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ABSTRACT

Developing accurate off-policy estimators is crucial for both eval-

uating and optimizing for new policies. The main challenge in

off-policy estimation is the distribution shift between the logging

policy that generates data and the target policy that we aim to

evaluate. Typically, techniques for correcting distribution shift in-

volve some form of importance sampling. This approach results

in unbiased value estimation but often comes with the trade-off

of high variance. Furthermore, importance sampling relies on the

common support assumption, which becomes impractical when

the action space is large. To address these challenges, we introduce

the Policy Convolution (PC) family of estimators for the contex-

tual bandit setting. These methods leverage latent structure within

actions—made available through action embeddings—to strategi-

cally convolve the logging and target policies. This convolution

introduces a unique bias-variance trade-off, that can be controlled

via the amount of convolution. Our experiments on synthetic and

benchmark datasets demonstrate remarkable mean squared error

(MSE) improvements when using PC, especially when either the

action space or policy mismatch becomes large, with gains of up to

5 − 6 orders of magnitude over existing estimators.
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1 INTRODUCTION

Off-policy estimation (OPE) is a fundamental problem in reinforce-

ment learning and decision making under uncertainty. It involves

estimating the expected value of a target policy, given access to

only an offline dataset logged by deploying a different policy, often

referred as the logging policy (see [43] for a comprehensive survey).

This decoupling between data collection and policy evaluation is

crucial in many real-world applications, as it allows for the assess-

ment of new policies using historical data without having to deploy

them in the environment, which can be costly and/or risky. In this

paper, we focus on OPE for the one-step contextual bandit setting,

i.e., we perform decision making with only an observed context

that is assumed to be independently sampled (e.g., a user coming

to a website), and do not consider any recurrent dependencies in

the context transitions as is the case in the general formulation of

reinforcement learning.

OPE, in its most general setting, can be a very challenging prob-

lem due to its inherently counterfactual nature, as we observe the

reward for only those actions taken by the logging policy, while we

aim to evaluate any target policy. For example, consider a scenario

where the logging policy in a movie recommendation platform,

for a given segment of users, rarely recommends romantic movies.

This can often happen when we think a user will not like certain

type of movies. On the other hand, a target policy—whose value we

aim to estimate—due to numerous potential reasons, now chooses

to recommend romantic movies for the same user segment. This

distribution-shift can lead to irrecoverable bias in our estimates

[26], making it difficult to accurately evaluate a target policy or

learn a better one, which typically involves optimizing over the

value estimates [12, 37].

Typical off-policy estimators utilize Importance Sampling (IS)

to correct for the policy mismatch between the target and logging

policies [4, 10, 14, 21, 27, 30, 34, 36, 38, 42, 46], leading to unbiased

value estimation, at the cost of high variance. The variance prob-

lem caused by IS is exacerbated if the target and logging policies

exhibit significant divergence, and even more so if the action space

is large. Notably, large action spaces frequently occur in practical

OPE scenarios, e.g., recommender systems which can have mil-

lions of items (actions) [25, 47], extreme classification [19, 22, 31],

discretized continuous action-spaces [40], etc.

To address the aforementioned limitations of IS, we propose

the Policy Convolution (PC) family of estimators. PC strategically
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convolves the logging and target policies by exploiting the inher-

ent latent-structure amongst actions—available through action-

embeddings—to make importance sampling operate in a more fa-

vorable bias-variance trade-off region. Such structure can occur

naturally in different forms like action meta-data (text, images, etc.),

action hierarchies, categories, etc. Or they can be estimated using

domain-specific representation learning techniques [2]. Notably,

the utilization of additional action-structure has also been stud-

ied in the online multi-armed bandit literature (Lipschitz bandits)

[15, 32, 33], albeit in the context of regret minimization.

To be more specific, the PC framework for OPE consists of two

components: (1) conventional IS-based value estimation; and (2)

convolving both the target and logging policies using action-action

similarity. PC allows full freedom over the choice of the backbone

IS estimator, the convolution function, as well as the amount of con-

volution to conduct on the target and logging policies respectively.

