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EXPRESSIVE CURVES

SERGEY FOMIN AND EUGENII SHUSTIN

ABSTRACT. We initiate the study of a class of real plane algebraic curves which we call
expressive. These are the curves whose defining polynomial has the smallest number of
critical points allowed by the topology of the set of real points of a curve. This concept
can be viewed as a global version of the notion of a real morsification of an isolated
plane curve singularity.

We prove that a plane curve C is expressive if (a) each irreducible component of C
can be parametrized by real polynomials (either ordinary or trigonometric), (b) all sin-
gular points of C in the affine plane are ordinary hyperbolic nodes, and (c) the set of real
points of C in the affine plane is connected. Conversely, an expressive curve with real
irreducible components must satisfy conditions (a)-(c), unless it exhibits some exotic
behaviour at infinity.

We describe several constructions that produce expressive curves, and discuss a
large number of examples, including: arrangements of lines, parabolas, and circles;
Chebyshev and Lissajous curves; hypotrochoids and epitrochoids; and much more.
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670 SERGEY FOMIN AND EUGENII SHUSTIN

INTRODUCTION

Let g(x) € R[x] be a polynomial of degree n whose n roots are real and distinct.
Then g has exactly n — 1 critical points, all of them real, interlacing the roots of g.

In this paper, we study the two-dimensional version of this phenomenon. We call a
bivariate real polynomial G(x,y) € R[x, y] (or the corresponding affine plane curve C)
expressive if the locations of the critical points of G are determined by the set of real
points Cr = {(x,y) € R? | G(x,y) = 0}, as follows:

« there is precisely one extremum inside each bounded region of R? \ Cg;

« all other critical points of G are the saddles located at hyperbolic nodes of C.
(Recall that a hyperbolic node is an intersection of two smooth real local branches.) In
particular, all critical points of an expressive polynomial G are real.

An example is shown in Figure 1. For a nonexample, see Figure 2.

FIGURE 1. The expressive curve C = {G(x,y) = 0} in the picture is a
union of three circles, shown in solid black. Dotted isolines represent
level sets of G. The polynomial G has 13 critical points: 6 saddles lo-
cated at the double points (the hyperbolic nodes of C) plus 7 extrema,
one in each bounded region of R? \ C.

Our main result (Theorem 7.17) gives an explicit characterization of expressive
curves, subject to a mild requirement of “L*-regularity.” (This requirement forbids
some exotic behaviour of C at infinity.) We prove that a plane algebraic curve C with
real irreducible components is expressive and L*-regular if and only if

« each component of C has a trigonometric or polynomial parametrization,
« all singular points of C in the affine plane are real hyperbolic nodes, and
« the set of real points of C in the affine plane is connected.

To illustrate, a union of circles is an expressive curve provided any two of them in-
tersect at two real points, as in Figure 1. On the other hand, the circle and the ellipse
in Figure 2 intersect at four points, two of which are complex conjugate. (In the case
of a pair of circles, those two points escape to infinity.)

The above characterization allows us to construct numerous examples of expressive
plane curves, including arrangements of lines, parabolas, circles, and singular cubics;
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FIGURE 2. A nonexpressive curve whose components are a circle and
an ellipse. The bounded region at the bottom contains 3 critical
points.

Chebyshev and Lissajous curves; hypotrochoids and epitrochoids; and much more. See
Figures 3-4 for an assortment of examples; many more are scattered throughout the
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FIGURE 3. Irreducible expressive curves: (a) A singular cubic; (b)
double limagon; (c) (2, 3)-Lissajous curve; (d) 3-petal hypotrochoid;
(e) (3, 5)-Chebyshev curve

R

FIGURE 4. Reducible expressive curves: Arrangements of six lines,
four parabolas, and two singular cubics

On the face of it, expressivity is an analytic property of a function G : R?> — R. This
is however an illusion: just like in the univariate case, in order to rule out accidental
critical points, we need G to be a polynomial of a certain kind. Thus, expressivity is
essentially an algebraic phenomenon. Accordingly, its study requires tools of algebraic
geometry and singularity theory.
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For a real plane algebraic curve C to be expressive, one needs

#{critical points of C in the complex affine plane}
(%) = #{double points in Cg} + #{bounded components of R? \ Cg}.

Since a generic plane curve of degree d has (d — 1)? critical points, whereas expression
() is typically smaller than (d — 1)?, we need all the remaining critical points to escape
to infinity. Our analysis shows that this can only happen if each (real) irreducible com-
ponent of C either has a unique point at infinity or a pair of complex conjugate points;
moreover the components must intersect each other in the affine plane at real points,
specifically at hyperbolic nodes. The requirement of having one or two points at infinity
translates into the condition of having a polynomial or trigonometric parametrization,
yielding the expressivity criterion formulated above.

As mentioned earlier, these results are established under the assumption of L*-
regularity, which concerns the behaviour of the projective closure of C at the line at
infinity L*. This assumption ensures that the number of critical points accumulated
at each point p € C N L* is determined in the expected way by the topology of C in the
vicinity of p together with the intersection multiplicity (C - L*),. All polynomial and
trigonometric curves are L*-regular, as are all expressive curves of degrees < 4.

Section-by-section overview. Sections 1-4 are devoted to algebraic geometry
groundwork. Section 1 reviews basic background on plane algebraic curves, intersec-
tion numbers, and topological invariants of isolated singularities. The number of crit-
ical points escaping to infinity is determined by the intersection multiplicities of polar
curves at infinity, which are studied in Section 2. Its main result is Proposition 2.5,
which gives a lower bound for such a multiplicity in terms of the Milnor number and
the order of tangency between the curve and the line at infinity. When this bound
becomes an equality, a plane curve C is called L*-regular.

In Section 3, we provide several criteria for L*-regularity. We also show (see Propo-
sition 3.4) that for an L®-regular curve C = {G(x,y) = 0} all of whose singular points
in the affine plane are ordinary nodes, the number of critical points of G is completely
determined by the number of those nodes, the geometric genus of C, and the number
of local branches of C at infinity. This statement relies on classical formulas due to
H. Hironaka [22] and J. Milnor [29].

The technical material of Sections 2-3 can be safely skipped by the readers who are
willing to treat the notion of L*-regularity as a “black-box” genericity condition that
automatically holds for most, if not all, expressive curves that arise in applications.

Section 4 introduces polynomial and trigonometric curves, the plane curves possess-
ing a parametrization t — (X(t), Y(¢)) in which both X and Y are polynomials, resp.
trigonometric polynomials. We review a number of examples of such curves, recall
the classical result [1] characterizing polynomial curves as those with a single place at
infinity, and provide an analogous characterization for trigonometric curves.

Expressive curves are introduced in Section 5. We formulate their basic proper-
ties and discuss a large number of examples, which include an inventory of expressive
curves of degrees < 4.

In Section 6, we introduce divides and relate them to the notion of expressivity.

Section 7 contains our main results. Using the aforementioned bounds and criteria,
we show (see Theorem 7.10) that an irreducible real plane algebraic curve is expressive
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and L*-regular if and only if it is either trigonometric or polynomial, and moreover all
its singular points in the complex affine plane are (real) hyperbolic nodes. This crite-
rion is then extended (see Theorem 7.17) to general plane curves with real irreducible
components. Additional expressivity criteria are given in Section 8.

As a byproduct, we obtain the following elementary statement (see Corollary 7.19):
if C = {G(x,y) = 0} is a real polynomial or trigonometric affine plane curve that inter-
sects itself solely at hyperbolic nodes, then all critical points of G are real.

Multiple explicit constructions of expressive curves are presented in Sections 9-13,
demonstrating the richness and wide applicability of the theory. In Section 9, we de-
scribe the procedures of bending, doubling, and unfolding. Each of them can be used
to create new (more “complicated”) expressive curves from existing ones. Arrange-
ments of lines, parabolas, and circles, discussed in Section 10, provide another set of
examples. These examples are generalized in Section 11 to arrangements consisting of
shifts, dilations and/or rotations of a given expressive curve. Explicit versions of these
constructions for polynomial (resp., trigonometric) curves are presented in Section 12
(resp., Section 13).

In Section 14, we briefly discuss alternative notions of expressivity: a “topological”
notion that treats real algebraic curves set-theoretically, and an “analytic” notion that
does not require the defining equation of a curve to be algebraic.

The class of divides which can arise from L*-regular expressive curves is studied in
Section 15. In particular, we show that a simple pseudoline arrangement belongs to
this class if and only if it is stretchable. In Section 16, we compare this class to the class
of algebraic divides studied in [16].

Motivations and outlook. This work grew out of the desire to develop a global ver-
sion of the A’Campo-Gusein-Zade theory [3, 5, 20, 21] of morsifications of isolated sin-
gularities of plane curves. The defining feature of such morsifications is a local expres-
sivity property, which prescribes the locations (up to real isotopy) of the critical points
of a morsified curve in the vicinity of the original singularity. In this paper, expressiv-
ity is a global property of a real plane algebraic curve, prescribing the locations of its
critical points (again, up to real isotopy) on the entire affine plane.

In a forthcoming follow-up to this paper, we intend to develop a global analogue—
in the setting of expressive curves—of A’Campo’s theory of divides and their links.
As shown in [16], this theory has intimate connections to the combinatorics of quiv-
ers, cluster mutations, and plabic graphs.

It would be interesting to explore the phenomenon of expressivity in higher dimen-
sions, and in particular find out which results of this paper generalize.

The concept of an expressive curve/hypersurface can be viewed as a generalization
of the notion of a line/hyperplane arrangement. (Expressivity of such arrangements in
arbitrary dimension can be established by a log-concavity argument.) This opens the
possibility of extending the classical theory of hyperplane arrangements [6, 13, 33] to
arrangements of expressive curves/surfaces.

1. PLANE CURVES AND THEIR SINGULARITIES

Definition 1.1. Let P? denote the complex projective plane. We fix homogeneous
coordinates x, y, z in P2, Any homogeneous polynomial F € C[x, y, z] defines a plane
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algebraic curve C = Z(F) in P? given by
C=Z(F)={F(x,y,z) =0}

We understand the notion of a curve (and the notation Z(F)) scheme-theoretically: if
the polynomial F splits into factors, we count each component of the curve C = Z(F)
with the multiplicity of the corresponding factor.

For two distinct points p, ¢ € P2, we denote by Ly the line passing through p and q.
The line at infinity L® C P? is defined by L* = Z(=2).
For F a smooth function in x, y, z, we use the shorthand

F F F
OF p _2 3

=% bh=3. k=3

E
for the partial derivatives of F. The following elementary statement is well known, and

easy to check.

Lemma 1.2 (Euler’s formula). Let F = F(x, Yy, z) be a homogeneous polynomial of de-
greed. Then

1.1) d-F = xF + yF, + zF; .

Definition 1.3. Let F € C[x, y, z] be a homogeneous polynomial in x, y, z. For a point
q = (x> qy-q;) € P?, we denote

F(q) =q:F + QyFi) +q,F .
The polar curve C gy associated with a curve C = Z(F) and a point g € P2 is defined by

Cp = Z(F(q)). In particular, for ¢ = (1,0,0) € L* (resp., g = (0,1,0) € L), we get
the polar curve Z(E,) (resp., Z(E))).

For a point p lying on two plane curves C and C, we denote by (C-C), the intersection
number of these curves at p. We will also use this notation for analytic curves, i.e.,
curves defined by analytic equations in a neighborhood of p.

Definition 1.4. Let C = Z(F) be a plane algebraic curve, and p an isolated singular
point of C. Let us recall the following topological invariants of the singularity (C, p):
« the multiplicity mult(C, p) = (C - L),, where L is any line passing through p which
is not tangent to the germ (C, p);
« the x-invariant x(C, p) = (C - C(q))p, Where q € P2\ {p} is such that the line Lyq is
not tangent to (C, p);
« the number Br(C, p) of local branches (irreducible components) of the germ (C, p);
« the §-invariant 6(C, p), which can be determined from

x(C, p) = 28(C, p) + mult(C, p) — Br(C, p);
« the Milnor number u(C,p) = (C(q) - C(q))p» Where the points q',q" € P? are
chosen so that p, q’, q" are not collinear.

More generally, for any point p € C(gy N C(qr), not necessarily lying on the curve C,
we can define the Milnor number

H(C.p) = (Cqy - Cigp
(provided p, q’,q" are not collinear). Note that for p ¢ L, we can simply define

1.2) u(C, p) = (Z(F) - Z(Ey))p -
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See [29, §5 and §10] and [18, Sections 1.3.2 and 1.3.4] for additional details as well as
basic properties of these invariants. See also Remark 1.5 and Proposition 1.6.

Remark 1.5. All invariants listed in Definition 1.4 depend only on the topological type
of the singularity at hand. The Milnor number u(C, p) measures the complexity of the
singular point p viewed as a critical point of F. It is equal to the maximal number
of critical points that a small deformation of F may have in the vicinity of p. The &-
invariant is the maximal number of critical points lying on the deformed curve in a
small deformation of the germ (C, p). The x-invariant is the number of ramification
points of a generic projection onto a line of a generic deformation of the germ (C, p).

Proposition 1.6 ([18, Propositions 3.35, 3.37, 3.38]). Let (C, p) be an isolated plane
curve singularity as above. Then we have:

(1.3) u(C, p) =26(C,p)—Br(C,p)+1 (Milnor’s formula);
1.4 (C-C))p = %(C,p) + (C - Lpg), — mult(C, p) foranyq € P>\ {p};
(1.5) %(C, p) = u(C, p) + mult(C, p) — 1.

Example 1.7. Consider the quintic curve C = Z(F) defined by the polynomial
F(x,y,2) = (x> + z2)(yx? + yz2 — x3) = (x + iz)(x — iz)(yx? + yz? — x3).

It has two points on the line at infinity L*, namely p; = (0,1,0) and p, = (1,1,0).
At p,, the cubical component has an elliptic node, and the two line components are
the two tangents to the cubic at p;. At p,, we have a smooth real local branch of the
cubical component. Direct computations show that

mult(C, p;) = 4 mult(C, p,) =1,
x(C,py) =16 x(C, p;) =0,
Br(C,p,) =4 Br(C, p,) =1,
8(C,py) =8 8(C,p2) =0,
u(C,py) =13 u(C, py) =0,
(C-I®), =4 (C-I®),, =1,
(Z(K) - Z(F))p, =16 (Z(F) - Z(F)),, =0,
(C-E)p, =16 (€ Ep, =0.

Note that (1.2) does not hold for p = p,; this is not a contradiction since p; € L*.

2. INTERSECTIONS OF POLAR CURVES AT INFINITY

In this section, we study the properties of intersection numbers of polar curves at
their common points located at the line at infinity.

Lemma 2.1. Let F(x,y,z) € C[x,Y, z] be a nonconstant homogeneous polynomial.

() The set Z(F q1y) N Z(F qry) N L* does not depend on the choice of a pair of distinct
points q',q" € L™. Moreover this set is contained in C.
(if) Fora point p € C N L%, the intersection multiplicity (Z(F (1)) - Z(F ¢r))), does not
depend on the choice of a pair of distinct points q',q" € L.
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Proof. Any other pair ¢’, §” of distinct points in L satisfies

!

_ ' n
=anq +apq,
_ ’ "
=axnq +axq,

a;; A
az; QA

2.1) with # 0.

Consequently

F(q/) = CluF(q/) + ale(qu),

F(qu) = ale(q/) + a22F(qu)
and the first claim in (i) follows. To establish the second claim, set ¢’ = (1,0,0) and
q" = (0,1,0) (i.e., take the polar curves Z(F;) and Z(F,)), and note that by Euler’s
formula (1.1), F vanishes as long as F,, F, and z vanish.

To prove (ii), factor the nonsingular 2 x2 matrix in (2.1) into the product of an upper
triangular and a lower triangular matrix; then use that, for bc # 0,

(2.2) (Z(aGy + bG,) - Z(cG1))p = (Z(G2) - Z(G1))p - O

Definition 2.2. Let C be a plane projective curve C that does not contain the line at
infinity L* as a component. For a point p € L*, we denote

H(C, p, L) & (Z(E,) - Z(B))p -

Note that by Lemma 2.1(i), if p lies on both Z(F,) and Z(F)), then it necessarily lies
on C, so u(C, p, L*) can only be nonzero at points p € C N L*®.

Remark 2.3. For p € C n L*, the number u(C, p, L*) may differ from the Milnor
number u(C, p) (cf. (1.2)), since the points p,q’, q" lie on the same line L*. Moreover,
u(C, p, L*) is not determined by the topological type of the singularity (C, p), as it also
depends on its “relative position” with respect to the line L*. The following example
illustrates this phenomenon. Consider the curves Z(x?y — z3 — xz?) and Z(x%y? — yz3).
Each of them has an ordinary cusp (type A,) at the point p = (0,1,0). On the other
hand, we have u(C, p,L*) = 4 in the former case versus u(C, p, L) = 3 in the latter.
Additional examples can be produced using Proposition 2.5.

Remark 2.4. The intersection number u(C, p, L) is also different from “the Milnor
number at infinity” (as defined, for instance, in [8, 30]) since u(C, p, L) depends on
the choice of a point p € L*. Moreover, u(C, p, L) is not determined by the local
topology of the configuration consisting of the germ (C, p) and the line L*. To see
this, consider Example 3.8 and Example 5.11 with p = p;. In both cases, (C, p) is an
ordinary cusp transversal to L*. In Example 3.8, we have u(C, p, L*) = 4, whereas in
Example 5.11, we get u(C, p, L*) = u(C, p) + (C - L*), — 1 = 3 by Proposition 3.6).

Proposition 2.5. Let C = Z(F) be an algebraic curve in P2. Let p € C N L®. Then
(2.3) u(C, p,L®) > u(C, p) + (C - L*), — 1.
The proof of Proposition 2.5 will rely on two lemmas, one of them very simple.
Lemma 2.6. Forany q € L™ \ {p}, we have
(C+ Z(F())p = H(C, p) + (C - I®), — 1.
Proof. Using (1.4) and (1.5), we obtain:
(C-Z(F ) = x(C,p) + (C - L®), —mult(C, p) = u(C,p) + (C - L*), —1. O
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Lemma 2.7. Let Q be a local branch (i.e., a reduced, irreducible component) of the germ
of the curve Z(F,) at p. Then

(24) (Z(zE;) - Q)p =2 (Z(F) - Q)p -

Proof. We will prove the inequality (2.4) inductively, by blowing up the point p. As
a preparation step, we will apply a coordinate change intended to reduce the general
case to a particular one, in which the blowing-up procedure is easier to describe.

Without loss of generality, we assume that p = (1,0,0). In a neighborhood of p,
we can set x = 1 and then work in the affine coordinates y, z. Abusing notation, for a
homogeneous polynomial G(x, y, z), we will write G(y, z) instead of G(1, y, z).

For any curve Z(G), the intersection multiplicity (G-Q), can be computed as follows.
Write Q = {f(y,z) = 0}, where f(y,z) is an irreducible element of the ring C{y, z} of
germs at p of holomorphic functions in the variables y and z. By [18, Proposition 1.3.4],
we have

f(y’ Z) = u(y’ Z) H (y - gi(zl/k))’ U(y’ Z) € C{y’z}9 u(o, 0) ?é 0,

1<i<k

where each &; is a germ at zero of a holomorphic function vanishing at the origin. Then
[18, Proposition 1.3.10 (Halphen’s formula)] yields

(2.5) (G-Q)p = D, ordyG(§i(2), 2).

1<i<k

def
It follows that the variable change (y, z) = (31, 2;) = (y1, 25) multiplies both sides
of (2.4) by k. For g € C{y, z}, let us denote 7°g(y;, z;) = g o ©(y1,21)). Then 7*Q splits
into k smooth branches

Qi={yl_§i(zl)=0}’ i=1’---5k9

and it suffices to prove the inequality (2.4) with Q replaced by each of the Q;’s. More-
over, with respect to Q;, the desired inequality is of the same type. Namely, 7*(F,) =
(t*F)y,, and hence Q; is a local branch of the polar curve Z((z*F),,) of the curve
*C = Z(t*F). Furthermore,

21T F)z, 01, 21) = 2155 [F (1, 20)]
= z1E,(y1, z¥) + kz¥E,(y1, 2)
= z1(T"F,))(1, 21) + k- (T°(2E,) (Y1, Z1)s
which implies

(Z(Zl(T*F)Zl) : Qi)p = (Z(T*(ZFz)) : Qi)p’ i=1,....k

We have thus reduced the proof of (2.4) to the case where Q is a smooth curve germ
transversal to the line L*. To simplify notation, we henceforth write C, F, y, z instead
of p*C, ¢p*F, y1, z1, respectively.

