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Abstract

Evidence linking the microbiome to human health is rapidly growing. The micro-
biome profile has the potential as a novel predictive biomarker for many diseases.
However, tables of bacterial counts are typically sparse, and bacteria are classified
within a hierarchy of taxonomic levels, ranging from species to phylum. Existing
tools focus on identifying microbiome associations at either the community level or
a specific, pre-defined taxonomic level. Incorporating the evolutionary relationship
between bacteria can enhance data interpretation. This approach allows for aggre-
gating microbiome contributions, leading to more accurate and interpretable results.
We present DeepBiome, a phylogeny-informed neural network architecture, to pre-
dict phenotypes from microbiome counts and uncover the microbiome—phenotype
association network. It utilizes microbiome abundance as input and employs phylo-
genetic taxonomy to guide the neural network’s architecture. Leveraging phyloge-
netic information, DeepBiome reduces the need for extensive tuning of the deep
learning architecture, minimizes overfitting, and, crucially, enables the visualiza-
tion of the path from microbiome counts to disease. It is applicable to both regres-
sion and classification problems. Simulation studies and real-life data analysis have
shown that DeepBiome is both highly accurate and efficient. It offers deep insights
into complex microbiome—phenotype associations, even with small to moderate
training sample sizes. In practice, the specific taxonomic level at which microbi-
ome clusters tag the association remains unknown. Therefore, the main advantage
of the presented method over other analytical methods is that it offers an ecological
and evolutionary understanding of host—microbe interactions, which is important for
microbiome-based medicine. DeepBiome is implemented using Python packages
Keras and TensorFlow. It is an open-source tool available at https://github.com/
Young-won/DeepBiome.
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Abbreviations
DeepBiome: A phylogenetic tree informed deep neural network for microbiome
data analysis

RNA: Ribosomal ribonucleic acid
OTUs: Operational Taxonomic Units
HIV: Human immunodeficiency virus
DNN: Deep neural network

BMI: Body mass index

CNN: Convolutional neural network
AGP: American gut project

SVM: Support vector machine

Adam: An adaptive gradient algorithm
MSE: Mean square error

AUC: Area under the receiver operating characteristics
TPR: True positive rate

ACC: Accuracy

PPV: Precision

TP: True positive (recall)

TN: True negative

FP: False positive

FN: False negative

T2D: Type 2 diabetes

COPD: Chronic obstructive pulmonary disease
FEV1: Forced expiratory volume in 1 s
SPT: Supraglottic predominant taxa
BPT: Background predominant taxa

1 Introduction

Emerging high-throughput sequencing technologies have vastly improved our under-
standing of the human microbiome’s role in many diseases [10, 12, 21, 26]. Despite
these achievements, our knowledge of the mechanisms behind microbes’ involve-
ment in disease aggravation remains limited. A notable challenge is inferring and
visualizing the path from bacteria to disease across various taxonomic levels.

In 16S ribosomal RNA (RNA) sequencing, sequences are clustered into opera-
tional taxonomic units (OTUs) at a threshold of 97% sequence similarity [4].
Sequence representatives, those with the fewest mismatches compared to others in
a cluster, are used for taxonomic assignment. These assignments are based on data-
bases of known 16S rRNA gene sequences, such as GreenGenes (des), the Riboso-
mal Database Project [8], and Silva [24]. Consequently, the processed microbiome
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data comprise an OTU abundance matrix with rows as samples and columns as
OTUs, accompanied by a phylogenetic tree. This tree is crucial for understanding
the relationships among OTUs and has been utilized in statistical models to better
identify microbiome elements associated with host phenotypes [33, 35, 36]. Closely
related microbial taxa often form clusters with similar biological functions, but
determining the specific taxonomic level at which association signals are clustered
remains a challenge. Are these signals concentrated at a shallow phylogenetic depth
(e.g., genus), at a deeper level (e.g., phylum), or across various taxonomic ranks?

Several methods have been proposed to integrate the phylogenetic structure
into analyses. Chen et al. [5, 6] introduced a Laplacian penalty, constructed
from the sum of branch lengths linking any two OTUs on the evolutionary tree,
but their methods are not designed to detect signals at different evolutionary
depths. Garcia Tanya et al. [11] proposed a sparse regression model using ¢,
and ¢, regularizations to achieve sparsity at multiple taxonomic levels, yet this
method requires three tuning parameters and an exhaustive grid search. Fur-
thermore, it can only select taxa at up to three levels, failing to cover the entire
range of phylogenetic depths. Wang and Zhao [31] utilized a tree-guided vari-
able fusion method to build predictive models using bacteria at different taxo-
nomic levels based on the assumption that closely related bacteria have similar
biological functions. However, Zhou et al. [38] provided a counterexample; in
their study, Corynebacterium and Rothia, belonging to the same order Actino-
mycetales, had opposite effects on lung function changes in an HIV positive
population. Xiao et al. [34] developed a generalized linear mixed model using
the evolutionary rate as a tuning parameter, capable of identifying clustered
signals without prior knowledge of the phylogenetic depth. However, this
method is less effective when microbiome effects are clustered at mixed taxo-
nomic levels.

