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Abstract

Diffusive shock acceleration requires the production of backstreaming superthermal ions (injection) as a first step.
Such ions can be generated in the process of scattering of ions in the superthermal tail off the shock front.
Knowledge of the scattering of high-energy ions is essential for matching conditions of upstream and downstream
distributions at the shock transition. Here we analyze the generation of backstreaming ions as a function of their
initial energy in a model stationary shock and in a similar rippled shock. Rippling substantially enhances ion
reflection and the generation of backstreaming ions for slightly and moderately superthermal energies, and thus is
capable of ensuring ion injection into a further diffusive shock acceleration process. For high-energy ions, there is
almost no difference in the fraction of backstreaming ions produced and the ion distributions between the planar
stationary shock and the rippled shock.

Unified Astronomy Thesaurus concepts: Shocks (2086); Planetary bow shocks (1246); Interplanetary shocks (829)

1. Introduction

Collisionless shocks are ubiquitous in space plasmas. In
these shocks, the energy of the incident flow is used for plasma
heating, particle acceleration, and magnetic field enhancement
—via interaction between charged particles and electro-
magnetic fields collectively produced by these particles
themselves (see Treumann 2009, for a review). Acceleration
of a small fraction of charged particles to high energies occurs
via diffusive shock acceleration (DSA; Drury 1983). DSA
requires a seed population of superthermal particles, which
propagate from the shock into the upstream region (the so-
called injection; Malkov & Völk 1998; Scholer et al. 1998).
Backstreaming (or escaping) ions are produced in shocks via
ion reflection (Hudson 1965). Such ions are observed as field-
aligned beams near the Earth’s bow shock (Thomsen et al.
1983; Kucharek et al. 2004; Meziane et al. 2004) and as
energetic reflected ions at interplanetary shocks (Zhou et al.
2020). The mechanism of generation of these ions is not
completely understood. They were shown to be naturally
produced by reflection in oblique shocks with the angle
between the shock normal and the upstream magnetic field
vector θBn< 50° (Leroy & Winske 1983; Tanaka et al. 1983;
Burgess 1987; Gedalin et al. 2008), but they are also observed
at shocks with larger θBn (Kucharek et al. 2004). With
increasing upstream Mach number collisionless shocks become
rippled (Moullard et al. 2006; Lobzin et al. 2008; Johlander
et al. 2016, 2018; Gingell et al. 2017). It was shown (Gedalin
et al. 2023) that some ions reflected by a rippled shock may
escape into the upstream region. These ions come to the shock
in the tail of the distribution. It was shown also that
superthermal tails result in the enhancement of ion

reflection (Gedalin & Ganushkina 2022a). Thus, rippling and
the presence of superthermal incident ions may be important
for injection. Pickup ions, which are completely superthermal,
are efficiently reflected and escape (Gedalin et al. 2021). Let Vu

be the incident plasma flow velocity along the shock normal in
the shock frame and mp the ion (proton) mass. Most pickup
ions have energies m V 2p u

2» . The dependence of reflection on
the ion energy ò in the range m V0 2p u

2< < has not been
analyzed so far. Knowledge of the dependence on energies well
above m V 2p u

2 is important for imposing proper matching
conditions at the shock for the DSA-accelerated
ions (Drury 1983; Gieseler et al. 1999; Kirk & Dendy 2001).
So far only the scattering probabilities of high-energy ions have
been analyzed (Gedalin et al. 2016). Here we study the
dependence of ion reflection on the incident energy using
analysis of test particles in a planar stationary shock and in its
rippled counterpart.

2. Notation

We denote by u and d the upstream and downstream regions,
respectively. Ions enter the shock from the upstream and either
proceed to the downstream region (transmitted and reflected–
transmitted ions) or are reflected and escape upstream (back-
streaming ions). In a planar stationary shock, all fields depend
only on the spatial coordinate along the shock normal, which is
chosen as the x-direction here. The upstream magnetic field is
B B cos , 0, sinu u Bn Bn( )q q= . The normal incidence frame
(NIF) is the frame in which the shock is not moving and the
upstream plasma flows along the shock normal with speed Vu.
The de Hoffman–Teller frame (HT) is the shock frame in which
the upstream flow velocity is along the upstream magnetic
field, V V 1, 0, tanu u Bn

