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ABSTRACT

The impacts of link recommendations on social networks are chal-
lenging to evaluate, due to feedback loops between algorithmic rec-
ommendations and underlying network dynamics. Observational
studies have limitations in answering causal questions; naive A/B
experiments often result in biased evaluations due to unaccounted
network interference and finally, existing simulations primarily
employ static network models that do not take into account dynam-
ics. Departing from existing approaches, we employ simulations
to study dynamic impacts of link recommendations. Specifically,
we propose an extension to the Jackson-Rogers network evolution
model and investigate how link recommendations affect network
evolution over time. Our experiments demonstrate that link rec-
ommendations can have surprising delayed and indirect effects on
the structural properties of networks. Effects of recommendations
vary in the short-term and long-term, such as the immediate reduc-
tion in degree inequality but eventual increase in degree inequality
through friend-of-friend recommendations. Furthermore, even af-
ter recommendations are discontinued, their impacts can persist
in the network, in part by altering natural network evolution dy-
namics. These results provide valuable insights into the interplay
between algorithmic interventions and natural network dynamics
and highlight the limitations of current evaluation paradigms.
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1 INTRODUCTION

Link recommendation algorithms such as Facebook’s "People You
May Know", Twitter’s "Who to Follow" and LinkedIn’s "Recom-
mended for You" have an ever-increasing influence on the evolution
of social networks, with some accounts crediting over 50% of links
to algorithmic recommendations [28]. This can cause downstream
effects on information flow, opinion dynamics, and resource alloca-
tion. For instance, recommendations can be a polarizing force in-
creasing network segregation, which in turn may re-inforce opinion
echo-chambers [7] or restrict access to information and resources
for less connected communities [6, 10, 25]. At the same time, rec-
ommendation systems can also surface “long-range” connections
between nodes that would not otherwise be exposed to each other,
and thus, increase network integration by promoting and main-
taining diverse links [11, 23]. Given the ubiquity of algorithmic
recommendations on social media, studying their impacts is seeing
increased academic and regulatory interest. However, such studies
are challenging for a variety of reasons, such as lack of normative
framing [9] and limited access to large-scale platforms. In this work,
we explore a more foundational evaluation challenge stemming
from the fact that social networks have underlying dynamics that
interfere with algorithmic recommendations.

Existing real-world evaluations of link recommendation algo-
rithms rely on A/B tests (experimental) or longitudinal data (obser-
vational). However, both experimental and observational evalua-
tions can yield misleading conclusions. The validity of A/B tests
relies on the Stable Unit Treatment Value Assumption (SUTVA)
[17, 18], which is violated in case of network interference. Obser-
vational studies may fail to assess causal impacts, as longitudinal
evaluation lacks counterfactual measurements on what the network
evolution would have been without algorithmic recommendations.
These challenges have motivated the use of simulation-based eval-
uations of link recommendations. In simulation studies, one can
make explicit network modeling assumptions and then evaluate
the impact of recommenders. Despite a growing number of works
in this space [7, 13, 15, 16, 25, 26], existing simulation-based evalu-
ation falls short of providing insights into the mechanisms through
which recommendations impact social networks. Existing simula-
tion studies primarily consider static networks, and thus do not
take into account feedback loops between link recommendation
and organic network evolution.

In dynamic settings, the main challenge is to measure impacts
relative to a "baseline" network. Given this, existing works often
measure the effects relative to the initial networks; they are rarely
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measured relative to a plausible counterfactual based on the natural
evolution of the graph without link recommendations. Such eval-
uations can lead to qualitatively wrong conclusions. For instance,
Abebe et al. [1] shows that triadic closure — the most common
type of friend-of-friend recommendations — can reduce segregation
with respect to the initial network before intervention. However,
triadic closure can, at the same time, increase network segregation
in relative terms with respect to a natural evolution dynamic which
assumes the addition of random edges.

In this work, we initiate a study to explore dynamic impacts
of link recommendations through simulations. We find that link
recommendations can have surprising delayed and indirect effects
on the structural properties of networks. For instance, we find that
the short-term effects of friend-of-friend recommendations can be
qualitatively different from long-term effects. In the short term they
can alleviate the degree inequality, but in the long term they will
increase the degree inequality. Moreover, we demonstrate that the
effects of link recommendations can persist in the network even
after recommendations have been discontinued. This phenomenon
is due to the fact that recommendations impact the network in
two ways: directly through the creation of algorithmic edges, and
indirectly by influencing the natural growth dynamics. Indirect
effects amplify the direct effects, contributing to the persistent
impact of link recommendation algorithms. A stylized illustration
of the indirect and delayed effects can be found in Figure 1.

Contributions. We enumerate our contribution along modeling,
evaluation, and experimental findings.