Deep Neural Networks (DNN), an area of growing interest in biomedi-
cal research, show promise for analyzing complex microbiome data. Lu et al.
[18]’s study applied a DNN model to the gut microbiome, identifying impor-
tant bacteria associated with body mass index (BMI). Another study by Reiman
et al. [25] incorporated phylogenetic data into a Convolutional Neural Network
(CNN) architecture to predict various outcomes. They translated taxa abun-
dances at each phylogenetic level into an abundance matrix, capturing the spa-
tial information of taxa in the phylogenetic tree. However, their model, limited
to a fixed number of layers (three), resulted in the loss of taxa lineage informa-
tion and produced neurons lacking biological meaning, thus making the model
difficult to interpret. Other deep learning methods, like MDeep [32], compris-
ing multiple convolutional layers followed by fully connected layers, and Deep-
Micro [22], utilizing various autoencoders, also struggle with interpretability.

We present DeepBiome, a DNN-based predictive model designed to capture
microbiome signals at different phylogenetic depths, applicable to both regression
and classification problems. It processes microbiome taxonomic abundance data as
input and regularizes the neural network architecture according to the phylogenetic
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structure. This significantly reduces the number of parameters and the tuning burden
compared to conventional neural networks, enabling the identification of important
taxa associated with outcomes at all taxonomic levels. Phylogeny regularization in
DeepBiome is achieved through weight decay, a widely used technique to prevent
overfitting and enhance neural network performances [13, 16, 20, 37]. Unlike exist-
ing weight decay schemes that assume a global rate of decay, DeepBiome incor-
porates the bacteria’s evolutionary relationship into a differential weight decay
regularization matrix, thereby generating an interpretable effect transfer network for
modeling and analyzing microbiome data. Simulation studies and analyses of data-
sets from a shotgun metagenomic study and a lung microbiome study demonstrate
DeepBiome’s superior performance over commonly used tools such as support
vector machines (SVM), regression with £, (Lasso) or £, + ¢, (Elastic-Net) penal-
ties, DNN without tree regularization, DNN with £, penalty, and Random Forests.

2 Methods and Materials
2.1 Microbiome Data Structure

Suppose we have p OTUs from a total of n microbiome samples, along with a phy-
logenetic tree that outlines the evolutionary relationships among these microbes. In
this tree, each OTU is represented as a tip node, while every internal node corre-
sponds to a taxonomic unit, signifying a common ancestor of its descendant taxa.
In our study, we focus on consolidating these p OTUs into m genus-level taxa, treat-
ing them as our primary units for analysis. Our analysis could also begin at finer
taxonomic levels. An illustrative phylogenetic tree, which we refer to through-
out our methods and data simulation discussions, is depicted in Fig. 1. Here, let
x = (xy,...,x,) denote the input data, with y = (y,, ..., y,) representing the targeted
outcomes. For each subject i, x; = (x;;, ..., X;,)’ indicates the abundance of m gen-
era. The outcome variable y can be continuous, binary, or categorical.

2.2 Architecture of DecpBiome

DeepBiome is a neural network architecture that associates input vectors x (represent-
ing microbiome abundance) with a clinical outcome y. A major challenge in neural
network construction is deciding on the optimal number of layers and neurons. The
conventional wisdom advocates for going deep (many layers) and wide (many neurons
per layer), a strategy that has achieved great success in various artificial intelligence
tasks. These include image pattern recognition and natural language processing. How-
ever, this approach requires a significant amount of training data [3, 28], which is often
impractical in biomedical studies due to resource constraints. DeepBiome pre-speci-
fies the network architecture according to the phylogenetic tree. The number of hidden
layers is determined by the number of taxonomic levels, while the number of neurons
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(c) Phylogenetic tree regularized weight decay procedure

Fig.1 DeepBiome architecture. a A phylogenetic tree with 48 genera as tip nodes. Color represents
phylum types. b Network layout of DeepBiome architecture. The input layer is genus level microbiome
abundance. Each hidden layer represents one phylogenetic level, e.g., family, order, class, and phylum.
The dark lines represent relationship defined by a phylogenetics tree. The gray lines represent association
between layers. ¢ Phylogenetic tree regularized weight decay. Suppose we have a simple tree as shown in
the left panel, which has 6 genera (taxa 1-6) and 2 classes (7-8). Genera 1-3 belong to class 7 and gen-
era 4-6 belong to class 8. The ancestor—descendent information is embedded into a 6 X 2 matrix. Without
loss of generality, we use w to indicate a regularization factor with small value (e.g., 0.01). For tree regu-
larized weight decay, the weight estimation matrix wg,, is multiplied with this phylogenetic embedded
matrix Qg,, elementwisely, denoted by Qg ., 0w, (Color figure online)

in each layer corresponds to the number of taxa at that particular level. Figure 1b illus-
trates an example DeepBiome architecture. The input layer accepts microbiome abun-
dances. The information is then propagated through multiple layers of the DeepBi -
ome network to the outcome of interest y. For example, the input vector x, representing
the abundances of m® genera, is propagated to the first hidden layer vector z‘". This
layer contains a total of m‘") neurons, corresponding to the number of family-level taxa.
Using an m® x m© weight matrix w(® and an m® bias vector b'”, we have

