

In Sections 4 and 5, we consider homology with coefficients in Z; however, we

follow an approach which is compatible with the results in [And87], [DPSW16],

and [DPSW18] about the étale homology with coefficients in Z/nZ and the

action of the absolute Galois group upon it; see Section 6.

Consider the relative homology H1(U, Y ), viewed as a groupoid with one ob-

ject. To study H1(U), we use the homomorphism of groupoids from π1(U, Y )

to H1(U, Y ), which sends composition to addition; we denote this homomor-

phism by − 2→ [−].

4.1. A basis for the homology of X. Let Λ1 = Z[µn × µn] and let [ε]0
and [ε]1 denote the generators of µn × µn. Let A1 = 〈([ε]0 − 1)([ε]1 − 1)〉 ⊂ Λ1

denote the augmentation ideal.

Let [ei,j ] (resp. [Ei,j ]) denote the class of ei,j (resp. Ei,j) in the relative

homology H1(U, Y ). Let β denote the class of [e0,0] and recall that

[ei,j ] = [ε]i0[ε]
j
1β.

Also

(4.j) [Ei,j ] = [e0,0]− [ei,0]− [e0,j] + [ei,j ].
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Using modular symbols, Ejder proves in [Ejd19, Theorem 1.2] that a basis

for H1(X) is given by

(4.k) {[ε]i0[ε]
j
1(1− [ε]0)(1− [ε]1)β | 1 ≤ i ≤ n− 2, 0 ≤ j ≤ n− 2}.

In our notation, that means that a basis for H1(X) is given by

(4.l) {[ε]i0[ε]
j
1[E1,1] | 1 ≤ i ≤ n− 2, 0 ≤ j ≤ n− 2}.

4.2. Facts about the homology of the affine curve. Next we find a

basis for H1(U).

Lemma 4.1: The elements [Ei,j ] from (4.j) are in H1(U) and the set

{[Ei,j ] | 1 ≤ i, j ≤ n− 1}

is a basis for H1(U) as a Z-module.

Proof. The first claim is true because [Ei,j ] is the image of a path in the fun-

damental groupoid starting and ending at the same point.

We first show that {[Ei,j ] | 1 ≤ i, j ≤ n − 1} is a basis for H1(U ;Z/nZ).

There is an isomorphism

H1(U, Y ;Z/nZ) ∼= Λ1 ⊗ (Z/nZ),

taking β 2→ 1, [And87, Theorem 6]. Thus {[ei,j] | 0 ≤ i, j ≤ n − 1} is a basis

for H1(U, Y ;Z/nZ).

Consider the augmentation ideal A1⊗Z/nZ ⊂ Λ1⊗Z/nZ. If α ∈ Λ1⊗Z/nZ,

write α =
∑

i,j ai,j [ε]
i
0[ε]

j
1. One can check that α ∈ A1 ⊗ Z/nZ if and only if

the rows and columns of the matrix [ai,j ] sum to 0 modulo n. By [DPSW16,

Proposition 6.2], H1(U ;Z/nZ) ∼= A1 ⊗ Z/nZ.

The element [ei,j ] appears in [Ei′,j′ ] if and only if i′ = i and j′ = j. It

follows that {[Ei,j ] | 1 ≤ i, j ≤ n− 1} is a set of linearly independent elements

in H1(U, Y ;Z/nZ), and thus also in H1(U ;Z/nZ). Their span contains n((n−1)2)

elements of H1(U ;Z/nZ). Since H1(U ;Z/nZ) has rank (n−1)2, this span is the

entirety of H1(U ;Z/nZ). This completes the proof that {[Ei,j ] | 1 ≤ i, j ≤ n−1}

is a basis for H1(U ;Z/nZ).

It follows that {[Ei,j ] | 1 ≤ i, j ≤ n − 1} is a set of linearly independent

elements in H1(U). Consider the span of the image of this set in H1(X). This

span contains [E1,1] and is a Λ1-module, thus contains [ε]i0[ε]
j
1[E1,1]. By (4.l),

the image of this set spans H1(X).
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To complete the proof, we need to show that {[Ei,j ] | 1 ≤ i, j ≤ n− 1} spans

the kernel of H1(U) → H1(X). A basis for the kernel is {c̄j | 0 ≤ j ≤ n − 1}.

By Proposition 3.5, the loop S̃$ is homotopic to the clockwise loop bounding

a disk containing zn−$. Thus a basis for the kernel is the set of images of S̃$

in H1(U). By Lemma 3.4, S̃$ is homotopic to a loop with a formula written

in terms of ei,j. By Lemma 3.7, the same is true after replacing ei,j by Ei,j .

Also Ei,j = 0 if ij = 0. Thus the set of images of S̃$ in H1(U) is generated by

{[Ei,j ] | 1 ≤ i, j ≤ n− 1}. This completes the proof.

By Lemma 4.1, there is an injection H1(U) ∧ H1(U) → Λ1 ∧Z Λ1 and an

isomorphism

H1(U) ∧H1(U) → A1 ∧Z A1.

Lemma 4.2: Consider the index set

(4.m)
I={(i1, j1, i2, j2) |1 ≤ i1, i2, j1, j2 ≤ n− 1, i1 ≤ i2,

and if i1 = i2 then j1 < j2}.

Then H1(U) ∧H1(U) is a free Z-module with basis

{[Ei1,j1 ] ∧ [Ei2,j2 ] | (i1, j1, i2, j2) ∈ I}.