To better understand the practical effectiveness of PC, we com-

pare its performance with various off-policy estimators on syn-

thetic and real-world benchmark datasets, simulating a variety of

off-policy scenarios. Our results demonstrate that PC can effectively

balance the bias-variance trade-off posited by policy convolutions,

leading to up to 5 − 6 orders of magnitude better off-policy evalua-

tion in terms of mean squared error (MSE), particularly when the

action space is large or the policy mismatch is high. To summarize,

in this paper, we make the following contributions:

• Introduce the Policy Convolution (PC) family of off-policy esti-

mators that posit a novel bias-variance trade-off controlled by

the amount of convolution on the logging and target policies.

• Propose four different convolution functions for the PC frame-

work, where each convolution function is accompanied with

its unique set of inductive biases, thereby leading to distinct

performance comparisons.

• Conduct empirical analyses on synthetic and real-world bench-

mark datasets that demonstrate the superiority of PC over a

variety of off-policy estimators, especially when the action

space or policy mismatch becomes large.

2 PRELIMINARIES

2.1 OPE in Contextual Bandits

We study OPE in the standard stochastic contextual bandits setting

with a context space X and afi nite action space A. In each round

! , the agent observes a context "! ∈ X, takes an action #! ∈ A,

and observes a reward $! ∈ [0, 1]. The context "! is drawn from

some unknown distribution % ("). The action #! follows some policy

& (·|"! ), and the reward $! is draw from an unknown distribution

% ($ |"! , #! ) with expected value ' (#," ) ! E"∼# (" |$,% ) [$ ]. The value

of a policy is its expected reward

( (&) ! E
%∼# (% )

[

E
$∼& ( · |% )

[' (#," )]

]

.

In OPE, given a target policy & , we aim to estimate its value( (&)

using some bandit feedback data D ! {("! , #! , $! )}
'
!=1 collected by

deploying a different policy ). We call ) the logging policy and

assume it is known.

2.2 Conventional OPE Estimators

We now briefly discuss a few prominent OPE estimators, which

will also be used to instantiate our proposed Policy Convolution

(PC) estimator discussed in Section 3.

2.2.1 Direct Method (DM). Taking a model-based approach, DM

leverages a reward-model to estimate the value of the target policy.

Formally, given a suitable '̂ : A ×X↦→ R, the estimator is defined

as follows:

(̂DM (&) ! E
(%,·,· )∼D

[

∑

$∈A

& (# |") · '̂ (#," )

]

,

where the outer expectation is over thefi nite set of logged bandit

feedback data D. Notably, the variance of (̂DM (·) is often quite low,

since '̂ is typically bounded. However, it can suffer from a large

bias problem due to model misspecification [5].

2.2.2 Inverse Propensity Scoring (IPS). IPS [10] estimator uses

Monte-Carlo approximation and importance sampling to account

for the policy-mismatch between & and ) as follows:

(̂IPS (&) ! E
(%,$,")∼D

[

& (# |")

) (# |")
· $

]

.

The IPS estimator is unbiased under the following two assumptions

which we assume throughout the paper unless otherwise specified:

Assumption2.1. (Unconfoundedness) The action selection pro-

cedure is independent of all potential outcomes given the context, i.e.,

∀" ∈ X, & ∈ Π, # ∼ & (·|") : {' (#′, ")}$′∈A ⊥⊥ # | " .

Assumption2.2. (Common Support) The target policy & shares

common support with the logging policy ), ∀" ∈ X, # ∈ A: & (# |") >

0 =⇒ ) (# |") > 0.

However, IPS estimator can suffer from a large variance problem,

since the importance weights & (# |")/) (# |") can be unbounded and

huge. Several estimators are proposed to reduce the variance of the

IPS estimator.

2.2.3 Self-normalized Inverse Propensity Scoring (SNIPS). Built on

the observation that the expected propensity weight in IPS equals

1 , SNIPS [38] uses the empirical average of the propensity weights

as a control variate for IPS as follows:

(̂SNIPS (&) ! E
(%,$,")∼D

[

& (# |")

* · ) (# |")
· $

]

s.t. * ! E
(%,$,· )∼D

[

& (# |")

) (# |")

]

.