HT ( )( ) q= . We limit ourselves to non-
relativistic speeds Vu= c, V ctanu Bnq  , where c is the speed
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of light. Then B(HT) = B(NIF) and
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( )( ) ( )
( ) q

= -

E E
V B
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. 2x x

u y BnHT NIF
NIF

( )( ) ( )
( ) q

= +

For simplicity, we consider a plasma consisting of electrons
and protons, with equal upstream number densities nu. The
upstream ion gyrofrequency is Ωu= eBu/mpc, and the upstream
ion plasma frequency is n e m4pi u p

2w p= . The ion inertial
length is c/ωpi. The Alfvén speed is vA= cΩu/ωpi and the
Alfvénic Mach number is M= Vu/vA. In what follows, only
this Mach number is used. The upstream ion convective
gyroradius is ρi= Vu/Ωu=M(c/ωpi).

In what follows we use the normalized variables

v vx x V t t, , 3i u u ( )r   W 

and the electric field is normalized to VuBu/c. The cross-shock
potentials in both NIF and HT are normalized as follows:

s e m V e E dx m V2 2 . 4p u x p u
2 2( )( ) ( ) ( )/ / /òf= = -

3. Shock Model

The chosen shock model is described in detail in Gedalin
et al. (2023). The normalized stationary planar fields are given
by
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In these expressions B1 describes the basic profile. The
downstream magnetic field is

B R sin cos . 10d Bn Bn1
2 2 2 ( )q q= +

The part B2 describes an overshoot. The coefficients kE and kB
are obtained from the normalized cross-shock potentials s(NIF)

and s(HT). The parameters θBn, Bd, R2, sNIF, sHT, D, Xl, Xr, Wl,
and Wr completely define the chosen model of a planar
stationary shock profile.
In order to add rippling, we replace (Gedalin &

Ganushkina 2022b; Gedalin et al. 2023)
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The ripples in the model are moving along the shock front with
velocity V V 0, sin , cosr r ( )j j= . In the frame of the ripples,
the fields become time-independent. The speed is Vr= c
(Johlander et al. 2016, 2018; Gingell et al. 2017; Omidi et al.
2021), so the transformation of the fields from NIF to this

Figure 1. Magnetic and electric fields for the rippled shock with the parameters in the text. Here xn is the coordinate along the shock normal, and xt is the coordinate
along the shock front in the direction of rippled propagation.
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frame yields

E E V B V Bsin cos 21x x r z r y ( )j j¢ = + -

E E V Bcos 22y y r x ( )j¢ = +

E E V Bsin . 23z z r x ( )j¢ = -

4. Test Particle Analysis

We numerically solve the equations of motion

r
v

v
E v B

d

dt

d

dt
, 24( )= = + ´

in the model fields above. In the case of a stationary planar
shock, the computation is done in NIF. In the case of a rippled
shock, we switch to the frame of the ripples. Solving the
equations of motion is equivalent to solving the Vlasov
equation for the distribution function f (t, r, v), which is
constant along the trajectory, given by a solution of
Equation (24). For each particle with the initial velocity v0,
we numerically find the final velocity vf far from the shock,
either downstream or upstream, depending on the behavior of
the ion. The initial and final velocities are shifted into HT and
the components parallel and perpendicular to the local
magnetic field, v∥ and v⊥, are determined. In the upstream
and downstream regions of HT each ion freely streams along

the magnetic field and gyrates around the magnetic field,
without any drift across the magnetic field, so that the
distribution function depends only on v∥ and v⊥. The
conservation of a number of particles requires

v f v v dv v dv

v f v v dv v dv

,

, . 25f f f f f f f

0, 0 0, 0, 0, 0, 0,

, , , , , ,

( )

( ) ( )
ò

ò=

^ ^ ^

^ ^ ^

  

  

In order to find ff(vf,∥, vf,⊥) numerically, we create a grid in the
v∥–v⊥ space, and each particle with final velocity in the range
[v∥, v∥+Δv∥, v⊥, v⊥+Δv⊥] is assigned the weight v0,∥/vf,∥.
The incident particle distribution f0(v0,∥, v0,⊥)dv0,∥v0,⊥dv0,⊥ is
generated numerically. Summing up all particles with their
weights within each grid cell, we numerically derive the
distribution function ff(vf,∥, vf,⊥). In the planar stationary shock,
the initial position is the same for all incident particles. For a
rippled shock for proper spatial averaging along the shock
front, the incident y and z positions are uniformly distributed
within one ripple wavelength.