Proof. By Lemma 4.1, H1(U) is a free Z-module of rank m := (n − 1)2 with

basis {[Ei1,j1 ] | 1 ≤ i1, j1 ≤ n− 1}. Then H1(U) ∧H1(U) is a free Z-module of

rank
(

m
2

)

. Because z ∧ w = −w ∧ z and z ∧ z = 0, a basis is given by the set

of simple wedges [Ei1,j1 ] ∧ [Ei2,j2 ] with i1 ≤ i2 and (i1, j1) .= (i2, j2), which is

indexed by I.

4.3. Facts about the homology of the projective curve. We char-

acterize H1(X) ∧ H1(X) as a quotient of H1(U) ∧ H1(U) both for theoretical

reasons and for the computational applications in Sections 7.1–7.3.

Lemma 4.3: Let S be the kernel of H1(U) → H1(X). Then the kernel

of H1(U) ∧H1(U) → H1(X) ∧H1(X) equals S ∧H1(U).

Proof. Since H1(X) is a free module, the quotient map H1(U) → H1(X) splits,

giving a direct sum decomposition H1(U) ∼= H1(X) ⊕ S, where S, H1(X)

and H1(U) are all free modules. The wedge of the direct sum decomposes as

H1(U) ∧H1(U) ∼= (H1(X) ∧H1(X))⊕ (H1(X) ∧ S)⊕ (S ∧ S),

showing the claim.
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We need an explicit description of H1(X) as a quotient of H1(U) for the

computational applications in Sections 7.1–7.3. Define γi ∈ Λ1 by the formula

(4.n) γi = [ε]−i
0 (1− [ε]1)(1 + [ε]0[ε]1 + · · ·+ [ε]n−1

0 [ε]n−1
1 ).

Lemma 4.4: The set {γiβ | 1 ≤ i ≤ n− 1} is a basis for

S = Ker(H1(U) → H1(X)).

Proof. By Proposition 3.5, a basis for the kernel of H1(U) → H1(X) is the set of

images of S̃$ in H1(U). Using Lemma 3.4, one can check that γ$β is the image

of S̃$ under the map π1(U) → H1(U). Thus {γiβ | 1 ≤ i ≤ n− 1} is a basis for

the kernel of H1(U) → H1(X).

Remark 4.5: Since γ$β is the image of S̃$, one can see that the image of S̃

is
∑n−1

$=0 γ$β = 0. Thus S̃ ∈ [π1(U)]2.

4.4. Properties of the classifying element ρ. The classifying element

ρ ∈ H1(X)∧H1(X) satisfies the following invariance property for the geometric

action of automorphisms in Aut(X). See Proposition 6.2 for an invariance

property for the arithmetic action of automorphisms in the absolute Galois

group GQ.

Proposition 4.6: Let ρ be a generator for the image of

H2(X) → H1(X) ∧H1(X).

If φ ∈ Aut(X), then φ(ρ) = ρ.

Proof. Every algebraic automorphism φ of X is orientation-preserving and pre-

serves the fundamental class in H2(X). It follows that φ preserves the funda-

mental class in H2(X).

By [Tze95], or [Leo96], if n ≥ 4, then |Aut(X)| = 6n2. We will apply Propo-

sition 4.6 to:

(1) The automorphisms φ0([x :y :z])= [ζx :y :z] and φ1([x :y :z])=[x :ζy :z]

which act on H1(U, Y ) via multiplication by [ε]0 and [ε]1 respectively.

So ρ is invariant under the action of Λ1.

(2) The transposition τ([x : y : z]) = [y : x : z]; after using β to fix an

isomorphism between Λ1 and H1(U, Y ), then β acts on H1(U, Y ) by the

ring automorphism of Λ1 that switches [ε]0 and [ε]1. So ρ is symmetric.

(3) The 3-cycle ω([x : y : z]) = [z : −x : y]; this automorphism does not

stabilize U and Y .
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5. Main result

In this section, we complete the analysis of the structure of gr(π) as a graded

Lie algebra, by finding a formula for the element ∆ ∈ H1(U)∧H1(U) that maps

to ρ ∈ H1(X) ∧H1(X). Then we give some examples for n = 3, 4, 5.

5.1. Proof of the main result. By Lemma 4.2, with I defined as in (4.m),

H1(U) ∧H1(U) is a free Z-module with basis

{[Ei1,j1 ] ∧ [Ei2,j2 ] | (i1, j1, i2, j2) ∈ I}.

Thus there exist ε(i1, j1, i2, j2) ∈ Z, such that ∆ ∈ H1(U) ∧ H1(U) can be

uniquely represented as the linear combination

∆ =
∑

(i1,j1,i2,j2)∈I

ε(i1, j1, i2, j2)[Ei1,j1 ] ∧ [Ei2,j2 ].

Theorem 1.1 follows immediately from the next result.

Theorem 5.1: In H1(U) ∧ H1(U), the coefficient ε(i1, j1, i2, j2) of the basis

element [Ei1,j1 ] ∧ [Ei2,j2 ] in ∆ is

ε(i1, j1, i2, j2) =















1 if j2 − j1 ≡ i2 − i1 .≡ 0 mod n− 1,

−1 if j2 − j1 + 1 ≡ i2 − i1 .≡ 0 mod n− 1,

0 otherwise.

