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ABSTRACT Traditional grid analytics heavily rely on accurate power system models, especially dynamic
ones for generators, controllers, and loads. However, obtaining comprehensive models is impractical in real
operations due to inaccessible parameters and consumer privacy. This necessitates dynamic equivalencing
for unknown subsystems, which employs physics-informedmachine learning and neural ordinary differential
equations (ODE-NET) to preserve dynamic behaviors post-disturbances. The contributions include:
1) A neural dynamic equivalence (NeuDyE) formulation enabling continuous-time, data-driven dynamic
equivalence, eliminating the need for acquiring inaccessible system details; 2) Introduction of Physics-
Informed NeuDyE learning (PI-NeuDyE) to actively control NeuDyE’s closed-loop accuracy; 3) Driving
Port NeuDyE (DP-NeuDyE), a practical application of NeuDyE, reducing the number of inputs required
for training. Extensive case studies on the 140-bus NPCC system validate the generalizability and accuracy
of both PI-NeuDyE and DP-NeuDyE. These analyses cover various scenarios, including limitations in data
accessibility. Test results demonstrate the scalability and practicality of NeuDyE, showcasing its potential
application in ISO and utility control centers for online transient stability analysis and planning purposes.

INDEX TERMS Neural dynamic equivalence, ODE-NET, physics-informed machine learning, model order
reduction, driving port.

I. INTRODUCTION
Reliable discovery of dynamic equivalent models for uniden-
tified subsystems, especially external systems, is crucial
to ensure reliable operations of large-scale interconnected
transmission systems [1]. This task has been a longstanding
challenge due to the existence of nonlinear dynamics, com-
plex coherency characteristics, and unavailable component
models in power systems [2], [3]. Recent advancements in
PhasorMeasurement Units (PMUs) provide an opportunity to
readily obtain a rich history of high-data-rate measurements,
which fostered the development of data-driven dynamic
equivalence using machine learning techniques [4]. While
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the utilization of neural networks in power systems is
not a new concept [11], [12], their application in power
system dynamic equivalence remains an evolving area of
research [7], [13]. Early investigations primarily concentrated
on the direct application of neural networks in power system
analysis [16], [17] or the use of deep learning methods to
unveil power system dynamics. Examples include employing
recurrent neural networks for predicting dynamic varia-
tions [18], [19] and designing convolutional neural networks
for stability assessment [20], [21]. Some studies in dynamic
modeling utilize the Koopman operator framework [24],
mapping nonlinear systems into higher-dimensional linear
representations. However, the computational complexity
associated with mapping large-scale systems to an even
higher dimension is substantial. Identification and parameter
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estimation methods, as outlined in [31], can be employed to
determine the unknown parameters of the dynamic equivalent
model. Another approach is the frequency-scanning-based
impedance modeling [30], whereas the equivalent model
is a linear dynamic system that proves effective solely at
a single operating point, rendering it unable to capture
transients during faults. Distinguished from these methods,
Physics-Informed Neural Networks (PINNs) are engineered
to directly leverage physical knowledge to assist the training
procedure [22]. For example, a specialized PINN is designed
for Differential Algebraic Equations (DAEs), which can sim-
ulate both state and algebraic variables for well-established
power system test cases [23].

Despite various attempts being reported in the literature,
significant challenges persist. First, learning continuous-
time dynamic behaviors using discrete-time measurements
poses a considerable obstacle. Traditional discretization
techniques may not fully capture the intricacies of the
continuous dynamics, leading to large inaccuracies that limit
their practical implementations. Second, achieving robust
and stable closed-loop operations under diverse operating
conditions and disturbances is essential for safe plug-and-
play integration of dynamic equivalence.

This paper makes three contributions to address the
aforementioned challenges:

• Formulation of Ordinary Differential Equations
(ODEs)-Net-enabled Dynamic Equivalence (NeuDyE):
This approach leverages ODEs and neural networks to
model the system dynamics accurately, providing a data-
driven representation that aligns with the continuous-
time behavior of power grids.

