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EXPRESSIVE CURVES

SERGEY FOMIN AND EUGENII SHUSTIN

Abstract. We initiate the study of a class of real plane algebraic curves which we call
expressive. These are the curves whose defining polynomial has the smallest number of
critical points allowed by the topology of the set of real points of a curve. This concept
can be viewed as a global version of the notion of a real morsification of an isolated
plane curve singularity.

We prove that a plane curve 𝐶 is expressive if (a) each irreducible component of 𝐶
can be parametrized by real polynomials (either ordinary or trigonometric), (b) all sin-
gular points of𝐶 in the affine plane are ordinary hyperbolic nodes, and (c) the set of real
points of 𝐶 in the affine plane is connected. Conversely, an expressive curve with real
irreducible components must satisfy conditions (a)–(c), unless it exhibits some exotic
behaviour at infinity.

We describe several constructions that produce expressive curves, and discuss a
large number of examples, including: arrangements of lines, parabolas, and circles;
Chebyshev and Lissajous curves; hypotrochoids and epitrochoids; and much more.
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Introduction

Let 𝑔(𝑥) ∈ ℝ[𝑥] be a polynomial of degree 𝑛 whose 𝑛 roots are real and distinct.
Then 𝑔 has exactly 𝑛 − 1 critical points, all of them real, interlacing the roots of 𝑔.
In this paper, we study the two-dimensional version of this phenomenon. We call a

bivariate real polynomial𝐺(𝑥, 𝑦) ∈ ℝ[𝑥, 𝑦] (or the corresponding affine plane curve 𝐶)
expressive if the locations of the critical points of 𝐺 are determined by the set of real
points 𝐶ℝ = {(𝑥, 𝑦) ∈ ℝ2 ∣ 𝐺(𝑥, 𝑦) = 0}, as follows:
• there is precisely one extremum inside each bounded region of ℝ2 ⧵ 𝐶ℝ;
• all other critical points of 𝐺 are the saddles located at hyperbolic nodes of 𝐶.
(Recall that a hyperbolic node is an intersection of two smooth real local branches.) In
particular, all critical points of an expressive polynomial 𝐺 are real.
An example is shown in Figure 1. For a nonexample, see Figure 2.

Figure 1. The expressive curve 𝐶 = {𝐺(𝑥, 𝑦) = 0} in the picture is a
union of three circles, shown in solid black. Dotted isolines represent
level sets of 𝐺. The polynomial 𝐺 has 13 critical points: 6 saddles lo-
cated at the double points (the hyperbolic nodes of 𝐶) plus 7 extrema,
one in each bounded region of ℝ2 ⧵ 𝐶.

Our main result (Theorem 7.17) gives an explicit characterization of expressive
curves, subject to a mild requirement of “𝐿∞-regularity.” (This requirement forbids
some exotic behaviour of 𝐶 at infinity.) We prove that a plane algebraic curve 𝐶 with
real irreducible components is expressive and 𝐿∞-regular if and only if
• each component of 𝐶 has a trigonometric or polynomial parametrization,
• all singular points of 𝐶 in the affine plane are real hyperbolic nodes, and
• the set of real points of 𝐶 in the affine plane is connected.
To illustrate, a union of circles is an expressive curve provided any two of them in-

tersect at two real points, as in Figure 1. On the other hand, the circle and the ellipse
in Figure 2 intersect at four points, two of which are complex conjugate. (In the case
of a pair of circles, those two points escape to infinity.)
The above characterization allows us to construct numerous examples of expressive

plane curves, including arrangements of lines, parabolas, circles, and singular cubics;
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Figure 2. A nonexpressive curve whose components are a circle and
an ellipse. The bounded region at the bottom contains 3 critical
points.

Chebyshev and Lissajous curves; hypotrochoids and epitrochoids; andmuchmore. See
Figures 3–4 for an assortment of examples; many more are scattered throughout the
paper.
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Our main result (Theorem 7.17) gives an explicit characterization of expressive
curves, subject to a mild requirement of “L∞-regularity.” (This requirement forbids
some exotic behaviour of C at infinity.) We prove that a plane algebraic curve C with
real irreducible components is expressive and L∞-regular if and only if

• each component of C has a trigonometric or polynomial parametrization,
• all singular points of C in the affine plane are real hyperbolic nodes, and
• the set of real points of C in the affine plane is connected.

To illustrate, a union of circles is an expressive curve provided any two of them
intersect at two real points, as in Figure 1. On the other hand, the circle and the
ellipse in Figure 2 intersect at four points, two of which are complex conjugate. (In the
case of a pair of circles, those two points escape to infinity.)

The above characterization allows us to construct numerous examples of expressive
plane curves, including arrangements of lines, parabolas, circles, and singular cubics;
Chebyshev and Lissajous curves; hypotrochoids and epitrochoids; and much more.
See Figures 3–4 for an assortment of examples; many more are scattered throughout
the paper.

(a) (b) (c) (d) (e)

Figure 3: Irreducible expressive curves: (a) a singular cubic; (b) double limaçon; (c)
(2, 3)-Lissajous curve; (d) 3-petal hypotrochoid; (e) (3, 5)-Chebyshev curve.

Figure 4: Reducible expressive curves: arrangements of six lines, four parabolas, and
two singular cubics.

On the face of it, expressivity is an analytic property of a function G : R2 → R.
This is however an illusion: just like in the univariate case, in order to rule out
accidental critical points, we need G to be a polynomial of a certain kind. Thus,
expressivity is essentially an algebraic phenomenon. Accordingly, its study requires
tools of algebraic geometry and singularity theory.

For a real plane algebraic curve C to be expressive, one needs

#{critical points of C in the complex affine plane}
= #{double points in CR}+ #{bounded components of R2 \ CR}.(∗)
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Figure 3. Irreducible expressive curves: (a) A singular cubic; (b)
double limaçon; (c) (2, 3)-Lissajous curve; (d) 3-petal hypotrochoid;
(e) (3, 5)-Chebyshev curve

Figure 4. Reducible expressive curves: Arrangements of six lines,
four parabolas, and two singular cubics

On the face of it, expressivity is an analytic property of a function𝐺 ∶ ℝ2 → ℝ. This
is however an illusion: just like in the univariate case, in order to rule out accidental
critical points, we need 𝐺 to be a polynomial of a certain kind. Thus, expressivity is
essentially an algebraic phenomenon. Accordingly, its study requires tools of algebraic
geometry and singularity theory.
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For a real plane algebraic curve 𝐶 to be expressive, one needs

#{critical points of 𝐶 in the complex affine plane}
=#{double points in 𝐶ℝ} + #{bounded components of ℝ2 ⧵ 𝐶ℝ}.(∗)

Since a generic plane curve of degree 𝑑 has (𝑑 − 1)2 critical points, whereas expression
(∗) is typically smaller than (𝑑−1)2, we need all the remaining critical points to escape
to infinity. Our analysis shows that this can only happen if each (real) irreducible com-
ponent of 𝐶 either has a unique point at infinity or a pair of complex conjugate points;
moreover the components must intersect each other in the affine plane at real points,
specifically at hyperbolic nodes. The requirement of having one or twopoints at infinity
translates into the condition of having a polynomial or trigonometric parametrization,
yielding the expressivity criterion formulated above.
As mentioned earlier, these results are established under the assumption of 𝐿∞-

regularity, which concerns the behaviour of the projective closure of 𝐶 at the line at
infinity 𝐿∞. This assumption ensures that the number of critical points accumulated
at each point 𝑝 ∈ 𝐶 ∩𝐿∞ is determined in the expected way by the topology of 𝐶 in the
vicinity of 𝑝 together with the intersection multiplicity (𝐶 ⋅ 𝐿∞)𝑝. All polynomial and
trigonometric curves are 𝐿∞-regular, as are all expressive curves of degrees ≤ 4.

Section-by-section overview. Sections 1–4 are devoted to algebraic geometry
groundwork. Section 1 reviews basic background on plane algebraic curves, intersec-
tion numbers, and topological invariants of isolated singularities. The number of crit-
ical points escaping to infinity is determined by the intersection multiplicities of polar
curves at infinity, which are studied in Section 2. Its main result is Proposition 2.5,
which gives a lower bound for such a multiplicity in terms of the Milnor number and
the order of tangency between the curve and the line at infinity. When this bound
becomes an equality, a plane curve 𝐶 is called 𝐿∞-regular.
In Section 3, we provide several criteria for 𝐿∞-regularity. We also show (see Propo-

sition 3.4) that for an 𝐿∞-regular curve 𝐶 = {𝐺(𝑥, 𝑦) = 0} all of whose singular points
in the affine plane are ordinary nodes, the number of critical points of 𝐺 is completely
determined by the number of those nodes, the geometric genus of 𝐶, and the number
of local branches of 𝐶 at infinity. This statement relies on classical formulas due to
H. Hironaka [22] and J. Milnor [29].
The technical material of Sections 2–3 can be safely skipped by the readers who are

willing to treat the notion of 𝐿∞-regularity as a “black-box” genericity condition that
automatically holds for most, if not all, expressive curves that arise in applications.
Section 4 introduces polynomial and trigonometric curves, the plane curves possess-

ing a parametrization 𝑡 ↦ (𝑋(𝑡), 𝑌(𝑡)) in which both 𝑋 and 𝑌 are polynomials, resp.
trigonometric polynomials. We review a number of examples of such curves, recall
the classical result [1] characterizing polynomial curves as those with a single place at
infinity, and provide an analogous characterization for trigonometric curves.
Expressive curves are introduced in Section 5. We formulate their basic proper-

ties and discuss a large number of examples, which include an inventory of expressive
curves of degrees ≤ 4.
In Section 6, we introduce divides and relate them to the notion of expressivity.
Section 7 contains our main results. Using the aforementioned bounds and criteria,

we show (see Theorem 7.10) that an irreducible real plane algebraic curve is expressive
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and 𝐿∞-regular if and only if it is either trigonometric or polynomial, and moreover all
its singular points in the complex affine plane are (real) hyperbolic nodes. This crite-
rion is then extended (see Theorem 7.17) to general plane curves with real irreducible
components. Additional expressivity criteria are given in Section 8.
As a byproduct, we obtain the following elementary statement (see Corollary 7.19):

if 𝐶 = {𝐺(𝑥, 𝑦) = 0} is a real polynomial or trigonometric affine plane curve that inter-
sects itself solely at hyperbolic nodes, then all critical points of 𝐺 are real.
Multiple explicit constructions of expressive curves are presented in Sections 9–13,

demonstrating the richness and wide applicability of the theory. In Section 9, we de-
scribe the procedures of bending, doubling, and unfolding. Each of them can be used
to create new (more “complicated”) expressive curves from existing ones. Arrange-
ments of lines, parabolas, and circles, discussed in Section 10, provide another set of
examples. These examples are generalized in Section 11 to arrangements consisting of
shifts, dilations and/or rotations of a given expressive curve. Explicit versions of these
constructions for polynomial (resp., trigonometric) curves are presented in Section 12
(resp., Section 13).
In Section 14, we briefly discuss alternative notions of expressivity: a “topological”

notion that treats real algebraic curves set-theoretically, and an “analytic” notion that
does not require the defining equation of a curve to be algebraic.
The class of divides which can arise from 𝐿∞-regular expressive curves is studied in

Section 15. In particular, we show that a simple pseudoline arrangement belongs to
this class if and only if it is stretchable. In Section 16, we compare this class to the class
of algebraic divides studied in [16].

Motivations and outlook. This work grew out of the desire to develop a global ver-
sion of the A’Campo–Guseı̆n-Zade theory [3,5,20,21] of morsifications of isolated sin-
gularities of plane curves. The defining feature of such morsifications is a local expres-
sivity property, which prescribes the locations (up to real isotopy) of the critical points
of a morsified curve in the vicinity of the original singularity. In this paper, expressiv-
ity is a global property of a real plane algebraic curve, prescribing the locations of its
critical points (again, up to real isotopy) on the entire affine plane.
In a forthcoming follow-up to this paper, we intend to develop a global analogue—

in the setting of expressive curves—of A’Campo’s theory of divides and their links.
As shown in [16], this theory has intimate connections to the combinatorics of quiv-
ers, cluster mutations, and plabic graphs.
It would be interesting to explore the phenomenon of expressivity in higher dimen-

sions, and in particular find out which results of this paper generalize.
The concept of an expressive curve/hypersurface can be viewed as a generalization

of the notion of a line/hyperplane arrangement. (Expressivity of such arrangements in
arbitrary dimension can be established by a log-concavity argument.) This opens the
possibility of extending the classical theory of hyperplane arrangements [6, 13, 33] to
arrangements of expressive curves/surfaces.

1. Plane curves and their singularities

Definition 1.1. Let ℙ2 denote the complex projective plane. We fix homogeneous
coordinates 𝑥, 𝑦, 𝑧 in ℙ2. Any homogeneous polynomial 𝐹 ∈ ℂ[𝑥, 𝑦, 𝑧] defines a plane
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algebraic curve 𝐶 = 𝑍(𝐹) in ℙ2 given by
𝐶 = 𝑍(𝐹) = {𝐹(𝑥, 𝑦, 𝑧) = 0}.

We understand the notion of a curve (and the notation 𝑍(𝐹)) scheme-theoretically: if
the polynomial 𝐹 splits into factors, we count each component of the curve 𝐶 = 𝑍(𝐹)
with the multiplicity of the corresponding factor.

For two distinct points 𝑝, 𝑞 ∈ ℙ2, we denote by 𝐿𝑝𝑞 the line passing through 𝑝 and 𝑞.
The line at infinity 𝐿∞ ⊂ ℙ2 is defined by 𝐿∞ = 𝑍(𝑧).
For 𝐹 a smooth function in 𝑥, 𝑦, 𝑧, we use the shorthand

𝐹𝑥 = 𝜕𝐹
𝜕𝑥 𝐹𝑦 = 𝜕𝐹

𝜕𝑦 , 𝐹𝑧 = 𝜕𝐹
𝜕𝑧

for the partial derivatives of 𝐹. The following elementary statement is well known, and
easy to check.

Lemma 1.2 (Euler’s formula). Let 𝐹 = 𝐹(𝑥, 𝑦, 𝑧) be a homogeneous polynomial of de-
gree 𝑑. Then
(1.1) 𝑑 ⋅ 𝐹 = 𝑥𝐹𝑥 + 𝑦𝐹𝑦 + 𝑧𝐹𝑧 .
Definition 1.3. Let 𝐹 ∈ ℂ[𝑥, 𝑦, 𝑧] be a homogeneous polynomial in 𝑥, 𝑦, 𝑧. For a point
𝑞 = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧) ∈ ℙ2, we denote

𝐹 (𝑞) = 𝑞𝑥𝐹𝑥 + 𝑞𝑦𝐹𝑦 + 𝑞𝑧𝐹𝑧 .
The polar curve 𝐶(𝑞) associated with a curve 𝐶 = 𝑍(𝐹) and a point 𝑞 ∈ ℙ2 is defined by
𝐶(𝑞) = 𝑍(𝐹 (𝑞)). In particular, for 𝑞 = (1, 0, 0) ∈ 𝐿∞ (resp., 𝑞 = (0, 1, 0) ∈ 𝐿∞), we get
the polar curve 𝑍(𝐹𝑥) (resp., 𝑍(𝐹𝑦)).

For a point𝑝 lying on two plane curves𝐶 and ̃𝐶, we denote by (𝐶⋅ ̃𝐶)𝑝 the intersection
number of these curves at 𝑝. We will also use this notation for analytic curves, i.e.,
curves defined by analytic equations in a neighborhood of 𝑝.
Definition 1.4. Let 𝐶 = 𝑍(𝐹) be a plane algebraic curve, and 𝑝 an isolated singular
point of 𝐶. Let us recall the following topological invariants of the singularity (𝐶, 𝑝):
• themultiplicitymult(𝐶, 𝑝) = (𝐶 ⋅ 𝐿)𝑝, where 𝐿 is any line passing through 𝑝 which
is not tangent to the germ (𝐶, 𝑝);

• the 𝜘-invariant 𝜘(𝐶, 𝑝) = (𝐶 ⋅ 𝐶(𝑞))𝑝, where 𝑞 ∈ ℙ2 ⧵ {𝑝} is such that the line 𝐿𝑝𝑞 is
not tangent to (𝐶, 𝑝);

• the number Br(𝐶, 𝑝) of local branches (irreducible components) of the germ (𝐶, 𝑝);
• the 𝛿-invariant 𝛿(𝐶, 𝑝), which can be determined from

𝜘(𝐶, 𝑝) = 2𝛿(𝐶, 𝑝) + mult(𝐶, 𝑝) − Br(𝐶, 𝑝);
• the Milnor number 𝜇(𝐶, 𝑝) = (𝐶(𝑞′) ⋅ 𝐶(𝑞″))𝑝, where the points 𝑞′, 𝑞″ ∈ ℙ2 are
chosen so that 𝑝, 𝑞′, 𝑞″ are not collinear.

More generally, for any point 𝑝 ∈ 𝐶(𝑞′) ∩ 𝐶(𝑞″), not necessarily lying on the curve 𝐶,
we can define the Milnor number

𝜇(𝐶, 𝑝) = (𝐶(𝑞′) ⋅ 𝐶(𝑞″))𝑝
(provided 𝑝, 𝑞′, 𝑞″ are not collinear). Note that for 𝑝 ∉ 𝐿∞, we can simply define
(1.2) 𝜇(𝐶, 𝑝) = (𝑍(𝐹𝑥) ⋅ 𝑍(𝐹𝑦))𝑝 .
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See [29, §5 and §10] and [18, Sections I.3.2 and I.3.4] for additional details as well as
basic properties of these invariants. See also Remark 1.5 and Proposition 1.6.

Remark 1.5. All invariants listed in Definition 1.4 depend only on the topological type
of the singularity at hand. The Milnor number 𝜇(𝐶, 𝑝)measures the complexity of the
singular point 𝑝 viewed as a critical point of 𝐹. It is equal to the maximal number
of critical points that a small deformation of 𝐹 may have in the vicinity of 𝑝. The 𝛿-
invariant is the maximal number of critical points lying on the deformed curve in a
small deformation of the germ (𝐶, 𝑝). The 𝜘-invariant is the number of ramification
points of a generic projection onto a line of a generic deformation of the germ (𝐶, 𝑝).

Proposition 1.6 ([18, Propositions 3.35, 3.37, 3.38]). Let (𝐶, 𝑝) be an isolated plane
curve singularity as above. Then we have:

𝜇(𝐶, 𝑝) = 2𝛿(𝐶, 𝑝) − Br(𝐶, 𝑝) + 1 (Milnor’s formula);(1.3)
(𝐶 ⋅ 𝐶(𝑞))𝑝 = 𝜘(𝐶, 𝑝) + (𝐶 ⋅ 𝐿𝑝𝑞)𝑝 −mult(𝐶, 𝑝) for any 𝑞 ∈ ℙ2 ⧵ {𝑝};(1.4)

𝜘(𝐶, 𝑝) = 𝜇(𝐶, 𝑝) + mult(𝐶, 𝑝) − 1.(1.5)

Example 1.7. Consider the quintic curve 𝐶 = 𝑍(𝐹) defined by the polynomial

𝐹(𝑥, 𝑦, 𝑧) = (𝑥2 + 𝑧2)(𝑦𝑥2 + 𝑦𝑧2 − 𝑥3) = (𝑥 + 𝑖𝑧)(𝑥 − 𝑖𝑧)(𝑦𝑥2 + 𝑦𝑧2 − 𝑥3).

It has two points on the line at infinity 𝐿∞, namely 𝑝1 = (0, 1, 0) and 𝑝2 = (1, 1, 0).
At 𝑝1, the cubical component has an elliptic node, and the two line components are
the two tangents to the cubic at 𝑝1. At 𝑝2, we have a smooth real local branch of the
cubical component. Direct computations show that

mult(𝐶, 𝑝1) = 4 mult(𝐶, 𝑝2) = 1,
𝜘(𝐶, 𝑝1) = 16 𝜘(𝐶, 𝑝2) = 0,
Br(𝐶, 𝑝1) = 4 Br(𝐶, 𝑝2) = 1,
𝛿(𝐶, 𝑝1) = 8 𝛿(𝐶, 𝑝2) = 0,
𝜇(𝐶, 𝑝1) = 13 𝜇(𝐶, 𝑝2) = 0,

(𝐶 ⋅ 𝐿∞)𝑝1 = 4 (𝐶 ⋅ 𝐿∞)𝑝2 = 1,
(𝑍(𝐹𝑥) ⋅ 𝑍(𝐹𝑦))𝑝1 = 16 (𝑍(𝐹𝑥) ⋅ 𝑍(𝐹𝑦))𝑝2 = 0,

(𝐶 ⋅ 𝐹𝑥)𝑝1 = 16 (𝐶 ⋅ 𝐹𝑥)𝑝2 = 0.

Note that (1.2) does not hold for 𝑝 = 𝑝1; this is not a contradiction since 𝑝1 ∈ 𝐿∞.

2. Intersections of polar curves at infinity

In this section, we study the properties of intersection numbers of polar curves at
their common points located at the line at infinity.

Lemma 2.1. Let 𝐹(𝑥, 𝑦, 𝑧) ∈ ℂ[𝑥, 𝑦, 𝑧] be a nonconstant homogeneous polynomial.
(i) The set 𝑍(𝐹 (𝑞′)) ∩ 𝑍(𝐹 (𝑞″)) ∩ 𝐿∞ does not depend on the choice of a pair of distinct

points 𝑞′, 𝑞″ ∈ 𝐿∞. Moreover this set is contained in 𝐶.
(ii) For a point 𝑝 ∈ 𝐶 ∩ 𝐿∞, the intersection multiplicity (𝑍(𝐹 (𝑞′)) ⋅ 𝑍(𝐹 (𝑞″)))𝑝 does not

depend on the choice of a pair of distinct points 𝑞′, 𝑞″ ∈ 𝐿∞.
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Proof. Any other pair ̂𝑞′, ̂𝑞″ of distinct points in 𝐿∞ satisfies

(2.1) ̂𝑞′ = 𝑎11𝑞′ + 𝑎12𝑞″,
̂𝑞″ = 𝑎21𝑞′ + 𝑎22𝑞″,

with |||
𝑎11 𝑎12
𝑎21 𝑎22

||| ≠ 0.

