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Abstract

Population change is a main driver behind global environmental change, including urban land
expansion. In future scenario modeling, assumptions regarding how populations will change
locally, despite identical global constraints of Shared Socioeconomic Pathways (SSPs), can have
dramatic effects on subsequent regional urbanization. Using a spatial modeling experiment at high
resolution (1 km), this study compared how two alternative US population projections, varying in
the spatially explicit nature of demographic patterns and migration, affect urban land dynamics
simulated by the Spatially Explicit, Long-term, Empirical City development (SELECT) model for
SSP2, SSP3, and SSP5. The population projections included: (1) newer downscaled state-specific
population (SP) projections inclusive of updated international and domestic migration estimates,
and (2) prevailing downscaled national-level projections (NP) agnostic to localized demographic
processes. Our work shows that alternative population inputs, even those under the same SSP, can
lead to dramatic and complex differences in urban land outcomes. Under the SP projection,
urbanization displays more of an extensification pattern compared to the NP projection. This
suggests that recent demographic information supports more extreme urban extensification and
land pressures on existing rural areas in the US than previously anticipated. Urban land outcomes
to population inputs were spatially variable where areas in close spatial proximity showed divergent
patterns, reflective of the spatially complex urbanization processes that can be accommodated in
SELECT. Although different population projections and assumptions led to divergent outcomes,
urban land development is not a linear product of population change but the result of complex
relationships between population, dynamic urbanization processes, stages of urban development
maturity, and feedback mechanisms. These findings highlight the importance of accounting for
spatial variations in the population projections, but also urbanization process to accurately project

long-term urban land patterns.

1. Introduction

Population growth is a major determinant of nat-
ural resource demands and subsequent global envir-
onmental change, such as land use and land cover
(LULC) change. Over the last few decades, rapid pop-
ulation growth has been a driving force behind sub-
stantial changes in LULC (Tong and Qiu 2020). On
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the other hand, changes in LULC can also induce
significant feedbacks on population characteristics.
Elevated rates of urbanization may attract immigra-
tion from other areas, resulting in compounded pop-
ulation growth (Mulder 2006, Brelsford et al 2020,
Jones et al 2020, Koomen et al 2023). Understanding
these interdependent relationships helps address sus-
tainability challenges by increasing the realism of
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urban land projections, based on anticipated shifts in
population growth (Gao and O’Neill 2021).

The bilateral relationship between population
changes and urban land expansion varies across time,
space, and scale and can occasionally be contradict-
ory (Schneider et al 2015, Angel et al 2016, Giineralp
et al 2020, Mahtta et al 2022). Previous research
on population characteristics of urban land change
has focused mainly on stratified samples of indi-
vidual cities (Schneider et al 2015, Angel et al 2016)
or meta-analyses (Gtineralp et al 2020) at regional
or global scales. While this literature has contrib-
uted to a broader understanding of modern urbaniz-
ation, mechanisms driving urbanization can be over-
generalized since many assessments are subject to
sampling bias, such as preferential focus on large cit-
ies (Gao and O’Neill 2021), even though small cities
show the largest population growth rate (U.S. Census
Bureau 2023). While retrospective and empirical ana-
lyses can yield insights into pathways of development,
these studies alone may not provide the flexibility
to understand the fundamental characteristics of the
association between population change and urban
evolution, especially how these may change in the
future (Gao and O’Neill 2021). Alternatively, spatially
explicit urban land projection models, informed but
not limited by empirical data, can capture urban evol-
ution over time in relation to population pressures
and feedbacks to explore spatiotemporal patterns of
future urban LULC change.

Spatially explicit modeling of future urban land
that incorporates population as a driver can be
accomplished using multiple approaches or their
combination. These approaches vary in the scope
and scale of application to project future urban land
and include: using simple assumptions between urb-
anization and population, such as static per-capita
coefficients (Goldewijk et al 2010), developing loc-
ally resolved urban land expansion models based on
spatial proximity and suitability, i.e. cellular auto-
mata techniques (Li et al 2017), or constructing
integrated modeling frameworks that are flexible to
accommodate broader scenario frameworks, while
also emulating localized cellular patterns using a vari-
ety of approaches, such as statistical learning tech-
niques (Gao and O’Neill 2019) or machine learn-
ing approaches (Chen et al 2020). Models that adopt
static coefficients show a wide range of uncertainty
and frequently ignore significant spatial and temporal
variability (Schwanitz 2013), whereas most previous
applications of cellular automata techniques provide
spatially variant outcomes but have future projections
that are highly constrained by past empirical data
inputs (Terando et al 2014, Zhou ef al 2019).