SNIPS typically enjoys smaller variance at the cost of a slight added

bias in comparison to IPS, especially when the variance of the

propensity weight is large[8]. Further, (̂SNIPS (&) is a strongly con-

sistent estimator of ( (&) by the law of large numbers.

2.2.4 Doubly Robust (DR). DR combines the benefits of unbiased

estimation in IPS and the low-variance, model-based estimation in

DM:

(̂DR (&) ! E
(%,$,")∼D

[

& (# |")

) (# |")
· ($ − '̂ (#," )) + Δ(&," )

]

s.t. Δ(&," ) !
∑

$′∈A

& (#′ |") · '̂ (#′, "),

where '̂ is the same reward-model as used in DM (Section 2.2.1).

Intuitively, DR uses the reward-model as a baseline, and performs
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Figure 1: Intuition for the PC framework demonstrated using a hierarchical action tree, where similar actions (movies in this

example) are recursively agglomerated together. The last level (leaf nodes) represents the complete action space, and the higher

levels consist of “meta-actions” that represent a group of individual actions. As we go higher, PC defines the convolved policy

for a given action, as the mean probability of all actions inside its correspondingmeta-action. Hence, we obtain the uniform

policy at the topmost-level, and recover the original policy at the last-level.

importance sampling only on the error of the given reward-model.

DR is unbiased and can be of smaller variance than IPS when the

reward-model '̂ is close to the true reward ' [4].

2.2.5 Self-normalized Doubly Robust (SNDR). Similar to the idea be-

hind SNIPS (Section 2.2.3); SNDR [24, 42] performs the same control

variate technique on the DR estimator (Section 2.2.4) as follows:

(̂SNDR (&) ! E
(%,$,")∼D

[

& (# |")

* · ) (# |")
· ($ − '̂ (#," )) + Δ(&," )

]

s.t. * ! E
(%,$,· )∼D

[

& (# |")

) (# |")

]

; Δ(&," ) !
∑

$∈A

& (# |") · '̂ (#," ) .

Hence, SNDR encapsulates the ideas behind all the aforementioned

estimators to conduct strongly consistent, low-variance policy value

estimation that might perform well (in terms of MSE) in practice.

While effective to some extent, the importance sampling based

estimators mentioned above can still suffer from large variance

due to large importance sampling weights, especially when the

action space is large. In particular, the variance of these impor-

tance sampling based estimators grows roughly linearly w.r.t. the

maximum propensity weight in D. And the maximum propensity

weight can grow linearly w.r.t. the size of action space Ω( |A|) [39],

making these estimators undesirable for OPE for large action-space

problems. Further, when Assumption 2.2 is violated, the variance of

such importance sampling based estimators becomes unbounded, in

addition to incurring a bias of E%
[
∑

$∈U(% ) & (# |")' (# |")
]

, where

U(") is the set of actions where ) (·|") doesn’t put any probability

mass on (blind spots) [26].

To address the aforementioned problems of importance sampling

based estimators, we introduce policy convolution that makes use

of the latent structure within actions in the next section.

3 OPE VIA POLICY CONVOLUTION

In addition to the offline dataset D, we further posit access to some

embeddings E : A↦→ R
( of the actions, which maps an action #

to a +-dimensional embedding space E(#) ∈ R( . Let EA ⊂ R( be

the subspace spanned by E. Ideally, the embedding should capture

action-similarity information, i.e., smaller distance in the embed-

ding space should imply smaller difference in terms of expected

reward for each context " ∈ X. Notably, such action-embeddings

are typically readily available in many industrial recommender

systems, e.g., via matrix factorization [16].