(1) Modeling: We propose a dynamic network formation model
which extends upon the Jackson-Rogers model [19] to incorpo-
rate algorithmic recommendations. Unlike the classic model,
our dynamic model includes not only the original two phases
—dubbed "meeting strangers" and "meeting friends"— but also
a third phase of “meeting recommendations.” Additionally, we
consider latent node representations, enabling us to model com-
munity structure and node activity levels in a flexible manner.

(2) Evaluation: We monitor the progression of network metrics
over different intervention windows. We compare the imme-
diate impacts observed during intervention with the delayed
impacts observed after the intervention has ended. Further,
we measure the indirect impacts that recommendations have
on network properties. To tease out the indirect impact, we
compare the observed network evolution with a counterfactual
baseline network that discounts the influence of recommenda-
tions on natural growth.
Experimental findings: Our study reveals diverse qualitative
patterns for delayed and indirect effects; we find that different
duration of the intervention and/or different times of measure-
ment can lead to drastically different conclusions about "How
do recommendations impact networks?" Furthermore, we find
that indirect effects can be substantial; they can significantly
amplify the impact of recommendations and persist even after
the intervention has ended.
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2 RELATED WORK

Simulation studies. Simulation studies typically analyze the impact
of link recommendations on static networks. Some works[12, 13, 20,
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26] focus on a single round of recommendations and examine ob-
served, finding that homophily — the preference for within-group
links — leads to exposure bias toward the more homophilous group,
even if it’s a minority. Similarly, [15, 16] find that homophily and
node degree are strong indicators of which nodes will receive dispro-
portionate visibility. Other works [15, 16] make explicit behavioral
assumptions on how nodes accept link recommendations and con-
sider cumulative effects of link recommendations over multiple
rounds. They reveal algorithmic amplification of biases via "rich
get richer" effects and increases in observed homophily over time.
A shortcoming of existing simulation-based evaluations is that they
implicitly assume that the addition of algorithmic edges is the only
change in the network. Conversely, in our work, we make explicit
modeling assumptions about the underlying network dynamics.
This evaluation setup allows us to measure the impact of link rec-
ommendations with respect to counterfactual natural evolution.
Furthermore, by emphasizing underlying temporal dynamics we
can pose more subtle evaluation questions such as: "How does the
effect of algorithmic intervention fade over time once recommen-
dations are stopped?" or "How do algorithmic recommendations
bias the underlying network growth?.

Platform studies. There is limited publicly available research evalu-
ating link recommendation algorithms on real social networking
platforms. In one experimental study [9], several recommenda-
tion algorithms were compared on IBM’s SocialBlue network and
found to reduce group homophily. The study also revealed that
friend-of-friend recommendations had the highest rate of accep-
tance but the lowest level of edge activity. On the other hand, [23]
found that recommending more distant connections or "weak ties"
through LinkedIn’s "People You May Know" algorithm led to higher
transmission of job opportunities. In observational settings, a lon-
gitudinal study comparing the Twitter network before and after
the introduction of the "Who To Follow" recommender in 2010
[27] found that while recommendations increased the number of
connections for all users, the highest gains were achieved by the
most popular nodes. Conversely, a study comparing links formed
naturally and links formed via recommendations on Flickr and
Tumblr [3] found that the recommended links were more diverse
and less biased towards popular users. So far, existing observational
platform studies provide a limited understanding of the underlying
mechanisms and lack access to counterfactual network evolution.
A/B tests, on the other hand, may produce wrong estimates of the
effects due to network interference. Our counterfactual simulations
allow us to articulate in stylized settings the source of bias in both
longitudinal and A/B evaluations.

Theoretical investigations. The impacts of friend-of-friend recom-
mendations in homophilous networks were studied theoretically
in a number of works. Under choice homophily, which captures
the setting when nodes preferentially accept recommendations to
within-group nodes, [5, 26] show that recommendations lead to
more exposure gains for the homophilous group which further
exacerbates homophily. In contrast, [1] shows that, when the clo-
sure of triangles via friend-of-friend recommendations is not biased
in favor of in-group edges, recommendations can in fact improve
network integration. In our work, we investigate friend-of-friend
recommendations and their impacts on network segregation and
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Figure 1: Delayed and indirect effects. The image displays two counterfactual evolution of the network. The solid blue line
represents the trajectory for an intervention interval [¢,7] in which the full network receives algorithmic recommendations.
The dashed black trajectory corresponds to a counterfactual network evolution without recommendations. The total causal
effect of recommendation at time ¢, Effect;, can be computed as the difference between the counterfactual trajectories at time ¢
(solid blue and dashed black line). The delayed effect at some time T >  is the difference: Effect; — Effect;. The solid purple
trajectory illustrates the counterfactual evolution of the network in which the indirect effects are removed. The difference
between the purple and dashed black curve captures the direct effects and the difference between the blue and purple line

captures the indirect effects.

show that their effects further depend on the length of intervention
as well as the time of measurement.

