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Summary Paragraph 27 

The El Niño-Southern Oscillation (ENSO) provides most of the global seasonal climate 28 

forecast skill1–3, yet, quantifying the sources of skilful predictions is a long-standing 29 

challenge4–7. Different sources of predictability affect ENSO evolution, leading to distinct 30 

global impacts. Artificial Intelligence (AI) forecasts offer promising advancements but 31 

linking their skill to specific physical processes is not yet possible8–10, limiting our 32 

understanding of the dynamics underpinning the advancements. Here we show that an 33 

extended nonlinear recharge oscillator (XRO) model exhibits skilful ENSO forecasts at lead-34 

times up to 16-18 months, better than global climate models and comparable to the most 35 

skilful AI forecasts. The XRO parsimoniously incorporates the core ENSO dynamics and 36 

ENSO’s seasonally modulated interactions with other modes of variability in the global 37 

oceans. The intrinsic enhancement of ENSO’s long-range forecast skill is traceable to the 38 

initial conditions of other climate modes via their memory and interactions with ENSO and 39 

is quantifiable in terms of these modes’ contributions to ENSO amplitude. Reforecasts using 40 

the XRO trained on climate model output show that reduced biases in both model ENSO 41 

dynamics and in climate mode interactions can lead to more skilful ENSO forecasts. The 42 

XRO framework's holistic treatment of ENSO's global multi-timescale interactions 43 

highlights promising targets for improving ENSO simulations and forecasts. 44 

Main 45 

The El Niño-Southern Oscillation (ENSO) exerts global environmental and socioeconomic 46 

impacts via teleconnections1–3. Since the first successful prediction of El Niño in 1986 (ref4), 47 

decades of progress on the understanding and modelling of ENSO has improved prediction skill5–
48 

7. However, skilful prediction of ENSO at a lead-time longer than a year remains a challenge. 49 
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While ENSO originates from coupled ocean-atmosphere interactions in the tropical Pacific, 50 

recent studies highlight that interactions with other ocean basins could potentially improve ENSO 51 

prediction11. For instance, many other climate modes have been shown to interact with ENSO (Fig. 52 

1a), including the North and South Pacific Meridional Modes (NPMM and SPMM)12,13; the Indian 53 

Ocean Basin (IOB) mode14, the Indian Ocean Dipole (IOD) mode15, and the Southern Indian 54 

Ocean Dipole (SIOD) mode16 in the Indian Ocean; as well as Tropical North Atlantic (TNA) 55 

variability17, the Atlantic Niño (ATL3)18, and the South Atlantic Subtropical Dipole (SASD) 56 

mode19 in the Atlantic Ocean. Although multiple previous studies designed forecast experiments 57 

to illustrate the roles of other ocean basins in ENSO predictability, using simple coupled 58 

models20,21,14, atmosphere-ocean coupled general circulation models (CGCMs)22–26 or linear 59 

inverse models27,28, it remains a challenge quantifying the relative contributions of other ocean 60 

basins to ENSO predictability. The employed CGCMs typically exhibit pronounced biases in 61 

simulating both the climate mean state and ENSO dynamics, thus hindering skill in predicting 62 

ENSO and complicating quantification of the other ocean basins impact on ENSO predictability. 63 

Current linear inverse models are by construction not able to fully capture ENSO’s nonlinear 64 

dynamics and seasonality27,28. Quantifying the sources of skilful predictions from these specific 65 

physical processes has been elusive11,15,17,29,30.  66 

Different sources of ENSO predictability can lead to substantial event-to-event differences in 67 

ENSO evolution and associated global impacts. For example, while both the 1997/98 and 2015/16 68 

extreme El Niño events had similar amplitudes of Niño3.4 SST anomalies (SSTAs), they had 69 

distinct precursor patterns (Fig. 1b). The 1997/98 event exhibited strong preconditioning via 70 

recharged warm water volume (WWV) in the equatorial Pacific, large SST anomaly precursors in 71 

the Indian Ocean (including a negative IOD during 1996 September-November (SON)), but only 72 
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weak SST anomalies in the extratropical Pacific. In contrast, the 2015/16 event was characterized 73 

by a weaker build-up of WWV, less pronounced precursor SST anomalies in the Indian Ocean, and 74 

instead large amplitude NPMM warming in 2015 March-April-May (MAM). The Atlantic Ocean 75 

SST signals are largely similar for the two events, except that the MAM TNA was anomalously 76 

warm in 1997 but cold in 2015. In turn, these two events evolved differently in the various basins 77 

(Supplementary Fig. 1), which lead to distinct global impacts (Fig. 1c,d, Supplementary Fig. 2, 78 

ref31,32). These two different evolutions and impacts, affected by varied precursor patterns, 79 

underscore the need to quantify the sources of prediction skill and their role in the manifestation 80 

of different SST patterns more accurately. 81 

Recent advances have demonstrated the value of AI in predicting ENSO with skilful forecasts 82 

at long lead-time of 18-24 months8–10. Despite emerging explainable AI methodologies10, linking 83 

the forecast skill of the AI model to specific physical processes is not yet possible, limiting our 84 

understanding of the dynamics and physical robustness underpinning the enhanced AI skill. Here 85 

we develop a low-order extended nonlinear Recharge Oscillator (XRO) model – which couples 86 

the ENSO recharge oscillator with autoregressive model representations for the other modes (see 87 

“Extended Nonlinear Recharge-Oscillator Model (XRO)” in Methods) – to both predict ENSO 88 

events and quantify the various sources of ENSO predictability from climate mode interactions. 89 

We find that our model provides skilful and, most importantly, explainable forecasts at lead-times 90 

up to 16-18 months, better than global climate models and comparable to the most skilful AI ENSO 91 

forecast model. 92 

Efficacy boosted by climate interactions 93 

We evaluate the XRO in simulating ENSO through a 43,000 yearlong stochastically forced 94 

simulation (See “Stochastically forced XRO simulations” in Methods) with parameter estimates 95 
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derived from 1979-2022 observations (black curves in Extended Data Fig. 1). The XRO accurately 96 

simulates the fundamental observed characteristics of ENSO including its seasonal 97 

synchronization, Niño3.4 positive skewness, its interannual spectral peak, the 6-9 months lead of 98 

WWV over ENSO SST, its irregular interannual oscillations, and the spring persistence barrier 99 

(Fig. 2a-d, Supplementary Text 1 and Figs. 3-4). The XRO also accurately reproduces the observed 100 

seasonal characteristics of the other climate modes including their seasonal synchronizations and 101 

autocorrelations (Supplementary Figs. 5-6). In addition, the XRO realistically simulates the 102 

observed lead-lag relationships between ENSO and all the other climate modes with the range of 103 

XRO realization cross-correlations encompassing the observations (Fig. 2e-l). Simulating these 104 

observed relationships is a major challenge for climate models (Supplementary Fig. 7). 105 

Next, we perform out-of-sample XRO reforecasts by fitting the model for 1950-1999 (50 106 

years) and verifying it independently for the 2002-2022 period (See “Out-of-sample reforecasts” 107 

in Methods). The correlation skills of the Niño3.4 reforecasts are compared with a nonlinear RO 108 

model (nRO), the real-time International Research Institute for Climate and Society (IRI) 109 

operational models, and the most skilful AI ENSO forecast model8,9 (Fig. 2m). Interestingly, the 110 

skill of the simple nRO is comparable with the ensemble mean of the IRI statistical models. With 111 

mode interactions considered, the XRO outperforms the ensemble mean of the IRI dynamical 112 

models at long lead-time (>9 months) with skill scores comparable to the AI model. We also test 113 

the model by verifying the early period (1950-1970) and the middle period (1972-1992) 114 

independently. The XRO outperforms the nRO regardless which of the verification periods is used 115 

to assess the skill (Extended Data Fig. 2), suggesting the importance of mode interactions for 116 

ENSO forecast skill regardless of the intrinsic decadal changes in ENSO predictability33,34. 117 
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To get sufficient sample sizes of ENSO events, we next focus on the satellite era (1979-2022) 118 

and perform in-sample control reforecasts using the XRO and nRO (denoted as XRO and nRO in 119 

the figures, respectively, see “Control XRO and nRO reforecasts” in Methods). The nRO ranks in 120 

the middle of the skill range for the existing state-of-the-art dynamical prediction systems (Fig. 121 

2n). The XRO systematically outperforms the individual dynamical models and multi-model 122 

ensemble mean. The correlation skill of XRO is still above 0.5 at a lead-time of 18 months, which 123 

is again comparable to the most skilful AI model (Fig. 2n). We also employ two additional 124 

approaches to confirm the robustness of the XRO parameter fitting and reforecasting performance 125 

during 1979-2022 (See “Cross-validated reforecasts” and “Large ensemble simulations and 126 

perfect model reforecasting experiments” in Methods, Supplementary Fig. 8). First, the XRO 127 

cross-validated by sequentially leaving n-year data out still provides skilful prediction of Niño3.4 128 

SSTA up to 17 months in advance and is insensitive to the exclusion of a range between 2 to 7 129 

years of data (Supplementary Fig. 8a). Second, the XRO was repeatedly trained using each 130 

member of large ensemble CGCM simulations (LENS) and forecasted on the same member 131 

(“Same-Member” experiment) and an independent realization (“Cross-Member” experiment), 132 

respectively. All four LENS models’ perfect experiments using the same observational record 133 

length (43-year) demonstrate the uncertainty in parameter estimation leads to XRO reforecasting 134 

correlation skill error of less than 0.1 within 21 lead months (Supplementary Fig. 8b-d). 135 

We further assess the seasonality of the Niño3.4 forecast correlation skill during 1979-2022 136 

in Fig. 2o-p and Supplementary Fig. 9. Like most of the dynamical models, the nRO exhibits a 137 

pronounced spring predictability barrier (SPB) in May-June-July, when the forecast skill decreases 138 

rapidly (vertical blue lines in Fig. 2o). The SPB is much less pronounced in the XRO model, which 139 

maintains a 0.5 correlation skill up to 16 months for all different initial times (Fig. 2p). The superior 140 
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efficacy of XRO in ENSO forecasting is further illustrated by the root mean square error metric 141 

(Supplementary Fig. 10). 142 

Sources outside the tropical Pacific 143 

The XRO formulation allows us to explicitly isolate and quantify the roles of different mode 144 

interactions in ENSO’s dynamical behaviour and predictability. Three previous approaches have 145 

been employed to assess the impact of climate variability in various ocean basins on ENSO 146 

predictability, using CGCMs, intermediate complexity models, and/or conceptual models. They 147 

include: (i) partial initialization experiments, which set the ocean initial conditions for a specific 148 

basin to the model climatology, while using the observed initial conditions everywhere else21,28; 149 

