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Abstract
Evidence linking the microbiome to human health is rapidly growing. The micro-
biome profile has the potential as a novel predictive biomarker for many diseases. 
However, tables of bacterial counts are typically sparse, and bacteria are classified 
within a hierarchy of taxonomic levels, ranging from species to phylum. Existing 
tools focus on identifying microbiome associations at either the community level or 
a specific, pre-defined taxonomic level. Incorporating the evolutionary relationship 
between bacteria can enhance data interpretation. This approach allows for aggre-
gating microbiome contributions, leading to more accurate and interpretable results. 
We present DeepBiome, a phylogeny-informed neural network architecture, to pre-
dict phenotypes from microbiome counts and uncover the microbiome–phenotype 
association network. It utilizes microbiome abundance as input and employs phylo-
genetic taxonomy to guide the neural network’s architecture. Leveraging phyloge-
netic information, DeepBiome reduces the need for extensive tuning of the deep 
learning architecture, minimizes overfitting, and, crucially, enables the visualiza-
tion of the path from microbiome counts to disease. It is applicable to both regres-
sion and classification problems. Simulation studies and real-life data analysis have 
shown that DeepBiome is both highly accurate and efficient. It offers deep insights 
into complex microbiome–phenotype associations, even with small to moderate 
training sample sizes. In practice, the specific taxonomic level at which microbi-
ome clusters tag the association remains unknown. Therefore, the main advantage 
of the presented method over other analytical methods is that it offers an ecological 
and evolutionary understanding of host–microbe interactions, which is important for 
microbiome-based medicine. DeepBiome is implemented using Python packages 
Keras and TensorFlow. It is an open-source tool available at https://​github.​com/​
Young-​won/​DeepB​iome.
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Abbreviations
DeepBiome:	� A phylogenetic tree informed deep neural network for microbiome 

data analysis
RNA:	� Ribosomal ribonucleic acid
OTUs:	� Operational Taxonomic Units
HIV:	� Human immunodeficiency virus
DNN:	� Deep neural network
BMI:	� Body mass index
CNN:	� Convolutional neural network
AGP:	� American gut project
SVM:	� Support vector machine
Adam:	� An adaptive gradient algorithm
MSE:	� Mean square error
AUC:	� Area under the receiver operating characteristics
TPR:	� True positive rate
ACC:	� Accuracy
PPV:	� Precision
TP:	� True positive (recall)
TN:	� True negative
FP:	� False positive
FN:	� False negative
T2D:	� Type 2 diabetes
COPD:	� Chronic obstructive pulmonary disease
FEV1:	� Forced expiratory volume in 1 s
SPT:	� Supraglottic predominant taxa
BPT:	� Background predominant taxa

1  Introduction

Emerging high-throughput sequencing technologies have vastly improved our under-
standing of the human microbiome’s role in many diseases [10, 12, 21, 26]. Despite 
these achievements, our knowledge of the mechanisms behind microbes’ involve-
ment in disease aggravation remains limited. A notable challenge is inferring and 
visualizing the path from bacteria to disease across various taxonomic levels.

In 16S ribosomal RNA (RNA) sequencing, sequences are clustered into opera-
tional taxonomic units (OTUs) at a threshold of 97% sequence similarity  [4]. 
Sequence representatives, those with the fewest mismatches compared to others in 
a cluster, are used for taxonomic assignment. These assignments are based on data-
bases of known 16S rRNA gene sequences, such as GreenGenes (des), the Riboso-
mal Database Project [8], and Silva [24]. Consequently, the processed microbiome 
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data comprise an OTU abundance matrix with rows as samples and columns as 
OTUs, accompanied by a phylogenetic tree. This tree is crucial for understanding 
the relationships among OTUs and has been utilized in statistical models to better 
identify microbiome elements associated with host phenotypes [33, 35, 36]. Closely 
related microbial taxa often form clusters with similar biological functions, but 
determining the specific taxonomic level at which association signals are clustered 
remains a challenge. Are these signals concentrated at a shallow phylogenetic depth 
(e.g., genus), at a deeper level (e.g., phylum), or across various taxonomic ranks?

Several methods have been proposed to integrate the phylogenetic structure 
into analyses. Chen et  al. [5, 6] introduced a Laplacian penalty, constructed 
from the sum of branch lengths linking any two OTUs on the evolutionary tree, 
but their methods are not designed to detect signals at different evolutionary 
depths. Garcia Tanya et  al. [11] proposed a sparse regression model using �1 
and �2 regularizations to achieve sparsity at multiple taxonomic levels, yet this 
method requires three tuning parameters and an exhaustive grid search. Fur-
thermore, it can only select taxa at up to three levels, failing to cover the entire 
range of phylogenetic depths. Wang and Zhao [31] utilized a tree-guided vari-
able fusion method to build predictive models using bacteria at different taxo-
nomic levels based on the assumption that closely related bacteria have similar 
biological functions. However, Zhou et al. [38] provided a counterexample; in 
their study, Corynebacterium and Rothia, belonging to the same order Actino-
mycetales, had opposite effects on lung function changes in an HIV positive 
population. Xiao et al. [34] developed a generalized linear mixed model using 
the evolutionary rate as a tuning parameter, capable of identifying clustered 
signals without prior knowledge of the phylogenetic depth. However, this 
method is less effective when microbiome effects are clustered at mixed taxo-
nomic levels.

Deep Neural Networks (DNN), an area of growing interest in biomedi-
cal research, show promise for analyzing complex microbiome data. Lu et  al. 
[18]’s study applied a DNN model to the gut microbiome, identifying impor-
tant bacteria associated with body mass index (BMI). Another study by Reiman 
et al. [25] incorporated phylogenetic data into a Convolutional Neural Network 
(CNN) architecture to predict various outcomes. They translated taxa abun-
dances at each phylogenetic level into an abundance matrix, capturing the spa-
tial information of taxa in the phylogenetic tree. However, their model, limited 
to a fixed number of layers (three), resulted in the loss of taxa lineage informa-
tion and produced neurons lacking biological meaning, thus making the model 
difficult to interpret. Other deep learning methods, like MDeep [32], compris-
ing multiple convolutional layers followed by fully connected layers, and Deep-
Micro [22], utilizing various autoencoders, also struggle with interpretability.