20 = vwx + D). 40

Each weight parameter wj(.li) represents the effect of the kth input unit on the jth hid-

den neuron, and v(+) is an activation function. Throughout this paper, we use the rec-
tified linear unit (ReLLU) activations [14, 19]
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ReLu: v(a) = at = max(0, a), 2)

but it can be easily changed to other activation functions in our software. Similarly,
2O =vwDzO + D), ¢ =2,...,L, where L is the total number of hidden lay-
ers in the neural network. The last hidden layer z'¥ is linked to the outcome using
either an identity link or a softmax link. Specifically, we use identity link to predict a
continuous outcome, y = w1z + b For categorical outcomes with K categories,
softmax function is adopted to predict the probability of ith subject belonging to c-th
category,

e(wz(L>+b){,
Pr(yi S C) 2—21( e(wz‘L)+b)q . (3)
gq=1
Finally, we use fy(x) with parameters @ = {w, b} to represent the whole neural net-
work that maps an input x to an output y, where w = (w(, ... w® wl+D) and
b=®",....b" p "),

2.3 Phylogeny Regularization via Weight Decay

We introduce phylogeny regularization through weight decay. We assume that if
taxa j and k have an ancestor—descendent relationship, the associations between the
corresponding neurons are stronger, i.e., larger weight value w;. When taxa j and
k do not have this ancestral relationship, we assume Wi to be a small value, i.e.,
weight decay. Thus, we construct a weight decay matrix ® to regularize weights in
the neural network using the evolutionary relationship carried by the phylogenetic
tree. If nodes j and k are ancestor—descendent related, Wy = 1; if not, D is a small
value, e.g., 0.01. See Fig. 1c as an illustration.

2.4 Model Training

Given a training set consisting of training pairs {x, y} and a neural network f,(x)
with parameters 0, a supervised training procedure is implemented to learn neu-
ral network function by minimizing the empirical loss. We define loss to be Mean
Squared Error (MSE) for continuous outcomes and standard Cross-Entropy (CE) for
categorical outcomes:

n
1 0
MSE:—E =92,
",»=1(y’ )

n K
CE=- % z Zyi,qlogyi,q’

i=1 g=1

“)
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where y; . is a binary indicator (0 or 1) indicating whether observation i belongs to
class k (i.e., one hot encoding). y;. = Pr(y; = ¢) (c € {1, ...,K}) is the probability
that observation i belongs to class ¢ defined by Eq. (3). We use the holdout valida-
tion method to determine the stopping criterion during training. The training process
stops when the holdout validation error achieves the minimum.

Algorithm 1 Phylogeny regularized weight decay in Adam. ,, , refer to the expo-
nential decay rates for the moment estimates in Adam. e =10"% is used to prevent
division from zero error [14].

Data: y, x; = (21, ,Zm), phylogenetic tree designed matrix w, learning rate « € R
Result: @ such that the lost function Loss(8) is minimized.

1 Initialize: parameter (w, b)i—o € R, 1** and 2"! moment vector m;_, < 0 and m?_; < 0,
and step index ¢t « 0,

2 repeat

3 t—t+1

4 1} — VgLoss(w o wy—1,b;—1) (Get gradients w.r.t. stochastic objective at t)

5 m} — Bim}_; + (1 — B1)l; (Update biased 1°* moment estimate)

6 m? « Bom?_| + (1 — B2)lf (Update biased 2" moment estimate)

7 m} «— m}/(1— Bt (Update bias-corrected 1°* moment estimate)

8 m? «— m?/(1 — B%) (Update bias-corrected 2" moment estimate)

9 (w, b); — (w, b)y_1 —a-m}/(y/m?+¢€) (Update parameters)

until stopping criterion is met and return 0= (wow, i)) ;

[
(=}

Adam optimizer, an adaptive gradient algorithm [15], is used to train Deep-
Biome. Algorithm 1 describes the parameter estimation in Adam with the pro-
posed phylogeny regularization. Specifically, at each update ¢, the estimated
weight w, is elementwisely multiplied by the corresponding regularization fac-
tor w and wow, is used to predict ¥ in the loss function [see Eq. (4)]. Once the
stopping criteria is met, Algorithm 1 outputs the estimated parameters of each
layer W,b) = ({@Dow™, ... . @@owD} (b, ---, b }). This phylogeny regu-
larization effectively uses biologically meaningful prior knowledge to limit the
number of free parameters in the model. Therefore, it avoids overfitting.