Alternatively, data-driven approaches that utilize
statistical learning or data mining can take advantage
of temporally dynamic empirical datasets of urban
land change and its driving forces to project future
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spatiotemporal patterns of urban changes, i.e. urban
evolution, in a way that can accommodate scen-
arios and shifting socioeconomic conditions. In past
years, the absence of global spatial time-series data
has limited these approaches. However, in recent
years, researchers (e.g. Gao and O’Neill 2019, 2020,
Chen et al 2020, Gao and Pesaresi 2021a) have
taken advantage of recently available, spatially expli-
cit time-series global datasets of built-up land, such
as the Global Human Settlement Layer (European
Commission 2023), and related socioeconomic and
environmental variables to develop new data-driven
models that focus on modeling changes, especially
long-term urban LULC.

The Spatially Explicit, Long-term, Empirical City
developmenT (SELECT) model (Gao and O’Neill
2019) is such a data-driven framework, designed to
enable long-term large-scale spatially explicit studies.
The SELECT model operates at many spatial scales,
each accommodating population inputs, with vari-
ous design characteristics accounting for local vari-
ations in the urbanization process, and flexibility to
facilitate scenario-based analysis of global long-term
urban land development trends, such as the Shared
Socioeconomic Pathways (SSPs). Furthermore, the
SELECT model distinguishes regional and local dif-
ferences in the urbanization rates according to past
urbanization maturation, which is crucial for big
countries with high regional heterogeneity in demo-
graphic processes, such as the United States (US).

Here we simulate different future urban land pro-
jections at 1 km in the conterminous United States
(CONUS) using the SELECT model based on two
alternative spatially explicit population projections,
one created from state-specific (SP) assumptions of
fertility, mortality, and migration, and the other cre-
ated from national-level projections (NP), which have
a single set of demographic parameters for the entire
country. We examine how the different assumptions
of population changes, in conjunction with region-
ally and temporally dynamic drivers of urban built-
up trajectories affect urban land changes under the
same global SSPs. To be clear, our experiment exam-
ines the influence of divergent population assump-
tions within rather than among SSPs, as local exten-
sions of SSPs may lead to variable results based on
geographic and socioeconomic contexts (Absar and
Preston 2015). Additionally, we sought to understand
how urban intensification and extensification dif-
fers among existing built-up areas and rural areas,
respectively, depending on the nature of population
growth and urban maturity.

2. Materials and methods

2.1. Background and experimental design
The urban land projection model used in our study,
SELECT, estimates the fraction of urban land within
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1/8° grid cells using spatial population data as
an input among other socioeconomic and envir-
onmental variables (Gao and O’Neill 2019). Since
SELECT was empirically calibrated using the Global
Human Settlement Layer (GHSL), it follows the
same definition of urban land as synonymous with
impervious surfaces, i.e. manmade materials such as
cement and asphalt (Gao and O’Neill 2019). However,
it should be noted that impervious surfaces have
been formally differentiated from other definitions
of ‘urban land’, such as built-up areas (dense settle-
ments) or jurisdictional boundaries (Liu et al 2014).
SELECT is a temporally dynamic model where future
urban land projections are, in part, an outcome of
population forcings, but also past urban trajectories
and urban maturity, environmental constraints, and
spatially dependent processes that govern urban land
expansion at both regional and local levels.

SELECT consists of two sub-models, a spatial
built-up land change model and a sub-national spa-
tial allocation algorithm, which, respectively, estim-
ate land development potentials at the grid scale
and allocate the national total amount of new land
development for each decade to subregions and
then to grid cells. Additionally, SELECT is typically
constrained by the Country-Level Urban Building
Scenario (CLUBS) model, which estimates national
urban land totals according to macroscale socioeco-
nomic patterns and each country’s urbanization tra-
jectory and maturity. Population inputs are inter-
jected within all three of these model or sub-model
environments. First, dynamic future changes in pop-
ulation and socioeconomic variables are incorpor-
ated as predictor variables into CLUBS, a Generalized
Linear Model, to estimate national totals of urban
land. Second, at the local level, each grid-cell’s poten-
tial for urbanization change is determined at the
beginning of each decade by the built-up land change
model, comprised of a quadratic general trend model,
and a locally dynamic model. The general trend
model predicts the current rate of urbanization based
on a grid cell’s urban maturity or, alternatively, the
cell’s current level of urbanization (Gao and O’Neill
2019). At low urbanization levels, urbanization is
rapid in these cells, whereas at high mature urban
levels, urbanization slows. Locally dynamic models
are Generalized Additive Models developed separ-
ately for each subnational region (n = 20 for the US)
where temporally dynamic urban growth potential
for each decade is dependent on non-linear relation-
ships with three different time-variant measures of
population size and rate of change, environmental
variables, and spatial autocorrelative surrogates of
land-development controls (Gao and O’Neill 2019).
Third, the sub-national spatial allocation algorithm
assigns national totals to each subregion for each dec-
ade, weighted by population size at each time-step
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and urban land in the base year. Hence, within the
SELECT model, population imposes direct effects on
urbanization by influencing the propensity of urban
land change at multiple scales while also indirectly
influencing the nature of urbanization via feedbacks
in previous time-steps, which can shift the future
evolution and trajectory of subsequent urbanization.
In summary, urban land projections in our model
experiment are not linear extrapolations of popula-
tion, but rather, the result of complex interactions
between population and spatiotemporal urbaniza-
tion dynamics.

