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ABSTRACT

Small Unmanned Aerial Systems (sUAS) must meet rigorous safety

standards when deployed in high-stress emergency response sce-

narios; however many reported accidents have involved humans

in the loop. In this paper, we, therefore, present the HiFuzz testing

framework, which uses fuzz testing to identify system vulnerabil-

ities associated with human interactions. HiFuzz includes three

distinct levels that progress from a low-cost, limited-fidelity, large-

scale, no-hazard environment, using fully simulated Proxy Human

Agents, via an intermediate level, where proxy humans are replaced

with real humans, to a high-stakes, high-cost, real-world environ-

ment. Through applying HiFuzz to an autonomous multi-sUAS

system-under-test, we show that each test level serves a unique

purpose in revealing vulnerabilities and making the system more

robust with respect to human mistakes. While HiFuzz is designed

for testing sUAS systems, we further discuss its potential for use in

other Cyber-Physical Systems.

CCS CONCEPTS

• Computer systems organization→ External interfaces for ro-
botics; • Human-centered computing → Interaction devices; •
Software and its engineering;
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1 INTRODUCTION AND MOTIVATION

Small Unmanned Aerial Systems (sUAS) need to meet rigorous

safety requirements when deployed in high-stress emergency re-

sponse scenarios [27, 31]. However, the continual growth in sUAS

deployment increases the risk of major incidents. Furthermore, sev-

eral studies have reported that human “errors” have contributed

to 65% to 85% of reported accidents in Cyber-Physical Systems

(CPS) such as sUAS [19, 34, 41, 61]. We observed this phenomenon

firsthand during a test flight in the Spring of 2023 (cf. Figure 1),

when one of our autonomous sUAS breached a geofence, flew off its

designated flight path, and ascended to an altitude of 734 feet above

ground level (AGL) – far above the legal limit of 400 feet AGL. A

post-mortem analysis revealed a series of factors, including human-

related missteps, that contributed to the incident. The remote pilot

in charge (RPIC), who plays only a supervisory role under normal

conditions, failed to set appropriate geofence-breach actions prior

to the mission, placed the throttle in an incorrect position, lost situ-

ational awareness of the sUAS’ trajectory following the geofence

breach, and failed to take timely action when the sUAS started to

fly off-course. However, blaming the operator for these accidents is

very shortsighted.

Human-Centered Design (HCD) focuses on creating and val-

idating intuitive interfaces that are tailored to human cognitive

capabilities [26, 46] and, therefore, are designed to reduce human

error. However, in the emergent area of sUAS, any failure to antici-

pate and address normal human “mistakes” [17, 18] can eventually

lead to potentially dangerous incidents at critical moments of a

flight. A more systematic approach is therefore urgently needed

to detect and mitigate design weaknesses that make the system

vulnerable to human mistakes. In this paper, we propose human

interaction testing techniques designed to reveal aspects of the sys-

tem for which incorrect and unexpected human actions and inputs

can result in potentially hazardous system behavior [15, 27, 37].

We present theHuman-machine Interaction Fuzz testing frame-

work named “HIFuzz”, where “HI” represents both human inter-

actions and the fact that sUAS fly at height. Fuzz is analogous
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(a) The SW corner of the mis-

sion intersected with the ge-

ofence; however no geofence-

action was set.

(b) Flight replay showed that

the sUAS flew north at increas-

ing altitude after the geofence

breach.

(c) The RPIC must position the

throttle correctly in case in-

flight problems require human

control.

Throttle

(d) Flight replay revealed that

the RPIC had incorrectly set the

throttle above neutral.

Figure 1: Due to a combination of mistakes, including ‘oper-

ator error’ by the Remote Pilot in Command, the sUAS flew

off-route and ascended to 734 feet AGL. Note: All required

regulatory reports were filed describing the incident.

to traditional fuzz testing, where inputs are iteratively mutated

and tested against the system to cover a large part of the behavior

(and/or the code base) of an application, in order to reveal soft-

ware defects and vulnerabilities [64]. Fuzz testing, also known as

fuzzing, has been applied across various domains in software and

system testing due to its effectiveness in uncovering vulnerabilities

and defects [22, 60]; however, to the best of our knowledge, it has

not previously been leveraged to probe for undesirable outcomes

associated with human interactions.

Our HIFuzz framework includes three distinct levels (L1, L2, L3)

progressing from a low-cost, limited-fidelity, large-scale, no-hazard

environment, with fully simulated Proxy Human Agents (L1), via

an intermediate level, where proxy humans are replaced with real

humans (L2), to a high-stakes, high-cost, real-world environment

(L3). Replacing the human with a proxy in level L1 allows us to

achieve fuzz-testing goals of rapid test coverage which would be

impossible if a human were in the loop. At the same time, engaging

humans in a small number of carefully selected tests at L2, allows

us to investigate the human’s situational awareness of the sUAS

flight behavior [17]. We can leverage this knowledge to identify ap-

propriate design mitigations in the form of alerts, explanations, and

even automated failsafe actions. Finally, level L3 further increases

test fidelity by repeating tests that have successfully passed level

L2, whilst introducing additional real-life stressors such as physical

safety concerns and environmental detractors such as the glare of

the sun, that are an inevitable part of field deployments.

The levels are separated by two dedicated gateways. G1 resides

between L1 and L2 and is responsible for down-selecting an ap-

propriate set of tests to be executed in L2; while G2 represents a

significant safety gateway in which standard safety assurance pro-

cesses are followed, and hard decisions are made about executing

HIFuzz tests in the real world. Our tests are supported by tools for

generating and executing the Fuzz Tests. For example, in the case

of levels L2 and L3, where real humans participate in the tests, we

have developed a mobile app to interactively guide users through

the actions they need to perform during test execution.

Our HIFuzz framework makes three key research contributions.

First, it presents a novel and systematic approach for human-interaction
testing, aimed at detecting, analyzing, and mitigating previously un-

known hazards associated with human-sUAS interactions. Second,

while Fuzz Testing has been commonly used for software and sys-

tems tests, to the best of our knowledge it has not previously been

used for human-interaction testing. HiFuzz, therefore, makes a novel

contribution, improving system robustness at the intersection of

Human-Computer Interaction and Software Testing. Third, we con-

duct an in-depth analysis of HIFuzz applied to our own multi-sUAS

system, and a preliminary analysis of its generalizability across

additional CPS. Results reported in this paper show that HIFuzz
reveals system vulnerabilities associated with human interactions,

potentially leading to their mitigation and improved design solu-

tions, and that all three test levels play a unique role in the testing

process.