We present DeepBiome, a DNN-based predictive model designed to capture 
microbiome signals at different phylogenetic depths, applicable to both regression 
and classification problems. It processes microbiome taxonomic abundance data as 
input and regularizes the neural network architecture according to the phylogenetic 
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structure. This significantly reduces the number of parameters and the tuning burden 
compared to conventional neural networks, enabling the identification of important 
taxa associated with outcomes at all taxonomic levels. Phylogeny regularization in 
DeepBiome is achieved through weight decay, a widely used technique to prevent 
overfitting and enhance neural network performances [13, 16, 20, 37]. Unlike exist-
ing weight decay schemes that assume a global rate of decay, DeepBiome incor-
porates the bacteria’s evolutionary relationship into a differential weight decay 
regularization matrix, thereby generating an interpretable effect transfer network for 
modeling and analyzing microbiome data. Simulation studies and analyses of data-
sets from a shotgun metagenomic study and a lung microbiome study demonstrate 
DeepBiome’s superior performance over commonly used tools such as support 
vector machines (SVM), regression with �1 (Lasso) or �1 + �2 (Elastic-Net) penal-
ties, DNN without tree regularization, DNN with �1 penalty, and Random Forests.

2 � Methods and Materials

2.1 � Microbiome Data Structure

Suppose we have p OTUs from a total of n microbiome samples, along with a phy-
logenetic tree that outlines the evolutionary relationships among these microbes. In 
this tree, each OTU is represented as a tip node, while every internal node corre-
sponds to a taxonomic unit, signifying a common ancestor of its descendant taxa. 
In our study, we focus on consolidating these p OTUs into m genus-level taxa, treat-
ing them as our primary units for analysis. Our analysis could also begin at finer 
taxonomic levels. An illustrative phylogenetic tree, which we refer to through-
out our methods and data simulation discussions, is depicted in Fig.  1. Here, let 
x = (x1,… , xn) denote the input data, with y = (y1,… , yn) representing the targeted 
outcomes. For each subject i, xi = (xi1,… , xim)

T indicates the abundance of m gen-
era. The outcome variable y can be continuous, binary, or categorical.    

2.2 � Architecture of DeepBiome

DeepBiome is a neural network architecture that associates input vectors x (represent-
ing microbiome abundance) with a clinical outcome y . A major challenge in neural 
network construction is deciding on the optimal number of layers and neurons. The 
conventional wisdom advocates for going deep (many layers) and wide (many neurons 
per layer), a strategy that has achieved great success in various artificial intelligence 
tasks. These include image pattern recognition and natural language processing. How-
ever, this approach requires a significant amount of training data [3, 28], which is often 
impractical in biomedical studies due to resource constraints. DeepBiome pre-speci-
fies the network architecture according to the phylogenetic tree. The number of hidden 
layers is determined by the number of taxonomic levels, while the number of neurons 



1 3

Statistics in Biosciences	

in each layer corresponds to the number of taxa at that particular level. Figure 1b illus-
trates an example DeepBiome architecture. The input layer accepts microbiome abun-
dances. The information is then propagated through multiple layers of the DeepBi-
ome network to the outcome of interest y . For example, the input vector x , representing 
the abundances of m(0) genera, is propagated to the first hidden layer vector z(1) . This 
layer contains a total of m(1) neurons, corresponding to the number of family-level taxa. 
Using an m(1) × m(0) weight matrix w(1) and an m(1) bias vector b(1) , we have

Each weight parameter w(1)

jk
 represents the effect of the kth input unit on the jth hid-

den neuron, and v(⋅) is an activation function. Throughout this paper, we use the rec-
tified linear unit (ReLU) activations [14, 19]

(1)z(1) = v(w(1)x + b(1)).
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Input Layer Hidden Layers Output Layer

Layer 3: Class

Layer 4: Phylum

Outcome: y

Layer 2: Order

Layer 1: Family

Predictor: Genus

(a) An example phylogenetic tree with 48 genera (b) Network layout of DeepBiome architecture

(c) Phylogenetic tree regularized weight decay procedure

Fig. 1   DeepBiome architecture. a A phylogenetic tree with 48 genera as tip nodes. Color represents 
phylum types. b Network layout of DeepBiome architecture. The input layer is genus level microbiome 
abundance. Each hidden layer represents one phylogenetic level, e.g., family, order, class, and phylum. 
The dark lines represent relationship defined by a phylogenetics tree. The gray lines represent association 
between layers. c Phylogenetic tree regularized weight decay. Suppose we have a simple tree as shown in 
the left panel, which has 6 genera (taxa 1–6) and 2 classes (7–8). Genera 1–3 belong to class 7 and gen-
era 4–6 belong to class 8. The ancestor–descendent information is embedded into a 6 × 2 matrix. Without 
loss of generality, we use � to indicate a regularization factor with small value (e.g., 0.01). For tree regu-
larized weight decay, the weight estimation matrix w

6×2 is multiplied with this phylogenetic embedded 
matrix �

6×2 elementwisely, denoted by �
6×2◦w6×2 (Color figure online)
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but it can be easily changed to other activation functions in our software. Similarly, 
z(�) = v(w(�)z(�) + b(�)), � = 2,… , L, where L is the total number of hidden lay-
ers in the neural network. The last hidden layer z(L) is linked to the outcome using 
either an identity link or a softmax link. Specifically, we use identity link to predict a 
continuous outcome, y = w(L+1)z(L) + b . For categorical outcomes with K categories, 
softmax function is adopted to predict the probability of ith subject belonging to c-th 
category,

Finally, we use f
�
(x) with parameters � = {w, b} to represent the whole neural net-

work that maps an input x to an output y , where w = (w(1),… ,w(L),w(L+1)) and 
b = (b(1),… , b(L), b(L+1)).

2.3 � Phylogeny Regularization via Weight Decay

We introduce phylogeny regularization through weight decay. We assume that if 
taxa j and k have an ancestor–descendent relationship, the associations between the 
corresponding neurons are stronger, i.e., larger weight value wjk . When taxa j and 
k do not have this ancestral relationship, we assume wj,k to be a small value, i.e., 
weight decay. Thus, we construct a weight decay matrix � to regularize weights in 
the neural network using the evolutionary relationship carried by the phylogenetic 
tree. If nodes j and k are ancestor–descendent related, �jk = 1 ; if not, �jk is a small 
value, e.g., 0.01. See Fig. 1c as an illustration.