5. Ion Distributions

In the present test particle analysis, the following parameters
have been used: M= 6, Bd = 3, R2= 1, Xl= Xr= 0.5, Wl=D,
Wr= 2D, θBn= 60°, D= 2/M, s(NIF) = 0.4, and s(HT) = 0.1.
The rippling parameters are: j= 45°, kr= 2π, vr = 1,

Figure 2. Left column: the distribution of the forward-moving incident ions fu(v∥, v⊥) (see explanation in text). Upper middle: the distribution of the ions far
downstream of the shock fd(v∥, v⊥) without rippling. Bottom middle: the distribution of the ions far downstream of the shock fd(v∥, v⊥) in the rippled shock. Upper
right (empty in this case): the distribution of the backstreaming ions fb(v∥, v⊥) without rippling. Bottom right: the distribution of the backstreaming ions fb(v∥, v⊥) in the
rippled shock. The initial ion distribution is isotropic with vp = 0.5.
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XL= XR= 0, andWL=WR= 2. Figure 1 shows the electric and
magnetic fields of the rippled shock. Rippling is interpreted as a
wave in the foot (Gingell et al. 2017) or in the
overshoot (Johlander et al. 2018). The proposed analytical
model for rippling (Gedalin & Ganushkina 2022b) is not self-
consistent but satisfies the Maxwell equations. As can be seen
in Figure 1, both the upstream and downstream regions around
the ramp (the region of the steepest magnetic field increase) are
affected.

For the present analysis the incident distributions are
isotropic shells of different velocities vp and thickness of
Δvp= 0.01 around the plasma velocity Vu, that is,
vp� |v−Vu|� vp+Δvp. Any isotropic incident distribution
can be represented as a weighted superposition of such shells.
We start with slightly superthermal ions, vp= 0.5. It is widely
accepted to describe a plasma with the upstream ion
temperature Tu using the parameter n T B8i u u u

2b p= . The
normalized thermal speed of ions is then v M2T ib= . For
the chosen Mach number, vp= 3vT if βi= 2. Thus, for small βi
these ions are substantially superthermal for an upstream
Maxwellian distribution, while for large βi the chosen vp= 0.5
is in the tail of the Maxwellian and their number is not
negligible.

All subsequent figures have the same format. The upper row
is for the planar stationary shock and the bottom row is for the
rippled shock, as specified in the above model. The left column
shows the distribution of ions moving initially toward the

shock, v∥> 0. Only these ions are included in the analysis. The
top and bottom panels of this column are identical since this
condition is imposed well upstream of the shock where the
rippling effects are negligible. The middle column shows the
distribution of ions that cross the shock, either not being
reflected at all (directly transmitted ions) or after one or more
reflections (reflected–transmitted ions). The right column
shows the distribution of backstreaming ions, which eventually
appear in the analysis well upstream of the shock with v∥< 0.
If there are no such ions, the corresponding panel is empty. The
distributions are shown on a logarithmic scale.
Figure 2 shows the results of the test particle analysis for

vp= 0.5. In this case, all ions in the initial shell are moving
toward the shock, as seen in the left column. In the upper
middle panel, two populations are clearly seen: the lower v⊥
population of the directly transmitted ions, which were not
reflected at all, and the higher v⊥ population of the reflected–
transmitted ions, which were reflected once and crossed the
shock again. The upper right panel shows the ions that were
reflected and escaped into the upstream region (backstreaming
ions). In Figure 2 this panel is empty since no backstreaming
ions were found for 80,000 ions entering the shock. The
downstream distribution in the bottom middle panel (the
rippled shock) is much more diffuse, which is not surprising
since it includes ions crossing the shock at different positions
with different local normals (Ofman & Gedalin 2013). Local
normal is the direction of the steepest increase in |B| and