We proceed by induction on u(C, p). If u(C, p) = 0, then (C, p) is a smooth germ. If
C intersects L™ transversally, then (C, p) is given by

F(y,z)=ay+bz+hot, a#0
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(hereinafter h.o.t. is a shorthand for “higher order terms”), implying F,(0,0) = a # 0.
Thus the polar curve Z(E,) does not pass through p; consequently both sides of (2.4)
vanish. If C is tangent to L* at p, then it is transversal to Q at p, so we have

(C-Q)yp=1=(Z(2)- Q) < (Z(zF) - Q)p.-

def .
Suppose that u(C, p) > 0. Then m = mult(C, p) > 2. If C and Q intersect transver-
sally at p (i.e., have no tangent in common), then

(C-Q)p = mult(C, p) - mult(Q,p) =m-1=m.
On the other hand, mult(Z(E,), p) > m — 1, and therefore
(Z(zE,) - Q) 2 mult(Z(zE,), p) - mult(Q,p) 2 m-1=m = (C- Q).

If C and Q have a common tangent at p, we apply the blowing-up 7 : P? — P2 of the
plane at the point p. For a curve D passing through p, let D* denote its strict transform,
i.e., the closure of the preimage 7~ (D \ {p}) in P2. (For more details, see [18, Sec-
tion 1.3.3, p. 185].). Since Q is smooth, the strict transform Q* is smooth too, and in-
tersects transversally the exceptional divisor E at some point p*. More precisely, if
Q = Z(y — nz — h.o.t.), then in the coordinates (y,, z,) given by y = y,z,, z = z,, we
have E = Z(z,) and p* = (,0). Since C and its polar curve Z(F)) are tangent to the line
Z(y—nz), the lowest homogeneous form of F(y, z) is divisible by (y—7z)?, while the low-
esthomogeneous form of F, is divisible by y—7z and, moreover, mult(Z(E,), p) = m—1.

We now recall some properties of the blowing-up. For a curve D=Z(G(y, z)) passing
through p, we have [18, Prop. 1.3.21 and 1.3.34, and computations on p. 186]:

(D* - Q*)p* =(D- Q)p — mult(D, p) - mult(Q, p) = (D - Q)p — mult(D, p);

S qepens 50" @) = (D, p) — & mult(D, p)(mult(D, p) - 1);

D* = Z(Z: mult(D,p)G(y*Z*az*))'
‘We see that

(F*)y, 0 2.) = 22 "B (0424 2,) = (B)* (s, 22)-
Thus Q* is a local branch of the polar curve (F*),, =0 of the strict transform C*. Hence
after the blowing-up we come to the original setting. Furthermore,
u(C*, p*) = 26(C*, p*) — Br(C*,p*) + 1
<25(C*, pY)
S 2 quC*mE 5(C*’ q)
=26(C, p) —m(m —1)
=u(C,p)+Br(C,p)—1—m(m—1)
<ulC,pp+m—-1—mm-—1)
< u(C, p).
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So we can apply the induction assumption. Observe that mult(E,, p) = m — 1 + r for

some r > 0. It follows that
2.6) (Z(F)-Q)p = (Z(F*) - Q*)p« + m,
' (Z(zE) - Q)p = 1+ (Z(F) - Q)p = (Z(F)") - Q*)p + m+ 1.

Now
= _mF*(y*’ Z*) + y*(Fy)y*(y*’ Z*) + Z:;(F'z)*(y*a Z*)-
Finally, the latter formula, the induction assumption, and (2.6) imply
(Z(zF) - Q)p = (Z(F)) - Q)pr + m+r
= (Z(Z(F)) - Q)pe + m
> min{Z(z.(F*);,) - Q")ps» (Z(F*) - Q*)p-} + m
24) y .
= (Z(F")-Q)p}+m
=(Z(F)-Qp- O

Proof of Proposition 2.5. We again assume p = (1,0,0). Set d = deg(F). In the local
affine coordinates y, z (with x = 1), Euler’s formula (1.1) becomes

dF(1,y,z) = E(1,y,2) + yE(1,y,2) + zF(1,y, 2).
Consequently u(C, p, L) = (Z(F) - Z(E)))p = (Z(dF — zE;) - Z(E)))p.
Let B denote the set of local branches of the polar curve F, = 0 at p. Then
u(C, p,L*) = (Z(dF — zE,) - Z(Fy)),
= 3 0es(Z(dF = 2E,) - Q)
2 Y oes MN{(Z(F) - Q)p . (Z(zF) - Q)p}
= Y0esZF)-Q),  (by(24)
= (Z(F) - Z(K)p
=u(C,p)+(C-L*®), =1 (by Lemma 2.6). O

3. L®-REGULAR CURVES

Definition 3.1. Let C = Z(F(x,y,z)) C P? be a reduced plane algebraic curve which
does not contain the line at infinity L* as a component. The curve C (or the polyno-
mial F) is called L*-regular if at each point p € C N L™, the formula (2.3) becomes an

equality:
(3-1) #(C’ P’Lw) = ,L{(C, P) + (C : Loc)p -1

In the rest of this section, we provide L*-regularity criteria for large classes of plane
curves.

As mentioned in the Introduction, the technical material in this section can be
skipped if the reader is willing to take it on faith and to view the requirement of L*-
regularity as a genericity condition that holds in all “nonpathological” examples arising
in common applications.
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Proposition 3.2. Let C = Z(F(x,y,z)) C P? be a reduced algebraic curve of degree d
which does not contain L as a component. Assume that the polynomial F(x,y,1) has
& < oo critical points, counted with multiplicities. Then we have

(3.2) E<d?’-3d+1- ), u(C.p)-D),

peCnL®
with equality if and only if C is L*-regular.
Proof. In view of Proposition 2.5, we have

(3.3) > wCpI)>d+ Y (uC p)-1),

peCnL® peCnL*®

with equality if and only if C is L®-regular. Since F has finitely many critical points,
Bézout’s theorem for the polar curves Z(F;) and Z(F,) applies, yielding

(34) Y, HCpI®)=(d-17-¢

peCnL*®

The claim follows. ]

Example 3.3. Asin Example 1.7, consider the quintic curve C = Z(F) defined by the
polynomial

F(x,y,2) = (x* + 22)(yx? + yz2 — x3) = (x + iz)(x — iz)(px? + yz° — x3).
Set G(x,y) = F(x,y,1) = (x*> + 1)(yx? + y — x3). Then

Gy = 2x(yx*> +y — x3) + (x* + 1)(2xy — 3x?) = (x* + 1)(4xy — 3x?) — 2x*,

Gy = (x* + 1),

and we see that G has no critical points in the complex (x, y)-plane; thus £ = 0. Using
the values of Milnor numbers computed in Example 1.7, we obtain:

d?-3d+1— ) WC,p—1)=25-15+1-(13-1)—(0—1)=0.
peCnL*®

It follows by Proposition 3.2 that C is L*-regular. Alternatively, one can check directly
that the equality (3.1) holds at p; and p,.

Recall that the geometric genus of a plane curve C is defined by

(3.5) gO) = 3 @C)-1+1,

C’eComp(C)

where Comp(C) is the set of irreducible components of C, and g(C’) denotes the genus
of the normalization of a component C’.

Proposition 3.4. Let C = Z(F(x,y,z)) C P? be a reduced algebraic curve of degree d.
Suppose that

+ C does not contain the line at infinity L as a component;
« all singular points of C in the affine (x, y)-plane P \ L* are ordinary nodes;
« the polynomial F(x,y,1) € C[x,y] has finitely many critical points.
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Let v denote the number of nodes of C in the (x, y)-plane, and let & denote the number of
critical points of the polynomial F(x, y, 1), counted with multiplicities. Then we have

(3.6) t£<2g(C)—1+2v+ Y, Br(C p),
peCnL®

with equality if and only if C is L*-regular.
Proof. By Hironaka’s genus formula [22] (cf. also [19, Chapter II, (2.1.4.6)]), we have
d-1)(d—
(3.7) g(c) =YD 5(c.p),
peSing(C)

where Sing(C) denotes the set of singular points of C. Combining this with Milnor’s
formula (1.3), we obtain:

Z (,L{(C, P) - 1) = Z (,L{(C, P) - 1)

peCnL® peSing(C)
= > (28(C,p) - Br(C,p))
peSing(C)
=(d-1)(d-2)-28(C)-2v— D, Br(C,p).
peCnL®
Therefore
d2-3d+1— Y (u(C,p—-1)=28(C)—1+2v+ > Br(C,p),
peCnL*® peCnL*®
and the claim follows from Proposition 3.2. O

Our next result (Proposition 3.6) shows that equation (3.1) holds under certain rather
mild local conditions, To state these conditions, we will need to recall some terminol-
ogy and notation.

Definition 3.5 ([18, Definitions 1.2.14-1.2.15]). We denote by I'(G) the Newton dia-
gram of a bivariate polynomial G, i.e., the union of the edges of the Newton polygon
of G which are visible from the origin. The truncation of G along an edge e of ['(G) is
the sum of all monomials in G corresponding to the integer points in e.

An isolated singularity of an affine plane curve {G(y, z) = 0} at the origin is called

Newton nondegenerate (with respect to the local affine coordinates (y, z)) if the Newton
diagram I'(G) intersects each of the coordinate axes, and the truncation of G along any
edge of the Newton diagram is a quasihomogeneous polynomial without critical points
in (C*)2.
Proposition 3.6. Let C = Z(F(x,y,z)) C P? be a reduced curve not containing the line
atinfinity L* = Z(z) as a component. Let p € C N L®. Without loss of generality, assume
that p = (1,0,0). Suppose that p is either a smooth point of C or a singular point of C
such that

(3.8)  thesingularity (C, p) is Newton nondegenerate, in the local coordinates y, z;
(3.9) (Z(y)-C)p <degC = degF.

Then

(3.10) u(C, p,L*) = u(C, p) + (C - L*), — 1.

Thus, if conditions (3.8)—(3.9) hold at every point p € C N L®, then C is L®-regular.
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Remark 3.7. Although we did not find Proposition 3.6 in the literature, similar results—
proved using similar tools—appeared before, see for example [8].

Proof. If p is a smooth point of C with the tangent L # L, then
F(,y,z) =ay+bz+h.ot. (a#0),

implying that p ¢ Z(E,). The L*-regularity follows:

(Z(F) - Z(Fy))p = 0= u(C, p) +(C - I®), — 1.
If C is smooth at p with the tangent line L*, then

F(1,y,z) =ay"+ bz+h.ot. (ab#0, n>1),
which implies the Newton nondegeneracy as well as condition (3.9):

(Zy)-C)p=1<n<degC.

Thus, this situation can be viewed as a particular case of the general setting where we
have a singular point p satisfying conditions (3.8)-(3.9). We next turn to the treatment
of this setting.

We proceed in two steps. We first consider semi-quasihomogeneous singular points,
and then move to the general case. We set x = 1 in a neighborhood of p and write
F(y, z) as a shorthand for F(1,y, z).

(1) Assume that I'(F) is a segment with endpoints (m, 0) and (0, n). By the assump-
tions of the lemma, m < d = degF and n < d. The Newton nondegeneracy condition
means that the truncation F*(") of F on T'(F) is a square-free quasihomogeneous poly-
nomial.

Assuming that s = ged{m, n}, m = mys, n = n;s, we can write

N
FTE)(y,z) = > apy™kzmG=h),  where aga, # 0.
k=0

Consider the family of polynomials
F,(y,z) = t ™ F(yt", zt™) = FYF)(y, z) + Z cl-jti””m‘m”yizf, t €[0,1].

in+jm>mn

Note that F, = F'®) and the polynomials F and F,, 0 < t < 1, differ by a linear
change of the variables. This together with the lower semicontinuity of the intersection
multiplicity implies

(311)  (C, p,I™) = (Z(F) - Z(dF — zE)), < (Z(Fy ) - 2(dFT®) — 25 ),

Here
N
F;‘(F) — z mlkakymlk—lznl(s—k)’
k=1
N
(3.12) dFT® — zF; ") = 3 (d — my (s — K))agy™kzm k),
k=0

. . I(F
Since a; # 0 and n;s = n < d, these are nonzero polynomials, and moreover Fy( )

splits into I; > 0 factors of type z™ + ay™, a # 0 and the factor y™~ 1= while
2FY ) _dFT® gplitsintol, > 0 factors of type 2 +8y™, B # 0, and the factor z"~2".
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Observe that the polynomials F)F ") and zF; ) _ pT(® are coprime. (Otherwise, they

would have a common factor z"t + yy™ with y # 0, which would also be a divisor of
the polynomial

nyFT® 4+ my (zEE®) — dFT®)) = iy (n — d)FF®.

Then FT® and its derivative F}l; (F) would have a common factor, contradicting the

square-freeness of FT().) Since

Zy)-Z(2)p =1,
(Z(y) - Z(z™ + By™))p = ny,
(Z(2)- Z(z" + ay™)), =m; as a#0,
(Z(z™ +ay™) - Z(z™ + By™))p =mn; as a# B,
the right-hand side of (3.11) equals
Lily - (Z(Z" +ay™) - Z(z™ + By™))p + Li(n — L) - (Z(2) - Z(z™ + ay™)),
+(m—1-hLm)l, - (Z(y) - Z(z™ + By™))p + (m =1 = Limy) - (Z(y) - Z(2)),p
=(m—1)n
=sm-1)n—-1)+m-1
:/’{(C’ p) + (C : Loo)p -1,
which together with (2.3) yields the desired equality.

(2) Suppose that I'(F) consists of r > 2 edges o, ..., o) successively ordered so
that ¢ touches the axis of exponents of y at the point (m, 0), where m = (C -L°°)p, and
o™ touches the axis of exponents of z at the point (0, n), where n = (C - Zy)p <d=
deg F. By the hypotheses of the lemma, for any edge o = ¢(®, the truncation F°(y, z)
is the product of y*z®, a,b > 0, and of a quasihomogeneous, square-free polynomial
F§, whose Newton polygon A(Fy ) is the segment g, with endpoints on the coordinate
axes, obtained from o by translation along the vector (—a, —b).

Note that the minimal exponent of z in the polynomial dF(0, z) — zF;(0, z) is n, and
hence

(313) (Z(B)) - Z(dF — zF,)), = (Z(F,) - Z(dF = zE,)), — n.

Next, we note that the Newton diagram I'(yE,) contains entire edges o, ..., or-D
and some part of the edge o), while I'(dF — zE,) = I'(F), since the monomials of
dF — zF, and of F on the Newton diagram I'(F) are in bijective correspondence, and
the corresponding monomials differ by a nonzero constant factor, cf. (3.12).

By [18, Proposition 1.3.4], we can split the polynomial F inside the ring C{y, z} into
the product

o _ Lo

F:gol"'¢r7 F(gol)za(l)7 §01 - 0 ,i:l,...,r,
and similarly

) ;
dF —zE, =9, .9, T(@) =0, 7 = (dF —zE)", i=1,....r,

O 408 NON
YFV=06;...¢,, TI(6)=05", 6 =(yl’~“y)0 ,i=1,...,r—1,
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while
o)

=Ry

for ¢ the minimal exponent of z in (yFy)U(r). Thus,

(3.14) (ZOE) - Z(dF —zE)), = Y. (Z@y) - Z(6))p -
1<i,j<r

We claim that

(3.15) (Z(y) - Z(6)))p = (Z(9y) - Z(6))), foralll <i,j<r.

Having this claim proven, we derive from (3.14) that
(Z(yFy) - ZdF — zE), = D, (Z(91) - Z(6))p
1<i,j<r
(ZOE) - Z(F)p = (Z(y) - Z(F)p + (Z(Fy) - Z(F))p
n+x(C,p)+ (C - L*), — mult(C, p)
n+ (u(C, p) + mult(C, p) — 1) + (C - L*), — mult(C, p)
n+uC,p)+(C-L*), -1,
which completes the proof in view of (3.13).

The equality (3.15) follows from the fact that both sides of the relation depend only
on the geometry of the segments o(()l) and cr(()J ). Suppose that 1 < i < j < r. We have
o® = [(m’,0),(0,n)], @ = [(m",0),(0,n")] with 7= > " By the Newton-Puiseux

D = [(m',0),(0,n")], sV = [( ), (0,n")] with == > Z=. By the N p
algorithm [18, pp. 165-170], the function ¢;(y, z) (or ¥;(y, z)) splits into the product of
u(y, z) € C{y, z}, u(0,0) # 0, and n' factors of the form

z—ay™m +hot, a#0,

and then by (2.5) we get
(Z(@1) - 2(8)))p = (Z(®y) - Z(61))p = m" 1.
This holds even for j = r since the only monomial of 6,(y, z) that comes into play is

,6ym”, B #0. Thecasel < j < i <rissettled analogously. Now suppose 1 <i=j <r.

As we observed in the first part of the proof, the pairs of quasihomogeneous polyno-
0] OIS 0)
mials ¢;° and 6;° , ¥{° and 6;° are coprime (even for i = r!). Then the above

computation yields l
(Z(pi) - Z(61)p = (Z(Y1) - Z(6:))p = m'n’
where a(()i) = [(m’,0),(0,n")]. a
Example 3.8 shows that condition (3.9) in Proposition 3.6 cannot be removed.

Example 3.8. Consider the cubic C = Z(xy? — z3 — yz?) (cf. Remark 2.3). It has a
Newton nondegenerate singular point p = (1,0,0) € L*, an ordinary cusp with the
tangent line L = Z(y) # L*. Thus (C - L) = 3 = deg(C), so (3.9) fails. Also,

u(C, p,L®) = (Z(y?) - Z(2xy — z2)), = 4,
MEC P+ (C )y ~1=2+2-1=3,
so (3.10) fails as well.

For another (more complicated) instance of this phenomenon, see Example 5.11.
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Corollary 3.9. Let C = Z(F(x,y,z)) C P? be a reduced curve not containing the line at
infinity [ = Z(z) as a component. Let G(x,y) = F(x,y,1). Assume that the Newton
polygon A(G) intersects each of the coordinate axes in points different from the origin,
and the truncation of G along any edge of the boundary dA(G) not visible from the origin
is a square-free polynomial, except possibly for factors of the form x' or y/. Then C is
L®-regular.

Proof. The intersection C N L* is determined by the top degree form of G(x, y), which
has the form x'y/ f(x, y), with f(x,y) a square-free homogeneous polynomial. Hence
C N L= consists of the points (0,1,0) (if i > 0), (1,0,0) (if j > 0), and deg(f) other
points, at which Cis smooth and L*-regular (see Proposition 3.6). The Newton diagram
of each of the points (0, 1,0) and (1,0, 0) consists of some edges of dA(G) mentioned
in the lemma, and therefore these points (if they lie on C) satisfy the requirements of
Proposition 3.6. (]

Remark 3.10. A reducible plane curve C = Z(F) with L*-regular components does not
have to be L®-regular. For example, take F = (xy—1)(xy—2): each factor is L*-regular,
but the product is not, since F; and F, have a common divisor 2xy — 3.

Conversely, a curve may be L*-regular even when one of its components is not.
For example, let F = x?y + x> + x?z + xz? + z3. Then Z((x — y)F) is [®-regular by
Proposition 3.6. On the other hand, L*-regularity of Z(F) fails at p = (0, 1,0): direct
computation yields (Z(F,) - Z(E),)), = 4, whereas u(Z(F), p) + (Z(F) - L*), — 1 = 3.

4. POLYNOMIAL AND TRIGONOMETRIC CURVES

In Sections 4 and 5, we introduce several classes of affine (rather than projective)
plane curves. Before we begin, let us clarify what we mean by a real affine plane curve.
There are two different notions here: an algebraic and a topological one:

Definition 4.1. As usual, a reduced real algebraic curve C in the complex affine plane
A2 = C? is the vanishing set

C=V(G) ={(x,y) € C*| G(x,y) =0}

of a squarefree bivariate polynomial G(x, y) € R[x,y] C C[x, y]. We view C as a subset
of A2, and implicitly identify it with the polynomial G(x, y) (viewed up to a constant
nonzero factor), or with the principal ideal generated by it, the ideal of polynomials
vanishing on C.

Alternatively, one can consider a “topological curve” Cp in the real affine (x, y)-
plane R?, defined as the set of real points of an algebraic curve C as above:

Cr = Va(G) ={(x,y) € R? | G(x, y) = 0}.

In contrast to the real algebraic curve V(G) C C?, the real algebraic set Vi (G)—even
when it is one-dimensional—does not determine the polynomial G(x, y) up to a scalar
factor. In other words, an algebraic curve C is not determined by the set of its real
points C, even when C “looks like” an algebraic curve. (Roughly speaking, this is
because C can have “invisible” components which either have no real points at all or
all such points are isolated in R2.) There is however a canonical choice, provided Cg
is nonempty and without isolated points: we can let C be the Zariski closure of Cg,
or equivalently let G(x, y) be the minimal polynomial of Cy, a real polynomial of the
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smallest possible degree satisfying V(G) = C. (The minimal polynomial is defined
up to a nonzero real factor.)

Throughout this paper, we switch back and forth between a projective curve
Z(F(x,y,z))and its affine counterpart V(G(x, y)), where G(x, y) = F(x, y,1). (Remem-
ber that the line at infinity L* = Z(z) = P? \ A? is fixed throughout.) For example, we
say that V(G) is L*-regular if and only if Z(F) is L*-regular, cf. Definition 3.1.