Delayed algorithmic impacts. Temporal dynamics associated with
algorithmic interventions have been previously studied in the con-
text of fairness in Machine Learning. These works showcase broad
settings where algorithmic interventions designed to improve fair-
ness [4, 9, 21], robustness [22] or diversity [8] in the short term, lead
to the opposite effect in the long run. Our work uncovers similar
surprising temporal dynamics in the case of link recommendations.

3 METHODOLOGY FOR EVALUATING
DELAYED AND INDIRECT IMPACTS

To illustrate temporal complexities of evaluating link recommen-
dation algorithms in a dynamic setting, we consider a stylized
network evolution model. We propose an extension to the classic
Jackson-Rogers (JR) network evolution model [19]. The JR model
has been validated empirically and shown to display proprieties of
real network such as decreasing diameter over time, increased edge
densification and emergence of community structure [19, 24]. Our
extension adds an optional recommendation phase to model the
feedback loop between natural network evolution and algorithmic
recommendations.

We analyze two simple baseline recommendation algorithms: a
neighborhood-based and an affinity-based algorithm. Recommen-
dation algorithms deployed in practice use both neighborhood and
affinity information, with potentially additional learning compo-
nents. Here, however, to understand the underlying mechanisms
behind evaluation phenomena in dynamic networks, we opt for
simplicity in the choice of recommendation algorithms. Algorithm
3.1 summarizes the simulation and evaluation procedure.
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3.1 Dynamic network model

Let G' = (V% E*) be an undirected network where V? and E? are
the set of nodes and edges at time t. Nodes are characterized by
their group identity g; and latent representation v;. We assume
group identities are static over time and latent representations are
sampled from a group-specific multivariate normal distribution
0j ~ Dgi- At each time step, the network evolves via new nodes
which first connect "organically” the existing nodes. Further at
each step, the network evolves "algorithmically" via connections
mediated by a link recommender.

Natural growth. Similar to the classic JR model, upon the ar-
rival of a new node, the network evolves in two phases: "Meeting
Strangers" and "Meeting Friends". In the "Meeting Strangers" phase,
the new node makes connections with existing nodes at random.
Unlike the classic model where connections are made with a fixed
probability, we model connections probabilities based on latent rep-
resentation of the nodes v;. This additional modeling assumption
allows us to consider various community structures. In the "Meet-
ing Strangers" phase, N5 candidate nodes are sampled uniformly
from the existing network, among which the arriving node might
make zero, one or more connections. Specifically, the arriving node
i connects with each candidate node j with probability propor-
tional to the inner product of their respective latent embeddings:
pij = o({v;,vj)) where o(-) is a scaled and translated sigmoid
function®.

In the subsequent "Meeting Friends" phase, the incoming node i
makes additional connections based on neighborhood proximity.
Here Ny candidate nodes are sampled from the set of nodes at

'We consider o (x) = 7 Where we set a and b to match desired average

1
1+e~ax+

linkage probabilities.
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distance 2 (neighbors of neighbors) from node i. Node i connects
with each candidate node j with constant probability. Optionally,
we model attrition effects by considering node departures from the
network with a hazard function ? that increases with the age of the
node.

Algorithmic intervention. We introduce algorithmic intervention
as a third "meeting recommendations" phase, whereby nodes in
the network receive link recommendation. This phase applies not
only to incoming nodes but also to existing nodes in the network.
Upon receiving a recommendation, nodes accept it according to a
behavioral model. We consider neighborhood and affinity-based rec-
ommendations. The prototypical neighborhood recommendation is
the friend-of-friend (FoF) recommendation where candidate nodes
are selected uniformly from the set of nodes at distance 2: P(rec; =
j) = % Conversely, affinity-based (Latent) recom-
mendations utilize the latent structure rather than local neighbor-
hood structure to make recommendations. Specifically, the Latent
recommender computes affinity scores for all the nodes in the
network in terms of inner products and recommends candidates
with probability proportional to the scores: P(rec; = j) o €57
where sj = (v;,0;) is the similarity between node i and node j’s
embeddings. High values of softmax temperature parameter f3 cor-
respond to more deterministic recommenders. Lower values of f8
lead to more random recommendations and qualitatively capture
the effects of estimation noise for learning-based recommenders.

Behavioral models. We consider two behavioral models for ac-
cepting link recommendations: the constant probability baseline
and the embedding-based probability where nodes accept new links
based on proximity in latent space. Embedding-based probabilities
model more granular notions of choice homophily [5]. We consider
an additional behavioral option in which upon acceptance of a new
recommended link, an edge is removed at random from the set
of existing edges. This option is in line with several works which
model recommendations as a rewiring [5, 14, 25] process that does
not impact the average degree.

3.2 Structural metrics

Clustering coefficient: Clustering coefficient of a node is the ratio
of triangles it forms A; and the maximum number of triangles it
could have formed given it’s current degree d;: ¢; = #?’_1) The
clustering coefficient captures the micro-level cohesion in the net-
work [16]. The average clustering coefficient is the metric averaged
over all the nodes. Averaging the metric over communities measure
clustering at the community level.

