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Summary Paragraph

The El Nifio-Southern Oscillation (ENSO) provides most of the global seasonal climate
forecast skill'?, yet, quantifying the sources of skilful predictions is a long-standing
challenge*’. Different sources of predictability affect ENSO evolution, leading to distinct
global impacts. Artificial Intelligence (AI) forecasts offer promising advancements but

8-10_ limiting our

linking their skill to specific physical processes is not yet possible
understanding of the dynamics underpinning the advancements. Here we show that an
extended nonlinear recharge oscillator (XRO) model exhibits skilful ENSO forecasts at lead-
times up to 16-18 months, better than global climate models and comparable to the most
skilful AI forecasts. The XRO parsimoniously incorporates the core ENSO dynamics and
ENSO’s seasonally modulated interactions with other modes of variability in the global
oceans. The intrinsic enhancement of ENSO’s long-range forecast skill is traceable to the
initial conditions of other climate modes via their memory and interactions with ENSO and
is quantifiable in terms of these modes’ contributions to ENSO amplitude. Reforecasts using
the XRO trained on climate model output show that reduced biases in both model ENSO
dynamics and in climate mode interactions can lead to more skilful ENSO forecasts. The

XRO framework's holistic treatment of ENSO's global multi-timescale interactions

highlights promising targets for improving ENSO simulations and forecasts.

Main

The El Nifo-Southern Oscillation (ENSO) exerts global environmental and socioeconomic
impacts via teleconnections'—. Since the first successful prediction of El Nifio in 1986 (ref*),
decades of progress on the understanding and modelling of ENSO has improved prediction skill>-

7. However, skilful prediction of ENSO at a lead-time longer than a year remains a challenge.
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While ENSO originates from coupled ocean-atmosphere interactions in the tropical Pacific,
recent studies highlight that interactions with other ocean basins could potentially improve ENSO
prediction!!. For instance, many other climate modes have been shown to interact with ENSO (Fig.
1a), including the North and South Pacific Meridional Modes (NPMM and SPMM)'213; the Indian
Ocean Basin (IOB) mode!4, the Indian Ocean Dipole (I0D) mode'3, and the Southern Indian
Ocean Dipole (SIOD) mode'® in the Indian Ocean; as well as Tropical North Atlantic (TNA)
variability!’, the Atlantic Nifio (ATL3)'®, and the South Atlantic Subtropical Dipole (SASD)
mode'® in the Atlantic Ocean. Although multiple previous studies designed forecast experiments

to illustrate the roles of other ocean basins in ENSO predictability, using simple coupled

20,21,14 )22—26

models , atmosphere-ocean coupled general circulation models (CGCMs or linear
inverse models?’8, it remains a challenge quantifying the relative contributions of other ocean
basins to ENSO predictability. The employed CGCMs typically exhibit pronounced biases in
simulating both the climate mean state and ENSO dynamics, thus hindering skill in predicting
ENSO and complicating quantification of the other ocean basins impact on ENSO predictability.
Current linear inverse models are by construction not able to fully capture ENSO’s nonlinear

dynamics and seasonality?”-?®. Quantifying the sources of skilful predictions from these specific

physical processes has been elusive!!:13:17:29:30,

Different sources of ENSO predictability can lead to substantial event-to-event differences in
ENSO evolution and associated global impacts. For example, while both the 1997/98 and 2015/16
extreme El Nifo events had similar amplitudes of Nifio3.4 SST anomalies (SSTAs), they had
distinct precursor patterns (Fig. 1b). The 1997/98 event exhibited strong preconditioning via
recharged warm water volume (WWV) in the equatorial Pacific, large SST anomaly precursors in

the Indian Ocean (including a negative IOD during 1996 September-November (SON)), but only
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weak SST anomalies in the extratropical Pacific. In contrast, the 2015/16 event was characterized
by a weaker build-up of WWYV, less pronounced precursor SST anomalies in the Indian Ocean, and
instead large amplitude NPMM warming in 2015 March-April-May (MAM). The Atlantic Ocean
SST signals are largely similar for the two events, except that the MAM TNA was anomalously
warm in 1997 but cold in 2015. In turn, these two events evolved differently in the various basins
(Supplementary Fig. 1), which lead to distinct global impacts (Fig. 1c,d, Supplementary Fig. 2,
ref3132). These two different evolutions and impacts, affected by varied precursor patterns,
underscore the need to quantify the sources of prediction skill and their role in the manifestation

of different SST patterns more accurately.

Recent advances have demonstrated the value of Al in predicting ENSO with skilful forecasts
at long lead-time of 18-24 months®*'?. Despite emerging explainable Al methodologies'’, linking
the forecast skill of the AI model to specific physical processes is not yet possible, limiting our
understanding of the dynamics and physical robustness underpinning the enhanced Al skill. Here
we develop a low-order extended nonlinear Recharge Oscillator (XRO) model — which couples
the ENSO recharge oscillator with autoregressive model representations for the other modes (see
“Extended Nonlinear Recharge-Oscillator Model (XRO)” in Methods) — to both predict ENSO
events and quantify the various sources of ENSO predictability from climate mode interactions.
We find that our model provides skilful and, most importantly, explainable forecasts at lead-times
up to 16-18 months, better than global climate models and comparable to the most skilful Al ENSO

forecast model.

Efficacy boosted by climate interactions
We evaluate the XRO in simulating ENSO through a 43,000 yearlong stochastically forced
simulation (See “Stochastically forced XRO simulations” in Methods) with parameter estimates

4
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derived from 1979-2022 observations (black curves in Extended Data Fig. 1). The XRO accurately
simulates the fundamental observed characteristics of ENSO including its seasonal
synchronization, Nifo3.4 positive skewness, its interannual spectral peak, the 6-9 months lead of
WWV over ENSO SST, its irregular interannual oscillations, and the spring persistence barrier
(Fig. 2a-d, Supplementary Text | and Figs. 3-4). The XRO also accurately reproduces the observed
seasonal characteristics of the other climate modes including their seasonal synchronizations and
autocorrelations (Supplementary Figs. 5-6). In addition, the XRO realistically simulates the
observed lead-lag relationships between ENSO and all the other climate modes with the range of
XRO realization cross-correlations encompassing the observations (Fig. 2e-1). Simulating these

observed relationships is a major challenge for climate models (Supplementary Fig. 7).

Next, we perform out-of-sample XRO reforecasts by fitting the model for 1950-1999 (50
years) and verifying it independently for the 2002-2022 period (See “Out-of-sample reforecasts”
in Methods). The correlation skills of the Nifio3.4 reforecasts are compared with a nonlinear RO
model (nRO), the real-time International Research Institute for Climate and Society (IRI)
operational models, and the most skilful AT ENSO forecast model®® (Fig. 2m). Interestingly, the
skill of the simple nRO is comparable with the ensemble mean of the IRI statistical models. With
mode interactions considered, the XRO outperforms the ensemble mean of the IRI dynamical
models at long lead-time (>9 months) with skill scores comparable to the Al model. We also test
the model by verifying the early period (1950-1970) and the middle period (1972-1992)
independently. The XRO outperforms the nRO regardless which of the verification periods is used
to assess the skill (Extended Data Fig. 2), suggesting the importance of mode interactions for

ENSO forecast skill regardless of the intrinsic decadal changes in ENSO predictability?3-4,
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To get sufficient sample sizes of ENSO events, we next focus on the satellite era (1979-2022)
and perform in-sample control reforecasts using the XRO and nRO (denoted as XRO and nRO in
the figures, respectively, see “Control XRO and nRO reforecasts” in Methods). The nRO ranks in
the middle of the skill range for the existing state-of-the-art dynamical prediction systems (Fig.
2n). The XRO systematically outperforms the individual dynamical models and multi-model
ensemble mean. The correlation skill of XRO is still above 0.5 at a lead-time of 18 months, which
is again comparable to the most skilful Al model (Fig. 2n). We also employ two additional
approaches to confirm the robustness of the XRO parameter fitting and reforecasting performance
during 1979-2022 (See “Cross-validated reforecasts” and “Large ensemble simulations and
perfect model reforecasting experiments” in Methods, Supplementary Fig. 8). First, the XRO
cross-validated by sequentially leaving n-year data out still provides skilful prediction of Nifio3.4
SSTA up to 17 months in advance and is insensitive to the exclusion of a range between 2 to 7
years of data (Supplementary Fig. 8a). Second, the XRO was repeatedly trained using each
member of large ensemble CGCM simulations (LENS) and forecasted on the same member
(“Same-Member” experiment) and an independent realization (“Cross-Member” experiment),
respectively. All four LENS models’ perfect experiments using the same observational record
length (43-year) demonstrate the uncertainty in parameter estimation leads to XRO reforecasting

correlation skill error of less than 0.1 within 21 lead months (Supplementary Fig. 8b-d).

We further assess the seasonality of the Nifio3.4 forecast correlation skill during 1979-2022
in Fig. 20-p and Supplementary Fig. 9. Like most of the dynamical models, the nRO exhibits a
pronounced spring predictability barrier (SPB) in May-June-July, when the forecast skill decreases
rapidly (vertical blue lines in Fig. 20). The SPB is much less pronounced in the XRO model, which

maintains a 0.5 correlation skill up to 16 months for all different initial times (Fig. 2p). The superior
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efficacy of XRO in ENSO forecasting is further illustrated by the root mean square error metric

(Supplementary Fig. 10).

Sources outside the tropical Pacific

The XRO formulation allows us to explicitly isolate and quantify the roles of different mode
interactions in ENSO’s dynamical behaviour and predictability. Three previous approaches have
been employed to assess the impact of climate variability in various ocean basins on ENSO
predictability, using CGCMs, intermediate complexity models, and/or conceptual models. They
include: (i) partial initialization experiments, which set the ocean initial conditions for a specific
basin to the model climatology, while using the observed initial conditions everywhere else?'-8;
(1) partially coupled experiments, which apply strong SST restoring toward the model climatology
in a specific region during the model integration, while keeping the atmosphere and ocean fully
coupled elsewhere???428; (iii) relaxing towards observations experiments, in which model SSTAs
are strongly nudged towards observations in a specific region, while elsewhere the model is fully
coupled?>?6. We apply these strategies to our XRO model in corresponding sets of ENSO
reforecasting sensitivity experiments: (i) uninitialized experiments (referred to as U;), (i)
decoupled experiments (D;), and (iii) relaxation towards observations experiments (R;), (see
“Quantitative reforecasting experiments” in Methods and Extended Data Table 1). We further
investigate the total contribution of a// the modes in each ocean basin to ENSO’s predictability by
grouping modes together: the extratropical Pacific Ocean (ExPO) includes NPMM and SPMM;
the Indian Ocean (IO) IOB, IOD, and SIOD; and the Atlantic Ocean (AO) TNA, ATL3, and SASD.