• Introduction of Physics-Informed Neural Dynamic
Equivalence (PI-NeuDyE): It combines an ODE-NET-
enabled equivalent model with physics-informed learn-
ing to identify a continuous-time dynamic equivalence
while ensuring a controllable alignment in the closed-
loop dynamic behaviors under disturbances.

• Implementation of a Driving Port NeuDyE
(DP-NeuDyE): It reduces the number of inputs required
for training, making the method more manageable and
cost-effective to deploy in real-world interconnected
bulk power systems.

• An extensive comparative analysis is conducted to dis-
cuss the pros and cons of PI-NeuDyE and DP-NeuDyE.

This article is organized as follows: Section II introduces
the mathematical basis of NeuDyE, i.e., how to formulate and
simulate a power system with subsystems modeled by neural
dynamic equivalence. Section III explains the key technology
of PI-NeuDyE, which is to use Neural-Ordinary-Differential-
Equation-Network (ODE-NET) to discover the dynamic
equivalence of power systems. Section IV introduces a
variant of NeuDyE called DP-NeuDyE to further trim the
features needed. Section V presents extensive case studies
on the 140-bus Northeast Power Coordinating Council
(NPCC) system [5] under various contingencies. Section VI

discusses the trade-off between the two methods, and finally
Section VII states the conclusion.

II. PROBLEM FORMULATION
For a reliability coordinator (RC), the entire interconnection
can be partitioned into an internal system (InSys) and an
external system (ExSys). An RC usually has both accurate
dynamicmodels and real-time observability for InSys, but not
ExSys. In reality, there may be a cushion area where the RC
has partial observability; however, in this paper, we consider
it part of the ExSys as well. Take the 140-bus NPCC system
as an example, InSys and ExSys, connected through two tie-
lines [28], are illustrated in Fig. 1. Tie-lines are the connecting
links between Insys and Exsys.

InSys (bus1-36), which is the simplified ISO New England
(ISO-NE) system, represents the subsystem that can be
characterized by precise knowledge of its structure and
parameters, enabling a straightforward formulation using
dynamicmodels for each component. Themodel-based InSys
can be formulated based on the known dynamics of each
component (e.g., the generators, turbines, exciters, loads,
converter controls, transmission lines) by a set of DAE
in (1a)-(1b).

In contrast, ExSys (bus37-140) lacks accessible physics
models due to unavailable system state measurements,
privacy concerns, and inaccessible local measurements,
e.g.,real-time dispatch of the generators. The accessible state
variables of Exsys are limited to those associated with tie
lines, e.g., currents on tie lines. Therefore, a data-driven
neural network-based dynamic equivalence is relied upon to
model ExSys, as in (1c):

ẋin = P(xin, yin, itie) (1a)

G(xin, itie, yin) = 0 (1b)

ẋex = Nθ (xex , zin) (1c)
Here, xin denotes the state variables of InSys’s components
(e.g., generators, turbines, exciters); yin denotes the algebraic
variables of InSys such as power flow states; itie denotes
the currents flowing through the tie-lines. Functions P and
G denote the dynamic and algebraic equations of InSys,
respectively, which can be readily established based on
the physics models of InSys.zin denotes the features from
InSys, which is selected from part of the states of InSys to
describe the interaction between InSys’ dynamics and ExSys’
dynamics. xex denotes the state variables of ExSys, the tie-
line currents. N is the forward propagation function of a
neural network. The objective is to learn such a N that
reflects the ExSys dynamics. The outputs are the derivatives
of the tie-line currents, denoted by ẋex . This neural network
is multi-layer structured, whose forward propagation can be
functionally expressed as:

N (xex , zin) = Lm(Lm−1(· · ·L1(xex , zin, θ1) · · · , θm−1), θm)

(2)

where Lm denotes the loss function of the mth layer and θm
denotes the corresponding weights in that layer. The universal
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FIGURE 1. Topology of the NPCC system.

approximation theorem ensures that a neural network with
1 hidden layer can approximate any continuous functions
for inputs within a specific range. Therefore, the advantage
of a neural network-enabled dynamic equivalence lies in
its flexibility for approximating a dynamic system without
requiring the system to be linear or assuming any dynamical
modes beforehand.