Definition 4.2. Let C be a complex curve in the affine (x, y)-plane. We say that C isa
polynomial curve if it has a polynomial parametrization, i.e., if there exist polynomials
X(t),Y(t) € C[t] such that the map t — (X(¢),Y(¢t)) is a (birational, i.e., generically
one-to-one) parametrization of C.

A projective algebraic curve C = {F(x, y,z) = 0} C P2 is called polynomial if C does
not contain the line at infinity L* = {z = 0}, and the portion of C contained in the
affine (x, y)-plane (i.e., the curve {F(x, y, 1) = 0}) is an affine polynomial curve.

Remark 4.3. Not every polynomial map defines a polynomial parametrization. For
example, ¢ — (t2 — t,t* — 23 + t) is not a polynomial (or birational) parametrization,
since it is not generically one-to-one: (X(t), Y(¢)) = (X(1 —¢t), Y(1 — t)).

Example 4.4. The cubic y? = x?(x — 1) is a real polynomial curve, with a polynomial
parametrization ¢t — (2 + 1, t(t*> + 1)). Note that this curve has an elliptic node (0, 0),
attained for imaginary parameter values t = ++/—1.

Example 4.5. The “witch of Agnesi” cubic x?y + y — 1 is rational but not polynomial.

Indeed, if X(t) is a positive-degree polynomial in ¢, then Y(¢) = m is not.

Example 4.6 (Irreducible Chebyshev curves). Recall that the Chebyshev polynomials
of the first kind are the univariate polynomials T,(x) (here a € Z.) defined by
4.1) T,(cos p) = cos(ap).

The polynomial T, (x) has integer coefficients, and is an even (resp., odd) function of x
when a is even (resp., odd). We note that T,(T,(¢t)) = Tp(T,(t)) = Typ(t).

Let a and b be coprime positive integers. The Chebyshev curve with parameters (a, b)
is given by the equation
4.2) T,(x) + Tp(y) = 0.
It is not hard to see that this curve is polynomial; let us briefly sketch why. (For a
detailed exposition, see [15, Section 3.9].) Without loss of generality, let us assume
that a is odd. Then the (a, b)-Chebyshev curve has a polynomial parametrization ¢ —
(=Tp(1), Ty(1)). Indeed, T, (=T (1)) + Tp(To(1)) = —Tap(t) + Top(t) = 0.

To illustrate, consider the Chebyshev curves with parameters (3, 2) and (3, 4) shown
in Figure 5. The (3, 2)-Chebyshev curve is a nodal Weierstrass cubic

(4.3) 4x3 —3x+2y>—-1=0,

or parametrically t = (—2t2 + 1,4t3 — 3t). The (3, 4)-Chebyshev curve (see Figure 5) is
a quartic given by the equation

(4.4) 4x3 —3x+8y* —8y>+1=0,
or by the polynomial parametrization t — (—8t* + 8t — 1,43 — 3¢).
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FIGURE 5. The Chebyshev curves with parameters (3, 2) and (3, 4)

Lemma 4.7. For a real plane algebraic curve C, the following are equivalent:
(1) C is polynomial;

(2) C has a parametrizationt — (X(t), Y(t)) with X(t), Y(¢t) € R[¢];

(3) Cisrational, with a unique local branch at infinity.

Proof. The equivalence (1)<(3) (for complex curves) is well known; see, e.g., [1]. The
implication (2)=(1) is obvious. It remains to show that (3)=>(2). The local branch of
C at infinity must by real, since otherwise complex conjugation would yield another
such branch. Consequently, the set of real points of C has a one-dimensional con-
nected component which contains the unique point p € C n L*®. It follows that the
normalization map n : P! - C < P? (which is nothing but a rational parametriza-
tion of C) pulls back the complex conjugation on C to the antiholomorphic involution
¢ : P! - P! which is a reflection with a fixed point set Fix(c) ~ S, and p lifts to a
point in Fix(c). (There is another possible antiholomorphic involution on P!, the an-
tipodal one, corresponding to real plane curves with a finite real point set.) Thus, we
can choose coordinates (t, t;) on P! so that c(ty, t;) = (ty, ;) and the preimage of p is
(0,1). Hence the map n can be expressed as

x=X(to,t1), y=Y(tp,t1), z= tg )

where (ty,t;) € P!, X and Y are bivariate homogeneous polynomials of degree d =
deg C, and by construction

X=X(to.t1), y=7Y(to. 1),
which means that X and Y have real coefficients. |

Recall that a trigonometric polynomial is a finite linear combination of functions of
the form ¢ + sin(kt) and/or t — cos(kt), with k € Z,.

Definition 4.8. We say that a real algebraic curve C in the affine (x, y)-plane is a
trigonometric curve if there exist real trigonometric polynomials X(¢) and Y(¢) such
that t —» (X(¢), Y(¢)) is a parametrization of Cy, the set of real points of C, generically
one-to-one for t € [0, 27).

A projective real algebraic curve C = {F(x, y, z) = 0} C P? is called trigonometric if
C does not contain the line at infinity L* = {z = 0}, and the portion of C contained in
the affine (x, y)-plane is an affine trigonometric curve.

Remark 4.9. Not every trigonometric map gives a trigonometric parametrization. For
example, t — (cos(t),cos(2t)) is not a trigonometric parametrization of its image (a
segment of the parabola y=2x2—1), since it is not generically one-to-one on [0, 27).

Example 4.10. The most basic example of a trigonometric curve is the circle ¢t —
(cos(t), sin(t)), or more generally an ellipse

t — (Acos(t),Bsin(t)) (A,B € Ry).
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Example 4.11 (Lissajous curves). Let k and ¢ be coprime positive integers, with ¢ odd.
The Lissajous curve with parameters (k, €) is a trigonometric curve defined by the para-
metrization

t — (cos(€t),sin(kt)).
The algebraic equation for this curve is
(4.5) Lr(x) + T (y) = 0,

cf. (4.1). (Indeed, Ty, (cos(€t)) + ng(cos(g — kt)) = cos(2két) + cos(ém — 2k€t) = 0.)
Note that (4.5) looks exactly like (4.2), except that now the indices 2k and 2¢ are not
coprime (although k and ¢ are).

To illustrate, the (2, 3)-Lissajous curve is given by the equation

(4.6) 8x* —8x% + 1+ 32y% —48y* +18y? —1 =0,
or by the trigonometric parametrization
@4.7) t — (cos(3t),sin(2t)).

Several Lissajous curves, including this one, are shown in Figure 6.

A &

FIGURE 6. The Lissajous curves with parameters (2, 1), (3,1), (2, 3),
and (4, 3)

Example 4.12 (Rose curves). A rose curve with parameter q = % € Q. is defined
in polar coordinates by r = cos(q6), 6 € [0,2zb). While a general rose curve has a
complicated singularity at the origin, it becomes nodal when q = 3=, with k € Z.,.
In that case, we get a “multi-limagon,” defined in polar coordinates by r = cos(zkaﬁ),
or equivalently by

(4.8) g (r)—x=0.

Note that the left-hand side of (4.8) is a polynomial in r* = x2 + y2, so it is an algebraic
equation in x and y. This is a trigonometric curve, with a trigonometric parametriza-
tion given by

. (cos(kt) + cos((k+ 1)t) sin(kt) + sin((k + l)t))
2 ’ 2 )
The cases k = 1, 2, 3 are shown in Figure 7.
In the special case k = 1, we get rT3(r) = 4r* — 3r?, and equation (4.8) becomes

(4.9) 4% +y?P2 =3(x*+y>) —x=0.

This quartic curve is one of the incarnations of the limagcon of Etienne Pascal.

Lemma 4.13. For a real plane algebraic curve C, the following are equivalent:
(1) Cis trigonometric;
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SRORC)

FIGURE 7. The rose curves r = cos(g) (cf. (4.9),r = cos(g), andr = cos(g)

(2) there exist polynomials P(¢), Q(¢) € Cl¢] such that the map C* — A? given by

(4.10) @ — (P(p) + P(e71), Q(p) + Qe™))

is a birational parametrization of C.
(3) C is rational, with two complex conjugate local branches at infinity and with an infi-
nite real point set.

Proof. | (1) = (2) | The correspondence t « ¢ = exp(ty —1) establishes a bianalytic

isomorphism between (0,27) and S! \ {1}. (Here S* = {|p| = 1} c C.) Under this
correspondence, we have

(4.11) acos(kt) + bsin(kt) = a_b;/__lg)k + a+b;/__l¢_k (a,b € R),

so any trigonometric polynomial in ¢ transforms into a Laurent polynomial in ¢ of
the form P(p) + I_J(go_l). Thus a trigonometric parametrization of a curve C yields its
parametrization of the form (4.10); this parametrization is generically one-to-one along
S! and therefore extends to a birational map P! — C.

A parametrization (4.10) of a curve C sends the circle S! generically
one-to-one to Cy, the real point set of C, see the formula (4.11). The same formula
(4.11) converts the parametrization (4.10) restricted to the circle S! into a trigonomet-
ric parametrization t € [0, 27) — (X(¢), Y(t)) of Cg.

A parametrization (4.10) intertwines the standard real structure in P2

and the real structure defined by the involution c(¢) = 5_1 on C \ {0}. Thus, it takes
the set S! = Fix(c) to the set Cy of real points of C, while the conjugate points ¢ = 0
and ¢ = oo of P! go to the points of C at infinity determining two complex conjugate
local branches at infinity.

(3) = (2) | Assuming (3), the normalization map n : P! — C pulls back the stan-

dard complex conjugation in P? to the standard complex conjugation on P!, while the
circle RP! maps to the one-dimensional connected component of Cg, and some com-
plex conjugate points a, a € P! go to infinity. The automorphism of P! defined by

_s—a

S—a

takes the points s = a and s = « to 0 and oo, respectively, the circle RP! to the cir-
cle S!, and the standard complex conjugation to the involution c, see above. Hence the
parametrization n : P! — C goes to a parametrization (4.10). O
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Lemma 4.14. Let C be a real polynomial (resp., trigonometric) nodal plane curve, with
a parametrization {(X(t), Y(t))} as in Definition 4.2 (resp., Definition 4.8). Assume that
C has no elliptic nodes. Then Cg = {(X(t),Y(t)) | t € R}

Proof. This lemma follows from the well known fact (see, e.g., [25, Proposition 1.9])
that the real point set of a real nodal rational curve C in RP? is the disjoint union of a
circle RP! generically immersed in RP? and a finite set of elliptic nodes. g

If we allow elliptic nodes, the conclusion of Lemma 4.14 can fail, cf. Example 4.4.

Recall that an irreducible nodal plane curve of degree d has at most w nodes,
with the upper bound only attained for rational curves. In the case of trigonometric
or polynomial curves, maximizing the number of nodes has direct geometric conse-

quences:

Proposition 4.15 (G. Ishikawa [23, Proposition 1.4]). Let C be a trigonometric curve of

(d-1)d-2)
h 2

degree d wit real hyperbolic nodes. Then C has no inflection points.

(d=1)(d-2)
h 2

Proposition 4.16. A (complex) plane polynomial curve of degree d wit nodes

has no inflection points.

Proof. By Hironaka’s genus formula (3.7), the projective closure C of C has a single
smooth point p on L%, with (C- L), = d. We then determine the number of inflection
points of C (in the affine plane) using Pliicker’s formula (see, e.g., [35, Chapter 1V,
Sections 6.2-6.3]):

2d(d —2)—(d—-2)—6- T - g, O
Example 4.17. The curve
(4.12) t — (cos((k — 1)t) + acos(kt),sin((k — 1)t) — asin(kt))

is a trigonometric curve of degree d = 2k. (It is a special kind of hypotrochoid, cf.
Definition 7.12.) For suitably chosen real values of a, this curve has w = (k-
1)(2k — 1) real hyperbolic nodes, as in Proposition 4.15. See Figures 8 and 9.

In the special case k = 1 illustrated in Figure 8, we get a three-petal hypotrochoid,

a quartic trigonometric curve with 3 nodes given by the parametrization
(4.13) t — (cos(t) + acos(2t),sin(t) — asin(2t)),
or by the algebraic equation

(4.14)  a®(xX* +y*)? 4+ (=2a* + > + D)(x* + y*) + (@®> — 1)* — 2ax> 4 6axy? = 0.

5. EXPRESSIVE CURVES AND POLYNOMIALS

Definition 5.1. Let G(x,y) € R[x, y] C C[x,y] be a polynomial with real coefficients.
Let C = V(G) be the corresponding affine algebraic curve, and let C = V(G) be the
set of its real points, see Definition 4.1. We say that G(x, y) is an expressive polynomial
(resp., C is an expressive curve) if

« all critical points of G (viewed as a polynomial in C[x, y]) are real;

« all critical points of G are Morse (i.e., have nondegenerate Hessians);

« each bounded component of R? \ Cy contains exactly one critical point of G;
« each unbounded component of R? \ Cy contains no critical points;
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= &

FIGURE 8. Three-petal hypotrochoids (4.13), with a = % (left) and
a = 2 (right)

- &

FIGURE 9. Five-petal hypotrochoids {(cos(2t) + acos(3t),sin(2t) —
asin(3t))}, witha = % (left) and a = 2 (right). Each is a trigonometric

curve of degree d =6, with w = 10 nodes.

+ Cp is connected, and contains at least two (hence infinitely many) points.

Remark 5.2. Let G(x, y) be areal polynomial with real Morse critical points. Then each
double point of Vi (G) must be a critical point of G (a saddle). Also, each bounded con-
nected component of R?\ Vi (G) must contain at least one critical point (an extremum).
Thus, for G to be expressive, it must have the smallest possible number of complex crit-
ical points that is allowed by the topology of V;(G): a saddle at each double point, one
extremum within each bounded component of R? \ Vi (G), and nothing else.

Example 5.3. The following quadratic polynomials are expressive:
« G(x,y) = x? — y has no critical points;
« G(x,y) = x* + y* — 1 has one critical point (0,0) (a minimum) lying inside the
unique bounded component of R? \ Vi(G);
« G(x,y) = x* — y? has one critical point (0, 0) (a saddle), a hyperbolic node.
The following quadratic polynomials are not expressive:
« G(x,y) = x*> — y?> — 1 has a critical point (0,0) in an unbounded component of
R? \ Vi(G); besides, Vi (G) is not connected;
« G(x,y) = x* + y* has Vi(G) consisting of a single point;
« G(x,y) = x? + y? + 1 has Vx(G) = &;
« G(x,y) = x> — 1 and G(x,y) = x* have non-Morse critical points.

Lemma 5.4. Let G(x,y) be an expressive polynomial. Then:

» G is squarefree (i.e., not divisible by a square of a nonscalar polynomial);
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« G has finitely many critical points, all of them real;

« each critical point of G is either a saddle or an extremal point;

« all saddle points of G lie on Vi (G); they are precisely the singular points of V(G);
« each bounded connected component of R? \ Vi (G) is simply connected.

Proof. As the critical points of G are real and Morse, each of them is either a saddle or a
local (strict) extremum of G, viewed as a function R — R. The extrema must be located
outside Cg, one per bounded connected component of R? \ Cr. The saddles must lie
on Cpg, so they are precisely the double points of it. We conclude that G has finitely
many critical points. Consequently G is squarefree. Finally, since Cy is connected,
each bounded component of R? \ Ci must be simply connected. O

Definition 5.1 naturally extends to homogeneous polynomials in three variables,
and to algebraic curves in the projective plane:

Definition 5.5. Let F(x,y,z) € R[x,y,z] C C[x,y, z] be a homogeneous polynomial
with real coefficients, and C = Z(F) the corresponding projective algebraic curve. As-
sume that F(x, y, z) is not divisible by z. (In other words, C does not contain the line at
infinity L*.) We call F and C expressive if the bivariate polynomial F(x, y, 1) is expres-
sive in the sense of Definition 5.1, or equivalently the affine curve C\L® C A? = P2\ [®
is expressive.

In the rest of this section, we examine examples of expressive and nonexpressive
curves and polynomials.

Example 5.6 (Conics). Among real conics (cf. Example 5.3), a parabola, an ellipse,
and a pair of crossing real lines are expressive, whereas a hyperbola, a pair of parallel
(or identical) lines, and a pair of complex conjugate lines (an elliptic node) are not.

Example 5.7. Let fi(x), f,(x) € R[x] be two distinct real univariate polynomials of
degrees < d such that f; — f, has d distinct real roots. (Thus, at least one of f;, f, has
degree d.) We claim that the polynomial

G(x,y) = (i(x) = »(H(x) - y)

is expressive. To prove this, we first introduce some notation. Let Xy, ..., x4 be the
roots of f; — f,, and let z,, ..., z4_; be the roots of its derivative f{ — f; they are also
real and distinct, by Rolle’s theorem. The critical points of G satisfy

Gx(x,y) = fi)((x) —y) + (i(x) = »fH2(x) =0,
Gy(x,y) = —fi(x) = fo(x) +2y = 0.

It is straightforward to see that these equations have 2d — 1 solutions: d hyperbolic
nodes (X, fi(xr)) = (O, fo(xk)), for k = 1, ..., d, as well as d — 1 extrema at the
points (zy, %(fl(zk) + fo(zx)), fork =1, ..., d — 1. The conditions of Definition 5.1 are
now easily verified. (Alternatively, use the coordinate change (x, y) = (x,y — fi(x)) to
reduce the problem to the easy case when one of the two polynomials is 0.)

Example 5.8 (Lemniscates). The lemniscate of Huygens (or Gerono) is given by the
equation y? + 4x* — 4x2 = 0, or by the parametrization t — (cos(t),sin(2t)). This
curve, shown in Figure 6 on the far left, is a Lissajous curve with parameters (2, 1), cf.
Example 4.11. The polynomial G(x, y) = y? +4x* —4x? has three real critical points: a
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saddle at the hyperbolic node (0, 0), plus two extrema (i%, 0) inside the two bounded
connected components of R? \ Vi(G). Thus, this lemniscate is expressive.

By contrast, another quartic curve with a similar name (and a similar-looking set of
real points), the lemniscate of Bernoulli

(5.1) (x? +y*)? —2x? +2y? =0,

is not expressive, as the polynomial G(x, y) = (x? + y*)? — 2x? + 2y has critical points
(0, +i) outside R2.

Many more examples of expressive and nonexpressive polynomials (or curves) are
given in Tables 1 and 2, and later in the paper.

Remark 5.9. Definition 5.1 can be generalized to allow arbitrary “hyperbolic” singular
points, i.e., isolated real singular points all of whose local branches are real.

Remark 5.10. In can be verified by an exhaustive case-by-case analysis that every ex-
pressive curve of degree d < 4 is L*-regular. Starting with d > 5, this is no longer the
case, cf. Example 5.11: an expressive curve C need not be L*-regular, even when C is
rational. Still, examples like this one are rare.

Example 5.11. Consider the real rational quintic curve C parametrized by
x=t, y=t1+12 -3

The set of its real points in the (x, y)-plane consists of two interval components cor-
responding to the negative and positive values of ¢, respectively. These components
intersect at the point (1, 1), attained for t = 1 and t = —1. The algebraic equation of C
is obtained as follows:

y—x~l=¢1—¢3

G—x)2 =227+t 0 =x"1-2x"2 + x73,
x3y? —2x?y—x?+3x—-1=0.
The Newton triangle of C is conv{(0, 0), (3, 2), (2, 0)}, which means that
« at the point p; = (1,0,0), the curve C has a type A, (ordinary cusp) singularity,
tangent to the axis y = 0;
« at the point p, = (0, 1,0), the curve C has a type Eg singularity, tangent to the axis
x=0.
In projective coordinates, we have C = Z(F) where
F = x3y? — 2x?yz? — x?z% + 3xz* - 2°,
F, = 3x%y? — 4xyz? — 2xz% + 324,
E, =2x3y — 2x%z°.
It is now easy to check that the only critical point of F(x, y, 1) is the hyperbolic node
(1,1) discussed above. It follows that the curve C is expressive.
We next examine the behaviour of the polar curves at infinity. In a neighborhood of
the point p, = (0,1, 0), we set y = 1 and obtain

E, = 3x? — 4xz? — 2x2° + 3z%,

F, = 2x% — 2x%Z%.
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TABLE 1. Expressive and nonexpressive conics and cubics. Unless
specified otherwise, lines are placed so as to maximize the number of
crossings.

expressive conics

G(x,y) real curve Vi (G) critical points
x2—y parabola none
x? —y? two lines saddle
x2+y?—1 ellipse extremum

nonexpressive conics
G(x,y) real point set V(G) why not expressive?
x2—y? -1 hyperbola saddle in an unbounded region
X2 +y?+1 imaginary ellipse Vi (G) is empty
x? +y? elliptic node V(G) is a single point

x> +a (a €R)

two parallel lines

critical points are not Morse

expressive cubics

x3 —3x—y?
x3—3x+3-)2
x3 +3x—y?