Proof. Recall that T =
∏g

i=1[ai, zi] = (c0 ◦ c1 ◦ · · · ◦ cn−1)−1. By Lemma 2.2,

if r1, . . . , rN , s1, . . . , sN ∈ π1(U) are such that T = [r1, s1] ◦ · · · ◦ [rN , sN ],

then ∆ =
∑N

i=1 r̄i ∧ s̄i in H1(U) ∧ H1(U). By Proposition 3.6, S̃ is homo-

topic to (c1 ◦ · · · ◦ cn−1 ◦ c0)−1. The difference between (c0 ◦ c1 ◦ · · · cn−1)−1 and

(c1 ◦ · · · ◦ cn−1 ◦ c0)−1 is not significant by Lemma 2.3(1); thus S̃ and T have

the same image in H1(U) ∧H1(U).

By Lemma 3.7, S∗ is homotopic to S̃. It thus suffices to express S∗ as a prod-

uct of commutators. By Lemma 2.3(2), the image of S∗ in [π1(U)]2/[π1(U)]3
depends only on the ordering of the edges in between E−1

i,j and Ei,j in S∗. We

may view S∗ as a cycle rather than a word, meaning that the last element

precedes the first one. By Proposition 3.9, the ordering of the elements Ei,j

and E−1
i,j in S∗ is

(E−1
1,1 ◦ f1 ◦ E1,1) ◦ (E−1

1,2 ◦ f2 ◦ E1,2) ◦ · · · ◦ (E−1
1,n−1 ◦ fn−1 ◦E1,n−1),

where fj is defined in Proposition 3.9.
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By Lemma 2.3(2), ∆ is the sum of

(5.o) [E1,1] ∧ (−f1) + · · ·+ [E1,n−1] ∧ (−fn−1),

and the image of

f̃ := f1 ◦ · · · ◦ fn−1

in H1(U) ∧H1(U).

Note that E1,j and E−1
1,j do not appear in f̃ for any j. Thus the coefficient

of [E1,j ] ∧ [Ei2,j2 ] is zero unless Ei2,j2 or its inverse appears in fj. In partic-

ular, it is zero if i2 = 1. For i2 .= 1, by the definition of fj , the coefficient

of [E1,j ] ∧ [Ei2,j2 ] is +1 if j2 − i2 = j − 1 and is −1 if j2 − i2 = j − 2. This

is equivalent to the coefficient being +1 if j2 − j1 ≡ i2 − 1 .≡ 0 mod n− 1 and

being −1 if j2 − j1 +1 ≡ i2 − i1 .≡ 0 mod n− 1, which is the claimed statement

for i1 = 1.

Furthermore, the ordering of the edges in the cycle f̃ is the same as for the

cycle S∗, except the edges e1,j and e−1
1,j do not appear. Using Proposition 3.9(3)

and repeating the argument shows that the statement is true for i = 2. The

result follows by induction.

Remark 5.2: For p = 5, we were able to independently verify using Magma that

the image of ∆ generates 〈ρ〉 in H1(X) ∧H1(X); see Section 7.1. This uses the

invariance properties from Propositions 4.6 and 6.2 and the explicit formulas

for the Galois action from [DPSW18, Theorem 1.1], [DPSW16, Theorem 1.1].

Remark 5.3: The combinatorial description of∆ ∈ H1(U)∧H1(U) can be related

with the ring of cliques as follows. Consider the graph whose vertices are indexed

by the (n − 1)2 elements [Ei,j ] of the basis of H1(U). Place these vertices

on n − 1 levels indexed by the value of j − i mod n − 1 ∈ {0, . . . , n − 2}.

Elements [Ei1,j1 ]∧ [Ei2,j2 ] of H1(U)∧H1(U) can be indexed by a subset of edges

in this graph. The elements in ∆ yield the complete graph Kn−1 on each level;

also each vertex on level i is connected to n−2 vertices from levels i−1 mod n−1

and i+ 1 mod n− 1.

5.2. Examples. In Sections 5.2.1–5.2.3, we illustrate the process of finding ∆

when n = 3, 4, 5; of course, the results match the formula for ∆ found in Theo-

rem 1.1.
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5.2.1. The case n = 3. Let ζ = e2πI/3. By Lemma 3.4:

S̃0 =(0, 1) 2→ (1, 0) 2→ (0, ζ) 2→ (ζ, 0) 2→ (0, ζ2) 2→ (ζ2, 0) 2→ (0, 1)

= e0,0 ◦ e−1
0,1 ◦ e1,1 ◦ e

−1
1,2 ◦ e2,2 ◦ e

−1
2,0;

S̃1 =(0, 1) 2→ (ζ2, 0) 2→ (0, ζ) 2→ (1, 0) 2→ (0, ζ2) 2→ (ζ, 0) 2→ (0, 1)

= e2,0 ◦ e−1
2,1 ◦ e0,1 ◦ e

−1
0,2 ◦ e1,2 ◦ e

−1
1,0;

and

S̃2 =(0, 1) 2→ (ζ, 0) 2→ (0, ζ) 2→ (ζ2, 0) 2→ (0, ζ2) 2→ (1, 0) 2→ (0, 1)

= e1,0 ◦ e−1
1,1 ◦ e2,1 ◦ e

−1
2,2 ◦ e0,2 ◦ e

−1
0,0.

By Lemma 3.7,

S∗ =E0,0 ◦ E−1
0,1 ◦ E1,1 ◦ E−1

1,2 ◦ E2,2 ◦ E−1
2,0

◦E2,0 ◦ E−1
2,1 ◦ E0,1 ◦ E−1

0,2 ◦ E1,2 ◦ E−1
1,0

◦E1,0 ◦ E−1
1,1 ◦ E2,1 ◦ E−1

2,2 ◦ E0,2 ◦ E−1
0,0

=E1,1 ◦ E−1
1,2 ◦ E2,2 ◦ E−1

2,1 ◦ E1,2 ◦ E−1
1,1 ◦ E2,1 ◦ E−1

2,2 .