Figure 3. Left column: the distribution of the forward-moving incident ions fu(v∥, v⊥) (see explanation in text). Upper middle: the distribution of the ions far
downstream of the shock fd(v∥, v⊥) without rippling. Bottom middle: the distribution of the ions far downstream of the shock fd(v∥, v⊥) in the rippled shock. Upper
right: the distribution of the backstreaming ions fb(v∥, v⊥) without rippling. Bottom right: the distribution of the backstreaming ions fb(v∥, v⊥) in the rippled shock. The
initial ion distribution is isotropic with vp = 1.5.
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depends on the position along the shock front in a rippled
shock. About 20% of the incident ions are reflected and escape
into the upstream region, making up the population of
backstreaming ions, seen in the bottom right panel. This
distribution is also very diffuse, with two maxima: one at low
v∥ but large v⊥≈ 1.5 (a gyrating beam), and the other one at
large v∥≈−1 but low v⊥ (a field-aligned beam). As is
mentioned above, the number of incident ions with vp= 0.5 for
upstream Maxwellian ions is low unless M2i /b is large
enough. On average βi≈ 1 in the solar wind (Wilson et al.
2018). However, the distribution may be not Maxwellian but
may have a long tail, like in a κ-distribution (see, e.g., Nicolaou
et al. 2018, and references therein), so that the number of ions
with vp= 0.5 may be small but non-negligible. Therefore,
rippling of high-Mach-number shocks may appear to provide a
mechanism for producing backstreaming ions from initially
thermal distributions, thus solving the problem of injection.

Once escaping into the upstream region, the backstreaming
ions may be scattered by fluctuations in the plasma with the
magnetic field and eventually come back to the shock front. At
this second entry to the shock these ions are already
substantially superthermal. How the diffusive acceleration
proceeds depends significantly on the behavior of these ions
at the shock front.

Pickup ions with vp= 1 are known to be efficiently reflected
and relatively easily escape into the upstream region even
without rippling (Gedalin et al. 2021). Here we are interested in
higher energies of incident ions. Figure 3 compares the ion

distributions at the shocks without and with the rippling, for
vp= 1.5. In this case, all ions are moving toward the shock
initially. Without rippling 40% of the ions escape into the
upstream region. Rippling increases this fraction to 47%. The
downstream distribution in the rippled shock is much more
diffuse but the maximum roughly follows the maximum for the
planar stationary shock. The backstreaming ion distribution fills
a much larger velocity space in the case of the rippled shock.
Figure 4 compares the ion distributions at the shocks without

and with the rippling, for higher speeds, vp= 3.5. In this case,
only 63,000 ions of the 80,000 ions in the shell are moving
toward the shock. Of these ions 74% and 79% escape without
and with rippling, respectively. The distributions in the rippled
shock are still more diffuse but already closely follow the
distributions in the planar stationary shock, which is consistent
with the understanding that only the change in global magnetic
field from upstream to downstream is important for the
dynamics of high-energy particles, while the details of the
shock structure become progressively less important with the
increase in energy. This is further emphasized by Figure 5,
which shows the distributions for vp= 10.5. The fractions of
the backstreaming ions almost do not change compared to the
case vp= 3.5. Further increase of the speed shows that about
75% of the incident forward moving ions are reflected to form
the backstreaming population.
For the same shock parameters and with the only change

θBn= 80° no substantial changes were found for vp� 10.5;
about 70% of the incident ions escape.

Figure 4. Left column: the distribution of the forward-moving incident ions fu(v∥, v⊥) (see explanation in text). Upper middle: the distribution of the ions far
downstream of the shock fd(v∥, v⊥) without rippling. Bottom middle: the distribution of the ions far downstream of the shock fd(v∥, v⊥) in the rippled shock. Upper
right: the distribution of the backstreaming ions fb(v∥, v⊥) without rippling. Bottom right: the distribution of the backstreaming ions fb(v∥, v⊥) in the rippled shock. The
initial ion distribution is isotropic with vp = 3.5.
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6. Conclusions

Rippling may enhance the production of backstreaming ions
in high-Mach-number shocks, even for large obliquity, and
thus is a viable mechanism for ion injection into further
diffusive shock acceleration. The presence of superthermal tails
in the upstream ion distribution would also significantly
increase the efficiency of the mechanism. This enhancement
is substantial for low-energy incident ions and is expected to
depend on the rippling parameters. On the other hand, for high-
energy ions, which already participate in DSA, the effect of
rippling is weak and not sensitive to the rippling parameters,
while the reflection and formed distributions are determined by
the overall change in the magnitude and direction of the
magnetic field between the two asymptotic upstream and
downstream regions. These findings, together with the earlier
studied models of nonstationary shocks (Gedalin et al. 2016),
indicate that the dynamics of high-energy ions are not sensitive
to the structure of the shock transition.

Investigation of the dependence of the influence of rippling
on low-energy superthermal ions on the rippling parameters is
beyond the scope of the present paper and will be done in a
separate study.
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