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Significance

Most predictions of how species 
will respond to climate change 
assume that performance 
variation across spatial climatic 
gradients predicts how 
individuals and populations will 
respond to climate change 
through time. Here, we use a 
new network of tree-ring growth 
time series collected from across 
the distribution of ponderosa 
pine to demonstrate that this 
assumption is false and produces 
severely misleading predictions.
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A species’ response to spatial climatic variation does not predict 
its response to climate change
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The dominant paradigm for assessing ecological responses to climate change assumes 
that future states of individuals and populations can be predicted by current, 
species-wide performance variation across spatial climatic gradients. However, if the 
fates of ecological systems are better predicted by past responses to in situ climatic 
variation through time, this current analytical paradigm may be severely misleading. 
Empirically testing whether spatial or temporal climate responses better predict how 
species respond to climate change has been elusive, largely due to restrictive data 
requirements. Here, we leverage a newly collected network of ponderosa pine tree-ring 
time series to test whether statistically inferred responses to spatial versus temporal 
climatic variation better predict how trees have responded to recent climate change. 
When compared to observed tree growth responses to climate change since 1980, 
predictions derived from spatial climatic variation were wrong in both magnitude and 
direction. This was not the case for predictions derived from climatic variation through 
time, which were able to replicate observed responses well. Future climate scenarios 
through the end of the 21st century exacerbated these disparities. These results suggest 
that the currently dominant paradigm of forecasting the ecological impacts of climate 
change based on spatial climatic variation may be severely misleading over decadal 
to centennial timescales.

climate change | tree growth | prediction

Anthropogenic climate change is impacting biodiversity and ecological communities 
globally, altering their ability to provide the ecosystem functions and services on which 
humanity depends (1). Documenting and predicting these impacts has been a research 
priority for decades (2–4); however, predicting how climate change may impact specific 
ecological entities and processes remains challenging. In most cases, predictions of this 
sort are based on statistical relationships between some ecological phenomenon and spatial 
variation in climatic conditions. A particularly common application of this approach uses 
species’ current geographic occurrence patterns to predict their future distribution (i.e., 
species distribution models, SDMs; 5, 6), though it can also be used to predict any eco-
logical phenomenon that varies across space (e.g., species’ abundance, community com-
position, a demographic vital rate, ecosystem services). Regardless of the ecological variable 
of interest, this approach rests upon the assumption that the observed response to spatial 
climatic variation is predictive of the response to changing climate through time (7). For 
example, if the individual growth rate of a species increases with temperature across its 
geographic range, this assumption results in the expectation that growth in all populations 
will increase as temperatures rise in the future. Similarly, if growth rates are highest in 
the center of a species’ temperature range, the expectation is that future warming will 
result in growth increases in colder parts of the range, and growth declines in warmer 
parts of the range (i.e., the “leading edge” and “trailing edge” of a species’ distribution; 
8). However, substituting spatial variation for temporal variation in this way is known 
to be problematic in some cases (7, 9–15) and could be misleading. For example, if 
populations are tightly adapted to local historical climatic conditions, then increasing 
temperatures could lead to population declines for each population across the range, and 
not to leading and trailing range edges. Alternatively, spatial gradients in other important 
nonclimatic environmental factors (e.g., soil nutrients, competitive environment, land 
management) could decouple species-wide patterns of performance variation from cli-
matic variation (15). Nevertheless, using spatial variation across species’ distributions to 
make predictions could be justified if errors are small enough that species-wide responses 
to spatial climatic variation yield informative coarse-scale predictions. Determining the 
degree of mismatch between predictions based on ecological responses to spatial climatic 
variation versus in situ climatic variation through time is therefore critical to evaluating 
the assumptions underlying the currently dominant approaches to forecasting biodiversity 
responses to climate change (7, 12, 13).D
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Assessing the scope and consequences of these potential mis-
matches requires data that capture both how an ecological phe-
nomenon varies across spatial climatic gradients (hereafter the 
species-wide response), and how the same phenomenon varies 
through time in response to in situ climatic variation (hereafter 
the population-level response). While most ecological datasets are 
too limited in either extent or duration to accomplish this, spatial 
networks of biogenic time series, like the annual growth rings of 
temperate tree species, provide a rare opportunity (16). Tree rings 
can be used to assess both how quickly a species grows at a given 
location, as well as how individual performance has varied through 
time in response to past climatic variation. With time-series data 
collected from many individuals in many populations across a 
species’ geographic distribution, aggregated population-level 
responses to temporal climatic variation can be compared against 
species-wide performance variation across spatial climatic gradi-
ents. This makes it possible to determine whether populations 
have responded to currently changing climatic conditions in a 
manner consistent with species-wide responses to spatial climatic 
variation (scenario i, Fig. 1A) or instead whether population 
responses contrast in slope (scenario ii, Fig. 1A) or sign (scenario 
iii, Fig. 1A) relative to expectations from species-wide patterns.