Consequently
𝐹 ( ̂𝑞′) = 𝑎11𝐹 (𝑞′) + 𝑎12𝐹 (𝑞″),
𝐹 ( ̂𝑞″) = 𝑎21𝐹 (𝑞′) + 𝑎22𝐹 (𝑞″)

and the first claim in (i) follows. To establish the second claim, set 𝑞′ = (1, 0, 0) and
𝑞″ = (0, 1, 0) (i.e., take the polar curves 𝑍(𝐹𝑥) and 𝑍(𝐹𝑦)), and note that by Euler’s
formula (1.1), 𝐹 vanishes as long as 𝐹𝑧, 𝐹𝑦 and 𝑧 vanish.
To prove (ii), factor the nonsingular 2×2matrix in (2.1) into the product of an upper

triangular and a lower triangular matrix; then use that, for 𝑏𝑐 ≠ 0,
□(2.2) (𝑍(𝑎𝐺1 + 𝑏𝐺2) ⋅ 𝑍(𝑐𝐺1))𝑝 = (𝑍(𝐺2) ⋅ 𝑍(𝐺1))𝑝 .

Definition 2.2. Let 𝐶 be a plane projective curve 𝐶 that does not contain the line at
infinity 𝐿∞ as a component. For a point 𝑝 ∈ 𝐿∞, we denote

𝜇(𝐶, 𝑝, 𝐿∞) ≝ (𝑍(𝐹𝑥) ⋅ 𝑍(𝐹𝑦))𝑝 .
Note that by Lemma 2.1(i), if 𝑝 lies on both 𝑍(𝐹𝑥) and 𝑍(𝐹𝑦), then it necessarily lies
on 𝐶, so 𝜇(𝐶, 𝑝, 𝐿∞) can only be nonzero at points 𝑝 ∈ 𝐶 ∩ 𝐿∞.

Remark 2.3. For 𝑝 ∈ 𝐶 ∩ 𝐿∞, the number 𝜇(𝐶, 𝑝, 𝐿∞) may differ from the Milnor
number 𝜇(𝐶, 𝑝) (cf. (1.2)), since the points 𝑝, 𝑞′, 𝑞″ lie on the same line 𝐿∞. Moreover,
𝜇(𝐶, 𝑝, 𝐿∞) is not determined by the topological type of the singularity (𝐶, 𝑝), as it also
depends on its “relative position” with respect to the line 𝐿∞. The following example
illustrates this phenomenon. Consider the curves 𝑍(𝑥2𝑦−𝑧3−𝑥𝑧2) and 𝑍(𝑥2𝑦2−𝑦𝑧3).
Each of them has an ordinary cusp (type 𝐴2) at the point 𝑝 = (0, 1, 0). On the other
hand, we have 𝜇(𝐶, 𝑝, 𝐿∞) = 4 in the former case versus 𝜇(𝐶, 𝑝, 𝐿∞) = 3 in the latter.
Additional examples can be produced using Proposition 2.5.

Remark 2.4. The intersection number 𝜇(𝐶, 𝑝, 𝐿∞) is also different from “the Milnor
number at infinity” (as defined, for instance, in [8, 30]) since 𝜇(𝐶, 𝑝, 𝐿∞) depends on
the choice of a point 𝑝 ∈ 𝐿∞. Moreover, 𝜇(𝐶, 𝑝, 𝐿∞) is not determined by the local
topology of the configuration consisting of the germ (𝐶, 𝑝) and the line 𝐿∞. To see
this, consider Example 3.8 and Example 5.11 with 𝑝 = 𝑝1. In both cases, (𝐶, 𝑝) is an
ordinary cusp transversal to 𝐿∞. In Example 3.8, we have 𝜇(𝐶, 𝑝, 𝐿∞) = 4, whereas in
Example 5.11, we get 𝜇(𝐶, 𝑝, 𝐿∞) = 𝜇(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 − 1 = 3 by Proposition 3.6).

Proposition 2.5. Let 𝐶 = 𝑍(𝐹) be an algebraic curve in ℙ2. Let 𝑝 ∈ 𝐶 ∩ 𝐿∞. Then
(2.3) 𝜇(𝐶, 𝑝, 𝐿∞) ≥ 𝜇(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 − 1.

The proof of Proposition 2.5 will rely on two lemmas, one of them very simple.

Lemma 2.6. For any 𝑞 ∈ 𝐿∞ ⧵ {𝑝}, we have
(𝐶 ⋅ 𝑍(𝐹 (𝑞)))𝑝 = 𝜇(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 − 1.

Proof. Using (1.4) and (1.5), we obtain:
(𝐶 ⋅ 𝑍(𝐹 (𝑞)))𝑝 = 𝜘(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 −mult(𝐶, 𝑝) = 𝜇(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 − 1. □
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Lemma 2.7. Let𝑄 be a local branch (i.e., a reduced, irreducible component) of the germ
of the curve 𝑍(𝐹𝑦) at 𝑝. Then

(2.4) (𝑍(𝑧𝐹𝑧) ⋅ 𝑄)𝑝 ≥ (𝑍(𝐹) ⋅ 𝑄)𝑝 .

Proof. We will prove the inequality (2.4) inductively, by blowing up the point 𝑝. As
a preparation step, we will apply a coordinate change intended to reduce the general
case to a particular one, in which the blowing-up procedure is easier to describe.
Without loss of generality, we assume that 𝑝 = (1, 0, 0). In a neighborhood of 𝑝,

we can set 𝑥 = 1 and then work in the affine coordinates 𝑦, 𝑧. Abusing notation, for a
homogeneous polynomial 𝐺(𝑥, 𝑦, 𝑧), we will write 𝐺(𝑦, 𝑧) instead of 𝐺(1, 𝑦, 𝑧).
For any curve𝑍(𝐺), the intersectionmultiplicity (𝐺⋅𝑄)𝑝 can be computed as follows.

Write 𝑄 = {𝑓(𝑦, 𝑧) = 0}, where 𝑓(𝑦, 𝑧) is an irreducible element of the ring ℂ{𝑦, 𝑧} of
germs at 𝑝 of holomorphic functions in the variables 𝑦 and 𝑧. By [18, Proposition I.3.4],
we have

𝑓(𝑦, 𝑧) = 𝑢(𝑦, 𝑧) ∏
1≤𝑖≤𝑘

(𝑦 − 𝜉𝑖(𝑧1/𝑘)), 𝑢(𝑦, 𝑧) ∈ ℂ{𝑦, 𝑧}, 𝑢(0, 0) ≠ 0,

where each 𝜉𝑖 is a germ at zero of a holomorphic function vanishing at the origin. Then
[18, Proposition I.3.10 (Halphen’s formula)] yields

(2.5) (𝐺 ⋅ 𝑄)𝑝 = ∑
1≤𝑖≤𝑘

ord0 𝐺(𝜉𝑖(𝑧), 𝑧).

It follows that the variable change (𝑦, 𝑧) = 𝜏(𝑦1, 𝑧1)
def= (𝑦1, 𝑧𝑘1 ) multiplies both sides

of (2.4) by 𝑘. For 𝑔 ∈ ℂ{𝑦, 𝑧}, let us denote 𝜏∗𝑔(𝑦1, 𝑧1) = 𝑔 ∘ 𝜏(𝑦1, 𝑧1)). Then 𝜏∗𝑄 splits
into 𝑘 smooth branches

𝑄𝑖 = {𝑦1 − 𝜉𝑖(𝑧1) = 0}, 𝑖 = 1, . . . , 𝑘,

and it suffices to prove the inequality (2.4) with 𝑄 replaced by each of the 𝑄𝑖’s. More-
over, with respect to 𝑄𝑖, the desired inequality is of the same type. Namely, 𝜏∗(𝐹𝑦) =
(𝜏∗𝐹)𝑦1 , and hence 𝑄𝑖 is a local branch of the polar curve 𝑍((𝜏∗𝐹)𝑦1) of the curve
𝜏∗𝐶 = 𝑍(𝜏∗𝐹). Furthermore,

𝑧1(𝜏∗𝐹)𝑧1(𝑦1, 𝑧1) = 𝑧1 𝜕
𝜕𝑧1

[𝐹(𝑦1, 𝑧𝑘1 )]
= 𝑧1𝐹𝑦(𝑦1, 𝑧𝑘1 ) + 𝑘𝑧𝑘1𝐹𝑧(𝑦1, 𝑧𝑘1 )
= 𝑧1(𝜏∗𝐹𝑦)(𝑦1, 𝑧1) + 𝑘 ⋅ (𝜏∗(𝑧𝐹𝑧))(𝑦1, 𝑧1),

which implies

(𝑍(𝑧1(𝜏∗𝐹)𝑧1) ⋅ 𝑄𝑖)𝑝 = (𝑍(𝜏∗(𝑧𝐹𝑧)) ⋅ 𝑄𝑖)𝑝, 𝑖 = 1, . . . , 𝑘.

We have thus reduced the proof of (2.4) to the case where 𝑄 is a smooth curve germ
transversal to the line 𝐿∞. To simplify notation, we henceforth write 𝐶, 𝐹, 𝑦, 𝑧 instead
of 𝜑∗𝐶, 𝜑∗𝐹, 𝑦1, 𝑧1, respectively.
We proceed by induction on 𝜇(𝐶, 𝑝). If 𝜇(𝐶, 𝑝) = 0, then (𝐶, 𝑝) is a smooth germ. If

𝐶 intersects 𝐿∞ transversally, then (𝐶, 𝑝) is given by

𝐹(𝑦, 𝑧) = 𝑎𝑦 + 𝑏𝑧 + h.o.t., 𝑎 ≠ 0
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(hereinafter h.o.t. is a shorthand for “higher order terms”), implying 𝐹𝑦(0, 0) = 𝑎 ≠ 0.
Thus the polar curve 𝑍(𝐹𝑦) does not pass through 𝑝; consequently both sides of (2.4)
vanish. If 𝐶 is tangent to 𝐿∞ at 𝑝, then it is transversal to 𝑄 at 𝑝, so we have

(𝐶 ⋅ 𝑄)𝑝 = 1 = (𝑍(𝑧) ⋅ 𝑄)𝑝 ≤ (𝑍(𝑧𝐹𝑧) ⋅ 𝑄)𝑝 .

Suppose that 𝜇(𝐶, 𝑝) > 0. Then𝑚 def= mult(𝐶, 𝑝) ≥ 2. If 𝐶 and𝑄 intersect transver-
sally at 𝑝 (i.e., have no tangent in common), then

(𝐶 ⋅ 𝑄)𝑝 = mult(𝐶, 𝑝) ⋅ mult(𝑄, 𝑝) = 𝑚 ⋅ 1 = 𝑚.

On the other hand,mult(𝑍(𝐹𝑧), 𝑝) ≥ 𝑚 − 1, and therefore

(𝑍(𝑧𝐹𝑧) ⋅ 𝑄) ≥ mult(𝑍(𝑧𝐹𝑧), 𝑝) ⋅ mult(𝑄, 𝑝) ≥ 𝑚 ⋅ 1 = 𝑚 = (𝐶 ⋅ 𝑄).

If 𝐶 and 𝑄 have a common tangent at 𝑝, we apply the blowing-up 𝜋 ∶ ℙ̃2 → ℙ2 of the
plane at the point 𝑝. For a curve𝐷 passing through 𝑝, let𝐷∗ denote its strict transform,
i.e., the closure of the preimage 𝜋−1(𝐷 ⧵ {𝑝}) in ℙ̃2. (For more details, see [18, Sec-
tion I.3.3, p. 185].). Since 𝑄 is smooth, the strict transform 𝑄∗ is smooth too, and in-
tersects transversally the exceptional divisor 𝐸 at some point 𝑝∗. More precisely, if
𝑄 = 𝑍(𝑦 − 𝜂𝑧 − h.o.t.), then in the coordinates (𝑦∗, 𝑧∗) given by 𝑦 = 𝑦∗𝑧∗, 𝑧 = 𝑧∗, we
have 𝐸 = 𝑍(𝑧∗) and 𝑝∗ = (𝜂, 0). Since𝐶 and its polar curve 𝑍(𝐹𝑦) are tangent to the line
𝑍(𝑦−𝜂𝑧), the lowest homogeneous formof𝐹(𝑦, 𝑧) is divisible by (𝑦−𝜂𝑧)2, while the low-
est homogeneous formof𝐹𝑦 is divisible by 𝑦−𝜂𝑧 and,moreover,mult(𝑍(𝐹𝑦), 𝑝) = 𝑚−1.
We now recall some properties of the blowing-up. For a curve𝐷=𝑍(𝐺(𝑦, 𝑧)) passing

through 𝑝, we have [18, Prop. I.3.21 and I.3.34, and computations on p. 186]:

(𝐷∗ ⋅ 𝑄∗)𝑝∗ = (𝐷 ⋅ 𝑄)𝑝 −mult(𝐷, 𝑝) ⋅ mult(𝑄, 𝑝) = (𝐷 ⋅ 𝑄)𝑝 −mult(𝐷, 𝑝);
∑𝑞∈𝐷∗∩𝐸 𝛿(𝐷∗, 𝑞) = 𝛿(𝐷, 𝑝) − 1

2 mult(𝐷, 𝑝)(mult(𝐷, 𝑝) − 1);

𝐷∗ = 𝑍(𝑧−mult(𝐷,𝑝)
∗ 𝐺(𝑦∗𝑧∗, 𝑧∗)).

We see that

𝐹∗(𝑦∗, 𝑧∗) = 𝑧−𝑚∗ 𝐹(𝑦∗𝑧∗, 𝑧∗),
(𝐹∗)𝑦∗(𝑦∗, 𝑧∗) = 𝑧1−𝑚∗ 𝐹𝑦(𝑦∗𝑧∗, 𝑧∗) = (𝐹𝑦)∗(𝑦∗, 𝑧∗).

Thus𝑄∗ is a local branch of the polar curve (𝐹∗)𝑦∗=0 of the strict transform𝐶∗. Hence
after the blowing-up we come to the original setting. Furthermore,

𝜇(𝐶∗, 𝑝∗) = 2𝛿(𝐶∗, 𝑝∗) − Br(𝐶∗, 𝑝∗) + 1
≤ 2𝛿(𝐶∗, 𝑝∗)
≤ 2∑𝑞∈𝐶∗∩𝐸 𝛿(𝐶∗, 𝑞)
= 2𝛿(𝐶, 𝑝) − 𝑚(𝑚 − 1)
= 𝜇(𝐶, 𝑝) + Br(𝐶, 𝑝) − 1 − 𝑚(𝑚 − 1)
≤ 𝜇(𝐶, 𝑝) + 𝑚 − 1 −𝑚(𝑚 − 1)
< 𝜇(𝐶, 𝑝).
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So we can apply the induction assumption. Observe that mult(𝐹𝑧, 𝑝) = 𝑚 − 1 + 𝑟 for
some 𝑟 ≥ 0. It follows that

(2.6)
(𝑍(𝐹) ⋅ 𝑄)𝑝 = (𝑍(𝐹∗) ⋅ 𝑄∗)𝑝∗ +𝑚,

(𝑍(𝑧𝐹𝑧) ⋅ 𝑄)𝑝 = 1 + (𝑍(𝐹𝑧) ⋅ 𝑄)𝑝 = (𝑍(𝐹𝑧)∗) ⋅ 𝑄∗)𝑝∗ +𝑚+ 𝑟.
Now

𝑧∗(𝐹∗)𝑧∗ = −𝑚𝑧−𝑚∗ 𝐹(𝑦∗𝑧∗, 𝑧∗) + 𝑦∗𝑧1−𝑚∗ 𝐹𝑦(𝑦∗𝑧∗, 𝑧∗) + 𝑧1−𝑚∗ 𝐹𝑧(𝑦∗𝑧∗, 𝑧∗)
= −𝑚𝐹∗(𝑦∗, 𝑧∗) + 𝑦∗(𝐹∗)𝑦∗(𝑦∗, 𝑧∗) + 𝑧𝑟∗(𝐹𝑧)∗(𝑦∗, 𝑧∗).

Finally, the latter formula, the induction assumption, and (2.6) imply

(𝑍(𝑧𝐹𝑧) ⋅ 𝑄)𝑝 = (𝑍((𝐹𝑧)∗) ⋅ 𝑄∗)𝑝∗ +𝑚+ 𝑟
= (𝑍(𝑧𝑟∗(𝐹𝑧)∗) ⋅ 𝑄∗)𝑝∗ +𝑚
≥ min{𝑍(𝑧∗(𝐹∗)𝑧∗) ⋅ 𝑄∗)𝑝∗ , (𝑍(𝐹∗) ⋅ 𝑄∗)𝑝∗ } + 𝑚

(2.4)= (𝑍(𝐹∗) ⋅ 𝑄∗)𝑝∗ } + 𝑚
= (𝑍(𝐹) ⋅ 𝑄)𝑝 . □

Proof of Proposition 2.5. We again assume 𝑝 = (1, 0, 0). Set 𝑑 = deg(𝐹). In the local
affine coordinates 𝑦, 𝑧 (with 𝑥 = 1), Euler’s formula (1.1) becomes

𝑑𝐹(1, 𝑦, 𝑧) = 𝐹𝑥(1, 𝑦, 𝑧) + 𝑦𝐹𝑦(1, 𝑦, 𝑧) + 𝑧𝐹𝑧(1, 𝑦, 𝑧).
Consequently 𝜇(𝐶, 𝑝, 𝐿∞) = (𝑍(𝐹𝑥) ⋅ 𝑍(𝐹𝑦))𝑝 = (𝑍(𝑑𝐹 − 𝑧𝐹𝑧) ⋅ 𝑍(𝐹𝑦))𝑝.
Let ℬ denote the set of local branches of the polar curve 𝐹𝑦 = 0 at 𝑝. Then

𝜇(𝐶, 𝑝, 𝐿∞) = (𝑍(𝑑𝐹 − 𝑧𝐹𝑧) ⋅ 𝑍(𝐹𝑦))𝑝
= ∑𝑄∈ℬ(𝑍(𝑑𝐹 − 𝑧𝐹𝑧) ⋅ 𝑄)𝑝
≥ ∑𝑄∈ℬmin{(𝑍(𝐹) ⋅ 𝑄)𝑝 , (𝑍(𝑧𝐹𝑧) ⋅ 𝑄)𝑝}
= ∑𝑄∈ℬ(𝑍(𝐹) ⋅ 𝑄)𝑝 (by (2.4))
= (𝑍(𝐹) ⋅ 𝑍(𝐹𝑦))𝑝
= 𝜇(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 − 1 (by Lemma 2.6). □

3. 𝐿∞-regular curves
Definition 3.1. Let 𝐶 = 𝑍(𝐹(𝑥, 𝑦, 𝑧)) ⊂ ℙ2 be a reduced plane algebraic curve which
does not contain the line at infinity 𝐿∞ as a component. The curve 𝐶 (or the polyno-
mial 𝐹) is called 𝐿∞-regular if at each point 𝑝 ∈ 𝐶 ∩ 𝐿∞, the formula (2.3) becomes an
equality:

(3.1) 𝜇(𝐶, 𝑝, 𝐿∞) = 𝜇(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 − 1.

In the rest of this section, we provide 𝐿∞-regularity criteria for large classes of plane
curves.
As mentioned in the Introduction, the technical material in this section can be

skipped if the reader is willing to take it on faith and to view the requirement of 𝐿∞-
regularity as a genericity condition that holds in all “nonpathological” examples arising
in common applications.
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Proposition 3.2. Let 𝐶 = 𝑍(𝐹(𝑥, 𝑦, 𝑧)) ⊂ ℙ2 be a reduced algebraic curve of degree 𝑑
which does not contain 𝐿∞ as a component. Assume that the polynomial 𝐹(𝑥, 𝑦, 1) has
𝜉 < ∞ critical points, counted with multiplicities. Then we have

(3.2) 𝜉 ≤ 𝑑2 − 3𝑑 + 1 − ∑
𝑝∈𝐶∩𝐿∞

(𝜇(𝐶, 𝑝) − 1),

with equality if and only if 𝐶 is 𝐿∞-regular.

Proof. In view of Proposition 2.5, we have

(3.3) ∑
𝑝∈𝐶∩𝐿∞

𝜇(𝐶, 𝑝, 𝐿∞) ≥ 𝑑 + ∑
𝑝∈𝐶∩𝐿∞

(𝜇(𝐶, 𝑝) − 1),

with equality if and only if 𝐶 is 𝐿∞-regular. Since 𝐹 has finitely many critical points,
Bézout’s theorem for the polar curves 𝑍(𝐹𝑥) and 𝑍(𝐹𝑦) applies, yielding

(3.4) ∑
𝑝∈𝐶∩𝐿∞

𝜇(𝐶, 𝑝, 𝐿∞) = (𝑑 − 1)2 − 𝜉.

The claim follows. □

Example 3.3. As in Example 1.7, consider the quintic curve 𝐶 = 𝑍(𝐹) defined by the
polynomial

𝐹(𝑥, 𝑦, 𝑧) = (𝑥2 + 𝑧2)(𝑦𝑥2 + 𝑦𝑧2 − 𝑥3) = (𝑥 + 𝑖𝑧)(𝑥 − 𝑖𝑧)(𝑦𝑥2 + 𝑦𝑧2 − 𝑥3).

Set 𝐺(𝑥, 𝑦) = 𝐹(𝑥, 𝑦, 1) = (𝑥2 + 1)(𝑦𝑥2 + 𝑦 − 𝑥3). Then

𝐺𝑥 = 2𝑥(𝑦𝑥2 + 𝑦 − 𝑥3) + (𝑥2 + 1)(2𝑥𝑦 − 3𝑥2) = (𝑥2 + 1)(4𝑥𝑦 − 3𝑥2) − 2𝑥4,
𝐺𝑦 = (𝑥2 + 1)2,

and we see that 𝐺 has no critical points in the complex (𝑥, 𝑦)-plane; thus 𝜉 = 0. Using
the values of Milnor numbers computed in Example 1.7, we obtain:

𝑑2 − 3𝑑 + 1 − ∑
𝑝∈𝐶∩𝐿∞

(𝜇(𝐶, 𝑝) − 1) = 25 − 15 + 1 − (13 − 1) − (0 − 1) = 0.