The remainder of the paper is structured as follows. Section 2

describes related work. Section 3 explains how an individual fuzz

test is specified, and Section 4 describes the various test levels and

gateways. Sections 5 and 6 describe experiments we conducted by

applying HIFuzz to a multi-sUAS system and provide a comprehen-

sive discussion of the results. Finally, Section 7 discusses limitations

of our work, and Section 8 draws conclusions.

2 RELATEDWORK

In this section we discuss related work associated with human-

centered design of CPS, fuzz-testing, human error and interaction

in sUAS operations, and human interaction testing methodologies.

Based on this prior work we argue that fuzz-testing can be an

effective strategy for uncovering human-interaction vulnerabilities

in the complex and dynamic CPS domains.

2.1 Human Error in sUAS Operations

Herdel et al. [27] conducted a comprehensive study focusing on

over 100 applications across 16 diverse domains including emer-

gency response and surveillance. They identified several research

challenges pertaining to human-drone interactions, including one

directly related to our work, addressing different ways in which

people interact with sUAS to perform complex tasks. We address

this issue through systematically testing outcomes of expected and

unexpected human inputs for diverse tasks.

Rakotonarivo et al. [54] conducted interviews with drone opera-

tors, safety consultants, and regulators to identify operational risks

and challenges when operating sUAS. One of their key recommen-

dations was to “Support exploration of operational parameters and

estimate their impact onmission safety” in order to allow “operators
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to explore options that could simplify their procedures”. Our multi-

level HIFuzz process is designed to identify and mitigate potential

safety issues before they arise in field testing, or worst-case, during

live mission execution. It supports the systematic testing of diverse

mission parameters and tasks and generates respective reports and

documentation as inputs for subsequent safety analysis.

Balot et al. [4] have collected a set of challenges associated with

sUAS operations, related to HMIs, command and control, and man-

agement of sUAS operations. They argue that sUAS HMIs “should

be designed to take best advantage of human performance capabili-

ties”, to “[...] promote safety of flight operations”. While efforts have

been taken to increase safety of sUAS operations [42], complex oper-

ational environments require thorough testing. This challenge was

further investigated by Mccarley and Wickens [39] who proposed

rules guiding levels of automation for different flight phases and

operations and investigated different forms of control interfaces.

With HIFuzz, we focus on this intersection in both simulated and

real-world environments, by providing a thorough and structured

multi-level testing framework.

2.2 Formal Methods for User Interaction Testing

Several researchers have used formal methods to make mathemati-

cal claims about the correctness of the system with respect to user

interactions, using a formal language such as temporal logic, a state

machine, or process algebra [7, 14]. Diverse aspects of the system

are modeled including expected outputs for given inputs, timing

constraints, error handling requirements, the sequence of user in-

teractions allowed by the UI, underlying state transitions, data flow

and finally expected user behavior, including potential misuse or

unexpected interactions [45, 50]. Formal verification techniques,

such as model checking or theorem proving are then used to mathe-

matically prove that the UI model satisfies the formal specifications,

and meets the initially stated requirements and intended use cases.

Formal models can also be used to generate test cases. For exam-

ple, Bolton et al. [8] conducted a review on formal approaches in

human-automation interaction. They showed that formal methods

help to uncover potential shortcomings in human automation inter-

faces, and are useful for diagnosing human-related system failures.

However, formal methods are only as good as the assumptions

made during the specification and modeling process. In particular

the models of expected user interactions including misuse cases,

in an emergent area, such as sUAS are unlikely to be complete or

correct. HIFuzz takes a somewhat orthogonal approach to formal

methods, in that it assumes that the system is flawed, and probes

the system to unearth these flaws.

2.3 Fuzz Testing in Software Engineering

In the more general area of systems engineering, fuzz testing has

emerged as an effective approach for testing large search spaces

exhibiting high degrees of uncertainty (e.g., environmental fac-

tors) [11, 62]. The majority of fuzzing techniques are greybox (us-

ing code-guided metrics to diversify coverage of program paths

in the code) [5, 6, 20, 47, 49]; however, scenario-based approaches, as

adopted byHIFuzz, represent an alternative approach for specification-
based fuzzing [11, 24, 58]. Fuzzing has been used effectively within

the CPS domain. For example, Kim et al. [33] developed RVFuzzer

to detect input validation bugs in robotic vehicle control programs

including sUAS applications. However, they focused on detecting

low-level controller malfunctions by monitoring vehicle control

states. Similarly, Kim et al. [32] created PGFUZZ, a policy-based

fuzzing framework for robotic vehicles, and focused on safety and

functional policies with respect to user inputs, configuration pa-

rameters, and physical sUAS states. While they explicitly included

user inputs and commands, they did not provide a comprehensive

multi-level testing framework supported by safety analysis as used

inHIFuzz. Finally, Han et al. [25] proposed a grey-box-based fuzzing
framework for detecting incorrect configurations in sUAS flight

controllers. Their LGDFuzzer combined fuzzing with a genetic al-

gorithm to detect potentially incorrect configurations and to test

them in simulation, but did not consider human-related actions or

real-world physical testing.

3 DEFINING AN INDIVIDUAL HIFUZZ TEST

Each individual HIFuzz test focuses upon a human-interaction task

that is conducted within a specific context. In this section, we

therefore describe the elements and properties used to define an

individual test.

3.1 Test Setup: Actors, Props, and Environment

Roles: Each human enacted task is assigned to a specific role such

as a Remote Pilot in Command (RPIC), Observer (OBS),Mission Com-
mander (MC), or Safety Officer (SO). We define R as the set of roles

represented by R = {𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝑖 }, and assumed by either a

human or proxy-human depending on the current test level.

Interaction Devices: Humans perform a task using an interface

device such as the radio control transmitter (RC), a GUI supported

by a keyboard, mouse, and/or joystick, or another type of haptic

device [10, 38, 43, 63]. We define UI as the set of all available user
interfaces, represented as UI = {𝑢𝑖1, 𝑢𝑖2, 𝑢𝑖3, . . . , 𝑢𝑖 𝑗 }.