The ExPO+IO+AO experiments demonstrate the combined effects of all the non-ENSO modes.

All the sensitivity experiments qualitatively indicate that coupling information from the ExPO,

I0, and AO basins enhances ENSO forecast skill (Fig. 3a), consistent with previous

7
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findings?>242628.35 However, only the uninitialized experiment framework is a suitable approach
to quantify the nearly additive relative contributions of each basin to ENSO forecast skill
(Extended Data Fig. 3a.d,e) without artificially overestimating the contribution of climate
variability in other basins to ENSO predictability (Extended Data Fig. 3b,c.d,e). Therefore,
hereafter we use the uninitialized experiment framework to quantify the impact of each individual

basin’s or mode’s initial condition on subsequent ENSO forecast skill.

Allowing for climate mode interactions enhances ENSO forecast skill, and significantly
weakens the SPB with an improvement of correlation skill up to 0.2 (P<0.08, Fig. 3b). The
enhancement of ENSO forecast skill from climate mode interactions is primarily through the initial
condition memory of the different climate modes, demonstrated by the large difference between
control and the uninitialized ExPO+I0+AQO experiment (Fig. 3¢, Supplementary Fig. 11a). The
initial states of the other modes can persist for a few months and effectively impact ENSO in
specific seasons. In contrast, as evidenced by the minor differences between uninitialized
ExPO+I0O+AO experiment and decoupled ExPO+IO+AO experiment, the coupled feedbacks with
these modes induced by ENSO’s initial state only slightly reinforce and accelerate phase-transition
of ENSO events (Supplementary Fig. 11b). This results in an increase in forecast skill during the
ENSO transition phase (Jun"'-Sep*! targets, Fig. 3d) but a decrease in forecast skill during the
ENSO peak phases (Nov*!-Mar*! targets, Fig. 3d). Additional reforecasting experiments (See
“Losing memory experiments” in Methods, Extended Data Fig. 4) confirm that gradually
preserving the initial condition memory of climate modes outside the equatorial Pacific

incrementally improves ENSO forecast skill from that of the nRO to that of the XRO.

We further illuminate the roles of individual basins in ENSO predictability by comparing the

difference between the control and uninitialized experiments for the ExPO, 10, and AO basin
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experiments (Figs. 3e-g). The contributions of each basin have strong seasonality. For instance,
the effect of ExPO initialization is most pronounced when forecasts start from November-June,
and target December-March when the ENSO signal is large (Fig. 3e). This effect is dominated by
the NPMM initialization, whereas the SPMM initialization is less impactful (Extended Data Fig.
5a-b). In contrast, the effect of IO initialization is most pronounced when forecasts start from July-
November, the time of the year when the IOD develops and peaks (Fig. 3f). The 10 effect is
dominated by the IOD, with a secondary contribution from the IOB, and the SIOD playing only a
minor role (Extended Data Fig. 5c-¢). This result is in contrast with the previous finding based on
the decoupled linear inverse model experiments'* which suggested that the IOB plays a more
significant role than the IOD in weakening the ENSO SPB. The discrepancy may stem from the
lack of seasonality and nonlinearity in their model, along with potential overestimations arising
from their decoupled model experiment strategy. The AO also results in a weakening of the ENSO
SPB when forecasts are initialized from December-April (Fig. 3g), with major contributions from
the TNA and SASD, while Atlantic Nifio initialization has a negligible effect (Extended Data Fig.
5f-h). These contributions of mode interactions to ENSO forecast skill are further supported by the

root mean square error metric (Supplementary Fig. 12).

ENSO intensification from remote sources

Next, we quantify the roles of mode interactions on the individual ENSO event reforecasts,
illustrated by the time series of predicted Nifio3.4 SSTAs for the XRO, decoupled ExPO+IO+AO
(Dexpo+10+A0), and uninitialized EXPO+I0O+AO (Ugxpo+10+a0) €Xperiments at lead-time of 0-21
months (Fig. 4a-c). The zero lead-time refers to the observed values. The Niflo3.4 forecasts in the
Ugxpro+10+a0 €Xperiment closely resemble those of the Dgypo 410440 €Xperiment, again indicating

that the skill improvement in the control XRO arises from the memory of the other climate mode



210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

initializations. These two sensitivity reforecasts can predict the El Nifio and La Nifia event
occurrences at lead-time of 3-9 months and usually underestimate the amplitude of Nifio3.4 SSTAs.
The XRO systematically outperforms the uninitialized/decoupled ExPO+IO+AO experiments
with more accurate amplitude prediction of Nifio3.4 SSTAs and extended skilful prediction of El
Nifio and La Nifa event occurrences at longer lead-time of 6-18 months (Fig. 4a). For instance,
the 1986/1987 El Nifio event could be predicted 18 months in advance with XRO in our hindcast,

as opposed to only 6 months in advance with uninitialized/decoupled ExPO+I0+AO experiments.

To better understand the influence of a specific climate mode on individual ENSO events, we
examined the differences in ENSO SSTAs and WWYV anomalies between control and uninitialized
experiments for the 1997/98 El Nifo and 1998/99/00 triple La Nifa episodes (Fig. 4d-k) as well
as for the full period (Extended Data Fig. 6). The ENSO forecast differences due to the
initialization of other modes are pronounced when those SSTAs have sufficiently large amplitudes
and during the season in which their interaction with ENSO is relatively strong. These effects of
the non-ENSO modes usually last longer than their own SSTA persistence, indicating the activation
of ENSO coupled recharge-discharge feedbacks as shown by the ENSO SSTA and WWV

anomalies alternating with a few months lag.

In the extratropical Pacific, positive SSTAs for both the NPMM and SPMM in boreal spring
can enhance ENSO SST warming 6-9 months later (Fig. 4d,h). However, the underlying
mechanisms differ for the two different hemispheres. The NPMM warming leads to recharged
WWYV anomalies and subsequent ENSO SST warming, highlighting the important role of the trade
wind charging mechanism?¢. In contrast, the SPMM warming directly generates SST warming on
the equator, followed by sequential WWYV discharge, which aligns with the finding that ENSO is

thermally driven by the SPMM?37(Extended Data Fig. 6a-b).

10
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We also find that coupling with the NPMM tends to favour multi-year ENSO events, such as
the 1998/99/00 La Nina. The first year La Nifia in 1998/99 set the stage for a strong spring NPMM
cooling in 1999 (consistent with the strong nearly-instantaneous feedback mechanism?3®), which in
turn reinforced WWYV discharge and colder SSTAs (by ~0.3 °C) in the second year. This strong
WWYV discharged state persisted and re-intensified into the third year, causing SSTA to decrease
(~0.4 °C) in the winter of the third year (Fig. 4d). Similar patterns are evident in multi-year La
Nifia events in 2007/08, 2010/11, and 2020/21/22 (blue shadings in Extended Data Fig. 6a). We
emphasize that this contribution is also evident for the opposite ENSO phase, as seen in multi-year
El Nifio events in 1986/87, 2014/15, and 2018/19 (Extended Data Fig. 6a). These results support
the hypothesis that the coupling between NPMM and ENSO favours the existence of multi-year

ENSO events3*4!,

In the Indian Ocean, the 1996 boreal autumn negative IOD event was found to induce a
~0.4 °C Nino3.4 SSTA increase ~15 months later, thus contributing to the 1997/98 super El Nifio
(Fig. 4f). Conversely, the 1997 boreal autumn positive IOD event led to a ~0.5 °C Nifio3.4 SSTA
decrease ~15 months later, thus playing a role in the 1998/99 La Nina (Fig. 4f). This aligns with
previous finding!> that negative IOD event favours the build-up of WWYV (i.e., recharge) and
contributes to the development of El Nifio in the following year via the Bjerknes feedback. The
SIOD mode, characterized by an SST east-west dipole over the southern IO, tends to induce
~0.2 °C Nifo3.4 SSTA increase/decrease ~12-16 months later, often offsetting the IOD’s effect
(Fig. 4g). The 10B, although largely forced by ENSO, helps to accelerate the phase-transition of
ENSO events*2. For example, the [OB warming in 1998 contributed to a ~0.2 °C Nifio3.4 SSTA

decrease during the 1998/99 La Niia, about half the magnitude of the IOD-induced change (Fig.

11
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4e). These results corroborate the findings in Fig. 3e that the Indian Ocean’s influence on ENSO

predictability is predominantly governed by the IOD.

In the Atlantic Ocean, the TNA warming favours Nifio3.4 SSTA decrease 6-12 months later
by about ~0.3 °C (Fig. 4i), consistent with a previous finding!”. The 1997 boreal summer Atlantic
Nifia (ATL3 cold anomalies) was found to weakly favour Nifio3.4 SSTA increase 6-12 months
later by about ~0.15 °C (Fig. 4j). The positive phase of the SASD in 1997 contributed to a ~0.3 °C
Nifio3.4 SSTA increase 9-12 months later (Fig. 4k), in line with previous findings'®. The Atlantic

Ocean’s influence is predominantly governed by the TNA and secondly by the SASD and ATL3.

For the 20/21/22 triple La Nifia events, the strong positive IOD in 2019 autumn is among the
most important contributors to the first year SSTA cooling (Extended Data Fig. 6d), and the
NPMM cooling is among the most important sources in amplifying the second year SSTA decrease
(Extended Data Fig. 6a), consistent with previous findings*#4. The ongoing 2023/2024 EI Nifio
occurrence can be predicted up to 18 months in advance in the decoupled ExPO+IO+AO
experiment (Fig. 4b), largely due to the highly recharged WWYV state caused by the preceding
“triple-dip” La Nifia events. The XRO refines the amplitude prediction for the 2023/2024 El Nifio
at longer lead-time of 9-18 months (Fig. 4a), with positive contributions from the preceding IOD

and 10B conditions (Extended Data Fig. 6¢,d).