2.5 Performance Metrics

We employ several statistical metrics to evaluate the performance of Deep-
Biome for its prediction, classification and taxa selection performances. For a
quantitative outcome, the primary metric is the mean square error (MSE). Addi-
tionally, we report the Pearson correlation coefficient p between predicted y; and
true y;. For categorical outcomes, i.e., classification problems, we measure their
performance using sensitivity [true positive rate (TPR)], specificity, g-measure,
accuracy (ACC), precision (PPV), and the F1 score:
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o TP
Sensitivity =———,
TP+FN
e TN
Specificity =———
Py = INTFP
g-Measure =(Sensitivity X Speciﬁcity)%,
ACC =ﬂ’
TP+TN+FP+FN
PPV =P
TP+FP
PPV X TPR 2TP

F1 score =2 x

PPV4+TPR =~ 2TP+FP+FN’

where TP is “true positive” (or recall), TN is “true negative”, FP is “false positive”,
and FN is “false negative”. The F1 score is the harmonic mean of precision and
sensitivity. An F1 score reaches its best value at one when the prediction has perfect
precision and recall and the worst at zero. Note that the F1 score does not take the
true negative into account. We use the g-measure, the geometric mean of sensitivity
and specificity, to assess the performance of a binary classifier. Same as an F1 score,
a g-Measure reaches its best value at one when the sensitivity and specificity are
both perfect (one) while the worst at zero if any of the sensitivity and specificity is
zero. We also report AUC (area under the receiver operating characteristics), which
reports the capability of a model to distinguish between classes. Sensitivity, specific-
ity, g-Measure, and ACC across all hidden layers (see Table 1) are used to report the
selection accuracies.

3 Results
3.1 Simulation Studies

We conduct extensive simulation studies to evaluate the performance of DeepBi -
ome and compare it with conventional methods in three different schemes, i.e., lin-
ear regression, binary, and multiclass (K > 3) classification design. Throughout the
simulation experiments, we use sample size n = 1000 and split them into a training
set (75%, 1, = 750) and a test set (25%, n,,, = 250). Different proportions of the
split give qualitatively similar results (not shown). All results are obtained based on
1000 replicates. Simulation scenario 1 covers continuous outcome models; simula-
tion scenario 2 is for binary outcome cases, and simulation scenario 3 considers the
situation when the outcome variable is categorical. Model robustness is evaluated
in simulation scenario 4 when tree structure is misspecified and microbiome abun-
dances contain measurement errors.

Detailed procedures to generate microbiome abundance data have been
described before by our group [35, 36]. We use a Dirichlet Multinomial (DM)
distribution with the mean proportion vector and the dispersion parameter esti-
mated from a real pulmonary microbiome dataset to generate OTU counts. We

test
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then aggregate 2964 OTUs to 48 genus according to the phylogenetic tree [30]. A
forward propagation approach is described below to generate y.

(1) Read the phylogenetic tree to obtain the number of phylogenetic levels and nodes
at each level. The microbiome data are then summarized at genus, family, order,
class, and phylum level as shown in Fig. 1. Based on a real lung microbiome
dataset, the number of nodes are m©® = 48, mV = 40, m® = 23, m® = 17, and
m® =9, respectively.

(2) Construct the weight matrix w() € R xm® 1 propagate the input layer x, , to
the 1st hidden layer by

Y =whx  +b0.

genus

The bias vector bV € R™"*! follows a standard normal distribution MO, o-ez)
with 63 = 4. Suppose we have node j at the genus level and k at the family
level, then

1 Uniform(—0.5, 1) associated with output,
Wik N(0,0.01) not associated with output. S

(3) Multiply the wflk) by a small value w;; = 0.01, if family taxa k is not a direct
ancestor of genus taxa j; otherwise, W,“k) stays the same.
(4) Activate the neurons using ReLU in Eq. 2,

X ity = z(l) = v(w(l)xgcnus + b(l))-

(5) Repeating steps 2-4 to compute the x,,,, X, and x .
(6) Simulate the continuous or categorical output layer y as follow

order? ¥ class?

+b%
“) )
(ew xphylum +b )L‘ (6)

9
2521 (ew(4)xphy1um +b® )q

&5 —w@®
y =w xphylum

Pr(y; = ¢) =

where K =2 for binary classification and K >3 for multi-categorical
classification.
The following simulation schemes are considered to examine the robustness of
DeepBiome method.

(1) Abundance contains measurement errors at genus levels. We assume that 10% of
the associated genus reads are misclassified to one randomly selected genus from
the same phylum. The microbiome abundance data with measurement errors are
then used for training models.

(2) The phylogenetic tree for training models is misspecified (see Fig. 2).

e At class level, the genera that belong to Clostridia and Flavobacteria are
mis-classified to Bacilli and Bacteroidia.
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Fig.2 Simulation specifications. Outcome associated taxa (blue and red) are specified at a the phylum
level and b a mixture of phylum and order levels. The blue nodes represent “bad" taxa which result in
disease status or are negatively associated with continuous phenotype, e.g., FEV1. The red nodes repre-
sent “good" taxa which result in a healthy status. In simulation scenario 4, we evaluate the impact of the
misspecified phylogenetic tree: ¢ indicates the true phylogenetic tree used in simulation scenario 4 and d
indicates the phylogenetic tree used in model learning (same as the tree shown in b) (Color figure online)

e At order level, the genera that belong to Coriobacteriales and Flavobacteri-
ales are mis-classified to Actinomycetales and Bacteroidales.