We are now ready to define our Policy Convolution framework

for OPE. Taking IPS (Section 2.2.2) as a representative “backbone”

estimator for PC, we define PC-IPS as follows:

(̂PC−IPS (&) ! E
(%,$,")∼D

[

(& (·|") ∗ ,)1 ) (#)

() (·|") ∗ ,)2 ) (#)
· $

]

= E
(%,$,")∼D

[∑

$′ & (#
′ |") · ,)1 (E(#), E(#

′))
∑

$′ ) (#
′ |") · ,)2 (E(#), E(#

′))
· $

]

,

where ‘∗’ represents the convolution operator specified in the

action-embedding domain, and ,) : R(×R( ↦→ R is an action-action

similarity (or convolution) function which has a parameter ‘- ’ to

control the amount of convolution. Notably, PC is not limited to the

IPS backbone estimator discussed hitherto, and we analogously de-

fine PC for other backbone estimators, namely, Self-Normalized IPS

(SNIPS), Doubly Robust (DR), Self-Normalized DR (SNDR) discussed

in Sections 2.2.3 to 2.2.5, and call such estimators PC-SNIPS, PC-DR,

and PC-SNDR for convenience. We provide their exact specifications

in Appendix A.
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#1 #2 #3 #4 ( ∗ (·)
IPS with |D| = 10

MSE Bias2 Var

' (·, "1) 5 10 15 20 − − − −

- = 1
& (·|"1) 0.0 0.2 0.2 0.6 17

48.0 ≈ 0 48.0
) (·|"1) 0.2 0.2 0.4 0.2 13

- = 2
(& ∗ ,) ) (·|"1) 0.1 0.1 0.4 0.4 15.5

13.4 4.6 8.8
() ∗ ,) ) (·|"1) 0.2 0.2 0.3 0.3 13.5

- = 3
(& ∗ ,) ) (·|"1) 0.25 0.25 0.25 0.25 12.5

18.6 16 2.6
() ∗ ,) ) (·|"1) 0.25 0.25 0.25 0.25 12.5

Table 1: A toy example to intuit PC using the Tree similarity function, and constrained to have -1 = -2. Similar to Figure 1, in

this toy example, the action tree is a 3-level complete binary tree, where the action partitioning is defined as {(#1,#2,#3,#4)}→

{(#1,#2), (#3,#4)} →{( #1), (#2), (#3), (#4)} from top to bottom.

We also illustrate the intuition behind policy convolutions in

Figure 1, where PC strategically biases the logging and target poli-

cies toward the uniform policy, by leveraging the underlying action

structure, in this case, specified via a hierarchical grouping of ac-

tions. As we will observe in Section 4.2, such convolutions in-turn

lead to a new bias-variance trade-off, controlled by the amount

of convolution (-). We propose four suitable instantiations of the

action-action convolution (or pooling) function, ,) (·, ·) for PC:

• Kernel Smoothing. Perhaps the most intuitive, we use the idea

of multi-variate kernel smoothing [44] in the action-embedding

space to derive our similarity function as:

,)
(

E(#), E(#′)
)

! K
(

E(#), E(#′)
)

=
1

-(

(
∏

!=1

K

(

E(#)! , E(#
′)!

-

)

,

where, K is a suitable kernel function (e.g., Gaussian), and - ∈ R

now corresponds to the bandwidth. It is worth noting that such a

formulation can also be derived by viewing actions as continuous

treatments, as defined by their embeddings [9, 14]. However, since

an inverse mapping from R( ↦→A does not exist in our discrete

action problem, having treatments outside EA is meaningless.

• Tree Smoothing. In this setting, we use E to recursively par-

tition the action-space (see Figure 1 for a depiction) into a tree-

like structure of depth . , where each depth can be specified

by T( ! {a(,1, a(,2, . . . , a(,*}, where a(,! is a meta-action (set)

comprising of singular actions, such that A ≡
⋃*

!=1 a(,!, and

a(,! ∩ a(,+ = Φ for all ! ≠ / pairs. Notably, T, (root node) consists

of a single meta-action with all actions, and T1 ≡ A (last level)

consists of each singular action. The similarity function is then

defined as:

,)
(

E(#), E(#′)
)

!
I(#′ ∈ a) (#))

|a) (#) |
,

where, I(·) represents the indicator function, - signifies the depth

of the action-tree to use, and a) (#) represents the meta-action at

depth - corresponding to the action #.