It follows by Proposition 3.2 that 𝐶 is 𝐿∞-regular. Alternatively, one can check directly
that the equality (3.1) holds at 𝑝1 and 𝑝2.

Recall that the geometric genus of a plane curve 𝐶 is defined by

(3.5) 𝑔(𝐶) = ∑
𝐶′∈𝐂𝐨𝐦𝐩(𝐶)

(𝑔(𝐶′) − 1) + 1,

where𝐂𝐨𝐦𝐩(𝐶) is the set of irreducible components of𝐶, and 𝑔(𝐶′) denotes the genus
of the normalization of a component 𝐶′.

Proposition 3.4. Let 𝐶 = 𝑍(𝐹(𝑥, 𝑦, 𝑧)) ⊂ ℙ2 be a reduced algebraic curve of degree 𝑑.
Suppose that
• 𝐶 does not contain the line at infinity 𝐿∞ as a component;
• all singular points of 𝐶 in the affine (𝑥, 𝑦)-plane ℙ ⧵ 𝐿∞ are ordinary nodes;
• the polynomial 𝐹(𝑥, 𝑦, 1) ∈ ℂ[𝑥, 𝑦] has finitely many critical points.



EXPRESSIVE CURVES 681

Let 𝜈 denote the number of nodes of 𝐶 in the (𝑥, 𝑦)-plane, and let 𝜉 denote the number of
critical points of the polynomial 𝐹(𝑥, 𝑦, 1), counted with multiplicities. Then we have
(3.6) 𝜉 ≤ 2𝑔(𝐶) − 1 + 2𝜈 + ∑

𝑝∈𝐶∩𝐿∞
Br(𝐶, 𝑝),

with equality if and only if 𝐶 is 𝐿∞-regular.
Proof. By Hironaka’s genus formula [22] (cf. also [19, Chapter II, (2.1.4.6)]), we have

(3.7) 𝑔(𝐶) = (𝑑−1)(𝑑−2)
2 − ∑

𝑝∈𝐒𝐢𝐧𝐠(𝐶)
𝛿(𝐶, 𝑝),

where 𝐒𝐢𝐧𝐠(𝐶) denotes the set of singular points of 𝐶. Combining this with Milnor’s
formula (1.3), we obtain:

∑
𝑝∈𝐶∩𝐿∞

(𝜇(𝐶, 𝑝) − 1) = ∑
𝑝∈𝐒𝐢𝐧𝐠(𝐶)

(𝜇(𝐶, 𝑝) − 1)

= ∑
𝑝∈𝐒𝐢𝐧𝐠(𝐶)

(2𝛿(𝐶, 𝑝) − Br(𝐶, 𝑝))

= (𝑑 − 1)(𝑑 − 2) − 2𝑔(𝐶) − 2𝜈 − ∑
𝑝∈𝐶∩𝐿∞

Br(𝐶, 𝑝).

Therefore
𝑑2 − 3𝑑 + 1 − ∑

𝑝∈𝐶∩𝐿∞
(𝜇(𝐶, 𝑝) − 1) = 2𝑔(𝐶) − 1 + 2𝜈 + ∑

𝑝∈𝐶∩𝐿∞
Br(𝐶, 𝑝),

and the claim follows from Proposition 3.2. □

Ournext result (Proposition 3.6) shows that equation (3.1) holds under certain rather
mild local conditions, To state these conditions, we will need to recall some terminol-
ogy and notation.

Definition 3.5 ([18, Definitions I.2.14–I.2.15]). We denote by Γ(𝐺) the Newton dia-
gram of a bivariate polynomial 𝐺, i.e., the union of the edges of the Newton polygon
of 𝐺 which are visible from the origin. The truncation of 𝐺 along an edge 𝑒 of Γ(𝐺) is
the sum of all monomials in 𝐺 corresponding to the integer points in 𝑒.
An isolated singularity of an affine plane curve {𝐺(𝑦, 𝑧) = 0} at the origin is called

Newton nondegenerate (with respect to the local affine coordinates (𝑦, 𝑧)) if the Newton
diagram Γ(𝐺) intersects each of the coordinate axes, and the truncation of 𝐺 along any
edge of the Newton diagram is a quasihomogeneous polynomial without critical points
in (ℂ∗)2.
Proposition 3.6. Let 𝐶 = 𝑍(𝐹(𝑥, 𝑦, 𝑧)) ⊂ ℙ2 be a reduced curve not containing the line
at infinity 𝐿∞ = 𝑍(𝑧) as a component. Let 𝑝 ∈ 𝐶∩𝐿∞. Without loss of generality, assume
that 𝑝 = (1, 0, 0). Suppose that 𝑝 is either a smooth point of 𝐶 or a singular point of 𝐶
such that

the singularity (𝐶, 𝑝) is Newton nondegenerate, in the local coordinates 𝑦, 𝑧;(3.8)
(𝑍(𝑦) ⋅ 𝐶)𝑝 < deg𝐶 = deg 𝐹.(3.9)

Then
(3.10) 𝜇(𝐶, 𝑝, 𝐿∞) = 𝜇(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 − 1.
Thus, if conditions (3.8)–(3.9) hold at every point 𝑝 ∈ 𝐶 ∩ 𝐿∞, then 𝐶 is 𝐿∞-regular.
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Remark 3.7. Althoughwedidnot findProposition 3.6 in the literature, similar results—
proved using similar tools—appeared before, see for example [8].

Proof. If 𝑝 is a smooth point of 𝐶 with the tangent 𝐿 ≠ 𝐿∞, then
𝐹(1, 𝑦, 𝑧) = 𝑎𝑦 + 𝑏𝑧 + h.o.t. (𝑎 ≠ 0),

implying that 𝑝 ∉ 𝑍(𝐹𝑦). The 𝐿∞-regularity follows:
(𝑍(𝐹𝑥) ⋅ 𝑍(𝐹𝑦))𝑝 = 0 = 𝜇(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 − 1.

If 𝐶 is smooth at 𝑝 with the tangent line 𝐿∞, then
𝐹(1, 𝑦, 𝑧) = 𝑎𝑦𝑛 + 𝑏𝑧 + h.o.t. (𝑎𝑏 ≠ 0, 𝑛 > 1),

which implies the Newton nondegeneracy as well as condition (3.9):
(𝑍(𝑦) ⋅ 𝐶)𝑝 = 1 < 𝑛 ≤ deg𝐶 .

Thus, this situation can be viewed as a particular case of the general setting where we
have a singular point 𝑝 satisfying conditions (3.8)–(3.9). We next turn to the treatment
of this setting.
We proceed in two steps. We first consider semi-quasihomogeneous singular points,

and then move to the general case. We set 𝑥 = 1 in a neighborhood of 𝑝 and write
𝐹(𝑦, 𝑧) as a shorthand for 𝐹(1, 𝑦, 𝑧).
(1) Assume that Γ(𝐹) is a segment with endpoints (𝑚, 0) and (0, 𝑛). By the assump-

tions of the lemma,𝑚 ≤ 𝑑 = deg 𝐹 and 𝑛 < 𝑑. The Newton nondegeneracy condition
means that the truncation 𝐹Γ(𝐹) of 𝐹 on Γ(𝐹) is a square-free quasihomogeneous poly-
nomial.
Assuming that 𝑠 = gcd{𝑚, 𝑛},𝑚 = 𝑚1𝑠, 𝑛 = 𝑛1𝑠, we can write

𝐹Γ(𝐹)(𝑦, 𝑧) =
𝑠
∑
𝑘=0

𝑎𝑘𝑦𝑚1𝑘𝑧𝑛1(𝑠−𝑘), where 𝑎0𝑎𝑠 ≠ 0.

Consider the family of polynomials
𝐹𝑡(𝑦, 𝑧) = 𝑡−𝑚𝑛𝐹(𝑦𝑡𝑛, 𝑧𝑡𝑚) = 𝐹Γ(𝐹)(𝑦, 𝑧) + ∑

𝑖𝑛+𝑗𝑚>𝑚𝑛
𝑐𝑖𝑗𝑡𝑖𝑛+𝑗𝑚−𝑚𝑛𝑦𝑖𝑧𝑗 , 𝑡 ∈ [0, 1].

Note that 𝐹0 = 𝐹Γ(𝐹) and the polynomials 𝐹 and 𝐹𝑡, 0 < 𝑡 < 1, differ by a linear
change of the variables. This togetherwith the lower semicontinuity of the intersection
multiplicity implies

(3.11) 𝜇(𝐶, 𝑝, 𝐿∞) = (𝑍(𝐹𝑦) ⋅ 𝑍(𝑑𝐹 − 𝑧𝐹𝑧))𝑝 ≤ (𝑍(𝐹Γ(𝐹)𝑦 ) ⋅ 𝑍(𝑑𝐹Γ(𝐹) − 𝑧𝐹Γ(𝐹)𝑧 ))𝑝 .
Here

𝐹Γ(𝐹)𝑦 =
𝑠
∑
𝑘=1

𝑚1𝑘𝑎𝑘𝑦𝑚1𝑘−1𝑧𝑛1(𝑠−𝑘),

𝑑𝐹Γ(𝐹) − 𝑧𝐹Γ(𝐹)𝑧 =
𝑠
∑
𝑘=0

(𝑑 − 𝑛1(𝑠 − 𝑘))𝑎𝑘𝑦𝑚1𝑘𝑧𝑛1(𝑠−𝑘).(3.12)

Since 𝑎𝑠 ≠ 0 and 𝑛1𝑠 = 𝑛 < 𝑑, these are nonzero polynomials, and moreover 𝐹Γ(𝐹)𝑦
splits into 𝑙1 ≥ 0 factors of type 𝑧𝑛1 + 𝛼𝑦𝑚1 , 𝛼 ≠ 0 and the factor 𝑦𝑚−1−𝑙1𝑚1 , while
𝑧𝐹Γ(𝐹)𝑧 −𝑑𝐹Γ(𝐹) splits into 𝑙2 ≥ 0 factors of type 𝑧𝑛1+𝛽𝑦𝑚1 , 𝛽 ≠ 0, and the factor 𝑧𝑛−𝑙2𝑛1 .
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Observe that the polynomials 𝐹Γ(𝐹)𝑦 and 𝑧𝐹Γ(𝐹)𝑧 − 𝐹Γ(𝐹) are coprime. (Otherwise, they
would have a common factor 𝑧𝑛1 + 𝛾𝑦𝑚1 with 𝛾 ≠ 0, which would also be a divisor of
the polynomial

𝑛1𝑦𝐹Γ(𝐹) +𝑚1(𝑧𝐹Γ(𝐹)𝑧 − 𝑑𝐹Γ(𝐹)) = 𝑚1(𝑛 − 𝑑)𝐹Γ(𝐹).

Then 𝐹Γ(𝐹) and its derivative 𝐹Γ(𝐹)𝑦 would have a common factor, contradicting the
square-freeness of 𝐹Γ(𝐹).) Since

(𝑍(𝑦) ⋅ 𝑍(𝑧))𝑝 = 1,
(𝑍(𝑦) ⋅ 𝑍(𝑧𝑛1 + 𝛽𝑦𝑚1))𝑝 = 𝑛1,
(𝑍(𝑧) ⋅ 𝑍(𝑧𝑛1 + 𝛼𝑦𝑚1))𝑝 = 𝑚1 as 𝛼 ≠ 0,

(𝑍(𝑧𝑛1 + 𝛼𝑦𝑚1) ⋅ 𝑍(𝑧𝑛1 + 𝛽𝑦𝑚1))𝑝 = 𝑚1𝑛1 as 𝛼 ≠ 𝛽,
the right-hand side of (3.11) equals

𝑙1𝑙2 ⋅ (𝑍(𝑧𝑛1 + 𝛼𝑦𝑚1) ⋅ 𝑍(𝑧𝑛1 + 𝛽𝑦𝑚1))𝑝 + 𝑙1(𝑛 − 𝑙2𝑛1) ⋅ (𝑍(𝑧) ⋅ 𝑍(𝑧𝑛1 + 𝛼𝑦𝑚1))𝑝
+ (𝑚 − 1 − 𝑙1𝑚1)𝑙2 ⋅ (𝑍(𝑦) ⋅ 𝑍(𝑧𝑛1 + 𝛽𝑦𝑚1))𝑝 + (𝑚 − 1 − 𝑙1𝑚1) ⋅ (𝑍(𝑦) ⋅ 𝑍(𝑧))𝑝

=(𝑚 − 1)𝑛
=(𝑚 − 1)(𝑛 − 1) + 𝑚 − 1
=𝜇(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 − 1 ,

which together with (2.3) yields the desired equality.
(2) Suppose that Γ(𝐹) consists of 𝑟 ≥ 2 edges 𝜎(1), . . . , 𝜎(𝑟) successively ordered so

that 𝜎(1) touches the axis of exponents of 𝑦 at the point (𝑚, 0), where𝑚 = (𝐶⋅𝐿∞)𝑝, and
𝜎(𝑟) touches the axis of exponents of 𝑧 at the point (0, 𝑛), where 𝑛 = (𝐶 ⋅ 𝑍(𝑦))𝑝 < 𝑑 =
deg 𝐹. By the hypotheses of the lemma, for any edge 𝜎 = 𝜎(𝑖), the truncation 𝐹𝜍(𝑦, 𝑧)
is the product of 𝑦𝑎𝑧𝑏, 𝑎, 𝑏 ≥ 0, and of a quasihomogeneous, square-free polynomial
𝐹𝜍0 , whose Newton polygon Δ(𝐹𝜍0 ) is the segment 𝜎0 with endpoints on the coordinate
axes, obtained from 𝜎 by translation along the vector (−𝑎,−𝑏).
Note that the minimal exponent of 𝑧 in the polynomial 𝑑𝐹(0, 𝑧) − 𝑧𝐹𝑧(0, 𝑧) is 𝑛, and

hence

(3.13) (𝑍(𝐹𝑦) ⋅ 𝑍(𝑑𝐹 − 𝑧𝐹𝑧))𝑝 = (𝑍(𝑦𝐹𝑦) ⋅ 𝑍(𝑑𝐹 − 𝑧𝐹𝑧))𝑝 − 𝑛 .

Next, we note that the Newton diagram Γ(𝑦𝐹𝑦) contains entire edges 𝜎(1), . . . , 𝜎(𝑟−1)
and some part of the edge 𝜎(𝑟), while Γ(𝑑𝐹 − 𝑧𝐹𝑧) = Γ(𝐹), since the monomials of
𝑑𝐹 − 𝑧𝐹𝑧 and of 𝐹 on the Newton diagram Γ(𝐹) are in bijective correspondence, and
the corresponding monomials differ by a nonzero constant factor, cf. (3.12).
By [18, Proposition I.3.4], we can split the polynomial 𝐹 inside the ring ℂ{𝑦, 𝑧} into

the product

𝐹 = 𝜑1 . . . 𝜑𝑟, Γ(𝜑𝑖) = 𝜎(𝑖)0 , 𝜑𝜍
(𝑖)
0

𝑖 = 𝐹𝜍(𝑖)0 , 𝑖 = 1, . . . , 𝑟,
and similarly

𝑑𝐹 − 𝑧𝐹𝑧 = 𝜓1 . . . 𝜓𝑟, Γ(𝜓𝑖) = 𝜎(𝑖)0 , 𝜓𝜍
(𝑖)
0

𝑖 = (𝑑𝐹 − 𝑧𝐹𝑧)𝜍
(𝑖)

0 , 𝑖 = 1, . . . , 𝑟,

𝑦𝐹𝑦 = 𝜃1 . . . 𝜓𝑟, Γ(𝜃𝑖) = 𝜎(𝑖)0 , 𝜃𝜍
(𝑖)
0

𝑖 = (𝑦𝐹𝑦)𝜍
(𝑖)

0 , 𝑖 = 1, . . . , 𝑟 − 1,
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while
𝜃𝜍

(𝑟)
0𝑟 = (𝑦𝐹𝑦)𝜍

(𝑟) ⋅ 𝑧−𝑐

for 𝑐 the minimal exponent of 𝑧 in (𝑦𝐹𝑦)𝜍
(𝑟) . Thus,

(3.14) (𝑍(𝑦𝐹𝑦) ⋅ 𝑍(𝑑𝐹 − 𝑧𝐹𝑧))𝑝 = ∑
1≤𝑖,𝑗≤𝑟

(𝑍(𝜓𝑖) ⋅ 𝑍(𝜃𝑗))𝑝 .

We claim that
(3.15) (𝑍(𝜓𝑖) ⋅ 𝑍(𝜃𝑗))𝑝 = (𝑍(𝜑𝑖) ⋅ 𝑍(𝜃𝑗))𝑝 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑟 .
Having this claim proven, we derive from (3.14) that
(𝑍(𝑦𝐹𝑦) ⋅ 𝑍(𝑑𝐹 − 𝑧𝐹𝑧))𝑝 = ∑

1≤𝑖,𝑗≤𝑟
(𝑍(𝜑𝑖) ⋅ 𝑍(𝜃𝑗))𝑝

= (𝑍(𝑦𝐹𝑦) ⋅ 𝑍(𝐹))𝑝 = (𝑍(𝑦) ⋅ 𝑍(𝐹))𝑝 + (𝑍(𝐹𝑦) ⋅ 𝑍(𝐹))𝑝
= 𝑛 + 𝜘(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 −mult(𝐶, 𝑝)
= 𝑛 + (𝜇(𝐶, 𝑝) + mult(𝐶, 𝑝) − 1) + (𝐶 ⋅ 𝐿∞)𝑝 −mult(𝐶, 𝑝)
= 𝑛 + 𝜇(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 − 1 ,

which completes the proof in view of (3.13).
The equality (3.15) follows from the fact that both sides of the relation depend only

on the geometry of the segments 𝜎(𝑖)0 and 𝜎(𝑗)0 . Suppose that 1 ≤ 𝑖 < 𝑗 ≤ 𝑟. We have
𝜎(𝑖) = [(𝑚′, 0), (0, 𝑛′)], 𝜎(𝑗) = [(𝑚″, 0), (0, 𝑛″)] with 𝑚′

𝑛′ >
𝑚″

𝑛″ . By the Newton-Puiseux
algorithm [18, pp. 165–170], the function 𝜑𝑖(𝑦, 𝑧) (or 𝜓𝑖(𝑦, 𝑧)) splits into the product of
𝑢(𝑦, 𝑧) ∈ ℂ{𝑦, 𝑧}, 𝑢(0, 0) ≠ 0, and 𝑛′ factors of the form

𝑧 − 𝛼𝑦𝑚′/𝑛′ + h.o.t., 𝛼 ≠ 0,
and then by (2.5) we get

(𝑍(𝜑𝑖) ⋅ 𝑍(𝜃𝑗))𝑝 = (𝑍(𝜓𝑖) ⋅ 𝑍(𝜃𝑖))𝑝 = 𝑚″𝑛′.
This holds even for 𝑗 = 𝑟 since the only monomial of 𝜃𝑟(𝑦, 𝑧) that comes into play is
𝛽𝑦𝑚″ , 𝛽 ≠ 0. The case 1 ≤ 𝑗 < 𝑖 ≤ 𝑟 is settled analogously. Now suppose 1 ≤ 𝑖 = 𝑗 ≤ 𝑟.
As we observed in the first part of the proof, the pairs of quasihomogeneous polyno-

mials 𝜑𝜍
(𝑖)
0

𝑖 and 𝜃𝜍
(𝑖)
0

𝑖 , 𝜓𝜍
(𝑖)
𝑜

𝑖 and 𝜃𝜍
(𝑖)
0

𝑖 are coprime (even for 𝑖 = 𝑟!). Then the above
computation yields

(𝑍(𝜑𝑖) ⋅ 𝑍(𝜃𝑖))𝑝 = (𝑍(𝜓𝑖) ⋅ 𝑍(𝜃𝑖))𝑝 = 𝑚′𝑛′ ,

where 𝜎(𝑖)0 = [(𝑚′, 0), (0, 𝑛′)]. □

Example 3.8 shows that condition (3.9) in Proposition 3.6 cannot be removed.

Example 3.8. Consider the cubic 𝐶 = 𝑍(𝑥𝑦2 − 𝑧3 − 𝑦𝑧2) (cf. Remark 2.3). It has a
Newton nondegenerate singular point 𝑝 = (1, 0, 0) ∈ 𝐿∞, an ordinary cusp with the
tangent line 𝐿 = 𝑍(𝑦) ≠ 𝐿∞. Thus (𝐶 ⋅ 𝐿) = 3 = deg(𝐶), so (3.9) fails. Also,

𝜇(𝐶, 𝑝, 𝐿∞) = (𝑍(𝑦2) ⋅ 𝑍(2𝑥𝑦 − 𝑧2))𝑝 = 4,
𝜇(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 − 1 = 2 + 2 − 1 = 3,

so (3.10) fails as well.

For another (more complicated) instance of this phenomenon, see Example 5.11.
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Corollary 3.9. Let 𝐶 = 𝑍(𝐹(𝑥, 𝑦, 𝑧)) ⊂ ℙ2 be a reduced curve not containing the line at
infinity 𝐿∞ = 𝑍(𝑧) as a component. Let 𝐺(𝑥, 𝑦) = 𝐹(𝑥, 𝑦, 1). Assume that the Newton
polygon Δ(𝐺) intersects each of the coordinate axes in points different from the origin,
and the truncation of 𝐺 along any edge of the boundary 𝜕Δ(𝐺) not visible from the origin
is a square-free polynomial, except possibly for factors of the form 𝑥𝑖 or 𝑦𝑗 . Then 𝐶 is
𝐿∞-regular.

Proof. The intersection 𝐶 ∩ 𝐿∞ is determined by the top degree form of 𝐺(𝑥, 𝑦), which
has the form 𝑥𝑖𝑦𝑗𝑓(𝑥, 𝑦), with 𝑓(𝑥, 𝑦) a square-free homogeneous polynomial. Hence
𝐶 ∩ 𝐿∞ consists of the points (0, 1, 0) (if 𝑖 > 0), (1, 0, 0) (if 𝑗 > 0), and deg(𝑓) other
points, atwhich𝐶 is smooth and𝐿∞-regular (see Proposition 3.6). TheNewtondiagram
of each of the points (0, 1, 0) and (1, 0, 0) consists of some edges of 𝜕Δ(𝐺) mentioned
in the lemma, and therefore these points (if they lie on 𝐶) satisfy the requirements of
Proposition 3.6. □

Remark 3.10. A reducible plane curve 𝐶 = 𝑍(𝐹)with 𝐿∞-regular components does not
have to be 𝐿∞-regular. For example, take 𝐹 = (𝑥𝑦−1)(𝑥𝑦−2): each factor is 𝐿∞-regular,
but the product is not, since 𝐹𝑥 and 𝐹𝑦 have a common divisor 2𝑥𝑦 − 3.
Conversely, a curve may be 𝐿∞-regular even when one of its components is not.