By Lemma 2.3(1), in [π1(U)]2/[π1(U)]3, the image of S∗ is the same as the

image of

(E−1
1,1 ◦ E2,1 ◦ E−1

2,2 ◦ E1,1) ◦ (E−1
1,2 ◦ E2,2 ◦ E−1

2,1 ◦ E1,2).

By Lemma 2.3(2),

∆ =E1,1 ∧ (E2,2 − E2,1) + E1,2 ∧ (E2,1 − E2,2)

=E1,1 ∧ E2,2 − E1,1 ∧ E2,1 + E1,2 ∧E2,1 − E1,2 ∧ E2,2.

5.2.2. The case n = 4. Let ζ = e2πI/4. By Lemma 3.4:

S̃0 =(0, 1) 2→(1, 0) 2→(0, ζ) 2→(ζ, 0) 2→(0, ζ2) 2→(ζ2, 0) 2→(0, ζ3) 2→(ζ3, 0) 2→(0, 1)

= e0,0 ◦ e−1
0,1 ◦ e1,1 ◦ e

−1
1,2 ◦ e2,2 ◦ e

−1
2,3 ◦ e3,3 ◦ e

−1
3,0;

S̃1 =(0, 1) 2→(ζ3, 0) 2→(0, ζ) 2→(1, 0) 2→(0, ζ2) 2→(ζ, 0) 2→(0, ζ3) 2→(ζ2, 0) 2→(0, 1)

= e3,0 ◦ e−1
3,1 ◦ e0,1 ◦ e

−1
0,2 ◦ e1,2 ◦ e

−1
1,3 ◦ e2,3 ◦ e

−1
2,0;

S̃2 =(0, 1) 2→(ζ2, 0) 2→(0, ζ) 2→(ζ3, 0) 2→(0, ζ2) 2→(1, 0) 2→(0, ζ3) 2→(ζ, 0) 2→(0, 1)

= e2,0 ◦ e−1
2,1 ◦ e3,1 ◦ e

−1
3,2 ◦ e0,2 ◦ e

−1
0,3 ◦ e1,3 ◦ e

−1
1,0;
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and

S̃3 =(0, 1) 2→(ζ, 0) 2→(0, ζ) 2→(ζ2, 0) 2→(0, ζ2) 2→(ζ3, 0) 2→(0, ζ3) 2→(1, 0) 2→(0, 1)

= e1,0 ◦ e−1
1,1 ◦ e2,1 ◦ e

−1
2,2 ◦ e3,2 ◦ e

−1
3,3 ◦ e0,3 ◦ e

−1
0,0.

By Lemma 3.7:

S∗ =E1,1 ◦ E−1
1,2 ◦ E2,2 ◦ E−1

2,3 ◦ E3,3 ◦ E−1
3,1 ◦ E1,2 ◦ E−1

1,3 ◦ E2,3

◦ E−1
2,1 ◦ E3,1 ◦ E−1

3,2 ◦ E1,3 ◦ E−1
1,1 ◦ E2,1 ◦E−1

2,2 ◦ E3,2 ◦ E−1
3,3 .

By Lemma 2.3(1), in [π1(U)]2/[π1(U)]3, the image of S∗ is the same as the

image of

(E−1
1,1 ◦ E2,1 ◦ E−1

2,2 ◦ E3,2 ◦ E−1
3,3 ◦ E1,1) ◦ (E−1

1,2 ◦ E2,2 ◦ E−1
2,3 ◦ E3,3 ◦ E−1

3,1 ◦ E1,2)

◦ (E−1
1,3 ◦ E2,3 ◦ E−1

2,1 ◦ E3,1 ◦ E−1
3,2 ◦ E1,3).

By Lemma 2.3(2):

∆ =E1,1 ∧ (E2,2 − E2,1 + E3,3 − E3,2)

+ E1,2 ∧ (E2,3 − E2,2 + E3,1 − E3,3)

+ E1,3 ∧ (E2,1 − E2,3 + E3,2 − E3,1)

+ E2,1 ∧ (E3,2 − E3,1)

+ E2,2 ∧ (E3,3 − E3,2)

+ E2,3 ∧ (E3,1 − E3,3).

5.2.3. The case n = 5. Let ζ = e2πI/5. By Lemma 3.4:

S̃0 =(0, 1) 2→(1, 0) 2→(0, ζ) 2→(ζ, 0) 2→(0, ζ2) 2→(ζ2, 0)

2→(0, ζ3) 2→(ζ3, 0) 2→(0, ζ4) 2→(ζ4, 0) 2→(0, 1)

= e0,0 ◦ e−1
0,1 ◦ e1,1 ◦ e

−1
1,2 ◦ e2,2 ◦ e

−1
2,3 ◦ e3,3 ◦ e

−1
3,4 ◦ e4,4 ◦ e

−1
4,0;

S̃1 =(0, 1) 2→(ζ4, 0) 2→(0, ζ) 2→(1, 0) 2→(0, ζ2) 2→(ζ, 0)

2→(0, ζ3) 2→(ζ2, 0) 2→(0, ζ4) 2→(ζ3, 0) 2→(0, 1)