We use fivefold cross-validation to choose the tuning parameters for regularized
linear regression models. R package randomForest is adopted for Random
Forest analysis [17]. Fivefold cross-validation is used to obtain hyper-parame-
ters in randomForest [i.e., the number of features selected at each split
(mtry) and the number of trees generated in a forest (ntree)] so that out of bag
(OOB) error is minimized. The values of mtry and ntree vary across datasets,
with a mean (standard deviation) to be 800 (250) and 36 (30), respectively. The
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predictors that result in a mean decrease in accuracy or MSE are selected. On
average, 55% of the predictors are selected. The variance importance metric is
defined as the decrease in MSE or accuracy when the variable is randomly per-
muted. For the deep learning models (i.e., DNN, DNN + ¢, and DeepBiome),
we use a holdout validation set including 20% of the training data and train the
models until either validation error increases or 5000 epochs are reached, which-
ever comes the first. Using Adam [15] optimizer, we set f; = 0.9, f, = 0.999,
learning rate /r = 0.01 and the mini-batch gradient descent with a mini-batch

. . . _ 1
size of 50. The learning rate decays for each epoch with Ir_ ., = lrepochm.

3.1.1 Scenario 1: Regression Design

Table 2 displays the prediction performance for continuous outcomes when
the associated taxa are only clustered at one phylogenetic level (i.e., phylum).
DeepBiome has a higher Pearson correlation and lower MSE on the test set
than the regression methods. It also performs the best among all deep learning
models. Table 3 shows the prediction performances under a more complex case,
where the associated taxa are clustered at different phylogenetic levels (i.e., phy-
lum and order). All regression schemes perform poorly in this case with low
correlation, e.g., 0.6. DeepBiome has over 80% reduction in MSE compared
to regression-based methods. The deep learning models, DNN and DNN + 7|,
improve correlation to 0.91 and 0.9, respectively. However, both show a hint
of overfitting with lower testing performance. Compared with Random Forest,
DeepBiome has slightly higher MSE (0.07 vs. 0.04 shown in Table 2, 0.42 vs.
0.30 shown in Table 3) and slightly lower correlation (0.88 vs. 0.94 shown in
Table 2 and 0.92 vs. 0.95 shown in Table 2).

Identifying associated taxa at precise levels is critical. We evaluate the selec-
tion performance shown in Fig. 3. Regular regression methods do not discrimi-
nate associated taxa; therefore, only the results of penalized regressions are
shown. Lasso and Elastic-Net can only select the taxa at one phylogenetic level
in the penalized regression schemes. We compute the performance metrics for
higher-level taxa selected using their phylogeny relationship. For example, if
genus Prevotella is selected, we assume that its ancestor, phylum Bacteroidetes,
is also selected. In contrast, the selection performance of regularized neural net-
work models is based on the weights estimated at each hidden layer. g-Measure
for DeepBiome ranges from 0.8 to 0.9 across different taxa levels (Fig. 3, the
first and second row). DeepBiome also has excellent sensitivity, specificity,
and ACC. Although the Random Forest method performs better in predicting
continuous outcomes, its g-measures range from 0.56 to 0.6, indicating poor
selection ability. DNN + 7, fails to identify the true microbiome taxa across all
phylogenetic levels with much lower g-measure, e.g., 0.18 for genus level taxa
selection (Fig. 3, the first and second row). Overall, for continuous outcome pre-
dictions, Random Forest performs slightly better than DeepBiome. Yet Deep-
Biome offers better selection ability.
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Fig. 3 Taxa selection performance under four simulation schemes at each phylogenetic level. Sensitivity,
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cal bar represents the standard deviation over 1000 simulation replicates
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3.1.2 Scenario 2: Binary Classification

For simplicity and for demonstrating DeepBiome’s ability to discriminate different
levels’ taxa, we only consider the case that outcome-associated taxa are clustered
at mixed phylogenetic levels for the following simulation scenarios (as shown in
Fig. 2b). We assume

[(1)] the higher the abundance of blue node taxa, the higher the probability of y
belonging to the disease group;

[(2)] the higher the abundance of red node taxa, the higher the probability of y
belonging to the healthy control group.

We compare DeepBiome to logistic regression, three penalized logistic regres-
sion models, two conventional deep learning networks, and the Random Forest
method. In Table 4, we present the metrics for evaluating the classification perfor-
mance of binary outcomes, including sensitivity, specificity, g-Measure, ACC, and
AUC. Logistic regression has satisfying sensitivity, but other metrics are not com-
petitive compared to DeepBiome. Logistic regressions tend to have more false pos-
itives. In contrast, DeepBiome achieves the best classification performance with
the highest specificity, g-Measure, ACC, and AUC as, 0.84, 0.87, 0.89, and 0.94,
respectively. Interestingly, for binary outcome prediction, DeepBiome outperforms
the Random Forest method with higher g-measure (0.87 vs. 0.84) and AUC (0.94 vs.
0.85) (see Table 4). Figure 3 (the second row) displays the performance of identify-
ing associated taxa. However, Lasso and DNN + £ show good sensitivity at some
phylogenetic levels, and g-Measure and ACC are much worse than Elastic-Net and
DeepBiome. This suggests that Lasso and DNN + 7, selected many null taxa (false
positive). Using the order level as an example, the g-Measure value of DeepBiome
is 0.91, while the DNN + 7, is 0.15. The selection performance comparison between
DeepBiome and Random Forest indicates that DeepBiome also has superior per-
formance, i.e., g-measure of Random Forest vs. DeepBiome was 0.61 vs. 0.83 for
genus level taxa selection. It is worth noting that logistic regression with Elastic-Net
penalization also offers acceptable selection accuracy, e.g., 0.65 (genus level) vs.
0.81 (class level) (Fig. 3, the third row) (Table 5).