For example, let 𝐹 = 𝑥2𝑦 + 𝑥3 + 𝑥2𝑧 + 𝑥𝑧2 + 𝑧3. Then 𝑍((𝑥 − 𝑦)𝐹) is 𝐿∞-regular by
Proposition 3.6. On the other hand, 𝐿∞-regularity of 𝑍(𝐹) fails at 𝑝 = (0, 1, 0): direct
computation yields (𝑍(𝐹𝑥) ⋅ 𝑍(𝐹𝑦))𝑝 = 4, whereas 𝜇(𝑍(𝐹), 𝑝) + (𝑍(𝐹) ⋅ 𝐿∞)𝑝 − 1 = 3.

4. Polynomial and trigonometric curves

In Sections 4 and 5, we introduce several classes of affine (rather than projective)
plane curves. Before we begin, let us clarify what wemean by a real affine plane curve.
There are two different notions here: an algebraic and a topological one:

Definition 4.1. As usual, a reduced real algebraic curve 𝐶 in the complex affine plane
𝔸2 ≅ ℂ2 is the vanishing set

𝐶 = 𝑉(𝐺) = {(𝑥, 𝑦) ∈ ℂ2 ∣ 𝐺(𝑥, 𝑦) = 0}
of a squarefree bivariate polynomial𝐺(𝑥, 𝑦) ∈ ℝ[𝑥, 𝑦] ⊂ ℂ[𝑥, 𝑦]. We view𝐶 as a subset
of 𝔸2, and implicitly identify it with the polynomial 𝐺(𝑥, 𝑦) (viewed up to a constant
nonzero factor), or with the principal ideal generated by it, the ideal of polynomials
vanishing on 𝐶.
Alternatively, one can consider a “topological curve” 𝐶ℝ in the real affine (𝑥, 𝑦)-

plane ℝ2, defined as the set of real points of an algebraic curve 𝐶 as above:

𝐶ℝ = 𝑉ℝ(𝐺) = {(𝑥, 𝑦) ∈ ℝ2 ∣ 𝐺(𝑥, 𝑦) = 0}.
In contrast to the real algebraic curve 𝑉(𝐺) ⊂ ℂ2, the real algebraic set 𝑉ℝ(𝐺)—even
when it is one-dimensional—does not determine the polynomial 𝐺(𝑥, 𝑦) up to a scalar
factor. In other words, an algebraic curve 𝐶 is not determined by the set of its real
points 𝐶ℝ, even when 𝐶ℝ “looks like” an algebraic curve. (Roughly speaking, this is
because 𝐶 can have “invisible” components which either have no real points at all or
all such points are isolated in ℝ2.) There is however a canonical choice, provided 𝐶ℝ
is nonempty and without isolated points: we can let 𝐶 be the Zariski closure of 𝐶ℝ,
or equivalently let 𝐺(𝑥, 𝑦) be the minimal polynomial of 𝐶ℝ, a real polynomial of the
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smallest possible degree satisfying 𝑉ℝ(𝐺) = 𝐶ℝ. (The minimal polynomial is defined
up to a nonzero real factor.)

Throughout this paper, we switch back and forth between a projective curve
𝑍(𝐹(𝑥, 𝑦, 𝑧)) and its affine counterpart𝑉(𝐺(𝑥, 𝑦)), where𝐺(𝑥, 𝑦) = 𝐹(𝑥, 𝑦, 1). (Remem-
ber that the line at infinity 𝐿∞ = 𝑍(𝑧) = ℙ2 ⧵ 𝔸2 is fixed throughout.) For example, we
say that 𝑉(𝐺) is 𝐿∞-regular if and only if 𝑍(𝐹) is 𝐿∞-regular, cf. Definition 3.1.
Definition 4.2. Let 𝐶 be a complex curve in the affine (𝑥, 𝑦)-plane. We say that 𝐶 is a
polynomial curve if it has a polynomial parametrization, i.e., if there exist polynomials
𝑋(𝑡), 𝑌(𝑡) ∈ ℂ[𝑡] such that the map 𝑡 ↦ (𝑋(𝑡), 𝑌(𝑡)) is a (birational, i.e., generically
one-to-one) parametrization of 𝐶.
A projective algebraic curve 𝐶 = {𝐹(𝑥, 𝑦, 𝑧) = 0} ⊂ ℙ2 is called polynomial if 𝐶 does

not contain the line at infinity 𝐿∞ = {𝑧 = 0}, and the portion of 𝐶 contained in the
affine (𝑥, 𝑦)-plane (i.e., the curve {𝐹(𝑥, 𝑦, 1) = 0}) is an affine polynomial curve.
Remark 4.3. Not every polynomial map defines a polynomial parametrization. For
example, 𝑡 ↦ (𝑡2 − 𝑡, 𝑡4 − 2𝑡3 + 𝑡) is not a polynomial (or birational) parametrization,
since it is not generically one-to-one: (𝑋(𝑡), 𝑌(𝑡)) = (𝑋(1 − 𝑡), 𝑌(1 − 𝑡)).
Example 4.4. The cubic 𝑦2 = 𝑥2(𝑥 − 1) is a real polynomial curve, with a polynomial
parametrization 𝑡 ↦ (𝑡2 + 1, 𝑡(𝑡2 + 1)). Note that this curve has an elliptic node (0, 0),
attained for imaginary parameter values 𝑡 = ±√−1.
Example 4.5. The “witch of Agnesi” cubic 𝑥2𝑦 + 𝑦 − 1 is rational but not polynomial.
Indeed, if 𝑋(𝑡) is a positive-degree polynomial in 𝑡, then 𝑌(𝑡) = 1

(𝑋(𝑡))2+1 is not.

Example 4.6 (Irreducible Chebyshev curves). Recall that the Chebyshev polynomials
of the first kind are the univariate polynomials 𝑇𝑎(𝑥) (here 𝑎 ∈ ℤ>0) defined by
(4.1) 𝑇𝑎(cos 𝜑) = cos(𝑎𝜑).
The polynomial 𝑇𝑎(𝑥) has integer coefficients, and is an even (resp., odd) function of 𝑥
when 𝑎 is even (resp., odd). We note that 𝑇𝑎(𝑇𝑏(𝑡)) = 𝑇𝑏(𝑇𝑎(𝑡)) = 𝑇𝑎𝑏(𝑡).
Let 𝑎 and 𝑏 be coprime positive integers. TheChebyshev curvewith parameters (𝑎, 𝑏)

is given by the equation
(4.2) 𝑇𝑎(𝑥) + 𝑇𝑏(𝑦) = 0.
It is not hard to see that this curve is polynomial; let us briefly sketch why. (For a
detailed exposition, see [15, Section 3.9].) Without loss of generality, let us assume
that 𝑎 is odd. Then the (𝑎, 𝑏)-Chebyshev curve has a polynomial parametrization 𝑡 ↦
(−𝑇𝑏(𝑡), 𝑇𝑎(𝑡)). Indeed, 𝑇𝑎(−𝑇𝑏(𝑡)) + 𝑇𝑏(𝑇𝑎(𝑡)) = −𝑇𝑎𝑏(𝑡) + 𝑇𝑎𝑏(𝑡) = 0.
To illustrate, consider the Chebyshev curves with parameters (3, 2) and (3, 4) shown

in Figure 5. The (3, 2)-Chebyshev curve is a nodal Weierstrass cubic
(4.3) 4𝑥3 − 3𝑥 + 2𝑦2 − 1 = 0,
or parametrically 𝑡 ↦ (−2𝑡2 +1, 4𝑡3 −3𝑡). The (3, 4)-Chebyshev curve (see Figure 5) is
a quartic given by the equation
(4.4) 4𝑥3 − 3𝑥 + 8𝑦4 − 8𝑦2 + 1 = 0,
or by the polynomial parametrization 𝑡 ↦ (−8𝑡4 + 8𝑡2 − 1, 4𝑡3 − 3𝑡).
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Figure 5. The Chebyshev curves with parameters (3, 2) and (3, 4)

Lemma 4.7. For a real plane algebraic curve 𝐶, the following are equivalent:
(1) 𝐶 is polynomial;
(2) 𝐶 has a parametrization 𝑡 ↦ (𝑋(𝑡), 𝑌(𝑡)) with 𝑋(𝑡), 𝑌(𝑡) ∈ ℝ[𝑡];
(3) 𝐶 is rational, with a unique local branch at infinity.

Proof. The equivalence (1)⇔(3) (for complex curves) is well known; see, e.g., [1]. The
implication (2)⇒(1) is obvious. It remains to show that (3)⇒(2). The local branch of
𝐶 at infinity must by real, since otherwise complex conjugation would yield another
such branch. Consequently, the set of real points of 𝐶 has a one-dimensional con-
nected component which contains the unique point 𝑝 ∈ 𝐶 ∩ 𝐿∞. It follows that the
normalization map 𝑛 ∶ ℙ1 → 𝐶 ↪ ℙ2 (which is nothing but a rational parametriza-
tion of 𝐶) pulls back the complex conjugation on 𝐶 to the antiholomorphic involution
𝑐 ∶ ℙ1 → ℙ1 which is a reflection with a fixed point set Fix(𝑐) ≃ 𝑆1, and 𝑝 lifts to a
point in Fix(𝑐). (There is another possible antiholomorphic involution on ℙ1, the an-
tipodal one, corresponding to real plane curves with a finite real point set.) Thus, we
can choose coordinates (𝑡0, 𝑡1) on ℙ1 so that 𝑐(𝑡0, 𝑡1) = (𝑡0, 𝑡1) and the preimage of 𝑝 is
(0, 1). Hence the map 𝑛 can be expressed as

𝑥 = 𝑋(𝑡0, 𝑡1), 𝑦 = 𝑌(𝑡0, 𝑡1), 𝑧 = 𝑡𝑑0 ,
where (𝑡0, 𝑡1) ∈ ℙ1, 𝑋 and 𝑌 are bivariate homogeneous polynomials of degree 𝑑 =
deg𝐶, and by construction

𝑥 = 𝑋(𝑡0, 𝑡1), 𝑦 = 𝑌(𝑡0, 𝑡1),
which means that 𝑋 and 𝑌 have real coefficients. □

Recall that a trigonometric polynomial is a finite linear combination of functions of
the form 𝑡 ↦ sin(𝑘𝑡) and/or 𝑡 ↦ cos(𝑘𝑡), with 𝑘 ∈ ℤ≥0.
Definition 4.8. We say that a real algebraic curve 𝐶 in the affine (𝑥, 𝑦)-plane is a
trigonometric curve if there exist real trigonometric polynomials 𝑋(𝑡) and 𝑌(𝑡) such
that 𝑡 ↦ (𝑋(𝑡), 𝑌(𝑡)) is a parametrization of 𝐶ℝ, the set of real points of 𝐶, generically
one-to-one for 𝑡 ∈ [0, 2𝜋).
A projective real algebraic curve 𝐶 = {𝐹(𝑥, 𝑦, 𝑧) = 0} ⊂ ℙ2 is called trigonometric if

𝐶 does not contain the line at infinity 𝐿∞ = {𝑧 = 0}, and the portion of 𝐶 contained in
the affine (𝑥, 𝑦)-plane is an affine trigonometric curve.
Remark 4.9. Not every trigonometric map gives a trigonometric parametrization. For
example, 𝑡 ↦ (cos(𝑡), cos(2𝑡)) is not a trigonometric parametrization of its image (a
segment of the parabola 𝑦=2𝑥2−1), since it is not generically one-to-one on [0, 2𝜋).
Example 4.10. The most basic example of a trigonometric curve is the circle 𝑡 ↦
(cos(𝑡), sin(𝑡)), or more generally an ellipse

𝑡 ↦ (𝐴 cos(𝑡), 𝐵 sin(𝑡)) (𝐴, 𝐵 ∈ ℝ>0).
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Example 4.11 (Lissajous curves). Let 𝑘 and ℓ be coprime positive integers, with ℓ odd.
The Lissajous curvewith parameters (𝑘, ℓ) is a trigonometric curve defined by the para-
metrization

𝑡 ↦ (cos(ℓ𝑡), sin(𝑘𝑡)).
The algebraic equation for this curve is
(4.5) 𝑇2𝑘(𝑥) + 𝑇2ℓ(𝑦) = 0,
cf. (4.1). (Indeed, 𝑇2𝑘(cos(ℓ𝑡)) + 𝑇2ℓ(cos(𝜋2 − 𝑘𝑡)) = cos(2𝑘ℓ𝑡) + cos(ℓ𝜋 − 2𝑘ℓ𝑡) = 0.)
Note that (4.5) looks exactly like (4.2), except that now the indices 2𝑘 and 2ℓ are not
coprime (although 𝑘 and ℓ are).
To illustrate, the (2, 3)-Lissajous curve is given by the equation

(4.6) 8𝑥4 − 8𝑥2 + 1 + 32𝑦6 − 48𝑦4 + 18𝑦2 − 1 = 0,
or by the trigonometric parametrization
(4.7) 𝑡 ↦ (cos(3𝑡), sin(2𝑡)).
Several Lissajous curves, including this one, are shown in Figure 6.

Figure 6. The Lissajous curves with parameters (2, 1), (3, 1), (2, 3),
and (4, 3)

Example 4.12 (Rose curves). A rose curve with parameter 𝑞 = 𝑎
𝑏 ∈ ℚ>0 is defined

in polar coordinates by 𝑟 = cos(𝑞𝜃), 𝜃 ∈ [0, 2𝜋𝑏). While a general rose curve has a
complicated singularity at the origin, it becomes nodal when 𝑞 = 1

2𝑘+1 , with 𝑘 ∈ ℤ>0.
In that case, we get a “multi-limaçon,” defined in polar coordinates by 𝑟 = cos( 𝜃

2𝑘+1 ),
or equivalently by
(4.8) 𝑟𝑇2𝑘+1(𝑟) − 𝑥 = 0.
Note that the left-hand side of (4.8) is a polynomial in 𝑟2 = 𝑥2+𝑦2, so it is an algebraic
equation in 𝑥 and 𝑦. This is a trigonometric curve, with a trigonometric parametriza-
tion given by

𝑡 ↦ (cos(𝑘𝑡) + cos((𝑘 + 1)𝑡)
2 , sin(𝑘𝑡) + sin((𝑘 + 1)𝑡)

2 ).

The cases 𝑘 = 1, 2, 3 are shown in Figure 7.
In the special case 𝑘 = 1, we get 𝑟𝑇3(𝑟) = 4𝑟4 − 3𝑟2, and equation (4.8) becomes

(4.9) 4(𝑥2 + 𝑦2)2 − 3(𝑥2 + 𝑦2) − 𝑥 = 0.
This quartic curve is one of the incarnations of the limaçon of Étienne Pascal.

Lemma 4.13. For a real plane algebraic curve 𝐶, the following are equivalent:
(1) 𝐶 is trigonometric;
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Figure 7. The rose curves 𝑟 = cos(𝜃3 ) (cf. (4.9)), 𝑟 = cos(𝜃5 ), and 𝑟 = cos(𝜃7 )

(2) there exist polynomials 𝑃(𝜑), 𝑄(𝜑) ∈ ℂ[𝜑] such that the map ℂ∗ → 𝔸2 given by

(4.10) 𝜑⟼ (𝑃(𝜑) + 𝑃(𝜑−1), 𝑄(𝜑) + 𝑄(𝜑−1))

is a birational parametrization of 𝐶.
(3) 𝐶 is rational, with two complex conjugate local branches at infinity and with an infi-

nite real point set.

Proof. (1) ⇒ (2) The correspondence 𝑡 ↔ 𝜑 = exp(𝑡√−1) establishes a bianalytic
isomorphism between (0, 2𝜋) and 𝑆1 ⧵ {1}. (Here 𝑆1 = {|𝜑| = 1} ⊂ ℂ.) Under this
correspondence, we have

(4.11) 𝑎 cos(𝑘𝑡) + 𝑏 sin(𝑘𝑡) = 𝑎−𝑏√−1
2 𝜑𝑘 + 𝑎+𝑏√−1

2 𝜑−𝑘 (𝑎, 𝑏 ∈ ℝ),

so any trigonometric polynomial in 𝑡 transforms into a Laurent polynomial in 𝜑 of
the form 𝑃(𝜑) + 𝑃(𝜑−1). Thus a trigonometric parametrization of a curve 𝐶 yields its
parametrization of the form (4.10); this parametrization is generically one-to-one along
𝑆1 and therefore extends to a birational map ℙ1 → 𝐶.

(2) ⇒ (1) A parametrization (4.10) of a curve 𝐶 sends the circle 𝑆1 generically
one-to-one to 𝐶ℝ, the real point set of 𝐶, see the formula (4.11). The same formula
(4.11) converts the parametrization (4.10) restricted to the circle 𝑆1 into a trigonomet-
ric parametrization 𝑡 ∈ [0, 2𝜋) ↦ (𝑋(𝑡), 𝑌(𝑡)) of 𝐶ℝ.

(2) ⇒ (3) A parametrization (4.10) intertwines the standard real structure in ℙ2

and the real structure defined by the involution 𝑐(𝜑) = 𝜑−1 on ℂ ⧵ {0}. Thus, it takes
the set 𝑆1 = Fix(𝑐) to the set 𝐶ℝ of real points of 𝐶, while the conjugate points 𝜑 = 0
and 𝜑 = ∞ of ℙ1 go to the points of 𝐶 at infinity determining two complex conjugate
local branches at infinity.

(3) ⇒ (2) Assuming (3), the normalization map 𝑛 ∶ ℙ1 → 𝐶 pulls back the stan-
dard complex conjugation in ℙ2 to the standard complex conjugation on ℙ1, while the
circle ℝℙ1 maps to the one-dimensional connected component of 𝐶ℝ, and some com-
plex conjugate points 𝛼, 𝛼 ∈ ℙ1 go to infinity. The automorphism of ℙ1 defined by

𝜑 = 𝑠 − 𝛼
𝑠 − 𝛼

takes the points 𝑠 = 𝛼 and 𝑠 = 𝛼 to 0 and ∞, respectively, the circle ℝℙ1 to the cir-
cle 𝑆1, and the standard complex conjugation to the involution 𝑐, see above. Hence the
parametrization 𝑛 ∶ ℙ1 → 𝐶 goes to a parametrization (4.10). □
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Lemma 4.14. Let 𝐶 be a real polynomial (resp., trigonometric) nodal plane curve, with
a parametrization {(𝑋(𝑡), 𝑌(𝑡))} as in Definition 4.2 (resp., Definition 4.8). Assume that
𝐶 has no elliptic nodes. Then 𝐶ℝ = {(𝑋(𝑡), 𝑌(𝑡)) ∣ 𝑡 ∈ ℝ}.
Proof. This lemma follows from the well known fact (see, e.g., [25, Proposition 1.9])
that the real point set of a real nodal rational curve 𝐶 in ℝℙ2 is the disjoint union of a
circle ℝℙ1 generically immersed in ℝℙ2 and a finite set of elliptic nodes. □

If we allow elliptic nodes, the conclusion of Lemma 4.14 can fail, cf. Example 4.4.
Recall that an irreducible nodal plane curve of degree 𝑑 has atmost (𝑑−1)(𝑑−2)2 nodes,

with the upper bound only attained for rational curves. In the case of trigonometric
or polynomial curves, maximizing the number of nodes has direct geometric conse-
quences:

Proposition 4.15 (G. Ishikawa [23, Proposition 1.4]). Let 𝐶 be a trigonometric curve of
degree 𝑑 with (𝑑−1)(𝑑−2)

2 real hyperbolic nodes. Then 𝐶 has no inflection points.

Proposition 4.16. A (complex) plane polynomial curve of degree𝑑with (𝑑−1)(𝑑−2)
2 nodes

has no inflection points.

Proof. By Hironaka’s genus formula (3.7), the projective closure ̂𝐶 of 𝐶 has a single
smooth point 𝑝 on 𝐿∞, with ( ̂𝐶 ⋅𝐿∞)𝑝 = 𝑑. We then determine the number of inflection
points of 𝐶 (in the affine plane) using Plücker’s formula (see, e.g., [35, Chapter IV,
Sections 6.2–6.3]):

2𝑑(𝑑 − 2) − (𝑑 − 2) − 6 ⋅ (𝑑−1)(𝑑−2)2 = 0. □

Example 4.17. The curve
(4.12) 𝑡 ↦ (cos((𝑘 − 1)𝑡) + 𝑎 cos(𝑘𝑡), sin((𝑘 − 1)𝑡) − 𝑎 sin(𝑘𝑡))
is a trigonometric curve of degree 𝑑 = 2𝑘. (It is a special kind of hypotrochoid, cf.
Definition 7.12.) For suitably chosen real values of 𝑎, this curve has (𝑑−1)(𝑑−2)

2 = (𝑘 −
1)(2𝑘 − 1) real hyperbolic nodes, as in Proposition 4.15. See Figures 8 and 9.
In the special case 𝑘 = 1 illustrated in Figure 8, we get a three-petal hypotrochoid,

a quartic trigonometric curve with 3 nodes given by the parametrization
(4.13) 𝑡 ↦ (cos(𝑡) + 𝑎 cos(2𝑡), sin(𝑡) − 𝑎 sin(2𝑡)),
or by the algebraic equation
(4.14) 𝑎2(𝑥2 + 𝑦2)2 + (−2𝑎4 + 𝑎2 + 1)(𝑥2 + 𝑦2) + (𝑎2 − 1)3 − 2𝑎𝑥3 + 6𝑎𝑥𝑦2 = 0.