Drones and their Configurations: Tests can specify a specific

drone or set of drones. Note that we utilize the word “drone”, to

emphasize the actual vehicle and its onboard flight controller, ver-

sus the complete software system. Inconsistencies across drones

can cause accidents when their behavior fails to meet the human’s

current mental model [18]. We therefore define D as the set of

drones, represented as D = {𝑑1, 𝑑2, 𝑑3, . . . , 𝑑𝑙 }. Further, each drone

in D can be configured by the user prior to flight -- for example,

by setting a geofence around the drone or assigning it a unique

RTL (return to launch) flight altitude. We define P as a set of con-

figurable parameters for an sUAS given by P = {𝑝1, 𝑝2, 𝑝3, . . . , 𝑝𝑚};
however, low-level parameter configuration, that normally occurs

when tuning the flight-controller [25] is out of scope of this paper,

and we assume that each drone has been adequately tuned and is

flight-worthy. Parameters of interest are therefore limited to those

exposed to the operator through interfaces (e.g., GUI screens) and

therefore accessible during pre-flight setup.

Simulation Environment: Finally, for Level L1 and L2 tests, de-

pending upon the simulation environment used, we can directly

configure elements such as wind. We define E as a set of config-

urable environmental parameters given by E = {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑛}.
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3.2 HIFuzz Scripts
Humans (serving in a specific role) enact a human-interaction task

(HIT) in the context of an sUAS mission. Further, they execute

the HIT when the sUAS and/or mission is in a specific state. For

example, the RPICmight be asked to perform the action of switching

to position mode when the drone is flying in offboard mode.

This leads to the following specifications.

Missions: A mission represents the flight plans and other tasks

that one or more sUAS will execute to provide context for the test.

We define MSN as the set of available missions, represented as

MSN = {𝑚1,𝑚2,𝑚3, . . . ,𝑚𝑞}.

Human Interaction Task (HIT): There are two types of HIT that a

human will perform during a test. First, the human could provide

input to an individual sUAS through a hardware device such as

the RC – for example, by increasing the throttle, holding down the

kill switch, or switching between modes. Second, the human could

send a command to one or more sUAS via a GUI -- for example,

issuing a global RTL command. We define HIT as the ordered set

of interaction tasks performed by a user, represented as HIT =

{ℎ𝑖𝑡1, ℎ𝑖𝑡2, ℎ𝑖𝑡3, . . . , ℎ𝑖𝑡𝑟 }.
However, CPS behavior is impacted by the current state of the

system. Therefore, each HIT has an associated set of preconditions

that also need to be defined. These preconditions are based on

modes, flight life-cycle states, and configurations. Modes

are used by almost every flight controller to support common flight

tasks such as take-off and loiter, and to provide various degrees

of flight stability (e.g., stabilized and position-hold) [3, 52]. We

defineM as the set of flightmodes, given byM = {𝑚1,𝑚2,𝑚3, . . . ,𝑚𝑠 },
where each mode𝑚𝑖 inM is reachable in the SuT. We also define

S as a set of flight life-cycle states such as taking-off, flying, and

landing, given by S = {𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑡 }. A drone can only be in one

mode and one state at any time. Finally, we define configurations

as the value assigned to any underlying parameter defined earlier

as P. Each HIT includes a mode and life-cycle precondition, and

can optionally define a set of configuration parameters that serve

as preconditions. Further, the precondition state must be reachable

in at least one of the defined missions in order for any subsequent

HIFuzz test to be valid.

3.3 Defining the HIFuzz Test
Based on these definitions, we can now specify an individualHIFuzz
test in away that is sufficiently formal for automating test execution,

but also readable to humans who serve as participants in the testing

process. We utilize JSON to represent each test as shown in Listing

1. The test definition includes the mission, environmental factors,

roles, the locally sequenced HITS, and preconditions performed by

each role using a specific interaction device and drone. The HIFuzz
fuzzing engine ultimately uses these specifications to generate

diverse combinations of properties, and the HIFuzz Test Runner

uses it to deploy the test, monitor its progress, and to generate test

prompts that are sent to the mobile app.

3.4 Test Outcome

Each fuzz test is ultimately executed within the HIFuzz platform,

and its outcome is evaluated across two different dimensions – first

{
"Mission": "BASIC -WAYPOINTS",
"Environment": {

"Wind": {
"SPEED": "20KTS",
"DIRECTION": "NORTH"

}
},
"Roles": [

{
"Role": "RPIC",
"HITS": [

{
"ID": "1",
"Drones": ["GREEN"],
"Task": "MOVE THROTTLE TO +1",
"Mode": "OFFBOARD",
"State": "TAKING -OFF"

},
{

"ID": "2"
"Drones": ["GREEN"],
"Task": "SET MODE TO STABILIZED",
"Mode": "OFFBOARD",
"State": "FLYING"

}
],
"Interaction_Device": "RC TRANSMITTER"

},
{

"Role": "MC",
"HITS": [

{
"ID": "1"
"Drones": ["GREEN"],
"Task": "PRESS RTL BUTTON",
"Mode": "STABILIZED",
"State": "FLYING"

}
],
"Interaction_Device": "GUI"

}
]

}

Listing 1: In this example test, each of two roles is assigned

specific actions to perform.

to determine if the test was valid or invalid, and second to determine

if valid tests passed or failed. An invalid test fails to execute the full

sequence of HITS, typically because preconditions for one or more

of the HITS are never met. The outcome of valid tests is assessed as

passed or failed based on mission completion and mission adherence
criteria.

4 HIFUZZ TEST LEVELS AND GATEWAYS

The HIFuzz process involves three testing stages (L1-L3) separated

by two gateways (G1, G2), each of which serves a unique purpose

(cf. Figure 2). Individual tests are executed at each stage, however,
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Figure 2: The HIFuzz framework supports tests at all three levels. L1 operates fully in a simulated environment with support

from a fuzzer and a proxy human agent. L2 operates with real humans in an otherwise simulated environment, and L3 operates

in the physical world.

the way they are executed, the role of human stakeholders, and

the safety analysis that is performed prior to test execution differ

greatly across stages. In this section, we therefore describe each

stage and gateway.

4.1 Level L1: Large scale, simulated, fuzzing

The goal of L1 is to execute a large number of tests, as quickly

as possible, without any of the risks involved in real-world sUAS

flights. Therefore, L1 tests are run in the simulator using proxy

human agents instead of humans. In the physical world, humans in-

teract with sUAS via hardware devices, such as RC transmitters, and

their inputs are encoded into radio signals transmitted to the flight

controller and transformed into flight commands (e.g., throttle, yaw,

pitch, and roll adjustments, or mode changes). These inputs can

be simulated through software-based, low-level function calls to

the flight controller. Humans also interact with sUAS via GUIs, and

these interactions can be simulated if the SuT exposes its API func-

tion calls. Utilizing these techniques, L1 is able to simulate human

interactions (i.e., HITS) entirely in software, enabling thousands

of fuzz tests to be run in a low-cost, low-effort, non-hazardous

environment.