Here, we use ponderosa pine [Pinus ponderosa, sensu lato; (17, 18)] 
in western North America as a case study for comparing species-wide 
responses to spatial climatic variation against population-level responses 

to temporal climatic variation. This study system is particularly 
well-suited for the purpose: western North America experienced rela-
tive climatic stability for much of the 20th century before a consistent 
warming trend began in the early 1980s (Fig. 2A). Because high-quality 
historical climate data are available across the region throughout this 
period, it is possible to leverage the prewarming stable period to model 
trees’ responses to both spatial and temporal climatic variation and 
compare model predictions to observed responses after secular warm-
ing began (Fig. 2A). Individual ponderosa pines live 100 to 1,000 y, 
providing performance time series that span this transition from cli-
matic stability to secular warming. Further, ponderosa pine is a com-
mon subject for tree-ring analyses because of the species’ clearly defined 
annual growth rings and climatic sensitivity (19). These climate sen-
sitivities, coupled with the dramatic gradients spanned by its highly 
disjunct geographic distribution (2 to 17 °C mean annual temperature, 
100 to 2,500 mm mean annual precipitation), make ponderosa pine 
a suitable subject for comparing population-level versus species-wide 
climate responses and evaluating how differences might influence 
forecasts of future performance.

We collected tree-ring samples from 23 populations of ponder-
osa pine, located across much of the sensu lato species’ geographic 
and climatic distribution in the western United States (Fig. 1C and 
SI Appendix, Table S1; 20). Because we sampled all suitable indi-
viduals within a plot of fixed size, these data are representative of 
each population, in contrast to traditional dendrochronological 

A B

C

Fig. 1. Contrasting responses to spatial versus temporal climatic variation result in dramatically different predictions of future growth. (A) Three scenarios of 
how species-wide responses to spatial climatic variation (blue line, gray dashed lines) could differ from responses of populations to interannual climatic variation 
(red lines): (i) matching responses, in which species-wide and population-level responses are identical; (ii) mismatched slopes, in which responses differ in their 
strength, but match in sign; and (iii) mismatched signs, in which species-wide and population-level responses are directionally opposed. When climate changes 
from t1 to t2, each scenario yields different predicted growth responses. (B) Observed climate-growth relationships across 23 ponderosa pine (P. ponderosa s.l.) 
populations. Black points indicate long-term mean climate and growth (BAI, mm2) for each study site; blue lines are locally-weighted regressions illustrating 
the species-wide spatial climate-growth relationship. Each red line indicates the linear relationship between interannual climatic variation and growth within a 
single population. (C) Study sites were distributed across the geographic and climatic distribution of ponderosa pine, spanning gradients in mean growth rate 
(size of circle) and average climatic conditions, indicated inside each circle (see axis legends, panel B).D
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sampling focusing only on individuals likely to be highly sensitive 
to climatic fluctuations (21). We used standard dendrochronolog-
ical methods to prepare and crossdate samples before measuring 
the radial distance between annual growth rings. We then converted 
these radial increments (mm) to basal area increments (BAIs) 

(mm2) using field-measured and back-calculated tree diameters; 
hereafter, “growth” refers to BAIs (with units mm2 y−1; see Materials 
and Methods). To quantify both species-wide and population-level 
climate responses, we used a generalized linear mixed model to 
predict each tree’s annual growth prior to the onset of climate 

Fig. 2. Population-level climate responses better predicted observed growth trends during the near-past period of climate change, and yield forecasts that 
diverge substantially from those generated using the species-wide response. (A) Mean annual temperature anomalies (°C) at each of our 23 study sites relative 
to 1900 to 1950 historical baselines, based on PRISM historical climate data (black lines) and three CMIP6 future climate scenarios (SSP1-2.6, blue; SSP2-4.5, 
green; SSP5-8.5, red). A breakpoint regression analysis (blue line) of these historical climate time series found a significant breakpoint in 1982, used to define 
the boundary between model training and near-past prediction time periods. (B) Mean posterior growth predictions and 95% credible intervals during the near-
past period, for species-wide predictions (blue) and population-specific predictions (red), compared to observed growth during the same period (black line), 
averaged across all study sites. Supplementary materials contain predictions for each site. (C) Correlations between predicted and observed growth (Pearson’s r),  
in relation to mean warming recorded at each site over the near-past period. (D) Divergence between species-wide (blue) and population-level (red) growth 
predictions under the SSP5-8.5 scenario. Heavy lines and shading indicate mean posterior predictions and 95% credible intervals across all sites, respectively; 
light lines indicate mean posterior predictions for each site. (E) Contrasts between species-wide and population-level predictions, as a function of projected 
future warming at each site (black points and lines).
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warming (1900 to 1982) as a function of 1) spatially varying mean 
climatic conditions, capturing species-wide variation in average 
growth rate and 2) time-varying climatic variables, capturing aggre-
gated population-level variation in annual growth rates (using 
PRISM climate data; see Materials and Methods; 22). We also 
incorporated the effect of individual tree size on growth into the 
model; see Materials and Methods for further details. We applied 
this model to ask which statistically-inferred response better pre-
dicted observed growth following the onset of climate warming 
(1982 to 2015), by comparing model-predicted responses to spatial 
versus temporal climatic variation to observed growth over the same 
period. Finally, we used a range of CMIP6 future climate scenarios 
(23) to contrast these growth predictions through the end of the 
21st century.