Gini coefficient: We measure the inequality in the degree distribu-
tion via Gini coefficient. An increase of the Gini coefficient resulting
from the use of recommendations is often used to demonstrate bi-
ases in link recommendation [14-16]. The Gini coefficient can be

. 23 id;
computed for an ordered list of node degrees as: G = nZl+lld - "T“
i=1 i

Similarly, this metric can be computed for the entire graph or re-
stricted to communities.

2h(a) = cd® + k where a is the age of the node and c, d, k are tuned to model mean
and variance of lifespans in the network.
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Algorithm 1: Simulating network evolution

input:initial Go; time-steps T; hazard function;
communities: prevalence cg, latent distribution Dy;
natural growth: N, Nf, dist-2 connect prob po;
intervention: window [t,t], recommender, behavior;
fortinl...T do
Natural growth;
sample incoming node i according to group prevalence
cg and latent distribution Dy;
strangers « samples Ng nodes;
for s in strangers do
| add edge i — s with probability o (v;, vs)
end
friends < samples Ny neighbors of neighbor nodes;
for f in friends do
| add edge i — f with probability ps
end
if t € [¢,7] then
Algorithmic intervention;
for node j in treatment group Gireatment do
candidate = recommender(j, Gy);
if behavior(j, candidate) = accept then
| add edge j—candidate
end
end

end

nodes to remove « hazard function
end

Homophily: We define monocromatic and bichromatic edges
to be edges that link two nodes from the same community and
nodes from different communities, respectively. The homophily of a
community measures the propensity of nodes to favor within-group
connections compared to a non-preferential baseline. We compute

the homophily of a community g as follows: H; = % - nTg, where
g

|Egq| denotes the number of monochromatic edges within g, |Eg|
denotes the number of total edges that have at least one node in
community g. Finally ny denotes the size of g, and n denotes the

total size of the network, the ratio n—ng is the baseline fraction of
within-group links when nodes have no group-based preferences.
The vast majority of existing simulation-based evaluations study

recommendation-induced changes in homophily [1, 9, 13].

3.3 Evaluation

We denote by G the evolution of the network under natural dynam-
ics and by G(rec, [¢,7]) the evolution when the network receives
link recommendation according to rec algorithm over the [t,?]
intervention interval. The subscript T in G7(-) is used to denote
the snapshot of the network at time T For a structural metric m, we
denote by m(G;(rec, [, t])) the value of this metric evaluated at
time t. Given a network evolution model, we simulate the counter-
factual trajectories of the metrics for intervention intervals [t,] of
different lengths.
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Total effects. The total effect of intervening in a network evolu-
tion G with recommender rec for intervention interval [, ] on
the metric m at time T is defined as the difference between two
counterfactual measurements:

Effectr (G, rec, [t t]) = m(Gr(rec, [t 1])) - m(Gr).

This definition compares between the “treatment” universe where
the whole network received an algorithmic intervention and a coun-
terfactual “control” universe where the network evolved without
algorithmic recommendations.

Delayed effects. When the measurement occurs during the in-
tervention interval, i.e. T € [t, ] we call the effect immediate.
Conversely, when the measurement occurs after the intervention
stops, i.e. T > t, we can define the notion of delayed impact as:

DelayedEffecty (G, rec, [, 1]) =
Effectr (G, rec, [t,t]) — Effectz(G, rec, [t,7])

The notion of delayed impacts allows us to characterize the
impact of link recommendations into three broad categories: di-
minishing, amplifying, and persistent based on the sign of the de-
layed effect (DelayedEffecty (G, rec, [t,7])). Note that the delayed
impacts measure the difference in effect sizes between time t and
time T, rather than the difference in the metric m(Gr(rec, [t,1])) —
m(Gz(rec, [t,7])). These two notions are equivalent only when
the metric remains constant from time 7 to time T under natural
network evolution dynamics.

Indirect effects. The temporal evolution of the network in the
presence of link recommendations is affected directly by the ad-
dition of algorithmic edges; but also indirectly, as the addition of
algorithmic edges biases the natural growth dynamics. In our model,
recommendations have an indirect impact on natural dynamics in
the "Meeting Friends" phase of the network evolution. Upon arrival,
a new node forms the initial neighborhood by "Meeting Strangers".
In the next phase, the arriving node connects with nodes at distance
2 from itself (neighbors of neighbors). In the presence of algorith-
mic edges, there can be nodes at distance 2 that require algorithmic
edges in order to be reachable. For instance, in Figure 2, at time
t+2node F arrives and connects with B in the first phase of natural
growth. In the second phase, nodes {A, C, D, E} are reachable for
the purposes of "Meeting Friends", however node A is only reach-
able because of algorithmic edge B — A. If the incoming node F
connects to a node such as A, the resulting edge F — A is said to be
mediated by recommendation.