The L1 process starts with a planning task in which the HI-
Fuzz tester specifies the test features that constitute the fuzz space.
As described in 3, these include roles, interaction devices, drones,

environmental factors, missions, and HITs. The HIFuzz fuzzer then
uses this specification to automatically generate combinations of

the defined properties and input values constrained by specific sce-

narios of interest. The Test Runner iterates through the generated

tests, invoking the mission in the simulation environment, moni-

toring the runtime state of each drone, checking for precondition

states, and delegating HITs to the Proxy Human Agent when pre-

condition states have been reached. The proxy mimics human input

by replacing radio signals normally sent by the RC Transmitter,

with MavROS manual control messages to simulate various switch

changes and button presses for mode changes, throttle adjustments,

and the kill switch. Results from each individual test are evaluated

to determine if the test passed, failed, or was untested if the sUAS
completed its mission without the preconditions ever being met.

All passed and failed outcomes are passed to Gateway G1.

L1 requires a simulation environment that accepts and executes

a mission request – potentially involving multiple drones, reports

the progress of each drone throughout the mission, reports error

messages, and produces a readable flight log at the end of each

flight. Common examples of simulation environments that can be

used to meet these requirements are Gazebo [48], jMAVSim [51],

and AirSim [56].

4.2 Gateway G1: Downselecting for

Human-in-the-Loop Tests

G1 serves as a gateway between levels L1 and L2, and is responsible

for selecting tests to be passed to L2. Its inputs are the tests and

results from L1. It clusters these tests to identify groupings of similar

inputs and outcomes, in order to guide the L2 test selection process.

The number of clusters is based on budgeted L2 testing time or based

on a standard approach such as the “elbow-approach” which looks

for the sweet spot in terms of coupling and cohesion of clusters [59].
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Typically, one or two representative tests are selected from each

cluster for execution at level L2.

4.3 Level L2: Humans in Simulated

Environment

L2 tests are executed in the same simulation environment, how-

ever, humans replace the proxy agents, and interact with the sUAS

through hardware devices (e.g., RC transmitters) and GUIs used in

physical deployments. As explained earlier, Level L2 is designed to

provide higher degrees of fidelity than L1, while operating within a

completely safe testing environment; however, it introduces higher

testing costs with respect to human time and effort. By integrating

humans into the testing environment, L2 allows us to issue com-

mands directly from the RC transmitter used in the field, providing

increased fidelity of user inputs, and allowing direct observation

of the sUAS behavior by human operators. Intuitively, Level L2

is needed to (1) execute a subset of interesting tests in a higher-

fidelity environment, (2) to elicit feedback from humans about any

failures that occurred in order to better understand their impact

upon human operators, and ultimately (3) to evaluate the efficacy

of user-facing mitigations, such as warnings or recommendations.

From a practical perspective, humans need help in determining

when to perform a HIT, as many of the HIT’s precondition states

are internal, and not readily visible to human observers. HIFuzz,
therefore, provides a mobile app responsible for generating timely

prompts. In order to minimize unnecessary mental overload of

processing and responding to prompts, the Mobile App is designed

with a simple GUI which gives the user planning time as well

as clear instructions on what actions to perform. We designed

and implemented the mobile app following principles of human-

centered design, and our two test participants reported that it was

intuitive and gave them clear and timely directions. However, a full

assessment of the mobile app is outside the scope of this paper, and

Figure 3: HIFuzz Prompts are shared with human test participants via a mobile app. Here we show the design of the tester’s

precheck screen (1), followed by a series of prompts shared with the RPIC (2a-h), and MC (3) roles respectively. Figures represent

the design which was fully implemented and deployed using React-Native.
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we therefore present it as a supporting tool rather than a primary

contribution of this work.

A set of sample screens are depicted in Figure 3. The screens

include preflight instructions and preparation (1, 2a, 3), a sequence

of prompts that guide the RPIC (or other tester) through a sequence

of tasks (2b-2f), and a series of post-test questions concerning the

situational awareness of the operator (2g, 2h). We only engage

trained personnel in these tests, with the expectation (as required

by regulations) that all participants are fully trained in their roles

and know which switches and knobs to manipulate in order to

execute the intended task.

4.4 Gateway G2: Safety Assessment and

Mitigation

While Test levels L1 and L2 seek to safely explore mission-breaking

human-interaction faults that potentially cause erratic sUAS be-

havior, such as crashes and flight deviations, level L3’s real-world

deploymentmeans that failures are potentially hazardous and costly.

Therefore, Gateway G2 serves as a safety gateway that ensures

that each failed test from L2 is carefully assessed to determine if

mitigations are needed, and that all tests deployed on the field

with physical sUAS have undergone a rigorous hazard analysis

with all identified hazards sufficiently mitigated. The aim is to

(1) assess human-interaction vulnerabilities and flaws identified

in levels L1 and L2, (2) mitigate them, (3) repeat level L2 tests

to demonstrate that they have been successfully mitigated, and

only then (4) proceed to level L3 tests. HIFuzz does not dictate

how the safety assessment should be performed as long as the

process assesses hazards associated with each test case, e.g., us-

ing Fault-Tree Analysis (FTA) or Failure Mode Effect Criticality

Analysis (FMEA/FMECA) [36, 55, 57], evaluates mitigations to de-

termine whether the risk has been satisfactorily addressed, and

when needed, provides a semi-formal safety case, e.g., a Safety As-

surance Case (SAC) that includes guidelines targeted at the human

participants describing how field tests can be conducted safely.

4.5 Level L3: Field Testing with

humans-in-the-loop

The goal at level L3 is to validate that all tests that have previously

produced a failed L2 outcome have been demonstrably mitigated.

Intuitively, real-world tests are essential for two reasons. First,

certain types of failures (especially race conditions) may only occur

in the real world, and second, the human experience is different in

the physical world than in simulation. For example, our own sUAS

system was plagued for several months by a random take-off bug

that appeared approximately once in every seven take-offs in the

real world, but never in the simulator. Therefore, while simulations

reveal many potential failures, real-world testing is essential for

demonstrating that tests which executed successfully in simulation

will also perform safely and correctly in the physical world.

4.6 Assessing Test Outcomes

HIFuzz utilizes an ensemble of test oracles and techniques to de-

termine whether each flight has been executed correctly. These

include analyzing runtime alerts generated by the flight controller

and our own software system, reviewing mission logs, and con-

sidering human feedback received via the mobile app. For the log

analysis, we establish a “blueprint” representing an ideal mission

outcome, and then use it as a point of comparison to measure devi-

ation in the flight logs for each test. For each position timestamp in

the blueprint we compute the distance to the nearest sUAS position

in the current test log across the x, y, and z axes, and record the

largest distance as the maximum observed deviation of the current

log from the blueprint. We also extract other features from each

log, such as the maximum altitude, the duration of the flight, the

occurrence of free-falls, the final landing state, and the reported

mission status throughout each mission.