5. Expressive curves and polynomials

Definition 5.1. Let 𝐺(𝑥, 𝑦) ∈ℝ[𝑥, 𝑦] ⊂ℂ[𝑥, 𝑦] be a polynomial with real coefficients.
Let 𝐶 = 𝑉(𝐺) be the corresponding affine algebraic curve, and let 𝐶ℝ = 𝑉ℝ(𝐺) be the
set of its real points, see Definition 4.1. We say that 𝐺(𝑥, 𝑦) is an expressive polynomial
(resp., 𝐶 is an expressive curve) if
• all critical points of 𝐺 (viewed as a polynomial in ℂ[𝑥, 𝑦]) are real;
• all critical points of 𝐺 are Morse (i.e., have nondegenerate Hessians);
• each bounded component of ℝ2 ⧵ 𝐶ℝ contains exactly one critical point of 𝐺;
• each unbounded component of ℝ2 ⧵ 𝐶ℝ contains no critical points;
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Figure 8. Three-petal hypotrochoids (4.13), with 𝑎 = 3
4 (left) and

𝑎 = 2 (right)

Figure 9. Five-petal hypotrochoids {(cos(2𝑡) + 𝑎 cos(3𝑡), sin(2𝑡) −
𝑎 sin(3𝑡))}, with 𝑎 = 5

6 (left) and 𝑎 = 2 (right). Each is a trigonometric
curve of degree 𝑑=6, with (𝑑−1)(𝑑−2)

2 = 10 nodes.

• 𝐶ℝ is connected, and contains at least two (hence infinitely many) points.

Remark 5.2. Let𝐺(𝑥, 𝑦) be a real polynomial with realMorse critical points. Then each
double point of 𝑉ℝ(𝐺)must be a critical point of 𝐺 (a saddle). Also, each bounded con-
nected component ofℝ2⧵𝑉ℝ(𝐺)must contain at least one critical point (an extremum).
Thus, for𝐺 to be expressive, it must have the smallest possible number of complex crit-
ical points that is allowed by the topology of 𝑉ℝ(𝐺): a saddle at each double point, one
extremum within each bounded component of ℝ2 ⧵ 𝑉ℝ(𝐺), and nothing else.

Example 5.3. The following quadratic polynomials are expressive:
• 𝐺(𝑥, 𝑦) = 𝑥2 − 𝑦 has no critical points;
• 𝐺(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 1 has one critical point (0, 0) (a minimum) lying inside the
unique bounded component of ℝ2 ⧵ 𝑉ℝ(𝐺);

• 𝐺(𝑥, 𝑦) = 𝑥2 − 𝑦2 has one critical point (0, 0) (a saddle), a hyperbolic node.
The following quadratic polynomials are not expressive:
• 𝐺(𝑥, 𝑦) = 𝑥2 − 𝑦2 − 1 has a critical point (0, 0) in an unbounded component of
ℝ2 ⧵ 𝑉ℝ(𝐺); besides, 𝑉ℝ(𝐺) is not connected;

• 𝐺(𝑥, 𝑦) = 𝑥2 + 𝑦2 has 𝑉ℝ(𝐺) consisting of a single point;
• 𝐺(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 1 has 𝑉ℝ(𝐺) = ∅;
• 𝐺(𝑥, 𝑦) = 𝑥2 − 1 and 𝐺(𝑥, 𝑦) = 𝑥2 have non-Morse critical points.

Lemma 5.4. Let 𝐺(𝑥, 𝑦) be an expressive polynomial. Then:
• 𝐺 is squarefree (i.e., not divisible by a square of a nonscalar polynomial);
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• 𝐺 has finitely many critical points, all of them real;
• each critical point of 𝐺 is either a saddle or an extremal point;
• all saddle points of 𝐺 lie on 𝑉ℝ(𝐺); they are precisely the singular points of 𝑉(𝐺);
• each bounded connected component of ℝ2 ⧵ 𝑉ℝ(𝐺) is simply connected.

Proof. As the critical points of𝐺 are real andMorse, each of them is either a saddle or a
local (strict) extremumof𝐺, viewed as a functionℝ → ℝ. The extremamust be located
outside 𝐶ℝ, one per bounded connected component of ℝ2 ⧵ 𝐶ℝ. The saddles must lie
on 𝐶ℝ, so they are precisely the double points of it. We conclude that 𝐺 has finitely
many critical points. Consequently 𝐺 is squarefree. Finally, since 𝐶ℝ is connected,
each bounded component of ℝ2 ⧵ 𝐶ℝ must be simply connected. □

Definition 5.1 naturally extends to homogeneous polynomials in three variables,
and to algebraic curves in the projective plane:

Definition 5.5. Let 𝐹(𝑥, 𝑦, 𝑧) ∈ ℝ[𝑥, 𝑦, 𝑧] ⊂ ℂ[𝑥, 𝑦, 𝑧] be a homogeneous polynomial
with real coefficients, and 𝐶=𝑍(𝐹) the corresponding projective algebraic curve. As-
sume that 𝐹(𝑥, 𝑦, 𝑧) is not divisible by 𝑧. (In other words, 𝐶 does not contain the line at
infinity 𝐿∞.) We call 𝐹 and 𝐶 expressive if the bivariate polynomial 𝐹(𝑥, 𝑦, 1) is expres-
sive in the sense of Definition 5.1, or equivalently the affine curve𝐶⧵𝐿∞ ⊂ 𝔸2 = ℙ2⧵𝐿∞
is expressive.

In the rest of this section, we examine examples of expressive and nonexpressive
curves and polynomials.

Example 5.6 (Conics). Among real conics (cf. Example 5.3), a parabola, an ellipse,
and a pair of crossing real lines are expressive, whereas a hyperbola, a pair of parallel
(or identical) lines, and a pair of complex conjugate lines (an elliptic node) are not.

Example 5.7. Let 𝑓1(𝑥), 𝑓2(𝑥) ∈ ℝ[𝑥] be two distinct real univariate polynomials of
degrees ≤ 𝑑 such that 𝑓1 − 𝑓2 has 𝑑 distinct real roots. (Thus, at least one of 𝑓1, 𝑓2 has
degree 𝑑.) We claim that the polynomial

𝐺(𝑥, 𝑦) = (𝑓1(𝑥) − 𝑦)(𝑓2(𝑥) − 𝑦)
is expressive. To prove this, we first introduce some notation. Let 𝑥1, . . . , 𝑥𝑑 be the
roots of 𝑓1 − 𝑓2, and let 𝑧1, . . . , 𝑧𝑑−1 be the roots of its derivative 𝑓′1 − 𝑓′2 ; they are also
real and distinct, by Rolle’s theorem. The critical points of 𝐺 satisfy

𝐺𝑥(𝑥, 𝑦) = 𝑓′1 (𝑥)(𝑓2(𝑥) − 𝑦) + (𝑓1(𝑥) − 𝑦)𝑓′2(𝑥) = 0,
𝐺𝑦(𝑥, 𝑦) = −𝑓1(𝑥) − 𝑓2(𝑥) + 2𝑦 = 0.

It is straightforward to see that these equations have 2𝑑 − 1 solutions: 𝑑 hyperbolic
nodes (𝑥𝑘, 𝑓1(𝑥𝑘)) = (𝑥𝑘, 𝑓2(𝑥𝑘)), for 𝑘 = 1, . . . , 𝑑, as well as 𝑑 − 1 extrema at the
points (𝑧𝑘, 12 (𝑓1(𝑧𝑘) + 𝑓2(𝑧𝑘)), for 𝑘 = 1, . . . , 𝑑 − 1. The conditions of Definition 5.1 are
now easily verified. (Alternatively, use the coordinate change (𝑥, ̃𝑦) = (𝑥, 𝑦 − 𝑓1(𝑥)) to
reduce the problem to the easy case when one of the two polynomials is 0.)

Example 5.8 (Lemniscates). The lemniscate of Huygens (or Gerono) is given by the
equation 𝑦2 + 4𝑥4 − 4𝑥2 = 0, or by the parametrization 𝑡 ↦ (cos(𝑡), sin(2𝑡)). This
curve, shown in Figure 6 on the far left, is a Lissajous curve with parameters (2, 1), cf.
Example 4.11. The polynomial𝐺(𝑥, 𝑦) = 𝑦2+4𝑥4−4𝑥2 has three real critical points: a
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saddle at the hyperbolic node (0, 0), plus two extrema (± 1
√2
, 0) inside the two bounded

connected components of ℝ2 ⧵ 𝑉ℝ(𝐺). Thus, this lemniscate is expressive.
By contrast, another quartic curve with a similar name (and a similar-looking set of

real points), the lemniscate of Bernoulli
(5.1) (𝑥2 + 𝑦2)2 − 2𝑥2 + 2𝑦2 = 0,
is not expressive, as the polynomial 𝐺(𝑥, 𝑦) = (𝑥2 +𝑦2)2 −2𝑥2 +2𝑦2 has critical points
(0, ±𝑖) outside ℝ2.

Many more examples of expressive and nonexpressive polynomials (or curves) are
given in Tables 1 and 2, and later in the paper.

Remark 5.9. Definition 5.1 can be generalized to allow arbitrary “hyperbolic” singular
points, i.e., isolated real singular points all of whose local branches are real.

Remark 5.10. In can be verified by an exhaustive case-by-case analysis that every ex-
pressive curve of degree 𝑑 ≤ 4 is 𝐿∞-regular. Starting with 𝑑 ≥ 5, this is no longer the
case, cf. Example 5.11: an expressive curve 𝐶 need not be 𝐿∞-regular, even when 𝐶 is
rational. Still, examples like this one are rare.

Example 5.11. Consider the real rational quintic curve 𝐶 parametrized by
𝑥 = 𝑡2, 𝑦 = 𝑡−1 + 𝑡−2 − 𝑡−3.

The set of its real points in the (𝑥, 𝑦)-plane consists of two interval components cor-
responding to the negative and positive values of 𝑡, respectively. These components
intersect at the point (1, 1), attained for 𝑡 = 1 and 𝑡 = −1. The algebraic equation of 𝐶
is obtained as follows:

𝑦 − 𝑥−1 = 𝑡−1 − 𝑡−3,
(𝑦 − 𝑥−1)2 = 𝑡−2 − 2𝑡−4 + 𝑡−6 = 𝑥−1 − 2𝑥−2 + 𝑥−3,
𝑥3𝑦2 − 2𝑥2𝑦 − 𝑥2 + 3𝑥 − 1 = 0.

The Newton triangle of 𝐶 is conv{(0, 0), (3, 2), (2, 0)}, which means that
• at the point 𝑝1 = (1, 0, 0), the curve 𝐶 has a type 𝐴2 (ordinary cusp) singularity,
tangent to the axis 𝑦 = 0;

• at the point 𝑝2 = (0, 1, 0), the curve 𝐶 has a type 𝐸8 singularity, tangent to the axis
𝑥 = 0.

In projective coordinates, we have 𝐶 = 𝑍(𝐹) where
𝐹 = 𝑥3𝑦2 − 2𝑥2𝑦𝑧2 − 𝑥2𝑧3 + 3𝑥𝑧4 − 𝑧5,
𝐹𝑥 = 3𝑥2𝑦2 − 4𝑥𝑦𝑧2 − 2𝑥𝑧3 + 3𝑧4,
𝐹𝑦 = 2𝑥3𝑦 − 2𝑥2𝑧2.

It is now easy to check that the only critical point of 𝐹(𝑥, 𝑦, 1) is the hyperbolic node
(1, 1) discussed above. It follows that the curve 𝐶 is expressive.
We next examine the behaviour of the polar curves at infinity. In a neighborhood of

the point 𝑝2 = (0, 1, 0), we set 𝑦 = 1 and obtain
𝐹𝑥 = 3𝑥2 − 4𝑥𝑧2 − 2𝑥𝑧3 + 3𝑧4,
𝐹𝑦 = 2𝑥3 − 2𝑥2𝑧2.
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Table 1. Expressive and nonexpressive conics and cubics. Unless
specified otherwise, lines are placed so as to maximize the number of
crossings.

expressive conics
𝐺(𝑥, 𝑦) real curve 𝑉ℝ(𝐺) critical points
𝑥2 − 𝑦 parabola none
𝑥2 − 𝑦2 two lines saddle
𝑥2 + 𝑦2 − 1 ellipse extremum

nonexpressive conics
𝐺(𝑥, 𝑦) real point set 𝑉ℝ(𝐺) why not expressive?
𝑥2 − 𝑦2 − 1 hyperbola saddle in an unbounded region
𝑥2 + 𝑦2 + 1 imaginary ellipse 𝑉ℝ(𝐺) is empty
𝑥2 + 𝑦2 elliptic node 𝑉ℝ(𝐺) is a single point
𝑥2 + 𝑎 (𝑎 ∈ ℝ) two parallel lines critical points are not Morse

expressive cubics
𝐺(𝑥, 𝑦) real point set 𝑉ℝ(𝐺) critical points
𝑥3 − 𝑦 cubic parabola none
(𝑥2 − 𝑦)𝑥 parabola and its axis single saddle
𝑥3 − 3𝑥 + 2 − 𝑦2 nodal Weierstrass cubic one saddle, one extremum
(𝑥 − 1)𝑥𝑦 two parallel lines + line two saddles
(𝑥2 − 𝑦)(𝑦 − 1) parabola + line two saddles, one extremum
(𝑥 + 𝑦 − 1)𝑥𝑦 three lines three saddles, one extremum
(𝑥2 + 𝑦2 − 1)𝑥 ellipse + line two saddles, two extrema

nonexpressive cubics
𝐺(𝑥, 𝑦) real point set 𝑉ℝ(𝐺) why not expressive?
𝑥3 − 𝑦2 semicubic parabola critical point is not Morse
𝑥3 − 3𝑥 − 𝑦2 two-component elliptic curve saddle in an unbounded region
𝑥3 − 3𝑥 + 3 − 𝑦2 one-component elliptic curve saddle in an unbounded region
𝑥3 + 3𝑥 − 𝑦2 one-component elliptic curve two nonreal critical points
𝑥3 + 𝑥𝑦2 + 4𝑥𝑦 + 𝑦2 oblique strophoid two nonreal critical points
𝑥2𝑦 − 𝑥2 + 2𝑦2 Newton’s species #54 two nonreal critical points
𝑦𝑥2 − 𝑦2 − 𝑥𝑦 + 𝑥2 Newton’s species #51 two nonreal critical points
𝑥3 + 𝑦3 + 1 Fermat cubic critical point is not Morse
𝑥3 + 𝑦3 − 3𝑥𝑦 folium of Descartes two nonreal critical points
𝑥2𝑦 + 𝑦 − 𝑥 serpentine curve two nonreal critical points
𝑥2𝑦 + 𝑦 − 1 witch of Agnesi two nonreal critical points
𝑥2𝑦 double line + line critical points are not Morse
𝑥(𝑥2 − 𝑦2) three concurrent lines critical point is not Morse
(𝑥2 − 𝑦2 − 1)𝑦 hyperbola + line two nonreal critical points
(𝑥𝑦 − 1)𝑥 hyperbola + asymptote 𝑉ℝ(𝐺) is not connected

The curve 𝑍(𝐹𝑥) has two smooth local branches at 𝑝2, quadratically tangent to the
axis 𝑍(𝑥); the curve 𝑍(𝐹𝑦) has the double component 𝑍(𝑥) and a smooth local branch
quadratically tangent to 𝑍(𝑥). Thus the intersection multiplicity is

(𝑍(𝐹𝑥) ⋅ 𝑍(𝐹𝑦))𝑝2 = 12 > 𝜇(𝐶, 𝑝2) + (𝐶 ⋅ 𝐿∞)𝑝2 − 1 = 8 + 3 − 1 = 10,

so 𝐿∞-regularity fails at 𝑝2. (The intersection at 𝑝1 is regular by Proposition 3.6.)
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Table 2. Expressive curves 𝐶 = {𝐺 = 0} of degrees 𝑑 ≤ 4. Unless
noted otherwise, lines are drawn to maximize the number of cross-
ings. The value 𝑎 ∈ℝ is to be chosen appropriately. We denote by 𝜉
the number of critical points of 𝐺.

𝑑 𝜉 𝐺(𝑥, 𝑦) real point set 𝑉ℝ(𝐺)
1 0 𝑥 line
2 0 𝑥2 − 𝑦 parabola
2 1 𝑥2 − 𝑦2 two crossing lines
2 1 𝑥2 + 𝑦2 − 1 ellipse
3 0 𝑥3 − 𝑦 cubic parabola
3 1 (𝑥2 − 𝑦)𝑥 parabola and its axis
3 2 𝑥3 − 3𝑥 + 2 − 𝑦2 nodal Weierstrass cubic
3 2 (𝑥 − 1)𝑥𝑦 three lines, two of them parallel
3 3 (𝑥2 − 𝑦)(𝑦 − 1) parabola crossed by a line
3 4 (𝑥 + 𝑦 − 1)𝑥𝑦 three generic lines
3 4 (𝑥2 + 𝑦2 − 1)𝑥 ellipse crossed by a line
4 0 𝑦 − 𝑥4 quartic parabola
4 0 (𝑦 − 𝑥2)2 − 𝑥
4 1 (𝑦 − 𝑥2)2 − 𝑥2 two aligned parabolas
4 1 (𝑦 − 𝑥2)2 + 𝑥2 − 1
4 1 (𝑦 − 𝑥3)𝑥 cubic parabola and its axis
4 2 (𝑦 − 𝑥2)2 − 𝑥𝑦
4 2 (𝑦 − 𝑥2)𝑥(𝑥 − 1) parabola + two lines parallel to its axis
4 3 𝑦2 − (𝑥2 − 1)2 co-oriented parabolas crossing at two points
4 3 𝑦2 + 4𝑥4 − 4𝑥2 lemniscate of Huygens
4 3 𝑥(𝑥 − 1)(𝑥 + 1)𝑦 three parallel lines crossed by a fourth
4 3 4(𝑥2 + 𝑦2)2 − 3(𝑥2 + 𝑦2) − 𝑥 limaçon
4 5 𝑥(𝑥 − 1)𝑦(𝑦 − 1) two pairs of parallel lines
4 5 (𝑥2 + 𝑦2 − 1)(𝑥2 − 2𝑥 + 𝑦2) two circles crossing at two points
4 5 (𝑦 − 𝑥3 + 𝑥)𝑦 cubic parabola + line
4 5 (𝑥3 − 3𝑥 + 2 − 𝑦2)(𝑥 − 𝑎) nodal Weierstrass cubic + line crossing it at∞
4 6 4𝑥3 − 3𝑥 + 8𝑦4 − 8𝑦2 + 1 (3, 4)-Chebyshev curve
4 6 (𝑦2 + 4𝑥 − 6)2 − 𝑥3 − 3𝑥2
4 6 (𝑦 − 𝑥2)(𝑥 − 𝑎)(𝑦 − 1) parabola + line + line parallel to the axis
4 6 (𝑦 − 𝑥2)(𝑦 − 1)(𝑦 − 2) parabola + two parallel lines
4 7 (𝑦 − 𝑥2 + 1)(𝑥 − 𝑦2 + 1) two parabolas crossing at four points
4 7 see (4.14) three-petal hypotrochoid
4 7 (𝑥3 − 3𝑥 + 2 − 𝑦2)(𝑥 + 𝑦 − 𝑎) nodal Weierstrass cubic + line
4 7 (𝑥 + 𝑦)(𝑥 − 𝑦)(𝑥 − 1)(𝑥 − 𝑎) line + line + two parallel lines
4 7 (𝑥2 + 𝑦2 − 1)𝑥(𝑥 − 𝑎) ellipse + two parallel lines
4 8 (4𝑦 − 𝑥2)(𝑥 + 𝑦)(𝑎𝑥 + 𝑦 + 1) parabola + two lines
4 8 (𝑥2 + 𝑦2 − 1)(𝑦 − 4𝑥2 + 2) ellipse and parabola crossing at four points
4 9 𝑥(𝑦 + 1)(𝑥 − 𝑦)(𝑥 + 𝑦 − 1) four lines
4 9 (𝑥2 + 𝑦2 − 1)𝑥(𝑥 + 𝑦 − 𝑎) ellipse + two lines
4 9 (𝑥2 + 4𝑦2)(4𝑥2 + 𝑦2) two ellipses crossing at four points

Example 5.12 (Lissajous-Chebyshev curves). Let 𝑎 and 𝑏 be positive integers. The
Lissajous-Chebyshev curve with parameters (𝑎, 𝑏) is given by the equation

(5.2) 𝑇𝑎(𝑥) + 𝑇𝑏(𝑦) = 0.
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When 𝑎 and 𝑏 are coprime, with 𝑎 odd, we recover the polynomial Chebyshev curve
with parameters (𝑎, 𝑏), see (4.2). When both 𝑎 and 𝑏 are even, with 𝑎

2 and
𝑏
2 coprime,

we recover the trigonometric Lissajous curve with parameters (𝑎2 ,
𝑏
2 ), see (4.5). This

explains our use of the term “Lissajous-Chebyshev curve.” The general construction
appears in the work of S. Guseı̆n-Zade [20], who observed (without using this termi-
nology) that the Lissajous-Chebyshev curve with parameters (𝑎, 𝑏) provides a morsifi-
cation of an isolated quasihomogeneous singularity of type (𝑎, 𝑏).
There is also a variant of the Lissajous-Chebyshev curve defined by

(5.3) 𝑇𝑎(𝑥) − 𝑇𝑏(𝑦) = 0.
When 𝑎 (resp., 𝑏) is odd, this curve is a mirror image of the Lissajous-Chebyshev curve
(5.2), under the substitution 𝑥 ≔ −𝑥 (resp., 𝑦 ≔ −𝑦). However, when both 𝑎 and 𝑏 are
even, the two curves differ. For example, for (𝑎, 𝑏) = (4, 2), the curve defined by (5.2)
is the lemniscate of Huygens (see Example 5.8), whereas the curve defined by (5.3) is
a union of two parabolas.
It is not hard to verify that every Lissajous-Chebyshev curve (and every curve

𝑉(𝑇𝑎(𝑥) − 𝑇𝑏(𝑦))) is expressive. The critical points of 𝑇𝑎(𝑥) ± 𝑇𝑏(𝑦) are found from
the equations

𝑇′𝑎(𝑥) = 𝑇′𝑏(𝑦) = 0,
so they are of the form (𝑥𝑖, 𝑦𝑗)where 𝑥1, . . . , 𝑥𝑎−1 (resp., 𝑦1, . . . , 𝑦𝑏−1) are the (distinct)
roots of 𝑇𝑎 (resp., 𝑇𝑏). Since the total number of nodes and bounded components of
ℝ2 ⧵ 𝐶ℝ is easily seen to be exactly (𝑎 − 1)(𝑏 − 1), the claim follows.