Composites of the uninitialized experiments for the peak phase of El Nifio/La Nifia years (Fig.
41) support that climate mode interactions contribute to the observed Nifio3.4 SSTA anomalies, in
addition to the generally stronger contribution from the equatorial Pacific recharge/discharge
dynamics intrinsic to ENSO. The additional contributions are mainly from the NPMM, IOD, and
TNA with large inter-event spread, with other modes playing secondary roles. The impacts are

asymmetric (i.e., different impacts for El Nifio and La Nifia events) from some modes such as the

12
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I0B, SPMM, and SASD. The impact from the IOB on La Nifia SSTA is much more pronounced

than on El Nifio SSTA, consistent with previous findings'*.

Predictability reduced by model biases

Next, we turn to the impacts of biases in comprehensive climate models on ENSO forecast
skill. We conducted additional XRO model forecast experiments by using the operator parameters
trained using the 91 historical simulation outputs from the Coupled Model Intercomparison Project
(CMIP) phase 5 and 6 (see “7The XRO reforecasting experiments based on CMIP model outputs”
in Methods, Extended Data Table 2, red curves in Extended Data Fig. 1). Figure 5a reveals that the
forecast skill of XRO™, when trained solely on each CMIP CGCM, shows a wide inter-CGCM
spread at lead-time from 7 to 17 months. Importantly, the forecast skill when the model is trained
on CMIP output is consistently lower than for the model trained on observational data (Extended
Data Fig. 7a). This suggests that biases in all climate models reduce the ability of these CGCMs

to forecast ENSO correctly.

We modified each XRO™ to remove these dynamical biases, by individually substituting the
parameters obtained from the observations into three key components of the model: ENSO’s
internal dynamics (Lgnso), the remote climate mode feedbacks onto ENSO (C;), and the ENSO
teleconnections to the remote modes (C,). Correcting the ENSO dynamics (Lgysg) generally
enhances forecast skill at all lead-times (red curve in Fig. 5b, Extended Data Fig. 7b). This
indicates that the way ENSO’s core dynamics are biased in climate models is a major factor in
lower ENSO forecast skill. Correcting the remote climate mode feedbacks onto ENSO (C;) also
improves the ENSO forecasts for lead-time up to 16 months (magenta curve in Fig. 5b, Extended
Data Fig. 7¢). Thus, mode coupling is critical for ENSO development, as another source of bias.
Correcting the ENSO teleconnections (C,) yields reduced ENSO skill (blue curve in Fig. 5b,

13
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Extended Data Fig. 7d), but greatly improves the forecast skill for other modes, such as the IOD
(Extended Data Fig. 8). These results suggest that reduced biases in model ENSO dynamics and

in climate mode interactions lead to more skilful ENSO forecasts.

Pantropical SST predictability

Lastly, we demonstrate that ENSO-climate mode interactions also enhance the SST
predictability of other climate modes. For instance, the lead-time of skilful IOB forecast extends
from 5 months in the uninitialized ENSO experiment to 19 months in the XRO control experiment
(Supplementary Fig. 13c,j). The all-month IOD forecast skill extends to 5 months (the SON
forecast to 8 months), supporting earlier findings that long lead IOD predictability arises from
ENSO and is impacted by the signal-to-noise ratio*. The improvement is also evident for SSTA
modes in the Atlantic Ocean (about 1 month, Supplementary Fig. 13f,g h). Interestingly, there is
no skill improvement to NPMM and SPMM, possibly because their initial state already includes

ENSO information given the strong nearly-instantaneous feedback with ENSO (Fig. 2e.i, ref 3%).

In addition to ENSO amplitude, our XRO model can be expanded to also consider ENSO
spatiotemporal diversity by using two ENSO SST indices (e.g. the Nifio3 and Nifio4 indices, as in
the model XRO2, see “The XRO2 ENSO types and pantropical SSTA forecasts” in Methods). The
XRO2 is able successfully predict the EP-type characteristic of the 1997/98 El Nifio, and the
mixed-type characteristic of the 2015/16 El Nifio, up to 9 months in advance (Supplementary Table
3). In contrast, the NMME dynamical models fail to predict the correct type for the 1997/98 event,
possibly due to long-standing model biases of westward-displaced ENSO SST anomalies*®. The
successful prediction of ENSO spatial diversity in the XRO has important implications for
predicting global climate impacts that differ strongly for contrasting ENSO SSTA patterns.

Furthermore, the skill of forecasted pantropical SSTA at 9-month lead using the regression model

14
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of ten forecasted SST indices outperforms the operational dynamical models in most regions
except the Caribbean Sea (Supplementary Fig. 14). The successful forecasts of ENSO types and
pantropical SSTA within the XRO framework highlight the essential importance of accurately

representing ENSO-climate mode interactions in climate models for effective seasonal forecasting.

Discussion

The XRO model constitutes a parsimonious representation of the climate system in a reduced
variable and parameter space that still captures the essential dynamics of interconnected global
climate variability. We emphasize that the improvement of ENSO predictability in the XRO
relative to that in the nRO ultimately all resides in the initial condition memory of the other climate
modes, which is propagated forward by the unbiased operator. Thus, to improve ENSO predictions,
climate models must correctly capture the recharge oscillator dynamics of ENSO and additionally,
three compounding aspects of other climate modes: (i) the initial conditions of each mode, (i1) the
seasonally modulated damping rate (i.e., the memory) of each mode, and (iii) the seasonally
modulated teleconnection to ENSO from each mode. Tracing biases from the SSTA budget at the
process level with the XRO framework can be used to inform climate model development.
Moreover, the explainable predictability of pantropical climate variability as encapsulated by the
XRO may be further enhanced by including multi-timescale interactions associated with the
Madden-Julian Oscillation and westerly wind bursts at higher frequencies. The XRO framework
can also provide a pathway for better understanding observed decadal and long-term changes in

ENSO variability*3-* and ENSO predictability*’-°,

References

1. McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an Integrating Concept in Earth
Science. Science 314, 1740-1745 (20006).

15



347

348

349

350

351

352

353

354

355
356

357
358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379
380
381

382
383

[\S)

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

. Timmermann, A. et al. E1 Nifio—Southern Oscillation complexity. Nature 559, 535-545 (2018).

Cai, W. et al. Changing El Nifio—Southern Oscillation in a warming climate. Nat Rev Earth
Environ 1-17 (2021) doi:10.1038/s43017-021-00199-z.

Cane, M. A., Zebiak, S. E. & Dolan, S. C. Experimental forecasts of El Nifo. Nature 321,
827-832 (1986).

Barnston, A. G., Tippett, M. K., L’Heureux, M. L., Li, S. & DeWitt, D. G. Skill of Real-Time
Seasonal ENSO Model Predictions during 2002—11: Is Our Capability Increasing? Bull. Amer.
Meteor. Soc. 93, 631-651 (2012).

Tang, Y. et al. Progress in ENSO prediction and predictability study. Nat/ Sci Rev S, 826—839
(2018).

L’Heureux, M. L. et al. ENSO Prediction. in El Nifio Southern Oscillation in a Changing
Climate 227-246 (American Geophysical Union (AGU), 2020).
doi:10.1002/9781119548164.ch10.

Ham, Y.-G., Kim, J.-H. & Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature 573,
568-572 (2019).

Zhou, L. & Zhang, R.-H. A self-attention—based neural network for three-dimensional
multivariate modeling and its skillful ENSO predictions. Science Advances 9, eadf2827 (2023).
Wang, H., Hu, S. & Li, X. An Interpretable Deep Learning ENSO Forecasting Model. Ocean-
Land-Atmosphere Research 2, 0012 (2023).

Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).

Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic Meridional Modes of Tropical
Atmosphere—Ocean Variability. Journal of Climate 17, 41434158 (2004).

Zhang, H., Clement, A. & Nezio, P. D. The South Pacific Meridional Mode: A Mechanism for
ENSO-like Variability. Journal of Climate 27, 769-783 (2014).

Jin, Y. et al. The Indian Ocean weakens ENSO Spring Predictability Barrier: Role of the Indian
Ocean Basin and Dipole modes. Journal of Climate 36, 8331-8345 (2023).

Izumo, T., Vialard, J. & Lengaigne, M. Influence of the state of the Indian Ocean Dipole on
the following year’s El Nifo. Nat. Geosci. 168—172 (2010) doi:10.1038/NGEO760.

Jo, H.-S. et al. Southern Indian Ocean Dipole as a trigger for Central Pacific El Nifio since the

2000s. Nat Commun 13, 6965 (2022).

Ham, Y.-G., Kug, J.-S., Park, J.-Y. & Jin, F.-F. Sea surface temperature in the north tropical

Atlantic as a trigger for El Nifio/Southern Oscillation events. Nature Geosci 6, 112116 (2013).
Ham, Y .-G., Kug, J.-S. & Park, J.-Y. Two distinct roles of Atlantic SSTs in ENSO variability:

North Tropical Atlantic SST and Atlantic Nifo. Geophysical Research Letters 40, 4012—4017

(2013).

Ham, Y .-G. et al. Inter-Basin Interaction Between Variability in the South Atlantic Ocean and

the El Nifio/Southern Oscillation. Geophysical Research Letters 48, €2021GL093338 (2021).

16



384

385

386
387

388
389

390

391

392

393

394
395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410
411
412

413
414

415

416

417
418

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Jansen, M. F., Dommenget, D. & Keenlyside, N. Tropical Atmosphere—Ocean Interactions in
a Conceptual Framework. J. Climate 22, 550-567 (2009).

Frauen, C. & Dommenget, D. Influences of the tropical Indian and Atlantic Oceans on the
predictability of ENSO. Geophys. Res. Lett. 39, 102706 (2012).

Luo, J.-J. et al. Interaction between El Nifio and Extreme Indian Ocean Dipole. J. Climate 23,
726-742 (2010).

Keenlyside, N. S., Ding, H. & Latif, M. Potential of equatorial Atlantic variability to enhance
El Nino prediction. Geophys. Res. Lett. 40, 2278-2283 (2013).

Luo, J.-J., Liu, G., Hendon, H., Alves, O. & Yamagata, T. Inter-basin sources for two-year
predictability of the multi-year La Nina event in 2010-2012. Sci Rep 7, 2276 (2017).

Keenlyside, N. et al. Basin Interactions and Predictability. in Interacting Climates of Ocean
Basins: Observations, Mechanisms, Predictability, and Impacts (ed. Mechoso, C. R.) 258-292
(Cambridge University Press, Cambridge, 2020). doi:10.1017/9781108610995.009.
Exarchou, E. ef al. Impact of equatorial Atlantic variability on ENSO predictive skill. Nature
Communications 12, 1612 (2021).