5 EXPERIMENTATION: HIFUZZ APPLIED TO

DRONERESPONSE SYSTEM

We evaluated HIFuzz using a multi-sUAS system that we have

developed and deployed in the real world as the System-under-
Test. Our evaluation focuses upon the outcomes of HIFuzz rather
than on the tools we have developed (i.e., the Mobile App), or the

safety assessment (i.e., based on standard FMECA). We address

three research questions.

RQ1: What kinds of human-interaction vulnerabilities were identi-
fied using the HIFuzz process?
This question investigates the types of vulnerabilities de-

tected using HIFuzz.
RQ2: Did each of the three test levels play a unique role in identifying

human-related systems vulnerabilities?
This question explores the efficacy of the three test levels

versus the additional costs of human-in-the-loop testing.

RQ3: Is HIFuzz generalizable across other human-intensive CPS ap-
plications?
This question takes a preliminary look at the generalizability

of HIFuzz to other domains.

The experiments described in this section were all executed in

our HIFuzz platform.

5.1 System under Test: DroneResponse
DroneResponse is a distributed multi-user, multi-sUAS system, de-

signed to support search-and-rescue, aerial data collection, and

surveillance activities [2, 12, 28]. Each sUAS is equipped with an

Onboard Autonomous Pilot (OAP) organized around a state machine

which is dynamically configured for each mission. States support

specific sUAS tasks such as takeoff, search, or fly-to-waypoint and
vary greatly in complexity. For example, in the takeoff state the
sUAS ascends to a predefined altitude and then transitions to a sub-

sequent state such as fly-to-waypoint; while a search state utilizes

AI-based computer vision capabilities to detect objects and make

intelligent decisions, such as to track a person. A Ground Control

Station (GCS) utilizes the MQTT message broker [40] to coordinate

system-level communication between sUAS, humans, and micro-

services by publishing messages over a mesh radio. Status data

(e.g., GPS location, battery, health) and task progress updates (e.g.,

current task, potential adaptations), are continually published by

sUAS to support monitoring, analysis, and planning. Under normal

operating conditions, humans set goals and send mission plans

via GUI-based front-end clients; however, they can also directly
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issue commands via RC Transmitters. A video of the DroneResponse
system is available online.

1

5.2 Scenario-Based Fuzz Tests

We adopted a scenario-based approach to test specific parts of the

system. To select appropriate scenarios, we browsed through 272

issues (dated from 07/24/21 to 08/31/23) reported in the DroneRe-
sponse GitHub repository to identify incident reports associated

with human-related incidents at the field (e.g., see Figure 4). We

selected two incidents as depicted in Figure 5.

Figure 4: An issue posted to Github describing a human-

interaction incident, where the RPIC was forced to take con-

trol due to an altitude anomaly on the drone.

5.3 Modeling the test space

We defined relevant properties as described in Section 3. For exam-

ple, to test Scenario 1, we created a flight route that intersected a

geofence. We defined the search space as all reachable modes and

states, one drone (BLUE), one human role (RPIC), two types of wind,

several properties associated with geofence settings, and several

throttle settings. For all additional flight controller parameters, we

accepted values defined during the drone’s prior configuration pro-

cess. Finally, we included three human actions (HITs) to (a) change

mode, (b) adjust the throttle position, and (3) kill the motors (essen-

tial in case of dire emergencies or for failed takeoffs). This resulted

in a test space of approximately 160,524 test configurations. We

then systematically generated combinations of these properties and

human actions (as explained in 3) and fuzzed the exact timing at

which each action was to be executed once all test properties were

satisfied. Finally, we created a simple flight test involving one drone

taking off, flying to two waypoints, and returning home.

5.4 Applying HIFuzz to DroneResponse
We executed all levels (L1 - L3) and gateways (G1, G2) for the

planned scenario-based fuzzing of the DroneResponse system with

the following setup.

1
DroneResponse demo: https://youtu.be/DyKqxkesgg0?si=2fVD1PNFpavYDI2y

(a) The drone hit the geofence with no geofence actions set and

switched to stabilized mode. It then ascended rapidly and flew North.

The RPIC had accidentally set the throttle just above neutral at the

start of the flight. Fuzz tests explored various geofence breaches with

diverse geofence actions, sUAS modes, and throttle positions.

(b) The RPIC took control of the drone by switching to STABILIZED

mode with the throttle down. The drone oscillated as it attempted

to stabilize and had a hard landing. Fuzz tests explored scenarios in

which control was ceded to the RPIC whilst the sUAS was in various

states and diverse throttle positions.

Figure 5: Two scenarios were selected in which human inter-

actions were associated with flight failures. These scenarios

were used in our experiments to drive scenario-based Fuzz

Testing.

5.4.1 L1 Tests: We ran 700 L1 tests based on various combinations

of properties from Table 1. Each test result was flagged with out-

comes including the maximum altitude reached, flight duration,

landed state, and mission completion. Any test exhibiting excessive

https://youtu.be/DyKqxkesgg0?si=2fVD1PNFpavYDI2y
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Table 1: Actual specification of the HIFuzz fuzzing space used for experimentation purposes. Legend: blue=initial states and

modes, yellow=configuration settings, orange=drones, green=human tasks. For Level L1 we only utilize the RPIC role and BLUE

drone. Further Geofence_Pred = ‘On’ ⇒ Geofence_stat=‘On’ AND Geofence_ACT ⇒ Geofence_Stat=‘On’. This combination of

features produced a test space of approximately 160,524 tests assuming no additional fuzzing around the precise timing of each

test.

Modes States Throttle POS Wind Geofence Act. Roles Human Tasks

ALTCTRL Pre-arm Maximum HIGH Medium Northerly 0: None RPIC CHANGE-MODE

POSCTRL Arm Medium HIGH High Northerly 1: Warning MC MOVE-THROTTLE

OFFBOARD Takeoff Just above neutral 2: Hold mode SO KILL-MOTORS

STABILIZED Fly Neutral Geofence Stat. 3: Return mode

AUTO.LOITER Hover Just below neutral On/Off 4: Terminate Drones

AUTO.RTL Land Medium LOW 5: Land mode BLUE

AUTO.LAND Maximum LOW Geofence Pred. ORANGE

On/Off PURPLE

altitudes, duration, excessively fast landing, or failure to complete

the mission with final disarm, was labeled as “Abnormal”.