2.4 � Model Training

Given a training set consisting of training pairs {x, y} and a neural network f
�
(x) 

with parameters � , a supervised training procedure is implemented to learn neu-
ral network function by minimizing the empirical loss. We define loss to be Mean 
Squared Error (MSE) for continuous outcomes and standard Cross-Entropy (CE) for 
categorical outcomes:

(2)ReLu: v(a) = a+ = max(0, a),

(3)Pr(yi = c) =
e(wz

(L)+b)c

∑K

q=1
e(wz

(L)+b)q
.

(4)

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2,

CE = −
1

n

n
∑

i=1

K
∑

q=1

yi,qlogŷi,q,
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where yi,k is a binary indicator (0 or 1) indicating whether observation i belongs to 
class k (i.e., one hot encoding). yi,c = Pr(yi = c) ( c ∈ {1,… ,K} ) is the probability 
that observation i belongs to class c defined by Eq. (3). We use the holdout valida-
tion method to determine the stopping criterion during training. The training process 
stops when the holdout validation error achieves the minimum.

Algorithm 1   Phylogeny regularized weight decay in Adam. �
1
, �

2
 refer to the expo-

nential decay rates for the moment estimates in Adam. � = 10
−8 is used to prevent 

division from zero error [14].
Data: y, xi = (x1, · · · , xm), phylogenetic tree designed matrix ω, learning rate α ∈ R

Result: θ̂ such that the lost function Loss(θ) is minimized.

Initialize: parameter (w, b)t=0 ∈ R, 1st and 2nd moment vector m1
t=0 ← 0 and m2

t=0 ← 0,1

and step index t ← 0,

repeat2

t ← t+ 13

l′t ← ∇θLoss(ω ◦wt−1, bt−1) (Get gradients w.r.t. stochastic objective at t)4

m1
t ← β1m

1
t−1 + (1− β1)l′t (Update biased 1st moment estimate)5

m2
t ← β2m

2
t−1 + (1− β2)l′′t (Update biased 2nd moment estimate)6

m̂1
t ← m1

t /(1− βt
1) (Update bias-corrected 1st moment estimate)7

m̂2
t ← m2

t /(1− βt
2) (Update bias-corrected 2nd moment estimate)8

(w, b)t ← (w, b)t−1 − α · m̂1
t /(

√
m̂2

t + ε) (Update parameters)9

until stopping criterion is met and return θ̂ = (ω ◦ ŵ, b̂) ;10

Adam optimizer, an adaptive gradient algorithm [15], is used to train Deep-
Biome. Algorithm 1 describes the parameter estimation in Adam with the pro-
posed phylogeny regularization. Specifically, at each update t, the estimated 
weight wt is elementwisely multiplied by the corresponding regularization fac-
tor � and �◦wt is used to predict ŷ in the loss function [see Eq. (4)]. Once the 
stopping criteria is met, Algorithm 1 outputs the estimated parameters of each 
layer (ŵ, ̂b) = ({𝜔(1)

◦ŵ(1),⋯ ,𝜔(L)
◦ŵ(L)}, { ̂b

(1)
, ⋯ , ̂b

(L)
}) . This phylogeny regu-

larization effectively uses biologically meaningful prior knowledge to limit the 
number of free parameters in the model. Therefore, it avoids overfitting.

2.5 � Performance Metrics

We employ several statistical metrics to evaluate the performance of Deep-
Biome for its prediction, classification and taxa selection performances. For a 
quantitative outcome, the primary metric is the mean square error (MSE). Addi-
tionally, we report the Pearson correlation coefficient � between predicted ŷi and 
true yi . For categorical outcomes, i.e., classification problems, we measure their 
performance using sensitivity [true positive rate (TPR)], specificity, g-measure, 
accuracy (ACC), precision (PPV), and the F1 score:
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where TP is “true positive” (or recall), TN is “true negative”, FP is “false positive”, 
and FN is “false negative”. The F1 score is the harmonic mean of precision and 
sensitivity. An F1 score reaches its best value at one when the prediction has perfect 
precision and recall and the worst at zero. Note that the F1 score does not take the 
true negative into account. We use the g-measure, the geometric mean of sensitivity 
and specificity, to assess the performance of a binary classifier. Same as an F1 score, 
a g-Measure reaches its best value at one when the sensitivity and specificity are 
both perfect (one) while the worst at zero if any of the sensitivity and specificity is 
zero. We also report AUC (area under the receiver operating characteristics), which 
reports the capability of a model to distinguish between classes. Sensitivity, specific-
ity, g-Measure, and ACC across all hidden layers (see Table 1) are used to report the 
selection accuracies.

3 � Results

3.1 � Simulation Studies

We conduct extensive simulation studies to evaluate the performance of DeepBi-
ome and compare it with conventional methods in three different schemes, i.e., lin-
ear regression, binary, and multiclass ( K ≥ 3 ) classification design. Throughout the 
simulation experiments, we use sample size n = 1000 and split them into a training 
set ( 75% , n

training
= 750 ) and a test set ( 25% , n

test
= 250 ). Different proportions of the 

split give qualitatively similar results (not shown). All results are obtained based on 
1000 replicates. Simulation scenario 1 covers continuous outcome models; simula-
tion scenario 2 is for binary outcome cases, and simulation scenario 3 considers the 
situation when the outcome variable is categorical. Model robustness is evaluated 
in simulation scenario 4 when tree structure is misspecified and microbiome abun-
dances contain measurement errors.

Detailed procedures to generate microbiome abundance data have been 
described before by our group  [35, 36]. We use a Dirichlet Multinomial (DM) 
distribution with the mean proportion vector and the dispersion parameter esti-
mated from a real pulmonary microbiome dataset to generate OTU counts. We 

Sensitivity =
TP

TP+FN
,

Specificity =
TN

TN+FP
,

g-Measure =(Sensitivity × Specificity)
1

2 ,

ACC =
TP+TN

TP+TN+FP+FN
,

PPV =
TP

TP+FP
,

F1 score =2 ×
PPV × TPR

PPV+TPR
=

2TP

2TP+FP+FN
,
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then aggregate 2964 OTUs to 48 genus according to the phylogenetic tree [30]. A 
forward propagation approach is described below to generate y . 

(1)	 Read the phylogenetic tree to obtain the number of phylogenetic levels and nodes 
at each level. The microbiome data are then summarized at genus, family, order, 
class, and phylum level as shown in Fig. 1. Based on a real lung microbiome 
dataset, the number of nodes are m(0) = 48 , m(1) = 40 , m(2) = 23 , m(3) = 17 , and 
m(4) = 9 , respectively.