(ii) partially coupled experiments, which apply strong SST restoring toward the model climatology 150 

in a specific region during the model integration, while keeping the atmosphere and ocean fully 151 

coupled elsewhere22,24,28; (iii) relaxing towards observations experiments, in which model SSTAs 152 

are strongly nudged towards observations in a specific region, while elsewhere the model is fully 153 

coupled23,26. We apply these strategies to our XRO model in corresponding sets of ENSO 154 

reforecasting sensitivity experiments: (i) uninitialized experiments (referred to as 𝑈𝑗 ), (ii) 155 

decoupled experiments (𝐷𝑗 ), and (iii) relaxation towards observations experiments (𝑅𝑗 ), (see 156 

“Quantitative reforecasting experiments” in Methods and Extended Data Table 1). We further 157 

investigate the total contribution of all the modes in each ocean basin to ENSO’s predictability by 158 

grouping modes together: the extratropical Pacific Ocean (ExPO) includes NPMM and SPMM; 159 

the Indian Ocean (IO) IOB, IOD, and SIOD; and the Atlantic Ocean (AO) TNA, ATL3, and SASD. 160 

The ExPO+IO+AO experiments demonstrate the combined effects of all the non-ENSO modes. 161 

All the sensitivity experiments qualitatively indicate that coupling information from the ExPO, 162 

IO, and AO basins enhances ENSO forecast skill (Fig. 3a), consistent with previous 163 
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findings23,24,26,28,35. However, only the uninitialized experiment framework is a suitable approach 164 

to quantify the nearly additive relative contributions of each basin to ENSO forecast skill 165 

(Extended Data Fig. 3a,d,e) without artificially overestimating the contribution of climate 166 

variability in other basins to ENSO predictability (Extended Data Fig. 3b,c,d,e). Therefore, 167 

hereafter we use the uninitialized experiment framework to quantify the impact of each individual 168 

basin’s or mode’s initial condition on subsequent ENSO forecast skill. 169 

Allowing for climate mode interactions enhances ENSO forecast skill, and significantly 170 

weakens the SPB with an improvement of correlation skill up to 0.2 (P<0.08, Fig. 3b). The 171 

enhancement of ENSO forecast skill from climate mode interactions is primarily through the initial 172 

condition memory of the different climate modes, demonstrated by the large difference between 173 

control and the uninitialized ExPO+IO+AO experiment (Fig. 3c, Supplementary Fig. 11a). The 174 

initial states of the other modes can persist for a few months and effectively impact ENSO in 175 

specific seasons. In contrast, as evidenced by the minor differences between uninitialized 176 

ExPO+IO+AO experiment and decoupled ExPO+IO+AO experiment, the coupled feedbacks with 177 

these modes induced by ENSO’s initial state only slightly reinforce and accelerate phase-transition 178 

of ENSO events (Supplementary Fig. 11b). This results in an increase in forecast skill during the 179 

ENSO transition phase (Jun+1-Sep+1 targets, Fig. 3d) but a decrease in forecast skill during the 180 

ENSO peak phases (Nov+1-Mar+1 targets, Fig. 3d). Additional reforecasting experiments (See 181 

“Losing memory experiments” in Methods, Extended Data Fig. 4) confirm that gradually 182 

preserving the initial condition memory of climate modes outside the equatorial Pacific 183 

incrementally improves ENSO forecast skill from that of the nRO to that of the XRO. 184 

We further illuminate the roles of individual basins in ENSO predictability by comparing the 185 

difference between the control and uninitialized experiments for the ExPO, IO, and AO basin 186 
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experiments (Figs. 3e-g). The contributions of each basin have strong seasonality. For instance, 187 

the effect of ExPO initialization is most pronounced when forecasts start from November-June, 188 

and target December-March when the ENSO signal is large (Fig. 3e). This effect is dominated by 189 

the NPMM initialization, whereas the SPMM initialization is less impactful (Extended Data Fig. 190 

5a-b). In contrast, the effect of IO initialization is most pronounced when forecasts start from July-191 

November, the time of the year when the IOD develops and peaks (Fig. 3f). The IO effect is 192 

dominated by the IOD, with a secondary contribution from the IOB, and the SIOD playing only a 193 

minor role (Extended Data Fig. 5c-e). This result is in contrast with the previous finding based on 194 

the decoupled linear inverse model experiments14 which suggested that the IOB plays a more 195 

significant role than the IOD in weakening the ENSO SPB. The discrepancy may stem from the 196 

lack of seasonality and nonlinearity in their model, along with potential overestimations arising 197 

from their decoupled model experiment strategy. The AO also results in a weakening of the ENSO 198 

SPB when forecasts are initialized from December-April (Fig. 3g), with major contributions from 199 

the TNA and SASD, while Atlantic Niño initialization has a negligible effect (Extended Data Fig. 200 

5f-h). These contributions of mode interactions to ENSO forecast skill are further supported by the 201 

root mean square error metric (Supplementary Fig. 12). 202 

ENSO intensification from remote sources 203 

Next, we quantify the roles of mode interactions on the individual ENSO event reforecasts, 204 

illustrated by the time series of predicted Niño3.4 SSTAs for the XRO, decoupled ExPO+IO+AO 205 

(𝐷ExPO+IO+AO), and uninitialized ExPO+IO+AO (𝑈ExPO+IO+AO) experiments at lead-time of 0-21 206 

months (Fig. 4a-c). The zero lead-time refers to the observed values. The Niño3.4 forecasts in the 207 𝑈ExPO+IO+AO experiment closely resemble those of the 𝐷ExPO+IO+AO experiment, again indicating 208 

that the skill improvement in the control XRO arises from the memory of the other climate mode 209 
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initializations. These two sensitivity reforecasts can predict the El Niño and La Niña event 210 

occurrences at lead-time of 3-9 months and usually underestimate the amplitude of Niño3.4 SSTAs. 211 

The XRO systematically outperforms the uninitialized/decoupled ExPO+IO+AO experiments 212 

with more accurate amplitude prediction of Niño3.4 SSTAs and extended skilful prediction of El 213 

Niño and La Niña event occurrences at longer lead-time of 6-18 months (Fig. 4a). For instance, 214 

the 1986/1987 El Niño event could be predicted 18 months in advance with XRO in our hindcast, 215 

as opposed to only 6 months in advance with uninitialized/decoupled ExPO+IO+AO experiments.  216 

To better understand the influence of a specific climate mode on individual ENSO events, we 217 

examined the differences in ENSO SSTAs and WWV anomalies between control and uninitialized 218 

experiments for the 1997/98 El Niño and 1998/99/00 triple La Niña episodes (Fig. 4d-k) as well 219 

as for the full period (Extended Data Fig. 6). The ENSO forecast differences due to the 220 

initialization of other modes are pronounced when those SSTAs have sufficiently large amplitudes 221 

and during the season in which their interaction with ENSO is relatively strong. These effects of 222 

the non-ENSO modes usually last longer than their own SSTA persistence, indicating the activation 223 

of ENSO coupled recharge-discharge feedbacks as shown by the ENSO SSTA and WWV 224 

anomalies alternating with a few months lag. 225 

In the extratropical Pacific, positive SSTAs for both the NPMM and SPMM in boreal spring 226 

can enhance ENSO SST warming 6-9 months later (Fig. 4d,h). However, the underlying 227 

mechanisms differ for the two different hemispheres. The NPMM warming leads to recharged 228 

WWV anomalies and subsequent ENSO SST warming, highlighting the important role of the trade 229 

wind charging mechanism36. In contrast, the SPMM warming directly generates SST warming on 230 

the equator, followed by sequential WWV discharge, which aligns with the finding that ENSO is 231 

thermally driven by the SPMM37(Extended Data Fig. 6a-b). 232 
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We also find that coupling with the NPMM tends to favour multi-year ENSO events, such as 233 

the 1998/99/00 La Niña. The first year La Niña in 1998/99 set the stage for a strong spring NPMM 234 

cooling in 1999 (consistent with the strong nearly-instantaneous feedback mechanism38), which in 235 

turn reinforced WWV discharge and colder SSTAs (by ~0.3 °C) in the second year. This strong 236 

WWV discharged state persisted and re-intensified into the third year, causing SSTA to decrease 237 

(~0.4 °C) in the winter of the third year (Fig. 4d). Similar patterns are evident in multi-year La 238 

Niña events in 2007/08, 2010/11, and 2020/21/22 (blue shadings in Extended Data Fig. 6a). We 239 

emphasize that this contribution is also evident for the opposite ENSO phase, as seen in multi-year 240 

El Niño events in 1986/87, 2014/15, and 2018/19 (Extended Data Fig. 6a). These results support 241 

the hypothesis that the coupling between NPMM and ENSO favours the existence of multi-year 242 

ENSO events39–41. 243 

In the Indian Ocean, the 1996 boreal autumn negative IOD event was found to induce a 244 

~0.4 °C Niño3.4 SSTA increase ~15 months later, thus contributing to the 1997/98 super El Niño 245 

(Fig. 4f). Conversely, the 1997 boreal autumn positive IOD event led to a ~0.5 °C Niño3.4 SSTA 246 

decrease ~15 months later, thus playing a role in the 1998/99 La Niña (Fig. 4f). This aligns with 247 

previous finding15 that negative IOD event favours the build-up of WWV (i.e., recharge) and 248 

contributes to the development of El Niño in the following year via the Bjerknes feedback. The 249 

SIOD mode, characterized by an SST east-west dipole over the southern IO, tends to induce 250 

~0.2 °C Niño3.4 SSTA increase/decrease ~12-16 months later, often offsetting the IOD’s effect 251 

(Fig. 4g). The IOB, although largely forced by ENSO, helps to accelerate the phase-transition of 252 

ENSO events42. For example, the IOB warming in 1998 contributed to a ~0.2 °C Niño3.4 SSTA 253 

decrease during the 1998/99 La Niña, about half the magnitude of the IOD-induced change (Fig. 254 
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4e). These results corroborate the findings in Fig. 3e that the Indian Ocean’s influence on ENSO 255 

predictability is predominantly governed by the IOD. 256 

In the Atlantic Ocean, the TNA warming favours Niño3.4 SSTA decrease 6-12 months later 257 

by about ~0.3 °C (Fig. 4i), consistent with a previous finding17. The 1997 boreal summer Atlantic 258 

Niña (ATL3 cold anomalies) was found to weakly favour Niño3.4 SSTA increase 6-12 months 259 

later by about ~0.15 °C (Fig. 4j). The positive phase of the SASD in 1997 contributed to a ~0.3 °C 260 

Niño3.4 SSTA increase 9-12 months later (Fig. 4k), in line with previous findings19. The Atlantic 261 