Figure 10. Lissajous-Chebyshev curves with parameters (2, 3),
(2, 4), (2, 5), (2, 6) (top row) and (3, 3), (3, 4), (3, 5), (3, 6) (bottom row)

Example 5.13 (Multi-limaçons). Recall that the multi-limaçon with parameter 𝑘 is a
trigonometric curve 𝐶 of degree 2𝑘 + 2 given by equation (4.8). It is straightforward to
verify that the corresponding polynomial has 2𝑘 + 1 critical points, all of them located
on the 𝑥 axis. Comparing this to the shape of the curve 𝐶ℝ, we conclude that 𝐶 is
expressive.

6. Divides

The notion of a divide was first introduced and studied by N. A’Campo [4, 24]. The
version of this notion that we use in this paper differs slightly from A’Campo’s, and
from the version used in [16].
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Definition 6.1. Let 𝐃 be a disk in the real plane ℝ2. A divide 𝐷 in 𝐃 is the image of
a generic relative immersion of a finite set of intervals and circles into𝐃 satisfying the
conditions listed below. The images of these immersed intervals and circles are called
the branches of 𝐷. They must satisfy the following conditions:
• the immersed circles do not intersect the boundary 𝜕𝐃;
• the endpoints of the immersed intervals lie on 𝜕𝐃, and are pairwise distinct;
• these immersed intervals intersect 𝜕𝐷 transversally;
• all intersections and self-intersections of the branches are transversal.
We view divides as topological objects, i.e., we do not distinguish between divides re-
lated by a diffeomorphism between their respective ambient disks.
A divide is called connected if the union of its branches is connected.
The connected components of the complement 𝐃 ⧵ 𝐷 which are disjoint from 𝜕𝐃

are the regions of 𝐷. If 𝐷 is connected, then each region of 𝐷 is simply connected. We
refer to the singular points of 𝐷 as its nodes. See Figure 11.

region

node
branch

Figure 11. A divide, its branches, regions, and nodes

Remark 6.2. Although all divides of interest to us are connected, we forego any connec-
tivity requirements in Definition 6.1 of a divide, which therefore is slightly more gen-
eral than [16, Definition 2.1].

The main focus of [16] was on the class of algebraic divides coming from realmorsi-
fications of isolated plane curve singularities, see [16, Definition 2.3]. Here we study a
different (albeit related) class of divides which arise from real algebraic curves:

Definition 6.3. Let𝐺(𝑥, 𝑦) ∈ ℝ[𝑥, 𝑦] be a real polynomial such that each real singular
point of the curve 𝑉(𝐺) ⊂ ℂ2 is a hyperbolic node (an intersection of two smooth real
local branches). Then the portion of 𝑉ℝ(𝐺) contained in a sufficiently large disk
(6.1) 𝐃𝑅 = {(𝑥, 𝑦) ∈ ℝ2 ∣ 𝑥2 + 𝑦2 ≤ 𝑅2}
gives a divide in 𝐃𝑅. Moreover this divide does not depend (up to homeomorphism)
on the choice of 𝑅 ≫ 0. We denote this divide by 𝐷𝐺 .
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Proposition 6.4. Let 𝐺(𝑥, 𝑦) ∈ ℝ[𝑥, 𝑦] be a real polynomial with 𝜉 < ∞ critical points.
Assume that the real algebraic set 𝑉ℝ(𝐺) = {𝐺 = 0} ⊂ ℝ2 is nonempty, and each singular
point of 𝑉ℝ(𝐺) is a hyperbolic node. Let 𝜈 be the number of such nodes, and let 𝜄 be the
number of interval branches of the divide 𝐷𝐺 . Then

(6.2) 𝜉 ≥ 2𝜈 − 𝜄 + 1,
with equality if and only if the polynomial 𝐺 is expressive.

Proof. Let 𝐾 denote the union of the divide 𝐷𝐺 and all its regions, viewed as a closed
subset of ℝ2. Let 𝜎 be the number of connected components of 𝐾. Since all these
components are simply connected, the Euler characteristic of 𝐾 is equal to 𝜎. On the
other hand, 𝐾 can be split into 0-dimensional cells (the nodes, plus the ends of interval
branches), 1-dimensional cells (curve segments of𝐷 connecting nodes), ovals (smooth
closed components of 𝐷𝐺), and regions. The number 𝛽 of 1-dimensional cells satisfies
2𝛽=2𝜄 + 4𝜈 (by counting endpoints), implying 𝛽=𝜄 + 2𝜈. We thus have

𝜎 = 𝜒(𝐾) = (𝜈 + 2𝜄) − (𝜄 + 2𝜈) + 𝜌 − ℎ = 𝜄 − 𝜈 + 𝜌 − ℎ,
where 𝜌 is the number of regions in 𝐷𝐺 , and ℎ denotes the total number of holes (the
sum of first Betti numbers) over all regions.
Denote 𝑢 = 𝜉−𝜈−𝜌. The set of critical points of𝐺 contains all of the nodes, plus at

least one extremum per region. Thus 𝑢 = 0 if 𝐺 has no other critical points, and 𝑢 > 0
otherwise.
Putting everything together, we obtain:

𝜉 = 𝜈 + 𝜌 + 𝑢 = 𝜈 + 𝜎 − 𝜄 + 𝜈 + ℎ + 𝑢 = 2𝜈 − 𝜄 + 𝜎 + ℎ + 𝑢.
Since 𝜎 ≥ 1 and ℎ, 𝑢 ≥ 0, we get (6.2). Moreover 𝜉 = 2𝜈 − 𝜄 + 1 if and only if 𝐾 is
connected, all regions are simply connected, and𝐺 has exactly 𝜈+𝜌 critical points. All
these conditions are satisfied if 𝐺 is expressive; conversely, they ensure expressivity.
(𝑉ℝ(𝐺) is connected if 𝐾 is connected and each region is simply connected.) □

Remark 6.5. Table 2 does not list any expressive quarticwith 𝜉 = 4. We cannowexplain
why. First, by Proposition 6.4, 𝜉 = 4 and 𝑑 = 4 would imply that 2𝜈 = 𝜄 + 3.

Case 1. 𝜈 = 3, 𝜄 = 3. Then our quartic 𝐶 has three real irreducible components, viz.,
a conic (necessarily a parabola) and two lines crossing it, with three hyperbolic nodes
total, and no other nodes. Such a configuration is impossible: if both lines are parallel
to the axis of the parabola, then we get two nodes; otherwise, at least four.

Case 2. 𝜈 = 2, 𝜄 = 1. Then𝐶 is irreducible. (Otherwise,𝐶would split into two conics—
a parabola and an ellipse—intersecting at four real points, contrary to 𝜈 = 2.) An
irreducible quartic 𝐶 with 𝜄 = 1 has one real local branch𝑄 centered at some real point
𝑝 ∈ 𝐿∞, plus perhaps a pair of complex conjugate local branches centered on 𝐿∞. Let
us list the possibilities.

Case 2A. 𝑄 is smooth, (𝑄 ⋅ 𝐿∞)𝑝 = 4, with no other local branches centered on 𝐿∞.

Case 2B. 𝑄 is smooth, (𝑄 ⋅ 𝐿∞)𝑝 = 2, with two smooth complex conjugate branches
transversal to 𝐿∞. These two local branches either cross 𝐿∞ at different points or at the
same point 𝑝′. By the genus formula (3.7) and due to 𝜈 = 2, we have 𝑝′ ≠ 𝑝, with a
nodal singularity at 𝑝′.
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Case 2C. 𝑄 is singular. In this case, again using 𝜈 = 2 and the genus formula (3.7), we
conclude that𝑄 is of type𝐴2. The intersectionmultiplicity of a cusp and a line is either
2 or 3. In our setting, (𝑄 ⋅ 𝐿∞)𝑝 = 2, with two additional smooth complex conjugate
local branches of 𝐶 centered at distinct complex conjugate points on 𝐿∞.

All Cases 2A–2C are subject to Proposition 3.6, so 𝐶 is 𝐿∞-regular. A direct com-
putation then yields that∑𝑞∈𝐶∩𝐿∞ 𝜇(𝐶, 𝑞, 𝐿∞) ≤ 3 in every case. This, however, is in
contradiction with∑𝑞∈𝐶∩𝐿∞ 𝜇(𝐶, 𝑞, 𝐿∞) = (4 − 1)2 − 𝜉 = 5.

7. 𝐿∞-regular expressive curves
Proposition 7.1. Let 𝐶 = 𝑍(𝐹) ⊂ ℙ2 be a reduced algebraic curve defined by a real
homogeneous polynomial 𝐹(𝑥, 𝑦, 𝑧) ∈ ℝ[𝑥, 𝑦, 𝑧]. Assume that
(a) all irreducible components of 𝐶 are real;
(b) 𝐶 does not contain the line at infinity 𝐿∞ as a component;
(c) all singular points of 𝐶 in the affine (𝑥, 𝑦)-plane are real hyperbolic nodes;
(d) the polynomial 𝐹(𝑥, 𝑦, 1) ∈ ℂ[𝑥, 𝑦] has finitely many critical points;
(e) the set of real points {𝐹(𝑥, 𝑦, 1) = 0} ⊂ ℝ2 is nonempty.

Then the following are equivalent:
(i) the curve 𝐶 is expressive and 𝐿∞-regular;
(ii) each irreducible component of 𝐶 is rational, with a set of local branches at infinity

consisting of either a unique (necessarily real) local branch or a pair of complex
conjugate local branches, possibly based at the same real point.

Proof. The proof is based on Propositions 3.4 and 6.4. Let us recall the relevant nota-
tion, and introduce additional one:

𝑑 = deg(𝐶),
𝜄 = number of interval branches of 𝐷𝐺

𝑠 = | 𝐂𝐨𝐦𝐩(𝐶)| = number of irreducible components of 𝐶,
𝑠1 = number of components of 𝐶 with a real local branch at infinity,
𝑠2 = number of components of 𝐶 with a pair of complex conjugate

local branches at infinity.

Combining Propositions 3.4 and 6.4, we conclude that

2𝑔(𝐶) − 2 + 𝜄 + ∑
𝑝∈𝐶∩𝐿∞

Br(𝐶, 𝑝) ≥ 0,

or equivalently (see (3.5))

(7.1) 2 ∑
𝐶′∈𝐂𝐨𝐦𝐩(𝐶)

𝑔(𝐶′) + 𝜄 + ∑
𝑝∈𝐶∩𝐿∞

Br(𝐶, 𝑝) ≥ 2𝑠,

with equality if and only if 𝐶 is both expressive and 𝐿∞-regular.
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On the other hand, we have the inequalities
∑

𝐶′∈𝐂𝐨𝐦𝐩(𝐶)
𝑔(𝐶′) ≥ 0,(7.2)

𝜄 ≥ 𝑠1 ,(7.3)
∑

𝑝∈𝐶∩𝐿∞
Br(𝐶, 𝑝) ≥ 𝑠1 + 2𝑠2 ,(7.4)

2𝑠1 + 2𝑠2 ≥ 2𝑠,(7.5)
whose sum yields (7.1). Therefore we have equality in (7.1) if and only if each of (7.2)–
(7.5) is an equality. This is precisely statement (ii). □

Example 7.2. The curve 𝐶 from Example 5.11 satisfies requirements (a)–(e) of Propo-
sition 7.1. Since𝐶 is not 𝐿∞-regular, condition (ii)must fail. Indeed, while𝐶 is rational,
it has two real local branches at infinity, centered at the points 𝑝1 and 𝑝2.
Proposition 7.3. Let 𝐶 be an expressive 𝐿∞-regular plane curve whose irreducible com-
ponents are all real. Then each component of 𝐶 is either trigonometric or polynomial.

Proof. Since 𝐶 is 𝐿∞-regular and expressive, with real components, the requirements
(a)–(e) of Proposition 7.1 are automatically satisfied, cf. Lemma 5.4. Consequently the
statement (ii) of Proposition 7.1 holds. By Lemmas 4.7 and 4.13, this would imply that
each component of 𝐶 is either trigonometric or polynomial, provided the real point set
of each component is infinite. It thus suffices to show that each component 𝐵 of 𝐶 has
an infinite real point set in 𝔸2. In fact, it is enough to show that this set is nonempty,
for if it were finite and nonempty, then 𝐵—hence 𝐶—would have an elliptic node,
contradicting the expressivity of 𝐶 (cf. Lemma 5.4).
It remains to prove that each component of 𝐶 has a nonempty real point set in 𝔸2.
We argue by contradiction. Let 𝐶 = 𝑍(𝐹). Suppose that 𝐵 = 𝑍(𝐺) is a component

of 𝐶 without real points in 𝔸2. We claim that the rest of 𝐶 is given by a polynomial of
the form 𝐻(𝐺, 𝑧), where 𝐻 ∈ ℝ[𝑢, 𝑣] is a bivariate polynomial. Once we establish this
claim, it will follow that the polynomials 𝐹𝑥 and 𝐹𝑦 have a nontrivial common factor
𝜕
𝜕ᵆ (𝑢𝐻(𝑢, 𝑣))||ᵆ=𝐺,𝑣=𝑧, contradicting the finiteness of the intersection 𝑍(𝐹𝑥) ∩ 𝑍(𝐹𝑦).
Let us make a few preliminary observations. First, the degree 𝑑 = deg𝐺 = deg 𝐵

must be even. Second, by Proposition 7.1, 𝐵 has two complex conjugate branches cen-
tered on 𝐿∞. Third, in view of the expressivity of 𝐶, the affine curve 𝐵 ∩ 𝔸2 is disjoint
from any other component 𝐵′ of 𝐶, implying that
(7.6) 𝐵 ∩ 𝐵′ ⊂ 𝐿∞.
Consider two possibilities.

Case 1. 𝐵 ∩ 𝐿∞ consists of two complex conjugate points 𝑝 and 𝑝. Let 𝑄 and 𝑄 be the
local branches of 𝐵 centered at 𝑝 and 𝑝, respectively.
Let 𝐵′ = 𝑍(𝐺′) be some other component of 𝐶, of degree 𝑑′ = deg 𝐵′ = deg𝐺′.

Since 𝐵′ is real and satisfies statement (ii) of Proposition 7.1 as well as (7.6), we get
𝐵′ ∩ 𝐵 = 𝐵′ ∩ 𝐿∞ = 𝐵 ∩ 𝐿∞ = {𝑝, 𝑝};

moreover 𝐵′ has a unique local branch 𝑅 (resp., 𝑅) at the point 𝑝 (resp. 𝑝). We have

(𝑅 ⋅ 𝑄)𝑝 = (𝑅 ⋅ 𝑄)𝑝 = 𝑑′𝑑
2 , ((𝐿∞)𝑑′ ⋅ 𝑄)𝑝 = ((𝐿∞)𝑑′ ⋅ 𝑄)𝑝 = 𝑑′𝑑

2 .
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It follows that any curve ̂𝐵 in the pencil Span{𝐵′, (𝐿∞)𝑑′ } satisfies

(7.7) ( ̂𝐵 ⋅ 𝑄)𝑝 ≥ 𝑑′𝑑
2 , (𝐵′ ⋅ 𝑄)𝑝 ≥ 𝑑′𝑑

2 .

Pick a point 𝑞 ∈ 𝐵 ∩ 𝔸2. Since 𝑞 ∉ 𝐵′ ∪ 𝐿∞, there exists a curve ̃𝐵 ∈ Span{𝐵′, (𝐿∞)𝑑′ }
containing 𝑞. It then follows by Bézout and by (7.7) that ̃𝐵 must contain 𝐵 as a com-
ponent. In particular, 𝑑′ ≥ 𝑑. By symmetry, the same argument yields 𝑑 ≥ 𝑑′. Hence
𝑑′ = 𝑑, 𝐵 ∈ Span{𝐵′, (𝐿∞)𝑑}, and the polynomial 𝐺′ defining the curve 𝐵′ satisfies
𝐺′ = 𝛼𝐺 + 𝛽𝑧𝑑 for some 𝛼, 𝛽 ∈ ℂ ⧵ {0}. The desired claim follows.

Case 2. 𝐵 ∩ 𝐿∞ consists of one (real) point 𝑝. Then 𝐵 has two complex conjugate
branches 𝑄 and 𝑄 centered at 𝑝.
Let 𝐵′ = 𝑍(𝐺′) be a component of 𝐶 different from 𝐵, and let 𝐵′ have a unique (real)

local branch 𝑅, necessarily centered at 𝑝. Denote 𝑑′ = deg 𝐵′ = deg𝐺′. Then

(𝑅 ⋅ 𝑄)𝑝 = (𝑅 ⋅ 𝑄)𝑝 = 𝑑′𝑑
2 , ((𝐿∞)𝑑′ ⋅ 𝑄)𝑝 = ((𝐿∞)𝑑′ ⋅ 𝑄)𝑝 = 𝑑′𝑑

2 ,

which implies (cf. Case 1) that any curve ̂𝐵′ ∈ Span{𝐵′, (𝐿∞)𝑑′ } satisfies

( ̂𝐵′ ⋅ 𝑞)𝑝 ≥ 𝑑′𝑑
2 , ( ̂𝐵′ ⋅ 𝑄)𝑝 ≥ 𝑑′𝑑

2 ,

and then we conclude—as above—that there exists a curve ̃𝐵′ ∈ Span{𝐵′, (𝐿∞)𝑑′ } con-
taining 𝐵 as a component. On the other hand,

(𝐵 ⋅ 𝑅)𝑝 = 𝑑′𝑑, ((𝐿∞)𝑑 ⋅ 𝑅)𝑝 = 𝑑′𝑑,
which in a similar manner implies that there exists a curve ̃𝐵 ∈ Span{𝐵, (𝐿∞)𝑑} con-
taining 𝐵′ as a component. We conclude that 𝑑′ = 𝑑, 𝐵 ∈ Span{𝐵′, (𝐿∞)𝑑}, and finally,
𝐺′ = 𝛼𝐺 + 𝛽𝑧𝑑 for 𝛼, 𝛽 ∈ ℂ ⧵ {0}, as desired.
Now let 𝐵′ = 𝑍(𝐺′) be a component of 𝐶 different from 𝐵, and let it have a couple

of complex conjugate local branches 𝑅 and 𝑅 centered at 𝑝. Since 𝐵′ is real, we have

(𝐵′ ⋅ 𝑄)𝑝 = (𝐵′ ⋅ 𝑄)𝑝 = 𝑑′𝑑
2 , ((𝐿∞)𝑑′ ⋅ 𝑄)𝑝 = ((𝐿∞)𝑑′ ⋅ 𝑄)𝑝 = 𝑑

2 ,
and since 𝐵 is real, we have

(𝐵 ⋅ 𝑅)𝑝 = (𝐵 ⋅ 𝑅)𝑝 = 𝑑′𝑑
2 , ((𝐿∞)𝑑 ⋅ 𝑅)𝑝 = ((𝐿∞)𝑑 ⋅ 𝑅)𝑝 = 𝑑′𝑑

2 .
Thus the above reasoning applies again, yielding 𝑑′ = 𝑑 and 𝐵′ ∈ Span{𝐵, (𝐿∞)𝑑}.
Hence 𝐺′ = 𝛼𝐺 + 𝛽𝑧𝑑 for 𝛼, 𝛽 ∈ ℂ ⧵ {0}, and we are done. □

Example 7.4 shows that in Proposition 7.3, the requirement that all components are
real cannot be dropped.

Example 7.4. The quintic curve 𝐶 = 𝑍(𝐹) defined by the polynomial
𝐹(𝑥, 𝑦, 𝑧) = (𝑥2 + 𝑧2)(𝑦𝑥2 + 𝑦𝑧2 − 𝑥3)

has two nonreal components 𝑍(𝑥±𝑧√−1). In Example 3.3, we verified that this curve
is 𝐿∞-regular. It is also expressive, because the polynomial 𝐺(𝑥, 𝑦) = 𝐹(𝑥, 𝑦, 1) has no
critical points in the complex affine plane (see Example 3.3) and the set

(7.8) 𝑉ℝ(𝐺) = {(𝑥, 𝑦) ∈ ℝ2 ∣ 𝑦 = 𝑥3
𝑥2+1 }

is connected. On the other hand, the real irreducible component𝐶 = 𝑍(𝑦𝑥2+𝑦𝑧2−𝑥3)
is neither trigonometric nor polynomial because it has two real points at infinity, see
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Example 1.7. Furthermore, 𝐶 is not expressive, since the polynomial 𝑦𝑥2 + 𝑦 − 𝑥3 has
two critical points (±√−1,± 3

2√−1) outside ℝ
2.

Proposition 7.3 immediately implies the following statement.

Corollary 7.5. An irreducible 𝐿∞-regular expressive curve is either trigonometric or poly-
nomial.

We note that such a curve also needs to be immersed, meeting itself transversally at
real hyperbolic nodes (thus, no cusps, tacnodes, or triple points).
We next provide a partial converse to Corollary 7.5.

Proposition 7.6. Let 𝐶 be a real polynomial or trigonometric curve whose singular set
in the affine plane 𝔸2 = ℙ2 ⧵ 𝐿∞ consists solely of hyperbolic nodes. Then 𝐶 is expressive
and 𝐿∞-regular.