3.1.3 Scenario 3: Multiclass Classification

We evaluate the performance of DeepBiome for multi-category outcomes. We
assume, as shown in Fig. 2b, that the blue node taxa lead to “severe" disease, red
ones lead to “mild" disease, and gray node taxa are neutral.

We compare DeepBiome to DNN, DNN + 7|, the support vector machine
(SVM) with different kernels, and the Random Forest method. For SVM, linear
and non-linear kernels, such as the radial or polynomial kernels, are evaluated.
The default parameter setting is adopted for SVM. Among the SVMs, the linear
SVM has the highest accuracy and AUC, while the SVM with radial kernel yields
better recall and F1 score. However, all SVMs are inferior to deep learning mod-
els. DeepBiome exhibits the highest AUC, i.e., 0.9; AUCs of DNN and DNN +
¢, are around 0.86. The F1 score of DeepBiome is 0.711, which is 14% higher
than the second best, DNN + ¢,. We find that DeepBiome offers the best and
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most balanced performance with precision and recall, which are 0.72 and 0.71,
respectively. Consistent with binary outcome comparisons, DeepBiome also
outperforms the Random Forest method for multi-categorical outcome prediction.
Since SVM models cannot select the microbiome taxa, we only compare Deep-—
Biome to DNN + #, and Random Forest shown in Fig. 3 (the 4th row). Deep-
Biome surpasses DNN + ¢, in all of the evaluation metrics at all phylogenetic
levels. For instance, the g-measure of DNN + ¢, in selecting genus level taxa is
only 0.19 while that of DeepBiome is 0.82. Note that across three different out-
come types, the selection ability of the Random Forest method remains similar
with g-measure ranging from 0.5 to 0.7.

3.1.4 Scenario 4: Robustness Under Tree Misspecification and Measurement Errors
of Microbiome Abundance

Table 6 and Fig. 3 (the 5th row) present the results when microbiome abundances
contain sequencing errors. Table 7 and Fig. 3 (the 6th row) show the results when
using a misspecified phylogenetic tree to train and test the model. Like scenario 1,
we simulate continuous outcomes and compare DeepBiome with linear regression,
penalized regressions, conventional DNN, ¢ -regularized DNN, and Random Forest.
When the model is trained using data with measurement errors (case 1), the perfor-
mance of all methods decreases compared with scenario 1 using data without errors
(Table 6; see also Table 3). For example, for the Random Forest method, the MSE
is 0.04 (Table 2) without sequencing error vs. 0.42 with sequencing error (Table 6).
For DeepBiome, MSE rises from 0.07 (without sequencing error) to 0.24 (with
sequencing error). These results indicate that although Random Forest offers bet-
ter predictive ability when the outcome is continuous, it is more sensitive to sam-
ple contamination than DeepBiome. The average Pearson’s p of DeepBiome is
0.95, while those of DNN, DNN + ¢, and Random Forest are 0.87, 0.91, and 0.92
respectively.

Table 7 displays the prediction performance under case 2 (i.e., using a misspeci-
fied phylogenetic tree to train models). DeepBiome outperforms other methods in
both MSE and Pearson’s p except Random Forest. MSE of Random Forest is 0.04
(without misspecified tree) vs. 0.19 (with misspecified tree) while DeepBiome is
0.07 (without misspecified tree) vs. 0.32 (with misspecified tree). Since DeepBi-
ome relies on a polygenetic tree for regularization, the impact of using a misspeci-
fied tree to DeepBiome is larger than a Random Forest.

Figure 3 (the 5th and the 6th row) show the ability to identify associated micro-
biome taxa. When the abundance data contain measurement errors, the sensitiv-
ity decreases in penalized regression and deep learning methods. For example, the
specificity of DeepBiome at the genus level is 0.67 (compared to 0.95 using cor-
rect tree information), leading to a decreased g-measure, i.e., from 0.84 to 0.80.
DeepBiome tends to select less associated taxa when input abundance data contain
measurement errors. The Lasso, Elastic-Net, and DNN + £, perform similarly to
scenario 1. Even if DeepBiome uses a wrong tree structure to guide the model, it
still has decent performance with a g-Measure of 0.80 at the finest level (i.e., genus).
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3.2 Disease Prediction Using Shotgun Metagenomics

The resolution of the shotgun metagenomics data can reach species and strain
levels, providing in-depth information to quantify the association between
microbiota and human health. As the cost of shotgun metagenomics sequencing
keeps decreasing, the number of available human metagenomics datasets keeps
increasing. Using eight large-scale publicly available metagenomic datasets,
Reference [23] benchmarked statistical learning tools for disease classification.
Publicly available software and uniformly processed microbiome profiles (http://
segatalab.cibio.unitn.it/tools/metaml) were also provided. For all eight datasets,
species-level taxonomic profiling and relative abundances data were processed
using MetaPhlAn2 [29], and the detailed sequence processing procedures
were reported [23].