X3 + xy? + 4xy + y?
x2y — x% + 2y?
yx? —y* — xy + x?
B+y+1

x> +y3 —3xy
Xy+y—x
X2y+y—1

x%y

x(x* = y?)
(*=y* =1y
(xy—1)x

two-component elliptic curve
one-component elliptic curve
one-component elliptic curve
oblique strophoid

Newton’s species #54
Newton’s species #51

Fermat cubic

folium of Descartes
serpentine curve

witch of Agnesi

double line + line

three concurrent lines
hyperbola + line

hyperbola + asymptote

G(x,y) real point set V(G) critical points

X -y cubic parabola none

(X% —y)x parabola and its axis single saddle

x3=3x+2-y? nodal Weierstrass cubic one saddle, one extremum

(x—Dxy two parallel lines + line two saddles

=y -1 parabola + line two saddles, one extremum

(x+y—1)xy three lines three saddles, one extremum

(2 +y*—1)x ellipse + line two saddles, two extrema
nonexpressive cubics

G(x,y) real point set V(G) why not expressive?

x3 —y? semicubic parabola critical point is not Morse

saddle in an unbounded region
saddle in an unbounded region
two nonreal critical points

two nonreal critical points

two nonreal critical points

two nonreal critical points
critical point is not Morse

two nonreal critical points

two nonreal critical points

two nonreal critical points
critical points are not Morse
critical point is not Morse

two nonreal critical points

V& (G) is not connected

The curve Z(F,) has two smooth local branches at p,, quadratically tangent to the
axis Z(x); the curve Z(F,) has the double component Z(x) and a smooth local branch

quadratically tangent to Z(x). Thus the intersection multiplicity is

(Z(E) - Z(B))p, = 12> u(C, p)) + (C-I®),, —1 =8 +3—1= 10,

so L®-regularity fails at p,. (The intersection at p, is regular by Proposition 3.6.)
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TABLE 2. Expressive curves C = {G = 0} of degrees d < 4. Unless
noted otherwise, lines are drawn to maximize the number of cross-
ings. The value a € R is to be chosen appropriately. We denote by &
the number of critical points of G.

d| & | Glx,y) real point set Vi (G)

1/0|x line

2(0|x*-y parabola

21| x2-y? two crossing lines

21| x2+y* -1 ellipse

310[x*-y cubic parabola

301 (2-y)x parabola and its axis

312 x3=3x+2-y? nodal Weierstrass cubic

312 (x—=1Dxy three lines, two of them parallel

313/ (x2—-y)(y—-1) parabola crossed by a line

34| (x+y—-1xy three generic lines

314|(2+y*—1Dx ellipse crossed by a line

410]y—x* quartic parabola

40| (y—-x*)P—-x

41| (@y—x*)?-x? two aligned parabolas

41| (@-x2)?+x2-1

41| (@y-x)x cubic parabola and its axis

412|@-x)-xy

4121 (=-xDx(x—-1) parabola + two lines parallel to its axis

413 y?—(x>-1)? co-oriented parabolas crossing at two points

4| 3] y2 +4x* —4x? lemniscate of Huygens

413 | x(x—1)(x+1y three parallel lines crossed by a fourth

4131402 +y*)P =302 +y*)—x limacon

415 x(x-1yly—-1) two pairs of parallel lines

415 (x2+y*=1)(x*-2x+y?) two circles crossing at two points

415 (-—x>+x)y cubic parabola + line

45| (xX*=3x+2-y)(x—a) nodal Weierstrass cubic + line crossing it at oo

416 [4x3—3x+8y*—8y2+1 (3,4)-Chebyshev curve

416 |y +4x—6)> — x> —3x?

416 |(@-x)(x—a)y—-1) parabola + line + line parallel to the axis

416 | (-xDy-Dy-2) parabola + two parallel lines

4171 (-x>+D-y*+1) two parabolas crossing at four points

4|7 | see(4.14) three-petal hypotrochoid

47| (X =3x+2-y)(x+y—a) nodal Weierstrass cubic + line

417 | (x+y)x—y)(x—1)(x—a) line + line + two parallel lines

417 (*+y>=1Dx(x—a) ellipse + two parallel lines

48| (@y—-x)x+yax+y+1) parabola + two lines

418 (x*+y*—1)(y—4x*+2) ellipse and parabola crossing at four points

419 | x+Dx—-y(x+y—1) four lines

419 (x*+y> -Dx(x+y—a) ellipse + two lines

49| (x%+4yH)(4x? +y?) two ellipses crossing at four points

Example 5.12 (Lissajous-Chebyshev curves). Let a and b be positive integers. The

Lissajous-Chebyshev curve with parameters (a, b) is given by the equation

(5.2) T,(x) + To(y) = 0.
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When a and b are coprime, with a odd, we recover the polynomial Chebyshev curve
with parameters (a, b), see (4.2). When both a and b are even, with % and g coprime,

we recover the trigonometric Lissajous curve with parameters (%, g), see (4.5). This
explains our use of the term “Lissajous-Chebyshev curve.” The general construction
appears in the work of S. Gusein-Zade [20], who observed (without using this termi-
nology) that the Lissajous-Chebyshev curve with parameters (a, b) provides a morsifi-
cation of an isolated quasihomogeneous singularity of type (a, b).

There is also a variant of the Lissajous-Chebyshev curve defined by

(5.3) T,(x) = Ty(») = 0.
When a (resp., b) is odd, this curve is a mirror image of the Lissajous-Chebyshev curve
(5.2), under the substitution x := —x (resp., y := —y). However, when both a and b are

even, the two curves differ. For example, for (a, b) = (4, 2), the curve defined by (5.2)
is the lemniscate of Huygens (see Example 5.8), whereas the curve defined by (5.3) is
a union of two parabolas.

It is not hard to verify that every Lissajous-Chebyshev curve (and every curve
V(T,(x) — Tp(y))) is expressive. The critical points of T,(x) = T,(y) are found from
the equations

L(x) =T,(») =0,
so they are of the form (x;, y;) where Xy, ..., Xq_1 (tesp., y1, ..., yp—_1) are the (distinct)
roots of T, (resp., Tp). Since the total number of nodes and bounded components of
R? \ Cy, is easily seen to be exactly (a — 1)(b — 1), the claim follows.

FIGURE 10. Lissajous-Chebyshev curves with parameters (2,3),
(2,4), (2,5),(2,6) (top row) and (3, 3), (3,4), (3, 5), (3, 6) (bottom row)

Example 5.13 (Multi-limacons). Recall that the multi-limagon with parameter k is a
trigonometric curve C of degree 2k + 2 given by equation (4.8). It is straightforward to
verify that the corresponding polynomial has 2k + 1 critical points, all of them located
on the x axis. Comparing this to the shape of the curve Cy, we conclude that C is
expressive.

6. DIVIDES

The notion of a divide was first introduced and studied by N. A’Campo [4, 24]. The
version of this notion that we use in this paper differs slightly from A’Campo’s, and
from the version used in [16].
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Definition 6.1. Let D be a disk in the real plane R2. A divide D in D is the image of
a generic relative immersion of a finite set of intervals and circles into D satisfying the
conditions listed below. The images of these immersed intervals and circles are called
the branches of D. They must satisfy the following conditions:

« the immersed circles do not intersect the boundary 0D;

« the endpoints of the immersed intervals lie on dD, and are pairwise distinct;
« these immersed intervals intersect dD transversally;

« all intersections and self-intersections of the branches are transversal.

We view divides as topological objects, i.e., we do not distinguish between divides re-
lated by a diffeomorphism between their respective ambient disks.

A divide is called connected if the union of its branches is connected.

The connected components of the complement D \ D which are disjoint from dD
are the regions of D. If D is connected, then each region of D is simply connected. We
refer to the singular points of D as its nodes. See Figure 11.

region

node

| T

branch

FIGURE 11. A divide, its branches, regions, and nodes

Remark 6.2. Although all divides of interest to us are connected, we forego any connec-
tivity requirements in Definition 6.1 of a divide, which therefore is slightly more gen-
eral than [16, Definition 2.1].

The main focus of [16] was on the class of algebraic divides coming from real morsi-
fications of isolated plane curve singularities, see [16, Definition 2.3]. Here we study a
different (albeit related) class of divides which arise from real algebraic curves:

Definition 6.3. Let G(x,y) € R[x, y] be areal polynomial such that each real singular
point of the curve V(G) c C? is a hyperbolic node (an intersection of two smooth real
local branches). Then the portion of Vz(G) contained in a sufficiently large disk

(6.1) D ={(x,y) € R? | x? + y* < R?*}

gives a divide in Dp. Moreover this divide does not depend (up to homeomorphism)
on the choice of R > 0. We denote this divide by Dg.
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Proposition 6.4. Let G(x,y) € R[x,y] be a real polynomial with § < oo critical points.
Assume that the real algebraic set Vi (G) = {G = 0} C R? is nonempty, and each singular
point of Vg(G) is a hyperbolic node. Let v be the number of such nodes, and let t be the
number of interval branches of the divide Dg. Then

(6.2) E>20—1+1,
with equality if and only if the polynomial G is expressive.

Proof. Let K denote the union of the divide Ds and all its regions, viewed as a closed
subset of R%. Let o be the number of connected components of K. Since all these
components are simply connected, the Euler characteristic of K is equal to g. On the
other hand, K can be split into 0-dimensional cells (the nodes, plus the ends of interval
branches), 1-dimensional cells (curve segments of D connecting nodes), ovals (smooth
closed components of D), and regions. The number 8 of 1-dimensional cells satisfies
23 =2t + 4v (by counting endpoints), implying § =t + 2v. We thus have

c=xy(K)=w+2)—-(+2v)+p—h=1t—v+p—h,

where p is the number of regions in Dg, and h denotes the total number of holes (the
sum of first Betti numbers) over all regions.

Denote u = £ —v — p. The set of critical points of G contains all of the nodes, plus at
least one extremum per region. Thus u = 0 if G has no other critical points, and u > 0
otherwise.

Putting everything together, we obtain:

E=v+p+tu=v+o—t1+v+h+u=2v—1+o+h+u

Since o > 1 and h,u > 0, we get (6.2). Moreover £ = 2v — ¢ + 1 if and only if K is
connected, all regions are simply connected, and G has exactly v + p critical points. All
these conditions are satisfied if G is expressive; conversely, they ensure expressivity.
(Va(G) is connected if K is connected and each region is simply connected.) O

Remark 6.5. Table 2 does not list any expressive quartic with £ = 4. We can now explain
why. First, by Proposition 6.4, £ = 4 and d = 4 would imply that 2v = ¢ + 3.

Case 1. v = 3,1 = 3. Then our quartic C has three real irreducible components, viz.,
a conic (necessarily a parabola) and two lines crossing it, with three hyperbolic nodes
total, and no other nodes. Such a configuration is impossible: if both lines are parallel
to the axis of the parabola, then we get two nodes; otherwise, at least four.

Case2. v = 2,1 = 1. Then Cisirreducible. (Otherwise, C would split into two conics—
a parabola and an ellipse—intersecting at four real points, contrary to v = 2.) An
irreducible quartic C with ¢ = 1 has one real local branch Q centered at some real point
p € L%, plus perhaps a pair of complex conjugate local branches centered on L*. Let
us list the possibilities.

Case 2A. Q is smooth, (Q - L°°)p = 4, with no other local branches centered on L.

Case 2B. Q is smooth, (Q - L*), = 2, with two smooth complex conjugate branches
transversal to L®. These two local branches either cross L* at different points or at the
same point p’. By the genus formula (3.7) and due to v = 2, we have p’ # p, with a
nodal singularity at p'.
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Case 2C. Q is singular. In this case, again using v = 2 and the genus formula (3.7), we
conclude that Q is of type A,. The intersection multiplicity of a cusp and a line is either
2 or 3. In our setting, (Q - L*), = 2, with two additional smooth complex conjugate
local branches of C centered at distinct complex conjugate points on L®.

All Cases 2A-2C are subject to Proposition 3.6, so C is L*-regular. A direct com-
putation then yields that Z qeCnLe u(C,q,L*) < 3in every case. This, however, is in

contradiction with 3 ;. #(C,q,L®) = (4—1)* = § =5.

7. L®-REGULAR EXPRESSIVE CURVES

Proposition 7.1. Let C = Z(F) C P? be a reduced algebraic curve defined by a real
homogeneous polynomial F(x,y, z) € R[x, y, z]. Assume that

(a) all irreducible components of C are real;

(b) C does not contain the line at infinity L™ as a component;

(c) all singular points of C in the affine (x, y)-plane are real hyperbolic nodes;
(d) the polynomial F(x,y,1) € C[x,y] has finitely many critical points;

(e) the set of real points {F(x, y,1) = 0} C R? is nonempty.

Then the following are equivalent:

(i) the curve C is expressive and L®-regular;

(ii) each irreducible component of C is rational, with a set of local branches at infinity
consisting of either a unique (necessarily real) local branch or a pair of complex
conjugate local branches, possibly based at the same real point.

Proof. The proof is based on Propositions 3.4 and 6.4. Let us recall the relevant nota-
tion, and introduce additional one:

d = deg(0),
t = number of interval branches of Dg
s = | Comp(C)| = number of irreducible components of C,
s; = number of components of C with a real local branch at infinity,
s, = number of components of C with a pair of complex conjugate
local branches at infinity.

Combining Propositions 3.4 and 6.4, we conclude that

28(C)=2+1+ Y, Br(C,p) >0,

peCnL>®
or equivalently (see (3.5))
(7.1) 2 Y. g@)+it+ D Br(C,p)x2s
C’eComp(C) peCnL*®

with equality if and only if C is both expressive and L*-regular.
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On the other hand, we have the inequalities

(7.2) >, 8 =o,
C’eComp(C)

(7.3) L>s,

(7.4) D, Br(C,p) > s +2s,,
peCnL®

(7.5) 281 + 25, > 2s,

whose sum yields (7.1). Therefore we have equality in (7.1) if and only if each of (7.2)-
(7.5) is an equality. This is precisely statement (ii). O

Example 7.2. The curve C from Example 5.11 satisfies requirements (a)-(e) of Propo-
sition 7.1. Since C is not L®-regular, condition (ii) must fail. Indeed, while C is rational,
it has two real local branches at infinity, centered at the points p; and p,.

Proposition 7.3. Let C be an expressive L™ -regular plane curve whose irreducible com-
ponents are all real. Then each component of C is either trigonometric or polynomial.

Proof. Since C is L*-regular and expressive, with real components, the requirements
(a)-(e) of Proposition 7.1 are automatically satisfied, cf. Lemma 5.4. Consequently the
statement (ii) of Proposition 7.1 holds. By Lemmas 4.7 and 4.13, this would imply that
each component of C is either trigonometric or polynomial, provided the real point set
of each component is infinite. It thus suffices to show that each component B of C has
an infinite real point set in A2, In fact, it is enough to show that this set is nonempty,
for if it were finite and nonempty, then B—hence C—would have an elliptic node,
contradicting the expressivity of C (cf. Lemma 5.4).

It remains to prove that each component of C has a nonempty real point set in A2

We argue by contradiction. Let C = Z(F). Suppose that B = Z(G) is a component
of C without real points in A2. We claim that the rest of C is given by a polynomial of
the form H(G, z), where H € R[u, v] is a bivariate polynomial. Once we establish this
claim, it will follow that the polynomials F, and F, have a nontrivial common factor
%(uH (u, v))|u= Gz’ contradicting the finiteness of the intersection Z(F;) N Z(E)).

Let us make a few preliminary observations. First, the degree d = deg G = degB
must be even. Second, by Proposition 7.1, B has two complex conjugate branches cen-
tered on L*. Third, in view of the expressivity of C, the affine curve B N A? is disjoint
from any other component B’ of C, implying that

(7.6) BNB c L™
Consider two possibilities.

Case 1. B n L™ consists of two complex conjugate points p and p. Let Q and Q be the
local branches of B centered at p and p, respectively.

Let B" = Z(G') be some other component of C, of degree d’ = degB’ = degG’.
Since B’ is real and satisfies statement (ii) of Proposition 7.1 as well as (7.6), we get

B'NB=B' NL® =BnL® ={p, p}
moreover B’ has a unique local branch R (resp., R) at the point p (resp. p). We have

R-Qp=R-Qp=2L (@) Qp=@)" Q=%
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It follows that any curve B in the pencil Span{B’, (L® )d/} satisfies
5 d'd y d'd

(7.7) B-Q,>%2 B Qpz Ll

Pick a point ¢ € B N A2. Since q & B’ U L™, there exists a curve B € Span{B’, (L°)%'}

containing g. It then follows by Bézout and by (7.7) that B must contain B as a com-

ponent. In particular, d’ > d. By symmetry, the same argument yields d > d'. Hence

d’ = d, B € Span{B', (L)%}, and the polynomial G’ defining the curve B’ satisfies

G’ = aG + Bz for some a, 8 € C \ {0}. The desired claim follows.

Case 2. B N L consists of one (real) point p. Then B has two complex conjugate
branches Q and Q centered at p.
Let B’ = Z(G") be a component of C different from B, and let B’ have a unique (real)
local branch R, necessarily centered at p. Denote d’ = deg B’ = deg G’. Then
= d'd cond’ od A d'd
R-Qp=R-Qp=5, (™) Q=" Qp=F,
which implies (cf. Case 1) that any curve B’ € Span{B’, (L® )@’} satisfies
A d'd AT d'd
(B q)pZT’ (B Q)pZT’
and then we conclude—as above—that there exists a curve B’ € Span{B’, (L*)? } con-
taining B as a component. On the other hand,

(B-R), =d'd, ((I®)4-R),=d'd,

which in a similar manner implies that there exists a curve B € Span{B, (L*)¢} con-
taining B’ as a component. We conclude thatd’ = d, B € Span{B’, (L°°)d}, and finally,
G =aG + ﬁzd for o, 8 € C \ {0}, as desired.

Now let B’ = Z(G') be a component of C different from B, and let it have a couple
of complex conjugate local branches R and R centered at p. Since B’ is real, we have

_dd

B-Qp=B-Qp=5 (@) Qp=" Q=75
and since B is real, we have
d'd

(B-R), =(B-R), =5, (I®)*-R), =(I™)? R), =

ad
@

Thus the above reasoning applies again, yielding d’ = d and B’ € Span{B, (L°)%}.
Hence G’ = aG + Bz for a, § € C \ {0}, and we are done. O

Example 7.4 shows that in Proposition 7.3, the requirement that all components are
real cannot be dropped.

Example 7.4. The quintic curve C = Z(F) defined by the polynomial
F(x,y,2) = (x* + 2)(yx* + yz* — x?)

has two nonreal components Z(x £ z\/ —1). In Example 3.3, we verified that this curve
is L*-regular. It is also expressive, because the polynomial G(x,y) = F(x,y,1) has no
critical points in the complex affine plane (see Example 3.3) and the set

(7.8) Va(G) = {(x.y) € R? |y = 2o}

is connected. On the other hand, the real irreducible component C = Z(yx?+yz?—x3)
is neither trigonometric nor polynomial because it has two real points at infinity, see
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Example 1.7. Furthermore, C is not expressive, since the polynomial yx? + y — x> has
two critical points (v —1, iE\/ —1) outside R2.

Proposition 7.3 immediately implies the following statement.

Corollary 7.5. Anirreducible L*-regular expressive curve is either trigonometric or poly-
nomial.

We note that such a curve also needs to be immersed, meeting itself transversally at
real hyperbolic nodes (thus, no cusps, tacnodes, or triple points).
We next provide a partial converse to Corollary 7.5.

Proposition 7.6. Let C be a real polynomial or trigonometric curve whose singular set
in the affine plane A*> = P? \ L™ consists solely of hyperbolic nodes. Then C is expressive
and L*®-regular.

Proof. By Lemmas 4.7 and 4.13, a real polynomial or trigonometric curve C = Z(F) is
a real rational curve with one real or two complex conjugate local branches at infinity,
and with a nonempty set of real points in A2, Thus, conditions (ii), (a), (b), (c), and (e)
of Proposition 7.1 are satisfied, so in order to obtain (i), we only need to establish (d).
That is, we need to show that the polynomial F has finitely many critical points in the
affine plane A2. We will prove this by contradiction.

Denote d = degC = degF. Suppose that Z(F,) N Z(F;,) contains a (real, possibly
reducible) curve B of a positive degree d’ < d.

We first observe that BAnCNA? = fJ. Assume not. Ifg € BNCNA?Z, then q € Sing(C)n
A?, so q must be a hyperbolic node of C, implying (Z(E,) - Z(E,))q = #(C,q) = 1; but
since q lies on a common component of Z(F,) and Z(F},), we must have (Z(F,)-Z(E,))q =
o0. Since B is real, and C has either one real or two complex conjugate local branches
at infinity, it follows that BN C = L* n C.

Case 1. C has a unique (real) branch Q at a point p € L*. Then (B - Q), = d'd. On
the other hand, ((I®)4" - Q), = d'd. Hence any curve B € Span{B, (1)} satisfies
(B- Q)p > d'd. For any point q € C \ {p} there is a curve B € Span{B, (L°°)d'} passing
through g. Hence C is a component of B, in contradiction with d’ < d.