Alexander, M. A., Shin, S.-I. & Battisti, D. S. The Influence of the Trend, Basin Interactions,
and Ocean Dynamics on Tropical Ocean Prediction. Geophysical Research Letters 49,
€2021GL096120 (2022).

Kido, S., Richter, 1., Tozuka, T. & Chang, P. Understanding the interplay between ENSO and
related tropical SST variability using linear inverse models. Clim Dyn 61, (2023).

Stuecker, M. F. ef al. Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophys.
Res. Lett. 44, 2016GL072308 (2017).

Zhang, W., Jiang, F., Stuecker, M. F., Jin, F.-F. & Timmermann, A. Spurious North Tropical
Atlantic precursors to El Niio. Nature Communications 12, 3096 (2021).

Lee, S.-K. et al. On the Fragile Relationship Between El Nifio and California Rainfall.
Geophysical Research Letters 45, 907-915 (2018).

Jeong, H., Park, H.-S., Stuecker, M. F. & Yeh, S.-W. Distinct impacts of major El Nifio events
on Arctic temperatures due to differences in eastern tropical Pacific sea surface temperatures.
Science Advances 8, eabl8278 (2022).

McPhaden, M. J. A 21st century shift in the relationship between ENSO SST and warm water
volume anomalies. Geophysical Research Letters 39, (2012).

Choi, J., An, S.-I. & Yeh, S.-W. Decadal amplitude modulation of two types of ENSO and its
relationship with the mean state. Clim Dyn 38, 2631-2644 (2012).

Zhao, Y., Jin, Y., Capotondi, A., Li, J. & Sun, D. The Role of Tropical Atlantic in ENSO
Predictability Barrier. Geophysical Research Letters 50, €2022GL101853 (2023).

17



419
420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438
439

440

441

442

443

444

445

446

447

448

449

450

451

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Anderson, B. T. On the Joint Role of Subtropical Atmospheric Variability and Equatorial
Subsurface Heat Content Anomalies in Initiating the Onset of ENSO Events. Journal of
Climate 20, 1593-1599 (2007).

Larson, S. M., Pegion, K. V. & Kirtman, B. P. The South Pacific Meridional Mode as a
Thermally Driven Source of ENSO Amplitude Modulation and Uncertainty. Journal of
Climate 31, 5127-5145 (2018).

Stuecker, M. F. Revisiting the Pacific Meridional Mode. Scientific Reports 8, 3216 (2018).
Park, J.-H. et al. Mid-latitude leading double-dip La Nifa. International Journal of
Climatology 41, E1353—-E1370 (2021).

Ding, R. ef al. Multi-year El Nifio events tied to the North Pacific Oscillation. Nat Commun
13, 3871 (2022).

Geng, T. et al. Increased occurrences of consecutive La Nifia events under global warming.
Nature 619, 774-781 (2023).

Kug, J.-S. & Kang, I.-S. Interactive Feedback between ENSO and the Indian Ocean. J. Climate
19, 1784-1801 (2006).

Hasan, N. A., Chikamoto, Y. & McPhaden, M. J. The influence of tropical basin interactions
on the 2020-2022 double-dip La Nifa. Frontiers in Climate 4, (2022).

Iwakiri, T. et al. Triple-Dip La Nifia in 2020-23: North Pacific Atmosphere Drives 2nd Year
La Nifia. Geophysical Research Letters 50, €2023GL105763 (2023).

Zhao, S. et al. Improved Predictability of the Indian Ocean Dipole Using a Stochastic
Dynamical Model Compared to the North American Multimodel Ensemble Forecast. Wea.
Forecasting 35, 379-399 (2020).

Chen, H.-C., Jin, F.-F., Zhao, S., Wittenberg, A. T. & Xie, S. ENSO Dynamics in the E3SM-
1-0, CESM2, and GFDL-CM4 Climate Models. Journal of Climate 34, 9365-9384 (2021).

Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E. & Huang, D. Predictability of El Nifio over
the past 148 years. Nature 428, 733—736 (2004).

Liu, T., Song, X., Tang, Y., Shen, Z. & Tan, X. ENSO Predictability over the Past 137 Years
Based on a CESM Ensemble Prediction System. Journal of Climate 35, 763—777 (2022).

Weisheimer, A. ef al. Variability of ENSO Forecast Skill in 2-Year Global Reforecasts Over
the 20th Century. Geophysical Research Letters 49, €2022GL097885 (2022).

Lou, J., Newman, M. & Hoell, A. Multi-decadal variation of ENSO forecast skill since the late
1800s. npj Clim Atmos Sci 6, 1-14 (2023).

18



452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

Figure Legends

Figure 1. Different sources of ENSO predictability and associated different global impacts.
a, Observed SSTA standard deviation pattern calculated from the detrended ORASS reanalysis
during 1979-2022. The different coloured boxes represent area-averaged SSTA index regions for
ENSO and other selected climate modes (Supplementary Table 1). b, Observed standardized
Nifio3.4 index and various potential precursor indices for the 1997/98 and 2015/16 El Nifio events,
with the numbers in the parentheses indicating the preceding (-1), current (0), and subsequent (1)
years. The error bars show the spread (one standard deviation) among different observational
products (Supplementary Table 2). The lead correlation of various indices with regard to the NDJ
Nino3.4 index is indicated near the bottom of the plot. ¢-d, Observed precipitation anomalies
(percentage) relative to climatology (shading) during (¢) 1997/98 December-March (DJFM) and
(d) 2015/16 DJFM. Contours denote the significant positive (green) and negative (brown)
correlations between DJFM precipitation anomalies and the DJFM Nino3.4 SSTA index that
exceed the 95% confidence level, based on Student’s ¢-test. The observed 1997/98 and 2015/16 El
Nifio events were associated with different precursor patterns and global climate impacts, despite

similar Nifo3.4 index amplitude.

Figure 2. Superior efficacy of the XRO in simulating and reforecasting ENSO. a, b, c,
Seasonally varying standard deviation (a), skewness (b), and power spectrum (c), respectively, of
the Nino3.4 index using ORASS observations (black) and the XRO stochastic simulation (red). d-
1, monthly cross-correlations of each index with the Nifo3.4 index in (black) and XRO stochastic
simulation (red) for the WWYV index, and NPMM, 10B, IOD, SIOD, SPMM, TNA, ATL3, and
SASD SSTA indices, respectively; Dashed grey curves show the auto-correlation of the Nifio3.4
index; Vertical blue dashed lines denote a lead-time of 6 (WWV), 6 (NPMM), 12(10B), 14 (I0D),
10 (SIOD), 4 (SPMM), 9 (TNA), 6 (ATL3), and 9 (SASD) months respectively; Abscissas indicate
the lead-time, with negative values representing months for which the Nino3.4 index lags and
positive values representing months for which the Nifio3.4 index leads, the time flow illustrated
by the blue arrows. Red shading indicates the 10%-90% spread of simulated 43-year epochs,
obtained from splitting a 43,000-year XRO simulation into 1000 non-overlapping blocks. m, The
all-months correlation skill of the 3-month running mean Nifio3.4 index, as a function of forecast

lead for forecasts verified on 2002-2022 for the out-of-sample nRO fitted on 1950-1999 (magenta),
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out-of-sample XRO fitted on 1950-1999 (red), the Al model (blue), the XRO control fitted on
1979-2022 (black) and operational models aggregated by the International Research Institute for
Climate and Society (IRI), ensemble mean of dynamical models (DYN AVG, dark purple curve),
ensemble mean of statistical models (STAT AVG, dark cyan curve). n, Same as m, but for skills
of Nino3.4 forecasts for the nRO control forecasts (magenta), XRO control forecasts (red), Al
model forecasts (blue), and dynamical model forecasts from the North American Multi-Model
Ensemble (NMME) (multi-model ensemble mean in black, ensemble means from individual
models in other colours). The validated period is generally 1979-2022, but slightly different for
the Al and NMME models, which is indicated in the legend. o-p, The correlation skill of the nRO
and XRO forecasts for the Nifio3.4 index as a function of initialization month (ordinate) and target
month (abscissa; superscripts 0, 1, and 2 denote the current and subsequent years, respectively).
Hatching highlights forecasts with a correlation skill less than 0.5. The dashed vertical blue lines
denote the spring predictability barrier season. The XRO accurately simulates the fundamental
observed ENSO characteristics, its lead-lag relationships with other climate modes, and provides
skilful forecasts at lead-times up to 16-18 months, better than the global climate models and

comparable to the most skilful Al ENSO forecast model.

Figure 3. Quantifying the increased ENSO forecast skills from the coupled influences outside
equatorial Pacific during 1979-2022. a, the all-months correlation skill of the 3-month running
mean Nifio3.4 index as a function of the forecast lead month in the control experiment (XRO,
black line), the uninitialized ExXPO+IO+AO experiment (Ugxpo+10+A0, removing initial conditions
of other basins; red line), the decoupling ExXPO+IO+AO experiment (Dexpo+10+A0, rTemoving the
coupling of ENSO with other basins; blue line), and the relaxing ExXPO+IO+AO to observations
experiment (Rexpo+10+a0, adding perfect “future” information of other basins in a hindcast case;
magenta line). b-d, the skill difference of the Nifio3.4 index as a function of initial time and target
month between XRO and Dexpo+10+a0 (b), between XRO and Ugxpo+10+a0 (c), and between
Uexpo+10+a0 and Dexpo+1i0+a0 (d). e-g, Same as d, but for difference between control and the
uninitialized ExPO, 10, and AO experiments, respectively. Hatching indicates that the correlation
difference is significant at 90% confidence level using the two-tailed Fisher z-transformation test.
The sensitivity experiments demonstrate the importance of the extratropical Pacific, Indian Ocean,

and Atlantic Ocean in enhancing ENSO forecast skill, with distinct seasonal dependence. The
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interbasin memory sustains ENSO forecast skill beyond the spring predictability barrier with the

IO and AO contributing skill in boreal summer and the ExPO in boreal winter.