III. ODE-NET-ENABLED DYNAMIC EQUIVALENCE
A neural network can be conceptualized as a nonlinear
function governed by parameters denoted as θ . Within the
realm of machine learning, these parameters are optimized
by minimizing a loss function, conventionally determined
as the disparity between observed measurements and the
corresponding outputs of the neural network. This equiv-
alencing problem is formulated as an ordinary differential
equation to represent the state space model. The challenge in
this particular context stems from the neural network output
being the derivative of xex , while the available measurements
only provide xex , as in (1b). Consequently, the direct
construction of a loss function becomes inherently infeasible.
In addressing this predicament, two distinct approaches
present themselves: discrete-time learning and continuous-
time learning.

A. NECESSITY OF CONTINUOUS-TIME LEARNING
Conventional machine learning techniques for dynamic
equivalence primarily rely on discrete-time learning.
In discrete-time learning, the loss function for neural network
training is usually constructed by discretizing the continuous-
time differential equations into discrete-time difference
equations. For example, based on the trapezoidal rule, the
ExSys dynamics can be discretized as:
xex(t)− xex(t −1)

1

=
1
2
[N (xex(t), zin(t))+N (xex(t −1), zin(t −1))] (3)

Correspondingly, the loss function can be established, and the
neural network can be optimized by:

minθ

n∑
i=0

Ldiscrete =
n∑
i=0

1
2
ηi||yi − ŷi||2

s.t. ŷ =
1
1
(x̂ex(t)− x̂ex(t −1))

y =
1
2
[N (xex(t), zin(t))+N (xex(t −1), zin(t −1))] (4)

where the subscript i denotes the time-step, n is the number of
total time steps, ŷ denotes the derivatives estimated from the
measurements; and y denotes the derivatives estimated from
the neural network; ηi denotes the weighting factor at time
step i.

However, this approach is sensitive to derivative estima-
tion, resulting in biased training due to accumulated residue
errors during training or non-ideal measurements. Although
discrete-time training may produce satisfactory derivatives
fitting, it cannot guarantee the accuracy of system states after
numerical integration, leading to unsatisfactory performance
in learning continuous-time dynamics.

In contrast, our solution is an ODE-NET-enabled dynamic
equivalence, which adopts a continuous-time learning phi-
losophy by directly minimizing the error between the state
measurements x̂ and the numerical solution of (2):

minθ

n∑
i=0

L(xex,i) =
n∑
i=0

1
2
ηi||xex,i − x̂ex,i||2

s.t.
dxex
dt
= N (xex , ẑin, θ) (5)

Comparing (5) with (4), an obvious distinction is that
ODE-NET is capable of directly minimizing the difference
between real dynamic states and trained dynamic states,
which requires no discretization and fully respects the
continuous-time characteristics of power system dynamics.
Therefore, it is theoretically less vulnerable to non-ideal
measurements and residue training errors.
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B. PHYSICS-INFORMED CONTINUOUS BACK
PROPAGATION
Traditional DNNs are generally trained by backpropagation,
which computes the gradient of the loss function to the
DNN parameters at each layer to update the DNN. However,
the ODE-NET training shown in (5) differentiates from the
conventional loss function, such as (4). Because it involves
numerical integration in its constraints.