Our experiment used two very different pop-
ulation estimates as inputs to the SELECT model.
NP projections utilized country-specific population
totals previously produced for each SSP and expli-
citly accounting for fertility and international migra-
tion consistent with global SSP narratives (O’Niell
etal 2017, Samir and Lutz 2017). Using an empirically
calibrated gravity-based model (Jones and O’Neill
2013), Jones and O’Neill (2016) downscaled these
national totals into 1/8° grid cells of ‘urban’ and
‘rural’ populations, which are differentiated based
on parameters reflecting different spatial patterns,
including the affinity, or lack thereof, to exist-
ing urbanized areas and parameters governing the
propensity to experience growth based on current
population levels. Parameters governing the spa-
tial organization of downscaled population estim-
ates vary among regions and according to SSPs. For
the NP projections, these parameters are determined
at the country-level. In contrast, parameters in the
SP projections are based on state-specific assump-
tions (Jiang et al 2020), although the SP projec-
tions, when aggregated to entire US, are compat-
ible, although slightly lower, than the NP population
totals. Zoraghein and O’Neill (2020b) downscaled SP
projections from states to 1 km gridded resolution.

As described by Jiang et al (2020) and Zoraghein
and O’Neill (2020b), the SP projections differ from
the NP projections in three major ways. First, in
the SP projections, more recent baseline data on
population demographics, fertility, mortality, and
international migration are used, which influences
the future projections. Second, the NP projections
assume that international migration across all SSPs
will decline to 0 after 2050, purely due to uncer-
tainties beyond mid-century. In contrast, net immig-
ration rates in the SP remain constant through the
end of century, except for SSP3 (regional rivalry),
where immigration declines to 0 post 2050. Finally,
the NP projections do not include any assumptions
on domestic or bilateral migration among states,
whereas the SP maintain consistency between inter-
national and domestic migration rates. In this case,
bilateral migration rates remain constant in SSP2,
double in SSP5, and decline by 50% in SSP3. In both
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Figure 1. Map of urban and rural areas for the conterminous US, along with urban case studies.

the NP and SP projections, country or state estim-
ates, respectively, were downscaled to gridded values
using an empirically calibrated gravity-based model,
originally described by Jones and O’Neill (2013).
Downscaled NP gridded population estimates are
described by Jones and O’Neill (2016) whereas
state-specific totals downscaled to gridded values are
described by Zoraghein and O’Neill (2020b).

We designed a clear experimental test of the influ-
ence of shifting spatial distributions of population
on urban land expansion by constraining total urban
land in the US (at a national level) to be consist-
ent within each of three SSPs (2, 3, and 5). In our
experiment, we kept national totals for each SSP from
CLUBS constant among the two population scen-
arios. By doing so, we can explicitly test how shift-
ing population dynamics, specifically fertility, mor-
tality, and migration, will influence the spatial dis-
tribution of urban intensification and extensification.
In this case, population can influence urbanization at
both the cellular level, based on the locally dynamic
model and feedbacks via the general trend model, and
at sub-national level, via urban land allocation within
the sub-national spatial allocation algorithm.

2.2. Defining ‘Urban/Rural’ areas

Urban land expansion can adopt two divergent styles:
intensification or infilling in existing built-up areas
proximate to cities, or extensification into areas cur-
rently defined as ‘rural’ In this study, we separ-
ate existing urban and rural areas of the US to
differentiate patterns of urban intensification from

extensification between the population scenarios.
Defining urban and rural ‘areas’ has been accom-
plished under numerous approaches (e.g. Goodall
et al 1998, Parks et al 2003, Hall et al 2006, Zhao
et al 2019, Schroeder and Pacas 2021, Danek et al
2022). In this study, ‘urban areas), as defined by the
US Census Bureau, are areas with 50000 or more
people, which most accurately resembles a comprom-
ise between urban ‘jurisdictional areas’ and ‘built-up
areas’ as defined by Liu et al (2014) (figure 1). Rural
areas, then are the remaining geographic areas that are
not urban (McManamay et al 2022a, Mulrooney et al
2023) (figure 1).