(2)	 Construct the weight matrix w(1) ∈ ℝ
m(1)×m(0) to propagate the input layer x

genus
 to 

the 1st hidden layer by 

 The bias vector b(1) ∈ ℝ
m(1)×1 follows a standard normal distribution N(0, �2

e
) 

with �2
e
= 4 . Suppose we have node j at the genus level and k at the family 

level, then 

(3)	 Multiply the w(1)

j,k
 by a small value �j,k = 0.01 , if family taxa k is not a direct 

ancestor of genus taxa j; otherwise, w(1)
j,k

 stays the same.
(4)	 Activate the neurons using ReLU in Eq. 2, 

(5)	 Repeating steps 2–4 to compute the x
order

 , x
class

 , and x
phylum

.
(6)	 Simulate the continuous or categorical output layer y as follow 

 where K = 2 for binary classification and K ≥ 3 for multi-categorical 
classification.

The following simulation schemes are considered to examine the robustness of 
DeepBiome method. 

(1)	 Abundance contains measurement errors at genus levels. We assume that 10% of 
the associated genus reads are misclassified to one randomly selected genus from 
the same phylum. The microbiome abundance data with measurement errors are 
then used for training models.

(2)	 The phylogenetic tree for training models is misspecified (see Fig. 2).

•	 At class level, the genera that belong to Clostridia and Flavobacteria are 
mis-classified to Bacilli and Bacteroidia.

h(1) = w(1)x
genus

+ b(1).

(5)w
(1)

j,k
∼

{

Uniform(−0.5, 1) associated with output,

N(0, 0.01) not associated with output.

x
family

= z(1) = v(w(1)x
genus

+ b(1)).

(6)

ŷ =w(4)x
phylum

+ b(4)

P̂r(yi = c) =
(ew

(4)xphylum+b
(4)

)c
∑K

q=1
(ew

(4)xphylum+b
(4)

)q

,
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•	 At order level, the genera that belong to Coriobacteriales and Flavobacteri-
ales are mis-classified to Actinomycetales and Bacteroidales.

We use fivefold cross-validation to choose the tuning parameters for regularized 
linear regression models. R package randomForest is adopted for Random 
Forest analysis  [17]. Fivefold cross-validation is used to obtain hyper-parame-
ters in randomForest [i.e., the number of features selected at each split 
(mtry) and the number of trees generated in a forest (ntree)] so that out of bag 
(OOB) error is minimized. The values of mtry and ntree vary across datasets, 
with a mean (standard deviation) to be 800 (250) and 36 (30), respectively. The 
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Tree in network simulation

(d) Simulation scenario 4:

Tree in model learning

(a) Phylum Level

Fig. 2   Simulation specifications. Outcome associated taxa (blue and red) are specified at a the phylum 
level and b a mixture of phylum and order levels. The blue nodes represent “bad" taxa which result in 
disease status or are negatively associated with continuous phenotype, e.g., FEV1. The red nodes repre-
sent “good" taxa which result in a healthy status. In simulation scenario 4, we evaluate the impact of the 
misspecified phylogenetic tree: c indicates the true phylogenetic tree used in simulation scenario 4 and d 
indicates the phylogenetic tree used in model learning (same as the tree shown in b) (Color figure online)
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predictors that result in a mean decrease in accuracy or MSE are selected. On 
average, 55% of the predictors are selected. The variance importance metric is 
defined as the decrease in MSE or accuracy when the variable is randomly per-
muted. For the deep learning models (i.e., DNN, DNN + �1 , and DeepBiome), 
we use a holdout validation set including 20% of the training data and train the 
models until either validation error increases or 5000 epochs are reached, which-
ever comes the first. Using Adam  [15] optimizer, we set �1 = 0.9, �2 = 0.999 , 
learning rate lr = 0.01 and the mini-batch gradient descent with a mini-batch 
size of 50. The learning rate decays for each epoch with lr

epoch+1
= lr

epoch

1

1+0.0001
.

3.1.1 � Scenario 1: Regression Design

Table  2 displays the prediction performance for continuous outcomes when 
the associated taxa are only clustered at one phylogenetic level (i.e., phylum). 
DeepBiome has a higher Pearson correlation and lower MSE on the test set 
than the regression methods. It also performs the best among all deep learning 
models. Table 3 shows the prediction performances under a more complex case, 
where the associated taxa are clustered at different phylogenetic levels (i.e., phy-
lum and order). All regression schemes perform poorly in this case with low 
correlation, e.g., 0.6. DeepBiome has over 80% reduction in MSE compared 
to regression-based methods. The deep learning models, DNN and DNN + �1 , 
improve correlation to 0.91 and 0.9, respectively. However, both show a hint 
of overfitting with lower testing performance. Compared with Random Forest, 
DeepBiome has slightly higher MSE (0.07 vs. 0.04 shown in Table 2, 0.42 vs. 
0.30 shown in Table  3) and slightly lower correlation (0.88 vs. 0.94 shown in 
Table 2 and 0.92 vs. 0.95 shown in Table 2).

Identifying associated taxa at precise levels is critical. We evaluate the selec-
tion performance shown in Fig. 3. Regular regression methods do not discrimi-
nate associated taxa; therefore, only the results of penalized regressions are 
shown. Lasso and Elastic-Net can only select the taxa at one phylogenetic level 
in the penalized regression schemes. We compute the performance metrics for 
higher-level taxa selected using their phylogeny relationship. For example, if 
genus Prevotella is selected, we assume that its ancestor, phylum Bacteroidetes, 
is also selected. In contrast, the selection performance of regularized neural net-
work models is based on the weights estimated at each hidden layer. g-Measure 
for DeepBiome ranges from 0.8 to 0.9 across different taxa levels (Fig. 3, the 
first and second row). DeepBiome also has excellent sensitivity, specificity, 
and ACC. Although the Random Forest method performs better in predicting 
continuous outcomes, its g-measures range from 0.56 to 0.6, indicating poor 
selection ability. DNN + �1 fails to identify the true microbiome taxa across all 
phylogenetic levels with much lower g-measure, e.g., 0.18 for genus level taxa 
selection (Fig. 3, the first and second row). Overall, for continuous outcome pre-
dictions, Random Forest performs slightly better than DeepBiome. Yet Deep-
Biome offers better selection ability.
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Fig. 3   Taxa selection performance under four simulation schemes at each phylogenetic level. Sensitivity, 
specificity, g-Measure, and accuracy (ACC) were used to evaluate taxa selection performance. The verti-
cal bar represents the standard deviation over 1000 simulation replicates
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3.1.2 � Scenario 2: Binary Classification

For simplicity and for demonstrating DeepBiome’s ability to discriminate different 
levels’ taxa, we only consider the case that outcome-associated taxa are clustered 
at mixed phylogenetic levels for the following simulation scenarios (as shown in 
Fig. 2b). We assume

[(1)] the higher the abundance of blue node taxa, the higher the probability of y 
belonging to the disease group;

[(2)] the higher the abundance of red node taxa, the higher the probability of y 
belonging to the healthy control group.