To deal with the integration-incorporated constraints,
ODE-NET adopts a continuous backpropagation technique
to train the network. An adjoint method [7] is introduced to
transform (5) into a format that removes the numerical inte-
gration constraints; then a physic-informed (PI) continuous-
backpropagation technique is developed as follows:

minθ

n∑
i=0

Li =
n∑
i=0

ηi

2
(||xex,i − x̂ex,i||2 + ||xin,i − x̂in,i||2)

L =
n∑
i=0

Li −
∫ tn

t0

[
λT (ẋex −Nθ )+ µT (ẋin − P̃)

]
dt

s.t. xex,i = x̂ex,0 +
∫ ti

t0
N (xex , zin, θ)dt

xin,i = x̂in,0 +
∫ ti

t0
P̃(xin, yin, itie)dt (6)

where λ and µ respectively denote the adjoint states for
ExSys and InSys, P̃ is equivalently formulated from (1).
A dynamic equivalence is theoretically non-autonomous,
where the InSys’ states also impact the ExSys’ dynamics.
Consequently, both the dynamics of InSys and ExSys
are incorporated into (6), ensuring the effectiveness of
ODE-NET in simulating the closed-loop dynamics of the
entire power system. Utilizing appropriate adjoint boundary
conditions [7], the physics-informed gradient is expressed as
follows:

d
dt

λT

µT

∂L/∂θ

 =
− λT ∂N /∂ xex − µT ∂P̃/∂ xex

− λT ∂N /∂ xin − µT ∂P̃/∂ xin
λT ∂N /∂ θ


(7)

Finally, the gradient descent for Nθ can be performed using
∂L/∂θ |t=0 integrated from (7) by any ODE solvers (the
integration operation). θ is updated according to:

θ∗← θ −
∂L
∂θ

(8)

As illustrated in Fig. 2, (6) explicitly embeds the accuracy of
both ExSys and InSys states in a closed-loop manner, which
ensures NeuDyE generates dependable dynamic responses
in conformance with the system’s real dynamics once the
training converges.

IV. SEEN FROM DRIVING PORT EQUIVALENCE
In the previously formulated Physics Informed NeuDyE
(PI-NeuDyE), optimal closed-loop outcomes are attained

FIGURE 2. Physics-informed NeuDyE.

FIGURE 3. Driving port dynamic equivalence.

through sufficient internal system inputs, which may not
be readily accessible in practical applications [27]. Another
concern is that the PI-NeuDyE while considering the interac-
tion between the ExSys and InSys in a closed-loop manner,
ensures testing accuracy at the expense of compromised train-
ing efficiency. To address these limitations and enhance the
method’s applicability in real-world scenarios, we introduce
a more scalable neural equivalent technique known as the
Driving Port (DP) NeuDyE. This novel approach necessitates
only the knowledge of boundary voltages on the tie-lines,
thereby facilitating the practical implementation of NeuDyE
in utility and industrial systems.

A. ALGEBRAIC COMPONENT SEPARATION
To form the neural network-integrated power grid, the fol-
lowing equations (1), the selection of xex and zin is necessary.
If the topology of ExSys is static, it can be substituted with a
Norton equivalent current source, illustrated in Fig. 3b. From
the standpoint of InSys, whether ExSys is represented in full
detail, as depicted in Fig. 3a, or as a Norton equivalent current
source, as shown in Fig. 3b, both representations yield the
same output itie for a given input vp. Inspired by the Norton
equivalent theory, a neural network observed from the driving
port is devised.

To capture its nonlinear dynamics, measurements of port
voltages vp and tie-line currents itie are utilized to discover
the state space model of ExSys as shown in Fig. 3. The tie-
line currents itie are selected as the state variables xex for
the external system, whose continuous differential structure
is represented by the neural network; then the algebraic
component separation is introduced below:{ ditie

dt
= N (itie, vp, θ)

G(itie, vp) = 0
(9)
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where the port voltages vp corresponds to the InSys features
zin in (1c). The tie-line currents itie can then be represented as
a linear combination of state variables and inputs:

itie = Cs · xex + D · vp (10)

where matrices Cs and D are constant matrices. If a fault
happens in InSys at time instant ti, sudden changes may
happen in 1vp(ti) = vp(ti +1t)− vp(ti), while xex(ti) keeps
invariant in a very short period of 1t , i.e. 1xex(ti) = 0. The
components itie can be split into two types of components:
continuous-state-variable components itie_cs = Cs · xex and
algebraic components itie_a = D · vp.
On one hand, algebraic components embody the immediate

contribution from the port voltages, which may exhibit
discontinuity during switching events within the internal
network. On the other hand, continuous-state-variable com-
ponents, itie_cs, are employed as the constituents of the neural
network equivalent, fulfilling the requirement for continuity
as depicted in equation (9).
To compute the coefficient matrixD, we leverage measure-

ments obtained during the fault period via the least squares
method, as shown below:D11 · · · D1np

...
. . .