Case 2. C has two complex conjugate branches Q and Q centered at (possibly coincid-
ing) points p and p on L*, respectively. Since B is real, we have

(B-Q)p = (B- Q) = (1) - Q) = (I=)* - Q) = d'd/2.
This implies that any curve B € Span{B, (L)'} satisfies both (B - Q)p > d'd/2 and
- 6)1—, > d'd/2, resulting in a contradiction as in Case 1. O

Remark 7.7. In Proposition 7.6, the requirement concerning the singular set cannot be
dropped: a real polynomial curve C may have elliptic nodes (see Example 4.4) or cusps
(consider the cubic (¢, t3)), preventing C from being expressive.

Remark 7.8. Proposition 7.6 implies that if a real curve C is polynomial or trigono-
metric, and also expressive, then it is necessarily L*-regular. Indeed, expressivity in
particular means that all singular points of C are hyperbolic nodes.
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Example 7.9. Recall from Example 4.17 that for appropriately chosen values of the
real parameter a, the hypotrochoid C given by equation (4.12) is a nodal trigonometric
curve of degree d = 2k with the maximal possible number of real hyperbolic nodes,
namely w = (k—1)(2k — 1). Thus C has no other singular points in the affine

plane, and consequently is expressive by Proposition 7.6.
Combining Corollary 7.5 and Proposition 7.6, we obtain:

Theorem 7.10. For a real plane algebraic curve C, the following are equivalent:

« Cisirreducible, expressive and L®-regular;
« C is either trigonometric or polynomial, and all its singular points in the affine plane
A? are hyperbolic nodes.

Example 7.11. Theorem 7.10 is illustrated in Table 3. Each real curve in this table is
either polynomial or trigonometric. We briefly explain why all these curves are expres-
sive (hence L*-regular, see Remark 7.8).

Expressivity of Chebyshev and Lissajous curves was established in Example 5.12.
The limacon of Pascal was discussed in Example 5.13. In Example 7.9, we saw that a
hypotrochoid (4.12) is expressive for suitably chosen values of a. For a more general
statement, see Proposition 7.15. As to the remaining curves in Table 3, all we need to
check is that each of their singular points in the affine plane is a hyperbolic node. The
curves V(x4 — y) are smooth, so there is nothing to prove. Ditto for the ellipse, as well
as the curves V((y—x?)?— x) and V((y—x?)?>+ x2—1). Finally, V((y—x?)>—xy) has a
single singular point in A2, a hyperbolic node at the origin.

TABLE 3. Irreducible expressive curves C = V(G) of degrees d < 4.
All curves are L*-regular. For each curve, a trigonometric or polyno-
mial parametrization (X(t), Y(¢)) is shown. We denote by ¢ the num-
ber of critical points of G.

d|§]G6(xy) X@®),Y®) V(G)
1(0|x—y (t, 1) line

210 x*—y (t, %) parabola

201 x*+y*—1 (cos(t),sin(t)) ellipse
3/0[x3—y (t,t3) cubic parabola
302 (4x3-3x+2y2—-1 (=262 + 1,43 = 3t) (3,2)-Chebyshev
40| x*—y (t,t*) quartic parabola
40| (y=x*)?—-x &t + 1)

41| @G=-x)?+x*-1 (cos(t),sin(t)+cos?(t))

42| (y=x?)2—-xy 2 —t,t4 =13

4|3 | y? +4x* —4x? (cos(t),sin(2t)) (1,2)-Lissajous
4|3 | 4(x% + y»)?=3(x* + y?)—x (cos(t)cos(3t), cos(t)sin(3t) limagon

46 |4x3 —3x+8y*—8y? +1 (—8t* 4+ 82 — 1,413 — 31) (3,4)-Chebyshev
4| 7 | see(4.14) see (4.13) (2,1)-hypotrochoid

The following construction provides a rich source of examples of expressive curves.
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Definition 7.12 (Epitrochoids and hypotrochoids). Let b and c be coprime nonzero
integers, with b > |c|. Let u and v be nonzero reals. The trigonometric curve

(7.9 X = ucos bt + vcosct,
(7.10) = usin bt — vsinct
y

is called a hypotrochoid if ¢ > 0, and an epitrochoid if ¢ < 0. It is a rational curve of
degree 2b.

Example 7.13. A hypotrochoid with (coprime) parameters (b, ¢) and suitably chosen
ratio - has b+c “petals,” see Figure 12. The number of petals can change as = changes,
u u
cf. Figure 13.
When b = ¢ + 1, we recover Example 4.17, cf. Figure 8 ((b,c) = (2,1)) and Figure 9

((b,0)=(3,2)).

> © G
S

FIGURE 12. Expressive hypotrochoids defined by the parametric
equations (7.9)-(7.10). Top row: (b,c) = (2,1),(3,1),(4,1),(5,1).
Bottom row: (b, c) = (3, 2),(5,2).

oY - > D

FIGURE 13. Hypotrochoids defined by the parametric equations
(7.9)—~(7.10) with b =2,c¢ =1,v =1,and u € {1.25,1,0.75,0.5,0.25},
shown left-to-right in this order. The first and the third hypotrochoids
(with u = 1.25 and u = 0.75, respectively) are expressive; the remain-
ing three are not.
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Example 7.14. An epitrochoid with (coprime) parameters b and c (here b > —c > 0)
has b + c inward-pointing “petals,” see Figure 14.

When b = —c + 1, we recover the “multi-limacons” of Example 4.12 and Figure 7
(withb €{2,3,4},c=1-b).

FIGURE 14. Epitrochoids defined by the parametric equations (7.9)-
(7.10). Top row: (b,c) = (2,-1),(3,-1),(4,—1),(5,—1). Bottom row:
(b,c) =(3,2),(5,2).

Proposition 7.15. Let C be an epitrochoid or hypotrochoid given by (7.9)-(7.10). (As
in Definition 7.12, b and c are coprime integers, with b > |c|; and u,v € R*.) Then C is
expressive and L®-regular if it has (b + ¢)(b — 1) hyperbolic nodes in A2. In particular,
this holds if % is sufficiently small.

Proof. Setting T = e'f, we convert the trigonometric parametrization (7.9)-(7.10) of C
into a rational one:

1 _
x= 5ur?® + ot 4o 4 u),

C

y= —%(urzb —vrb*e prb—c —y),

Z=Tb.

This curve has two points at infinity, namely (1,i,0) and (1, —i, 0), corresponding to
7 = 0and T = oo, respectively. Noting that the line x + iy = 0 passes through (1, i,0),
we change the coordinates by replacing y by
x + iy = ur?® 4 vrb=¢,
In a neighborhood of (1, i, 0), this yields the following parametrization:
x=1, x+iy= %U‘rb_c +hot., z= %rb + h.o.t.

Thus, at the point (1, i, 0) we have a semi-quasihomogeneous singularity of weight (b —
¢, b), and similarly at (1, —i,0). The §-invariant at each of the two points is equal to
%(b — ¢ —1)(b — 1). Hence in the affine plane A2, there remain

5@b-1)(2b-2)—(b—c—1)(b-1) = (b+c)(b—1)
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nodes. So if all these nodes are real hyperbolic (and distinct), then C is expressive and
L®-regular by Proposition 7.6 (or Theorem 7.10).

It remains to show that C has (b+ ¢)(b—1) hyperbolic nodes as long as u, v € R* are
chosen appropriately (in particular, if % is sufficiently small). Consider the rational
parametrization of C given by

X +iy = ur? + vz,

x—iy= ut~b + vre,

z=1.
We need to show that all solutions (z, ) € (C*)? of
(7.11) utb + vr7¢ = uct + vo~e,
(7.12) ut® + vr¢ = uo~b + vo©,
(7.13) T#0

satisty |7| = |o| = 1. Let us rewrite (7.11)-(7.12) as
u(tt — o) — v(ro)~¢(z¢ — o) = 0,
—u(to)~b(t? — aP) + v(r¢ — o) = 0.

The condition ged (b, ¢) = 1 implies that at least one of ° — o® and ¢ — ¢¢ is nonzero
(or else T = o). Consequently

det(_u(?o_)_b _U(ZJ)_C> = uv(1l — (t0)~b"¢) = 0,

meaning that w = 7o must be a root of unity: w?*+¢ = 1. With respect to 7 and w, the
conditions (7.11)-(7.13) become:

(7.14) wb*e =1,
(7.15) u(t? — wbr=b) 4 v(r7¢ — w=°r¢) = 0,
(7.16) % # w.

Let A be a square root of w, i.e., > = w. Then (7.16) states that 7 & {1, —1}.

For each of the b + c possible roots of unity w, (7.15) is an algebraic equation of
degree 2b in . We claim that if u,v € R* are suitably chosen, then all 2b solutions of
this equation lie on S! = {|z] = 1}. Itis easy to see that this set of solutions contains
the two values 7 = +4 which we need to exclude, leaving us with 2(b — 1) solutions
for each w satisfying (7.14). We also claim that all these 2(b + ¢)(b — 1) solutions are
distinct, thereby yielding (b + ¢)(b — 1) hyperbolic nodes of the curve, as desired.

Let us establish these claims. Denote ¢ = °*¢ € {-1,1}. Replacing 7 by p = 747!
(thus 7 = 4p), we transform (7.15) into

ue(p® — p=b) = v(p° — p~).
Making the substitution p = el we translate this into
(7.17) uesin(ba) = vsin(ca).

If |§| is sufficiently small, then equation (7.17) clearly has 2b distinct real solutions in
the interval [0, 277), as claimed. Finally, it is not hard to see that all resulting 2(b+c)(b—
1) values of 7 are distinct. O
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We return to the general treatment of (potentially reducible) expressive L*-regular
curves. First, a generalization of Proposition 7.6:

Proposition 7.16. Let C be a reduced real plane curve such that

« each component of C is real, and either polynomial or trigonometric;
« the singular set of C in the affine plane A? consists solely of hyperbolic nodes;
« the set of real points of C in the affine plane is connected.

Then C is expressive and L*-regular.

Proof. The proof utilizes the approach used in the proof of Proposition 7.6. Arguing
exactly as at the beginning of the latter proof, we conclude that all we need to show is
that the polynomial F defining C has finitely many critical points in the affine plane A2
Once again, we argue by contradiction. Assuming that Z(F,) n Z(F,) contains a real
curve B of a positive degree d’ < d = deg(C), and reasoning as in the earlier proof, we
conclude that for any component C’ of C, there exists a curve B € Span{B, ()4}
containing C’ as a component. In view of the connectedness of Cr and the fact that dif-
ferent members of the pencil Span{B, (L® )4} are disjoint from each other in the affine
plane A%, we establish that there is just one curve B € Span{B, (I=)4'} that contains all
the components of C—but this contradicts the inequality d’ < d. O

Theorem 7.17 is the main result of this paper.
Theorem 7.17. Let C be a reduced real plane algebraic curve, with all irreducible com-

ponents real. The following are equivalent:

« C is expressive and L*-regular;

« each irreducible component of C is either trigonometric or polynomial, all singular
points of C in the affine plane A? are hyperbolic nodes, and the set of real points of C
in the affine plane is connected.

Proof. Follows from Propositions 7.3 and 7.16. t

Corollary 7.18. Let C be an L*-regular expressive plane curve whose irreducible com-
ponents are all real. Let C' be a subcurve of C, i.e., a union of a subset of irreducible
components. If the set of real points of C' in the affine plane is connected, then C' is also
L*>-regular and expressive.

Proof. Follows from Theorem 7.17. O

‘We conclude this section by a corollary whose statement is entirely elementary, and
in particular does not involve the notion of expressivity.

Corollary 7.19. Let C = V(G(x,y)) be a real polynomial or trigonometric affine plane
curve which intersects itself solely at hyperbolic nodes. Then all critical points of the poly-
nomial G(x,y) are real.

Proof. Immediate from Proposition 7.6 (or Theorem 7.10). O

8. MORE EXPRESSIVITY CRITERIA

We first discuss the irreducible case. By Theorem 7.10, an irreducible plane curve is
expressive and L*-regular if and only if it is either trigonometric or polynomial, and all
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its singular points outside L* are real hyperbolic nodes. The last condition is usually
the trickiest to verify.
One simple case is when the number of hyperbolic nodes attains its maximum:

Corollary 8.1. Let C be a real polynomial or trigonometric curve of degree d with
W hyperbolic nodes. Then C is expressive and L™ -regular.

Proof. In view of Hironaka’s formula (3.7), the curve C has no other singular points
besides the given hyperbolic nodes. The claim follows by Proposition 7.6. O

Examples illustrating Corollary 8.1 include Lissajous-Chebyshev curves (5.2) with
parameters (d,d — 1) as well as hypotrochoids with parameters (k, k — 1) (cf. (4.12),
with suitably chosen value of a).

Remark8.2. In Corollary 8.1, the requirement that the curve C is polynomial or trigono-
metric cannot be dropped. For example, there exists an irreducible real quadric with
three hyperbolic nodes which is not expressive.

Corollary 8.1 can be generalized as follows.

Corollary 8.3. Let C = V(G(x,y)) be a real polynomial or trigonometric curve with v
hyperbolic nodes. Suppose that the Newton polygon of G(x, y) has v interior integer points.
Then C is expressive and L*-regular.

Proof. Tt is well known (see [9] or [17, Section 4.4]) that the maximal possible num-
ber of nodes of an irreducible plane curve with a given Newton polygon (equivalently,
the arithmetic genus of a curve in the linear system spanned by the monomials in the
Newton polygon, on the associated toric surface) equals the number of interior integer
points in the Newton polygon. The claim then follows by Proposition 7.6. O

Applications of Corollary 8.3 include arbitrary irreducible Lissajous-Chebyshev
curves (5.2).

It is natural to seek an algorithm for verifying whether a given immersed real poly-
nomial or trigonometric curve C, say one given by an explicit parametrization, is ex-
pressive. By Theorem 7.10, this amounts to checking that each point of self-intersection
of C in the affine plane A? corresponds to two real values of the parameter. In the case
of a polynomial curve

t~ (P(1), Q1))
this translates into requiring that
« the resultant (with respect to either variable s or ¢) of the polynomials

P(t,s) = w and Q(t,s) = —Q(? = SQ(S)

has simple real roots and
« the corresponding points (P(t), Q(t)) are simple (hyperbolic) nodes of C.
Example 8.4. Consider the sextic curve
t> (=810 +24t% + 43 — 182 — 6t + 1, —2t* + 412 — 1).
In this case,
P(t,s) = —2(2s + 2st + 2t2 — 3)(2s> + 263 — 3s — 3t — 1),
Qt,s) = —2(s + t)(s> + 12 = 2).
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The resultant of P and Q (which we computed using Sage) is equal to
—256(25% — 3)(25% — 25 — 1)(25% + 25 — 1)(8s% — 245* — 45> + 185% + 65 — 1).

All its 12 roots are real, so the curve is expressive, with 6 nodes. See Figure 15.

2
FIGURE 15. The curve C = V(2x® + 3x2 — 1 + (4y* = 3y + 2 )?)

The case of a trigonometric curve can be treated in a similar way. Let C be a trigono-
metric curve with a Laurent parametrization

t = (x(1), y(1)) = (P(6) + P(t™1), Q(t) + Qt™1))
(cf. (4.10)), with P(t) = ¥, axt¥, Q(t) = 33, Bit*. We write down the differences

M — Z(tk—l + tk_ZS + -+ Sk_l)((x i)s

f—s . KT kgk
YO -y _ k=1 , (k—2 k-1 By
T—;(t +t S+ -+ +S )(61(—@),

clear the denominators by multiplying by an appropriate power of ts, and require that
all values of t and s for which the resulting polynomials vanish (equivalently, all roots
of their resultants) lie on the unit circle.

Proposition 8.5. Let C=V(G) be an L*-regular curve, with G(x,y) € R[x, y]. Assume
that Cy is connected, and each singular point of it is a hyperbolic node, as in Definition 6.3.
Let v denote the number of such nodes, and let p be the number of regions of the divide D.
Then C is expressive if and only if

(8.1) vip=(d-1°- 3 wuC pL)
peCnL®

Proof. By Bézout’s theorem, the right-hand side of (8.1) is the number of critical points
of G in the affine plane, counted with multiplicities. Since each region of D5 contains
at least one (real) critical point, and each node of Cy is a critical point, the only way
for (8.1) to hold is for C to be expressive. O

9. BENDING, DOUBLING, AND UNFOLDING

In this section, we describe several transformations which can be used to construct
new examples of expressive curves from existing ones. The simplest transformation of
this kind is the “bending” procedure based on the following observation:
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Proposition 9.1. Let f(x,y), g(x,y) € R[x, y] be such that the map
(9.1) (x,y) = (f(x,),8(x,y))

is a biregular automorphism of A2, If the curve C = V(G(x,y)) is expressive, then so is
the curve

C = V(G(f(x, ), g(x, ))).
If, in addition, C is L*®-regular, with real components, then so is C.

Proposition 9.1 is illustrated in Figure 16.

FIGURE 16. The curves C = V(x? + > —1)and C = V(x? + (2y —
2x2)? - 1)

Proof. The automorphism (9.1) is an invertible change of variables that restricts to a
diffeomorphism of the real plane R2. As such, it sends (real) critical points to (real)
critical points, does not change the divide of the curve, and preserves expressivity.

Let us now assume that C is expressive and L®-regular, with real components. In
view of Theorem 7.17, all we need to show is that all components of C are polynomial
or trigonometric. Geometrically, a polynomial (resp., trigonometric) component is a
Riemann sphere punctured at one real point (resp., two complex conjugate points) and
equivariantly immersed into the plane. This property is preserved under real biregular
automorphisms of A2 O

Remark 9.2. It is well known [34] that the group of automorphisms of the affine plane
is generated by affine transformations together with the transformations of the form
(x,y) — (x,y + P(x)), for P a polynomial. This holds over any field of characteristic
zero, in particular over the reals.

Example 9.3. Several examples of bending can be extracted from Table 3. Applying
the automorphism (x,y) — (x,y + x — x™) to the line V(x — y), we get V(x™ — y).
The automorphism (x, y) +— (x, y — x?) transforms the parabola V(y? — x) into V((y —
x?)? — x), the ellipse V(x? + y* — 1) into V(x? + (y — x?)? — 1), and the nodal cubic
V(y?—xy—x3)into V((y—x?)>—xy). (In turn, V(y?>—xy—x3) and V(4x> —3x+2y*>—1)
are related to each other by an affine transformation.)

Example 9.4. The polynomial expressive curves shown in Figure 17 (in red) are ob-
tained by bending a parabola and a nodal cubic.

We next discuss the “doubling” construction which transforms a plane curve C =
V(G(x,y)) into anew curve C = V(G(x, y*)). Proposition 9.5 shows that, under certain
conditions, this procedure preserves expressivity. See Figure 17.
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FIGURE 17. A curve C = V(G(x,y)) and the “doubled” curve C =
V(G(x,y%)). On the left: G(x,y?) is the left-hand side of equa-
tion (4.9). Cf. Figure 7. On the right: G(x, y?) is the left-hand side
of (4.14), with a = 2. Cf. Figure 8.

Proposition 9.5. Let C be an expressive L*-regular curve whose components are all real
(hence polynomial or trigonometric, see Proposition 7.3). Suppose that

« each component B = V(G(x, y)) of C, say with deg (G) = d, intersects Z(y) in d real
points (counting multiplicities), all of which are smooth points of C; moreover,
o if B is trigonometric, then it intersects Z(y) at % points of quadratic tangency;
o if B is polynomial, then it intersects Z(y) at %, % or d%Z points of quadratic tan-

gency, with 0, 1, or 2 points of transverse intersection, respectively;

« all nodes of C lie in the real half-plane {y > 0};

« at each point of quadratic tangency between C and Z(y), the local real branch of C
lies in the upper half-plane {y > 0};

« each connected component of the set {(x,y) € C N R? | y < 0} is unbounded.

Then the curve C = V(G(x, y?)) is expressive and L®-regular.

Proof. The curve C is nodal by construction. It is not hard to see that the set Cy is
connected, and all the nodes of C are hyperbolic. (See the proof of Proposition 9.8 for a
more involved version of the argument.) In view of Theorem 7.17, it remains to show
that all components of C are real polynomial or trigonometric.

We only treat the trigonometric case, since the argument in the polynomial case
is similar. (Cf. also the proof of Lemma 9.7, utilizing such an argument in a more
complicated context.) The natural map C — C lifts to a two-sheeted ramified cov-
ering p : C¥ — CY between respective normalizations. The restriction of p to C¥\
p~Y(Z(y)) is an unramified two-sheeted covering, and each component of C contains a
one-dimensional fragment of the real point set, hence is real. In fact, p is not ramified
at all, since each point in C n Z(y) lifts to a node, and hence to two preimages in C".
Since C¥ = C*, it follows that CV is a union of at most two disjoint copies of C*. We
conclude that C consists of one or two trigonometric components. O
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If a curve C = V(G(x, y)) satisfies the conditions in Proposition 9.5 with respect to
each of the coordinate axes Z(x) and Z(y), with all points in C N Z(x) (resp., C N Z(y))
located on the positive ray {x = 0,y > 0} (resp., {y = 0,x > 0}), the one can apply
the doubling transformation twice, obtaining an expressive curve C = V(G(x?,y%)).
A couple of examples are shown in Figure 18.