Figure 4. Delineating contributions to ENSO amplitudes from other climate modes. a, b, c,
Time series of Nifo3.4 forecasts for the (a) XRO model, (b) decoupled ExPO+IO+AO experiment,
and (c) uninitialized ExXPO+IO+AO experiment, as function of target time and forecast lead. d-k,
the difference of Nifio3.4 SSTAs (shading) and WW'V anomalies (contours with interval of 0.6 m,
positive in red and negative in black dashed, zero omitted), as a function of forecast start month
and target month, between the control and uninitialized climate mode experiments for NPMM,
I0B, IOD, SIOD, SPMM, TNA, ATL3, and SASD, respectively. Vertical reference dashed lines
denote December of El Nifio (red) and La Nifia (blue) years, respectively. In d-k, the normalized
observed time series of each climate-mode SSTA index is indicated on the bottom axis; the black
arrows indicate the flow of forecast integration started from the selected time in the bottom. I,
Composite difference of Nov-Dec-Jan Nifio3.4 SSTA forecasts during El Nifio events (red) and
La Nifa events (blue) between control and uninitialized Um experiments started from months in a
specific preceding season (-1 and 0 in parentheses denote preceding and current year, x axis from
left to right iS Uninoss > Uwwv > Unpmm > Uspmm > Uios > Utop » Usiop > Urna > Uarws > and Usasp »
respectively); the events are selected when Nov-Dec-Jan Nifio3.4 indices are greater than their
standard deviation, which includes 7 El Nifio events (1982, 1986, 1991, 1997, 2002, 2009, 2015)
and 5 La Nina events (1988, 1998, 1999, 2007, 2010). The error bars show one standard deviation
spread among the 7 El Nifio/5 La Nifia events. The XRO sensitivity experiments quantify the

pathways via which the other climate modes influence El Nifo and La Nifia events.

Figure 5. Linking biases in the dynamics captured by the XRO to climate model deficiencies
in forecasting ENSO during 1979-2022. (a) The all-months correlation skill of the 3-month
running mean Nifio3.4 index in XRO™ trained solely on 91 individual CMIP model outputs (grey
curves), and in XRO trained on observations (red) and multi-model ensemble mean NMME
models (black). (b) The ensemble mean and 10%-90% spread band of the changes in correlation
skill of the Nino3.4 index, obtained by either correcting ENSO’s internal linear dynamics

(XROQ’;NS o~ XRO™, red), or correcting the remote climate mode feedbacks onto ENSO (XROml-
XRO™, magenta), or correcting ENSO’s teleconnections to the remote climate modes (XROg,-

XRO™, blue). Reforecasts using the XRO trained on climate model output, show that reduced
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biases in model ENSO dynamics and in climate mode interactions lead to more skilful ENSO

forecasts.

Methods

Extended Nonlinear Recharge-Oscillator model (XRO)

The XRO model consists of a nonlinear recharge oscillator model for ENSO3!->? coupled to
stochastic-deterministic models (i.e., seasonally modulated first order autoregressive models) for

the other climate modes>33°;

() =1 (50) + (o) o
g = —1e§ + w(t), (2)

where Xgnso = [Tenso bl and Xy = [Tnpmms Tspmms Tios Tiops Tsiops Trnas Tatis, Tsaspl are
state vectors of ENSO and other climate modes, respectively. This model allows for two-way
interactions between ENSO and the other modes. Two indices are used to describe the oscillatory
behaviour of ENSO%2-%, They consist of SSTAs averaged over the Nifi03.4 region 170°-120°W,
5°S—5°N (Tgnso) and thermocline depth anomalies averaged over the equatorial Pacific 120°E—
80°W, 5°S—5°N (h), i.e., the WWYV index (with a constant factor of the area it covers). For other
climate modes, we consider the SST indices of multiple climate modes (Supplementary Table 1)
that have been shown to interact with ENSO, including the NPMM 23857 and SPMM! in the
extratropical Pacific, the IOB!43%3% 10D®0:61.1543 "and SIOD!¢ in the Indian Ocean, and TNA!7:62,
ATL363:1843.64 and SASD®1? in the Atlantic Ocean. We recognise the possibility of enhancing
ENSO forecast skill by incorporating additional modes of variability, provided they directly

22



563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

interact with ENSO, exhibit substantial memory extending beyond months, and offer additional

sources of variability beyond the chosen eight.

The dynamics governing the state matrix X (consisting of 10 variables) contains linear (L),
nonlinear (N), and stochastic (§) terms. The linear dynamics contains four key submatrices,

organized as follows:

_ (Lenso C1)

where the linear operator submatrix Lgygo describes the ENSO internal recharge-discharge
dynamics>>%, Ly, represent the internal processes and interactions among the other climate modes;
C are coupling submatrices, with C, describing the impact of ENSO on other climate modes?® and
C, describing the feedback of other modes on ENSO. To implement nonlinear dynamics
associated with ENSO asymmetry, quadratic nonlinearities by Téyso + b, Tensoh are incorporated
into the SSTA equation of ENSO following Jin et al.’! and An et al.®’, specifically, Ngnso =
[b1 Ténso + P2 Tensoh, 0]. These nonlinearities can be related to deterministic nonlinear ocean
advection®7 as well as to atmospheric nonlinearity implicitly through the nonlinear SST-wind
stress feedback®7!. A local quadratic nonlinearity b;T%p is also incorporated in the SSTA
equation for the IOD following the recent insights from An et al.”? that IOD asymmetry is
dominated by local nonlinear processes. The nonlinear terms for modes other that the IOD are set
to zero given their observed smaller asymmetry and skewness (Supplementary Fig. 5i-j,m-p, ref’?),
specifically, Ny, = [0,0,0, b3Tp, 0,0,0,0]. Lastly, £ is stochastic forcing due to weather and other
high-frequency noise such as the Madden-Julian Oscillation and westerly wind bursts, which is

approximated as red noise with decorrelation time scales of r; and amplitudes of o, respectively.

Specifically, w(t) in Eq. (2) denotes white noise with a Gaussian distribution N(0, 27¢) ensuring
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that the variance of § is maintained at the unit level. We acknowledge the importance of the
multiplicative (state-dependent) noise forcing on ENSO7473, however, accurately estimating the

magnitude of the state-dependence remains a challenge with the observational data length.

Due to the strong seasonal dependence of ENSO and other climate modes, we incorporate

seasonality by estimating the operator matrix and nonlinear parameters as

2
L=1Ly+ Z(Lf cos jwt + Lj sin jwt), (4)
j=1
2
N =Ny+ Z(N]C cos jwt + Nj sin jwt), (5)
j=1

where w = 21/(12 months), and the subscripts 0, 1 and 2 indicate the mean, annual cycle, and
the semi-annual components, respectively. The linear operator and nonlinear coefficients for the
observations and CMIP simulations are estimated simultaneously by using multivariate linear
regression and expressing the state vector tendency in Eq. (1) through a forward-differencing
scheme following ref’s”’. Compared to the conventional method, which estimates the annual cycle
of operators by splitting the monthly data on each calendar month, our approach enables us to
obtain the seasonal modulated operators without reducing sample size by a factor of 12. We
emphasize that our approach constitutes the minimum number of degrees of freedom necessary to
represent the seasonality. There are 50 parameters for each tendency equation of the 10 variables
in the system (except 60 for Tgyso and 55 for Tigp). To meet the rule of thumb for regression
sample size (at least 10 subjects per predictor)’®, 40—50 years of data is required to achieve a robust

fit. The total number of parameters is 515, which are orders of magnitude fewer degrees of freedom
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than the Al models in comparison have, the latter which have substantially more than 100,000 free

parameters®.

The noise parameters are determined from the residuals of the XRO fit. There are 20 total
noise parameters, i.e., a noise amplitude and decorrelation time scale for each of the 10 variables

in the system. The noise amplitude o is estimated from the standard deviations of the residuals of
the XRO fit. The decorrelation time scales are estimated as r; = —In(a4)/6t, where a4 is the lag-
1 autocorrelation of the residual of the XRO fit. The order of observed noise time scale rgl 1s

about 0.25 ~ 0.70 months.

The XRO builds on the legacies of the Hasselmann stochastic climate model capturing upper
ocean memory in SST variability, and the recharge oscillator model for the oscillatory core
dynamics of ENSO. As a multivariate dynamical system, comparing with previous linear inverse
models”-282780.35 the XRO offers an enhanced capability in representing the dynamics of ENSO
(including recharge/discharge dynamics) and climate mode interactions, encompassing their
seasonality and nonlinearity, which are of crucial importance in improving ENSO forecast skill.
Moreover, the state vectors for linear inverse models are typically derived from the leading
principal components truncated within the Empirical Orthogonal Function space, which, however,

may not always represent physical processes.

Nonlinear RO model (nRO)

To highlight the climate mode interactions, we compared the XRO model with a nRO, which

1s described as:

EXENSO = LgnsoXenso T Nenso + OgpynsoSENSO- (5)
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This model includes only processes internal to the tropical Pacific. The parameters for the nRO

model are fitted separately.

Observational data

We use eight observational SST and 3-dimensional ocean temperature datasets to account the
uncertainties in estimating the SST in global oceans and subsurface state in the equatorial Pacific
(Supplementary Table 2). They include three observational SST reconstructions: HadISST (Hadley
Centre Sea Ice and Sea Surface Temperature dataset version 1.1)%!, ERSST v5 (Extended
Reconstructed Sea Surface Temperature version 5)% and COBE-SST 2 (Centennial in situ
Observation-Based Estimates of Sea Surface Temperature version 2)% for 1871-2023; and five
reanalysed SST and ocean temperature datasets: GECCO3 for 1950-2018 (the German
contribution to Estimating the Circulation and Climate of the Ocean version 3)%, GODAS for
1980-2023 (Global Ocean Data Assimilation System)®>, ORAS5 for 1958-2023 (the ECMWF
Ocean Reanalysis System 5)%, ORA20C for 1900-2009 (ensemble of 10-member ECMWF Ocean
Reanalysis of the 20th Century)®’, PEODAS for 1960-2014 (the Predictive Ocean Atmosphere
Model for Australia Ensemble Ocean Data Assimilation System)®$, and SODA224 for 1871-2010
(Simple Ocean Data Assimilation Phase 2.2.4)%. The thermocline depth is defined as the depth of
the 20°C isotherm. We also use surface air temperature from the ERAS5 reanalysis®’, and gridded
precipitation from the Climate Prediction Center Merged Analysis of Precipitation (CMAP)°! for
1979-2022. The monthly anomaly fields were calculated by removing the monthly climatology for
the period of 1979-2022 and the quadratic trend over the whole period. We have focused on the

satellite era from 1979 onwards because SST observations are sparse in the pre-satellite period.
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Climate forecast and hindcast data

We use the 3-month averaged Nifio3.4 index forecasts from the operational International
Research Institute for Climate and Society (IRI) ENSO Forecast product®. We also use SST
hindcasts and real-time forecasts from ten models participating in the North American Multi-
Model Ensemble (NMME) project®®. The ensemble sizes range from 10 to 24 for each model
(Supplementary Table 4). The monthly forecast anomalies were calculated with respect to the
monthly climatology from January 1982 to December 2010 for each member and forecast lead.
For CCSM4 and CFSv2, we eliminate the discontinuous forecast biases by calculating the forecast
anomalies using two different climatological periods of 1982-98 and 1999-2010, respectively,

following ref*.