To measure direct impacts, we design a counterfactual experi-
mental procedure to remove the indirect influence of algorithmic
edges on natural growth by discount mediated edges. Construct-
ing a post-hoc counterfactual by simply removing mediated edges
from the network would inadvertently decrease the edge density in
the network and thus bias the analysis. To address this, the coun-
terfactual procedure is defined as follows: upon arrival of a new
node i, we modify the "Meeting Friends" phase to only consider
node candidates that are at distance 2 from i via non-algorithmic
edges. For this counterfactual, the network contains no mediated
edges. Since organic link are created only when a new node arrives,
this counterfactual removes all indirect effects of recommenders
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on natural growth. Formally, we refer to this unmediated evolu-
tion as G(rec, [£,t]). Finally we can define direct effects as the
difference between the metric evaluated for the unmediated coun-
terfactual and the natural growth trajectory. The indirect effects
are the difference between total effect and direct effect:

DirectEffectr (G, rec, [1,]) = m(Gr(rec, [1,7])) - m(Gr),
IndirectEffecty (G, rec, [t,t]) = Effectr (G, rec, [t, t])—
DirectEffect7 (G, rec, [£,]).

Longitudinal evaluation. In a simulated setting, one has access to
both counterfactuals: the evolution of the network in the presence of
recommendations and in their absence. In longitudinal evaluations
(i.e. observational studies), effects are measured as the difference in
a metric before and after the intervention:

Effect)’ (G, rec, [1,1]) = m(Gr. rec, [, 1]) — m(Gy)
This measure is biased whenever m(Gr) # m(G;).

A/B evaluation. The lack of valid counterfactuals motivates the
use of A/B tests in settings with interventional access. In an A/B
test, nodes are divided into two groups: treatment and control;
the treatment group receives recommendations, while the control
group does not. However, in networks, the Stable Unit Treatment
Value Assumption (SUTVA) [18] does not hold due to network
interference. There are various methods for choosing treatment
nodes, as well as methods to correct for network interference in
estimation procedures.

Let a scheme for choosing treatment nodes exist and let
GA8(rec, [£],?) be the network evolution where a group of nodes
are assigned to the treatment group and receive recommendations.
To estimate the impact of recommendations on a metric of interest,
we compare the values of the metric on the treatment and control
groups:

—— AB -
Effecty (G.rec,[t,1]) =
mireatment (GAB e [1,7]) — meonirol(GAB rec, [1,1]).

In evaluating the impact of recommendations, we consider both
naive estimators that do not correct for network interference, and
more sophisticated ones that take network externalities into ac-
count.

4 COUNTERFACTUAL EVALUATION

We simulate counterfactual evolutions of the network by applying
different recommendation interventions for various time periods.
Although accessing counterfactuals in reality is infeasible, these
simulations offer insights into dynamic and temporal phenomena.

4.1 Setup

The results in sections 4.2 and 4.3 consider a simple experimental
setup to illustrate delayed and indirect effects of FoF and Latent?
recommenders. In the baseline setup, we consider two equally sized
communities. We sample latent embeddings for the nodes indepen-
dently from N (p, oI), with g3 = [0,1] and gz = [1,0]; for both

3For Latent recommendations we use softmax temperature = 10, which in our
simulations corresponds to ~ 80% chance of recommending ‘closest’ node.
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Figure 2: Mediated edges. Edge A — B is a recommended edge and a direct effect of the recommendation. Edge F — A is a mediated
edge as node A would not be reachable from F in the absence of A — B and thus an indirect effect of recommendation.

communities, the variance of the embeddings is set to o = 0.05. We
sample 50 nodes in each group and initialize both within-group
and across-group edges by connecting pairs of nodes i — j with
probability proportional to the inner product of their embeddings.
Then, for each node in the network, we consider their neighbors
at distance 2 and connect to them with probability p; = 0.05. This
results in a slightly homophilic initial network with homophily
h1 = h2 = 0.1. Upon initialization, at each time step, 5 new nodes
arrive. For natural growth, we consider Ny = Nf = 100 and the
connection probability of connecting to a candidate node in the
"Meeting Friends" phase: p» = 0.05 (which adds an average of 5
edges per node). Further, we assume a behavioral model where
nodes accept recommended edges with a constant probability, 0.5.
At each time step we measure structural metrics of the network
such as clustering coefficient, Gini coefficient and homophily. We
repeat each trajectory for 5 random seeds and report average results
along with confidence bands. 4

In section 4.4, we vary these assumptions by considering majority-
minority structure, differentiated homophily, and within-group
heterogeneity. Finally in Appendix A.1 and A.2, we consider addi-
tional behavioral assumptions, different variants of the underlying
dynamics and modifications to the recommendation algorithms.