...

Dnp1 · · · Dnpnp


=

[
1itie(t1), · · · , 1itie(tnf )

]
·
[
1vp(t1), · · · , 1vp(tnf )

]−1
where np is the number of port voltages and nf is the
number of faults whose port voltages and tie-line currents are
recorded in the data sets. Define 1vp(ti) = vp(ti + 1t) −
vp(ti) and 1itie(ti) = itie(ti + 1t) − itie(ti). The continuous
component itie_cs can then be extracted as:

itie_cs = itie − D · vp (11)

The neural equivalent network in (9) and the DAE now
become: 

ditie_cs
dt
= N (itie_cs, vp, θ)

dxin
dt
= P(xin, yin, itie)

G(xin, yin, itie_cs, itie, vp) = 0

(12)

The neural equivalent of the external system and the
corresponding formulated interface, as shown in Fig. 4,
are integrated into the transient stability simulation. The
equivalent admittance is formed by the coefficient matrix
(admittance matrix) in (11). The values of current sources are
updated by applying an explicit integration to (12).

B. FORMULATION OF ODE-NET BASED DRIVING PORT
EQUIVALENCE
As aforementioned, measurements are inherently discrete
in real-world power networks, even though the underlying
system is continuous. Therefore, DP-NeuDyE is again
discovered through a continuous-time learning manner,

FIGURE 4. DP-NeuDyE with algebraic separation.

as depicted in (12), from discrete measurements itie and vp.
During the time interval [0, tn], DP-NeuDyE is trained by
minimizing the loss function defined by the error between the
state measurements îtie_cs and the numerical solution itie_cs
by (12), as illustrated below:

L =
n∑
i=0

1
2
||itie_cs(ti)− îtie_cs(ti)||2 (13)

where itie_cs(ti) = îtie_cs(0)+
∫ ti
0 N (x, u, θ)dt .

Similar to (7), the challenge in minimizing (13) stems
from the integration operation in the constraints. DP-NeuDyE
again tackles this challenge by treating the ODE solver
as a black box and computing gradients using the adjoint
sensitivity method [8].

C. STRENGTHENING DP-NEUDYE VIA RECURRENT
NEURAL NETWORK
Data-drivenmethodologies predominantly depend on observ-
able states to construct the neural equivalent model, as exem-
plified in (12). However, this model reduction approach
inherently leads to a scenario where state variables constitute
only a minor subset of the comprehensive state variables
present in the original power network. As a result, such
a reduction may not entirely encapsulate all the crucial
dynamic properties intrinsic to the power system. To address
this deficiency of training features, DP-NeuDyE is enhanced
by leveraging historical data through the implementation of
Recurrent Neural Networks (RNNs), effectively expanding
the dataset by incorporating past information. RNNs, with
their unique ability to remember past information, provide a
robust mechanism to incorporate temporal dynamic behavior
into the model [9], thereby improving the model’s perfor-
mance under insufficient training data. The integration of
RNNs into the DP-NeuDyE framework is illustrated in Fig. 5
and explained as follows.

As illustrated in Fig. 5, within a specific neuron, the RNN
cell integrates the output of this neuron from previous time
steps into the computation of the current time step’s output.
This mechanism effectively leverages historical data from
the preceding time step to assist in calculating the output
of the current time step. Thus, RNN ameliorates potential
information deficiencies that might arise when computations
rely on a limited subset of state variables, thereby bolstering
the overall accuracy and robustness of DP-NeuDyE.