FIGURE 18. A curve C = V(G(x,y)) and its “double-double” C’ =
V(G(x2,y%)). Left: C is a nodal cubic tangent to both axes, C is a 4-
petal hypotrochoid, cf. Definition 7.12, with b = 3, ¢ = 1. Right: C is
a cubic parabola tangent to both axes, Cisan epitrochoid with b = 3,
c=-1.

The remainder of this section is devoted to the discussion of “unfolding.” This is a
transformation of algebraic curves that utilizes the coordinate change

9.2) (x,y) = (x, Tin(u)).

(As before, T, denotes the mth Chebyshev polynomial of the first kind, see (4.1).)
A precise description of unfolding is given in Proposition 9.8. To get a general idea
of how this construction works, take a look at the examples in Figures 19-20. As these
examples illustrate, the bulk of the unfolded curve (viewed up to an isotopy of the real
plane) is obtained by stitching together m copies of the input curve C, or more precisely
the portion of C contained in the strip {—-1 <y < 1}.

Lemma 9.6. Let C = V(F(x,y)) be a trigonometric curve. Suppose that

o the strip {—1 < y < 1} contains a one-dimensional fragment of Cy;
o C intersects each of the lines y = +1 in d/2 points;
« all of these points are smooth points of quadratic tangency between C and Z(y* — 1).

Then for any m € Z,, the curve C ) defined by
9:3) Comy = V(F(x, Tn(w)))
is a union of trigonometric curves.

Proof. The natural map C,,) — C given by (9.2) lifts to the m-sheeted ramified cover-
ingmapp : CE/m) — CY between the normalizations. The restriction

P i Clm \ P22 - 1) > CV\ Z(2 - 1)
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FIGURE 19. An ellipse C = V(G(x,y)) and its unfolding C =
V(G(x, Ty(»))). Here G(x,y) = y* —\2xy + x* — % The green
dashed lines are given by the equations y = +1 (on the left) and
Ts(y)=16y° — 20y* + 5y ==+1 (on the right).

FIGURE 20. A curve C = V(G(x,y)) and its triple unfolding C =
V(G(x, T5(y))). Here G(x,y) = 8x> — 12x% + (2y + (x — 1)?)%. The
green dashed lines are given by the equations y = +1 (on the left) and
Ty(y) = 4y — 3y = +1. Cf. Figure 15.

is an unramified m-sheeted covering, and each of the components of C,, contains a
one-dimensional fragment of the real point set, hence is real. Let us show that p is not
ramified at all. If p € C n Z(y — 1) and T,;'(1) consists of a simple roots and b double
roots, then p lifts to a smooth points (where Cy,,) is quadratically tangent to the lines
u = A with 4 running over all these simple roots) and b nodes, totaling a + 2b = m
preimages in Cyj, ).

As C is trigonometric, C¥ = C*. Since a cylinder can only be covered by a cylinder,
C<Vm) is a union of disjoint copies of C* (not necessarily m of them), so C,,) is a union
of trigonometric components. |

Lemma 9.7. Let C = V(F(x,y)) be a real polynomial curve. Let d = deg, F(x,y).
Suppose that

o thestrip {—1 < y < 1} contains a one-dimensional fragment of Cy;

« C intersects Z(y* — 1) in 2d points (counting multiplicities), all of which are smooth

points of C;

« these points include d — 1 quadratic tangencies and two transverse intersections.
Then forany m € R, the curve C ) defined by (9.3) is a union of polynomial or trigono-
metric components.

Proof. 1t is not hard to see that C has a polynomial parametrization t — (P(t), Q(t))
with Q(t) = £T4(t). This follows from “Chebyshev’s equioscillation theorem” of ap-
proximation theory (due to E. Borel and A. Markov, see, e.g., [31, Section 1.1] or [28,
Theorem 3.4]). In the rest of the proof, we assume that Q(¢t) = Ty(¢), as the case
Q(t) = —Ty4(t) is completely similar.
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We note that one can slightly vary the coefficients of P while keeping the intersection
properties of C with Z(y? — 1) (and maintaining expressivity if C has this property).
Thus, we can assume that P(t) is a generic polynomial (in particular, with respect to
Q(r) = Ty(1)).

Case 1. ged(d,m) = 1. Observe that

(9:4) T (x,u) = (P(Tin(7)), Ty(7))

is a parametrization of a polynomial curve lying inside C,,). Indeed,

F(P(T,(7)), Tn(Ty (7)) = F(P(T,(7)), Ty(Tp(7))) = 0
because F(P(t), Q(t)) = 0.
Since Z—)TC and % never vanish simultaneously (thanks to the genericity of P and the
coprimeness of d and m), the map (9.4) is an immersion of C into the affine plane.
Since u = 0 at d points, while deg, F(x, T,,(u)) = d, the image of this immersion is the

entire curve C,,), which is therefore polynomial.
Case2. ¢ = gcd(m,d) > 1. Let m = cr, d = cs. The curve Cy,y, is given in the affine
(x, u)-plane by the equations
x=P@), Tpnu) = Ty(t)
involving an implicit parameter ¢t. Setting t = T,.(7) we rewrite this as

x =P(T(1),  Tp(u) = Tp(T5(7))
(since Ty(T,(7)) = T,,,(Ty(7))). The equation T,,(u) = T,,(u') has solutions u = v/,
u = —u’ (for m even) as well as
arccosu = *+arccosu’ + 271%, k=0,....m—-1, uu €[-1,1].

From this, we obtain the following components of Cy,,), all of which turn out to be
either polynomial or trigonometric. The polynomial components are:

x =P(T(1), u=Ty),
x =P(T(1), u=-T(r) (me?22).
The trigonometric components are (here we set 7 = cos 9):
x = P(cos(r6)), u =cos(s6+ Zn%), 0<k< %

One can sort out which of these components are distinct by taking into account that x
is invariant with respect to the substitutions 6 = —6and 6 — 6 + 271%.

Finally, we note that the curve C,,) has no multiple components. To see that, take
a line x = x, such that the polynomial F(x,, y) has only simple roots y;, ..., y, which
differ from +1. (Such a line x = x, does exist, since otherwise C would have multiple
components or contain one of the lines y = +1.) Then the polynomial F(x,, T,,(u))
has only simple roots which all come from the equations T,,,(u) = y;, i =1,...,r. O

Proposition 9.8. Let C = V(G(x, y)) be an expressive L*-regular curve all of whose com-
ponents are real (hence polynomial or trigonometric, cf. Proposition 7.3). Suppose that
« each component V(F(x,y)) of C, say with deg, (F) = d, intersects Z(y?—1)in 2d real
points (counting multiplicities), all of which are smooth points of C;
« moreover, these intersections occur in one of the following two ways:
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o d points of quadratic tangency if the component is trigonometric, or
o d — 1 points of quadratic tangency and two points of transverse intersection if the
component is polynomial;
 allnodes of C liein the strip{—1 <y < 1};
« at each point of quadratic tangency between C and Z(y* — 1), the local real branch of
C liesin thestrip{—1 <y < 1}.
Then the curve C,,y = V(G(x, T;5(y))) is expressive and L*-regular.

Proof. By construction, the curve Cy,, is nodal. By Lemmas 9.6 and 9.7, the compo-
nents of C,,) are real polynomial or trigonometric. In view of Theorem 7.17, it remains
to show that the set C(;,;) g is connected, and that all the nodes of C|,,) are hyperbolic.
The set of real points Cy is connected by Definition 5.1. Since all the nodes of C lie
inside the strip {—1 < y < 1}, it follows that the set Cg N {—1 < y < 1} is connected.
Let{a; < --+ < a,,41} be the set of roots of the equation T2 (a) = 1. Then each set

(9.5) CommrnNiagj<y<ajl, j=1....m,

is an image of Cx N {—1 < y < 1} under a homeomorphism of the strip {-1 <y < 1}
onto the strip {a; < y < aj;,}. Furthermore, for each j = 2, ..., m, the sets

Commniaji_1 <y<a;} and Cuyrnia <y <ajp}

are attached to each other at their common points along the line Z(y — a;). (This set
of common points is nonempty since it includes the images of the intersection of Cy
with one of the two lines Z(y + 1).) To obtain the entire set C(,,) g, We attach to the
(connected) union of the m sets (9.5) the diffeomorphic images of the intervals forming
the set Cg \ {—1 < y < 1} (if any). We conclude that C )y is connected.

Regarding the nodes of Cm), we observe that they come in two flavours. First, as
one of the m preimages of a node of C contained in the strip {—1 < y < 1}; all these
preimages are real, hence hyperbolic. Second, as a preimage of a tangency point be-
tween C and Z(y? — 1); this again yields a hyperbolic node. O

10. ARRANGEMENTS OF LINES, PARABOLAS, AND CIRCLES

We next discuss ways of putting together several expressive curves to create a new
(reducible) expressive curve. Our key tool is Corollary 10.1.

Corollary 10.1. Let Cy, ..., Cy be expressive and L®-regular plane curves such that

« each pair C; and C; intersect each other in A? at (distinct) hyperbolic nodes, and
« the set C of real points of the curve C = C; U --- Cy is connected.

Then C is expressive and L*-regular.
Proof. Follows from Theorem 7.17. |
One easy consequence of Corollary 10.1 is the following construction.

Corollary 10.2 (Cf. Example 5.7). Let fi(x), ..., fr(x) € R[x]. Assume that each poly-
nomial f;(x) — f(x) has real roots, and all such roots (over all pairs {i, j}) are pairwise
distinct. Then the curve V(Hi(y — fi(x))) is expressive and L®-regular.

Example 10.3 (Line arrangements). A connected arrangement of distinct real lines in
the plane forms an expressive and L*-regular curve, as long as no three lines intersect
at a point. Parallel lines are allowed. See Figure 21.
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/

FIGURE 21. A line arrangement

Example 10.4 (Arrangements of parabolas). Let C be a union of distinct real parabolas
in the affine plane. Then C is an expressive and L*-regular curve provided

« the set of real points of C is connected;

+ no three parabolas intersect at a point;

« all intersections between parabolas are transverse;

« for each pair of parabolas B and B, one of the following options holds:
- B and B differ by a shift of the plane, or
- B and B have parallel (or identical) axes, and intersect at 2 points, or
- B and B intersect at 4 points.

See Figures 22 and 23.

FIGURE 22. An arrangement of four co-oriented parabolas. Each pair
of parabolas intersects transversally at two points.

Examples 10.3 and 10.4 have a common generalization:

Example 10.5 (Arrangements of lines and parabolas). Let C be a union of distinct real
lines and parabolas in the affine plane. Then C is an expressive and L*-regular curve
provided

« the set of real points of C is connected;
« no three of these curves intersect at a point;
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FIGURE 23. Two arrangements of four parabolas. Each pair of
parabolas intersects transversally at one, two, or four points, all of
them real.

« all intersections between these lines and parabolas are transverse;
« each line intersects every parabola at one or two points;
« each pair of parabolas intersects in one of the ways listed in Example 10.4.

Another elegant application of Corollary 10.1 involves arrangements of circles:

Example 10.6 (Circle arrangements). Let {C;} be a collection of circles on the real
affine plane such that each pair of circles intersects transversally at two real points,
with no triple intersections. Then the curve | J C; is expressive and L*-regular. See
Figure 24.

FIGURE 24. A circle arrangement

Here is a common generalization of Examples 10.3 and 10.6:
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Example 10.7 (Arrangements of lines and circles). Let {C;} be a collection of lines and
circles on the real affine plane such that each circle intersects every line (resp., every
other circle) transversally at two points, with no triple intersections. Then the curve
|J C; is expressive and L®-regular. See Figure 25.

FIGURE 25. An arrangement of circles and lines

11. SHIFTS AND DILATIONS

In this section, we obtain lower bounds for an intersection multiplicity (at a point
p € L®) between a plane curve C and another curve obtained from C by a shift or
dilation. In Sections 12-13, we will use these estimates to derive expressivity criteria
for unions of polynomial or trigonometric curves.

Without loss of generality, we assume that p = (1, 0, 0) throughout this section.

To state our bounds, we will need some notation involving Newton diagrams:

Definition 11.1. Let C = Z(F(x, Yy, z)) be a plane projective curve that contains nei-
ther of the lines Z(z) = L* and Z(y) as a component. Furthermore assume that
p=(1,0,0) € Cn L®. We denote by I'(C, p) the Newton diagram of the polynomial

(11.1) F,(y,z) = F(1,y,z) € C[y, z]

at the point (0,0), see Definition 3.5. Since F; is not divisible by y or z, the Newton
diagram I'(C, p) touches both coordinate axes. We denote by S~(I'(C, p)) the area of
the domain bounded by I'(C, p) and these axes.
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Proposition 11.2. Let C = Z(F(x,y,z)) be a projective curve that contains neither
Z(z) = L* nor Z(y) as a component. Let c € C*, and let C, denote the dilated curve

(11.2) C. = Z(F(cx,cy, 2)).
Assume that p = (1,0,0) € C N L®. Then
(11.3) (C-Co)p 2257 (T(C, p)).

Proof. In the coordinates (), z), the dilation C ~» C, can be regarded as a transition
from the polynomial F; (see (11.1)) to the polynomial F.(y, z) = F(c,cy, z). The poly-
nomials F; and F, have the same Newton diagram at p (resp., Newton polygon). Fur-
thermore, let G(y, z) be a polynomial with the same Newton polygon and with generic
coefficients. By the lower semicontinuity of the intersection number, we have

(C-Co)p 2 (C-Z(G(y, 2)))p-
By Kouchnirenko’s theorem [27, 1.18, Théoreme III' ], the total intersection multiplicity
of the curves C and Z(G) in the torus (C*)? equals 2S(P), twice the area of the Newton
polygon P of F;. Let us now deform F; and G by adding all monomials underneath the
Newton diagram I'(C, p), with sufficiently small generic coefficients. Again by Kouch-
nirenko’s theorem, the total intersection multiplicity of the deformed curves in (C*)?
equals 2S(P)+2S~(T'(C, p)). To establish the bound (11.3), it remains to notice that the
extra term 2S~(T'(C, p)) occurring in the latter intersection multiplicity geometrically
comes from simple intersection points in a neighborhood of p, obtained by breaking
up the (complicated) intersection of C and Z(G) at p. O

To state the analogue of Proposition 11.2 for shifted curves, we need to recall some
basic facts about the Newton-Puiseux algorithm [18, Algorithm 1.3.6]. This algorithm
assigns each local branch Q of a curve C at the point p = (1,0,0) € C N L™ to an edge
E=E(Q) of the Newton diagram I'(C, p), cf. Definition 11.1. We denote by

n(E) = (ny’ nz) € Zio
the primitive integral normal vector to E, with positive coordinates.

Lemma 11.3 (Cf. [18, Section 1.3.1]). Let Q be a local branch of C at p=(1,0,0)€C.
Assume that Q is tangent to L. Let E = E(Q). Then

(11.4) n(E) = (ny,n,) = +(m,d),
where

(11.5) d=d(Q)=(Q-L*)p,
(11.6) m = m(Q) = mult(Q) < d,
(11.7) r =r(Q) = gcd(m, d).

We denote by FE(y, z) = FE(Q)(y, z) the truncation of F; (see 11.1) along the edge
E = E(Q). The polynomial FF is quasihomogeneous with respect to the weighting of
y and z by n,, and n,, respectively. We denote
n

*
s

(11.8) p=pQ)=

lim ”
q=(1,,2)eQ y"z
q=p

11. n = multiplicity of (z™Y — py"#) as a tactor o ,Z).
(11.9) Q) Itiplicity of (z" "z)asaf fFF(y, z)
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It is not hard to see that p(Q) is well defined, and that n(Q) > 1.

Proposition 11.4. Let C = Z(F(x,y,z)) be a projective curve not containing the line
Z(z) = L™ as a component. Assume that p = (1,0,0) € C N L, and that C is not
tangent to the line Z(y) at p. Let a,b € C, and let C, , denote the shifted curve

(11.10) Cop =Z(F(x +az,y + bz, 2)).

Then
(11.11)

(C- Cap)p 2 257(T(C, p)) — mult(C, p) + (C - L®), + Y, min(r(Q), 7(Q) — 1),
Q

where the sum is over all local branches Q of C at p which are tangent to L.

(For the definitions of S™(I'(C, p)), r(Q) and n(Q), see Definition 11.1, (11.5)-(11.7)
and (11.8)-(11.9), respectively.)

Proof. Since the intersection multiplicity is lower semicontinuous, we may assume
that a and b are generic complex numbers.
Let us denote
9O(C, p) = the set of local branches of C at p;

Qy(C, p) = the set of local branches tangent to L*;

9,(C, p) = the set of local branches transversal to L.
The local branches in Q,(C, p) correspond to the edges of I'(C, p) such that n, < n,,
cf. Lemma 11.3. Let I(C, p) denote the union of these edges. The local branches in
9,(C, p), if any, correspond to the unique edge E(; 1) C I'(C, p) with n(E(; 1))=(1,1).
Figure 26 illustrates the case where the edge E(y ;) is present; equivalently, some local
branches are transversal to L*.

powers of z

Eq,n

IL(C, p)

powers of y

FIGURE 26. The Newton diagram T'(C, p). The edge E( ) corre-
sponds to the local branches transversal to L*. The remaining edges
of I'(C, p) form the subdiagram I;,(C, p); they correspond to the local
branches tangent to L*.

Let us consider the family of curves {C, 1p}0<i1<1 interpolating between C = Cy
and C, p. Being equisingular at the point p, this deformation preserves the number of
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local branches at p as well as their topological characteristics. It therefore descends to
families of individual local branches at p, yielding an equisingular bijection

Q(C, p) — 2(Cqpp» P)s
Qr— Qa,b .

Since the fixed point set of the shift (x,y,z) — (x + az,y + bz, z) is the line L%, this
bijection restricts to bijections Qy(C, p) = Qy(Cyp, p) and Q;(C, p) = 2,(Cq p, D).
To obtain the desired lower bound on (C - C 3)p, we will exploit the decomposition

(11.12) (C-Cap)p = Z (Q-Quplp =Zoo +Zor +Zyo + Zy1,
Q,Q'€Q(C,p)

where we use the notation

Tes = Z (Q-Qyp)p, fore,d€{0,1}.
Qe2:(C,p)
Q’ega(C,P)
Lemma 11.5. Suppose Q,(C, p) # @. Then
(1113) 201 + 210 + le = 25—(E(l,1))’

where S™(E(y 1)) denotes the area of the trapezoid bounded by the edge E 1), the coordi-
nate axes, and the vertical line through the rightmost endpoint of E(y ).

Proof. For Q € Q(C, p), the tangent lines to Q and Q, ;, differ from each other. The
foregoing discussion implies that, for any Q € Q;(C, p) and Q" € Q(C, p), we have

(Q : chl,b)p = (Qa,b : Q/)p = multQ - multQ".
‘We then observe that

Z multQ = ¢, ¥ length of the projection of I)(C, p) to the vertical axis,
Q€2(C.p)

>, multQ = ¢; ¥ length of the projection of E(, 1y to either of the axes,
Qe2,(C.p)

implying

201+210+211 =€0€1 +€1€0+€% =ZS_(E(1,1)). |:|

In light of (11.12) and (11.13), it remains to obtain the desired lower bound for the
summand X,,. To simplify notation, we will pretend, for the time being, that all local
branches are tangent to L, so that Q(C, p) = Qy(C, p) and I'(C, p) = I(C, p).

Let Q(E) denote the set of local branches of C at p associated with an edge E of
I'(C, p). Equivalently, Q(E) = {Q € Q(C, p) | E(Q) = E}.

Lemma 11.6. Let E; and E, be two distinct edges of the Newton diagram I'(C, p). Assume
that E, is located above and to the left of E;, so that

E1=[(iy, j1), G, jDL, - Ex=[(a, j2), (i3, j2)],  i3<ix<iy<iy, j1<j1<j2<J3-
Then
1114) > D Q- Qpp= 2 2 Qap-Q)p =i — )i — iy).

QeQ(E1) Q'eQ(E) QeQ(Er) Q'€Q(E)
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Note that (j; — j;)(i, —i3) is the area of the rectangle formed by the intersections of
the horizontal lines passing through E; with the vertical lines passing through E,. See
Figure 27.

powers of z
J2 E,
2= Ey
Ji¥ — .
iy iy=ij i powers of y

FIGURE 27. Two edges in the Newton diagram I'(C,p). Here
I(C, p)=I,(C, p).