5.4.2 G1 Gateway: All tests in the profile were clustered using

Within-Cluster Sum of Squares (WCSS), using the elbow method

to determine the number of clusters to be generated [35]. This

ultimately resulted in nine unique clusters which were used as a

guide to search for interesting test cases to pass to L2. For clusters

containing at least one abnormal test outcome, we selected the ab-
normal test case that was closest to the centroid. We then inspected

the profiles of tests close to the boundaries of each cluster in order

to identify interesting edge cases. This task took approximately one

hour and resulted in the selection of 29 tests to pass to L2.

5.4.3 L2 Tests: Two researchers from our team executed all of the

selected tests in the L2 simulation environment using a FrSky XD9

Plus Taranis Radio Handheld Controller [23]. The testerwas respon-
sible for the test setup, including launching the test runner, while

the RPIC followed instructions displayed on the Mobile App, to

conduct the planned human task at the correct stage of the mission.

For each executed test, we preserved the flight logs, uploaded them

into the PX4 flight log evaluation platform [53], then inspected the

replayed flight log, logged messages, and graphs extracted from

flight log data to further evaluate the flight outcomes. Figure 6

shows (a) the intended flight path of each test, (b) an actual flight

path from one of the tests, and (c) one of the flight log data plots

used to analyze the outcomes of a specific test. In this case, the

RPIC switched modes to stabilized (as directed by the test runner)

whilst the sUAS was flying in offboard mode. Due to the current

trajectory and momentum of the sUAS, the sUAS continued its

upward trajectory, ultimately reaching a height of 377 meters and

a distance of over 550 meters. The tester ultimately issued a land

command to force an end to the mission.

5.4.4 G2 Gateway: Two flight tests entered the G2 gateway during

the course of our study. We leveraged our existing safety analysis

process to assess safety risks associated with executing them in

the physical world, and constructed a safety case using the Goal

Structuring Notation (GSN) [30]. Once the tests were deemed safe

to deploy we placed them into the field-test backlog. Due to space

constraints, and the fact that the safety analysis process follows

standard assurance practices, a deeper discussion on this gateway

is out of scope of the paper. When necessary, additional tests were

written to validate specific mitigations.

5.4.5 L3 Tests: So far, we have only executed one L3 test in the field,
which successfully validated that a previously revealed vulnerability

from L1 and L2 had been successfully mitigated. We discuss this

particular L3 test in Section 6. Other identified mitigations are

currently backlogged in our development pipeline.

6 ANALYSIS OF RESULTS

We now discuss the results from our experiment with respect to

each of the research questions.

6.1 RQ1: What kinds of human-interaction

vulnerabilities were identified using the

HIFuzz process?
To address this question we conducted a systematic inductive analy-

sis of the L2 test results. As a first step, the four reviewers carefully

analyzed each test case outcome, and marked the test as acceptable
or problematic, where an acceptable test outcome was deemed to

be one in which no problems were observed, and a problematic

one included at least one undesirable outcome. All four reviewers

agreed that nine cases were problematic and eight were acceptable;

however, they held differing opinions on the remaining 12 and

therefore engaged in discussions in order to reach consensus. For

example, there were three tests in which the RPIC pressed the kill

switch to kill motors, but all three had different outcomes. In one

case, the sUAS landed immediately (desired behavior), in one case it

performed an RTL (return to launch), and in a final case, it entered

a tug-of-war with the sUAS’ autonomous pilot and had a rather

spectacular crash landing. Only the third test’s outcome might be

considered ‘bad’, but in fact, the second case also was problematic

as the observed behavior differed from expected. It was therefore

also labeled as problematic. These kinds of nuanced analyses are

a known issue in Fuzz Testing – where initial flags (passed/failed)

tend to be rather coarsely applied. Based on discussion between the

four researchers, 10 tests were ultimately classified as acceptable

(i.e., false positives selected at gateway G2), and 19 as problematic.

Each assessor also assigned a tag describing the problem from

the human-interaction perspective. One researcher performed an
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(a) The basic flight path of the sUAS

when GEOFENCE=INACTIVE.

(b) The actual flight path when Ge-

ofence=INACTIVE, and the RPIC exe-

cutes a Mode Change to STABILIZED

with DIR-Toggle="BACK".

(c) By inspecting plots and log outputs we assess the

outcome of the flight and identify root cause of errors.

Figure 6: In this case the RPIC switched modes to stabilized whilst the sUAS was flying in offboardmode. Due to the current

trajectory and momentum of the sUAS, it continued its upward trajectory, ultimately reaching a height of 377 meters and a

distance of over 550 meters. Ultimately, the TESTER issued a land command to force an end to the mission. To minimize

human errors caused by untimely mode-switches to stabilized, we can move the stabilized switch to a less prominent position,

and add monitors to recognize if the drone is in ’free flight’ due to a sudden switch to STABILIZE mode.

initial card-sorting exercise on these tags to create named clusters,

producing eight candidate groupings of human-interaction vulner-

ability types. All four researchers then reviewed these groupings

and discussed them in an online meeting. Following the discussion,

six of the candidate groupings were retained (labeled 1-6 in Table

2), two groupings (fly-away and failure to land) were removed as

they represented flight observations rather than human-interaction

behaviors, and two additional categories were added (labeled 7-8

in Table 2). Table 2 lists the number of failed tests by vulnerability

types.

Some of the most common user interface design problems in CPS

are related to poor Situational Awareness (SA), impacting the ability

of users to perceive, understand, and to make effective decisions

[18]. These problems are documented as SA demons by Endsley

[17] with three additional ones identified by Agrawal et al. [2], as

listed in Table 2. To gain deeper insights into the underlying design

flaws we mapped each vulnerability to one or more relevant SA

demon, and then leveraged these mappings as a useful resource for

identifying meaningful mitigations.

Here we describe one type of human-interaction vulnerability

associated with incorrect stick positioning (See Case #1 from Table

2) as observed in five of the 29 test outcomes. Two of these cases

involved incorrect throttle positions which is problematic if and

when a human operator assumes manual control of the drone dur-

ing flight. The problem originated from the default behavior of PX4

flight controllers, which requires the throttle to be fully down for

arming. This behavior conflicts with the need for the throttle to be

in the neutral position when the operator takes control so that the

drone doesn’t immediately crash land. We originally compensated

for this problem by requiring the RPIC to move the throttle to the

neutral position during takeoff in preparation for any later emer-

gency. However, this created a stressful burden on the RPIC during

a multi-sUAS takeoff. Our mappings to SA Demons associated the

vulnerability with WAFOS (Workload, Anxiety, Fatigue, and Other

Stressors) and MUI (transition failures across multiple interfaces)

design demons. After gaining an understanding of the problem,

we reprogrammed the takeoff routine to allow take-offs with the

throttle in the neutral position thereby eliminating the previously

required, error-prone human task. We also designed new alerts to

warn the RPIC when the throttle was placed or left in a non-neutral

position following takeoff.