In addition, we use the Nino3.4, Nifio3, and Nifio4 indices forecasts from an Al model (the
3D-Geoformer ENSO neural network model®) covering the period of 1983-2021. This model
demonstrated ENSO forecast skills comparable with the convolutional neural networks (CNN)

model developed by Ham et al.®, which is among the most skilful AT ENSO forecasts®>*4,

Stochastically forced XRO simulations

To assess the XRO’s performance in simulating ENSO and mode interactions, we conducted
stochastically forced simulations using the operators and stochastic forcing matrices estimated
from the ORASS reanalysis for 1979-2022 (black curves in Extended Data Fig. 1). We numerically
integrate Eqgs. 1-2 with a time step of 0.01 month for 45,000 years and archive monthly-averaged
states for the analysis. The last 43,000 years were analysed and split into 1000 non-overlapping
epochs of 43-year each, aligning with the observational record length. An example of simulated

Nifio3.4 SSTA index for the 10 consecutive centuries is shown in Supplementary Fig. 3.
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Out-of-sample reforecasts

To perform robust out-of-sample testing of the XRO performance, we next use observational
data including the pre-satellite period since at least 40-50 years of data are required to get a robust
XRO fit. We choose to discard data before 1950 since there are large uncertainties in the SSTA and
equatorial thermocline depth indices (Supplementary Fig. 15). Therefore, we fitted the XRO and
nRO models on 1950-1999 (50 years) data, conducted deterministic retrospective 21-month
forecasts by integrating the XRO (Eq. 1) and nRO (Eq. 5) initialized from observed state values
for the period of 2002-2022, and verified the model against observations in the 2002-2022 period,
To access the impact of the decadal change in the performance of the XRO in forecasting ENSO,
we also verified the model on two other 21-year no-overlapping periods: the previous period 1950-
1970 (in which period of 1973-2022 data was used for training) and the middle period 1972-1992
(in which the periods of 1950-1970 and 1994-2022 data was used for training). The multi-data-

products ensemble mean SSTA and WWYV anomaly indices were used for fitting and verification.

Control XRO and nRO reforecasts

Using the operator and stochastic forcing parameters estimated from the ORASS reanalysis
for 1979-2022, we conducted a control experiment by integrating the XRO (Eq. 1) initialized from
observed state values of [Tgnso, 1t Tnpmms Tspmms TioB: Tiops Tsions Trnas Tatrs, Tsasp] with
retrospective 21-month forecasts for the period of January 1979-October 2023 (referred to XRO).
The ensemble mean forecast of 100-members is almost identical to the deterministic forecast in
which the stochastic forcing terms are neglected during the integration (Supplementary Fig. 16a,b).
Although the 100-member stochastic XRO forecasts provide an opportunity for probabilistic
ENSO forecasts (Supplementary Fig. 16c-t), here we focus on the deterministic skill and neglect
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the stochastic forcing terms in all the remaining forecast experiments. Similarly, we conducted a

nRO deterministic experiment by integrating Eq. (5) initialized from observed state values of

[TENSOr h]

Cross-validated reforecasts.

We carried out cross-validated forecasts using both the XRO and nRO models from the
ORASS reanalysis for 1979-2022, employing a jackknife subsampling approach. We sequentially
excluded 3-year segments of data (1979-81, 1982-85, 1986-89, 1990-93, 1994-97, 1998-2001,
2002-05, 2006-09, 2010-13, 2014-17, 2018-21, and 2022), then trained the model operator
parameters based on the remaining data. Subsequently, we generated forecasts for each month
during the years not included in the model fitting. The uncertainty in the fitted parameters is
illustrated as black shading in Extended Data Fig. 1. The skill of cross-validated forecast is not

sensitive to the choice of excluding from 2 to 7 years (Supplementary Fig. 8a).

Large ensemble simulations and perfect model reforecasting experiments

To assess of the robustness of the XRO fitting and forecasting performance, we use large
ensemble (LENS) historical simulations for four climate models: Community Earth System Model
version 1 (CESM1)%, version 2 (CESM2)%, Model for Interdisciplinary Research on Climate
version 6 (MIROC6)?’, and Max Planck Institute for Meteorology Earth System Model version
1.1 (MPI-ESM)*®. Each LENS was generated by repeatedly running the same model simulation
with identical external forcing but with small initial condition differences. The number of members

for each LENS used in this study are as follows: 39 for CESM1, 100 for CESM2, 50 for MIROCS6,
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and 99 for MPI-ESM. We use the historical period of 1959-2002, aligning it with the observational

record length (43 years).

We performed the “perfect model” reforecast, where the XRO model was trained by the
LENS output and tasked to reforecast itself instead of the observations. We carried out twin
experiments for each LENS (Supplementary Fig. 8b-e). The “Same-Member” reforecast
experiment, in which the XRO model is repeatedly fitted for a member, forecasted, and verified
against the same member. This aligns with the XRO control experiment for the observations. In
the “Cross-Member” reforecast experiment, the XRO model is fitted for a specific member but
forecasted and verified against a different member (an independent realization in the LENS).
Specifically, we forecast ensemble member j using the two versions of XRO models, which were
fitted on member j-/ and j-2 data, respectively, and repeat the process for all members within the
LENS. The skill difference between the Cross-Member experiment and the Same-Member
experiment isolates the uncertainty of XRO parameter fitting and its impact on reforecasting skill.
All four LENS results using the same observational record length (43-year) confirm that the
uncertainty in parameter estimation leads to XRO reforecasting correlation skill error of less than

0.1 within 21 lead months (Supplementary Fig. 8b-e).

Quantitative reforecasting experiments

To rigorously dissect the interplay between ENSO and the different climate modes in the
different ocean basins, we designed three sets of sensitivity experiments to mimic the experiment

protocol of previous CGCM studies:

a) Uninitialized experiments: We performed uninitialized mode-j experiments (U;) by setting the

initial condition of T; to zero, while keeping everything else the same as in the control experiment.
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The effect of the mode-j initial condition can be assessed as the difference between the control and
U; (XRO-Uj). To disentangle the role of a specific ocean basin’s initial conditions, we also
conducted uninitialized experiments by setting the initial conditions of all modes to zero in the
corresponding ocean basins. For example, the uninitialized extratropical Pacific Ocean experiment
(referred to as Ugypg) is the same as the control experiment but with the initial conditions of the
NPMM and SPMM set to zero. Similarly, Ujg, Uppand Ugxpot10+a0 denote the uninitialized
Indian Ocean, uninitialized Atlantic Ocean, and uninitialized “all other basins” experiments,
respectively. In addition, the uninitialized ENSO SSTA (Uyinoz4) and WWV anomaly (Uywwy)
experiments are same as XRO, except that the initial conditions of Tgyso and h are set to zero,
respectively. The uninitialized ENSO (Ugyngo) experiment is same as XRO, but the initial
conditions of both Tgyso and h are set to zero. The difference in the climate system response

between the control experiment and Uj isolates the effect of mode-j/basin-/’s initialization.

b) Decoupled experiments: We performed decoupled mode-j experiments (referred to D;) — in
which specific mode(s) are suppressed — by strongly increasing the diagonal damping rate of
mode-j in the L operator to an e-folding time scale of 5 days. This mimics the partially coupled
experiments in fully coupled climate models that restore the ocean surface temperature toward
prescribed conditions. The differences between the control experiment and D; isolate the role of
mode-j in the system. To disentangle the role of the different ocean basins, we conducted
decoupled ocean basin experiments. For example, the decoupled extratropical Pacific Ocean
experiment (referred to Dgypg) removes both the NPMM and SPMM from the system. Similarly,
the decoupled Indian Ocean experiment (D;q) removes the IOB, 10D and SIOD together from the
system; the decoupled Atlantic Ocean experiment (Dpg) removes the TNA, ALT3, and SASD
together from the system; and the decoupled all other modes experiment (Dgyxpo+10+40) T€MOVES
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all other modes except ENSO. We note that the Dgypo 410440 €Xperiment is very close to the nRO
in which the parameters were fitted separately. The difference between the control experiment and
D; isolates the effect of mode-j/basin-/’s coupling. The sum of individual basin decoupled
experiments exceeds the effect of decoupling all at once (Extended Data Fig. 3b.d.e), suggesting

the presence of indirect pathways due to interactions among basins.

¢) Relaxation towards observations experiments: We performed relaxation ocean basin- j
experiments (referred to R;) by relaxing the SSTA indices towards the observations in the
corresponding ocean basins with a time scale of 5 days. For example, the relaxation extratropical
Pacific Ocean experiment (referred to as Rgypg) is the same as the control but with the NPMM
and SPMM being relaxed to the observations. Similarly, Rjg, Rag, and Rgxpo+10+a0 denote the
relaxation Indian Ocean, relaxation Atlantic Ocean, and relaxation all other basins except the
equatorial Pacific experiments. The difference between the control experiment and R; highlights
the effect from perfect “future” knowledge of basin-j. The relaxation towards observations
experiments greatly overestimate ENSO forecast skill because of built in presumed perfect
predictions for the stochastic excitations and ENSO’s impacts on the modes in these basins

(magenta curves in Extended Data Fig. 3d.e).

Losing memory experiments

We carried out “losing memory” experiments by artificially adding additional damping to the
original diagonal damping rates of all other non-ENSO modes in the Ly, operator (Extended Data
Fig. 4). The prescribed damping rates are (5 day)!, (30 day)’, (90 day)’, (180 day)’!, and (360
day)!, in the different experiments, ranging from strong damping (no memory) to less damping

(long memory).
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Deseasonalizing experiments.