Similar to Section III, the backward propagation should
be used to calculate the gradient of the neural network
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FIGURE 5. RNN-empowered DP-NeuDyE.

parameters. Recall that the continuous backpropagation in
Subsection IV-B already considers integration along the time
by solving an augmented differential equation. Therefore,
the backward propagation throughout time for the RNN
cell is ignored and the gradient descent method used in
Subsection IV-B can directly be applied to the RNN-
empowered DP-NeuDyE.

V. TEST RESULTS
In this section, the detailed training and testing procedures
of NeuDyE are introduced. Simulation results of PI-NeuDyE
and DP-NeuDyE are presented to demonstrate their efficacy
and practicality.

A. ALGORITHM SETTINGS
The ground truth electromechanical trajectories are obtained
by simulating the complete, physics-based 140-bus NPCC
system via the Power System Toolbox (PST) [10]. The
PST results are verified with simulations from the Transient
Security Assessment Tool (TSAT). The trapezoidal rule is
adopted as the numerical integration method.

1) NEUDYE TRAINING
PI-NeuDyE: as introduced in Section III, the selected states
are from generators, exciters, governors, and line currents
of InSys as sin, in total 90 dimensions; the currents flowing
in the two tie-lines are the states xex of ExSys. Notably,
such training features can be flexibly adjusted according to
available measurements.

DP-NeuDyE and RNN-DP-NeuDyE: followed by IV, sin
includes boundary voltages with 4 dimensions (2 tie-lines,
each with a real part and an imaginary part); xex consists of
tie-line currents.

2) NEUDYE TESTING
Once an ODE-NET is acquired, its performance is evaluated
through closed-loop tests. In the closed-loop context, the
ODE-NET-based ExSys model takes the place of the large

and unknown external systems. This neural equivalent
Exsys model integrates with the physics-based InSys model,
forming a physics-neural-integrated system that operates as
a unified whole. This constitutes the final setup, where
the dynamics of the entire system are computed through
numerical integration.

The predicted values are trajectories simulated by the
physics-neural-integrated system, which contains the 36-bus,
physics-based InSys and the ODE-NET-based dynamic
equivalence of the ExSys, representing the remaining
104 buses. If the NeuDyE can accurately mimic the dynamics
of the original ExSys, the predicted values from the physics-
neural-integrated system should be close to the true values,
i.e., simulation with the full physical system model.

B. SIMULATION RESULTS
1) VALIDITY OF PI-NEUDYE UNDER VARIOUS FAULT
CLEARING TIMES AND FAULT LOCATIONS
As mentioned in Section III, traditional discrete learning may
yield satisfactory predictions in open-loop training by fitting
the derivatives, as in Fig. 6a, which is the prediction from
a DNN. Whereas in the closed-loop test in Fig. 6b, DNN
fails to capture the continuous dynamics after the integration.
The biased training emerges from accumulated residue errors
during the training process. Even though the discrete-learning
DNN yields flawless predictions of derivatives in the open-
loop training, during the testing, where the DNN works with
Insys in a closed loop to output the final results, the integrated
results are impractical. This underscores the imperative for
continuous learning.

Depicted in Fig. 7, 25 training scenarios are generated by
launching three-phase faults at 0.50s at bus 18, 19, 20, 21, or
28 with fault clearing randomly within a time interval [0.53s,
0.6s]. The training variables of InSys have 90 dimensions as
mentioned in V-A.

Fig. 8 shows the closed-loop test results of boundary
voltages with faults on bus 21 cleared at 0.5405s, and 0.6108s,
which are new values to the training sets. The perfect match
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FIGURE 6. Comparison of NeuDyE with conventional discrete-time DNN.

FIGURE 7. 140-bus NPCC system training and testing locations.

FIGURE 8. Accuracy of PI-NeuDyE under a fault at bus 21.

FIGURE 9. Accuracy of PI-NeuDyE under different fault locations.

illustrates the accuracy of the developed method under varied
fault clear times. In Fig. 9, test results of tie-line currents
with faults on bus 5 and bus 32 demonstrate a perfect match
between PI-NeuDyE’s results and that from the full NPCC
model.