• Ball Smoothing. In this setting, we define a binary similarity

function based on afi xed-radius ball around the given action, as

defined by E as follows:

,)
(

E(#), E(#′)
)

!
I
(

‖E(#) − E(#′)‖22 < -
)

/

/

{

‖E(#) − E(#′′)‖22 < - | ∀#′′ ∈ A
}/

/

,

where, - signifies the radius of the ball around E(#).

• kNN Smoothing. In this setting, we define a binary similarity

function as the k-nearest neighbors decision function:

,)
(

E(#), E(#′)
)

!
I (#′ ∈ kNN(#,- ))

-
,

where, - signifies the number of nearest neighbors to use, and

kNN(#,- ) represents the set of - nearest neighbors of E(#) in

EA .

We note that our general Policy Convolution framework en-

compasses the existing OPE estimators designed for large action

spaces [23, 28]. As we will later show in Section 4.2, using the

convolution functions proposed in Section 3, PC is able to achieve

significantly better performance than existing estimators. More

specifically, groupIPS [23] can be generalized as PC-IPS and of-

fCEM [28] as PC-DR, both using a two-depth tree (i.e.,fl at clustering)

in the tree convolution function, with an additional constraint of

-1 = -2 = 1 (see Appendix B for a formal generalization). As we will

further note in our experiments (Section 4.2): (1) using the kernel

and kNN convolution functions tend to perform better than others;

and (2) convolving the logging and target policies differently (i.e.,

-1 ≠ -2) adds a lot offl exibility to PC, leading to much better estima-

tion than either convolving the two policies equally, or convolving

only one out of the two policies.

Motivating example. To gain a better intuition of PC, we refer

to Figure 1 and construct a four-action, single-context toy example

described in Table 1. We conduct OPE using the IPS estimator at

various levels of the action-tree, with a sample size of |D| = 10 and

repeat the experiment 50k times. The results demonstrate that as

we progress to higher levels of the tree (increased pooling), variance

decreases, but bias increases. At the leaf level, IPS is unbiased but

exhibits high variance. At the top-most level, while variance is the

lowest, bias is significantly increased. When - = 2, we observe the

best bias-variance trade-off, leading to the lowest MSE.
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trade-off, where larger pooling leads to decreased variance, but

increased bias. It is worth mentioning that the initial decrease in

bias with convolution is due to the use of )good for logging, which

partially violates Assumption 2.2. This results in a biased SNIPS

estimate, which the PC family of estimators are able to effectively

recover. Further, we note that solely convolving the target policy

(i.e., the similarity estimator) does not necessarily result in a suitable

bias-variance trade-off, with the other two convolution strategies

being significantly better, and having -1 ≠ -2 consistently being

the best approach.

5 RELATED WORK

Off-policy evaluation. A wide body of literature in operations

research, causal inference, and reinforcement learning studies the

problem of off-policy evaluation. Prominent off-policy estimators

can be grouped into the following three categories: (1) Model-

based: dubbed as the direct method (DM), whose key idea is to use a

parametric reward model to extrapolate the reward for unobserved

(context, action) pairs [4]. DM typically has a low variance, at the cost

of uncontrollable bias due to model misspecification. (2) Inverse

propensity scoring (IPS): IPS uses the propensity ratio between

the target and logging policies to account for the distribution mis-

match [10]. Though unbiased under mild assumptions, IPS suffers

from large variance. Typical remedies for the large variance are

propensity clipping [11, 36] or self-normalization [38], which might

introduce bias. (3) Hybrid: some estimators (e.g, the doubly robust

estimator [4]) combine DM and IPS together to leverage the benefits

of both worlds [3–5, 24, 34, 42]. However, these estimators still

suffer from the large variance problem due to the large propensities

especially when the action space is large.