= e4,0 ◦ e−1
4,1 ◦ e0,1 ◦ e

−1
0,2 ◦ e1,2 ◦ e

−1
1,3 ◦ e2,3 ◦ e

−1
2,4 ◦ e3,4 ◦ e

−1
3,0;

S̃2 =(0, 1) 2→(ζ3, 0) 2→(0, ζ) 2→(ζ4, 0) 2→(0, ζ2) 2→(1, 0)

2→(0, ζ3) 2→(ζ, 0) 2→(0, ζ4) 2→(ζ2, 0) 2→(0, 1)

= e3,0 ◦ e−1
3,1 ◦ e4,1 ◦ e

−1
4,2 ◦ e0,2 ◦ e

−1
0,3 ◦ e1,3 ◦ e

−1
1,4 ◦ e2,4 ◦ e

−1
2,0;
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S̃3 =(0, 1) 2→(ζ2, 0) 2→(0, ζ) 2→(ζ3, 0) 2→(0, ζ2) 2→(ζ4, 0)

2→(0, ζ3) 2→(1, 0) 2→(0, ζ4) 2→(ζ, 0) 2→(0, 1)

= e2,0 ◦ e−1
2,1 ◦ e3,1 ◦ e

−1
3,2 ◦ e4,2 ◦ e

−1
4,3 ◦ e0,3 ◦ e

−1
0,4 ◦ e1,4 ◦ e

−1
1,0;

and

S̃4 =(0, 1) 2→(ζ, 0) 2→(0, ζ) 2→(ζ2 , 0) 2→(0, ζ2) 2→(ζ3, 0)

2→(0, ζ3) 2→(ζ4, 0) 2→(0, ζ4) 2→(1, 0) 2→(0, 1)

= e1,0 ◦ e−1
1,1 ◦ e2,1 ◦ e

−1
2,2 ◦ e3,2 ◦ e

−1
3,3 ◦ e4,3 ◦ e

−1
4,4 ◦ e0,4 ◦ e

−1
0,0.

By Lemma 3.7:

S∗ =E1,1 ◦ E−1
1,2 ◦ E2,2 ◦ E−1

2,3 ◦ E3,3 ◦ E−1
3,4 ◦ E4,4

◦ E−1
4,1 ◦ E1,2 ◦ E−1

1,3 ◦ E2,3 ◦ E−1
2,4 ◦ E3,4

◦ E−1
3,1 ◦ E4,1 ◦ E−1

4,2 ◦ E1,3 ◦ E−1
1,4 ◦ E2,4

◦ E−1
2,1 ◦ E3,1 ◦ E−1

3,2 ◦ E4,2 ◦ E−1
4,3 ◦ E1,4

◦ E−1
1,1 ◦ E2,1 ◦ E−1

2,2 ◦ E3,2 ◦ E−1
3,3 ◦ E4,3 ◦ E−1

4,4 .

By Lemma 2.3(1)–(2), in [π1(U)]2/[π1(U)]3, the image of S∗ is

∆ =E1,1 ∧ (−E2,1 + E2,2 − E3,2 + E3,3 − E4,3 + E4,4)

+ E1,2 ∧ (−E2,2 + E2,3 − E3,3 + E3,4 − E4,4 + E4,1)

+ E1,3 ∧ (−E2,3 + E2,4 − E3,4 + E3,1 − E4,1 + E4,2)

+ E1,4 ∧ (−E2,4 + E2,1 − E3,1 + E3,2 − E4,2 + E4,3)

+ E2,1 ∧ (−E3,1 + E3,2 − E4,2 + E4,3)

+ E2,2 ∧ (−E3,2 + E3,3 − E4,3 + E4,4)

+ E2,3 ∧ (−E3,3 + E3,4 − E4,4 + E4,1)

+ E2,4 ∧ (−E3,4 + E3,1 − E4,1 + E4,2)

+ E3,1 ∧ (−E4,1 + E4,2)

+ E3,2 ∧ (−E4,2 + E4,3)

+ E3,3 ∧ (−E4,3 + E4,4)

+ E3,4 ∧ (E4,1 − E4,4).
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6. The étale homology and action of the absolute Galois group

Let K = Q(ζn). We consider X and U as curves over K. Let Y ⊂ U be the

set of 2n points where xy = 0. In this section, we denote the étale fundamental

group by π1(U), the étale homology by H1(U), and the relative étale homology

by H1(U, Y ).

Remark 6.1: In previous sections, the homology has coefficients in Z; the étale

homology has coefficients in a finite or ,-adic ring. After choosing an embed-

ding K ⊂ C and applying Riemann’s Existence Theorem, we may identify the

profinite completion of H1(U(C)) with the étale homology H1(U). Similarly, we

may identify the profinite completion of π1(U(C)) with the étale fundamental

group π1(U).

We therefore can consider the elements ai, zi, cj , T, Ei,j to be in π1(U)

and āi, z̄i, c̄j , [Ei,j ] to be in H1(U). Similarly, we may consider β, ei,j to be

in the étale fundamental groupoid and [ei,j ] to be in H1(U, Y ). Likewise, we

can consider ∆ to be an element of H1(U) ∧ H1(U) and its image ρ to be an

element of H1(X) ∧ H1(X). The results in Sections 2–5 about these elements

remain true in this context as well. In particular, Theorem 1.1 is true in the

context of the étale homology.

Beginning in Section 6.2, we use the coefficients Z/nZ for the étale homology,

where n is the degree of the Fermat curve X . As in Remark 6.1, we may identify

H1(U(C);Z/nZ) with H1(U ;Z/nZ).