The model presented here treats ponderosa pine as a single unit; 
however, there is an emerging recognition that the Pacific and 
interior varieties (var. ponderosa and var. scopulorum; 24) represent 
distinct lineages that may be more closely related to other species 
than to one another (17, 18). Recent molecular work has identified 
further genetic structuring comprising up to four potential species 
layered on this Pacific—interior distinction (17, 18). To explore 
the degree to which this taxonomic uncertainty might modify 
observed species-wide growth responses, we fit an additional 
model variant that incorporated interactions between spatially 
varying climate and Pacific versus interior population origin 
(Supplementary Materials and Methods).

Growth Responses to Climatic Variation Differ 
across Space versus through Time

The data show that species-wide responses to spatial climatic vari-
ation and population-level responses to temporal climatic variation 
are opposite in sign with respect to temperature but not precipita-
tion. We found evidence of a strong species-wide, positive relation-
ship between mean growth rate and spatial variation in mean 
temperature and precipitation (Fig. 1 B and C), such that trees grew 
faster in warmer and wetter locations. In contrast, populations show 
1) negative relationships between interannual variation in growth 
rate and temperature, and 2) weakly positive relationships between 
interannual variation in growth rate and precipitation that are 
stronger at the driest locations (Fig. 1 B and C and SI Appendix, 
Fig. S1). Thus, at the sensu lato species level, warmer regions were 
associated with faster growth, whereas at the population level, 
warmer years were associated with slower growth. This sign differ-
ence in the relationship between spatial and temporal variation in 
temperature is consistent with our scenario iii (Fig. 1A). However, 
with respect to precipitation, these relationships differed only in 
magnitude, consistent with our scenario ii (Fig. 1A).

Species-Wide Spatial Patterns Do Not Predict 
Growth Responses to Recent Climate Change

These contrasting responses resulted in divergent predictions in 
response to a secular warming trend in the near-past (1982 to 
2015), such that the species-wide response predicted increased 
growth, whereas population-level responses predicted decreased 
growth (Fig. 2B and SI Appendix, Fig. S2). Comparing these near-
past predictions to observed growth trends over the same period 
showed that population-level responses to interannual climatic 
variation predicted actual growth trends substantially better than 
the species-wide response to spatial climatic variation. The pre-
dictive performance of the species-wide response declined with 
the amount of warming a site experienced (r = −0.42, P = 0.04), 
such that these predictions correlated negatively with observed 

growth above ~0.5 °C of warming (Fig. 2C). This demonstrates 
that predicting a species’ response to climate change based on 
spatial variation in performance can yield directionally incorrect 
predictions of how growth may change over a timeframe as short 
as 40 y. A few recent studies have found similarly contrasting 
responses to spatial versus temporal environmental variation  
(13, 25–28), implying that this type of space-for-time prediction 
could be misleading. Here, we have directly tested this implication 
by asking whether responses to spatial climatic variation across a 
species’ distribution accurately predict actual observed responses 
to changing climate.

Future Climate Change Exacerbates Divergence 
between Predictions

The finding that species-wide patterns fail to predict actual 
responses on short decadal timescales raises concern about the 
accuracy of predictions made over the longer timescales that are 
typically used when forecasting species’ responses to climate 
change, e.g., to the end of the 21st century (3). To examine this, 
we extended our projections of ponderosa pine’s performance out 
to the end of the century (2015 to 2100) under a range of future 
CMIP6 climate scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5; 21). 
We found that in all future climate scenarios, the responses to 
spatial versus temporal climatic variation predict dramatically dif-
ferent performance trajectories (Fig. 2D and SI Appendix, Figs. S3 
and S4). Under the SSP5-8.5 scenario, forecasts based on the 
response to spatial climatic variation indicated growth increases 
of up to 300%, compared to projected growth declines in most 
populations when forecasts were based on the response to inter-
annual climatic variation (Fig. 2D). Notably, across populations, 
the degree to which the two predictions diverged depended 
strongly on the amount of future warming projected at the study 
site, with the largest divergences occurring with the greatest pro-
jected warming (Fig. 2E and SI Appendix, Figs. S3 and S4).