We provide two proofs of Lemma 11.6. The first proof, based on the Bernstein-
Kouchnirenko mixed volume formula, relies on a genericity assumption whose jus-
tification we do not provide. (Note however that this assumption is not needed for the
proof of the “>” inequality in (11.14). This inequality will be sufficient for the upcom-
ing proof of Proposition 11.4.) The second proof is rigorous but more technical.

Proof 1 of Lemma 11.6 (sketch). Assume that the truncations of F(1,y,z) along the
edges E; and E, are square-free. Construct the right triangles 7; and 7, as shown in
Figure 28(a). By Bernstein’s theorem [11], the left and middle terms in (11.14) can be
bounded from below by the difference between the mixed area of E;, E, and the mixed

area of 77, 7, (see Figure 28(b) and (c)). The claim follows. ([l
E,
T
2 El
T
()
(b) (©)

FIGURE 28. Proof 1 of Lemma 11.6. (a) Right triangles 7y, 7,. (b)
Mixed area of Ej, E,. (c) Mixed area of 7y, 7,.

Proof 2 of Lemma 11.6. In the coordinates (1, y, z), the shift transformation

1,y,2)» (1+az,y + bz,z)
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converts the polynomial F;(y, z) = F(1, y, z) defining the affine curve C \ Z(x) into the
polynomial F, ,(y,z) = F(1 + az,y + bz, z) defining C, ;, \ Z(x). Under this transfor-
mation, each monomial yizj of F; becomes

(11.15) yizi+ ) cppyttlg T

i’,j'>0

i"+j'>0
In view of the assumption Q(C, p) = Qy(C, p), the monomials appearing in the sum
above correspond to integer points lying strictly above the Newton diagram I'(C, p)
of Fy. In particular, F, ;, has the same Newton diagram I'(C, p), and the same trunca-
tions to its edges. Furthermore, each local branch Q € Q(C, p) and its counterpart
Qap € Q(Cqy p, p) are associated with the same edge of I'(C, p). The union of the local
branches of C, j, associated with the edge E; can be defined by an analytic equation
f(y,z) = 0 whose Newton diagram at the origin is the line segment [(i; — i}, 0), (0, j; —
J1)] (cf. the Newton-Puiseux algorithm [18, Algorithm 1.3.6]). For the same reason, a
local branch Q of C at p associated with the edge E, has a parametrization

y =¢(t) =™,

2= () = ard + opa+y), OO ML d=(Q L%, m=mult(Q)

(cf. (11.5)-(11.6)) where Jz 72 Since 1 JZ ],2 > 171 e obtain
2

Fle(), %(0) = t'"(”“l)(ﬁ +0(), B#0.

The statement of the lemma now follows from the fact that the total multiplicity of the
local branches of C at p associated with the edge E, equals j; — j,. O

We are now left with the task of computing
(11.16) > D (Q-Quphps
E Q,Q'e9(E)

where the first sum runs over the edges E of the Newton diagram. In this part of the
proof, we continue to assume, for the sake of simplifying the exposition, that all local
branches are tangent to L*. Since the shift (a, y, z) — (1 + az,y + bz, z) acts indepen-
dently on the analytic factors of F;(y, z), we furthermore assume, in our computation
of 0.0' EQ(E)(Q - Qg p)p (see (11.16)), that the Newton diagram T'(C, p) consists of a
single edge E = [(0, M), (D, 0)], with M < D and n(E) = (ny, n,).
Pick a local branch Q € Q(E). It admits an analytic parametrization of the form
x=1,
(11.17) y=g(t)=1t",
z = P(t) = atd + O(td+),

where ¢ ranges over a small disk in C centered at zero, m = r(Q) - n,, d = r(Q) - n,, and
r(Q) = ged(d, m), cf. (11.4) and (11.7).

Lemma 11.7. We have
(11.18) > (Q- Q) =dM —m+d +min(r(Q),n(Q) — 1).

Q'eQ(E)
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Before providing a proof of Lemma 11.7, we note that the weaker inequality

(11.19) > Q- Q) >dM—m+d
Q'eQ(E)

can be deduced directly from the Bernstein-Kouchnirenko formula, similarly to Proof 1
of Lemma 11.6 provided above. As in the case of Lemma 11.6, this lower bound would
be sufficient to complete the upcoming proof of Proposition 11.4, restricted to the case
of a Newton nondegenerate singularity (C, p).

Proof. The left-hand side of (11.18) is the minimal exponent of ¢ appearing in the ex-
pansion of F, ,(¢(t),1(t)) into a power series in t. Since Fy(¢(t),%(t)) = 0, we may
instead substitute (11.17) into the difference F, ;(y, z) — F;(y, z), or equivalently into
the monomials of the second summand in (11.15) (corresponding to individual mono-
mials yizJ of Fy(y, z)). Evaluating yi=!' z/+'+J" at y = (), z = ¥(t), we obtain

(™) (1 (a + O+ +' = gmi+di+(d=m)i'+d] (qi+i'+]' 4 O(p)),

To get the minimal value of the exponent mi + dj + (d — m)i’ + dj’, we need to min-
imize mi + dj (which is achieved for (i, j) € E) and take i’ = 1 and j' = 0. Devel-
oping F, ,(¥,z) = F(1 + az,y + bz, z) into a power series in a and b, we see that the
corresponding monomials '~ z/*+'+J" = yi=1zj*1in F, ;(y,z) — F(1,,2) add up to
bzF,(1,y, z). We conclude that the desired minimal exponent of ¢ occurs when we sub-
stitute (y, z) = (¢(1), (1)) either into bzEF (y, z) or into a monomial y'~1z/+! such that
(i, j) is one of the integral points closest to the edge E and lying above E. The latter
condition reads nyi + n,j = n,M + 1.
The truncation FE(y, z) of F,(y, z) has the form

n
(11.20) FE(y,z) = [ (2™ - Bry™)',
k=1
where 8y, ..., B, € C are distinct, and ry, ..., 1, € Z,o. Developing FE(y,z) into a

power series in t, we see that the monomials of FF yield the minimal exponent of ¢.
Since F;(¢(t), 9(t)) = 0, these minimal powers of ¢ must cancel out, implying that, for
some k, € {1,...,n}, we have (cf. (11.8), (11.9)):

dyn
p=p(Q = lim ((ffn))n: = a™ =, ,
77 = U(Q) = rko *

The factorization formula (11.20) implies that

bzEF(y,2) = brgy"= "1z ) ((=Bi)k(z" = Biy"= e [ (2" — Buy"=)).
k=1 l#k
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We then compute the minimal exponent for szyE O, 2):

bnzynz—lzl — O(tmnz—m+d)’

y=9(t),z=(t)
@™ = By ) o zmpy = OU D),k # ko,

@ =0y V7, i = Oy +D0=1),
@ = B )y 2= g = O™, 1 # ko,
(" = ’oynz)nlyw(t),z:w(t) = O(edny+ D),

szyE(y, Z)l — O<th—m+d+r)—1)'

y=p(),2=1(t)
Also, for nyi + n,j = n,M + 1, we have

yi—lzj+1| — O(th—m+d+r(Q)).

y=(),z=3(t)
Consequently
> Q- Q) =min(dM-m+d+n—1,dM-m+d+rQ)),
Q'eQ(E)

as desired. 0

We are now ready to complete the proof of Proposition 11.4. We first note that in
Lemma 11.7,
m=multQ, d=(Q-L),,
and moreover

(11.21) > multQ=M, > (Q-I®),=D.

QeQ(E) QeQ(E)

Therefore

Y, (Q-Qyp)p=D(dM —m+d + min(r(Q),n(Q) — 1))
Q,Q"eQ(E) Q

(11.22) =DM — M+ D+ ) min(r(Q),n(Q) — 1).
Q

Note that DM is twice the area of the right triangle with hypotenuse E.

As illustrated in Figure 29, adding up the contributions DM from all edges E of
IH(C, p), together with the contributions coming from Lemmas 11.5 and 11.6, we obtain
28~ (T'(C, p)), cf. Definition 11.1.

Finally, in view of (11.21), we have

> (-M+D)= > (-mult(Q)+(Q-L®),)
EcTo(C,p) Qe9(C,p)

= > (-mult(Q)+(Q- L))

Qe9(C,p)
= —mult(C, p) + (C - L),.

Putting everything together, we obtain (11.11). O
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Eqy

E,
S7(Ea,))
1

5D, M,

(i = j)iz — 1) 3DIM;

FIGURE 29. The area S™(I'(C, p)) under the Newton diagram I'(C, p)
is obtained by adding three kinds of contributions: (a) The area
S7(E(q,1y) of the trapezoid underneath the edge E( 1), cf. Lemma 11.5;

the areas (j;—j;)(i,—i5) of rectangles obtained from pairs of edges
E,, E, of I)(C, p), cf. Lemma 11.6; and (c) the areas %DM of right tri-
angles adjacent to the edges in I;,(C, p), cf. (11.22)

12. ARRANGEMENTS OF POLYNOMIAL CURVES

In this section, we generalize Example 10.5 to arrangements of polynomial curves
obtained from a given curve by shifts, dilations, and/or rotations. We start by obtaining
upper bounds on the number of intersection points of two polynomial curves related
by one of these transformations. These bounds lead to expressivity criteria for arrange-
ments consisting of such curves.

Recall that for a,b € C and ¢ € C*, we denote by

(12.1) Cap = Z(F(x + az,y + bz, z)),
(12.2) C. = Z(F(cx,cy, z))
the curves obtained from a plane curve C = Z(F(x,y,z)) by a shift and a dilation,
respectively. We will also use the notation
(12.3) Cap,c = Z(F(cx + az,cy + bz, 2))
for a curve obtained from C by a combination of a shift and a dilation.
As before, we identify a projective curve C = Z(F(x, y, z)) with its restriction to the

affine plane A2 = P? \ L* given by C = V(G(x, y)), where G(x,y) = F(x,y,1). Under
this identification, we have

(12.4) Cap =V(G(x+a,y+ D)),
(12.5) C, = V(G(cx,cy)),
(12.6) Capb,e = V(G(ex +a,cy + b)).

Remark 12.1. Unless ¢ = 1 (the case of a pure shift), the transformation C ~ C, ;, . can
be viewed as a pure dilation centered at some point o0 € C (where o may be different
from 0).
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Corollary 12.2. Let C be a real polynomial curve of degree d. Let C n L*® = {p} and
m = mult(C, p). Then we have, for a,b € C and c € C*:

(12.7) (C - Cap,e)p = dm;

(12.8) (C-Cap)p 2 (d=1)(m+1) + ged(d, m).

Proof. In view of Remark 12.1 and the inequality
(d-1)(m+1)+ged(d,m) > dm,

it suffices to establish (12.7) in the case a = b = 0, i.e., with C, j, . replaced by C..
The bounds (12.7)-(12.8) are obtained by applying Propositions 11.2 and 11.4 to the
case of a polynomial curve C, while noting that in this case,

S=(I(C, p)) = ymd,

mult(C, p) = m,
(C-L®), =d,
r(Q) = n(Q) = ged(d, m). O

Proposition 12.3. Let C be a real polynomial curve with a parametrization
t— (P(t),Q(t)), deg(P)=d, deg(Q)=d' #d.

Let a,b,c € C, ¢ # 0, and let C, . be the shifted and dilated curve given by (12.3).
Assume that C and C,p, . have N intersection points in A2 = P2 \ L®, counting with
multiplicity. Then N < dd’.

Proof. Without loss of generality, assume that d > d’. By Bézout’s theorem, the inter-
section multiplicity (C - Cyp,c)p at the point p = (1,0,0) € L* is at most d* — N.
Applying (12.7), with m = d—d’, we obtain d>—N > d(d—d’). The claim follows. [J

Proposition 12.3 and Theorem 7.17 imply that if C and C, ;, . intersect at dd” hyper-
bolic nodes in the real affine plane, then the union C U C,;, .. is expressive.

Example 12.4. Let C be the (2, 3)-Chebyshev curve, the singular cubic given by
(12.9) 2x2—1+4y3-3y=0
or parametrically by

t (483 = 3t,-2t2 4+ 1),

cf. (4.3). Applying Proposition 12.3 (with d = 3 and d’ = 2), we see that the curve C
and its dilation Cy 5, . (c # 1) can intersect in the real affine plane in at most 6 points.
When this bound is attained, the union C U C, , . is expressive. Figure 30 shows one
such example, witha = b = 0 and ¢ = —1 (so C, . is a reflection of C). Cf. also
Figure 38.

Proposition 12.5. Let C be a real polynomial curve with a parametrization
t — (P(t),Q(t)), deg(P)=d, deg(Q)=d <d.

Let a,b € C, and let C,, be the shifted curve given by (12.1). Assume that C and C,
have N intersection points in A?> = P? \ L®, counting with multiplicity. Then

(12.10) N <dd —d —ged(d,d’) + 1.
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FIGURE 30. An expressive cubic and its reflection, intersecting at 6
real points. The resulting two-component curve is expressive.

Proof. We use the same arguments as in the proof of Proposition 12.3 above, with the
lower bound (12.7) replaced by (12.8):

N <d?—(C-Cqp)p <d*—(d—1)(m+1) — ged(d, m)
=d?>—(d—-1)(d—-d +1)—ged(d,d")
=dd' —d' +1—gecd(d,d"). O
For special choices of shifts, the bound (12.10) can be strengthened. Here is one

example, involving the Lissajous-Chebyshev curves, see Example 5.12. (Note that such
a curve does not have to be polynomial: it could be trigonometric or reducible.)

Proposition 12.6. Let C be a Lissajous-Chebyshev curve given by
(12.11) T (x) + T,(y) = 0.

Let a€C, and let C, o (resp., Cy o) be the shift of C in the x (resp., y) direction. Assume
that C and Cq (resp., Co o) intersect at Ny (resp., N,,) points in A% Then

(12.12) N, < (k=1)e,
(12.13) N, < k(¢ —1).

We note that in the case when ged(k,¢) = 1 and k < ¢, the bound (12.13) matches
(12.10), with d = k and d’ = ¢, whereas (12.12) gives a stronger bound.

Proof. Due to symmetry, it suffices to prove (12.13). The intersection of the curves C
and Cy 4 is given by

{Tk<x> +T,(y) = 0, {Tk(x) +T,(y) = 0,
Ti(x) + T,(y +a) =0 T,y +a) - T,(y) = 0.

The equation T,(y + a) — T,(y) = 0 has at most € — 1 roots; each of these values of y
then gives at most k possible values of x. O

Example 12.7. Asin Example 12.4, let C be the (2, 3)-Chebyshev curve (12.9). Apply-
ing Proposition 12.6 (with k = 2 and ¢ = 3), we see that the curve C and its vertical
shift Cy p (b # 0) can intersect in the affine plane in at most 4 points. More generally,
Proposition 12.5 (with d = 3 and d' = 2) gives the upper bound of 4 for the number of
intersection points between C and its nontrivial shift C, ;. On the other hand, in the
case of a horizontal shift, we get at most 3 points of intersection. When these bounds
are attained, with all intersection points real, the union C U C,}, is expressive. See
Figure 31.
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FIGURE 31. An expressive cubic and its shift, intersecting at 3 or 4
real points, depending on the direction of the shift. The resulting two-
component curve is expressive.

In addition to shifts and dilations, we can consider other linear changes of variables
that can be used to construct new expressive curves. Let us illustrate one such con-
struction using the example of Lissajous-Chebyshev curves:

Proposition 12.8. Let C be the (k, ¢)-Lissajous-Chebyshev curve given by (12.11), with
¢ >k > 2. Forq € C*, q # 1, let Cjg) denote the curve defined by

(12.14) Ti(7) + T(3%) = 0.

Assume that C and Ciq) intersect at N points in A2, Then

(12.15) N < k(¢ -2).

Proof. Since Ty(x) = 2"1xK + O(x*~1) and T,(y) = 2¢~1y? + O(y*~1), the equations
defining C and Cjq) can be written as

(12.16) 2k=1xk 4+ O(xk=2) 4+ 2071y + 0(y~2) = 0,

(12.17) 21 kexk 4 O(x*=2) + 207 1q7 0y + 0(y*=2) = 0.

Multiplying (12.16) by ¢*¢ and subtracting (12.16), we get an equation of the form
(12.18) o(x*2)+ 0(y*~?) = 0.

We thus obtain a system of two algebraic equations of the form (12.16) and (12.18).
Their Newton polygons are contained in the triangles with vertices (0, 0), (k, 0), (0, ¢)
and (0,0), (k — 2,0),(0,¢ — 2), respectively. The mixed area of these two triangles is
equal to k(¢ — 2) (here we use that ¢ > k > 2 and therefore g > %). By Bernstein’s
theorem [11], this system of equations has at most k(¢ — 2) solutions. O

Example 12.9. Let C be the (2, 3)-Chebyshev curve (12.9), as in Examples 12.4 and
12.7. Applying Proposition 12.8 (with k = 2 and ¢ = 3), we see that the curve C and
the rescaled curve Cp,; defined by (12.14) can intersect in the affine plane in at most
2 points. When they do intersect at 2 real points, the union C U C, j, is expressive. See
Figure 32.

Remark 12.10. Let C’ be a curve obtained from a plane curve C = V(G(x, y)) of degree d
by an arbitrary affine change of variables:

C' = V(G(cj1x + 13y + a,¢1X + ¢35y + b)).
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FIGURE 32. An expressive cubic and its rescaling (12.14), intersecting
at 2 real points. The resulting two-component curve is expressive.

Then C and C’ intersect in A in at most d? points. Thus, if they intersect at d? hyper-
bolic nodes, then C U C' is expressive. See Figure 33.

FIGURE 33. Two expressive cubics related by a 90° rotation, and inter-
secting at 9 real points. The resulting two-component curve is expres-
sive.

Example 12.11. Figures 34-35 show five different ways to arrange two Chebyshev
curves (the (2, 3)-Chebyshev cubic and the (3, 4)-Chebyshev quartic, respectively) re-
lated to each other by an affine transformation of the plane A? so that the resulting
two-component curve is expressive. These pictures illustrate:

(a) Proposition 12.8, cf. Example 12.9;

(b, c) Proposition 12.6, cf. Example 12.7;
(d) Proposition 12.3, cf. Example 12.4; and
(e) Remark 12.10.

(a) (b) (c) (d) (e)

FIGURE 34. Two expressive cubics forming a two-component expres-
sive curve. The two components intersect at 2, 3, 4, 6, and 9 real
points, respectively.
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7 \ ' XY . . | ‘\ﬁ
y ) X X y XN /\ ~ "
(a) (b) () (d) ()

FIGURE 35. Two expressive quartics forming a two-component ex-
pressive curve. The two components intersect at 6, 8, 10, 12, and 16
real points, respectively.

Remark 12.12. More generally, consider a collection of expressive polynomial curves
related to each other by affine changes of variables (equivalently, affine transformations
of the plane A2). Suppose that for every pair of curves in this collection, the number
of hyperbolic nodes in their intersection attains the upper bound for an appropriate
version of Proposition 12.3, 12.5, 12.6, 12.8, or Remark 12.10. Then the union of the
curves in the given collection is an expressive curve. See Figures 36-37.

FIGURE 36. An expressive curve whose three components are trans-
lations of the same nodal cubic. Each pair of components intersects
at 4 hyperbolic nodes.

13. ARRANGEMENTS OF TRIGONOMETRIC CURVES

In this section, we generalize Example 10.6 to arrangements of curves obtained from
a given trigonometric curve by shifts, dilations, and/or rotations.
We continue to use the notation (12.1)-(12.6) for the shifted and dilated curves.

Corollary 13.1. Let C be a trigonometric curve of degree 2d, with two local branches at
infinity centered at distinct points p, p € C N L™. Suppose that mult(C, p) = d, i.e., these
branches are transversal to L*. Then we have, for a,b € C and ¢ € C*:

(13.1) (C - Cype)p = d>.

IfC and C, p, . intersect in N points in the affine plane A?, counting with multiplicity, then
N <242

Proof. We apply Proposition 11.2, with S™(T'(C, p)) = %dz, to obtain (13.1). It follows
that N < (2d)? — 2 - 3d? = 2d>. O
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FIGURE 37. An expressive curve whose four components are singular
cubics related to each other either by a horizontal translation or a
dilation (with ¢ = —1). Each pair of components intersects at 3 or 6
hyperbolic nodes, respectively.

FIGURE 38. An expressive curve whose components are singular cu-
bics related to each other by dilations. Each pair of them intersects at
6 hyperbolic nodes.

Example 13.2. Let C be an epitrochoid with parameters (2, —1), i.e., a limacon. It has
two conjugate points at infinity, each an ordinary cusp transversal to L*. This is a quar-
tic trigonometric curve, so by Corollary 13.1 (with d = 2), any two shifts/dilations of C
intersect in at most 8 points in the affine plane. Thus, if they intersect at 8 hyperbolic
nodes, then C U C, 5, . is expressive by Theorem 7.17. More generally, an arrangement
of limacgons related to each other by shifts and dilations gives an expressive curve if any
two of these limacons intersect at 8 hyperbolic nodes. See Figure 39.