We carried out deseasonalizing experiments to illustrate the role of the operator parameters’
annual and semi-annual cycles in ENSO forecast skill (Supplementary Fig. 17). In the XROac=0
model, we considered only the annual mean component (Ly and N in Egs. 3-4, each tendency
equation has ~10 parameters, a total number of parameters of 103 = 10 X 10 + 3). 10-15 years
of data is required to meet the rule of thumb for regression sample size (at least 10 subjects per
predictor) 78, In the XROac-1 model, we considered both the annual mean and annual cycle
components in the operator (Lo, LS, L5, Ny, N§ and Nj in Egs. 3-4, each tendency equation has
~30 parameters, the total number of parameters is 309 = 3 X 100 + 3 X 3). At least 25 years of
data is required 8. The difference between XRO and XROac—o isolates the combined impacts of
the annual and semi-annual cycles in the operator parameters, whereas the difference between
XRO and XROac-11solates the impact of just the semi-annual cycle in the operator parameters. The
parameters for the XROac=0, and XROac=1 experiments can be either refitted separately
(Supplementary Fig. 17a-d) or taken from the XRO control experiment (Supplementary Fig. 17e-
h). Regardless which parameter estimation method is used, we find that the seasonal cycle is

critically important in suppressing SPB for ENSO, while the semi-annual cycle is less important.

Removing nonlinearity experiments

We carried out “removing nonlinearity” experiments to illustrate the role of the XRO
nonlinear operators in ENSO forecast skill (Supplementary Fig. 18). In the XROlinear experiment,
we consider only linear operators and set Ngyso and Ny to zero. In the XROiinearENso €Xperiment,
we only consider linear operators and N,,, but set Ngynso to zero. In the XROiinearionp €xperiment,

we only consider linear operators and Ngysq, but set Ny, to zero. The difference between XRO
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and XROiinear isolates the impact of the nonlinear operator parameters, whereas the difference
between XRO and XROiinearENso isolates the impact of the ENSO nonlinear operator parameters.
The parameters for the XROiinear, the XROlincarEnso, and XROlinearion €xperiments can be either
refitted separately (Supplementary Fig. 18a-d) or taken from the XRO control experiment
(Supplementary Fig. 18e-h). Regardless which of method we use to obtain the parameters, we find
that the ENSO nonlinear dynamics are critically important for ENSO forecast skill, especially for
forecasting the amplitude of the peak phase and the fast transition from El Nifio to La Nifia. Further,

we find that the impact of IOD’s nonlinearity on ENSO forecast skill is neglectable.

Prediction skill metrics and significance tests

The forecast skill is quantified using the anomaly correlation coefficient (ACC) and root mean
square error (RMSE) metrics®. The ACC is computed as the Pearson correlation coefficient

between the deterministic forecast (f) and the observations (0):

cov(f,o
acc = vY0) (6)
O-f . 0-0
and the RMSE is defined as
RMSE = [(f —0)?, (7)

where o5 and g, are the standard deviations of the observations and forecast, respectively.

The Fisher z-transformation was used to test statistical significance of the ACC differences

as follows:
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Z=05 n (i—:i) " Gt_z) (8)

1 1

where r; and 1, are the correlation coefficients, n; and n, are the sample sizes of the first and
second group samples. The absolute value |Z| is then compared against a critical value from the ¢-
distribution for a two-tailed test. We rejected the null hypothesis that the two correlations are not

significantly different at 90% confidence level if |Z| exceeds the critical value.

The XRO reforecasting experiments based on CMIP model output

We analyse monthly mean SST and 3-dimensional ocean temperature fields from 91 CMIP5
and CMIP6 historical simulations (Supplementary Table 5). All model outputs were re-gridded to
a common 1° x 1° horizontal resolution using bilinear interpolation. The monthly anomaly fields
were calculated by removing the monthly climatology for the period of 1900-1999 and the

quadratically detrended over the full 100-year period.

Using the linear and nonlinear operators trained solely on CMIP model m output for 1900-
1999, we conducted retrospective 21 months forecasts with initial conditions from the observations
for the period of January 1982— October 2023 (referred to XRO™). To understand the impacts of
model biases on ENSO dynamics and its coupling with other modes, we also conducted sensitivity
experiments by correcting the different components of the linear and nonlinear operators with the
observed parameters (See Extended Data Table 2). For example, the experiment XROj" is the same
as XRO™, but with the linear operator L being replaced by the observed L operator. The difference
XRO7* — XRO™ is used to isolate the effect of correcting model m’s linear dynamics biases.

Similarly, the experiments XRO XRO¢, and XROg, were conducted to isolate the impacts

m
Lgnso?
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of model m’s biases on the internal linear ENSO dynamics, the coupling feedback to ENSO

parameters, and ENSO teleconnection dynamics, respectively.

The XRO2 ENSO types and pantropical SSTA forecasts

The additional XRO model (referred to XRO2) was set up to predict different types of El
Nifio (i.e., ENSO diversity). We introduced two SSTA indices in the state vectors of ENSO, i.e.,
Nifio3 index (SSTAs averaged over 150°—90°W, 5°S—5°N) and Nifio4 index (SSTAs averaged over
160°E—-150°W, 5°S—5°N): Xgnso = [TNino3» TNinos, It] instead of using Nifio3.4. The quadratic
nonlinearities b; T&in03 + b2Tninosht are only incorporated into the SSTA equation of Tyines, in
presence of the strong asymmetry of Niflo3 index whereas the less pronounced asymmetry of
Nifio4 index: Ngnso = [b1T8inos + P2TNino3 0, 0]. All other terms are the same as the standard
XRO model. Using the operator parameters estimated from the ORASS reanalysis for 1979-2022,
we conducted similar retrospective 21-month forecasts for the period of January 1979—October
2023. The hindcast skills of Nifio3 and Nino4 indices are better than those from the NMME
dynamical models and comparable to the AI model. The forecasts of Nifio3 and Nifio4 indices
were used to define the El Nifio types in terms of the EP-type, CP-type, and mixed-type, following

100.8 The unified complex ENSO index (UCEI) is defined as
UCEI = (N3 + N,) + (N; — N,)i = re?, (9)

where

r= \/(N3 + N,)? + (N3 — N,)?, (10)

and
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N3 — N,

arctan N, + N, when N3 + N, > 0
9 = (11)
tanNg_N4—7t when N; + N, <0

where N; and N, denote the Nifio3 and Nifio4 indices, respectively; The El Nifo type is

determined from 0 as follows:

—15°< 6 < 15° Mixed El Nino¢. (12)

{ 15°< 0 <90° EP El Nino
-90° <6 < -15° CP El Nino

We also conducted out-of-sample XRO2 ENSO type reforecasts by fitting on 1950-1990 with the

multi-products ensemble mean indices and verifying on 1991-2022 (Supplementary Table 3).

With the forecasted ten SSTA indices, the pantropical SSTA (30°S-30°N) at each grid point

(SSTA;) can be predicted using the seasonal regression model:
SSTA; = coX + A X cos wt + A X sin wt + B.X cos 2wt + BgX sin 2wt, (13)

where ¢y, A., A, B¢, and B have ten coefficients associated with each SSTA index, respectively.
We also conducted the cross-validated XRO2 forecasts and pantropical SSTA forecast by
excluding 3-year data out and trained XRO2 operators and SSTA regression coefficients, then

forecasts for each month during the years not included in the model fitting.

Further details are provided in the Supplementary Information, relying on references!?!-13,

Data availability

Datasets used in this paper are freely available. Observational data: links in Supplementary Table

2. NMME: https://iridl.ldeo.columbia.edu/SOURCES/.Models/ NMME/; 3D-Geoformer ENSO

Al model forecast: http://msdc.gdio.ac.cn/data/metadata-special-

detail?1d=1602252663859298305; CESM1 LENS: https://www.cesm.ucar.edu/community-

projects/lens/data-sets; CESM?2 LENS: https://www.cesm.ucar.edu/community-
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877 projects/lens2/data-sets; MPI-ESM LENS: https://esgf-data.dkrz.de/projects/mpi-ge/; CMIP5
878 outputs: https://esgf-node.llnl.gov/projects/cmip5/; and MIROC6 LENS and CMIP6 outputs:

879 https://esgf-node.llnl.gov/projects/cmip6/. All the map figures (Fig. 1a,c,d, and Supplementary

sso  Figs. 1, 2, 14) were generated using python Cartopy (https://zenodo.org/records/8216315). The

881 source data for figures in the main text is available at https://doi.org/10.5281/zenodo.10951443.

g2 Code availability

883 The XRO model code is deposited at https://doi.org/10.5281/zenodo.10681114. The code to

g4 calculate the predictive skill is available at https://github.com/pangeo-data/climpred.
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Extended Data Legends

Extended Data Fig. 1| Seasonally-modulated strength of mode interactions in observations
and CMIPS5/6 models, as diagnosed from the linear part of the XRO model. (a) ENSO
recharge-oscillator coefficients, (b) Coupling processes denoted by the contribution of other modes
to the tendencies of ENSO SSTA and WWYV anomalies, (¢c) ENSO-forced processes denoted by
the contribution of ENSO SSTA and WWYV anomalies to the SSTA tendency of other modes, (d)
Interactions among NPMM, SPMM, 10B, 10D, SIOD, TNA, ATL3, and SASD. The coefficient
L;; has been normalized by a factor of gj/0;, where g; and o; are the monthly standard deviations
of the indices in row i and column j, respectively, so that all coefficients are comparable, and the
units are year™!. The diagonal panels (blue frames) show the damping rate for each index. The
black curves with shading show the XRO fit to the ORASS reanalysis (with 10%-90% spread band
from the cross-validated fitting excluding 3-year data, see “Cross-validated reforecasts” in
Methods), and the red curves with shading show the ensemble mean with 10%-90% spread band
of the 91 CMIP5/6 historical simulations. ENSO can be strongly driven by climate modes in
extratropical Pacific, Indian Ocean, and Atlantic Ocean, which in some seasons are as important
as the dynamics internal to the equatorial Pacific. Most of the non-ENSO modes are more strongly
driven by ENSO (and their own damping) than by any of the other non-ENSO modes in other
basins. The climate models underestimate the strength of most of the mode interactions and miss

the seasonality.

Extended Data Fig. 2| Decadal change in the ENSO forecast correlation skill. a, The all-
months correlation skill of the 3-month running mean Nifio3.4 index verified on 1950-1970 for
the out-of-sample XRO fitted on 1973-2022 (red curve), out-of-sample nRO fitted on 1973-2022
(magenta curve), in-sample XRO fitted on 1950-1970 (black dashed curve) and in-sample XRO
fitted on the full-period 1950-2022 (blue dashed curve). The bottom inset shows the time series of

Nifio3.4 index for out-of-sample training (blue) and verifying (orange) periods, respectively. b-c,
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same as a, but verifying on 1972-1992 and 2002-2022, respectively. The XRO is superior to the
nRO regardless the verifying periods and decadal changes of ENSO forecast skill.