Discussion

This study provides a rare empirical test of whether the impact 
of recent climate change can be predicted by a species’ relation-
ship to spatial climatic variation; we find that it cannot. Our 
results indicate that such spatially based predictions run the risk 
of being directionally incorrect, with important consequences for 
any conservation planning and management action they might 
inform (4, 6). Further, we demonstrate that an alternative 
approach leveraging time-series data matches observed growth 
responses to climate change quite well. While our analyses focus 
on a small taxonomic sample, the literature suggests that these 
results and their implications may be relevant for many species 
and for the practice of ecological forecasting generally. For exam-
ple, contrasting responses to spatial versus temporal climatic 
variation have been documented in several other tree species, 
including in eastern North America (13, 29), suggesting that our 
findings may be relevant outside of the semiarid temperate land-
scapes occupied by ponderosa pine. Further, several recent studies 
have reported similarly contrasting responses across space versus 
through time in a much wider variety of contexts [e.g., demo-
graphic rates of perennial bunchgrasses (30), patterns of pathogen-
driven forest mortality (31), vital rates of regional bird populations 
(26, 27, 32), and population growth rates of an endemic alpine 
plant (33)]. Our findings suggest that in all these cases, ecological 
responses to climate change on decade-to-century timescales can-
not be accurately predicted by responses to spatial environmental 
variation.D
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This conclusion is particularly concerning given the wide appli-
cation and acceptance of spatial models and other space-for-time 
substitutions for predicting the ecological impacts of climate change 
(6, 34). Just in the context of tree growth, there are several recent 
examples of studies using spatial patterns to forecast future growth 
or related performance metrics (e.g., refs. 35–39). Even more prev-
alent are large-scale and high-profile forecasts of biodiversity 
responses to climate change based on correlative relationships 
between species’ occurrence patterns and spatial climatic variation 
(2, 3, 40–45). A growing body of work has begun documenting 
cases where observed responses to climate are at odds with such 
spatially based predictions (30, 46–52). Contrasting ecological 
responses across space versus through time could be contributing 
to these mismatches between predicted and observed responses to 
climate change. However, we emphasize that our findings do not 
constitute a direct test of SDMs but are rather a conceptually anal-
ogous test of a key assumption underlying their application to eco-
logical forecasting. A test of SDM predictions based on spatial versus 
temporal climatic variation would require data on how species’ 
occurrence patterns have changed through time. We also emphasize 
that it is not straightforward to compare forecasts of individual 
growth against forecasts of an occurrence-based SDM, as individual 
growth rates and probability of occurrence are two different eco-
logical metrics that have been shown to not closely track one another 
(11, 51). Nonetheless, our finding that spatial and temporal climate 
responses are not interchangeable, taken in context with corrobo-
rating work in other systems (26, 27, 30–33), suggests that the 
conceptual basis for using SDMs and other similar spatial methods 
for ecological forecasting might in many cases not be sound.

Taxonomic uncertainty and intraspecific variation in climatic 
tolerances further complicate attempts to predict species’ responses 
to climate change. Recent work has improved the performance of 
species distribution and other similar models by incorporating 
variation in functional traits (53, 54) or dividing species into sub-
specific groups (55–58). However, these approaches still rely on 
responses to spatial climatic variation and thus risk ignoring the 
kinds of spatial versus temporal mismatches highlighted by our 
findings here. Further, there is considerable uncertainty about the 
taxonomic scale on which climatic tolerances vary, which likely 
depends on many factors including the relative amount of spatial 
versus temporal climatic variation and biogeographic history expe-
rienced by the organism in question (59, 60). Here, an analysis of 
the impact of taxonomic uncertainty on ponderosa pine’s climate 
responses revealed heterogeneity in the mismatch between spatial 
versus temporal climate responses. Specifically, we found that spa-
tial variation in temperature had a stronger positive effect on mean 
growth rate among populations of the Pacific variety (var. ponder-
osa) than among interior populations (var. scopulorum; SI Appendix, 
Fig. S7). However, a strong statistical interaction between mean 
annual temperature and mean annual precipitation indicated that 
this heterogeneity was contingent on the amount of precipitation 
that populations experience. This differed between varieties; Pacific 
populations experience wetter conditions than interior popula-
tions, facilitating a stronger positive response to spatial variation 
in temperature (SI Appendix, Fig. S7). This suggests that mis-
matched responses to spatial versus temporal temperature variation 
is at least partially contingent upon mean precipitation conditions, 
which differ between the two varieties. In contrast, we found no 
consistent differences between varieties in their responses to tem-
poral climatic variation—warmer-than-average local conditions 
led to reduced growth for all populations (SI Appendix, Figs. S1 
and S8). This analysis of subspecific varieties did not ameliorate 
mismatches between spatial versus temporal growth responses or 
their future predictions but rather revealed an additional layer of 