Corollary 13.3. Let C be a trigonometric curve of degree 2d, with two local branches at
infinity centered at distinct points p, p € C N L®. Suppose that m = mult(C, p) < d, i.e.,
C is tangent to L*. Then we have, for a,b € C and c € C*:

(13.2) (C- Cype)p = dm,

(13.3) (C-Caplp = (d—1)(m+1) + ged(d, m).
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FIGURE 39. A union of two limagons related to each other by a shift
or dilation is expressive if they intersect at 8 hyperbolic nodes

If Cand Cy p . (resp., Cqp) intersect in N (resp., M) points in the affine plane A?, then
(13.4) N < 4d? — 2dm;
(13.5) M < 4d? —2(d — 1)(m + 1) — 2 gcd(d, m).
Proof. The proof is analogous to the proof of Corollary 12.2. We apply Propositions
11.2 and 11.4 to the case under consideration, taking into account that

S=(I(C, p)) = 3dm,

(€ I™), =d,

r(Q) = 7(Q) = ged(d, m). O
Example 13.4. Let C be a hypotrochoid with parameters (2,1), cf. Examples 4.17
and 7.13. It has two conjugate points at infinity; at each of them, C is smooth and
has a simple (order 2) tangency to L*. By (13.2) (with d = 2 and m = 1), any dilation
of C intersects C in the affine plane A? in at most 12 points. Similarly, by (13.3), any
shift of C intersects C in A% in at most 10 points. When these bounds are attained, and

all intersections are hyperbolic nodes, the union of the two curves is expressive. See
Figure 40.

D &

FIGURE 40. A union of two 3-petal hypotrochoids related to each
other by a shift (resp., dilation) is expressive if they intersect at 10
(resp., 12) hyperbolic nodes

Corollary 13.5. Let C = Z(F) be a trigonometric projective curve of degree 2d, with two
local complex conjugate branches Q, Q centered at the same point p € C N L*. Denote
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mult(C, p) = 2mult Q = 2m. Then we have, for a,b € C and ¢ € C*:
(13-6) (C : Ca,b,c)p > 4dm,

4dm —2m+2d +2ged(d,m) -2 if(Q-Q), = dm,

13.7) (€ Caplp 2 {4dm —2m+ 2d + 2 ged(d, m) if(Q- Q) > dm.

Proof. Once again, we apply Propositions 11.2 and 11.4, with
S=(I'(C, p)) = 2dm,
(C-I*), =2d,
r(Q) = ged(d, m),

ged(d,m),  if(Q-Q), =dm,

Q) = {2 ged(d,m), if(Q -a)p > dm,

and similarly for Q. g

Example 13.6. Let C be a lemniscate of Huygens
(13.8) Y2 +4x* —4x? =0,

see Example 5.8. It has a single point p = (0,1, 0) at infinity, with two conjugate lo-
cal branches Q and Q. These branches are tangent to each other and to L*; all these
tangencies are of order 2. Thus Corollary 13.5 applies, with d = 2, m = 1, and
(Q-Q) = 2 = dm. The bound (13.7) yields (C - Cyp)p > 10, implying that C and
a shifted curve C, ;, intersect in A% in at most 6 points. Thus, any arrangement of shifts
of C which intersect pairwise transversally in 6 real points produces an expressive curve

(assuming all these double points are distinct). See Figure 41.

FIGURE 41. Left: An expressive curve whose three components are
translations of the same lemniscate. Each pair of components inter-
sects at six hyperbolic nodes. Right: Two lemniscates differing by a
vertical shift, see Example 13.7.

For special choices of shifts and dilations, the bounds in the corollaries above can be
strengthened, leading to examples of expressive curves whose components intersect in
fewer real points than one would ordinarily expect. Here are two examples:

Example 13.7. Let C be the lemniscate (13.8). Since C is a Lissajous-Chebyshev curve
with parameters (4, 2), by Proposition 12.6, its vertical shift Cy j, intersects C in A? in at
most 4 points. Hence C U C 3, is expressive for b € (=2, 2). See Figure 41.
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Example 13.8. Let C = V(G(x,y)) be the trigonometric curve defined by the polyno-
mial

(13.9) G(x,y)=x>+y*—11y> + 18y -8 = x> + (y + 4)(y — 1)*(y — 2).

It is easy to see that C is expressive, and that C intersects its dilation/reflection C_; =
V(G(—x,—Y)) in two points in A2, both of which are real hyperbolic nodes. Hence the
union C U C_; is expressive. See Figure 42.

FIGURE 42. A two-component expressive curve C U C_; from Example 13.8

14. ALTERNATIVE NOTIONS OF EXPRESSIVITY

In this section, we discuss two alternative notions of expressivity. For the first no-
tion, algebraic curves are treated as subsets of R2, instead of the scheme-theoretic point
of view that we adopted above in this paper. For the second notion, bivariate polyno-
mials are replaced by arbitrary smooth functions of two real variables.

Viewing real algebraic curves set-theoretically, as “topological curves” in the real
affine plane, we arrive at Definition 14.1:

Definition 14.1. Let € C R2 be the set of real points of a real affine algebraic curve,
see Definition 4.1. Assume that € is nonempty, with no isolated points. We say that
C is expressive if its (complex) Zariski closure C = Cisan expressive plane algebraic
curve. Thus, a subset € C R? is expressive if

« C is the set of real points of a real affine plane algebraic curve,
+ C is nonempty, with no isolated points, and
« the minimal polynomial of C is expressive, see Definition 5.1.

As always, one should be careful when passing from a real algebraic set to an alge-
braic curve, or the associated polynomial. A polynomial G(x,y) € R[x,y] can be ex-
pressive while the real algebraic set Vi (G) is not; see Example 14.2. Conversely, Vx(G)
can be expressive while G(x, y) is not, see Example 14.3. That’s because G may not be
the minimal polynomial for Vi (G).

Example 14.2 (Cf. Examples 1.7, 3.3, and 7.4). The real polynomials
G(x,y) = (x* + D(x?y — x> +y),
Gx,y)=x?y—x>+y

define the same (connected) real algebraic set

€ = Va(G) = Vi(G) = {(x.y) € R | y = o),

x2+1



736 SERGEY FOMIN AND EUGENII SHUSTIN

cf. (7.8). As we saw in Example 7.4, G is expressive while G is not. Consequently, the
affine algebraic curve V(G) is expressive while its real point set, the real topological
curve C is not—because G, rather than G, is the minimal polynomial of €.

Example 14.3. The real polynomials G(x, y) and G(x, y) given by
G(x,y) = xy(x* + y* + 1),
G(x,y) = xy

define the same real algebraic set € = Vi (G) = Vi(G). Clearly, G is expressive, and so is
the affine curve V(G), or the projective curve Z(xy). Since G is the minimal polynomial
of @, this real algebraic set is expressive as well. On the other hand,

Gy =3x%y+y  +y=y3x* +y*+ 1),
Gy = x> +3xy* + x = x(x* + 3y* + 1),
and we see that G has 9 critical points:
; ; 1, 1. 1. , 1,
(Oa 0)’ (Oa il)a (ila 0)’ (El’ izl)a (_519 izl)

Since 8 of these points are not real, the polynomial G is not expressive; nor are the
curves V(G) and Z(xy(x? + y* + z?)).

The following criterion is a direct consequence of Theorem 7.17.

Corollary 14.4. Let C C R? be the set of real points of a real affine algebraic curve.
Assume that C is connected, and contains at least two (hence infinitely many) points.
Then the following are equivalent:

« the minimal polynomial of € (or the Zariski closure C = G, cf. Definition 14.1) is
expressive and L*-regular;

+ each component of C = Cis trigonometric or polynomial, and all singular points of
C in the complex affine plane A? are real hyperbolic nodes.

We conclude this section by discussing the challenges involved in extending the no-
tion of expressivity to arbitrary (i.e., not necessarily polynomial) smooth real functions
of two real arguments.

Remark 14.5. Let G : R? — R be a smooth function. Suppose that G satisfies the
following conditions:
« the set Vx(G) = {G(x,y) = 0} C R? is connected;
+ Va(G) is a union of finitely many immersed circles and open intervals which inter-
sect each other and themselves transversally, in a finite number of points;
« the complement R? \ Vix(G) is a union of a finite number of disjoint open sets;
« all critical points of G in R have a nondegenerate Hessian;
« these critical points are located as follows:
o one critical point inside each bounded connected component of R? \ Vi (G);
o no critical points inside each unbounded connected component of R? \ Vi(G);
o asaddle at each double point of V4 (G).
One may be tempted to call such a (topological, not necessarily algebraic) curve Vi (G)
expressive. Unfortunately, this definition turns out to be problematic, as one and the
same curve € = R? can be defined by two different smooth functions one of which
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satisfies the above-listed conditions whereas the other does not. An example is shown
in Figure 2, with the polynomial G given by

Gx,y) = (2 + Y2 = D((x -1+ (y — 1> - 1).

As Figure 2 demonstrates, the function G is not expressive in any reasonable sense. At
the same time, € can be transformed into an expressive curve (a union of two circles)
by a diffeomorphism of R?, and consequently can be represented as the vanishing set
of a smooth function satisfying the conditions listed above.

15. REGULAR-EXPRESSIVE DIVIDES

Itis natural to wonder which divides arise from expressive curves (perhaps satisfying
additional technical conditions).

If G(x,y) is an expressive polynomial, then all singular points of V(G) are (real)
hyperbolic nodes, so the divide D is well defined, see Definition 6.3. The class of di-
vides arising in this way (with or without the additional requirement of L*-regularity)
is however too broad to be a natural object of study: as Example 14.2 demonstrates,
a nonexpressive polynomial may become expressive upon multiplication by a polyno-
mial with an empty set of real zeroes.

With this in mind, we propose Definition 15.1.

Definition 15.1. A divide D is called regular-expressive if there exists an L*-regular
expressive curve C = V(G) with real irreducible components such that D = Dg.

Remark 15.2. Some readers might prefer to just call such divides “expressive” rather
than regular-expressive. We decided against the shorter term, as it would misleadingly
omit a reference to the L*-regularity requirement.

By Theorem 7.17, a connected divide is regular-expressive if and only if it arises from
an algebraic curve whose components are real and either polynomial or trigonometric,
and all of whose singular points in the affine plane are hyperbolic nodes.

We note that a regular-expressive divide is isotopic to an expressive algebraic subset
of R?, in the sense of Definition 14.1, or more precisely to an intersection of such a
subset with a sufficiently large disk Dg, see (6.1).

Numerous examples of regular-expressive divides are scattered throughout this pa-
per.

Problem 15.3. Find a criterion for deciding whether a given divide is regular-
expressive.

Remark 15.4. Problem 15.3 appears to be very difficult. It seems to be even harder to
determine whether a given divide can be realized by an expressive curve of a specified
degree. For example, the divide OO can be realized by an expressive sextic (the (2, 6)-
Lissajous curve, see Figure 10) but not by an expressive quadric—even though there
exists a (nonexpressive) quadric realizing this divide.

Here is a nonobvious nonexample:

Proposition 15.5. The divide shown in Figure 43 is not regular-expressive.



738 SERGEY FOMIN AND EUGENII SHUSTIN

QPO

FIGURE 43. A connected divide which is not regular-expressive

Proof. Suppose on the contrary that the divide D in Figure 43 is regular-expressive. By
Theorem 7.17, D must come from a plane curve C consisting of two polynomial com-
ponents: C = K U L. One of them, say L, is smooth. By the Abhyankar-Moh theorem
[2, Theorem 1.6], there exists a real automorphism of the affine plane that transforms
L into a real straight line. So without loss of generality, we can simply assume that L is
a line. The other component K has degree d > 4. Since C is expressive, the projective
line I must intersect the projective closure K of K at the unique point p € K N [®
with multiplicity d — 2. The curve K has a unique tangent line L at p. Therefore any
projective line I’ # L*® passing through p intersects K at p with multiplicity d — 2.
Equivalently, every affine line L' parallel to L intersects K in at most two points (count-
ing multiplicities). However, shifting L in a parallel way until it intersects K at a node
for the first time, we obtain a real line L' parallel to L and crossing K in at least four
points in the affine plane, a contradiction. O

We recall the following terminology, adapting it to our current needs.

Definition 15.6. A (simple) pseudoline arrangement is a connected divide whose
branches are embedded intervals any two of which intersect at most once.

A pseudoline arrangement is called stretchable if it is isotopic to a configuration of
straight lines, viewed within a sufficiently large disk.

Proposition 15.7. Let D be a pseudoline arrangement in which any two pseudolines
intersect. Then the divide D is regular-expressive if and only if it is stretchable.

Proof. The “if” direction has already been established, see Example 10.3. Let us prove
the converse. Suppose that a pseudoline arrangement D with n pseudolines Dy, ..., D,
is the divide of an L*-regular expressive curve C with real irreducible components. We
need to show that D is stretchable.

By Theorem 7.17, C must consist of n polynomial components Cj, ..., C,. Since
C, is smooth, the Abhyankar-Moh theorem [2, Theorem 1.6] implies that a suitable
real automorphism of the affine plane takes C; to a straight line (and leaves the other
components polynomial). So without loss of generality, we can assume that C; = {x =
0}. Leti € {2,...,n} be such that deg C; = d > 2. (If there is no such i, we are done.)
The projective line C; intersects the projective curve C; at the point p = (0,1,0) =
C; N L™ either with multiplicity d — 1 (if C; and C; intersect in the affine plane) or
with multiplicity d (if C; and C; are disjoint there). Note that ; cannot be tangent
to C; at p, since ; is unibranch at p, and the infinite line L* is the tangent to ; at
L>. It follows that (C; - (), < (C; - L), = d and therefore (C; - (), = d — 1.
Since C; is transversal to C; at p, we have mult(C;, p) = d — 1. It follows that the
(affine) equation of C; does not contain monomials with exponents of y higher than 1.
That is, C; = {yP;(x) = Q;(x)} with P;, Q; coprime real polynomials. Moreover, the
polynomiality of C; implies that P;(x) is a nonzero constant, say 1. Finally, recall that
any two components C; and Cj, 2 < i < j < n, intersect in at most one point in the
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affine plane, and if they do, the intersection is transversal. So if C; = {y = Q;(x)} and
C; = {y = Q;j(x)}, then deg(Q; — Q;) < 1. It follows that a suitable automorphism
of the affine plane (x,y) — (x,y — R(x)), with R(x) € R[x], leaves C; invariant while
simultaneously taking all other components C,, ..., C,, to straight lines. O

16. EXPRESSIVE CURVES VS. MORSIFICATIONS

In this section, we compare two classes of divides:

« the algebraic divides, which arise from real morsifications of isolated singularities
of real plane curves, see, e.g., [16, Definition 2.2];

« the regular-expressive divides, which arise from L®-regular expressive curves with
real components, see Section 15.

There are plenty of divides (such as, e.g., generic real line arrangements) which are
both algebraic and regular-expressive.

Proposition 16.1. None of the following regular-expressive divides is algebraic:

(a) the divides shown in Figures 7-9;
(b) the divide shown in Figure 15;
(c) any divide containing two branches whose intersection is empty.

Proof. (a) Let D be the divide shown in Figure 9 on the right. Suppose that D is al-
gebraic. Pick a point p inside the “most interior” region of D. Any real line through
p intersects D (or any curve isotopic to it) in at least 6 points, counting multiplicities.
Hence the underlying singularity has multiplicity > 6. Such a singularity must have
Milnor number > (6 — 1)?> = 25. On the other hand, D exhibits only 21 critical points
(10 saddles at the hyperbolic nodes and 11 extrema, one per region), a contradiction.

The same argument works for the other divides except for the left divides in Figures
8 and 9, which require a slightly more complicated treatment. We leave it to the reader
as an exercise.

(b) Suppose on the contrary that our divide D is algebraic. The corresponding sin-
gularity must be unibranch, with Milnor number 12. Let T be the sole region of D
whose closure has zero-dimensional intersection with the union of closures of the un-
bounded connected components. Every real straight line crossing T intersects D in at
least 4 points (counting multiplicities). It follows that the underlying singularity has
multiplicity > 4. The simplest unibranch singularity of multiplicity 4 is y* — x> = 0
(up to topological equivalence); its Milnor number is 12. Hence we cannot encounter
any other (more complicated) singularity. The link of the singularity y* — x> = 0 isa
(4, 5) torus knot. Its Alexander polynomial is (see, e.g., [32, p. 131, formula (1)])

1 -t -10)
aQ-tHa -1
On the other hand, as shown by N. A’Campo [5, Theorem 2] (reproduced in [16, Theo-
rem 7.6]), the link of a singularity is isotopic to the link of the divide of its morsification,
as defined by A’Campo; see, e.g., [16, Definition 7.1]. In the terminology of [16, Section
11], the divide D is scannable of multiplicity 4. Its link can be computed as the closure
of a 4-strand braid 3 constructed by the Couture-Perron algorithm [12, Proposition 2.3]
(reproduced in [16, Definition 11.3]):

(16.1) =1—t4t* =048 — 11 4112

B = 01030,030,01030,030,01030,030.
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Direct computation shows that the Alexander polynomial of this knot is equal to
A=t+)Q -2 +tYA =B+ =1—t+t* =2 +15 —t7 +8 — 11 4112,

which is different from (16.1).
(c) Follows from [10, Proposition 1.8(ii)]. O

By Proposition 16.1, a connected line arrangement containing parallel lines is
regular-expressive but not algebraic. We next give an example of the opposite kind.

Proposition 16.2. Let D be the “non-Pappus” pseudoline arrangement shown in Fig-
ure 44 on the right. The divide D is algebraic but not regular-expressive.

4 321

FIGURE 44. Left: A Pappus configuration of straight lines. Right [7,
Figure 14]: A non-Pappus pseudoline arrangement obtained by lo-
cally deforming the Pappus configuration around each of its 9 triple
points. (These points correspond to the 9 marked triangular regions
on the right.)

Proof. 1t is well known that the non-Pappus pseudoline arrangement D is non-
stretchable, see [7, Section 3], [14, Section 5.3].

We next show that the divide D is algebraic. For the benefit of the readers who may
not be experts in singularity theory, we begin by recalling some background.

Any isolated curve singularity possesses a versal deformation with finite-dimension-
al base; see [18, Section I1.1.3] for a brief account of the theory of versal deformations.
In particular, a versal deformation induces any other deformation. Furthermore, if the
singular point is real and a versal deformation is conjugation-invariant with a smooth
base, then it induces any other conjugation-invariant deformation with a smooth base.
(Indeed, an analytic map (C",0) — (C, 0) that takes real points to real points is given
by germs of analytic functions with real coefficients.)

If a singularity (at the origin) is given by f(x,y) = 0, then the deformation

feay)+ D txlyl =0, (4;)€BY, N = (dgz)’
i+j<d
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isversalifd > u(f,0)—1;here BN c CN denotes a sufficiently small open disc centered
at the origin.

If C = V(F(x,y)) is an affine curve and py, ..., p, are some of its isolated singulari-
ties, then the deformation

FG,y)+ Y tyxiyl =0, (t;;)eBY, N=(%1?),
i+j<d

whered > . u(C, p;)—1, is ajoint versal deformation of the singular points p;, ..., p.
That is, it simultaneously induces arbitrary individual deformations at all these singu-
lar points; see the versality criterion [18, Theorem II.1.16] and [19, Proposition 3.4.6].
Let
9
H(a,-x + bly + Ci) =0

i=1
be a Pappus configuration without parallel lines. The family

9
F(x,y)= [ [(ax+by+cit)=0, te][0,1],

i=1

is a deformation of the ordinary 9-fold singular point Fy(x,y) = 0, whose members
F, = 0,t # 0, are Pappus configurations differing from each other by a homothety. It
is induced by a versal deformation

(16.2) Fy(x,y)+ D) tixlyl =0, (t;;) € BY,
i+j<d

where

N =(4?), d=u(F,0) —1=63.
Since the total Milnor number of the Pappus configuration (i.e., the sum of Milnor
numbers at all singular points) is less than u(F,,0) = 64, the deformation (16.2) is
joint versal for all the singularities of any given curve F;(x,y) = 0,0 < t < 1.

We now construct a morsification of the singularity F,, = 0 which is isotopic to our
divide D. We begin by deforming it into a Pappus configuration F; = Owith 0 < ¢t <« 1.
Then, by variation of the monomials up to degree 63, we deform each triple point of
the latter curve into appropriate three double intersections (while keeping the nodes of
the Pappus configuration). Since t can be chosen arbitrarily small, the curve isotopic to
the constructed one appears arbitrarily close to the original germ {F, = 0}. In view of
the fact that all the strata in the real part of the discriminant in the versal deformation
base are semialgebraic sets, by the arc selection lemma [29, Lemma 3.1], there exists a
real analytic deformation

F(x,y)=0, 0<t<]1,

of fo = F, = 0, whose members 1:"} =0, t # 0, realize the desired morsification. O
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