We compare DeepBiome to logistic regression, three penalized logistic regres-
sion models, two conventional deep learning networks, and the Random Forest 
method. In Table 4, we present the metrics for evaluating the classification perfor-
mance of binary outcomes, including sensitivity, specificity, g-Measure, ACC, and 
AUC. Logistic regression has satisfying sensitivity, but other metrics are not com-
petitive compared to DeepBiome. Logistic regressions tend to have more false pos-
itives. In contrast, DeepBiome achieves the best classification performance with 
the highest specificity, g-Measure, ACC, and AUC as, 0.84, 0.87, 0.89, and 0.94, 
respectively. Interestingly, for binary outcome prediction, DeepBiome outperforms 
the Random Forest method with higher g-measure (0.87 vs. 0.84) and AUC (0.94 vs. 
0.85) (see Table 4). Figure 3 (the second row) displays the performance of identify-
ing associated taxa. However, Lasso and DNN + �1 show good sensitivity at some 
phylogenetic levels, and g-Measure and ACC are much worse than Elastic-Net and 
DeepBiome. This suggests that Lasso and DNN + �1 selected many null taxa (false 
positive). Using the order level as an example, the g-Measure value of DeepBiome 
is 0.91, while the DNN + �1 is 0.15. The selection performance comparison between 
DeepBiome and Random Forest indicates that DeepBiome also has superior per-
formance, i.e., g-measure of Random Forest vs. DeepBiome was 0.61 vs. 0.83 for 
genus level taxa selection. It is worth noting that logistic regression with Elastic-Net 
penalization also offers acceptable selection accuracy, e.g., 0.65 (genus level) vs. 
0.81 (class level) (Fig. 3, the third row) (Table 5).

3.1.3 � Scenario 3: Multiclass Classification

We evaluate the performance of DeepBiome for multi-category outcomes. We 
assume, as shown in Fig. 2b, that the blue node taxa lead to “severe" disease, red 
ones lead to “mild" disease, and gray node taxa are neutral.

We compare DeepBiome to DNN, DNN + �1 , the support vector machine 
(SVM) with different kernels, and the Random Forest method. For SVM, linear 
and non-linear kernels, such as the radial or polynomial kernels, are evaluated. 
The default parameter setting is adopted for SVM. Among the SVMs, the linear 
SVM has the highest accuracy and AUC, while the SVM with radial kernel yields 
better recall and F1 score. However, all SVMs are inferior to deep learning mod-
els. DeepBiome exhibits the highest AUC, i.e., 0.9; AUCs of DNN and DNN + 
�1 are around 0.86. The F1 score of DeepBiome is 0.711, which is 14% higher 
than the second best, DNN + �1 . We find that DeepBiome offers the best and 
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most balanced performance with precision and recall, which are 0.72 and 0.71, 
respectively. Consistent with binary outcome comparisons, DeepBiome also 
outperforms the Random Forest method for multi-categorical outcome prediction. 
Since SVM models cannot select the microbiome taxa, we only compare Deep-
Biome to DNN + �1 and Random Forest shown in Fig. 3 (the 4th row). Deep-
Biome surpasses DNN + �1 in all of the evaluation metrics at all phylogenetic 
levels. For instance, the g-measure of DNN + �1 in selecting genus level taxa is 
only 0.19 while that of DeepBiome is 0.82. Note that across three different out-
come types, the selection ability of the Random Forest method remains similar 
with g-measure ranging from 0.5 to 0.7.

3.1.4 � Scenario 4: Robustness Under Tree Misspecification and Measurement Errors 
of Microbiome Abundance

Table 6 and Fig. 3 (the 5th row) present the results when microbiome abundances 
contain sequencing errors. Table 7 and Fig. 3 (the 6th row) show the results when 
using a misspecified phylogenetic tree to train and test the model. Like scenario 1, 
we simulate continuous outcomes and compare DeepBiome with linear regression, 
penalized regressions, conventional DNN, �1-regularized DNN, and Random Forest. 
When the model is trained using data with measurement errors (case 1), the perfor-
mance of all methods decreases compared with scenario 1 using data without errors 
(Table 6; see also Table 3). For example, for the Random Forest method, the MSE 
is 0.04 (Table 2) without sequencing error vs. 0.42 with sequencing error (Table 6). 
For DeepBiome, MSE rises from 0.07 (without sequencing error) to 0.24 (with 
sequencing error). These results indicate that although Random Forest offers bet-
ter predictive ability when the outcome is continuous, it is more sensitive to sam-
ple contamination than DeepBiome. The average Pearson’s � of DeepBiome is 
0.95, while those of DNN, DNN + �1 , and Random Forest are 0.87, 0.91, and 0.92 
respectively.

Table 7 displays the prediction performance under case 2 (i.e., using a misspeci-
fied phylogenetic tree to train models). DeepBiome outperforms other methods in 
both MSE and Pearson’s � except Random Forest. MSE of Random Forest is 0.04 
(without misspecified tree) vs. 0.19 (with misspecified tree) while DeepBiome is 
0.07 (without misspecified tree) vs. 0.32 (with misspecified tree). Since DeepBi-
ome relies on a polygenetic tree for regularization, the impact of using a misspeci-
fied tree to DeepBiome is larger than a Random Forest.