complexity wherein these mismatches may be partially contingent 
on additional climatic dimensions and/or intraspecific variation. 
Hence, our conclusion that spatially derived climate responses fail 
to reliably predict population-level responses to climate change 
through time remains robust to intraspecific variation in climate 
responses and taxonomic uncertainty in this study system.

Over time periods longer than a few decades, whether population- 
level predictions based on responses to in situ temporal variation 
in climate continue to be more accurate than predictions based 
on the response to spatial climatic variation depends on a variety 
of processes including plasticity, evolutionary adaptation, and 
migration (8, 61, 62). An emerging body of work has indicated 
that individual tree growth responses to interannual climate var-
iability may change through time as trees are exposed to different 
ranges of climatic conditions (63–66). Unfortunately, this sort of 
plasticity is likely to accelerate growth declines as trees experience 
conditions beyond the range of variability to which they are 
adapted (63, 67, 68). Thus, predictions of future tree growth based 
on static, linear relationships between interannual climatic varia-
tion and growth, including our predictions, may be overly opti-
mistic and in fact underestimate future growth declines. For 
example, recent megadrought conditions in the western United 
States could induce negative growth responses beyond those pre-
dicted by past climate sensitivities. This could be reflected in sev-
eral of our study populations that experienced near-past growth 
declines beyond those predicted by our model’s population-level 
response (SI Appendix, Fig. S2). Whether transgenerational plas-
ticity could shift climate sensitivities through parental effects on 
offspring phenotypes is currently unknown (69, 70). However, 
given increasing climatic variability and the complexity of envi-
ronmental cues, any such parental effects have a high likelihood 
of being detrimental rather than helping to compensate for declin-
ing performance (70). Over longer timescales, evolutionary adap-
tation to changing conditions could compensate for declining 
performance, through selection for either higher mean growth 
rates or different climate sensitivities (61, 71, 72). However, this 
evolutionary rescue seems unlikely to result in meaningful change 
over the time period we examine here, given the rapid pace of 
climate change relative to the slow demographic rates of long-lived 
tree species (72–75). Adaptive responses to climate change could 
be accelerated or otherwise facilitated by migration of genotypes 
better-suited to current and future climatic conditions (61, 76). 
However, naturally occurring tree dispersal already lags behind 
the pace of climate change (50) and may be further hindered by 
human land use, biotic interactions, or other factors that limit 
range shifts. Thus, while plasticity, adaptation, and migration are 
important processes in determining species’ future trajectories, it 
is unclear whether they have the capacity to substantially alter the 
results or implications of the work we present here over the pro-
jection timeframe.

To improve ecological forecasting, there is an urgent need to 
better understand where and when we need to incorporate tem-
poral variation into our forecasts of future ecological states—
including not only tree growth but also species’ distributions, 
ecosystem productivity, and other socially valuable ecological 
phenomena. Building a predictive understanding of mismatched 
ecological responses to temporal versus spatial climatic variability 
will be especially important as climate change alters past environ-
mental correlations to produce locally and globally novel climate 
regimes (77, 78). Critically important work in this area aiming to 
move beyond the current spatially based paradigm by integrating 
different sources of ecological information has already been fruitful 
(56, 79–81). Ultimately, improving our ability to make accurate, 
reliable forecasts will require systematic exploration of ecological D
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mismatches between space and time, as well as further develop-
ment of data, methods, and models for incorporating both sources 
of variability.

Materials and Methods

Study Species. Ponderosa pine (P. ponderosa s.l.) is widely distributed in western 
North America throughout a highly disjunct range that encompasses a tremendous 
breadth of climatic conditions, with mean annual temperatures ranging from 0 to 
15 °C and 200 to 2,100 mm of mean annual cumulative precipitation (Fig. 1). The 
most commonly used taxonomy recognizes two varieties of P. ponderosa, var. scop-
ulorum and var. ponderosa—the interior and Pacific varieties, respectively (24). The 
most recent molecular work has found evidence of more complex taxonomic struc-
turing within ponderosa pine (17, 18), indicating at least four lineages. However, 
these finer taxonomic divisions do not seem to align with differences in climate 
sensitivities (19, 55) and do not yet have precisely defined geographic bounda-
ries, preventing the confident assignment of populations to these taxonomic units 
without genetic analyses. Hence, the analyses presented in the main body of this 
manuscript treat the P. ponderosa as a single unit, with supplementary analyses 
of how the Pacific–interior distinction impacts climate responses.