Off-policy evaluation for large action spaces. Two kinds of

major problems occur when attempting to perform OPE in large

action spaces. Firstly, the variance of any importance sampling

method grows linearly w.r.t. the size of the action-space [39], and

the common support assumption tends to become impractical [26]

leading to irrecoverable bias in estimation. Recent work [6, 23, 27,

28] attempts to use some notion of latent structure in the action-

space to address both of the aforementioned limitations. The MIPS

estimator [27] builds on the randomness in the available action

embeddings to improve OPE. However, in a setting where only a

bijective mapping between actions and embeddings is available (as

in this paper and many real-world scenarios where embedding is

in a continuous space), MIPS reduces to vanilla IPS. Further, as

we discussed in Section 3, offCEM [28], similarity estimator [6],

and groupIPS [23] are all specific instantiations of our PC family of

estimators. A concurrent work [41] proposes to use the estimated

marginal density ratio over the reward as the importance weight

in the estimators.

Off-policy evaluation for continuous action spaces. Another

line of work builds off-policy estimators when the action-space

is continuous, e.g., the dosage of a treatment. If we discretize the

action-space into afi xed number of bins as per some resolution, the

action-space becomes too large for typical off-policy estimators to

work well [40]. Naive use of importance sampling based estimators

would be vacuous in this setting, since the probability of selecting

any action can be zero for a policy that samples actions according to

some probability density function. To this end, typical approaches

extend the discrete rejection sampling idea into a smooth rejection

operation using standard kernel functions [14, 17, 45], with the

implicit assumption that similar actions (in terms of distance in

the continues action space) should lead to similar reward. Our

proposed PC also leverages the similarity information between

actions through action embeddings, but for problem with discrete

and large action spaces.

6 CONCLUSION & FUTUREWORK

In this paper, we proposed the Policy Convolution (PC) family of es-

timators which leverage latent action structure specified via action

embeddings to perform off-policy evaluation in large action spaces.

More specifically, PC convolves both the target and logging policies

according to an action-action convolution function, which posits

a new kind of bias-variance tradeoff controlled by the amount of

convolution.

Conducting empirical evaluation over a diverse set of off-policy

estimation scenarios, we observe that the estimators from the PC

framework enjoy up to 5 orders of magnitude improvement over

existing baseline estimators in terms of MSE, especially when (1)

the action-space is large, (2) the policy mismatch between logging

and target policies is high, or (3) the common support assumption

for importance sampling is violated. We believe that ourfindings

can expand the potential use of off-policy estimators into new and

practical scenarios, and also encourage further exploration into the

use of additional structure for efficient OPE.

We also discuss limitations and unexplored directions in this

paper that we believe are promising for future work. Firstly, having

a deeper formal understanding about the statistical properties of

PC might help in designing more robust off-policy estimators. Next,

even thoughwe propose four different action convolution functions,

having a better understanding of the inductive biases that various

convolution functions posit might guide us in designing even better

and more principled OPE approaches. Finally, understanding and

developing principled techniques for automatically selecting the

level of convolution to conduct on the target and logging policies

is an interesting research direction [18, 35].
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A APPENDIX: FURTHER PC INSTANTIATIONS

For the sake of clarity, we provide a formal definition of PC with

using Self-Normalized IPS (SNIPS, Section 2.2.3), Doubly Robust (DR,

Section 2.2.4), Self-Normalized DR (SNDR, Section 2.2.5) as backbone

estimators:

• PC-SNIPS. Defined as follows:

(̂PC−SNIPS (&) ! E
(%,$,")∼D

[

(& (·|") ∗ ,)1 ) (#)

* · () (·|") ∗ ,)2 ) (#)
· $

]

s.t. * ! E
(%,$,· )∼D

[

(& (·|") ∗ ,)1 ) (#)

() (·|") ∗ ,)2 ) (#)

]

.

• PC-DR. Defined as follows:

(̂PC−DR (&) ! E
(%,$,")∼D

[

(& (·|") ∗ ,)1 ) (#)

() (·|") ∗ ,)2 ) (#)
· ($ − '̂ (#," )) + Δ(&," )

]

s.t. Δ(&," ) !
∑

$′∈A

& (#′ |") · '̂ (#′, ").