We apply DeepBiome to a type 2 diabetes (T2D) cohort among one of the
eight studies with the largest sample size. It includes the species-level relative
abundances from 170 Chinese T2D patients and 174 controls. We use relative
abundances of 572 species-level taxa (i.e., 210 genus-level taxa) and the cor-
responding phylogenetic tree to predict T2D status and select associated micro-
biome clusters. Table 8 shows the performance of T2D prediction based on five-
fold cross-validation. Although Ridge and Lasso regressions have the highest
specificity, their low sensitivity suggests that these methods tend to predict all
subjects as healthy. DeepBiome performs the best among all methods with
the highest g-Measure, accuracy, and AUC, which are 0.620, 0.643, and 0.694,
respectively. Consistent with our simulation results, DeepBiome shows better
predictive power than the Random Forest method. For example, AUC is 0.61 for
the Random Forest method and 0.69 for DeepBiome. Figure 4 demonstrates
the taxa selected by DeepBiome. We have selected 86 species, 32 genera, 14
families, 7 orders, and 4 classes. Among these taxa, 32 species, 20 genera, 8
families, 3 orders, and 3 classes are positively associated with T2D, indicating
that the higher the abundance of those taxa, the higher the probability of sub-
jects having T2D.

3.3 Computational Efficiency

DeepBiome is implemented in Python 3.6 based the TensorFlow [1, 2] and Keras
[7] framework. It can be built on Python 3.4, 3.5, and 3.6. All simulations are per-
formed using a workstation equipped with Intel(R) Xeon(R) CPU E5-2650 v4
processor with 24 cores @ 2.20 GHz and one NVIDIA GeForce GTX TITAN X
GPU with 3072 CUDA cores @ 1 GHz and 12 GB memory. DeepBiome requires
290 + 69 s to fully train the network for one replicate with 1000 samples, 50 mini-
batches, and 5000 epochs. For the same data, DNN takes 282 + 67 s, and DNN + ¢,
takes 282 + 67 s. DeepBiome and all other deep learning approaches take less than
0.004 s for prediction. All real data analysis is performed on a MacBook Pro with
2.8 GHz Intel Core i7 processor and 16 GB 2133 MHz LPDDR3 memory.
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Fig.4 DeepBiome selected T2D-associated taxa using data from a real metagnomic sequencing study.
Estimated weights were overlaid on the phylogenetic tree. The red and blue nodes indicate taxa have
positive and negative weights, respectively. The size of colored nodes represents the magnitudes of the
weights. Black nodes represent non-selected taxa (Color figure online)

Table 1 Metrics used to assess

Prediction Selection
the performance of outcome
prediction and microbiome taxa Regression  Binary Multiclass
selection
MSE Sensitivity Sensitivity Sensitivity
Metrics Pearson’s p Specificity PPV Specificity
g-Measure F1 score g-Measure
ACC ACC ACC
AUC AUC

MSE mean squared error, PPV positive predictive value, ACC accu-
racy, AUC area under the receiver operating characteristic (ROC)
curve
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Table 2 Scenario 1: mean squared error (MSE) and Pearson correlation coefficient between predicted
and true outcomes for continuous outcome

Method Testing Training
MSE Correlation MSE Correlation
Mean SD Mean SD Mean SD Mean SD

Linear Regression 0.104 0.024 0.824 0.049 0.087 0.011 0.851 0.023

Ridge 0.104 0.022 0.824 0.049 0.09 0.012 0.851 0.023
Lasso 0.100 0.023 0.833 0.048 0.092 0.013 0.843 0.025
Elastic-Net 0.100 0.023 0.833 0.048 0.092 0.012 0.844 0.025
DNN 0.076 0.040 0.874 0.077 0.032 0.034 0.947 0.067
DNN + 7, 0.075 0.040 0.875 0.073 0.034 0.039 0.945 0.068
Random Forest 0.044 0.017 0.936 0.032 0.044 0.008 0.943 0.016
DeepBiome 0.071 0.036 0.882 0.069 0.043 0.034 0.929 0.061

The associated taxa are clustered at the phylum level

DNN deep neural network, DNN + ¢, Lasso (least absolute shrinkage and selection operator) penalized
deep neural network

Table 3 Scenario 1: mean squared error (MSE) and Pearson correlation coefficient between predicted
and true outcomes for continuous outcome

Method Testing Training
MSE Correlation MSE Correlation
Mean SD Mean SD Mean SD Mean SD