Ocean’s influence is predominantly governed by the TNA and secondly by the SASD and ATL3. 262 

For the 20/21/22 triple La Niña events, the strong positive IOD in 2019 autumn is among the 263 

most important contributors to the first year SSTA cooling (Extended Data Fig. 6d), and the 264 

NPMM cooling is among the most important sources in amplifying the second year SSTA decrease 265 

(Extended Data Fig. 6a), consistent with previous findings43,44. The ongoing 2023/2024 El Niño 266 

occurrence can be predicted up to 18 months in advance in the decoupled ExPO+IO+AO 267 

experiment (Fig. 4b), largely due to the highly recharged WWV state caused by the preceding 268 

“triple-dip” La Niña events. The XRO refines the amplitude prediction for the 2023/2024 El Niño 269 

at longer lead-time of 9-18 months (Fig. 4a), with positive contributions from the preceding IOD 270 

and IOB conditions (Extended Data Fig. 6c,d). 271 

Composites of the uninitialized experiments for the peak phase of El Niño/La Niña years (Fig. 272 

4l) support that climate mode interactions contribute to the observed Niño3.4 SSTA anomalies, in 273 

addition to the generally stronger contribution from the equatorial Pacific recharge/discharge 274 

dynamics intrinsic to ENSO. The additional contributions are mainly from the NPMM, IOD, and 275 

TNA with large inter-event spread, with other modes playing secondary roles. The impacts are 276 

asymmetric (i.e., different impacts for El Niño and La Niña events) from some modes such as the 277 
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IOB, SPMM, and SASD. The impact from the IOB on La Niña SSTA is much more pronounced 278 

than on El Niño SSTA, consistent with previous findings14. 279 

Predictability reduced by model biases 280 

Next, we turn to the impacts of biases in comprehensive climate models on ENSO forecast 281 

skill. We conducted additional XRO model forecast experiments by using the operator parameters 282 

trained using the 91 historical simulation outputs from the Coupled Model Intercomparison Project 283 

(CMIP) phase 5 and 6 (see “The XRO reforecasting experiments based on CMIP model outputs” 284 

in Methods, Extended Data Table 2, red curves in Extended Data Fig. 1). Figure 5a reveals that the 285 

forecast skill of XROm, when trained solely on each CMIP CGCM, shows a wide inter-CGCM 286 

spread at lead-time from 7 to 17 months. Importantly, the forecast skill when the model is trained 287 

on CMIP output is consistently lower than for the model trained on observational data (Extended 288 

Data Fig. 7a). This suggests that biases in all climate models reduce the ability of these CGCMs 289 

to forecast ENSO correctly. 290 

We modified each XROm to remove these dynamical biases, by individually substituting the 291 

parameters obtained from the observations into three key components of the model: ENSO’s 292 

internal dynamics (𝑳ENSO), the remote climate mode feedbacks onto ENSO (𝑪1), and the ENSO 293 

teleconnections to the remote modes (𝑪2 ). Correcting the ENSO dynamics (𝑳ENSO ) generally 294 

enhances forecast skill at all lead-times (red curve in Fig. 5b, Extended Data Fig. 7b). This 295 

indicates that the way ENSO’s core dynamics are biased in climate models is a major factor in 296 

lower ENSO forecast skill. Correcting the remote climate mode feedbacks onto ENSO (𝑪1) also 297 

improves the ENSO forecasts for lead-time up to 16 months (magenta curve in Fig. 5b, Extended 298 

Data Fig. 7c). Thus, mode coupling is critical for ENSO development, as another source of bias. 299 

Correcting the ENSO teleconnections (𝑪2 ) yields reduced ENSO skill (blue curve in Fig. 5b, 300 
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Extended Data Fig. 7d), but greatly improves the forecast skill for other modes, such as the IOD 301 

(Extended Data Fig. 8). These results suggest that reduced biases in model ENSO dynamics and 302 

in climate mode interactions lead to more skilful ENSO forecasts. 303 

Pantropical SST predictability 304 

Lastly, we demonstrate that ENSO-climate mode interactions also enhance the SST 305 

predictability of other climate modes. For instance, the lead-time of skilful IOB forecast extends 306 

from 5 months in the uninitialized ENSO experiment to 19 months in the XRO control experiment 307 

(Supplementary Fig. 13c,j). The all-month IOD forecast skill extends to 5 months (the SON 308 

forecast to 8 months), supporting earlier findings that long lead IOD predictability arises from 309 

ENSO and is impacted by the signal-to-noise ratio45. The improvement is also evident for SSTA 310 

modes in the Atlantic Ocean (about 1 month, Supplementary Fig. 13f,g,h). Interestingly, there is 311 

no skill improvement to NPMM and SPMM, possibly because their initial state already includes 312 

ENSO information given the strong nearly-instantaneous feedback with ENSO (Fig. 2e,i, ref 38). 313 

In addition to ENSO amplitude, our XRO model can be expanded to also consider ENSO 314 

spatiotemporal diversity by using two ENSO SST indices (e.g. the Niño3 and Niño4 indices, as in 315 

the model XRO2, see “The XRO2 ENSO types and pantropical SSTA forecasts” in Methods). The 316 

XRO2 is able successfully predict the EP-type characteristic of the 1997/98 El Niño, and the 317 

mixed-type characteristic of the 2015/16 El Niño, up to 9 months in advance (Supplementary Table 318 

3). In contrast, the NMME dynamical models fail to predict the correct type for the 1997/98 event, 319 

possibly due to long-standing model biases of westward-displaced ENSO SST anomalies46. The 320 

successful prediction of ENSO spatial diversity in the XRO has important implications for 321 

predicting global climate impacts that differ strongly for contrasting ENSO SSTA patterns. 322 

Furthermore, the skill of forecasted pantropical SSTA at 9-month lead using the regression model 323 
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of ten forecasted SST indices outperforms the operational dynamical models in most regions 324 

except the Caribbean Sea (Supplementary Fig. 14). The successful forecasts of ENSO types and 325 

pantropical SSTA within the XRO framework highlight the essential importance of accurately 326 

representing ENSO-climate mode interactions in climate models for effective seasonal forecasting. 327 

Discussion 328 

The XRO model constitutes a parsimonious representation of the climate system in a reduced 329 

variable and parameter space that still captures the essential dynamics of interconnected global 330 

climate variability. We emphasize that the improvement of ENSO predictability in the XRO 331 

relative to that in the nRO ultimately all resides in the initial condition memory of the other climate 332 

modes, which is propagated forward by the unbiased operator. Thus, to improve ENSO predictions, 333 

climate models must correctly capture the recharge oscillator dynamics of ENSO and additionally, 334 

three compounding aspects of other climate modes: (i) the initial conditions of each mode, (ii) the 335 

seasonally modulated damping rate (i.e., the memory) of each mode, and (iii) the seasonally 336 

modulated teleconnection to ENSO from each mode. Tracing biases from the SSTA budget at the 337 

process level with the XRO framework can be used to inform climate model development. 338 

Moreover, the explainable predictability of pantropical climate variability as encapsulated by the 339 

XRO may be further enhanced by including multi-timescale interactions associated with the 340 

Madden-Julian Oscillation and westerly wind bursts at higher frequencies. The XRO framework 341 

can also provide a pathway for better understanding observed decadal and long-term changes in 342 

ENSO variability33,34 and ENSO predictability47–50. 343 
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Figure Legends 452 

Figure 1. Different sources of ENSO predictability and associated different global impacts. 453 

a, Observed SSTA standard deviation pattern calculated from the detrended ORAS5 reanalysis 454 

during 1979-2022. The different coloured boxes represent area-averaged SSTA index regions for 455 

ENSO and other selected climate modes (Supplementary Table 1). b, Observed standardized 456 

Niño3.4 index and various potential precursor indices for the 1997/98 and 2015/16 El Niño events, 457 

with the numbers in the parentheses indicating the preceding (-1), current (0), and subsequent (1) 458 

years. The error bars show the spread (one standard deviation) among different observational 459 

products (Supplementary Table 2). The lead correlation of various indices with regard to the NDJ 460 

Niño3.4 index is indicated near the bottom of the plot. c-d, Observed precipitation anomalies 461 

(percentage) relative to climatology (shading) during (c) 1997/98 December-March (DJFM) and 462 

(d) 2015/16 DJFM. Contours denote the significant positive (green) and negative (brown) 463 

correlations between DJFM precipitation anomalies and the DJFM Niño3.4 SSTA index that 464 

exceed the 95% confidence level, based on Student’s t-test. The observed 1997/98 and 2015/16 El 465 

Niño events were associated with different precursor patterns and global climate impacts, despite 466 

similar Niño3.4 index amplitude. 467 

Figure 2. Superior efficacy of the XRO in simulating and reforecasting ENSO. a, b, c, 468 

Seasonally varying standard deviation (a), skewness (b), and power spectrum (c), respectively, of 469 

the Niño3.4 index using ORAS5 observations (black) and the XRO stochastic simulation (red). d-470 

l, monthly cross-correlations of each index with the Niño3.4 index in (black) and XRO stochastic 471 

simulation (red) for the WWV index, and NPMM, IOB, IOD, SIOD, SPMM, TNA, ATL3, and 472 

SASD SSTA indices, respectively; Dashed grey curves show the auto-correlation of the Niño3.4 473 

index; Vertical blue dashed lines denote a  lead-time of 6 (WWV), 6 (NPMM), 12(IOB), 14 (IOD), 474 

10 (SIOD), 4 (SPMM), 9 (TNA), 6 (ATL3), and 9 (SASD) months respectively; Abscissas indicate 475 

the lead-time, with negative values representing months for which the Niño3.4 index lags and 476 

positive values representing months for which the Niño3.4 index leads, the time flow illustrated 477 

by the blue arrows. Red shading indicates the 10%-90% spread of simulated 43-year epochs, 478 

obtained from splitting a 43,000-year XRO simulation into 1000 non-overlapping blocks. m, The 479 

all-months correlation skill of the 3-month running mean Niño3.4 index, as a function of forecast 480 

lead for forecasts verified on 2002-2022 for the out-of-sample nRO fitted on 1950-1999 (magenta), 481 
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out-of-sample XRO fitted on 1950-1999 (red), the AI model (blue), the XRO control fitted on 482 

1979-2022 (black) and operational models aggregated by the International Research Institute for 483 

Climate and Society (IRI), ensemble mean of dynamical models (DYN AVG, dark purple curve), 484 

ensemble mean of statistical models (STAT AVG, dark cyan curve). n, Same as m, but for skills 485 

of Niño3.4 forecasts for the nRO control forecasts (magenta), XRO control forecasts (red), AI 486 

model forecasts (blue), and dynamical model forecasts from the North American Multi-Model 487 