SELECT simulations can result in grid cells in
both urban and rural areas having urban land frac-
tion values >0. We aggregated total urban land
within urban and rural area boundaries to reflect
urban intensification versus extensification, respect-
ively. Using fixed urban and rural boundaries to
account for new land development over time allows
for standardized comparisons and assessments of
urban land change patterns and trends across dif-
ferent time periods. However, one limitation of this
approach is that it fails to formally evaluate transition
zones and gradation in urbanization patterns.

2.3. Model simulation and analysis

The NP population data, described by Jones and
O’Neill (2016), are available as 1/8° gridded data
(Jones and O’Neill 2020), and subsequently down-
scaled to 1 km by Gao (2020) (figures2(a)—(c)).
The SP population data, based on state-specific
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projections for the US (Jiang et al 2020), are described
by Zoraghein and O’Neill (2020b), and available as
1 km gridded data (Zoraghein and O’Neill 2020a)
(figures 2(d)—(f)). Because the native resolution of
SELECT is at 1/8°, all population datasets were
aggregated from 1 km to that resolution. Using
the SELECT model, we then simulated urban land
fraction using the using the NP and SP popula-
tion projections at 1/8th degree for every decade
from 2010 to 2100. Using a spatial scaling algorithm
(Gao and Pesaresi 2021b), urban land fractions were
subsequently downscaled to 1-km gridded outputs.
The output from these simulations includes decadal
estimates (2010-2100) in urban land fractions at 1 km
for the conterminous US under SSPs 2, 3, and 5
and are freely available on the U.S. Department of
Energy MSD Live Data Repository (McManamay et al
2022b).

Urban land fractions were converted to urban
land area (km?) per 1-km grid cell. Differences in
urban land areas arising from the population assump-
tions were summarized for each grid cell using an
urban land delta (ULD) metric. ULD was calculated
by subtracting urban land area estimated using the
NP population inputs from the SP population inputs.
ULDs were calculated for each for each SSP (SSP2,
SSP3, and SSP5) for every time-step from 2010 to
2100 to determine differences in temporal behavi-
ors in reaction to the different population assump-
tions. Urban land area estimates for both popula-
tion projections and the ULD values were summar-
ized in the urban and rural areas of the US, as defined
in the previous section. ULD values from 2010 to
2100 were normalized (ULD) from —1 to 1 for each
urban and rural area for each SSP using the following
equation:

ULDjx,

UlD=—%f———
max (|JULDy|) V¢

where ULD values for urban or rural area 7, and
SSP k, and the ¢ decadal time step are normalized
by the maximum absolute value across all time steps.
We used Ward’s hierarchical agglomerative cluster-
ing in R 4.2.1 (R Development Core Team 2022)
to identify temporally variant clusters of ULD beha-
viors in urban and rural areas based on Euclidean
distances. Dendograms were visually inspected to
qualitatively determine the most parsimonious tree
sizes where variation between groups was maxim-
ized. Clustering was conducted separately for each
SSP and for urban and rural areas. Average tem-
poral trends in ULD among clusters were general-
ized using a loess smoothing function and visual-
ized for comparison with the spatial distribution of
clusters. We selected four metropolitan areas (New
York, Atlanta, Houston, and Los Angeles) to compare
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temporal trends in ULD values for each urban area
and its respective rural area under the three SSPs.

We questioned whether differences in urban land
outcomes were an artifact of the boundary condi-
tions arising from the architecture of the popula-
tion projections or that of the SELECT model (see
Supplemental Data). Additionally, to directly explore
the relationship between population and urbaniza-
tion outcomes, we calculated a population delta, as
the difference in population between the SP and NP
scenarios, for each urban and rural area, and com-
pared these values to the ULD for the same areas.
We plotted these values according to urban and rural
areas, SSP, and year.

3. Results

We projected urban land fraction and area at 1 km
for the period 2010-2100 in both urban and rural
areas for the conterminous US under three SSPs, each
with two population projections. Population projec-
tions showed the most divergence for SSP5, then
SSP2, and least difference for SSP3 (figures 2(g)—(i)).
Total urban land in the CONUS remained virtually
identical between the two population projections, as
was expected given that total urban land was con-
strained at the national level. Consistent with SSP
narratives, urban land growth is greatest in SSP5, fol-
lowed by SSP2, and then SSP3 (figure 3). Under all
SSPs and both population projections, urban land is
expected to increase in both urban and rural areas
until the end of the century (figure 3). Most of
this growth is expected to be sprawl occurring in
areas currently characterized as rural, where urban
land is expected to see 1-7-fold increases by 2100
(increases of 39 000—-373 000 km?) (figures 3(c) and
(d)). Current urban areas are expected to see only
0.1-0.7-fold increases (11 000-58 000 km? of growth)
(figures 3(a) and (b)). These results are essential to
keep in consideration when appropriately interpret-
ing differences in population projections.