6.1. An arithmetic property of the action.

Proposition 6.2: If σ ∈ GQ, then σ acts on ρ via the cyclotomic character:

if σ(ζ) = ζi, then σ(ρ) = ζiρ. In particular, if σ ∈ GK , then σ acts trivially

on ρ.

Proof. Recall that ρ is a generator for the image of H2(X) → H1(X) ∧H1(X).

The map H2(X) → H1(X) ∧ H1(X) is GQ-equivariant. By Poincaré duality,

σ ∈ GQ acts on H2(X) via the cyclotomic character. The mod n cyclotomic

character is trivial when restricted to GK .

6.2. Partial information about the GQ-action. Let n = p be a prime

satisfying Vandiver’s conjecture. In this section, we collect some information

about the action of GQ on H1(U, Y ;Z/pZ).
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By [And87, Section 10.5], the action of σ ∈ GK on the generator β

for H1(U, Y ;Z/p) factors through Q = Gal(L/K). For q ∈ Q, in [DPSW18,

Theorem 1.1], the authors provide a completely explicit formula for the ele-

ment Bq ∈ Λ1 ⊗ Z/pZ such that

q ◦ β = Bqβ.

Here is some partial information about how Gal(K/Q) acts on β. Let a

be a primitive root modulo p. Let ξa ∈ Gal(K/Q) be the automorphism

such that ξa(ζp) = ζap . It generates Gal(K/Q) ∼= (Z/pZ)∗. By [DPSW18,

Lemma 2.2], Gal(L/Q) is a semi-direct product of the form Q ! (Z/pZ)∗. We

fix a lifting (1, ξa) of ξa in Gal(L/Q) and denote it also by ξa.

Since H1(U, Y ) is stabilized byGQ, there exists Ra∈Λ1 such that ξa(β)=Raβ.

Modifying the lifting of ξa by q ∈ Q changes Ra by multiplication by the

element Bq ∈ Λ1 from [DPSW18, Theorem 1.1]. By [And87, Theorem 7], Ra

is symmetric, meaning invariant when ε0 and ε1 are switched. By [And87,

Section 9.6], Ra − 1 is in the augmentation ideal 〈y0y1〉. This is because ξa(β)

and β have the same endpoints and so Raβ − β is in

H1(U) = 〈y0y1〉β.

Also RaRb=Rab.

Proposition 6.2 implies that ξa(ρ) = aρ. To state one more property of Ra,

we consider the permutation action on Λ1 given by

perma(ε
i
0ε

j
1) = εai0 εaj1 .

Lemma 6.3: Let p be an odd prime and let a be a generator of (Z/pZ)∗.

Then
∏(p−1)/2−1

i=0 permi
a(Ra) = 1.

Proof. The automorphism ξ
(p−1)/2
a is the restriction of complex conjuga-

tion to K. This fixes β, since β is defined over R. By induction, we check

that ξja(β) = (
∏j−1

i=0 permi
a(Ra))β. Thus

β = ξ(p−1)/2
a (β) =

( (p−1)/2−1
∏

i=0

permi
a(Ra)

)

β.

In the case that p = 5, the properties above determine the action of Gal(K/Q)

on H1(X ;Z/pZ); see Section 7.1.
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7. Examples

In Section 7.1, if n = 5, we verify the formula in Theorem 5.1 through an inde-

pendent method using invariance properties. This method provides additional

information that allows us to determine the action of GQ on H1(X) if n = 5;

see Section 7.2. In Section 7.3, as a final application of the formula if n = 5, we

compute the dimension of the GK -invariant subspace of [π]2/[π]3 ⊗ Z/5Z and

use it to show a coboundary map is trivial. For the calculations in this section,

we use Magma [BCP97]; the code for our calculations is available here [Dav].

7.1. An independent verification of the formula for ρ if n = 5.

Recall that ρ is a generator of the image of H2(X) → H1(X) ∧ H1(X). We

study the subspace A of H1(X) ∧ H1(X) of elements that are invariant under

Aut(X) and GK . By Propositions 4.6 and 6.2, ρ is contained in A. Using the

material in Section 6.2, we determine which elements of A may be compatible

with the action of Gal(K/Q). In Proposition 7.5, if n = 5, we verify that

there is a unique 1-dimensional subspace of H1(X)∧H1(X) determined by the

requirements from the actions of Aut(X), GK , and Gal(K/Q), and we verify

that this subspace is the same as the one given by the formula in Theorem 1.1.

Definition 7.1: Let A be the subset of α ∈ H1(X) ∧ H1(X) that satisfy these

properties:

(1) α is invariant under the automorphisms φ0,φ1, τ,ω of X ; and

(2) α is invariant under the action of σ ∈ GK .

Lemma 7.2: If n = 5, then A is a 2-dimensional subspace of H1(X) ∧H1(X).

Proof. To find A, we first compute the actions of ε0, ε1, τ,σ on H1(U). Using

the exterior wedge product, we then compute their actions on H1(U) ∧ H1(U).

Lemma 4.4 provides a basis for the kernel S of H1(U) → H1(X). By Lemma 4.3,

S ∧ H1(U) is the kernel of H1(U) ∧ H1(U) → H1(X) ∧ H1(X). We find the

image in H1(X) ∧ H1(X) of all D ∈ H1(U) ∧ H1(U) that satisfy these prop-

erties: [ε]0D − D, [ε]1D − D, and τD − D are in S ∧ H1(U); if σ ∈ GK ,

then (σ − 1)D ∈ S ∧ H1(U).