Tree-Ring Data.
Data collection. We selected study populations from across the distribution of 
P. ponderosa s.l., following the niche-based methodology proposed by Perret 
and Sax (20). We used curated and taxonomically verified botanical records 
compiled in the Conifer Database (82) to bound the climate space occupied 
by P. ponderosa s.l. across its geographic distribution. This climate space was 
defined by a set of seven climatic variables previously used to model the climatic 
niches of pines and other conifer species (20, 83). We limited site selection 
to public lands managed by the United States Forest Service or the Bureau of 
Land Management. Further criteria were that sites were free of obvious recent 
disturbance (e.g., timber harvest, thinning or other stand management, recent 
fire), were a minimum of one kilometer from high-traffic roadways, and were 
not located on either particularly steep slopes or along drainages. Wherever 
possible, we selected sites such that they corresponded with one of the Conifer 
Database botanical records used to build the species’ climatic niche model. This 
site selection procedure resulted in 24 study sites, spread across the states of 
Arizona, California, Colorado, Idaho, Montana, Oregon, and Montana (Fig.  1 
and SI Appendix, Table S1).

We used a consistent plot- and survey-based approach to collect tree-ring sam-
ples at each study site. Specifically, we established a 25-m by 25-m square plot in a 
representative portion of the stand at each site. Within this plot, we measured each 
ponderosa pine’s bole diameter at 1.4 m above ground level (i.e., diameter at breast 
height, DBH), assessed its general condition and vigor, recorded the presence or 
absence of new cones, and recorded any evidence of pathogens (e.g., sap flows, 
needle blight). Using a Haglöf increment borer, we collected two 4.3-mm diameter 
cores from each tree greater than 15 cm DBH in the plot. One core was collected 
at breast height (140 cm), and the other was collected as close to the ground as 
possible given available equipment and the individual tree’s setting. In cases where 
there were fewer than 15 suitable trees on a plot, we sampled additional trees at 
increasing distances from the plot center. For 10 sites, we could not establish a 
fixed plot due either to excessive understory growth or site terrain characteristics. 
For these sites, trees were sampled at increasing distances from the intended plot 
location (i.e., an n-tree sampling design; (84)). Sampling was conducted during 
the 2018 growing season between June and October.
Sample preparation. All increment cores were mounted, sanded, and visually 
cross-dated according to standard dendrochronological methods (85). We then 
measured the width in millimeters of each growth ring in every core sample using 
2,400 dpi digital scans and the computer program CooRecorder (86). We verified 
year assignments of the measured tree ring series using CDendro (87) and the 
“dplR” package in R 3.6.3 (88, 89). Specifically, we used 20-y lagged interseries 
correlations to identify dating and measurement errors across all series per site. 
These errors were iteratively identified and corrected until all interseries correla-
tions between 20-y segments were above 0.60. Both core samples for each tree 
were used during visual and statistical cross-dating, but only samples extracted 
from breast height were retained for growth analyses. For one site, located outside 
of Show Low, Arizona, a high rate of missing and false rings prevented confident 

assignment of a year of formation to growth rings. This site was excluded from all 
subsequent analyses. We used field-measured DBH for each tree to convert these 
ring width timeseries to annual BAIs, a procedure that controls for the influence 
of increasing tree bole diameter on annual ring widths (90). In total, this yielded 
339 tree growth time series from 23 sites (SI Appendix, Table S1).

Analyses.
Climate data. We associated BAI time series for each tree at each site with PRISM 
LT81m historical monthly climate time series spanning the years 1900 to 2015 
(22). For each year, we summarized monthly climate data into eight seasonal 
periods spanning the growing season of the previous year through the end of 
the current year. In each of these seasons, we calculated mean maximum monthly 
temperature and cumulative precipitation. To characterize the general climatic 
regimes at each site, we calculated mean annual temperature and mean annual 
cumulative precipitation in 30-y moving windows, as well as across the length of 
the entire time series. These climatic variables are similar to those used in growth 
analyses for ponderosa pine and other species (13, 19, 21, 91–93). Exploratory 
analyses indicated that interannual growth was more strongly correlated with 
these seasonal climatic variables than annual climatic variables. Some analyses 
have also included composite measures of moisture availability like vapor pres-
sure deficit (e.g., refs. 18 and 75) or climatic moisture deficit (e.g., ref. 76), usually 
derived from a combination of temperature and precipitation measurements. 
Though these composite variables can be quite informative, we opted to include 
only mean and maximum temperatures and cumulative precipitation to limit 
model complexity and ease interpretation.