Ensemble (NMME) (multi-model ensemble mean in black, ensemble means from individual 488 

models in other colours). The validated period is generally 1979-2022, but slightly different for 489 

the AI and NMME models, which is indicated in the legend.  o-p, The correlation skill of the nRO 490 

and XRO forecasts for the Niño3.4 index as a function of initialization month (ordinate) and target 491 

month (abscissa; superscripts 0, 1, and 2 denote the current and subsequent years, respectively). 492 

Hatching highlights forecasts with a correlation skill less than 0.5. The dashed vertical blue lines 493 

denote the spring predictability barrier season. The XRO accurately simulates the fundamental 494 

observed ENSO characteristics, its lead-lag relationships with other climate modes, and provides 495 

skilful forecasts at lead-times up to 16-18 months, better than the global climate models and 496 

comparable to the most skilful AI ENSO forecast model. 497 

Figure 3. Quantifying the increased ENSO forecast skills from the coupled influences outside 498 

equatorial Pacific during 1979-2022. a, the all-months correlation skill of the 3-month running 499 

mean Niño3.4 index as a function of the forecast lead month in the control experiment (XRO, 500 

black line), the uninitialized ExPO+IO+AO experiment (UExPO+IO+AO, removing initial conditions 501 

of other basins; red line), the decoupling ExPO+IO+AO experiment (DExPO+IO+AO, removing the 502 

coupling of ENSO with other basins; blue line), and the relaxing ExPO+IO+AO to observations 503 

experiment (RExPO+IO+AO, adding perfect “future” information of other basins in a hindcast case; 504 

magenta line). b-d, the skill difference of the Niño3.4 index as a function of initial time and target 505 

month between XRO and DExPO+IO+AO (b), between XRO and UExPO+IO+AO (c), and between 506 

UExPO+IO+AO and DExPO+IO+AO (d). e-g, Same as d, but for difference between control and the 507 

uninitialized ExPO, IO, and AO experiments, respectively. Hatching indicates that the correlation 508 

difference is significant at 90% confidence level using the two-tailed Fisher z‐transformation test. 509 

The sensitivity experiments demonstrate the importance of the extratropical Pacific, Indian Ocean, 510 

and Atlantic Ocean in enhancing ENSO forecast skill, with distinct seasonal dependence. The 511 
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interbasin memory sustains ENSO forecast skill beyond the spring predictability barrier with the 512 

IO and AO contributing skill in boreal summer and the ExPO in boreal winter. 513 

Figure 4. Delineating contributions to ENSO amplitudes from other climate modes. a, b, c, 514 

Time series of Niño3.4 forecasts for the (a) XRO model, (b) decoupled ExPO+IO+AO experiment, 515 

and (c) uninitialized ExPO+IO+AO experiment, as function of target time and forecast lead. d-k, 516 

the difference of Niño3.4 SSTAs (shading) and WWV anomalies (contours with interval of 0.6 m, 517 

positive in red and negative in black dashed, zero omitted), as a function of forecast start month 518 

and target month, between the control and uninitialized climate mode experiments for NPMM, 519 

IOB, IOD, SIOD, SPMM, TNA, ATL3, and SASD, respectively. Vertical reference dashed lines 520 

denote December of El Niño (red) and La Niña (blue) years, respectively. In d-k, the normalized 521 

observed time series of each climate-mode SSTA index is indicated on the bottom axis; the black 522 

arrows indicate the flow of forecast integration started from the selected time in the bottom. l, 523 

Composite difference of Nov-Dec-Jan Niño3.4 SSTA forecasts during El Niño events (red) and 524 

La Niña events (blue) between control and uninitialized Um experiments started from months in a 525 

specific preceding season (-1 and 0 in parentheses denote preceding and current year, x axis from 526 

left to right is 𝑈Nino34 , 𝑈WWV , 𝑈NPMM , 𝑈SPMM , 𝑈IOB , 𝑈IOD , 𝑈SIOD , 𝑈TNA , 𝑈ATL3 , and 𝑈SASD , 527 

respectively); the events are selected when Nov-Dec-Jan Niño3.4 indices are greater than their 528 

standard deviation, which includes 7 El Niño events (1982, 1986, 1991, 1997, 2002, 2009, 2015) 529 

and 5 La Niña events (1988, 1998, 1999, 2007, 2010). The error bars show one standard deviation 530 

spread among the 7 El Niño/5 La Niña events. The XRO sensitivity experiments quantify the 531 

pathways via which the other climate modes influence El Niño and La Niña events.  532 

Figure 5. Linking biases in the dynamics captured by the XRO to climate model deficiencies 533 

in forecasting ENSO during 1979-2022. (a) The all-months correlation skill of the 3-month 534 

running mean Niño3.4 index in XROm trained solely on 91 individual CMIP model outputs (grey 535 

curves), and in XRO trained on observations (red) and multi-model ensemble mean NMME 536 

models (black). (b) The ensemble mean and 10%-90% spread band of the changes in correlation 537 

skill of the Niño3.4 index, obtained by either correcting ENSO’s internal linear dynamics 538 

(XRO𝑳ENSO𝑚 - XROm, red), or correcting the remote climate mode feedbacks onto ENSO (XRO𝑪1𝑚 - 539 

XROm, magenta), or correcting ENSO’s teleconnections to the remote climate modes (XRO𝑪2𝑚 - 540 

XROm, blue). Reforecasts using the XRO trained on climate model output, show that reduced 541 
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biases in model ENSO dynamics and in climate mode interactions lead to more skilful ENSO 542 

forecasts. 543 

 544 

Methods 545 

Extended Nonlinear Recharge-Oscillator model (XRO) 546 

The XRO model consists of a nonlinear recharge oscillator model for ENSO51,52 coupled to 547 

stochastic‐deterministic models (i.e., seasonally modulated first order autoregressive models) for 548 

the other climate modes53–55: 549 𝑑𝑑𝑡 (𝑿ENSO𝑿𝑀 ) = 𝑳 (𝑿ENSO𝑿𝑀 ) + (𝑵ENSO𝑵𝑀 ) + 𝜎𝝃𝝃, (1) 550 

𝑑𝝃𝑑𝑡 = −𝑟𝛏𝝃 +𝒘(𝑡), (2) 551 

where 𝑿ENSO = [𝑇ENSO, ℎ]  and 𝑿𝑀 = [𝑇NPMM, 𝑇SPMM, 𝑇IOB, 𝑇IOD, 𝑇SIOD, 𝑇TNA, 𝑇ATL3, 𝑇SASD]  are 552 

state vectors of ENSO and other climate modes, respectively. This model allows for two-way 553 

interactions between ENSO and the other modes. Two indices are used to describe the oscillatory 554 

behaviour of ENSO52,56. They consist of SSTAs averaged over the Niño3.4 region 170°–120°W, 555 

5°S–5°N (𝑇ENSO) and thermocline depth anomalies averaged over the equatorial Pacific 120°E–556 

80°W, 5°S–5°N (ℎ), i.e., the WWV index (with a constant factor of the area it covers). For other 557 

climate modes, we consider the SST indices of multiple climate modes (Supplementary Table 1) 558 

that have been shown to interact with ENSO, including the NPMM12,38,57 and SPMM13 in the 559 

extratropical Pacific, the IOB14,58,59, IOD60,61,15,43, and SIOD16 in the Indian Ocean, and TNA17,62, 560 

ATL363,18,43,64 and SASD65,19 in the Atlantic Ocean. We recognise the possibility of enhancing 561 

ENSO forecast skill by incorporating additional modes of variability, provided they directly 562 
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interact with ENSO, exhibit substantial memory extending beyond months, and offer additional 563 

sources of variability beyond the chosen eight.  564 

The dynamics governing the state matrix 𝑿 (consisting of 10 variables) contains linear (𝑳), 565 

nonlinear (𝑵 ), and stochastic (𝝃 ) terms. The linear dynamics contains four key submatrices, 566 

organized as follows: 567 

𝑳 = (𝑳ENSO 𝑪𝟏𝑪𝟐 𝑳𝑀) , (3) 568 

where the linear operator submatrix 𝑳ENSO  describes the ENSO internal recharge-discharge 569 

dynamics52,66, 𝑳𝑀 represent the internal processes and interactions among the other climate modes; 570 𝑪 are coupling submatrices, with 𝑪𝟐 describing the impact of ENSO on other climate modes29 and 571 𝑪𝟏  describing the feedback of other modes on ENSO. To implement nonlinear dynamics 572 

associated with ENSO asymmetry, quadratic nonlinearities 𝑏1𝑇ENSO2 + 𝑏2𝑇ENSOℎ  are incorporated 573 

into the SSTA equation of ENSO following Jin et al.51 and An et al.67, specifically, 𝑵ENSO =574 [𝑏1𝑇ENSO2 + 𝑏2𝑇ENSOℎ, 0]. These nonlinearities can be related to deterministic nonlinear ocean 575 

advection68,67, as well as to atmospheric nonlinearity implicitly through the nonlinear SST-wind 576 

stress feedback69–71. A local quadratic nonlinearity 𝑏3𝑇IOD2  is also incorporated in the SSTA 577 

equation for the IOD following the recent insights from An et al.72 that IOD asymmetry is 578 

dominated by local nonlinear processes. The nonlinear terms for modes other that the IOD are set 579 

to zero given their observed smaller asymmetry and skewness (Supplementary Fig. 5i-j,m-p, ref73), 580 

specifically, 𝑵𝑀 = [0,0,0, 𝑏3𝑇IOD2 , 0,0,0,0]. Lastly, 𝝃 is stochastic forcing due to weather and other 581 

high-frequency noise such as the Madden-Julian Oscillation and westerly wind bursts, which is 582 

approximated as red noise with decorrelation time scales of 𝑟𝝃 and amplitudes of 𝜎𝝃, respectively. 583 

Specifically, 𝒘(𝑡) in Eq. (2) denotes white noise with a Gaussian distribution N(0, 2𝑟𝝃) ensuring 584 
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that the variance of 𝝃 is maintained at the unit level. We acknowledge the importance of the 585 

multiplicative (state-dependent) noise forcing on ENSO74,75, however, accurately estimating the 586 

magnitude of the state-dependence remains a challenge with the observational data length. 587 