For the 3-cycle ω ∈ Aut(X), it is more complicated to determine the action

of ω on H1(X) since ω does not stabilize H1(U). To check invariance under ω, we

use a basis for H1(X) found in [Ejd19, Theorem 1.2], together with information

about how ω acts on H1(X) found in [Ejd19, Section 4.3 and Proposition 5.1].
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If n is a prime p satisfying Vandiver’s conjecture, the action of σ ∈ GK

on H1(U) can be calculated. As explained in the introduction, the reason is that

the action of σ factors through Q = Gal(L/K). In [DPSW18, Theorem 1.1 and

Example 3.8], we gave an explicit formula for the action of each q ∈ Q on H1(U).

This yields an explicit formula for the action of q ∈ Q on H1(U) ∧ H1(U);

for n = 5, we implemented this formula in Magma [Dav]. See Example 7.7 for

more details about this.

If n = 5, we explicitly find all of the actions above and compute in Magma

that A is a 2-dimensional subspace of H1(X) ∧H1(X).

By Proposition 6.2, the action of Gal(K/Q) on ρ is compatible with the cy-

clotomic character. We consider which α ∈ A have this compatibility property.

Let a be a primitive root modulo n = p. Let ξa denote the automorphism

(1, ξa) ∈ Gal(L/Q) from Section 6.2. As seen in Section 6.2, the choice of

lifting does not matter when working with GK-invariant elements. Recall

that ξa(ζ) = ζa. The element α ∈ A is compatible with the cyclotomic character

if it is the image of an element D ∈ H1(U) ∧H1(U) such that

(7.p) ξa(D)− aD ∈ S ∧H1(U).

As seen in Section 6.2, ξa(β) = Raβ for some Ra ∈ Λ1 such that:

(i) Ra − 1 is in the augmentation ideal 〈y0y1〉;
(ii) Ra is symmetric; and

(iii)
∏(p−1)/2−1

i=0 permi
a(Ra) = 1 (Lemma 6.3).

For p > 3, properties (i)–(iii) do not determine Ra but they do give partial

information.

Definition 7.3: Let R be the set of Ra ∈ Λ1 satisfying conditions (i)–(iii).

We compute the following in Magma.

Lemma 7.4: If n = 5, then R is a set of size 125.

If n = 5 and a = 2, the next result shows that we can uniquely determine 〈ρ〉
from these restrictions, despite the ambiguity for Ra.

Proposition 7.5: Let n = 5 and a = 2. There are exactly 5 elements α ∈ A

lying under some D ∈ H1(U) ∧ H1(U) for which there is an Ra ∈ R such that

the pair (D,Ra) satisfies (7.p). These α are exactly the multiples of the image

in H1(X) ∧H1(X) of the element ∆ ∈ H1(U) ∧ H1(U) found in Theorem 1.1.
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Proof. This follows from a Magma computation. We consider all

D ∈ H1(U) ∧H1(U) lying above A. To compute ξa on D, we write D as a

sum of simple tensors D =
∑

t∈T
D′

tβ ∧D′′
t β, where T is a finite index set and

D′
t, D

′′
t ∈ Λ1. We compute

ξa(D) =
∑

t∈T

perma(D
′
t)Raβ ∧ perma(D

′′
t )Raβ.

We do not know if the analogue of Proposition 7.5 is true for a prime n > 5.

7.2. The action of GQ. Furthermore, if n = 5 and a = 2, we have enough

information about Ra ∈ R to determine the action of Gal(K/Q) on H1(X).

Proposition 7.6: Let n = 5 and a = 2. There are 25 possibilities for Ra ∈ R

from the calculation in Proposition 7.5. Each of the 25 elements Ra − 1 has the

same action on H1(X).

Proof. Magma calculation.

Here is one of the possibilities for Ra:

Ra,0 =4[ε]40[ε]
3
1 + 4[ε]40[ε]

2
1 + 2[ε]40[ε]1 + 3[ε]30[ε]

2
1 + 4[ε]30[ε]1 + 4[ε]20[ε]1

+ 4[ε]30 + 4[ε]20 + 4[ε]30[ε]
4
1 + 4[ε]20[ε]

4
1 + 2[ε]0[ε]

4
1 + 3[ε]20[ε]

3
1

+ 4[ε]0[ε]
3
1 + 4[ε]0[ε]

2
1 + 4[ε]31 + 4[ε]21 + 3.

Write y0 = [ε]0 − 1 and y1 = [ε]1 − 1. Then

Ra,0 =4y40y
3
1 + y40y

2
1 + 2y40y1 + y30y

2
1 + 4y30y1 + 4y20y1

+ 4y30y
4
1 + y20y

4
1 + 2y0y

4
1 + y20y

3
1 + 4y0y

3
1 + 4y0y

2
1 + 2y30y

3
1 + 2y0y1 + 1.

The set of 25 possibilities for Ra in Proposition 7.6 is

{Ra,0 + iv1 + jv2 | i, j ∈ {0, . . . , 4}},

where

v1 = 2y40y
4
1 + 3y40y

2
1 + 3y30y

3
1 + 3y20y

4
1 ,

v2 = 2y40y
4
1 + 3y40y

3
1 + 2y40y

2
1 + 3y30y

4
1 + 2y20y

4
1 .