Proof. By Lemmas 4.7 and 4.13, a real polynomial or trigonometric curve 𝐶 = 𝑍(𝐹) is
a real rational curve with one real or two complex conjugate local branches at infinity,
and with a nonempty set of real points in 𝔸2. Thus, conditions (ii), (a), (b), (c), and (e)
of Proposition 7.1 are satisfied, so in order to obtain (i), we only need to establish (d).
That is, we need to show that the polynomial 𝐹 has finitely many critical points in the
affine plane 𝔸2. We will prove this by contradiction.
Denote 𝑑 = deg𝐶 = deg 𝐹. Suppose that 𝑍(𝐹𝑥) ∩ 𝑍(𝐹𝑦) contains a (real, possibly

reducible) curve 𝐵 of a positive degree 𝑑′ < 𝑑.
Wefirst observe that𝐵∩𝐶∩𝔸2 = ∅. Assumenot. If 𝑞 ∈ 𝐵∩𝐶∩𝔸2, then 𝑞 ∈ 𝐒𝐢𝐧𝐠(𝐶)∩

𝔸2, so 𝑞 must be a hyperbolic node of 𝐶, implying (𝑍(𝐹𝑥) ⋅ 𝑍(𝐹𝑦))𝑞 = 𝜇(𝐶, 𝑞) = 1; but
since 𝑞 lies on a common component of𝑍(𝐹𝑥) and𝑍(𝐹𝑦), wemust have (𝑍(𝐹𝑥)⋅𝑍(𝐹𝑦))𝑞 =
∞. Since 𝐵 is real, and 𝐶 has either one real or two complex conjugate local branches
at infinity, it follows that 𝐵 ∩ 𝐶 = 𝐿∞ ∩ 𝐶.

Case 1. 𝐶 has a unique (real) branch 𝑄 at a point 𝑝 ∈ 𝐿∞. Then (𝐵 ⋅ 𝑄)𝑝 = 𝑑′𝑑. On
the other hand, ((𝐿∞)𝑑′ ⋅ 𝑄)𝑝 = 𝑑′𝑑. Hence any curve ̂𝐵 ∈ Span{𝐵, (𝐿∞)𝑑′ } satisfies
( ̂𝐵 ⋅ 𝑄)𝑝 ≥ 𝑑′𝑑. For any point 𝑞 ∈ 𝐶 ⧵ {𝑝} there is a curve ̃𝐵 ∈ Span{𝐵, (𝐿∞)𝑑′ } passing
through 𝑞. Hence 𝐶 is a component of ̃𝐵, in contradiction with 𝑑′ < 𝑑.

Case 2. 𝐶 has two complex conjugate branches 𝑄 and 𝑄 centered at (possibly coincid-
ing) points 𝑝 and 𝑝 on 𝐿∞, respectively. Since 𝐵 is real, we have

(𝐵 ⋅ 𝑄)𝑝 = (𝐵 ⋅ 𝑄)𝑝 = ((𝐿∞)𝑑′ ⋅ 𝑄)𝑝 = ((𝐿∞)𝑑′ ⋅ 𝑄)𝑝 = 𝑑′𝑑/2.

This implies that any curve ̂𝐵 ∈ Span{𝐵, (𝐿∞)𝑑′ } satisfies both ( ̂𝐵 ⋅ 𝑄)𝑝 ≥ 𝑑′𝑑/2 and
(𝑄̂ ⋅ 𝑄)𝑝 ≥ 𝑑′𝑑/2, resulting in a contradiction as in Case 1. □

Remark 7.7. In Proposition 7.6, the requirement concerning the singular set cannot be
dropped: a real polynomial curve 𝐶may have elliptic nodes (see Example 4.4) or cusps
(consider the cubic (𝑡2, 𝑡3)), preventing 𝐶 from being expressive.

Remark 7.8. Proposition 7.6 implies that if a real curve 𝐶 is polynomial or trigono-
metric, and also expressive, then it is necessarily 𝐿∞-regular. Indeed, expressivity in
particular means that all singular points of 𝐶 are hyperbolic nodes.
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Example 7.9. Recall from Example 4.17 that for appropriately chosen values of the
real parameter 𝑎, the hypotrochoid 𝐶 given by equation (4.12) is a nodal trigonometric
curve of degree 𝑑 = 2𝑘 with the maximal possible number of real hyperbolic nodes,
namely (𝑑−1)(𝑑−2)

2 = (𝑘 − 1)(2𝑘 − 1). Thus 𝐶 has no other singular points in the affine
plane, and consequently is expressive by Proposition 7.6.

Combining Corollary 7.5 and Proposition 7.6, we obtain:

Theorem 7.10. For a real plane algebraic curve 𝐶, the following are equivalent:
• 𝐶 is irreducible, expressive and 𝐿∞-regular;
• 𝐶 is either trigonometric or polynomial, and all its singular points in the affine plane
𝔸2 are hyperbolic nodes.

Example 7.11. Theorem 7.10 is illustrated in Table 3. Each real curve in this table is
either polynomial or trigonometric. We briefly explain why all these curves are expres-
sive (hence 𝐿∞-regular, see Remark 7.8).
Expressivity of Chebyshev and Lissajous curves was established in Example 5.12.

The limaçon of Pascal was discussed in Example 5.13. In Example 7.9, we saw that a
hypotrochoid (4.12) is expressive for suitably chosen values of 𝑎. For a more general
statement, see Proposition 7.15. As to the remaining curves in Table 3, all we need to
check is that each of their singular points in the affine plane is a hyperbolic node. The
curves 𝑉(𝑥𝑑 − 𝑦) are smooth, so there is nothing to prove. Ditto for the ellipse, as well
as the curves 𝑉((𝑦−𝑥2)2− 𝑥) and 𝑉((𝑦−𝑥2)2+ 𝑥2−1). Finally, 𝑉((𝑦−𝑥2)2−𝑥𝑦) has a
single singular point in 𝔸2, a hyperbolic node at the origin.

Table 3. Irreducible expressive curves 𝐶 = 𝑉(𝐺) of degrees 𝑑 ≤ 4.
All curves are 𝐿∞-regular. For each curve, a trigonometric or polyno-
mial parametrization (𝑋(𝑡), 𝑌(𝑡)) is shown. We denote by 𝜉 the num-
ber of critical points of 𝐺.

𝑑 𝜉 𝐺(𝑥, 𝑦) (𝑋(𝑡), 𝑌(𝑡)) 𝑉(𝐺)
1 0 𝑥 − 𝑦 (𝑡, 𝑡) line
2 0 𝑥2 − 𝑦 (𝑡, 𝑡2) parabola
2 1 𝑥2 + 𝑦2 − 1 (cos(𝑡), sin(𝑡)) ellipse
3 0 𝑥3 − 𝑦 (𝑡, 𝑡3) cubic parabola
3 2 4𝑥3 − 3𝑥 + 2𝑦2 − 1 (−2𝑡2 + 1, 4𝑡3 − 3𝑡) (3, 2)-Chebyshev
4 0 𝑥4 − 𝑦 (𝑡, 𝑡4) quartic parabola
4 0 (𝑦 − 𝑥2)2 − 𝑥 (𝑡2, 𝑡4 + 𝑡)
4 1 (𝑦 − 𝑥2)2 + 𝑥2 − 1 (cos(𝑡), sin(𝑡)+cos2(𝑡))
4 2 (𝑦 − 𝑥2)2 − 𝑥𝑦 (𝑡2 − 𝑡, 𝑡4 − 𝑡3)
4 3 𝑦2 + 4𝑥4 − 4𝑥2 (cos(𝑡), sin(2𝑡)) (1,2)-Lissajous
4 3 4(𝑥2 + 𝑦2)2−3(𝑥2 + 𝑦2)−𝑥 (cos(𝑡)cos(3𝑡), cos(𝑡)sin(3𝑡) limaçon
4 6 4𝑥3 − 3𝑥 + 8𝑦4 − 8𝑦2 + 1 (−8𝑡4 + 8𝑡2 − 1, 4𝑡3 − 3𝑡) (3, 4)-Chebyshev
4 7 see (4.14) see (4.13) (2,1)-hypotrochoid

The following construction provides a rich source of examples of expressive curves.
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Definition 7.12 (Epitrochoids and hypotrochoids). Let 𝑏 and 𝑐 be coprime nonzero
integers, with 𝑏 > |𝑐|. Let 𝑢 and 𝑣 be nonzero reals. The trigonometric curve

𝑥 = 𝑢 cos 𝑏𝑡 + 𝑣 cos 𝑐𝑡,(7.9)
𝑦 = 𝑢 sin 𝑏𝑡 − 𝑣 sin 𝑐𝑡(7.10)

is called a hypotrochoid if 𝑐 > 0, and an epitrochoid if 𝑐 < 0. It is a rational curve of
degree 2𝑏.

Example 7.13. A hypotrochoid with (coprime) parameters (𝑏, 𝑐) and suitably chosen
ratio 𝑣

ᵆ has 𝑏+𝑐 “petals,” see Figure 12. The number of petals can change as
𝑣
ᵆ changes,

cf. Figure 13.
When 𝑏 = 𝑐 + 1, we recover Example 4.17, cf. Figure 8 ((𝑏, 𝑐) = (2, 1)) and Figure 9

((𝑏, 𝑐)=(3, 2)).

Figure 12. Expressive hypotrochoids defined by the parametric
equations (7.9)–(7.10). Top row: (𝑏, 𝑐) = (2, 1), (3, 1), (4, 1), (5, 1).
Bottom row: (𝑏, 𝑐) = (3, 2), (5, 2).

Figure 13. Hypotrochoids defined by the parametric equations
(7.9)–(7.10) with 𝑏 = 2, 𝑐 = 1, 𝑣 = 1, and 𝑢 ∈ {1.25, 1, 0.75, 0.5, 0.25},
shown left-to-right in this order. The first and the third hypotrochoids
(with 𝑢 = 1.25 and 𝑢 = 0.75, respectively) are expressive; the remain-
ing three are not.
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Example 7.14. An epitrochoid with (coprime) parameters 𝑏 and 𝑐 (here 𝑏 > −𝑐 > 0)
has 𝑏 + 𝑐 inward-pointing “petals,” see Figure 14.
When 𝑏 = −𝑐 + 1, we recover the “multi-limaçons” of Example 4.12 and Figure 7

(with 𝑏 ∈ {2, 3, 4}, 𝑐 = 1 − 𝑏).

Figure 14. Epitrochoids defined by the parametric equations (7.9)–
(7.10). Top row: (𝑏, 𝑐) = (2, −1), (3, −1), (4, −1), (5, −1). Bottom row:
(𝑏, 𝑐) = (3, 2), (5, 2).

Proposition 7.15. Let 𝐶 be an epitrochoid or hypotrochoid given by (7.9)–(7.10). (As
in Definition 7.12, 𝑏 and 𝑐 are coprime integers, with 𝑏 > |𝑐|; and 𝑢, 𝑣 ∈ ℝ∗.) Then 𝐶 is
expressive and 𝐿∞-regular if it has (𝑏 + 𝑐)(𝑏 − 1) hyperbolic nodes in 𝔸2. In particular,
this holds if |𝑣||ᵆ| is sufficiently small.

Proof. Setting 𝜏 = 𝑒𝑖𝑡, we convert the trigonometric parametrization (7.9)–(7.10) of 𝐶
into a rational one:

𝑥 = 1
2 (𝑢𝜏

2𝑏 + 𝑣𝜏𝑏+𝑐 + 𝑣𝜏𝑏−𝑐 + 𝑢),
𝑦 = − 𝑖

2 (𝑢𝜏
2𝑏 − 𝑣𝜏𝑏+𝑐 + 𝑣𝜏𝑏−𝑐 − 𝑢),

𝑧 = 𝜏𝑏.
This curve has two points at infinity, namely (1, 𝑖, 0) and (1, −𝑖, 0), corresponding to
𝜏 = 0 and 𝜏 = ∞, respectively. Noting that the line 𝑥 + 𝑖𝑦 = 0 passes through (1, 𝑖, 0),
we change the coordinates by replacing 𝑦 by

𝑥 + 𝑖𝑦 = 𝑢𝜏2𝑏 + 𝑣𝜏𝑏−𝑐.
In a neighborhood of (1, 𝑖, 0), this yields the following parametrization:

𝑥 = 1, 𝑥 + 𝑖𝑦 = 2𝑣
ᵆ 𝜏

𝑏−𝑐 + h.o.t., 𝑧 = 2
ᵆ𝜏

𝑏 + h.o.t.
Thus, at the point (1, 𝑖, 0)we have a semi-quasihomogeneous singularity of weight (𝑏−
𝑐, 𝑏), and similarly at (1, −𝑖, 0). The 𝛿-invariant at each of the two points is equal to
1
2 (𝑏 − 𝑐 − 1)(𝑏 − 1). Hence in the affine plane 𝔸2, there remain

1
2 (2𝑏 − 1)(2𝑏 − 2) − (𝑏 − 𝑐 − 1)(𝑏 − 1) = (𝑏 + 𝑐)(𝑏 − 1)
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nodes. So if all these nodes are real hyperbolic (and distinct), then 𝐶 is expressive and
𝐿∞-regular by Proposition 7.6 (or Theorem 7.10).
It remains to show that 𝐶 has (𝑏+𝑐)(𝑏−1) hyperbolic nodes as long as 𝑢, 𝑣 ∈ ℝ∗ are

chosen appropriately (in particular, if |𝑣|
|ᵆ| is sufficiently small). Consider the rational

parametrization of 𝐶 given by
𝑥 + 𝑖𝑦 = 𝑢𝜏𝑏 + 𝑣𝜏−𝑐,
𝑥 − 𝑖𝑦 = 𝑢𝜏−𝑏 + 𝑣𝜏𝑐,

𝑧 = 1.
We need to show that all solutions (𝜏, 𝜎) ∈ (ℂ∗)2 of

𝑢𝜏𝑏 + 𝑣𝜏−𝑐 = 𝑢𝜎𝑏 + 𝑣𝜎−𝑐,(7.11)
𝑢𝜏−𝑏 + 𝑣𝜏𝑐 = 𝑢𝜎−𝑏 + 𝑣𝜎𝑐,(7.12)
𝜏 ≠ 𝜎(7.13)

satisfy |𝜏| = |𝜎| = 1. Let us rewrite (7.11)–(7.12) as
𝑢(𝜏𝑏 − 𝜎𝑏) − 𝑣(𝜏𝜎)−𝑐(𝜏𝑐 − 𝜎𝑐) = 0,

−𝑢(𝜏𝜎)−𝑏(𝜏𝑏 − 𝜎𝑏) + 𝑣(𝜏𝑐 − 𝜎𝑐) = 0.
The condition gcd(𝑏, 𝑐) = 1 implies that at least one of 𝜏𝑏 − 𝜎𝑏 and 𝜏𝑐 − 𝜎𝑐 is nonzero
(or else 𝜏 = 𝜎). Consequently

det( 𝑢 −𝑣(𝜏𝜎)−𝑐
−𝑢(𝜏𝜎)−𝑏 𝑣 ) = 𝑢𝑣(1 − (𝜏𝜎)−𝑏−𝑐) = 0,

meaning that 𝜔 = 𝜏𝜎 must be a root of unity: 𝜔𝑏+𝑐 = 1. With respect to 𝜏 and 𝜔, the
conditions (7.11)–(7.13) become:

𝜔𝑏+𝑐 = 1,(7.14)
𝑢(𝜏𝑏 − 𝜔𝑏𝜏−𝑏) + 𝑣(𝜏−𝑐 − 𝜔−𝑐𝜏𝑐) = 0,(7.15)
𝜏2 ≠ 𝜔.(7.16)

Let 𝜆 be a square root of 𝜔, i.e., 𝜆2 = 𝜔. Then (7.16) states that 𝜏 ∉ {𝜆, −𝜆}.
For each of the 𝑏 + 𝑐 possible roots of unity 𝜔, (7.15) is an algebraic equation of

degree 2𝑏 in 𝜏. We claim that if 𝑢, 𝑣 ∈ ℝ∗ are suitably chosen, then all 2𝑏 solutions of
this equation lie on 𝑆1 = {|𝜏| = 1}. It is easy to see that this set of solutions contains
the two values 𝜏 = ±𝜆 which we need to exclude, leaving us with 2(𝑏 − 1) solutions
for each 𝜔 satisfying (7.14). We also claim that all these 2(𝑏 + 𝑐)(𝑏 − 1) solutions are
distinct, thereby yielding (𝑏 + 𝑐)(𝑏 − 1) hyperbolic nodes of the curve, as desired.
Let us establish these claims. Denote 𝜀 = 𝜆𝑏+𝑐 ∈ {−1, 1}. Replacing 𝜏 by 𝜌 = 𝜏𝜆−1

(thus 𝜏 = 𝜆𝜌), we transform (7.15) into
𝑢𝜀(𝜌𝑏 − 𝜌−𝑏) = 𝑣(𝜌𝑐 − 𝜌−𝑐).

Making the substitution 𝜌 = 𝑒𝑖𝛼, we translate this into
(7.17) 𝑢𝜀 sin(𝑏𝛼) = 𝑣 sin(𝑐𝛼).
If | 𝑣ᵆ | is sufficiently small, then equation (7.17) clearly has 2𝑏 distinct real solutions in
the interval [0, 2𝜋), as claimed. Finally, it is not hard to see that all resulting 2(𝑏+𝑐)(𝑏−
1) values of 𝜏 are distinct. □
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We return to the general treatment of (potentially reducible) expressive 𝐿∞-regular
curves. First, a generalization of Proposition 7.6:

Proposition 7.16. Let 𝐶 be a reduced real plane curve such that
• each component of 𝐶 is real, and either polynomial or trigonometric;
• the singular set of 𝐶 in the affine plane 𝔸2 consists solely of hyperbolic nodes;
• the set of real points of 𝐶 in the affine plane is connected.
Then 𝐶 is expressive and 𝐿∞-regular.

Proof. The proof utilizes the approach used in the proof of Proposition 7.6. Arguing
exactly as at the beginning of the latter proof, we conclude that all we need to show is
that the polynomial 𝐹 defining𝐶 has finitelymany critical points in the affine plane𝔸2.
Once again, we argue by contradiction. Assuming that 𝑍(𝐹𝑥) ∩ 𝑍(𝐹𝑦) contains a real
curve 𝐵 of a positive degree 𝑑′ < 𝑑 = deg(𝐶), and reasoning as in the earlier proof, we
conclude that for any component 𝐶′ of 𝐶, there exists a curve ̂𝐵𝐶′ ∈ Span{𝐵, (𝐿∞)𝑑′ }
containing𝐶′ as a component. In view of the connectedness of𝐶ℝ and the fact that dif-
ferent members of the pencil Span{𝐵, (𝐿∞)𝑑′ } are disjoint from each other in the affine
plane 𝔸2, we establish that there is just one curve ̂𝐵 ∈ Span{𝐵, (𝐿∞)𝑑′ } that contains all
the components of 𝐶—but this contradicts the inequality 𝑑′ < 𝑑. □

Theorem 7.17 is the main result of this paper.

Theorem 7.17. Let 𝐶 be a reduced real plane algebraic curve, with all irreducible com-
ponents real. The following are equivalent:
• 𝐶 is expressive and 𝐿∞-regular;
• each irreducible component of 𝐶 is either trigonometric or polynomial, all singular
points of 𝐶 in the affine plane 𝔸2 are hyperbolic nodes, and the set of real points of 𝐶
in the affine plane is connected.

Proof. Follows from Propositions 7.3 and 7.16. □

Corollary 7.18. Let 𝐶 be an 𝐿∞-regular expressive plane curve whose irreducible com-
ponents are all real. Let 𝐶′ be a subcurve of 𝐶, i.e., a union of a subset of irreducible
components. If the set of real points of 𝐶′ in the affine plane is connected, then 𝐶′ is also
𝐿∞-regular and expressive.

Proof. Follows from Theorem 7.17. □

We conclude this section by a corollary whose statement is entirely elementary, and
in particular does not involve the notion of expressivity.

Corollary 7.19. Let 𝐶 = 𝑉(𝐺(𝑥, 𝑦)) be a real polynomial or trigonometric affine plane
curve which intersects itself solely at hyperbolic nodes. Then all critical points of the poly-
nomial 𝐺(𝑥, 𝑦) are real.

Proof. Immediate from Proposition 7.6 (or Theorem 7.10). □

8. More expressivity criteria

We first discuss the irreducible case. By Theorem 7.10, an irreducible plane curve is
expressive and 𝐿∞-regular if and only if it is either trigonometric or polynomial, and all
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its singular points outside 𝐿∞ are real hyperbolic nodes. The last condition is usually
the trickiest to verify.
One simple case is when the number of hyperbolic nodes attains its maximum:

Corollary 8.1. Let 𝐶 be a real polynomial or trigonometric curve of degree 𝑑 with
(𝑑−1)(𝑑−2)

2 hyperbolic nodes. Then 𝐶 is expressive and 𝐿∞-regular.
Proof. In view of Hironaka’s formula (3.7), the curve 𝐶 has no other singular points
besides the given hyperbolic nodes. The claim follows by Proposition 7.6. □

Examples illustrating Corollary 8.1 include Lissajous-Chebyshev curves (5.2) with
parameters (𝑑, 𝑑 − 1) as well as hypotrochoids with parameters (𝑘, 𝑘 − 1) (cf. (4.12),
with suitably chosen value of 𝑎).
Remark 8.2. InCorollary 8.1, the requirement that the curve𝐶 is polynomial or trigono-
metric cannot be dropped. For example, there exists an irreducible real quadric with
three hyperbolic nodes which is not expressive.
Corollary 8.1 can be generalized as follows.