Due to the strong seasonal dependence of ENSO and other climate modes, we incorporate 588 

seasonality by estimating the operator matrix and nonlinear parameters as 589 

𝑳 = 𝑳𝟎 +∑(𝑳𝑗𝒄 cos 𝑗𝜔𝑡 + 𝑳𝒋𝒔 sin 𝑗𝜔𝑡)2
𝑗=1 , (4) 590 

𝑵 = 𝑵𝟎 +∑(𝑵𝑗𝒄 cos 𝑗𝜔𝑡 + 𝑵𝑗𝒔 sin 𝑗𝜔𝑡)2
𝑗=1 , (5) 591 

where 𝜔 = 2𝜋/(12 𝑚𝑜𝑛𝑡ℎ𝑠), and the subscripts 0, 1 and 2 indicate the mean, annual cycle, and 592 

the semi-annual components, respectively. The linear operator and nonlinear coefficients for the 593 

observations and CMIP simulations are estimated simultaneously by using multivariate linear 594 

regression and expressing the state vector tendency in Eq. (1) through a forward-differencing 595 

scheme following ref76,77. Compared to the conventional method, which estimates the annual cycle 596 

of operators by splitting the monthly data on each calendar month, our approach enables us to 597 

obtain the seasonal modulated operators without reducing sample size by a factor of 12. We 598 

emphasize that our approach constitutes the minimum number of degrees of freedom necessary to 599 

represent the seasonality. There are 50 parameters for each tendency equation of the 10 variables 600 

in the system (except 60 for 𝑇ENSO and 55 for 𝑇IOD). To meet the rule of thumb for regression 601 

sample size (at least 10 subjects per predictor)78, 40–50 years of data is required to achieve a robust 602 

fit. The total number of parameters is 515, which are orders of magnitude fewer degrees of freedom 603 



25 

than the AI models in comparison have, the latter which have substantially more than 100,000 free 604 

parameters8. 605 

The noise parameters are determined from the residuals of the XRO fit. There are 20 total 606 

noise parameters, i.e., a noise amplitude and decorrelation time scale for each of the 10 variables 607 

in the system. The noise amplitude 𝜎𝝃 is estimated from the standard deviations of the residuals of 608 

the XRO fit. The decorrelation time scales are estimated as 𝑟𝝃 = −𝑙𝑛(𝒂𝟏)/𝛿𝑡, where 𝒂𝟏 is the lag-609 

1 autocorrelation of the residual of the XRO fit. The order of observed noise time scale 𝑟𝝃−1 is 610 

about 0.25 ~ 0.70 months. 611 

The XRO builds on the legacies of the Hasselmann stochastic climate model capturing upper 612 

ocean memory in SST variability, and the recharge oscillator model for the oscillatory core 613 

dynamics of ENSO. As a multivariate dynamical system, comparing with previous linear inverse 614 

models79,28,27,80,35, the XRO offers an enhanced capability in representing the dynamics of ENSO 615 

(including recharge/discharge dynamics) and climate mode interactions, encompassing their 616 

seasonality and nonlinearity, which are of crucial importance in improving ENSO forecast skill. 617 

Moreover, the state vectors for linear inverse models are typically derived from the leading 618 

principal components truncated within the Empirical Orthogonal Function space, which, however, 619 

may not always represent physical processes. 620 

Nonlinear RO model (nRO) 621 

To highlight the climate mode interactions, we compared the XRO model with a nRO, which 622 

is described as:  623 𝑑𝑑𝑡 𝑿ENSO = 𝑳ENSO𝑿ENSO + 𝑵ENSO + 𝜎𝝃ENSO𝝃ENSO. (5) 624 



26 

This model includes only processes internal to the tropical Pacific. The parameters for the nRO 625 

model are fitted separately. 626 

Observational data 627 

We use eight observational SST and 3-dimensional ocean temperature datasets to account the 628 

uncertainties in estimating the SST in global oceans and subsurface state in the equatorial Pacific 629 

(Supplementary Table 2). They include three observational SST reconstructions: HadISST (Hadley 630 

Centre Sea Ice and Sea Surface Temperature dataset version 1.1)81, ERSST v5 (Extended 631 

Reconstructed Sea Surface Temperature version 5)82 and COBE-SST 2 (Centennial in situ 632 

Observation-Based Estimates of Sea Surface Temperature version 2)83 for 1871-2023; and five 633 

reanalysed SST and ocean temperature datasets: GECCO3 for 1950-2018 (the German 634 

contribution to Estimating the Circulation and Climate of the Ocean version 3)84, GODAS for 635 

1980-2023 (Global Ocean Data Assimilation System)85, ORAS5 for 1958-2023 (the ECMWF 636 

Ocean Reanalysis System 5)86, ORA20C for 1900-2009 (ensemble of 10-member ECMWF Ocean 637 

Reanalysis of the 20th Century)87, PEODAS for 1960-2014 (the Predictive Ocean Atmosphere 638 

Model for Australia Ensemble Ocean Data Assimilation System)88, and SODA224 for 1871-2010 639 

(Simple Ocean Data Assimilation Phase 2.2.4)89. The thermocline depth is defined as the depth of 640 

the 20°C isotherm. We also use surface air temperature from the ERA5 reanalysis90, and gridded 641 

precipitation from the Climate Prediction Center Merged Analysis of Precipitation (CMAP)91 for 642 

1979-2022. The monthly anomaly fields were calculated by removing the monthly climatology for 643 

the period of 1979-2022 and the quadratic trend over the whole period. We have focused on the 644 

satellite era from 1979 onwards because SST observations are sparse in the pre-satellite period. 645 
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Climate forecast and hindcast data 646 

We use the 3-month averaged Niño3.4 index forecasts from the operational International 647 

Research Institute for Climate and Society (IRI) ENSO Forecast product5. We also use SST 648 

hindcasts and real-time forecasts from ten models participating in the North American Multi-649 

Model Ensemble (NMME) project92. The ensemble sizes range from 10 to 24 for each model 650 

(Supplementary Table 4). The monthly forecast anomalies were calculated with respect to the 651 

monthly climatology from January 1982 to December 2010 for each member and forecast lead. 652 

For CCSM4 and CFSv2, we eliminate the discontinuous forecast biases by calculating the forecast 653 

anomalies using two different climatological periods of 1982–98 and 1999–2010, respectively, 654 

following ref45. 655 

In addition, we use the Niño3.4, Niño3, and Niño4 indices forecasts from an AI model (the 656 

3D-Geoformer ENSO neural network model9) covering the period of 1983-2021. This model 657 

demonstrated ENSO forecast skills comparable with the convolutional neural networks (CNN) 658 

model developed by Ham et al.8, which is among the most skilful AI ENSO forecasts93,94. 659 

Stochastically forced XRO simulations 660 

To assess the XRO’s performance in simulating ENSO and mode interactions, we conducted 661 

stochastically forced simulations using the operators and stochastic forcing matrices estimated 662 

from the ORAS5 reanalysis for 1979-2022 (black curves in Extended Data Fig. 1). We numerically 663 

integrate Eqs. 1-2 with a time step of 0.01 month for 45,000 years and archive monthly-averaged 664 

states for the analysis. The last 43,000 years were analysed and split into 1000 non-overlapping 665 

epochs of 43-year each, aligning with the observational record length. An example of simulated 666 

Niño3.4 SSTA index for the 10 consecutive centuries is shown in Supplementary Fig. 3. 667 
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Out-of-sample reforecasts 668 

To perform robust out-of-sample testing of the XRO performance, we next use observational 669 

data including the pre-satellite period since at least 40-50 years of data are required to get a robust 670 

XRO fit. We choose to discard data before 1950 since there are large uncertainties in the SSTA and 671 

equatorial thermocline depth indices (Supplementary Fig. 15). Therefore, we fitted the XRO and 672 

nRO models on 1950-1999 (50 years) data, conducted deterministic retrospective 21-month 673 

forecasts by integrating the XRO (Eq. 1) and nRO (Eq. 5) initialized from observed state values 674 

for the period of 2002-2022, and verified the model against observations in the 2002-2022 period, 675 

To access the impact of the decadal change in the performance of the XRO in forecasting ENSO, 676 

we also verified the model on two other 21-year no-overlapping periods: the previous period 1950-677 

1970 (in which period of 1973-2022 data was used for training) and the middle period 1972-1992 678 

(in which the periods of 1950-1970 and 1994-2022 data was used for training). The multi-data-679 

products ensemble mean SSTA and WWV anomaly indices were used for fitting and verification. 680 

Control XRO and nRO reforecasts 681 

Using the operator and stochastic forcing parameters estimated from the ORAS5 reanalysis 682 

for 1979-2022, we conducted a control experiment by integrating the XRO (Eq. 1) initialized from 683 

observed state values of [𝑇ENSO, ℎ, 𝑇NPMM, 𝑇SPMM, 𝑇IOB, 𝑇IOD, 𝑇SIOD, 𝑇TNA, 𝑇ATL3, 𝑇SASD]  with 684 

retrospective 21-month forecasts for the period of January 1979–October 2023 (referred to XRO). 685 

The ensemble mean forecast of 100-members is almost identical to the deterministic forecast in 686 

which the stochastic forcing terms are neglected during the integration (Supplementary Fig. 16a,b). 687 

Although the 100-member stochastic XRO forecasts provide an opportunity for probabilistic 688 

ENSO forecasts (Supplementary Fig. 16c-f), here we focus on the deterministic skill and neglect 689 
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the stochastic forcing terms in all the remaining forecast experiments. Similarly, we conducted a 690 

nRO deterministic experiment by integrating Eq. (5) initialized from observed state values of 691 [𝑇ENSO, ℎ]. 692 

Cross-validated reforecasts.  693 

We carried out cross-validated forecasts using both the XRO and nRO models from the 694 

ORAS5 reanalysis for 1979-2022, employing a jackknife subsampling approach. We sequentially 695 

excluded 3-year segments of data (1979-81, 1982-85, 1986-89, 1990-93, 1994-97, 1998-2001, 696 

2002-05, 2006-09, 2010-13, 2014-17, 2018-21, and 2022), then trained the model operator 697 

parameters based on the remaining data. Subsequently, we generated forecasts for each month 698 

during the years not included in the model fitting. The uncertainty in the fitted parameters is 699 

illustrated as black shading in Extended Data Fig. 1. The skill of cross-validated forecast is not 700 

sensitive to the choice of excluding from 2 to 7 years (Supplementary Fig. 8a). 701 

Large ensemble simulations and perfect model reforecasting experiments 702 

To assess of the robustness of the XRO fitting and forecasting performance, we use large 703 

ensemble (LENS) historical simulations for four climate models: Community Earth System Model 704 

version 1 (CESM1)95, version 2 (CESM2)96, Model for Interdisciplinary Research on Climate 705 

version 6 (MIROC6)97, and Max Planck Institute for Meteorology Earth System Model version 706 