4.2 Delayed effects

We find that affinity and neighborhood-based recommenders have
opposite long-term effects on homophily and clustering coefficients.
Latent leads to increases in homophily as well as global clustering
whereas FoF recommendations reduces clustering. Both recom-
menders have diminishing delayed impacts with respect to ho-
mophily and clustering, as upon the end of the intervention, the
trajectory of the metric regresses to the counterfactual natural
growth trajectory. Meanwhile, effects with respect to the Gini coef-
ficient are qualitatively different. Latent recommendations lead to
increases in degree inequality both in the short and in the long term.
Conversely, FoF recommendations decrease the Gini coefficient in
the short term but increase it in the long term. Figure 3 illustrates
these findings.

Clustering and homophily. In the case of Latent recommenda-
tions, if nodes i, j, and k are similar in embedding space, it is likely
they are from the same community and all three pairs of edges have
been proposed as recommendations, leading to a strong bias for

4Code for reproducing experimental results can be found here.
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Figure 3: Trajectories of homophily, global clustering and
Gini coefficient for Latent and FoF recommendations applied
over varying intervention intervals. The solid black lines
represent the evolution of the metrics under natural growth
dynamics. Left column corresponds to a behavioral model
where nodes accept recommendations with constant prob-
ability and right column corresponds to acceptance proba-
bility proportional to embedding similarity. The blue lines
represent trajectories for the Latent recommender whereas
the orange lines correspond to FoF. Dashed and dotted lines
correspond to various intervention intervals. The shaded
area corresponds to the 95% confidence interval.

closing triangles within the community. This results in increased
homophily and clustering, especially with the behavioral assump-
tion that nodes accept links based on embedding similarity (see Fig.
Alc and A1d). The bias is further exacerbated for high-temperature
B. Conversely, with a low f value, which corresponds to a more
stochastic recommender, it is less likely that all three edges of a
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given triplet will close, thus slightly lowering the homophily value
compared to the high-f case.

The FoF recommender intervention mimics the "Meeting Friends"
phase of natural growth, which has a bias towards forming cross-
community links, resulting in decreased homophily. Decreased
clustering occurs because random FoF recommenders lack the bias
of connecting nodes with a large common neighborhood, unlike
neighborhood-based models such as Adamic-Adar [2], which favor
links with nodes with a large number of common neighborhoods
and thus increase clustering (see Fig. A2).

Gini coefficient. The Gini coefficient for recommendations shows
amplifying delayed effects. The natural growth trend exhibits a
slight increase in inequality over time. Latent recommendations
exacerbate the wealth gap between popular and unpopular nodes
through a bias towards nodes with high embedding norms, creating
the "rich-get-richer" effect. FoF recommendations initially reduce
degree inequality as they are less biased towards popular nodes.
Surprisingly, once recommendations stop, the Gini coefficient in-
creases dramatically for both recommenders, particularly for FoF.
This is due to a "relative-rich-minority" effect caused by differences
in edge density between "older" and "newer" nodes. Through recom-
mendations, the existing nodes have accumulated a large number
of connections. After recommendations stop, as new nodes are
arriving and natural growth is continuing to take place, the set
of "rich" nodes becomes relatively smaller, while the majority of
nodes, who come after recommendations stop, have much fewer
connections. This results in higher inequality as measured by the
Gini coefficient. If a rewiring behavioral model is assumed (see Fig.
A1b and A1d), where nodes receiving recommendations do not
change their degree, the delayed impacts diminish, similar to the
case of clustering and homophily.

4.3 Indirect effects

The "Meeting Friends" phase occurs in feedback loop with algo-
rithmic recommendations, leading to the mediation phenomenon
illustrated in Figure 2. We find that mediated edges are common,
long-lasting and biased. For instance, in the case of Latent recom-
mendations, the mediated edges are more likely to connect nodes
from the same community, resulting in significant effects on ho-
mophily.

Prevalence, persistence and bias of mediated edges. Mediated edges
play a substantial role in the "Meeting Friends" stage of natural
growth dynamics. Figure 4 shows that the proportion of mediated
edges increases with the duration of the intervention period and
remains constant even after recommendations have stopped for
both Latent and FoF recommenders. The bias of mediated edges in
terms of bichromaticism is distinct for each recommender, relative
to the proportion of bichromatic edges under natural growth. For
instance, about a third of unmediated "Meeting Friends" edges
are bichromatic for both recommenders. However, the proportion
of bichromatic edges among mediated edges is lower for Latent
and higher for FoF. Our findings about homophily in Section 4.2
suggest that algorithmic edges are biased towards monochromatic
for Latent and bichromatic for FoF. This experiment supports the
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hypothesis that recommendations have a compounding effect by
inducing biases in the natural network evolution.

Counterfactual measurements of indirect effects. To measure the
indirect effects on structural metrics, we apply the counterfactual
procedure from Section 3.3 and isolate the direct effects. We find
that without mediation, structural metrics trend faster to their nat-
ural evolution. Figure 4 shows the comparison of homophily under
natural growth, algorithmic growth, and unmediated algorithmic
growth. The difference between the latter two quantifies the magni-
tude of indirect effects. Additionally, indirect effects grow relatively
stronger over time, even after recommendations end, highlighting
the persistence of indirect impacts.