Figure 3 (the 5th and the 6th row) show the ability to identify associated micro-
biome taxa. When the abundance data contain measurement errors, the sensitiv-
ity decreases in penalized regression and deep learning methods. For example, the 
specificity of DeepBiome at the genus level is 0.67 (compared to 0.95 using cor-
rect tree information), leading to a decreased g-measure, i.e., from 0.84 to 0.80. 
DeepBiome tends to select less associated taxa when input abundance data contain 
measurement errors. The Lasso, Elastic-Net, and DNN + �1 perform similarly to 
scenario 1. Even if DeepBiome uses a wrong tree structure to guide the model, it 
still has decent performance with a g-Measure of 0.80 at the finest level (i.e., genus).
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3.2 � Disease Prediction Using Shotgun Metagenomics

The resolution of the shotgun metagenomics data can reach species and strain 
levels, providing in-depth information to quantify the association between 
microbiota and human health. As the cost of shotgun metagenomics sequencing 
keeps decreasing, the number of available human metagenomics datasets keeps 
increasing. Using eight large-scale publicly available metagenomic datasets, 
Reference [23] benchmarked statistical learning tools for disease classification. 
Publicly available software and uniformly processed microbiome profiles (http://​
segat​alab.​cibio.​unitn.​it/​tools/​metaml) were also provided. For all eight datasets, 
species-level taxonomic profiling and relative abundances data were processed 
using MetaPhlAn2 [29], and the detailed sequence processing procedures 
were reported [23].

We apply DeepBiome to a type 2 diabetes (T2D) cohort among one of the 
eight studies with the largest sample size. It includes the species-level relative 
abundances from 170 Chinese T2D patients and 174 controls. We use relative 
abundances of 572 species-level taxa (i.e., 210 genus-level taxa) and the cor-
responding phylogenetic tree to predict T2D status and select associated micro-
biome clusters. Table 8 shows the performance of T2D prediction based on five-
fold cross-validation. Although Ridge and Lasso regressions have the highest 
specificity, their low sensitivity suggests that these methods tend to predict all 
subjects as healthy. DeepBiome performs the best among all methods with 
the highest g-Measure, accuracy, and AUC, which are 0.620, 0.643, and 0.694, 
respectively. Consistent with our simulation results, DeepBiome shows better 
predictive power than the Random Forest method. For example, AUC is 0.61 for 
the Random Forest method and 0.69 for DeepBiome. Figure  4 demonstrates 
the taxa selected by DeepBiome. We have selected 86 species, 32 genera, 14 
families, 7 orders, and 4 classes. Among these taxa, 32 species, 20 genera, 8 
families, 3 orders, and 3 classes are positively associated with T2D, indicating 
that the higher the abundance of those taxa, the higher the probability of sub-
jects having T2D.

3.3 � Computational Efficiency

DeepBiome is implemented in Python 3.6 based the TensorFlow [1, 2] and Keras 
[7] framework. It can be built on Python 3.4, 3.5, and 3.6. All simulations are per-
formed using a workstation equipped with Intel(R) Xeon(R) CPU E5-2650 v4 
processor with 24 cores @ 2.20 GHz and one NVIDIA GeForce GTX TITAN X 
GPU with 3072 CUDA cores @ 1 GHz and 12 GB memory. DeepBiome requires 
290 ± 69 s to fully train the network for one replicate with 1000 samples, 50 mini-
batches, and 5000 epochs. For the same data, DNN takes 282 ± 67 s, and DNN + �1 
takes 282 ± 67 s. DeepBiome and all other deep learning approaches take less than 
0.004 s for prediction. All real data analysis is performed on a MacBook Pro with 
2.8 GHz Intel Core i7 processor and 16 GB 2133 MHz LPDDR3 memory.

http://segatalab.cibio.unitn.it/tools/metaml
http://segatalab.cibio.unitn.it/tools/metaml
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Fig. 4   DeepBiome selected T2D-associated taxa using data from a real metagnomic sequencing study. 
Estimated weights were overlaid on the phylogenetic tree. The red and blue nodes indicate taxa have 
positive and negative weights, respectively. The size of colored nodes represents the magnitudes of the 
weights. Black nodes represent non-selected taxa (Color figure online)

Table 1   Metrics used to assess 
the performance of outcome 
prediction and microbiome taxa 
selection

MSE mean squared error, PPV positive predictive value, ACC​ accu-
racy, AUC​ area under the receiver operating characteristic (ROC) 
curve

Prediction Selection

Regression Binary Multiclass

MSE Sensitivity Sensitivity Sensitivity
Metrics Pearson’s � Specificity PPV Specificity

g-Measure F1 score g-Measure
ACC​ ACC​ ACC​
AUC​ AUC​
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4 � Discussion and conclusions

The proposed DeepBiome, a phylogenetic tree-regularized deep learning model, 
can be used for prediction and classification tasks. We provide comprehensive 
simulation experiments and real data applications to demonstrate the superior-
ity of DeepBiome. For regression tasks, our results suggest that, compared to 
sparse regression and other deep learning models, DeepBiome has a competitive 
performance, particularly when microbiome taxa associated with the outcome are 

Table 2   Scenario 1: mean squared error (MSE) and Pearson correlation coefficient between predicted 
and true outcomes for continuous outcome

The associated taxa are clustered at the phylum level
 DNN deep neural network, DNN + �

1
 Lasso (least absolute shrinkage and selection operator) penalized 

deep neural network

 Method Testing Training

MSE Correlation MSE Correlation

Mean SD Mean SD Mean SD Mean SD

Linear Regression 0.104 0.024 0.824 0.049 0.087 0.011 0.851 0.023
Ridge 0.104 0.022 0.824 0.049 0.09 0.012 0.851 0.023
Lasso 0.100 0.023 0.833 0.048 0.092 0.013 0.843 0.025
Elastic-Net 0.100 0.023 0.833 0.048 0.092 0.012 0.844 0.025
DNN 0.076 0.040 0.874 0.077 0.032 0.034 0.947 0.067
DNN + �

1
0.075 0.040 0.875 0.073 0.034 0.039 0.945 0.068

Random Forest 0.044 0.017 0.936 0.032 0.044 0.008 0.943 0.016
DeepBiome 0.071 0.036 0.882 0.069 0.043 0.034 0.929 0.061

Table 3   Scenario 1: mean squared error (MSE) and Pearson correlation coefficient between predicted 
and true outcomes for continuous outcome

The associated taxa are clustered at the phylum and order levels
DNN deep neural network, DNN + �

1
 Lasso (least absolute shrinkage and selection operator) penalized 

deep neural network

 Method Testing Training

MSE Correlation MSE Correlation

Mean SD Mean SD Mean SD Mean SD

Linear Regression 1.561 0.146 0.639 0.035 1.337 0.068 0.694 0.018
Lasso 1.479 0.115 0.662 0.034 1.411 0.075 0.678 0.020
Ridge 1.546 0.121 0.639 0.034 1.361 0.075 0.694 0.018
Elastic-Net 1.481 0.117 0.662 0.034 1.405 0.076 0.680 0.020
DNN 0.457 0.522 0.905 0.118 0.164 0.337 0.964 0.091
DNN + �

1
0.456 0.516 0.904 0.122 0.176 0.362 0.963 0.085

Random Forest 0.296 0.050 0.949 0.011 0.300 0.028 0.948 0.006
DeepBiome 0.423 1.474 0.916 0.139 0.256 0.463 0.944 0.110



	 Statistics in Biosciences

1 3

Ta
bl

e 
4  

S
ce

na
rio

 2
: c

la
ss

ifi
ca

tio
n 

pe
rfo

rm
an

ce
 fo

r b
in

ar
y 

ou
tc

om
es

AC
C

​ a
cc

ur
ac

y,
 A

U
C

​ a
re

a 
un

de
r 

th
e 

re
ce

iv
er

 o
pe

ra
tin

g 
ch

ar
ac

te
ris

tic
 (

RO
C

) 
cu

rv
e,

 D
N

N
 d

ee
p 

ne
ur

al
 n

et
w

or
k,

 D
N

N
 +

 �
1
 L

as
so

 (
le

as
t a

bs
ol

ut
e 

sh
rin

ka
ge

 a
nd

 s
el

ec
tio

n 
op

er
at

or
) p

en
al

iz
ed

 d
ee

p 
ne

ur
al

 n
et

w
or

k

 M
et

ho
d

Te
sti

ng
Tr

ai
ni

ng

Se
ns

iti
vi

ty
Sp

ec
ifi

ci
ty

g-
M

ea
su

re
A

C
C

​
A

U
C

​
Se

ns
iti

vi
ty

Sp
ec

ifi
ci

ty
g-

M
ea

su
re

A
C

C
​

A
U

C
​

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

Lo
gi

sti
c

0.
92

0
0.

03
0

0.
72

5
0.

06
6

0.
81

5
0.

03
8

0.
86

0
0.

02
6

0.
82

2
0.

03
3

0.
95

0
0.

02
1

0.
78

5
0.

04
9

0.
86

3
0.

03
0

0.
90

0
0.

02
0

0.
86

7
0.

02
6

La
ss

o
0.

96
5

0.
01

6
0.

58
3

0.
08

6
0.

74
7

0.
05

6
0.

84
8

0.
02

7
0.

77
4

0.
04

1
0.

97
3

0.
00

6
0.

61
9

0.
08

1
0.

77
4

0.
05

3
0.

86
6

0.
02

3
0.

79
6

0.
04

0
R

id
ge

0.
95

7
0.

01
8

0.
46

1
0.

07
7

0.
66

1
0.

05
5

0.
80

5
0.

02
7

0.
70

9
0.

03
7

0.
97

0
0.

00
7

0.
52

2
0.

06
2

0.
71

1
0.

04
3

0.
83

5
0.

01
6

0.
74

6
0.

03
0

El
as

tic
-N

et
0.

99
8

0.
00

4
0.

02
2

0.
02

0
0.

12
1

0.
08

2
0.

69
9

0.
03

0
0.

51
0

0.
01

0
0.

99
8

0.
00

2
0.

02
2

0.
01

3
0.

14
0

0.
04

6
0.

70
2

0.
01

5
0.

51
0

0.
00

6
D

N
N

0.
88

7
0.

04
9

0.
72

5
0.

14
8

0.
78

8
0.

13
3

0.
83

7
0.

03
8

0.
89

7
0.

03
9

0.
93

2
0.

03
2

0.
86

9
0.

15
8

0.
88

7
0.

14
6

0.
91

3
0.

04
3

0.
95

8
0.

03
3

D
N

N
 +

 �
1

0.
88

7
0.

04
8

0.
72

7
0.

14
6

0.
79

0
0.

12
9

0.
83

8
0.

03
8

0.
89

8
0.

03
6

0.
93

1
0.

03
1

0.
86

8
0.

15
4

0.
88

7
0.

14
1

0.
91

2
0.

04
2

0.
95

8
0.

03
0

R
an

do
m

 F
or

es
t

0.
73

1
0.

06
3

0.
97

7
0.

01
3

0.
84

4
0.

03
6

0.
90

2
0.

02
1

0.
85

4
0.

03
1

0.
73

0
0.

04
4

0.
97

6
0.

00
8

0.
84

4
0.

02
4

0.
90

2
0.

01
1

0.
85

3
0.

02
1

D
ee

pB
io

m
e

0.
91

8
0.

04
2

0.
83

5
0.

11
1

0.
87

0
0.

09
3

0.
89

2
0.

04
4

0.
94

1
0.

05
1

0.
95

2
0.

03
3

0.
92

2
0.

10
6

0.
93

2
0.

09
4

0.
94

3
0.

04
1

0.
97

4
0.

04
8



1 3

Statistics in Biosciences	

Ta
bl

e 
5  

S
ce

na
rio

 3
: c

la
ss

ifi
ca

tio
n 

pe
rfo

rm
an

ce
 fo

r m
ul

ti-
ca

te
go

ric
al

 o
ut

co
m

es

AC
C

​ a
cc

ur
ac

y,
 A

U
C

​ a
re

a 
un

de
r 

th
e 

re
ce

iv
er

 o
pe

ra
tin

g 
ch

ar
ac

te
ris

tic
 (

RO
C

) 
cu

rv
e,

 D
N

N
 d

ee
p 

ne
ur

al
 n

et
w

or
k,

 D
N

N
 +

 �
1
 L

as
so

 (
le

as
t a

bs
ol

ut
e 

sh
rin

ka
ge

 a
nd

 s
el

ec
tio

n 
op

er
at

or
) p

en
al

iz
ed

 d
ee

p 
ne

ur
al

 n
et

w
or

k,
 S

VM
 su

pp
or

t v
ec

to
r m

ac
hi

ne

 M
et

ho
d

Te
sti

ng
Tr

ai
ni

ng

A
C

C
​

Pr
ec

is
io

n
Re

ca
ll

F1
A

U
C

​
A

C
C

​
Pr

ec
is

io
n

Re
ca

ll
F1

A
U

C
​

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

SV
M

-L
in

ea
r

0.
66

7
0.

03
2

0.
52

5
0.

06
0

0.
49

3
0.

02
7

0.
50

8
0.

03
9

0.
66

7
0.

02
7

0.
69

4
0.

01
7

0.
57

1
0.

03
4

0.
52

0
0.

01
9

0.
54

4
0.