1.1 (MPI-ESM)98. Each LENS was generated by repeatedly running the same model simulation 707 

with identical external forcing but with small initial condition differences. The number of members 708 

for each LENS used in this study are as follows: 39 for CESM1, 100 for CESM2, 50 for MIROC6, 709 
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and 99 for MPI-ESM. We use the historical period of 1959-2002, aligning it with the observational 710 

record length (43 years). 711 

We performed the “perfect model” reforecast, where the XRO model was trained by the 712 

LENS output and tasked to reforecast itself instead of the observations. We carried out twin 713 

experiments for each LENS (Supplementary Fig. 8b-e). The “Same-Member” reforecast 714 

experiment, in which the XRO model is repeatedly fitted for a member, forecasted, and verified 715 

against the same member. This aligns with the XRO control experiment for the observations. In 716 

the “Cross-Member” reforecast experiment, the XRO model is fitted for a specific member but 717 

forecasted and verified against a different member (an independent realization in the LENS). 718 

Specifically, we forecast ensemble member j using the two versions of XRO models, which were 719 

fitted on member j-1 and j-2 data, respectively, and repeat the process for all members within the 720 

LENS. The skill difference between the Cross-Member experiment and the Same-Member 721 

experiment isolates the uncertainty of XRO parameter fitting and its impact on reforecasting skill. 722 

All four LENS results using the same observational record length (43-year) confirm that the 723 

uncertainty in parameter estimation leads to XRO reforecasting correlation skill error of less than 724 

0.1 within 21 lead months (Supplementary Fig. 8b-e). 725 

Quantitative reforecasting experiments 726 

To rigorously dissect the interplay between ENSO and the different climate modes in the 727 

different ocean basins, we designed three sets of sensitivity experiments to mimic the experiment 728 

protocol of previous CGCM studies: 729 

a) Uninitialized experiments: We performed uninitialized mode-𝑗 experiments (𝑈𝑗) by setting the 730 

initial condition of 𝑇𝑗 to zero, while keeping everything else the same as in the control experiment. 731 
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The effect of the mode-𝑗 initial condition can be assessed as the difference between the control and 732 𝑈𝑗  (XRO-𝑈𝑗 ). To disentangle the role of a specific ocean basin’s initial conditions, we also 733 

conducted uninitialized experiments by setting the initial conditions of all modes to zero in the 734 

corresponding ocean basins. For example, the uninitialized extratropical Pacific Ocean experiment 735 

(referred to as 𝑈ExPO) is the same as the control experiment but with the initial conditions of the 736 

NPMM and SPMM set to zero. Similarly, 𝑈IO , 𝑈AOand 𝑈ExPO+IO+AO  denote the uninitialized 737 

Indian Ocean, uninitialized Atlantic Ocean, and uninitialized “all other basins” experiments, 738 

respectively. In addition, the uninitialized ENSO SSTA (𝑈Nino34) and WWV anomaly (𝑈WWV) 739 

experiments are same as XRO, except that the initial conditions of 𝑇ENSO and ℎ are set to zero, 740 

respectively. The uninitialized ENSO (𝑈ENSO ) experiment is same as XRO, but the initial 741 

conditions of both 𝑇ENSO and ℎ are set to zero. The difference in the climate system response 742 

between the control experiment and 𝑈𝑗 isolates the effect of mode-j/basin-j’s initialization.  743 

b) Decoupled experiments: We performed decoupled mode-𝑗 experiments (referred to 𝐷𝑗) – in 744 

which specific mode(s) are suppressed – by strongly increasing the diagonal damping rate of 745 

mode-𝑗 in the 𝑳 operator to an e-folding time scale of 5 days. This mimics the partially coupled 746 

experiments in fully coupled climate models that restore the ocean surface temperature toward 747 

prescribed conditions. The differences between the control experiment and 𝐷𝑗 isolate the role of 748 

mode- 𝑗  in the system. To disentangle the role of the different ocean basins, we conducted 749 

decoupled ocean basin experiments. For example, the decoupled extratropical Pacific Ocean 750 

experiment (referred to 𝐷ExPO) removes both the NPMM and SPMM from the system. Similarly, 751 

the decoupled Indian Ocean experiment (𝐷IO) removes the IOB, IOD and SIOD together from the 752 

system; the decoupled Atlantic Ocean experiment (𝐷AO) removes the TNA, ALT3, and SASD 753 

together from the system; and the decoupled all other modes experiment (𝐷ExPO+IO+AO) removes 754 
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all other modes except ENSO. We note that the 𝐷ExPO+IO+AO experiment is very close to the nRO 755 

in which the parameters were fitted separately. The difference between the control experiment and 756 𝐷𝑗  isolates the effect of mode-j/basin-j’s coupling. The sum of individual basin decoupled 757 

experiments exceeds the effect of decoupling all at once (Extended Data Fig. 3b,d,e), suggesting 758 

the presence of indirect pathways due to interactions among basins. 759 

c) Relaxation towards observations experiments: We performed relaxation ocean basin- 𝑗 760 

experiments (referred to 𝑅𝑗 ) by relaxing the SSTA indices towards the observations in the 761 

corresponding ocean basins with a time scale of 5 days. For example, the relaxation extratropical 762 

Pacific Ocean experiment (referred to as 𝑅ExPO) is the same as the control but with the NPMM 763 

and SPMM being relaxed to the observations. Similarly, 𝑅IO, 𝑅AO, and 𝑅ExPO+IO+AO denote the 764 

relaxation Indian Ocean, relaxation Atlantic Ocean, and relaxation all other basins except the 765 

equatorial Pacific experiments. The difference between the control experiment and 𝑅𝑗 highlights 766 

the effect from perfect “future” knowledge of basin-j. The relaxation towards observations 767 

experiments greatly overestimate ENSO forecast skill because of built in presumed perfect 768 

predictions for the stochastic excitations and ENSO’s impacts on the modes in these basins 769 

(magenta curves in Extended Data Fig. 3d,e). 770 

Losing memory experiments 771 

We carried out “losing memory” experiments by artificially adding additional damping to the 772 

original diagonal damping rates of all other non-ENSO modes in the 𝑳𝑴 operator (Extended Data 773 

Fig. 4). The prescribed damping rates are (5 day)-1, (30 day)-1, (90 day)-1, (180 day)-1, and (360 774 

day)-1, in the different experiments, ranging from strong damping (no memory) to less damping 775 

(long memory). 776 
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Deseasonalizing experiments.  777 

We carried out deseasonalizing experiments to illustrate the role of the operator parameters’ 778 

annual and semi-annual cycles in ENSO forecast skill (Supplementary Fig. 17). In the XROac=0 779 

model, we considered only the annual mean component (𝑳𝟎 and 𝑵𝟎 in Eqs. 3-4, each tendency 780 

equation has ~10 parameters, a total number of parameters of 103 = 10 × 10+ 3). 10–15 years 781 

of data is required to meet the rule of thumb for regression sample size (at least 10 subjects per 782 

predictor) 78. In the XROac=1 model, we considered both the annual mean and annual cycle 783 

components in the operator (𝑳𝟎, 𝑳𝟏𝒄 , 𝑳𝟏𝒔 , 𝑵𝟎, 𝑵𝟏𝒄  and 𝑵𝟏𝒔  in Eqs. 3-4, each tendency equation has 784 

~30 parameters, the total number of parameters is 309 = 3 × 100 + 3 × 3). At least 25 years of 785 

data is required 78. The difference between XRO and XROac=0 isolates the combined impacts of 786 

the annual and semi-annual cycles in the operator parameters, whereas the difference between 787 

XRO and XROac=1 isolates the impact of just the semi-annual cycle in the operator parameters. The 788 

parameters for the XROac=0, and XROac=1 experiments can be either refitted separately 789 

(Supplementary Fig. 17a-d) or taken from the XRO control experiment (Supplementary Fig. 17e-790 

h). Regardless which parameter estimation method is used, we find that the seasonal cycle is 791 

critically important in suppressing SPB for ENSO, while the semi-annual cycle is less important. 792 

Removing nonlinearity experiments 793 

We carried out “removing nonlinearity” experiments to illustrate the role of the XRO 794 

nonlinear operators in ENSO forecast skill (Supplementary Fig. 18). In the XROlinear experiment, 795 

we consider only linear operators and set 𝑵ENSO and 𝑵𝑴 to zero. In the XROlinearENSO experiment, 796 

we only consider linear operators and 𝑵𝑀, but set 𝑵ENSO to zero. In the XROlinearIOD experiment, 797 

we only consider linear operators and 𝑵ENSO, but set 𝑵𝑴 to zero. The difference between XRO 798 
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and XROlinear isolates the impact of the nonlinear operator parameters, whereas the difference 799 

between XRO and XROlinearENSO isolates the impact of the ENSO nonlinear operator parameters. 800 

The parameters for the XROlinear, the XROlinearENSO, and XROlinearIOD experiments can be either 801 

refitted separately (Supplementary Fig. 18a-d) or taken from the XRO control experiment 802 

(Supplementary Fig. 18e-h). Regardless which of method we use to obtain the parameters, we find 803 

that the ENSO nonlinear dynamics are critically important for ENSO forecast skill, especially for 804 

forecasting the amplitude of the peak phase and the fast transition from El Niño to La Niña. Further, 805 

we find that the impact of IOD’s nonlinearity on ENSO forecast skill is neglectable. 806 

Prediction skill metrics and significance tests 807 

The forecast skill is quantified using the anomaly correlation coefficient (ACC) and root mean 808 

square error (RMSE) metrics99. The ACC is computed as the Pearson correlation coefficient 809 

between the deterministic forecast (𝑓) and the observations (𝑜): 810 

𝐴𝐶𝐶 = 𝑐𝑜𝑣(𝑓, 𝑜)𝜎𝑓 ⋅ 𝜎𝑜 , (6) 811 

and the RMSE is defined as  812 

𝑅𝑀𝑆𝐸 = √(𝑓 − 𝑜)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, (7) 813 

where 𝜎𝑓 and 𝜎𝑜 are the standard deviations of the observations and forecast, respectively.  814 

The Fisher z‐transformation was used to test statistical significance of the ACC differences 815 

as follows: 816 
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𝑍 = 0.5 ln (1+𝑟11−𝑟1) − ln (1+𝑟21−𝑟2)√ 1𝑛1−3+ 1𝑛2−3 , (8) 817 

where 𝑟1 and 𝑟2 are the correlation coefficients, 𝑛1 and 𝑛2 are the sample sizes of the first and 818 

second group samples. The absolute value |𝑍| is then compared against a critical value from the t-819 

distribution for a two-tailed test. We rejected the null hypothesis that the two correlations are not 820 

significantly different at 90% confidence level if |𝑍| exceeds the critical value. 821 