Linear Regression 1.561 0.146 0.639 0.035 1.337 0.068 0.694 0.018

Lasso 1.479 0.115 0.662 0.034 1.411 0.075 0.678 0.020
Ridge 1.546 0.121 0.639 0.034 1.361 0.075 0.694 0.018
Elastic-Net 1.481 0.117 0.662 0.034 1.405 0.076 0.680 0.020
DNN 0.457 0.522 0.905 0.118 0.164 0.337 0.964 0.091
DNN +7, 0.456 0.516 0.904 0.122 0.176 0.362 0.963 0.085
Random Forest 0.296 0.050 0.949 0.011 0.300 0.028 0.948 0.006
DeepBiome 0.423 1.474 0.916 0.139 0.256 0.463 0.944 0.110

The associated taxa are clustered at the phylum and order levels

DNN deep neural network, DNN + £, Lasso (least absolute shrinkage and selection operator) penalized
deep neural network

4 Discussion and conclusions

The proposed DeepBiome, a phylogenetic tree-regularized deep learning model,
can be used for prediction and classification tasks. We provide comprehensive
simulation experiments and real data applications to demonstrate the superior-
ity of DeepBiome. For regression tasks, our results suggest that, compared to
sparse regression and other deep learning models, DeepBiome has a competitive
performance, particularly when microbiome taxa associated with the outcome are
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Table 6 Scenario 4: mean squared error (MSE) and Pearson correlation coefficient between predicted
and true outcome (continuous), when the input microbiome abundance data contain measurement errors

Method Testing Training
MSE Correlation MSE Correlation
Mean SD Mean SD Mean SD Mean SD

Linear Regression 1.569 0.154 0.639 0.036 1.336 0.066 0.694 0.018

Ridge 1.551 0.128 0.639 0.036 1.358 0.073 0.694 0.018
Lasso 1.488 0.119 0.661 0.034 1.408 0.073 0.679 0.020
Elastic-Net 1.490 0.121 0.660 0.034 1.402 0.075 0.681 0.019
DNN 0.619 0.682 0.873 0.137 0.188 0.317 0.961 0.068
DNN + 7, 0.445 0.351 0.909 0.081 0.129 0.234 0.974 0.050
Random Forest 0.419 0.072 0.922 0.016 0.425 0.037 0.920 0.008
DeepBiome 0.243 0.400 0.950 0.087 0.117 0.244 0.976 0.052

The associated taxa are clustered at the phylum and order levels

DNN deep neural network, DNN + ¢, Lasso (least absolute shrinkage and selection operator) penalized
deep neural network

Table 7 Scenario 4: mean squared error (MSE) and Pearson correlation coefficient between predicted
and true outcome (continuous), when using an mis-specified phylogenetic tree

Method Testing Training
MSE Correlation MSE Correlation
Mean SD Mean SD Mean SD Mean SD

Linear Regression 0.872 0.163 0.683 0.046 0.737 0.074 0.726 0.027

Lasso 0.826 0.144 0.706 0.047 0.780 0.080 0.710 0.030
Ridge 0.866 0.138 0.683 0.046 0.752 0.081 0.726 0.027
Elastic-Net 0.826 0.144 0.706 0.047 0.779 0.079 0.711 0.028
DNN 0.437 0.208 0.849 0.077 0.167 0.166 0.944 0.058
DNN +7, 0.434 0.214 0.850 0.080 0.166 0.171 0.944 0.065
Random Forest 0.194 0.050 0.939 0.019 0.198 0.025 0.937 0.009
DeepBiome 0.316 0.261 0.892 0.094 0.195 0.207 0.933 0.075

The associated taxa are clustered at the phylum and order levels

DNN deep neural network, DNN + £, Lasso (least absolute shrinkage and selection operator) penalized
deep neural network

clustered at different phylogenetic levels. DeepBiome also excels in complex clas-
sification tasks with higher accuracy and AUC. More importantly, DeepBiome
enables an intuitive visualization of the microbiome—phenotype association network.

Deep learning models gain lots of popularity due to their supremacy in imag-
ing and natural language analysis. However, typical biomedical studies can rarely
afford the huge amount of training data required for hyper-parameter tuning [9, 27].
DeepBiome regularizes the neural network structure towards the phylogenetic
structure inherent in the microbiome data through weight decay. This way, it greatly
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reduces the number of parameters, including the architecture itself, to be tuned and
trained, avoids overfitting, and allows visualization of the pathway from microbiome
counts to phenotypes. The limitations of DeepBiome include the possibility of vio-
lation of the assumptions: (1) microbiome abundances classified in the same clus-
ter have similar effects to outcomes of interests, and (2) phylogenetic tree structure
translates to effects aggregation structure.

In real-world applications, the number of features (e.g., microbial species or
genes) may differ between training and testing datasets, posing a significant chal-
lenge for most machine learning models, including DeepBiome. We have the fol-
lowing considerations:

(1) Prior to training, align the features of both datasets by selecting a common set
of features or using techniques like canonical correlation analysis to find a har-
monized feature space.

(2) DeepBiome’s architecture can handle inputs of varying dimensions.

(3) Train DeepBiome on the larger feature set and then apply transfer learning
techniques to adapt the model to the smaller feature set in the testing phase.

We defer the details of the investigation to future research.

5 Availability and Requirements
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