Table 2 depicts several other types of vulnerabilities that we iden-

tified through the inductive analysis. HIE-1 and HIE-2 represented

cases in which failures repeatedly occurred due to expectations

placed upon the human operators at high-pressure points in the

timeline. Bothweremitigated through automation thereby relieving

humans from these high-stress, error-prone activities. HIE-3 and

HIE-4 both revealed previously unknown vulnerabilities. In HIE-3,

the onboard autonomous pilot failed to recognize human interven-

tions, thereby creating a tug-of-war between the human and the

drone, leading to bizarre and unsafe flights; while in HIE-4, tests

showed that the RC transmitter mappings included the ability for

the operator to manually switch to offboard mode, meaning that

the vehicle would no longer respond to commands from the RC

transmitter. The remaining issues were all associated with loss of

situational awareness related to a mode change. Brief descriptions

are provided in Table 2.

6.1.1 Types of Vulnerabilities. Based on this analysis we can an-

swer RQ1. The types of human-interaction vulnerabilities identified

byHIFuzz covered diverse areas of the system design. They included

unrealistic expectations placed on operators to perform tasks under

time pressure, affordances that allowed human operators to per-

form actions that they should not be able to do, and missing alerts

that meant that operators often lost situational awareness. Further-

more, we found two cases (HIE-3 and HIE-4), which were entirely

unanticipated vulnerabilities associated with human actions. In the

case of HIE-3, the tug-of-war detected by HIFuzz was very similar

to the root cause of Lion Air Flight 610 and Ethiopian Airlines Flight

302 in which the MCAS (Maneuvering Characteristics Augmenta-

tion System) incorrectly perceived the angle of attack to exceed

predefined limits and therefore pushed the nose of the plane down,



HIFuzz: Human Interaction Fuzzing for Small
Unmanned Aerial Vehicles CHI ’24, May 11–16, 2024, Honolulu, HI, USA

whilst pilots struggled to push it back up [21, 44]. This demonstrates

that the HIFuzz process is capable of identifying highly critical and

entirely unanticipated vulnerabilities. Furthermore, in other cases,

such as HIE-1, we had already observed related incidents in the

field but had previously not fully understood the behavior. HIFuzz
tests provided new insights into the problem, leading to meaningful

mitigations associated with automating prearming configurations

and understanding when and where to issue warnings.

6.2 RQ2: Did each of the three test levels play a

unique role in identifying human-related

systems vulnerabilities?

To answer this question we take a retrospective look at whether Hi-
Fuzz’s three test levels all served a unique role. Level L1 tests were

fully automated, not requiring human intervention, and answered

questions such as “did the flight complete successfully?”, and “were

there unexpected divergences from the planned route?”. However,

we had to imagine how an actual user would have observed and re-

sponded to the flight events that occurred. Therefore, even though

significant insights about potential human-interaction fail-

ures were gleaned from Level L1, the results were insufficient for

understanding users’ perceptions and reactions to the problems as

they occurred. Drawing upon our previous example of the incorrect

throttle position during takeoff, field tests showed that (1) the RPICs

almost always adjusted the throttle, but (2) frequently placed the

throttle in a slightly incorrect position, with large consequences.

Feedback from RPICs clearly showed that these ‘mistakes’ were due

to stress and workload of supervising multiple sUAS during takeoff.

A simple reminder would therefore be insufficient, and so we miti-

gated the problem through a complete redesign of the arming and

takeoff routines, thereby removing this responsibility entirely from

the operator. This type of insight is not obtainable with level L1

testing alone. Further, while we have not yet conducted a full user

study with the Mobile App we developed, in future work we will

ask deeper questions of test participants concerning the current

system and the efficacy of mitigations such as the use of specific

alerts and recommendations.

So far, this is one of only two tests that have been mitigated

at L3. However, based on these two data points we observed that

gateway G3 allowed us to take a deep dive into analyzing the safety

concerns associated with executing tests in the field. It provided a

safety net that helped us ensure that tests could be executed safely

at Level L3. Demonstrating that the problem had been fixed and

successfully deployed in the field built confidence that the system

had satisfactorily addressed this particular system vulnerability.

We conclude therefore that all three HIFuzz levels provide critical
support for human-interaction testing.

6.3 RQ3: Is HIFuzz generalizable across other
human-intensive CPS applications?

While our HIFuzz framework has been designed to identify risks

related to human interactions in sUAS operations, its underlying

concepts are applicable to a much broader range of CPS includ-

ing other types of autonomous vehicles and ground-based robots.

HIFuzz operates by fuzzing key system properties including (a)

various modes in which a vehicle or robot operates, (b) different

states it might transition into during the execution of a task or mis-

sion, and (c) potential human interactions with the system or robot.

These core properties are found in other CPS, allowing HIFuzz to
be applied in other domains and for other types of system appli-

cations. To investigate the potential use of HIFuzz across diverse
CPS, we conducted a preliminary exercise of mapping the modes,

states, and human interactions for systems from three different

domains into HIFuzz. These included a centrally controlled sUAS

system named Dronology, that used the Ardupilot Flight Controller

[13, 16], a small robotic system developed by students to control

a robot using a mobile phone, and a self-driving vehicle platform

which we discuss in further detail.

The open-source, self-driving vehicle platform Autoware [1, 29]

controls car operations and supports developers in creating au-

tonomous car software systems. Similar to the modes available

for our sUAS, Autoware manages different vehicle modes includ-

ing Stop, Autonomous, Local, and Remote. Each of these modes

represents a distinct operational setting for the vehicle. The Stop
mode halts all autonomous functions, while the Autonomous mode

enables full self-driving capabilities. Local and Remote modes refer

to how humans interact with the car either with a steering wheel or

over a network using a web application. An Autoware system can

transition through multiple operational states such as Idle, where
the vehicle is not actively navigating; Active Navigation, where the
vehicle autonomously maneuvers through traffic or environments;

and Emergency, a state triggered during critical situations requiring
immediate action or human intervention. Other states include Lane
Following, Lane Changing, and Parking. Further, the Autoware sys-
tem also supports human intervention during vehicle operations,

such as steering adjustments or mode switching. Additionally, self-

driving vehicles operate in different environmental conditions, such

as rain, snow, and bad lighting, and hence require rigorous testing.