The XRO reforecasting experiments based on CMIP model output 822 

We analyse monthly mean SST and 3-dimensional ocean temperature fields from 91 CMIP5 823 

and CMIP6 historical simulations (Supplementary Table 5). All model outputs were re-gridded to 824 

a common 1° × 1° horizontal resolution using bilinear interpolation. The monthly anomaly fields 825 

were calculated by removing the monthly climatology for the period of 1900-1999 and the 826 

quadratically detrended over the full 100-year period. 827 

Using the linear and nonlinear operators trained solely on CMIP model m output for 1900-828 

1999, we conducted retrospective 21 months forecasts with initial conditions from the observations 829 

for the period of January 1982– October 2023 (referred to XRO𝑚). To understand the impacts of 830 

model biases on ENSO dynamics and its coupling with other modes, we also conducted sensitivity 831 

experiments by correcting the different components of the linear and nonlinear operators with the 832 

observed parameters (See Extended Data Table 2). For example, the experiment XRO𝑳𝑚 is the same 833 

as XRO𝑚, but with the linear operator 𝑳 being replaced by the observed 𝑳 operator. The difference 834 XRO𝑳𝑚 − XRO𝑚  is used to isolate the effect of correcting model m’s linear dynamics biases. 835 

Similarly, the experiments XRO𝑳ENSO𝑚 , XRO𝑪1𝑚 , and  XRO𝑪2𝑚  were conducted to isolate the impacts 836 
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of model m’s biases on the internal linear ENSO dynamics, the coupling feedback to ENSO 837 

parameters, and ENSO teleconnection dynamics, respectively. 838 

The XRO2 ENSO types and pantropical SSTA forecasts 839 

The additional XRO model (referred to XRO2) was set up to predict different types of El 840 

Niño (i.e., ENSO diversity). We introduced two SSTA indices in the state vectors of ENSO, i.e., 841 

Niño3 index (SSTAs averaged over 150°–90°W, 5°S–5°N) and Niño4 index (SSTAs averaged over 842 

160°E–150°W, 5°S–5°N): 𝑿ENSO = [𝑇Nino3, 𝑇Nino4, ℎ]  instead of using Niño3.4. The quadratic 843 

nonlinearities 𝑏1𝑇Nino32 + 𝑏2𝑇Nino3ℎ are only incorporated into the SSTA equation of 𝑇Nino3, in 844 

presence of the strong asymmetry of Niño3 index whereas the less pronounced asymmetry of 845 

Niño4 index: 𝑵ENSO = [𝑏1𝑇Nino32 + 𝑏2𝑇Nino3ℎ, 0, 0]. All other terms are the same as the standard 846 

XRO model. Using the operator parameters estimated from the ORAS5 reanalysis for 1979-2022, 847 

we conducted similar retrospective 21-month forecasts for the period of January 1979–October 848 

2023. The hindcast skills of Niño3 and Niño4 indices are better than those from the NMME 849 

dynamical models and comparable to the AI model. The forecasts of Niño3 and Niño4 indices 850 

were used to define the El Niño types in terms of the EP-type, CP-type, and mixed-type, following 851 

100,8. The unified complex ENSO index (UCEI) is defined as 852 

𝑈𝐶𝐸𝐼 = (𝑁3 + 𝑁4) + (𝑁3 − 𝑁4)𝑖 = 𝑟𝑒𝜃𝑖 , (9) 853 

where 854 

𝑟 = √(𝑁3 +𝑁4)2 + (𝑁3 − 𝑁4)2, (10) 855 

and 856 
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𝜃 = { 
 arctan 𝑁3 −𝑁4𝑁3 +𝑁4 𝑤ℎ𝑒𝑛 𝑁3 +𝑁4 > 0arctan 𝑁3 − 𝑁4𝑁3 + 𝑁4 − 𝜋 𝑤ℎ𝑒𝑛 𝑁3 +𝑁4 < 0 (11) 857 

where 𝑁3  and 𝑁4  denote the Niño3 and Niño4 indices, respectively; The El Niño type is 858 

determined from 𝜃 as follows: 859 

{ 15° ≤ 𝜃 < 90° 𝐸𝑃 𝐸𝑙 𝑁𝑖𝑛𝑜−15° ≤ 𝜃 < 15° 𝑀𝑖𝑥𝑒𝑑 𝐸𝑙 𝑁𝑖𝑛𝑜−90° ≤ 𝜃 < −15° 𝐶𝑃 𝐸𝑙 𝑁𝑖𝑛𝑜 } . (12) 860 

We also conducted out-of-sample XRO2 ENSO type reforecasts by fitting on 1950-1990 with the 861 

multi-products ensemble mean indices and verifying on 1991-2022 (Supplementary Table 3).  862 

With the forecasted ten SSTA indices, the pantropical SSTA (30°S-30°N) at each grid point 863 

(SSTAj) can be predicted using the seasonal regression model: 864 

SSTAj = 𝑐0𝑿+ 𝐴𝑐𝑿cos𝜔𝑡 + 𝐴𝑠𝑿sin𝜔𝑡 + 𝐵𝑐𝑿cos 2𝜔𝑡 + 𝐵𝑠𝑿sin 2𝜔𝑡 , (13) 865 

where 𝑐0, 𝐴𝑐 , 𝐴𝑠 , 𝐵𝑐, and 𝐵𝑠 have ten coefficients associated with each SSTA index, respectively. 866 

We also conducted the cross-validated XRO2 forecasts and pantropical SSTA forecast by 867 

excluding 3-year data out and trained XRO2 operators and SSTA regression coefficients, then 868 

forecasts for each month during the years not included in the model fitting. 869 

Further details are provided in the Supplementary Information, relying on references101-113. 870 

Data availability 871 

Datasets used in this paper are freely available. Observational data: links in Supplementary Table 872 

2. NMME: https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/; 3D-Geoformer ENSO 873 

AI model forecast: http://msdc.qdio.ac.cn/data/metadata-special-874 

detail?id=1602252663859298305; CESM1 LENS: https://www.cesm.ucar.edu/community-875 

projects/lens/data-sets; CESM2 LENS: https://www.cesm.ucar.edu/community-876 

https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
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38 

projects/lens2/data-sets; MPI-ESM LENS: https://esgf-data.dkrz.de/projects/mpi-ge/; CMIP5 877 

outputs: https://esgf-node.llnl.gov/projects/cmip5/; and MIROC6 LENS and CMIP6 outputs: 878 

https://esgf-node.llnl.gov/projects/cmip6/. All the map figures (Fig. 1a,c,d, and Supplementary 879 

Figs. 1, 2, 14)  were generated using python Cartopy (https://zenodo.org/records/8216315). The 880 

source data for figures in the main text is available at https://doi.org/10.5281/zenodo.10951443. 881 

Code availability 882 

The XRO model code is deposited at https://doi.org/10.5281/zenodo.10681114. The code to 883 

calculate the predictive skill is available at https://github.com/pangeo-data/climpred. 884 
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 1051 

Extended Data Legends 1052 

Extended Data Fig. 1| Seasonally-modulated strength of mode interactions in observations 1053 

and CMIP5/6 models, as diagnosed from the linear part of the XRO model. (a) ENSO 1054 

recharge-oscillator coefficients, (b) Coupling processes denoted by the contribution of other modes 1055 

to the tendencies of ENSO SSTA and WWV anomalies, (c) ENSO-forced processes denoted by 1056 

the contribution of ENSO SSTA and WWV anomalies to the SSTA tendency of other modes, (d) 1057 

Interactions among NPMM, SPMM, IOB, IOD, SIOD, TNA, ATL3, and SASD. The coefficient 1058 𝐿𝑖𝑗 has been normalized by a factor of 𝜎𝑗/𝜎𝑖, where 𝜎𝑖 and 𝜎𝑗 are the monthly standard deviations 1059 

of the indices in row 𝑖 and column 𝑗, respectively, so that all coefficients are comparable, and the 1060 

units are year-1. The diagonal panels (blue frames) show the damping rate for each index. The 1061 

black curves with shading show the XRO fit to the ORAS5 reanalysis (with 10%-90% spread band 1062 

from the cross-validated fitting excluding 3-year data, see “Cross-validated reforecasts” in 1063 

Methods), and the red curves with shading show the ensemble mean with 10%-90% spread band 1064 

of the 91 CMIP5/6 historical simulations. ENSO can be strongly driven by climate modes in 1065 

extratropical Pacific, Indian Ocean, and Atlantic Ocean, which in some seasons are as important 1066 

as the dynamics internal to the equatorial Pacific. Most of the non-ENSO modes are more strongly 1067 

driven by ENSO (and their own damping) than by any of the other non-ENSO modes in other 1068 

basins. The climate models underestimate the strength of most of the mode interactions and miss 1069 

the seasonality.  1070 

Extended Data Fig. 2| Decadal change in the ENSO forecast correlation skill. a, The all-1071 

months correlation skill of the 3-month running mean Niño3.4 index verified on 1950-1970 for 1072 

the out-of-sample XRO fitted on 1973-2022 (red curve), out-of-sample nRO fitted on 1973-2022 1073 

(magenta curve), in-sample XRO fitted on 1950-1970 (black dashed curve) and in-sample XRO 1074 

fitted on the full-period 1950-2022 (blue dashed curve). The bottom inset shows the time series of 1075 

Niño3.4 index for out-of-sample training (blue) and verifying (orange) periods, respectively. b-c, 1076 
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same as a, but verifying on 1972-1992 and 2002-2022, respectively. The XRO is superior to the 1077 

nRO regardless the verifying periods and decadal changes of ENSO forecast skill. 1078 

Extended Data Fig. 3| Test of additivity (i.e., linearity) of the sensitivity experiments. a, 1079 

Regression slope and linear correlation coefficients for the Niño3.4 SSTA forecasts between the 1080 

effects of the uninitialized ExPO+IO+AO experiment (XRO − 𝑈ExPO+IO+AO) and the sum of the 1081 

effects of the individual uninitialized ExPO, IO, and AO experiments (3 ∗ XRO − 𝑈ExPO − 𝑈IO −1082 𝑈AO). b and c, same as a, but for decoupling experiments (XRO − 𝐷ExPO+IO+AO vs. 3 ∗ XRO −1083 𝐷ExPO −𝐷IO −𝐷AO) and relaxing towards observation experiments (XRO − 𝑅ExPO+IO+AO vs. 3 ∗1084 XRO − 𝑅ExPO − 𝑅IO − 𝑅AO), respectively. d, e the all-months correlation skill (d) and RMSE (e) 1085 

of the 3-month running mean Niño3.4 index, as a function of the forecast lead month in the control 1086 

experiment (black line) and sensitivity experiments: the uninitialized ExPO+IO+AO experiment 1087 