Further, 108 testing scenarios are generated with new fault
locations and random fault clearing times at bus 2, 5, 9, 16,
25, 28, 32, 34 and 35. Fig. 10 presents that the overall relative
error is lower than 1%, indicating a satisfying generalization
ability. Fig. 8-10 show that the derived PI-NeuDyE model
can properly and accurately represent the dynamics and
transients, regardless of changes in fault durations or fault
locations.

As mentioned in Subsection V-A, choosing features of
InSys is flexible. Other settings, like using active and reactive
power of transmission lines or bus voltages and line currents,
are also feasible. As an example, Fig. 11a presents a new
testing result by using boundary voltages between ExSys and
InSys and all branch currents in InSys as training features

FIGURE 10. Accuracy of PI-NeuDyE under new scenarios.

FIGURE 11. Performance of NeuDyE using other measurements.

(90 dimensions for InSys). Fig. 11b uses boundary currents
and voltage from all buses (76 dimensions for InSys). The
fault clears at 0.56s on bus 2. The predicted trajectories match
with the measurements closely, with a mean error of less than
0.3%, indicating high accuracy and satisfactory performance
of NeuDyE using different settings of training features.

A noteworthy observation from the simulation results is
the presence of low-damping oscillations. It is observable
that even after 60 seconds, the tie-line currents and boundary
voltages still have small oscillations. This is attributed to
the inter-area modes of the NPCC system, as extensively
discussed in [28] and [29]. The system’s eigenvalues
possess extremely small real parts, resulting in intrinsic
low-damping dynamics. This characteristic necessitates the
Neural Network (NN) to exhibit both a long total simulation
time to capture the slow dynamics and a small time step
to grasp the fast transients simultaneously, presenting a
formidable challenge for any NN to learn. The demonstrated
efficacy of NeuDyE in capturing both the swift oscillations
and the gradual damping tendency highlights its versatility
in handling stiff systems characterized by multi-time-scale
dynamics. This capability positions NeuDyE as a promising
solution for systems with intricate and challenging temporal
dynamics.

2) REDUCED VARIABLES USING DP-NEUDYE
As previously mentioned, DP-NeuDyE is designed for
potential practical applications that require limiting the
number of input variables. In contrast with Subsection V-B1,
where the number of InSys features used in Fig. 8 and
Fig. 11 are 90 or 76 dimensions, DP-NeuDyE only needs
4 dimensions of InSys features. The selection of ExSys
features is the same for both methods. The ExSys subsystem,
as depicted in Fig. 1, is modeled by the DP-NeuDyE as
illustrated in Fig. 4. The training trajectories are derived from
faults happening in five distinct buses, each triggered by
phase-to-ground faults at the T-line, as highlighted in red in
Fig. 12. All the faults occur at 0.5s and clear at 0.55s. The
testing locations are shown in green.
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FIGURE 12. Training and testing locations for DP-NeuDyE.

FIGURE 13. Testing results of DP-NeuDyE.

In Fig. 13, it is evident that DP-NeuDyE adeptly predicts
low-frequency oscillations across a considerable domain. The
ability to precisely forecast scenarios beyond the training
set serves as validation for the efficacy of the proposed
method. Furthermore, the full model-based trajectory exhibits
two oscillation modes: one at 0.5991 Hz with a magnitude
of 0.2155 and another at 1.24813 Hz with a magnitude
of 0.1349. The simulation based on the neural equivalent
model also accurately predicts these oscillation modes, with
magnitudes of 0.2051 and 0.1431, respectively.

3) GENERALIZABILITY ANALYSIS BASED ON ELECTRICAL
DISTANCE
To quantify the NeuDyE models’ generalization perfor-
mance, the electrical distance is employed between the fault
locations in the testing set and those in the training set
as a measure. The network topology is transformed into
an adjacency matrix using graph theory, as depicted below,
thereby establishing an automated method for predicting
the performance of the introduced neural ODE model for
subsystems. Consequently, the electrical distance between
a new fault location and those in the training set can be
determined from the adjacency matrix A by selecting the
shortest distance.