Substantial climate change has already been reported across western North 
America over the past several decades (94–97). In order to identify when warming 
began in the climate time series at each of our study sites, we used a break-
point regression analysis to assess how secular trends in annual temperature 
anomalies relative to 1900 to 1950 means have changed across the full time 
series (1900 to 2015). Breakpoints identified by this analysis were used to divide 
growth and climate time series into “prewarming” and “postwarming” periods 
in subsequent analyses. These analyses were conducted using the “segmented” 
package in R3.6.3 (98).
Growth model. We were interested in describing two aspects of growth variation 
in our dataset: 1) species-wide variation in average growth rate associated with 
spatially varying long-term mean climate and 2) population-specific variation 
in annual growth associated with time-varying climatic variables. In order to do 
this, we used a hierarchical generalized linear mixed model implemented in a 
Bayesian framework to model annual BAI during the prewarming period as a 
function of a tree’s size in the preceding year, spatially varying mean climatic 
conditions, and time-varying seasonal climate variables:

	 [1]
BAIt,s,y ∼ �0 + �0,t,s + �1BAt,s,y−1 + �1,sBAt,s,y−1 + �2iCNi,s

+ �3j T Aj,s,y + �2j,sT Aj,s,y + �4jPAj,s,y + �3j,sPAj,s,y + �.

In this model, the BAI in year y of tree t at site s is modeled as the linear com-
bination of that tree’s basal area (BA) in the previous year, y-1, long-term mean 
climate variables (CN) that vary between sites s, and annual climate variables (TA, PA)  
that vary across years y and sites s. CN terms indicate long-term mean climatic 
conditions over the length of the model training period. Beta terms (β) indicate 
estimated fixed effects describing species-wide responses, whereas gamma (γ) 
terms indicate random effects varying across sites s or trees t. Hence, β0 is the 
species-wide intercept (average BAI), whereas γ0,t,s is a random modification of 
the species-wide intercept for each tree t nested in each site s. This random intercept 
modification accounts for growth variation between sites and between trees within 
a site caused by nonclimatic factors like soil characteristics, topography, stand den-
sity, and disturbance histories. BA was back-calculated for each tree in every year 
using the field-measured DBH and ring width time series data, then standardized 
relative to the mean tree size at each site. Because the influence of tree size on BAI 
can vary widely, we included a site-level random slope modifier on this term (γ1,s). 
The index i varies from one to three, denoting one of two long-term mean climate 
variables CN, mean annual temperature and mean annual precipitation, as well 
as their interaction. The β2i coefficients then capture the species-wide relationship 
between mean climatic conditions and BAI. The index j indicates one of eight sea-
sonal periods ranging from the previous year’s growing season through the end D
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of the current growing season in year y. Thus, the parameters β3j and β4j describe 
the fixed species-wide effect of mean monthly maximum temperatures (TA) and 
cumulative precipitation (PA), respectively, during each period j. The parameters γ2j,s 
and γ3j,s capture population-specific deviations from the species-level response to 
each of the same seasonal predictors. Because growth increments are always greater 
than zero, with a variance proportional to the mean, we used a Gamma distribution 
with a logarithmic link function and an estimated dispersion parameter q to describe 
the model error distribution. Because the logarithmic link function required the 
dependent variable to be positive and nonzero, we added the minimum observed 
ring width in each series to any missing rings in that series (i.e., years that were 
identified via cross-dating when no wood formation occurred in the sample). We did 
this instead of adding an arbitrarily small constant in order to preserve differences 
between individual trees in an ecologically realistic way.

Past work has indicated that population-specific growth sensitivities to inter-
annual climatic variation vary predictably with the mean temperature and pre-
cipitation conditions at a site (13, 19). Because we were interested in estimating 
both species-wide and population-level climate responses, we accounted for 
population-specific variation in climate sensitivities by adding in the site-level 
random slope modifiers γ2j,s and γ3j,s. In addition, recent work has questioned 
the assumption of stationarity in climate responses through time that underlies 
a substantial portion of the dendrochronological literature (63–66). Because this 
work indicates that the climate sensitivities of a single tree may change through 
time as climate changes, we fit our model using only climate and growth data from 
the prewarming period identified in our exploratory analyses of climate time series.