(solid red line) and sum of uninitialized ExPO, IO, and AO individually (dashed red line), the 1088 

decoupling ExPO+IO+AO experiment (solid blue line) and sum of decoupling ExPO, IO, and AO 1089 

individually (dashed blue line), and the relaxing ExPO+IO+AO to observation experiment (solid 1090 

magenta line) and sum of relaxing ExPO, IO, and AO to observation individually (dashed magenta 1091 

line). The individual basin uninitialized experiments are additive with the slopes and correlations 1092 

at all lead months being very close to 1. But the individual basin decoupling experiments and the 1093 

individual relaxation towards observations experiments are not additive, owing to a nonlinear 1094 

dependence on the operator parameters. The sum of the effects of decoupling ExPO, IO, and AO 1095 

individually is much larger than the effect of decoupling ExPO+IO+AO, suggesting that the 1096 

decoupling experiment framework overestimates the contribution of each basin, given the presence 1097 

of indirect pathways due to interactions among basins. 1098 

Extended Data Fig. 4| Influence of the memory effect outside the equatorial Pacific on ENSO 1099 

forecast skill. Shown are the all-months correlation skill (a) and RMSE (b) of the 3-month running 1100 

mean Niño3.4 index, as a function of the forecast lead month in the XRO forecast (black), the nRO 1101 

forecast (grey triangle), and the  “Losing memory” sensitivity experiments (colour curves) by 1102 

adding different damping rates (ranging from a strong damping rate of –(5 day)-1 implying no 1103 

memory to a weak damping rate of –(360 day)-1 implying longer memory) to the non-ENSO modes 1104 

(See “Losing memory experiments” in Methods). The initial condition memory effect of the 1105 

climate modes outside equatorial Pacific extends the skill of ENSO forecasts. 1106 
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Extended Data Fig. 5| Contribution of each climate mode’s initialization to ENSO correlation 1107 

skill. Shown is the forecast skill difference of the Niño3.4 SSTA index, as a function of initial time 1108 

and target month, between the control and uninitialized climate mode sensitivity experiments for 1109 

the NPMM, SPMM, IOB, IOD, SIOD, TNA, ATL3, and SASD, respectively. The contributions 1110 

of the IOD, NPMM, and TNA dominate the ENSO forecast skill improvement. 1111 

Extended Data Fig. 6| Impacts of climate-mode initialization to ENSO forecasts. Shown is the 1112 

difference of Niño3.4 SSTA (shading) and WWV anomalies (contours with interval of 0.6 m, 1113 

positive in red and negative in black dashed, zero omitted), as a function of forecast lead and target 1114 

time, between control and uninitialized climate mode experiments for NPMM, SPMM, IOB, IOD, 1115 

SIOD, TNA, ATL3, and SASD, respectively. Vertical reference dashed lines denote December of 1116 

El Niño (red) and La Niña (blue) years, respectively. The normalized time series of each climate 1117 

mode SSTA index is indicated in the bottom axis; the black arrows indicate the flow of forecast 1118 

integration started from the selected time in the bottom. The XRO sensitivity experiments quantify 1119 

how the initial states of key climate modes affect subsequent ENSO events. 1120 

Extended Data Fig. 7| Impacts on ENSO forecast skill of correcting biases in the XRO 1121 

parameters fitted to individual CMIP simulations. Shown is the difference of the all-months 1122 

correlation skill for the Niño3.4 SSTA index, between the corrected-parameter forecast experiment 1123 

and the XROm experiment trained solely on CMIP model outputs. (a) Effect of correcting linear 1124 

operators (XRO𝑳𝑚- XROm), (b) effect of correcting ENSO internal linear dynamics (XRO𝑳ENSO𝑚 - 1125 

XROm), (c) effect of correcting remote climate mode feedbacks onto ENSO (XRO𝑪1𝑚 - XROm), and 1126 

(d) effect of correcting ENSO teleconnections to remote climate modes (XRO𝑪2𝑚 - XROm). The 1127 

model is sorted by the averaged correlation skill of the XROm forecast at 6-15 lead months. 1128 

Reforecasts using the XRO trained on global climate model output show that correcting CGCMs’ 1129 

dynamical biases in ENSO and climate mode interactions lead to more skilful ENSO forecasts. 1130 

Most important is correcting ENSO biases (which improves skill at longest lead-times), followed 1131 

by correcting the remote climate mode impact on ENSO (which improves skill at intermediate 1132 

leads). Less skill is gained by improving ENSO’s teleconnection to the remote modes. 1133 

Extended Data Fig. 8| Correlation forecast skill for the Indian Ocean Dipole, using the XRO 1134 

trained with climate model outputs. (a) The correlation skill of the IOD index in Sep-Oct-Nov 1135 

(SON) as a function of forecast lead, in the XROm trained solely on 91 individual CMIP model 1136 
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outputs (grey curves), the XRO trained on observations (red curve), and the original (not XRO) 1137 

multi-model mean of the ensemble means of the forecasts from the NMME models (black). (b) the 1138 

ensemble mean and 10%-90% spread band of the changes in correlation skill for the IOD index, 1139 

obtained by correcting the ENSO internal linear dynamics (XRO𝑳ENSO𝑚 - XROm, red), or the remote-1140 

mode feedbacks onto ENSO (XRO𝑪1𝑚 - XROm, magenta), or the ENSO teleconnections to remote 1141 

modes (XRO𝑪2𝑚 - XROm, blue). Reforecasts using the XRO trained on climate model output show 1142 

that reducing CGCM biases in the dynamics of ENSO’s climate mode interactions improves IOD 1143 

forecasts. 1144 

Extended Data Table 1| Details of the XRO forecasting experiments based on observations 1145 

(1979-2022). 1146 

Extended Data Table 2| Details of the XRO forecasting experiments using global climate model 1147 

output as training data. 1148 

 1149 
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Extended Data Tables 1150 

Extended Data Table 1. Details of the XRO forecasting experiments based on observations (1979-2022). 1151 

Experiment Groups Experiment ID Description 

Control experiments (2) 
XRO The reference retrospective forecast using the XRO model as formulated in Eq. (1) nRO The retrospective forecast using the nonlinear RO model as formulated in Eq. (5) 

Cross-validated experiments 
(2) 

Cross-validated XRO 
As in XRO, but retrospective forecasts based on independent data by employing a 

jackknife subsampling approach 

Cross-validated nRO 
As in nRO, but retrospective forecasts based on independent data by employing a 

jackknife subsampling approach 

Uninitialized experiments (15) 

𝑈ExPO+IO+AO Same as XRO, but initial conditions of all other modes set to zero 𝑈ExPO Same as XRO, but initial conditions of the NPMM and SPMM set to zero 𝑈IO Same as XRO, but initial conditions of the IOB, IOD, and SIOD set to zero 𝑈AO Same as XRO, but initial conditions of the TNA, ATL3, and SASD set to zero 𝑈NPMM, 𝑈SPMM, 𝑈IOB, 𝑈IOD, 𝑈SIOD, 𝑈TNA, 𝑈ATL3, and 𝑈SASD 

Same as XRO, but initial condition of each climate mode set to zero, respectively 

𝑈Nino34  Same as XRO, but initial condition of 𝑇ENSO set to zero 𝑈WWV Same as XRO, but initial condition of ℎ set to zero 𝑈ENSO Same as XRO, but initial conditions of 𝑇ENSO and ℎ set to zero 

Decoupled experiments (12) 

𝐷ExPO+IO+AO Same as XRO, but decoupling all other modes  𝐷ExPO Same as XRO, but decoupling the NPMM and SPMM  𝐷IO Same as XRO, but decoupling the IOB, IOD, and SIOD  
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𝐷AO Same as XRO, but decoupling the TNA, ATL3, and SASD  𝐷NPMM, 𝐷SPMM , 𝐷IOB, 𝐷IOD, 𝐷SIOD, 𝐷TNA, 𝐷ATL3, and 𝐷SASD 

Same as XRO, but decoupling each climate mode, respectively 

Relaxation towards 
observations experiments (4) 

𝑅ExPO+IO+AO 
Same as XRO, but relaxing the SSTA indices of all other modes to the observed 

values 𝑅ExPO 
Same as XRO, but relaxing the SSTA indices of NPMM and SPMM to the 

observed values 𝑅IO 
Same as XRO, but relaxing the SSTA indices of IOB, IOD, and SIOD to the 

observed values 𝑅AO 
Same as XRO, but relaxing the SSTA indices of TNA, ATL3, and SASD to the 

observed values 

Losing memory experiments 
(5) 

𝐿𝑀ExPO+IO+AO 
Same as XRO, but artificially adding additional damping to the original diagonal 

damping rates of all other modes in the 𝑳𝑴 operator 

Deseasonalizing experiments 
(2) 

XROac=0  Same as XRO, but only the annual mean component of the operator parameters 

(𝑳𝟎 and 𝑵𝟎) considered XROac=1 
Same as XRO, but only the annual mean and annual cycle components of the 

operator parameters (𝑳𝟎, 𝑳𝟏𝒄 , 𝑳𝟏𝒔 , 𝑵𝟎, 𝑵𝟏𝒄  and 𝑵𝟏𝒔 ) considered 

Removing nonlinearity 

experiments (3) 

XROlinear Same as XRO, but 𝑵ENSO and 𝑵𝑴 set to zero XROlinearENSO Same as XRO, but 𝑵ENSO set to zero XROlinearIOD Same as XRO, but 𝑵𝑴 set to zero 
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Extended Data Table 2. Details of the XRO forecasting experiments using global climate model output as training data. 1154 

Experiment ID Description 𝐗𝐑𝐎𝐦 The retrospective forecast using the XRO model trained solely on individual model output 

𝐗𝐑𝐎𝐋𝐦 

 

 

Same as XROm, but with the linear operator L being replaced by the L operator determined from the observations, the difference XROLm − XROm isolates the effect of correcting model m’s linear dynamics biases 

 𝐗𝐑𝐎𝐋𝐄𝐍𝐒𝐎𝐦  

 

Same as XROm, but with the linear operator submatrix LENSO being replaced by the observed LENSO, the difference XROLENSOm −XROm isolates the effect of correcting biases in model m’s linear ENSO dynamics 

 𝐗𝐑𝐎𝑪𝟏𝐦  

 

Same as XROm, but with the linear operator submatrix 𝐶1 being replaced by the observed 𝐶1, the difference XRO𝐶1m − XROm 

isolates the effect of correcting biases in model m’s coupling feedback of other modes to ENSO 

 𝐗𝐑𝐎𝑪𝟐𝐦  

 

Same as XROm, but with the linear operator submatrix 𝐶2 being replaced by the observed 𝐶2, the difference XRO𝐶2m − XROm 

isolates the effect of correcting biases model m’s ENSO teleconnection dynamics 
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