02
4

0.
67

9
0.

01
8

SV
M

-R
ad

ia
l

0.
65

9
0.

03
3

0.
52

7
0.

09
2

0.
50

6
0.

02
4

0.
51

4
0.

05
0

0.
66

5
0.

02
7

0.
82

1
0.

01
2

0.
80

7
0.

03
5

0.
66

3
0.

01
7

0.
72

8
0.

02
0

0.
80

9
0.

01
5

SV
M

-P
ol

yn
om

ia
l

0.
57

6
0.

03
4

0.
44

3
0.

09
0

0.
39

4
0.

02
6

0.
41

4
0.

04
8

0.
56

6
0.

03
0

0.
76

7
0.

01
4

0.
83

7
0.

01
2

0.
62

2
0.

02
5

0.
71

4
0.

01
9

0.
74

2
0.

02
6

D
N

N
0.

75
2

0.
04

5
0.

62
0

0.
13

6
0.

59
9

0.
10

5
0.

59
9

0.
11

5
0.

85
6

0.
04

1
0.

85
4

0.
06

3
0.

74
1

0.
18

8
0.

71
8

0.
14

9
0.

71
8

0.
16

6
0.

94
1

0.
04

4
D

N
N

 +
 �

1
0.

76
0

0.
04

2
0.

66
8

0.
13

9
0.

61
2

0.
09

0
0.

61
8

0.
10

4
0.

86
3

0.
04

3
0.

86
4

0.
05

8
0.

79
4

0.
16

0
0.

73
1

0.
13

0
0.

73
9

0.
14

6
0.

94
8

0.
03

7
R

an
do

m
 F

or
es

t
0.

87
1

0.
02

2
0.

86
1

0.
03

1
0.

80
2

0.
03

3
0.

82
0

0.
03

3
0.

80
7

0.
03

7
0.

87
0

0.
01

2
0.

85
9

0.
01

7
0.

80
0

0.
02

2
0.

82
1

0.
02

1
0.

80
6

0.
02

4
D

ee
pB

io
m

e
0.

81
5

0.
06

6
0.

72
0

0.
15

1
0.

71
4

0.
11

5
0.

71
1

0.
13

5
0.

90
0

0.
08

0
0.

88
0

0.
07

2
0.

80
4

0.
17

0
0.

79
3

0.
13

5
0.

79
1

0.
15

7
0.

94
2

0.
08

4



	 Statistics in Biosciences

1 3

clustered at different phylogenetic levels. DeepBiome also excels in complex clas-
sification tasks with higher accuracy and AUC. More importantly, DeepBiome 
enables an intuitive visualization of the microbiome–phenotype association network.

Deep learning models gain lots of popularity due to their supremacy in imag-
ing and natural language analysis. However, typical biomedical studies can rarely 
afford the huge amount of training data required for hyper-parameter tuning [9, 27]. 
DeepBiome regularizes the neural network structure towards the phylogenetic 
structure inherent in the microbiome data through weight decay. This way, it greatly 

Table 6   Scenario 4: mean squared error (MSE) and Pearson correlation coefficient between predicted 
and true outcome (continuous), when the input microbiome abundance data contain measurement errors

The associated taxa are clustered at the phylum and order levels
DNN deep neural network, DNN + �

1
 Lasso (least absolute shrinkage and selection operator) penalized 

deep neural network

 Method Testing Training

MSE Correlation MSE Correlation

Mean SD Mean SD Mean SD Mean SD

Linear Regression 1.569 0.154 0.639 0.036 1.336 0.066 0.694 0.018
Ridge 1.551 0.128 0.639 0.036 1.358 0.073 0.694 0.018
Lasso 1.488 0.119 0.661 0.034 1.408 0.073 0.679 0.020
Elastic-Net 1.490 0.121 0.660 0.034 1.402 0.075 0.681 0.019
DNN 0.619 0.682 0.873 0.137 0.188 0.317 0.961 0.068
DNN + �

1
0.445 0.351 0.909 0.081 0.129 0.234 0.974 0.050

Random Forest 0.419 0.072 0.922 0.016 0.425 0.037 0.920 0.008
DeepBiome 0.243 0.400 0.950 0.087 0.117 0.244 0.976 0.052

Table 7   Scenario 4: mean squared error (MSE) and Pearson correlation coefficient between predicted 
and true outcome (continuous), when using an mis-specified phylogenetic tree

The associated taxa are clustered at the phylum and order levels
DNN deep neural network, DNN + �

1
 Lasso (least absolute shrinkage and selection operator) penalized 

deep neural network

 Method Testing Training

MSE Correlation MSE Correlation

Mean SD Mean SD Mean SD Mean SD

Linear Regression 0.872 0.163 0.683 0.046 0.737 0.074 0.726 0.027
Lasso 0.826 0.144 0.706 0.047 0.780 0.080 0.710 0.030
Ridge 0.866 0.138 0.683 0.046 0.752 0.081 0.726 0.027
Elastic-Net 0.826 0.144 0.706 0.047 0.779 0.079 0.711 0.028
DNN 0.437 0.208 0.849 0.077 0.167 0.166 0.944 0.058
DNN + �

1
0.434 0.214 0.850 0.080 0.166 0.171 0.944 0.065

Random Forest 0.194 0.050 0.939 0.019 0.198 0.025 0.937 0.009
DeepBiome 0.316 0.261 0.892 0.094 0.195 0.207 0.933 0.075
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reduces the number of parameters, including the architecture itself, to be tuned and 
trained, avoids overfitting, and allows visualization of the pathway from microbiome 
counts to phenotypes. The limitations of DeepBiome include the possibility of vio-
lation of the assumptions: (1) microbiome abundances classified in the same clus-
ter have similar effects to outcomes of interests, and (2) phylogenetic tree structure 
translates to effects aggregation structure.

In real-world applications, the number of features (e.g., microbial species or 
genes) may differ between training and testing datasets, posing a significant chal-
lenge for most machine learning models, including DeepBiome. We have the fol-
lowing considerations: 

(1)	 Prior to training, align the features of both datasets by selecting a common set 
of features or using techniques like canonical correlation analysis to find a har-
monized feature space.

(2)	 DeepBiome’s architecture can handle inputs of varying dimensions.
(3)	 Train DeepBiome on the larger feature set and then apply transfer learning 

techniques to adapt the model to the smaller feature set in the testing phase.

We defer the details of the investigation to future research.

5 � Availability and Requirements

Project name: DeepBiome
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