4.4 Impacts of group structure

Previous studies have highlighted the unequal impact of recom-
mendations on different communities, especially when they are
divided into majority and minority groups and display varying
levels of homophily [13, 16, 26]. Here, we examine the effects of
differential homophily between majority and minority groups as
well as within-community heterogeneity.

Community heterogeneity. We examine the impacts of homo-
geneity and heterogeneity in the latent representation of nodes
on the results of link recommendation. We model within-group
heterogeneity by varying the variance of the latent embeddings. In
the heterogeneous setting, we set the variance of the embedding
distribution to ¢® = 0.1, and to ¢ = 0.01 in the homogeneous
setting; in the extreme case when the variance is 0 this recovers the
JR variant of [1]. Figure 5 shows that when there is high within-
group heterogeneity, Latent recommendations greatly increase
the global clustering coefficient, while for high within-group homo-
geneity, Latent recommenders have the opposite effect, reducing
global clustering. This unexpected phenomenon is due to Latent
recommendations favoring nodes with high embedding norms. For
any existing edge i — j, there is a disproportionately high chance
that both i and j will receive recommendations concentrated on a
small subset of large-normed nodes, creating closed triangles. In
the homogeneous setting, such "collisions" are less likely to occur,
as the probability of two nodes independently being recommended
with the same node is lower. These findings highlight the impor-
tance of investigating not only between-group differences but also
within-group differences.

Homophilic minority and heterophilic majority. In previous stud-
ies, it has been observed that homophilic minority groups receive
an excessive amount of exposure from recommendations, leading
to increased disparities in homophily between groups. We simulate
the network evolution for a majority fraction of 60%, u; = [0, 1]
and pz = [1.1,1.1]° and find that our results support this con-
clusion for Latent recommendations. In contrast, Figure 6 shows
that while FoF increases homophily for the majority, it decreases
it significantly for the minority. The FoF recommender amplifies
the visibility of the majority more than that of the minority. This
phenomenon can be explained by the heterophilic nature of the

by increasing the norm of latent representations in group 2 we increase the within-
group connection probabilities.
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majority group, where most of its direct connections are with mi-
nority nodes. For a majority node i, its neighbors’ neighbors that
are in the minority group are likely to also be direct neighbors of i.
Therefore, there is a larger probability that i is recommended with
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other majority nodes at distance 2, increasing the homophily for
the majority group.

4.5 Evaluation biases

As we do not have access to the full range of counterfactual mea-
surements, we often resort to either longitudinal or A/B evaluations.
However, these methods have their limitations and may fail to ac-
curately capture the impacts of recommendations. In this section,
we explore the potential biases and limitations of these evaluation
procedures.

Longitudinal evaluation. Simulating a longitudinal evaluation
mimics an observational study. In this setting, a single trajectory is
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observed. The estimated total effect of link recommendations is the
temporal difference between the value of the metric before and after
the intervention. If the underlying dynamics for a metric are sta-
tionary, as is the case for homophily in Figure 3, then a longitudinal
evaluation is unbiased. Conversely, when under natural dynamics a
metric is non-stationary, a naive comparison between the initial net-
work at time ¢ and the network at time T could yield qualitatively
misleading estimates. For instance, in Figure 3, when measuring the
impact of FoF on clustering coefficient, a longitudinal measurement
would compare the solid orange trajectory between time ¢ = 50
and T = 400, thus over-estimating about double the size of the
true effects. Furthermore, the naive observational measurement
for Latent would incorrectly suggest a negative effect on network
clustering, when in reality it has a positive impact compared to the
natural evolution.

A/B evaluation. A/B evaluations in dynamic networks become
complex due to changes of network structure over time caused by
natural dynamics and algorithmic interventions. We simulate A/B
tests aimed at estimating causal effects of Latent and FoF link rec-
ommendations. We perform random treatment (p = 0.5) on node as-
signment for clustering and Gini coefficient and community-based
treatment assignment for measuring homophily. The estimates in
Figure 7 are adjusted for network interference. Detailed computa-
tion of the adjusted estimates as well as the corresponding plots for
the naive cases can be found in Appendix A.3. The quality of A/B
estimates varies based on the metric and intervention. For example,
A/B tests overestimate the impact on homophily for Latent but
underestimate it for FoF. The clustering coefficient is accurately es-
timated for Latent but greatly underestimated for FoF. For the Gini
coefficient, both Latent and FoF interventions underestimate the
metric for the treatment group while accurately estimating the met-
ric’s evolution under natural growth for the control group. Across
most settings, the quality of the metric deteriorates over time, fur-
ther supporting the existence of dynamic effects that compound
network interference effects.

5 DISCUSSION AND FUTURE WORK

In this study, we explored the dynamic effects of link recommen-
dations on network evolution through simulations. Our proposed
extension of the Jackson-Rogers model provides insight into the
impact of link recommendations on network structure. Emphasiz-
ing the importance of temporal dynamics and measurement timing,
our simulations revealed surprising and persistent effects of link
recommendations on network structure.