Recall from Section 4.4 that Ra is well-defined after making a choice of au-

tomorphism ξa in Gal(L/Q) lifting the automorphism ξa ∈ Gal(K/Q). Chang-

ing ξa by q ∈ Q changes Ra by multiplication by the element Bq ∈ Λ1 found

in [DPSW18, Theorem 1.1].
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Suppose δ ∈ H1(X)GK . Then δ is fixed by any automorphism q ∈ Gal(L/K).

By definition, the action of q on δ is given by multiplication by Bq.

Then BqRaδ = RaBqδ = Raδ for any q ∈ Gal(L/K). This means that the

action of Gal(L/Q) on H1(X)GK does not depend on the choice involved in the

definition for Ra.

Let J5 be the Jacobian of the Fermat curve of degree 5. Since

H1(X,Z/5Z)GL ∼= J5(L)[5]

for a number field L, the next example can be deduced from earlier work of

Rorhlich and Tzermias. Let J∞
5 be the subgroup of J5 of divisors of degree 0

supported at the points where xyz = 0. By [Roh77, Theorem 1],

dimZ/5Z(J
∞
5 ) = 8.

By [Tze97, Proposition, Corollary 2, page 663], J5(Q(ζ5)) = J∞
5 and

dimZ/5Z(J5(Q)) = 2.

Example 7.7: If n = 5, the GK-invariant subspace of H1(X ;Z/5Z) has dimen-

sion 8, and the GQ-invariant subspace of H1(X ;Z/5Z) has dimension 2.

Proof. Write n = p. The action of GK on H1(X ;Z/pZ) factors through the

field extension L/K where L is the splitting field of 1 − (1 − xp)p. If p = 5,

there are 3 generators τ0, τ1, τ2 for Q = Gal(L/K). The formula for the action

of each of these on H1(U ;Z/5Z) can be found in [DPSW18, Example 3.8].

Let

Fix([ε]0[ε]1) = {α ∈ H1(U ;Z/5Z) | [ε]0[ε]1α = α}.

By [DPSW16, Proposition 6.3], letting S = Fix([ε]0[ε]1),2

(7.q) H1(X ;Z/5Z) = H1(U ;Z/5Z)/S.

In Magma, we computed the action of τ0, τ1, τ2 on H1(X ;Z/5Z). To deter-

mine the GK -invariant subspace I of H1(X ;Z/5Z), we computed the intersec-

tion of the kernels of the 3 operators τi − 1 for i = 0, 1, 2. For the GQ-invariant

subspace, we computed the subspace of I which is fixed by multiplication

by perma(Ra).

2 In [DPSW16, Proposition 6.3], we used the notation Stab([ε]0[ε]1) instead.
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7.3. An application about coboundaries. Let p be a prime satisfying Van-

diver’s Conjecture and let K = Q(ζp). In [DPSW18, Theorem 1.1], we gave an

explicit formula for the action of GK on H1(X ;Z/pZ) = π/[π]2 ⊗ Z/pZ. From

the results in this paper, we obtain an explicit action of GK on the higher

quotients [π]m/[π]m+1 ⊗ Z/pZ as well.

We would like to thank the referee for bringing this idea to our attention.

Consider the short exact sequence

0 → (Z/pZ)ρ → H1(X ;Z/pZ) ∧H1(X ;Z/pZ) → [π]2/[π]3 ⊗ Z/pZ → 0.

Since Q fixes ρ, this yields a long exact sequence

(7.r)
0 → (Z/pZ)ρ → H0(Q; H1(X ;Z/pZ) ∧H1(X ;Z/pZ))

→ H0(Q; [π]2/[π]3 ⊗ Z/pZ)
δ→ H1(Q; (Z/pZ)ρ).

The fact that Q fixes ρ also implies that

H1(Q; (Z/pZ)ρ) ∼= Hom(Q,Z/pZ) ∼= (Z/pZ)(p+1)/2.

Given a Q-invariant element α of [π]2/[π]3 ⊗ Z/pZ, consider a lift of α to

α̃∈H1(X ;Z/pZ)∧H1(X ;Z/pZ). If q∈Q, then q(α̃)= α̃+sqρ for some sq∈Z/pZ.

Then δ(α) can be identified with the homomorphismQ → Z/pZ given by q 2→sq.

Recall that X has genus g = (p− 1)(p− 2)/2 and so

H1(X ;Z/pZ) ∧H1(X ;Z/pZ)

has dimension
(

2g
2

)

. Thus [π]2/[π]3 ⊗ Z/pZ has dimension
(

2g
2

)

− 1. If p = 5,

then g = 6 and [π]2/[π]3 ⊗ Z/5Z has dimension 65.

Example 7.8: If p = 5, then the GK-invariant subspace of

H1(X ;Z/5Z) ∧H1(X ;Z/5Z)

has dimension 35; the GK -invariant subspace of [π]2/[π]3⊗Z/5Z has dimension

34; and thus the coboundary map δ in (7.r) is trivial.

Proof. From the computation in Example 7.7, we know the action of τi

on H1(X ;Z/5Z) for i = 0, 1, 2. From this, we computed the action of τi

on H1(X ;Z/5Z) ∧ H1(X ;Z/5Z) (resp. on the quotient of this by ρ). We then

computed the dimension of the intersection of the kernels of the 3 operators τi−1

for i = 0, 1, 2. This dimension, which is 35 (resp. 34), is the dimension of the

GK -invariant subspace.
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The fact that the coboundary map is trivial follows from the exact sequence

in (7.r). As an additional check (not included here), we computed the cocycle

computationally and verified that it is trivial.
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