The concept of aHIFuzz test (as defined in Section 3) is therefore not
unique to sUAS applications and potentially could be extended to

other CPS that interact with humans and operate in a safety-critical,

real-world environment. While individual aspects of a system are

domain-specific (e.g., a role might be the backup driver instead

of an RPIC), its key elements (Roles, Interaction Devices, Tasks,

Modes, etc.) are applicable across very diverse contexts. For exam-

ple, CARLA [9] provides a high-fidelity simulation environment

for executing driving simulations with a multitude of configuration

options. Scenario-based tests, such as driving an autonomous car

on the road, under controlled conditions, can provide the context

for the HIFuzz fuzzing.
Having defined properties for each of these three systems ac-

cording to the types of properties used to define and execute HIFuzz
tests, we draw the preliminary conclusion that HIFuzz is well suited
to probing for human-interaction vulnerabilities across diverse

CPS systems. Further, many parts of the HIFuzz infrastructure are
entirely reusable including the test-runner, the mobile app, and

the G1 clustering analysis. However, other parts of the infrastruc-

ture will need to be customized to each application and/or domain.

These include adapters for interfacing with the simulation envi-

ronments and metrics for evaluating acceptable versus problematic

test outcomes. Primary adopters of HIFuzz are therefore likely to be
domain experts with the technical skills needed to test a complex

safety-critical system.
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Table 2: Mapping to Situational Awareness Demons

HIE Human Error Category # Outcome

SA Demon

A
T

M
S

I
O
L

O
L
S

E
M
M

R
M
T

W
A
F
O
S

C
C

M
U
I

S
T
C

E
A
U

1 RC transmitter sticks set

incorrectly

5 Unexpected flight behavior (e.g., ascends, descends,

or flies off course after control is ceded to user).

#   

2 Missing failsafe

configurations

3 Operator fails to configure failsafes for each drone in

the fleet in a consistent & standard way.

   

3 Human input ignored by

autonomous pilot

7 The autonomous system ignores a human-issued com-

mand, creating a “tug-of-war”.

   

4 Inappropriate RC Switch

options

1 The RC transmitter switches are mapped to modes

that the operator should not use.

 

5 Autonomous mode changes

without notification

3 Human is unaware that the sUAS has switched mode

and does not understand flight behavior.

  

6 Inappropriately timed mode

change by operator

4 Human changed to a mode that was inappropriate for

current phase and state of the flight.

  

7 Failure to operate drone

according to its current

mode

4 Operator lacked or failed to apply appropriate piloting

skills for current mode.

 

8 Human loses situational

awareness of sUAS behavior

6 Complex series of events led to loss of situational

awareness and inability to recover from a failure.

    

Legend: AT=Attention tunneling, MS=Misplaced Salience, IOL=Information Overload, OLS=Out of the loop syndrome, EMM=Errant Mental Models, RMT=Requisite Memory Trap,

WAFOS=Workload, Anxiety, Fatigue, & other Stressors, CC=Complexity Creep, MUI=transition failures across Graphical & Physical UIs, STC=Socio-Technical CPS Communication

Failure, EAU=Enigmatic Autonomy. SG=Human Skill Gap. =Caused by,#=Leads to.

7 LIMITATIONS AND FUTURE WORK

The research described in this paper is empirical in nature and is

subject to three primary threats to validity.

First, our tests were limited to the RPIC, which is potentially

the most challenging human role for operating sUAS; however, we

need to extend the study to include other roles such as the MC (Mis-

sion Commander) and SO (Safety Officer), assign a more extensive

set of human-interaction tasks, and study the perception of our

stakeholders to identify further points of perceived vulnerabilities.

In addition, we plan to allow humans to interact more freely with

the L2 simulation environment, and deal with a far broader set of

emergency tasks including deviant flight behaviors. Their success

at intervening could serve as an indicator of the robustness of the

design with respect to human interactions.

Second, while we conducted a preliminary investigation into

the generalizability of HIFuzz, due to time constraints, we have

not yet implemented HIFuzz in these systems. Instead, the experi-

ments reported here focused on our own multi-sUAS system as the

system-under-test. In future work, we plan to run experiments in

the application of HIFuzz to other sUAS and CPS systems.

Third, we claimed that human-in-the-loop tests are essential

for understanding how humans perceive problems and potential

mitigations.We built the mobile app to not only guide users through

the testing process but also to collect data from them describing

their experiences during the test. Future work is needed to conduct

user studies with the mobile app to evaluate its effectiveness.

Finally, as previously mentioned, the L2 level, while fully func-

tional, had less fidelity to the field than we had intended, primarily

because libraries used to interface the radio signals with software-

based PX4 simulations had some limitations. In future work, we

plan to augment, or ultimately entirely replace the L2 layer with a

Hardware-In-The-Loop layer in which a physical flight controller

is integrated closely into the simulated environment. This would

further increase test fidelity and allow the RC transmitter to commu-

nicate over radio signals directly with the PX4 controller. Overall,

increasing fidelity would allow more robust human-interaction

testing, and improve the overall fidelity of our HIFuzz pipeline.

8 CONCLUSIONS

In this paper, we have presented the HIFuzz testing framework for

probing a system for human interaction vulnerabilities. The multi-

level approach progresses from a low-cost, limited-fidelity, large-

scale, no-hazard environment, with fully simulated Proxy Human

Agents (L1), through an intermediate level, where proxy humans

are replaced with real humans (L2), to a high-stakes, high-cost,

real-world environment (L3). In this paper we have focused on the

systematic application of each part of theHIFuzz process, to identify
human-interaction hazards so that we can design, implement, and

validate mitigations. The end goal is to increase the robustness of

the system so that it is fault-tolerant to normal human errors.

HIFuzz can be beneficial in two different ways. First, for test-

ing individual systems, HiFuzz’s multi-level approach provides a

safe pathway for detecting vulnerabilities associated with human

interactions in the system under test. While deploying HIFuzz for
a new system is non-trivial, the return on investment in terms

of human-interaction safety can make it worthwhile. Second, the

lessons learned within a specific project can be documented and

reused across other projects from similar domains, in order to help

designers to avoid vulnerabilities in the first place. We therefore
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plan to extend the scope of our HIFuzz tests, and document results

in the form of a catalog.

In conclusion, results from applying HIFuzz to our own system

under test have shown it to be effective in identifying critical human-

interaction vulnerabilities, thereby directly addressing the need for

improved system safety and robustness.
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