The high dimensionality of these random effects (γ terms) in our growth 
model made it difficult to obtain stable coefficient estimates using traditional 
frequentist methods. Hence, we implemented the growth model in a Bayesian 
framework, using minimally informative priors, in the “brms” package in R 3.3.0 
(99). We assessed model convergence using R-hat statistics for the posterior 
distribution of each parameter and model fit by comparing the distribution of 
the training data to the distribution of the mean posterior predictions of those 
observations, across the entire dataset and by each site individually. For each site, 
we compared model fitted to observed values by calculating the SD, Pearson’s r, 
and root mean squared error of the model’s mean posterior predictions, visualized 
in a Taylor diagram (SI Appendix, Fig. S5). In addition, we plotted these site-level 
fitted values and their 95% credible intervals as growth time series for visual 
comparison to observed values (SI Appendix, Fig. S6).
Subspecific model variant. To explore whether the taxonomic uncertainty asso-
ciated with subspecific delineations within P. ponderosa s.l. influences inferred 
species-wide growth responses, we fit an additional model that included interac-
tions between variety (Pacific versus interior) and spatially varying mean climate. 
Populations in California, Oregon, Washington, and Idaho were categorized as 
belonging to the Pacific variety (P. ponderosa var. ponderosa), and populations 
in Montana, South Dakota, and Colorado as belonging to the interior variety 
(P. ponderosa var. scopulorum). Because population-level random effects were 
already included in the modeled response to time-varying climate, we did not 
include interactions between variety identity and the seasonal, time-varying 
climate predictors. This model indicated that the spatial climate responses of 
the Pacific variety (var. ponderosa) matched that of those of P. ponderosa s.l., 
whereas the interior variety (var. scopulorum) had a weaker response to spatially 
varying temperature (SI Appendix, Fig.  S7). However, we also found a strong 
statistical interaction between mean annual temperature and mean annual 
precipitation; because interior populations occupy a colder and drier range of 
climates than Pacific populations, we cannot attribute intraspecific heterogeneity 
in these climate responses to taxonomy alone. In contrast, we found no con-
sistent differences between varieties in population-level responses to temporal 
climatic variation (SI Appendix, Fig. S8). Because this model variant did not resolve 
mismatches between spatial versus temporal climate responses and generated 

similar predictions from both, we used the “sensu lato” model for all subsequent 
analyses and results.
Near-past predictions. To evaluate whether observed growth better matched 
predictions derived from species-wide or population-specific climate responses, 
we predicted growth at each site in response to observed climatic conditions after 
the onset of warming. These predictions were made based on species-wide versus 
population-specific responses separately. Specifically, for species-wide responses, 
observed 30-y rolling mean climate normals in the post-warming period were 
entered into the model CN terms, while setting all other climate effects at zero, 
such that the predicted effect of changing climate depended upon the estimated 
values of β2i. For population-specific responses, observed post-warming seasonal 
climate values were substituted into TA and PA terms, while keeping all other cli-
mate effects at zero, such that the predicted effect of changing climate depended 
upon the estimated values of β3j, β4j,γ2j, and γ3j. In these postwarming predic-
tions, we used observed tree sizes BAt,s,y so that model-predicted growth could 
be directly compared against observed growth. We used Pearson’s correlation 
coefficient between the observed and predicted growth series for each tree in 
the dataset to quantify their correspondence. For species-wide predictions, we 
converted observed growth series to 30-y rolling means to match the scale of 
variability in the predicted series.
Future projections. We then used the growth model to project future tree 
growth using climate projections from the CMIP6 ensemble dataset for future 
scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5 (23) downscaled and extracted 
using ClimateNA 7.3.0 (100). We aggregated monthly climate projections to 
recreate the same mean, annual, and seasonal climate variables used in fit-
ting the growth model (Eq. 1). We used these future climate data to project 
growth through the end of the 21st century for each tree by forcing the model 
with the species-wide versus population-level responses to climate variation 
separately, as described above. To make species-wide growth projections, we 
entered future 30-y mean annual temperature and precipitation projections 
into the CN term in our growth model, while setting the effects of annual cli-
mate variables TA and PA to zero. For population-specific projections, we set 
the effects of CN model terms to zero, and entered in projected future TA and 
PA time series. Both projection types were made with all modeled random 
effects, with tree size BA set to the mean observed value in the model fitting 
period. All model predictions were made using 2,000 posterior draws of model 
parameters, which we summarized with mean posterior predictions and 95% 
credible intervals.

Data, Materials, and Software Availability. Tree ring timeseries data have 
been deposited in Dryad (DOI: 10.5061/dryad.x3ffbg7rj). Previously published 
data were used for this work (22, 100). All other data are included in the manu-
script and/or SI Appendix.
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