Urban land estimates across the entire conter-
minous US were similar for both urban and rural
areas between the NP and SP population projections,
except in SSP5 where urban land in urban areas shows
a noticeable departure post-2040 (decline from NP
projections) (figure 3(a)). This decline in urban areas
is mirrored by a slight increase in urban lands in
rural areas starting in 2040 and becoming increasingly
apparent by the end of century (figure 3(c)). Percent
changes in urban land among population projections
remain within —1% to 1% for both urban areas and
rural areas except for SSP5, which depicts notice-
ably lower urban lands in urban areas and noticeably
higher urban land growth in rural areas between the
population projections (figures 3(b) and (d)).
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Figure 3. Total urban land area in both current urban (a) and rural (c) areas of the conterminous U.S. projected by SELECT
under each Shared Socioeconomic Pathway (SSP). Simulations of urban land were compared using state-specific population
projections (solid lines) and the national-level population projections (dashed lines). Percent changes in urban land area
(state-specific relative to national-level) for reach SSP in urban (b) and rural (d) areas (right panels).

Urban land simulations at 1 km across the US
appeared relatively similar between the NP and SP
population projections when viewed at the entire
US (figures 4(a)—(f)); however, the geographic dis-
tribution of ULD values varied dramatically accord-
ing to the SSPs (figures 4(g)—(i)). The distribution of
ULD values indicated that some regions are areas of
stronger divergence in expected urbanization based
on differences in population projections, although
patterns suggestions that areas within the same US
region or even state could experience very diver-
gent ULD values. Examples comparing future urban
land simulations arising from alternative population
projections are provided for two cities, Atlanta and
Los Angeles (figure 5). Population projections clearly
show clear differences, even with SSPs; however, dif-
ferences in urban land vary depending on each city’s
context (figure 5).

We converted ULD values to percent changes to
compare urban land estimates under the SP pro-
jection to that of the NP projection, where ULD is
divided by urban land under the NP projection multi-
plied by 100. Percent ULD changes for all SSPs ranged
widely across urban and rural areas (figure 6). Under
SP projections in 2100, urban areas had anywhere

from 96% lower urban land to 14-fold increases in
urban land compared to NP projections, depending
on location (figures 6(a), (c) and (e)). Likewise, rural
areas under SP projections for 2100 experienced any-
where from 100% lower urban land area to almost
300-fold increases in urban lands compared to NP
projections (figures 6(b), (d) and (f)). Although dif-
ferences in urban lands from population projections
were more extreme for SSP5, all SSPs showed signi-
ficant changes for urban and rural areas. In SSP2,
changes in urban areas were positive within the south-
ern US but negative in north central and north-
eastern urban areas (figure 6). Rural areas in SSP2
experienced decreases in the eastern central regions
but primarily increases elsewhere. Percent changes
in SSP3 were less extreme with very few changes
observed in urban areas, but more noticeable changes
in rural areas, where increases were observed in the
northern West, decreases in the Southwest, and mixed
responses in Texas and the central US (figure 6).
Under SSP5, the magnitude of changes was stronger
than the other SSPs but occurring in patches of urban
and rural areas. Rural areas experiencing increases in
ULD were more apparent and abundant in SSP5 and
broadly scattered across the US (figure 6).
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Figure 6. Percent changes in urban land area by 2100 based on state-specific relative to national-level population trajectories for
each Shared Socioeconomic Pathway (SSP) in urban (a), (c), (e) and rural areas (b), (d), (f). Urban areas are shown in black in

3.1. Spatial clustering of urbanization under
different SSPs

To condense spatiotemporally complex patterns in
urbanization between the population scenarios, we
developed clusters of ULD changes to represent typo-
logies of temporal ‘behaviors’ under different SSPs
(figures 7 and 8). We found that five clusters tended
to provide a balance between parsimony and captur-
ing the most variation in patterns across all SSPs for
both urban and rural areas. Cluster assignment dis-
played some geographic affiliation; however, assign-
ment was not uniform for regions or states (figures 7
and 8). SSP5 displayed the least regional uniformity
in ULD cluster assignments. Cluster groupings also
varied individually for rural and urban areas under
SSPs. For instance, regional uniformity seemed more
apparent under SSP3, whereas in SSP5 urban areas
in close proximity were highly heterogeneous and
assigned to divergent clusters (figures 7 and 8).