A =


Electric connection between Bus i and j: Aij = Xij

Else: Aij = 0
Fault dynamic record near Bus i: Aii = 1

In the previous case study as depicted in Fig. 12, the
electrical distances from the test set to the training set are as

FIGURE 14. Comparison among DP-NeuDyE, RNN-DP-NeuDyE and
PI-NeuDyE.

TABLE 1. Training time for different methods.

follows: 0, 0.0255, 0.0404, 0.0369. These electrical distances
are relatively small; the generalizability of the DP-NeuDyE is
thus relatively good. In terms of the performance in predicting
boundary voltage, Fig. 13c is already not satisfiable compared
with results from PI-NeuDyE in Fig. 8 and in Fig. 10. If a
fault occurs at a considerably remote distance from those in
the training set, such as the T-line between bus 19 to 17, where
the electrical distance is 0.0948, DP-NeuDyE may output
divergent dynamic predictions as in Fig. 14a. Even though
RNN-empowered DP-NeuDyE yields convergent results in
Fig. 14a, it still faces challenges in achieving precision.

VI. DISCUSSION
From Table 1 and Fig. 14b, for the same training set, it is
obvious that DP-NeuDyE is more efficient. The primary
advantage of DP-NeuDyE lies in its ability to perform
dynamic equivalence even with limited features in InSys.
It is noteworthy that DP-NeuDyE utilizes only 6% of the
inputs compared to PI-NeuDyE. This capability eliminates
the requirement for extensive data acquisition and storage
resources. However, the increased training time for RNN-
empowered DP-NeuDyE is notable. This is attributed to
the RNN-ODE-Net for training, while PI-NeuDyE and DP-
NeuDyE employ ODE-Net with a Multilayer Perceptron
(MLP) structure. The inherently slower training speed of
RNN compared to MLP, even with the same network size,
contributes to the observed increase in training time.

Another observation is DP-NeuDyE offers advantages
particularly when dealing with highly limited training
sets. However, its performance is not as commendable as
PI-NeuDyE for faults occurring from a large electrical
distance. The primary reason behind this discrepancy lies
in the training process. PI-NeuDyE trains in a closed-
loop manner by considering the interacting dynamics of
both InSys and ExSys, involving 90 dimensions of InSys
features. Whereas DP-NeuDyE only sees from the driving
port, utilizing only 4 dimensions of boundary measurements
as InSys features. As a result, there exists a trade-off
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between training efficiency and generalization ability, which
impacts the performance of the DP-NeuDyE for faults in
distant areas. Even though the utilization of RNN can
improve the generalization capability of DP-NeuDyE, further
investigation is required to address its time-consuming nature
of training.

To summarize, for faults not too distant from the training
sets, both DP-NeuDyE and PI-NeuDyE yield satisfactory
results. In cases where a fault is significantly distant
from the training set, PI-NeuDyE remains effective, while
DP-NeuDyE proves inadequate unless the training set is
expanded across a wider area. Balancing data size and
diversity with model complexity is crucial, requiring more
diversified data for robust generalization.

VII. CONCLUSION AND FUTURE WORK
This article proposes an ODE-Net-enabled Neural Dynamic
Equivalence and its variants, PI-NeuDyE and DP-NeuDyE,
which uncovers a powerful continuous-time dynamic equiva-
lence of external systems. Their effectiveness is demonstrated
on the 140-bus NPCC system, showcasing their performances
under diversified scenarios. The scalable NeuDyE methods
show that neural models can handle large-scale and compli-
cated dynamical systems, which is essential for real-world
power system applications with varying dynamics.

In the future, the authors aim to enhance method efficiency
by incorporating advanced computing technologies, sparsity
techniques for power grid formulation, and time-domain
simulation.
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