• PC-SNDR. Defined as follows:

(̂PC−SNDR (&) ! E
(%,$,")∼D

[

(& (·|") ∗ ,)1 ) (#)

* · () (·|") ∗ ,)2 ) (#)
· ($ − '̂ (#," )) + Δ(&," )

]

s.t. * ! E
(%,$,· )∼D

[

(& (·|") ∗ ,)1 ) (#)

() (·|") ∗ ,)2 ) (#)

]

s.t. Δ(&," ) !
∑

$∈A

& (# |") · '̂ (#," ).

B APPENDIX: EXISTING OPE ESTIMATORS

We formally show the generalization of existing off-policy estimator,

groupIPS [23], which is also designed for large action-spaces to

be a specific instantiation of the Policy Convolution framework.

Starting with the definition of PC-IPS:

(̂PC−IPS (&) = E
(%,$,")∼D

[∑

$′ & (#
′ |") · ,)1 (E(#), E(#

′))
∑

$′ ) (#
′ |") · ,)2 (E(#), E(#

′))
· $

]

,

∵ -1 = -2 in groupIPS:

(̂groupIPS (&) = E
(%,$,")∼D

[∑

$′ & (#
′ |") · ,) (E(#), E(#

′))
∑

$′ ) (#
′ |") · ,) (E(#), E(#′))

· $

]

,

Further, ∵ , (·, ·) is a single-depth tree pooling function (equivalent

to one-level of clustering) in groupIPS:

(̂groupIPS (&) = E
(%,$,")∼D

[∑

$′ & (#
′ |") · I(#′ ∈ a(#))

∑

$′ ) (#
′ |") · I(#′ ∈ a(#))

· $

]

,

which arrives us to the proposed groupIPS estimator [23], where

a(#) represents the cluster of the action #.

Note that offCEM [28] can be generalized in the exact same way

as above, but starting with PC-DR instead of PC-IPS.

C APPENDIX: EXPERIMENTAL SETUP

C.1 Movielens

Taking inspiration from previous recommender system→ bandit

feedback conversion setups [29], we define a positive reward if

the provided rating ≥ 4, or else zero. We then define contexts

and action-embeddings as the user- and item-factors attained by

performing SVD on the binary user-item rating matrix, respectively.

Furthermore, to simulate continuous instead of binary reward, for
missing entries, we define the reward as the dot product of the

corresponding user- and item-factors, estimated using SVD before.

We define the target policy similarly as in Equation (1), and aiming

to follow a realistic two-stage recommender system setup [20],

we define the logging policy ) (·|") as follows: (1) shortlist a set

of 100 best actions defined by ' (·, "), and 400 actions at random;

(2) sample a logit from 4 (0, 1) for each positive action, and from

4 (0, 0.8) for the random actions; (3) take a temperature softmax as

in Equation (1) only on the sampled logits; and (4) perform 2−greedy

on the obtained action probabilities to satisfy Assumption 2.2.

C.2 Further Details

For evaluating the performance of various estimators, we compute

theMean Squared Error (MSE) between the true and predicted value

of the target policy. We reserve a large test-set just to compute the

true value of the target policy.We also estimate the squared bias and

variance of our predicted estimates by repeating each experiment

for 50 random seeds, and also compute the 95% confidence interval

for visualization purposes. Note that the bias, variance, and MSE of

any estimator are naturally linked to each other by the following

decomposition:MSE(·) = Bias(·)2 + Var(·).

For estimators in the PC framework, we chose the optimal convo-

lution values (i.e., -1 and -2) using the MSE obtained on a validation

set. Notably, while PC for any given backbone estimator strictly

contains the naïve backbone (i.e., when -1 = -2 = 0); to de-confound

the effect of policy convolution and the backbone estimator, we

only report results for PC with a non-zero amount of pooling.

D APPENDIX: DEFAULT HYPERPARAMETERS

Hyper-parameter Default Value

|A| 2,000

|D| 10,000

| Test data | 100,000

3 0.0

2 0.05

# Seeds 50

dim(context) 32

dim(action-embed) 16

dim(noise) 8
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