Urban areas displayed highly divergent increas-
ing, decreasing, or variable ULD values over time
(figure 7). Under all SSPs, urban areas in the
Northeast and California had increasingly negat-
ive ULDs, except for New York which showed the
exact opposite pattern (figure 7). Urban areas in
the Southeast and South-Central US generally dis-
played increasing ULD, except areas in the gulf and
Florida, which were mixed. Other urban areas of the
US showed both positive and negative ULD values,
depending on the SSP.

Likewise, ULD values for rural areas were also
variable, displaying some level of geographical affil-
iation in SSP2 and SSP5 (figure 8). For instance, the
East-Central US and gulf regions were predominantly
negative ULD values under SSP2, yet most of the
remaining US displayed positive values. Despite some
geographical affiliation in SSP2 and SSP5, rural areas
occurring in the same regions still displayed highly

10
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Figure 7. Clusters of urban areas based on temporal behaviors in urban land delta (difference in urban land area simulated using
state-specific versus national-level population projections) from 2010 to 2100 under different Shared Socioeconomic Pathways
(SSPs), including SSP2 (a), (b), SSP3 (c), (d), and SSP5 (e), (f). Trends show averaged or smoothed conditions for each cluster.

divergent patterns. SSP3 displayed the most spatial
heterogeneity in ULD patterns. Under SSP2, most
rural areas in the US displayed increasingly positive
ULD values; however, the exact opposite pattern was
observed in rural areas under SSP3 (figure 8). Rural
areas in the US equally displayed divergent pattern of
increases and decreases under SSP5.

We found significant differences in urbanization
across each city’s urban and rural areas between
the two population projections (figure 9). The most
significant differences in ULD were found under
SSP5, followed by SSP2. Urban areas in Atlanta,
Houston, and New York displayed increasingly posit-
ive ULD values under all SSPs, albeit variable, whereas

11

the directionality of ULD in rural areas surround-
ing each city were highly divergent (figure 9). Los
Angeles displayed the most divergent pattern from
other cities, with consistent but negative ULD val-
ues in urban areas and positive ULD values in rural
areas.

We did not find any consistent relationships
between percent changes in ULD and geographic
boundaries (Supplemental Data). Linear relation-
ships between the population delta values and ULD
were also not observed (Supplemental Data). There
were equal numbers of instances where positive pop-
ulation delta values (higher population in SP than
NP projections) were associated with negative ULD
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Figure 8. Clusters of rural areas based on temporal behaviors in urban land delta (difference in urban land area simulated using
state-specific versus national-level population projections) from 2010 to 2100 under different Shared Socioeconomic Pathways
(SSPs), including SSP2 (a)—(b), SSP3 (c), (d), and SSP5 (e), (f). Trends show averaged or smoothed conditions for each cluster.

values (less urbanization in SP projection than NP
projection) (Supplemental Data). Likewise, lower
population in the SP projection (negative popula-
tion delta) also led to positive ULD values in many
cases. This suggests that urban land simulations were
complex and not just simple artifacts of population
inputs.

4. Discussion

Our study shows that the distribution of urban
landcover can vary dramatically according to dif-
ferent population projection inputs, even under the
static boundary conditions of individual global, and

even national-level, SSPs. These results highlight the
importance of understanding extensions of the SSPs
from national to local levels, where the geograph-
ical and sociopolitical context becomes increasingly
important in influencing simulated outcomes (Absar
and Preston 2015). In our experiment, the total urban
land budget in the US per year was held constant,
yet the spatial distribution of urban land changes was
subject to the variability in population inputs. Our
results suggest population inputs induce substantial
differences in urbanization emerging locally, ranging
from 100% lower urban land area to 14- and 300-fold
increases in urban land in existing urban and rural
areas, respectively.

12
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Under both population projections, we show that
urban land continues to increase at various levels in
accordance with differences amongst the SSPs, and
our findings are consistent with numerous studies
(Li et al 2019, Chen et al 2020, 2022). Differences
in urbanization amongst SSPs are driven by global
and national urban land totals, which, in our study,
are governed by CLUBs. Scenario SSP5, or fossil-
fueled development, displays the highest urban land
expansion, followed by SSP2 and SSP3. This is con-
sistent with earlier research (Jiang and O’Neill 2017,
Chen et al 2020, 2022, Gao and O’Neill 2020), where
SSP5 represents a sprawling scenario (Zoraghein
and O’Neill 2020b), characterized by rapidly grow-
ing populations, expedited globalization caused by
material-intensive economic systems, and a lack of
concern for the effects on the environment glob-
ally, all of which stimulate high rates of urban land
extensification. Scenario SSP3, regional rivalry, res-
ults in the least amount of urban land develop-
ment due to slowed-down economic and technolo-
gical advancements, despite the scenario’s predom-
inant material-intensive consumption pattern (Gao
and O’Neill 2020). SSP2 represents the ‘middle-of-
the-road’ scenario with more condensed pattern of
development, trending toward less lateral dispersal
due to moderate levels of economic growth and tech-
nological advancement.