Extended Data Fig. 3| Test of additivity (i.e., linearity) of the sensitivity experiments. a,
Regression slope and linear correlation coefficients for the Nifio3.4 SSTA forecasts between the
effects of the uninitialized ExXPO+I0O+AO experiment (XRO — Ugypo+10+a0) and the sum of the
effects of the individual uninitialized ExPO, IO, and AO experiments (3 * XRO — Ugypo — Ujo —
Upo)- b and ¢, same as a, but for decoupling experiments (XRO — Dgypos10+a0 VS- 3 * XRO —
Dgypo — Dio — Dap) and relaxing towards observation experiments (XRO — Rgypo+10+40 VS- 3 *
XRO — Rgypo — Rio — Rap), respectively. d, e the all-months correlation skill (d) and RMSE (e)
of the 3-month running mean Nifio3.4 index, as a function of the forecast lead month in the control
experiment (black line) and sensitivity experiments: the uninitialized ExXPO+IO+AO experiment
(solid red line) and sum of uninitialized ExPO, 10, and AO individually (dashed red line), the
decoupling ExPO+IO+AO experiment (solid blue line) and sum of decoupling ExPO, 10, and AO
individually (dashed blue line), and the relaxing ExPO+IO+AO to observation experiment (solid
magenta line) and sum of relaxing ExPO, IO, and AO to observation individually (dashed magenta
line). The individual basin uninitialized experiments are additive with the slopes and correlations
at all lead months being very close to 1. But the individual basin decoupling experiments and the
individual relaxation towards observations experiments are not additive, owing to a nonlinear
dependence on the operator parameters. The sum of the effects of decoupling ExPO, 10, and AO
individually is much larger than the effect of decoupling ExPO+IO+AQ, suggesting that the
decoupling experiment framework overestimates the contribution of each basin, given the presence

of indirect pathways due to interactions among basins.

Extended Data Fig. 4| Influence of the memory effect outside the equatorial Pacific on ENSO
forecast skill. Shown are the all-months correlation skill (a) and RMSE (b) of the 3-month running
mean Nifio3.4 index, as a function of the forecast lead month in the XRO forecast (black), the nRO
forecast (grey triangle), and the “Losing memory” sensitivity experiments (colour curves) by
adding different damping rates (ranging from a strong damping rate of —(5 day)! implying no
memory to a weak damping rate of (360 day)™' implying longer memory) to the non-ENSO modes
(See “Losing memory experiments” in Methods). The initial condition memory effect of the

climate modes outside equatorial Pacific extends the skill of ENSO forecasts.
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Extended Data Fig. 5| Contribution of each climate mode’s initialization to ENSO correlation
skill. Shown is the forecast skill difference of the Nino3.4 SSTA index, as a function of initial time
and target month, between the control and uninitialized climate mode sensitivity experiments for
the NPMM, SPMM, IOB, IOD, SIOD, TNA, ATL3, and SASD, respectively. The contributions
of the IOD, NPMM, and TNA dominate the ENSO forecast skill improvement.

Extended Data Fig. 6| Impacts of climate-mode initialization to ENSO forecasts. Shown is the
difference of Nifio3.4 SSTA (shading) and WWYV anomalies (contours with interval of 0.6 m,
positive in red and negative in black dashed, zero omitted), as a function of forecast lead and target
time, between control and uninitialized climate mode experiments for NPMM, SPMM, 10B, 10D,
SIOD, TNA, ATL3, and SASD, respectively. Vertical reference dashed lines denote December of
El Nifio (red) and La Nina (blue) years, respectively. The normalized time series of each climate
mode SSTA index is indicated in the bottom axis; the black arrows indicate the flow of forecast
integration started from the selected time in the bottom. The XRO sensitivity experiments quantify

how the initial states of key climate modes affect subsequent ENSO events.

Extended Data Fig. 7| Impacts on ENSO forecast skill of correcting biases in the XRO
parameters fitted to individual CMIP simulations. Shown is the difference of the all-months
correlation skill for the Nifio3.4 SSTA index, between the corrected-parameter forecast experiment
and the XRO™ experiment trained solely on CMIP model outputs. (a) Effect of correcting linear
operators (XRO7*- XRO™), (b) effect of correcting ENSO internal linear dynamics (XROJ":

Lgnso™

XRO™), (c) effect of correcting remote climate mode feedbacks onto ENSO (XROg' - XRO™), and
(d) effect of correcting ENSO teleconnections to remote climate modes (XRO¢.- XRO™). The

model is sorted by the averaged correlation skill of the XRO™ forecast at 6-15 lead months.
Reforecasts using the XRO trained on global climate model output show that correcting CGCMs’
dynamical biases in ENSO and climate mode interactions lead to more skilful ENSO forecasts.
Most important is correcting ENSO biases (which improves skill at longest lead-times), followed
by correcting the remote climate mode impact on ENSO (which improves skill at intermediate

leads). Less skill is gained by improving ENSQO’s teleconnection to the remote modes.

Extended Data Fig. 8| Correlation forecast skill for the Indian Ocean Dipole, using the XRO
trained with climate model outputs. (a) The correlation skill of the IOD index in Sep-Oct-Nov
(SON) as a function of forecast lead, in the XRO™ trained solely on 91 individual CMIP model
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outputs (grey curves), the XRO trained on observations (red curve), and the original (not XRO)
multi-model mean of the ensemble means of the forecasts from the NMME models (black). (b) the
ensemble mean and 10%-90% spread band of the changes in correlation skill for the IOD index,

obtained by correcting the ENSO internal linear dynamics (XROE’;NS o~ XRO™, red), or the remote-
mode feedbacks onto ENSO (XROg' - XRO™, magenta), or the ENSO teleconnections to remote
modes (XROg, - XRO™, blue). Reforecasts using the XRO trained on climate model output show

that reducing CGCM biases in the dynamics of ENSO’s climate mode interactions improves IOD

forecasts.

Extended Data Table 1| Details of the XRO forecasting experiments based on observations
(1979-2022).

Extended Data Table 2| Details of the XRO forecasting experiments using global climate model

output as training data.
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1150 Extended Data Tables

1151 Extended Data Table 1. Details of the XRO forecasting experiments based on observations (1979-2022).

Experiment Groups Experiment ID

Description

XRO

Control experiments (2)
nRO

The reference retrospective forecast using the XRO model as formulated in Eq. (1)

The retrospective forecast using the nonlinear RO model as formulated in Eq. (5)

Cross-validated XRO
Cross-validated experiments

() .
Cross-validated nRO

As in XRO, but retrospective forecasts based on independent data by employing a
jackknife subsampling approach
As in nRO, but retrospective forecasts based on independent data by employing a

jackknife subsampling approach

UgxpPo+10+A0
UEXPO
Uio
Uno
Unpmms Uspmms Uross Utop,

Uninitialized experiments (15)
Usiops Urna, UatL3, and

Same as XRO, but initial conditions of all other modes set to zero

Same as XRO, but initial conditions of the NPMM and SPMM set to zero
Same as XRO, but initial conditions of the IOB, IOD, and SIOD set to zero
Same as XRO, but initial conditions of the TNA, ATL3, and SASD set to zero

Same as XRO, but initial condition of each climate mode set to zero, respectively

Usasp
UNino34 Same as XRO, but initial condition of Tgygo set to zero
Uwwv Same as XRO, but initial condition of h set to zero
Ugnso Same as XRO, but initial conditions of Tgngo and h set to zero
DExpo+10+A0 Same as XRO, but decoupling all other modes
Decoupled experiments (12) Dexpo Same as XRO, but decoupling the NPMM and SPMM
Dio Same as XRO, but decoupling the IOB, 10D, and SIOD
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Dao

Dnpmms Dspmm» Diog» Diops

Dsiops Drna, DaTrz, and

Same as XRO, but decoupling the TNA, ATL3, and SASD

Same as XRO, but decoupling each climate mode, respectively

Dsasp
Same as XRO, but relaxing the SSTA indices of all other modes to the observed
RExpo+10+A0
values
Same as XRO, but relaxing the SSTA indices of NPMM and SPMM to the
Relaxation towards Ex20 observed values
observations experiments (4) Rio Same as XRO, but relaxing the SSTA indices of IOB, 10D, and SIOD to the
observed values
R Same as XRO, but relaxing the SSTA indices of TNA, ATL3, and SASD to the
AO

observed values

Losing memory experiments

LMgxpo+10+a0

Same as XRO, but artificially adding additional damping to the original diagonal

o) damping rates of all other modes in the Ly, operator

RO Same as XRO, but only the annual mean component of the operator parameters
=0 °
Deseasonalizing experiments 2 (Lo and Ng) considered

2) Same as XRO, but only the annual mean and annual cycle components of the

XRO,c=
acst operator parameters (Lo, L§, L5, Ny, N{ and N3j) considered
XROjinear Same as XRO, but Ngnso and Ny, set to zero
Removing nonlinearity
XROlinearENSO Same as XRO, but NENSO set to zero
experiments (3)
XROjinearion Same as XRO, but Ny, set to zero
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1154 Extended Data Table 2. Details of the XRO forecasting experiments using global climate model output as training data.

Experiment ID Description
XRO™ The retrospective forecast using the XRO model trained solely on individual model output
XRO™ Same as XRO™, but with the linear operator L being replaced by the L operator determined from the observations, the difference
XRO™ — XRO™ isolates the effect of correcting model m’s linear dynamics biases
XRO™ Same as XRO™, but with the linear operator submatrix Lgyso being replaced by the observed Lgyso, the difference XROE}ENS 0~
L
ENo XRO™ isolates the effect of correcting biases in model m’s linear ENSO dynamics
XRO™ Same as XRO™, but with the linear operator submatrix C; being replaced by the observed C;, the difference XROrCn1 — XRO™
c
! isolates the effect of correcting biases in model m’s coupling feedback of other modes to ENSO
XRO'C"2 Same as XRO™, but with the linear operator submatrix C, being replaced by the observed C,, the difference XROg, — XRO™

isolates the effect of correcting biases model m’s ENSO teleconnection dynamics
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