Using synthetic data and simple network evolution models and
recommendation algorithms, we answered "what-if" scenarios in a
controlled setting, providing a valuable first step in understanding
these effects in real networks. Our results showed that link rec-
ommendations can have delayed and indirect impacts on network
structure, with long-lasting effects even after recommendations
have ceased, which result in significant cascading indirect effects
over time. This highlights the need for further research in evaluat-
ing link recommendation algorithms in dynamic networks.

Finally, our study sheds light on the potential biases that can
arise in evaluating link recommendation algorithms in dynamic net-
works. We find that evaluating metrics longitudinally or using A/B
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tests can result in biased estimates when the underlying network
dynamics are not stationary. This highlights the need for advanced
estimation procedures that consider both network interference and
underlying dynamic effects to accurately assess the impacts of link
recommendation algorithms.

We identify several opportunities for future research. To improve
the validity of our conclusions, one avenue is to validate modeling
assumptions against real-world networks. Refining the modeling
assumptions, such as allowing for non-recommender-driven edge
creation between existing nodes, could better reflect reality and
potentially result in greater indirect effects. Another important area
of interest is to further develop methods for measuring direct and
indirect effects in different network formation models.

A second direction of future work is to study downstream im-
pacts of link recommendation. Modeling node embeddings as dy-
namic properties, influenced by the local neighborhood through
biased assimilation [10] or mere exposure effects [8], could provide
insight into how opinion formation on networks is influenced by
recommendations. Finally, examining recommendation scenarios
where network edges in the social network are formed by content
recommendations, rather than user recommendations, which is
typical of social media sites like Instagram, is a promising area for
investigation.
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A ADDITIONAL EXPERIMENTS

A.1 Behavioral assumptions

In this section, we investigate two behavioral assumptions: edge
rewiring and choice homophily. Under edge rewiring assumption,
upon accepting a recommended edge the node will remove at ran-
dom one of its existing edges. Under choice homophily, nodes
accept recommendations according to embedding similarity rather
than with a constant probability, assumed in the main body of the
paper. Figure A1 shows the trajectories of homophily, clustering
and Gini coefficient under different behavioral assumptions. In the
case of edge-rewiring (Fig. A1lb, A1d), the delayed impacts on Gini
coefficient diminish. The behavioral assumption that nodes accept
preferentially nodes with high embedding similarity unsurprisingly
leads to further increases in observed homophily for both Latent
and FoF recommenders (Fig Alc, A1d).

A.2 Intervention Variants

In Fig. A2a, we consider different choices of temperature parameter
P for the Latent recommender. All recorded metrics increase as
the recommendations become more deterministic (increasing f).
Note that f = 4 and f = 10 are nearly indistinguishable in the
homophily graph whereas § = 4 and f§ = 2 are close in the graph of
the clustering coefficient. This suggests that different metrics have
different sensitivities to changes in recommendation intervention.

In Fig. A2b we compare FoF with a neighborhood-based rec-
ommendation algorithm that recommends node pairs with higher
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Adamic-Adar index. The Adamic-Adar index assigns a higher simi-
larity score to pairs of low-degree nodes that share many neighbors
in common. This change leads to an extreme increase in the clus-
tering coefficient.

A.3 Naive and Interference Adjusted estimates
for A/B evaluation

First we comment on the naive and adjusted estimation procedure
for each metric.

Homophily. Naively, we estimate homophily for an A/B eval-
uation by assigning one community as treatment and the other
as control and measuring the homophily for each community. To
adjust the estimate for the control group, we discount the algorith-
mic edges received by the control group, whereas to adjust for the
treatment, we double the count of the algorithmic edges that the
treatment group forms with the control group.

Clustering. Naively, we estimate the group-level clustering coef-
ficient for treatment and control by averaging node-level clustering
for treatment and control groups respectively. We adjust the esti-
mate for the treatment/control group by calculating its clustering
coefficient only among the treatment/control neighbors, i.e., in a
sub-network with only the treatment/control nodes.

Gini coefficient. We naively estimate Gini coefficient by measur-
ing the value within the treatment and control groups, respectively.
We adjust Gini coefficient by discounting the algorithmic edges for
the control group.

Fig. A3 shows the naive estimates derived from the A/B evalua-
tion.
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Figure A1: Counterfactual trajectories of homophily, global clustering and Gini coefficient for Latent and FoF recommendations
applied over varying intervention intervals. The solid black lines represent the evolution of the metric under natural growth
dynamics. The blue lines represent trajectories for the Latent recommender whereas the orange lines correspond to FoF. The
shaded area corresponds to the 95% confidence intervals calculated over 5 independent trajectories.
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Figure A3: A/B evaluations (naively): Solid lines correspond to ground truth counterfactual evaluations of homophily, clustering
and Gini coefficient. Dashed lines correspond to trajectories estimated naively from running an A/B test.
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