We used current, spatially static depictions of
urban and rural areas to examine the locality of
future urbanization, either infilling or extensification.
In both population projections, the total urban land
coverage occurring in rural areas will exceed that of
urban areas by 2050 in SSP2 and by 2040 in SSP5.
Ultimately, this suggests significant urban extensific-
ation is expected, regardless of population assump-
tions. However, rural areas may display dispropor-
tionate increases in urban land growth in the state-
specific (SP) population projections, 1%-3% higher
than that of national-level (NP) projections, depend-
ing on the SSP. In comparison, urban lands in exist-
ing urban areas are 1%—6% lower in the SP projec-
tions compared to NP projections. Increasing the pro-
portion of urban land growth in rural areas suggests
an even more extreme form of urban sprawl could
predominate, which further increases land stress, per-
haps competition over land resources (McManamay
et al 2022b) and increasing land fragmentation.

The shifts in urban land cover patterns we
observed are, in part, due to the assumptions imbed-
ded within the population projections. Population
growth is the principal driver of urban land devel-
opment (Mahtta et al 2022), governed by the phys-
ical constraints of urban scaling laws (Brelsford et al
2020). Indeed, population inputs are universally used
and should be considered necessary in future pro-
jections of urban land (Jiang and O’Neill 2017,
Chen et al 2020, 2022). Reia et al (2022) show
that spatial heterogeneity in population among U.S.
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metropolitan areas is driven primarily by population
flows from domestic migration, not endogenous pop-
ulation growth. Projections of future migration rates
in the SP drew heavily upon existing empirical obser-
vations, which suggests that contemporary patterns
in population growth have higher rural affiliations
than previously assumed in the national-level pro-
jections. Interestingly, the SP population scenarios
utilize trends in domestic migration based on the
2010 US Census Bureau datasets (Jiang et al 2020),
observed prior to the COVID-19 pandemic. Evidence
of the impacts of the COVID-19 pandemic suggest
these trends could be strengthened based on hous-
ing markets in the US and the United Kingdom
where home values in lower-density areas are increas-
ing, leading to decentralizing pressures on the hous-
ing market (Gallent and Madeddu 2021, Liu and Su
2021, D’Lima et al 2022). This suggests a pattern
of more rural-centric urbanizing growth could con-
tinue into the foreseeable future, as reported else-
where (Giineralp et al 2020).

Although different population projections were
the only variable manipulated in our experimental
treatment, our results show that population changes
do not necessarily lead to direct or linear responses
in urbanization. Differences in population assump-
tions led to highly divergent and heterogeneous res-
ults on urban land growth, even in areas in close
spatial proximity. Urban land expansion patterns of
four of the US’s largest metropolitan regions sug-
gested very diverse responses to different population
assumptions, both among cities and among SSPs. For
example, extensive urban sprawl observed is expec-
ted in low population dense southeastern US cities,
such as Atlanta (Terando et al 2014). In contrast,
Los Angeles has high population densities, with little
heterogeneity in the distribution, leading to ‘dense
sprawl’ in urban land development (Eidlin 2005).
Ultimately, this leads to little available space for con-
tinued urban expansion, resulting in higher popula-
tion outmigration rates in the SP projection, com-
pared to NP projections.

SP projections displayed more variable urban
land trajectories by accommodating domestic migra-
tion and more locally dynamic demographic condi-
tions. The cluster analysis of spatiotemporal trends
in ULD underscores the non-linearity of urbaniz-
ation processes to population inputs. Mahtta et al
(2022) found that on a global scale, population
growth is the primary determinant urban land expan-
sion; however, these relationships vary by country. In
regions with increasing governance on growth, such
as Europe and North America, economics become
increasingly influential, at times more so, than pop-
ulation change. Complex inter-dependent relation-
ships between population and urban land develop-
ment also arise due to spatial interactions. Tong
and Qiu (2020) showed that population growth has
greater impacts on urban land development in rural
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areas neighboring urbanized places due to spill-over
effects. The authors found that feedback mechanisms
induced population growth by attracting suburban
and rural residents—this, in turn, results in popu-
lation declines in neighboring peri urban and rural
areas.

We also found no strong and consistent lin-
ear associations between population delta and ULD,
where ‘delta’ represents the respective differences
between SP and NP projections. Additionally, we did
not find evidence that boundary conditions of the
model approach led to arbitrary differences in urb-
anization. Urbanization does not predictably respond
to population because of landscape inertia imposed
by the nature of urbanization processes and coevolu-
tion with multiple drivers, including historical pop-
ulation change. As one example, urban lands do not
retract in cases of deurbanizing population change.
For instance, Chen et al (2011) also showed that the
rate of urbanization can either increase or decrease
after maturation or saturation. Indeed, population
inputs are interjected at multiple levels in the SELECT
model. Since we kept total population constant at
the national level (i.e. CLUBS), there are only two
remaining components in the SELECT model where
population could play a role in influencing urban
land projections. The first is the sub-national alloca-
tion algorithm, which allocates urban land by weight-
ing regions based on population size at each time-
step. However, patterns in ULD among neighbor-
ing geographic boundaries with similar population
sizes was not observed (Supplemental Data), indic-
ating that the subnational allocation unlikely play-
ing a strong role in urbanization patterns. The second
component, the locally dynamic model, incorporates
dynamic population inputs in a non-linear fashion,
where population at previous time-steps can influ-
ence the nature and rate of urban land change in
each grid cell. Additionally, the locally dynamic model
also incorporates local landscape suitability and con-
straints (e.g. topography, proximity to urban), along
with a dynamic decomposition of over 100 heuristic
statistics describing urban neighborhood patterns.
Our results suggest that these local constraints play
more significant role than coarser-scale governing
factors, at least in our experiment. Ultimately, cap-
turing the nature of these urbanization processes and
evolution through SELECT results in spatially hetero-
geneous urbanization responses to population inputs.
The same population change could lead to very
different urban land outcomes in different places.
Furthermore, the same population change could also
lead to different urban land outcomes at the same loc-
ation under different time periods.

Although SELECT is empirically grounded and
accommodates realistic and dynamic patterns in
urban maturation, it is one of many available urban
expansion models, each of which display divergent
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urban land estimates by end of century (e.g. Chen
et al 2020, Liu and Su 2021). For example, Chen et al
(2020) estimate anywhere from 125 000—425 000 km?
of urban land in the US by 2100 depending on SSPs,
compared to 185000580000 km? under SELECT.
Both model frameworks adopt a similar stepwise
structure where coarse regression models estimate
urban land budgets at national and sub-national
levels, which are subsequently allocated to cellular
or gridded levels by more resolved dynamic models
that account for spatial heterogeneity. Additionally,
both models utilize the GHSL as an empirical basis
for model calibration. Even so, the models used in
each step adopt very different statistical designs, vari-
ables, dynamic structure, and parametric uncertainty.
CLUBS and SELECT varies from other models in
the following major ways: (1) relationships between
urban land change and its drivers do not scale linearly
and allow for temporal non-stationarity, (2) locally
dynamic models are developed separately for 20 sub-
national regions within the US, each having their own
variables and calibrated parameters, and (3) mod-
els are based on variables that best explain historical
patterns in urbanization, such as population change
and the rate of economic growth, rather than rely
on per-capita urban land coefficients or the mag-
nitude of GDP. Gao and O’Neill (2019) previously
report validation and parametric uncertainty for the
SELECT model, which are manifested at national,
regional, and local levels. While our results certainly
reflect the choice of model, we believe the urbaniz-
ation outcomes of our experiment reflect realism in
the feedbacks associated with urbanization and the
location, timing, and nature of population growth,
depending on previous trajectories of growth and
urban maturity—this dynamic nature is incorporated
into SELECT’s structure and naturally influences our
results.

In conclusion, our results also show that urban
land trajectories can vary dramatically among local
scales under the same global ‘boundary conditions’ of
individual SSP scenarios. Divergent urban land pat-
terns at high resolutions highlight the importance of
local-specific demographic data, specifically interna-
tional domestic migration, including linkages among
urban and rural populations. As found by Tong and
Qiu (2020), our work suggests that urbanization is
not a linear outcome of population suggesting the
need for more nuanced understanding of the relation-
ships and feedbacks between population and urban
land expansion to improve urban land simulation
models in the future.

Data and code availability statement
The data that support the findings of this study are

openly available at the following URL/DOIL: https://
doi.org/10.57931/1887521 (McManamay et al 2022b,


https://doi.org/10.57931/1887521
https://doi.org/10.57931/1887521

10P Publishing

Environ. Res. Lett. 19 (2024) 044025

model simulated output) and https://doi.org/10.
57931/2318472 (McManamay et al 2024a data for
reproducing the analysis). Code for reproducing our
analysis is provided at: https://github.com/IMMM-
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