Corollary 8.3. Let 𝐶 = 𝑉(𝐺(𝑥, 𝑦)) be a real polynomial or trigonometric curve with 𝜈
hyperbolic nodes. Suppose that theNewtonpolygon of𝐺(𝑥, 𝑦)has 𝜈 interior integer points.
Then 𝐶 is expressive and 𝐿∞-regular.
Proof. It is well known (see [9] or [17, Section 4.4]) that the maximal possible num-
ber of nodes of an irreducible plane curve with a given Newton polygon (equivalently,
the arithmetic genus of a curve in the linear system spanned by the monomials in the
Newton polygon, on the associated toric surface) equals the number of interior integer
points in the Newton polygon. The claim then follows by Proposition 7.6. □

Applications of Corollary 8.3 include arbitrary irreducible Lissajous-Chebyshev
curves (5.2).
It is natural to seek an algorithm for verifying whether a given immersed real poly-

nomial or trigonometric curve 𝐶, say one given by an explicit parametrization, is ex-
pressive. ByTheorem7.10, this amounts to checking that each point of self-intersection
of 𝐶 in the affine plane 𝔸2 corresponds to two real values of the parameter. In the case
of a polynomial curve

𝑡 ↦ (𝑃(𝑡), 𝑄(𝑡)),
this translates into requiring that
• the resultant (with respect to either variable 𝑠 or 𝑡) of the polynomials

𝑃(𝑡, 𝑠) = 𝑃(𝑡) − 𝑃(𝑠)
𝑡 − 𝑠 and 𝑄(𝑡, 𝑠) = 𝑄(𝑡) − 𝑄(𝑠)

𝑡 − 𝑠
has simple real roots and

• the corresponding points (𝑃(𝑡), 𝑄(𝑡)) are simple (hyperbolic) nodes of 𝐶.
Example 8.4. Consider the sextic curve

𝑡 ↦ (−8𝑡6 + 24𝑡4 + 4𝑡3 − 18𝑡2 − 6𝑡 + 1,−2𝑡4 + 4𝑡2 − 1).
In this case,

𝑃(𝑡, 𝑠) = −2(2𝑠2 + 2𝑠𝑡 + 2𝑡2 − 3)(2𝑠3 + 2𝑡3 − 3𝑠 − 3𝑡 − 1),
𝑄(𝑡, 𝑠) = −2(𝑠 + 𝑡)(𝑠2 + 𝑡2 − 2).
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The resultant of 𝑃 and 𝑄 (which we computed using Sage) is equal to

−256(2𝑠2 − 3)(2𝑠2 − 2𝑠 − 1)(2𝑠2 + 2𝑠 − 1)(8𝑠6 − 24𝑠4 − 4𝑠3 + 18𝑠2 + 6𝑠 − 1).

All its 12 roots are real, so the curve is expressive, with 6 nodes. See Figure 15.
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Example 8.4. Consider the sextic curve

t 7→ (−8t6 + 24t4 + 4t3 − 18t2 − 6t+ 1,−2t4 + 4t2 − 1).

In this case,

P̂ (t, s) = −2(2s2 + 2st+ 2t2 − 3)(2s3 + 2t3 − 3s− 3t− 1),

Q̂(t, s) = −2(s+ t)(s2 + t2 − 2).

The resultant of P̂ and Q̂ (which we computed using Sage) is equal to

−256(2s2 − 3)(2s2 − 2s− 1)(2s2 + 2s− 1)(8s6 − 24s4 − 4s3 + 18s2 + 6s− 1).

All its 12 roots are real, so the curve is expressive, with 6 nodes. See Figure 15.

Figure 15: The curve C = V (2x3 + 3x2 − 1 + (4y3 − 3y + x2

2 )2).

The case of a trigonometric curve can be treated in a similar way. Let C be a
trigonometric curve with a Laurent parametrization

t 7→ (x(t), y(t)) = (P (t) + P (t−1), Q(t) +Q(t−1))

(cf. (4.10)), with P (t) =
∑

k αkt
k, Q(t) =

∑
k βkt

k. We write down the differences

x(t)− x(s)

t− s
=
∑
k

(tk−1 + tk−2s+ ...+ sk−1)
(
αk −

αk
tksk

)
,

y(t)− y(s)

t− s
=
∑
k

(tk−1 + tk−2s+ ...+ sk−1)
(
βk −

βk
tksk

)
,

clear the denominators by multiplying by an appropriate power of ts, and require
that all values of t and s for which the resulting polynomials vanish (equivalently, all
roots of their resultants) lie on the unit circle.

Proposition 8.5. Let C = V (G) be an L∞-regular curve, with G(x, y) ∈ R[x, y].
Assume that CR is connected, and each singular point of it is a hyperbolic node, as
in Definition 6.3. Let ν denote the number of such nodes, and let ρ be the number of
regions of the divide DG. Then C is expressive if and only if

(8.1) ν + ρ = (d− 1)2 −
∑

p∈C∩L∞
µ(C, p, L∞).

Proof. By Bézout’s theorem, the right-hand side of (8.1) is the number of critical
points of G in the affine plane, counted with multiplicities. Since each region of DG

contains at least one (real) critical point, and each node of CR is a critical point, the
only way for (8.1) to hold is for C to be expressive. �

1 Jun 2022 08:44:25 PDT
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Figure 15. The curve 𝐶 = 𝑉(2𝑥3 + 3𝑥2 − 1 + (4𝑦3 − 3𝑦 + 𝑥2
2 )

2)

The case of a trigonometric curve can be treated in a similar way. Let𝐶 be a trigono-
metric curve with a Laurent parametrization

𝑡 ↦ (𝑥(𝑡), 𝑦(𝑡)) = (𝑃(𝑡) + 𝑃(𝑡−1), 𝑄(𝑡) + 𝑄(𝑡−1))

(cf. (4.10)), with 𝑃(𝑡) = ∑𝑘 𝛼𝑘𝑡𝑘, 𝑄(𝑡) = ∑𝑘 𝛽𝑘𝑡𝑘. We write down the differences

𝑥(𝑡) − 𝑥(𝑠)
𝑡 − 𝑠 = ∑

𝑘
(𝑡𝑘−1 + 𝑡𝑘−2𝑠 +⋯+ 𝑠𝑘−1)(𝛼𝑘 −

𝛼𝑘
𝑡𝑘𝑠𝑘 ),

𝑦(𝑡) − 𝑦(𝑠)
𝑡 − 𝑠 = ∑

𝑘
(𝑡𝑘−1 + 𝑡𝑘−2𝑠 +⋯+ 𝑠𝑘−1)(𝛽𝑘 −

𝛽𝑘
𝑡𝑘𝑠𝑘 ),

clear the denominators by multiplying by an appropriate power of 𝑡𝑠, and require that
all values of 𝑡 and 𝑠 for which the resulting polynomials vanish (equivalently, all roots
of their resultants) lie on the unit circle.

Proposition 8.5. Let 𝐶=𝑉(𝐺) be an 𝐿∞-regular curve, with 𝐺(𝑥, 𝑦) ∈ ℝ[𝑥, 𝑦]. Assume
that𝐶ℝ is connected, and each singular point of it is a hyperbolic node, as inDefinition 6.3.
Let 𝜈 denote the number of such nodes, and let 𝜌 be the number of regions of the divide𝐷𝐺 .
Then 𝐶 is expressive if and only if

(8.1) 𝜈 + 𝜌 = (𝑑 − 1)2 − ∑
𝑝∈𝐶∩𝐿∞

𝜇(𝐶, 𝑝, 𝐿∞).

Proof. By Bézout’s theorem, the right-hand side of (8.1) is the number of critical points
of 𝐺 in the affine plane, counted with multiplicities. Since each region of 𝐷𝐺 contains
at least one (real) critical point, and each node of 𝐶ℝ is a critical point, the only way
for (8.1) to hold is for 𝐶 to be expressive. □

9. Bending, doubling, and unfolding

In this section, we describe several transformations which can be used to construct
new examples of expressive curves from existing ones. The simplest transformation of
this kind is the “bending” procedure based on the following observation:



710 SERGEY FOMIN AND EUGENII SHUSTIN

Proposition 9.1. Let 𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦) ∈ ℝ[𝑥, 𝑦] be such that the map
(9.1) (𝑥, 𝑦) ↦ (𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦))
is a biregular automorphism of 𝔸2. If the curve 𝐶 = 𝑉(𝐺(𝑥, 𝑦)) is expressive, then so is
the curve

𝐶 = 𝑉(𝐺(𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦))).
If, in addition, 𝐶 is 𝐿∞-regular, with real components, then so is 𝐶.

Proposition 9.1 is illustrated in Figure 16.

Figure 16. The curves 𝐶 = 𝑉(𝑥2 + 𝑦2 − 1) and 𝐶 = 𝑉(𝑥2 + (2𝑦 −
2𝑥2)2 − 1)

Proof. The automorphism (9.1) is an invertible change of variables that restricts to a
diffeomorphism of the real plane ℝ2. As such, it sends (real) critical points to (real)
critical points, does not change the divide of the curve, and preserves expressivity.
Let us now assume that 𝐶 is expressive and 𝐿∞-regular, with real components. In

view of Theorem 7.17, all we need to show is that all components of 𝐶 are polynomial
or trigonometric. Geometrically, a polynomial (resp., trigonometric) component is a
Riemann sphere punctured at one real point (resp., two complex conjugate points) and
equivariantly immersed into the plane. This property is preserved under real biregular
automorphisms of 𝔸2. □

Remark 9.2. It is well known [34] that the group of automorphisms of the affine plane
is generated by affine transformations together with the transformations of the form
(𝑥, 𝑦) ↦ (𝑥, 𝑦 + 𝑃(𝑥)), for 𝑃 a polynomial. This holds over any field of characteristic
zero, in particular over the reals.

Example 9.3. Several examples of bending can be extracted from Table 3. Applying
the automorphism (𝑥, 𝑦) ↦ (𝑥, 𝑦 + 𝑥 − 𝑥𝑚) to the line 𝑉(𝑥 − 𝑦), we get 𝑉(𝑥𝑚 − 𝑦).
The automorphism (𝑥, 𝑦) ↦ (𝑥, 𝑦 − 𝑥2) transforms the parabola 𝑉(𝑦2 − 𝑥) into 𝑉((𝑦 −
𝑥2)2 − 𝑥), the ellipse 𝑉(𝑥2 + 𝑦2 − 1) into 𝑉(𝑥2 + (𝑦 − 𝑥2)2 − 1), and the nodal cubic
𝑉(𝑦2−𝑥𝑦−𝑥3) into𝑉((𝑦−𝑥2)2−𝑥𝑦). (In turn, 𝑉(𝑦2−𝑥𝑦−𝑥3) and𝑉(4𝑥3−3𝑥+2𝑦2−1)
are related to each other by an affine transformation.)

Example 9.4. The polynomial expressive curves shown in Figure 17 (in red) are ob-
tained by bending a parabola and a nodal cubic.

We next discuss the “doubling” construction which transforms a plane curve 𝐶 =
𝑉(𝐺(𝑥, 𝑦)) into a new curve𝐶 = 𝑉(𝐺(𝑥, 𝑦2)). Proposition 9.5 shows that, under certain
conditions, this procedure preserves expressivity. See Figure 17.
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Figure 17: A curve C = V (G(x, y)) and the “doubled” curve C̃ = V (G(x, y2)). On
the left: G(x, y2) is the left-hand side of the equation (4.9). Cf. Figure 7. On the
right: G(x, y2) is the left-hand side of (4.14), with a = 2. Cf. Figure 8.

We next discuss the “doubling” construction which transforms a plane curve

C = V (G(x, y)) into a new curve C̃ = V (G(x, y2)). Proposition 9.5 below shows that,
under certain conditions, this procedure preserves expressivity. See Figure 17.

Proposition 9.5. Let C be an expressive L∞-regular curve whose components are
all real (hence polynomial or trigonometric, see Proposition 7.3). Suppose that

• each component B = V (G(x, y)) of C, say with degx(G) = d, intersects Z(y) in d
real points (counting multiplicities), all of which are smooth points of C; moreover,
◦ if B is trigonometric, then it intersects Z(y) at d

2 points of quadratic tangency;

◦ if B is polynomial, then it intersects Z(y) at d
2 , d−1

2 or d−2
2 points of quadratic

tangency, with 0, 1, or 2 points of transverse intersection, respectively;
• all nodes of C lie in the real half-plane {y > 0};
• at each point of quadratic tangency between C and Z(y), the local real branch of
C lies in the upper half-plane {y > 0};
• each connected component of the set {(x, y) ∈ C ∩ R2 | y < 0} is unbounded.

Then the curve C̃ = V (G(x, y2)) is expressive and L∞-regular.

Proof. The curve C̃ is nodal by construction. It is not hard to see that the set C̃R is

connected, and all the nodes of C̃ are hyperbolic. (See the proof of Proposition 9.8
for a more involved version of the argument.) In view of Theorem 7.17, it remains to

show that all components of C̃ are real polynomial or trigonometric.
We only treat the trigonometric case, since the argument in the polynomial case

is similar. (Cf. also the proof of Lemma 9.7, utilizing such an argument in a more
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Figure 17: A curve C = V (G(x, y)) and the “doubled” curve C̃ = V (G(x, y2)). On
the left: G(x, y2) is the left-hand side of the equation (4.9). Cf. Figure 7. On the
right: G(x, y2) is the left-hand side of (4.14), with a = 2. Cf. Figure 8.

We next discuss the “doubling” construction which transforms a plane curve

C = V (G(x, y)) into a new curve C̃ = V (G(x, y2)). Proposition 9.5 below shows that,
under certain conditions, this procedure preserves expressivity. See Figure 17.

Proposition 9.5. Let C be an expressive L∞-regular curve whose components are
all real (hence polynomial or trigonometric, see Proposition 7.3). Suppose that

• each component B = V (G(x, y)) of C, say with degx(G) = d, intersects Z(y) in d
real points (counting multiplicities), all of which are smooth points of C; moreover,
◦ if B is trigonometric, then it intersects Z(y) at d

2 points of quadratic tangency;

◦ if B is polynomial, then it intersects Z(y) at d
2 , d−1

2 or d−2
2 points of quadratic

tangency, with 0, 1, or 2 points of transverse intersection, respectively;
• all nodes of C lie in the real half-plane {y > 0};
• at each point of quadratic tangency between C and Z(y), the local real branch of
C lies in the upper half-plane {y > 0};
• each connected component of the set {(x, y) ∈ C ∩ R2 | y < 0} is unbounded.

Then the curve C̃ = V (G(x, y2)) is expressive and L∞-regular.

Proof. The curve C̃ is nodal by construction. It is not hard to see that the set C̃R is

connected, and all the nodes of C̃ are hyperbolic. (See the proof of Proposition 9.8
for a more involved version of the argument.) In view of Theorem 7.17, it remains to

show that all components of C̃ are real polynomial or trigonometric.
We only treat the trigonometric case, since the argument in the polynomial case

is similar. (Cf. also the proof of Lemma 9.7, utilizing such an argument in a more
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Figure 17. A curve 𝐶 = 𝑉(𝐺(𝑥, 𝑦)) and the “doubled” curve 𝐶 =
𝑉(𝐺(𝑥, 𝑦2)). On the left: 𝐺(𝑥, 𝑦2) is the left-hand side of equa-
tion (4.9). Cf. Figure 7. On the right: 𝐺(𝑥, 𝑦2) is the left-hand side
of (4.14), with 𝑎 = 2. Cf. Figure 8.

Proposition 9.5. Let 𝐶 be an expressive 𝐿∞-regular curve whose components are all real
(hence polynomial or trigonometric, see Proposition 7.3). Suppose that

• each component 𝐵 = 𝑉(𝐺(𝑥, 𝑦)) of 𝐶, say with deg𝑥(𝐺) = 𝑑, intersects 𝑍(𝑦) in 𝑑 real
points (counting multiplicities), all of which are smooth points of 𝐶; moreover,
∘ if 𝐵 is trigonometric, then it intersects 𝑍(𝑦) at 𝑑2 points of quadratic tangency;
∘ if 𝐵 is polynomial, then it intersects 𝑍(𝑦) at 𝑑2 ,

𝑑−1
2 or 𝑑−2

2 points of quadratic tan-
gency, with 0, 1, or 2 points of transverse intersection, respectively;

• all nodes of 𝐶 lie in the real half-plane {𝑦 > 0};
• at each point of quadratic tangency between 𝐶 and 𝑍(𝑦), the local real branch of 𝐶
lies in the upper half-plane {𝑦 > 0};

• each connected component of the set {(𝑥, 𝑦) ∈ 𝐶 ∩ ℝ2 ∣ 𝑦 < 0} is unbounded.
Then the curve 𝐶 = 𝑉(𝐺(𝑥, 𝑦2)) is expressive and 𝐿∞-regular.

Proof. The curve 𝐶 is nodal by construction. It is not hard to see that the set 𝐶ℝ is
connected, and all the nodes of 𝐶 are hyperbolic. (See the proof of Proposition 9.8 for a
more involved version of the argument.) In view of Theorem 7.17, it remains to show
that all components of 𝐶 are real polynomial or trigonometric.
We only treat the trigonometric case, since the argument in the polynomial case

is similar. (Cf. also the proof of Lemma 9.7, utilizing such an argument in a more
complicated context.) The natural map 𝐶 → 𝐶 lifts to a two-sheeted ramified cov-
ering 𝜌 ∶ 𝐶∨ → 𝐶∨ between respective normalizations. The restriction of 𝜌 to 𝐶∨ ⧵
𝜌−1(𝑍(𝑦)) is an unramified two-sheeted covering, and each component of 𝐶 contains a
one-dimensional fragment of the real point set, hence is real. In fact, 𝜌 is not ramified
at all, since each point in 𝐶 ∩ 𝑍(𝑦) lifts to a node, and hence to two preimages in 𝐶∨.
Since 𝐶∨ = ℂ∗, it follows that 𝐶∨ is a union of at most two disjoint copies of ℂ∗. We
conclude that 𝐶 consists of one or two trigonometric components. □
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If a curve 𝐶 = 𝑉(𝐺(𝑥, 𝑦)) satisfies the conditions in Proposition 9.5 with respect to
each of the coordinate axes 𝑍(𝑥) and 𝑍(𝑦), with all points in 𝐶 ∩ 𝑍(𝑥) (resp., 𝐶 ∩ 𝑍(𝑦))
located on the positive ray {𝑥 = 0, 𝑦 > 0} (resp., {𝑦 = 0, 𝑥 > 0}), the one can apply
the doubling transformation twice, obtaining an expressive curve 𝐶 = 𝑉(𝐺(𝑥2, 𝑦2)).
A couple of examples are shown in Figure 18.
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complicated context.) The natural map C̃→C lifts to a two-sheeted ramified covering

ρ : C̃∨→C∨ between respective normalizations. The restriction of ρ to C̃∨\ρ−1(Z(y))

is an unramified two-sheeted covering, and each component of C̃ contains a one-
dimensional fragment of the real point set, hence is real. In fact, ρ is not ramified at

all, since each point in C ∩ Z(y) lifts to a node, and hence to two preimages in C̃∨.

Since C∨ = C∗, it follows that C̃∨ is a union of at most two disjoint copies of C∗. We

conclude that C̃ consists of one or two trigonometric components. �

If a curve C = V (G(x, y)) satisfies the conditions in Proposition 9.5 with respect to
each of the coordinate axes Z(x) and Z(y), with all points in C∩Z(x) (resp., C∩Z(y))
located on the positive ray {x = 0, y > 0} (resp., {y = 0, x > 0}), the one can apply

the doubling transformation twice, obtaining an expressive curve C̃ = V (G(x2, y2)).
A couple of examples are shown in Figure 18.

Figure 18: A curve C = V (G(x, y)) and its “double-double” C ′ = V (G(x2, y2)).

Left: C is a nodal cubic tangent to both axes, C̃ is a 4-petal hypotrochoid, cf.
Definition 7.12, with b = 3, c = 1. Right: C is a cubic parabola tangent to both axes,

C̃ is an epitrochoid with b = 3, c = −1.

The remainder of this section is devoted to the discussion of “unfolding.” This is
a transformation of algebraic curves that utilizes the coordinate change

(9.2) (x, y) = (x, Tm(u)).

(As before, Tm denotes the mth Chebyshev polynomial of the first kind, see (4.1).)
A precise description of unfolding is given in Proposition 9.8 below. To get a general
idea of how this construction works, take a look at the examples in Figures 19–20.
As these examples illustrate, the bulk of the unfolded curve (viewed up to an isotopy
of the real plane) is obtained by stitching together m copies of the input curve C, or
more precisely the portion of C contained in the strip {−1 ≤ y ≤ 1}.

Lemma 9.6. Let C = V (F (x, y)) be a trigonometric curve. Suppose that

• the strip {−1 < y < 1} contains a one-dimensional fragment of CR;
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complicated context.) The natural map C̃→C lifts to a two-sheeted ramified covering

ρ : C̃∨→C∨ between respective normalizations. The restriction of ρ to C̃∨\ρ−1(Z(y))

is an unramified two-sheeted covering, and each component of C̃ contains a one-
dimensional fragment of the real point set, hence is real. In fact, ρ is not ramified at

all, since each point in C ∩ Z(y) lifts to a node, and hence to two preimages in C̃∨.

Since C∨ = C∗, it follows that C̃∨ is a union of at most two disjoint copies of C∗. We

conclude that C̃ consists of one or two trigonometric components. �

If a curve C = V (G(x, y)) satisfies the conditions in Proposition 9.5 with respect to
each of the coordinate axes Z(x) and Z(y), with all points in C∩Z(x) (resp., C∩Z(y))
located on the positive ray {x = 0, y > 0} (resp., {y = 0, x > 0}), the one can apply

the doubling transformation twice, obtaining an expressive curve C̃ = V (G(x2, y2)).
A couple of examples are shown in Figure 18.

Figure 18: A curve C = V (G(x, y)) and its “double-double” C ′ = V (G(x2, y2)).

Left: C is a nodal cubic tangent to both axes, C̃ is a 4-petal hypotrochoid, cf.
Definition 7.12, with b = 3, c = 1. Right: C is a cubic parabola tangent to both axes,

C̃ is an epitrochoid with b = 3, c = −1.

The remainder of this section is devoted to the discussion of “unfolding.” This is
a transformation of algebraic curves that utilizes the coordinate change

(9.2) (x, y) = (x, Tm(u)).

(As before, Tm denotes the mth Chebyshev polynomial of the first kind, see (4.1).)
A precise description of unfolding is given in Proposition 9.8 below. To get a general
idea of how this construction works, take a look at the examples in Figures 19–20.
As these examples illustrate, the bulk of the unfolded curve (viewed up to an isotopy
of the real plane) is obtained by stitching together m copies of the input curve C, or
more precisely the portion of C contained in the strip {−1 ≤ y ≤ 1}.

Lemma 9.6. Let C = V (F (x, y)) be a trigonometric curve. Suppose that

• the strip {−1 < y < 1} contains a one-dimensional fragment of CR;
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Figure 18. A curve 𝐶 = 𝑉(𝐺(𝑥, 𝑦)) and its “double-double” 𝐶′ =
𝑉(𝐺(𝑥2, 𝑦2)). Left: 𝐶 is a nodal cubic tangent to both axes, 𝐶 is a 4-
petal hypotrochoid, cf. Definition 7.12, with 𝑏 = 3, 𝑐 = 1. Right: 𝐶 is
a cubic parabola tangent to both axes, 𝐶 is an epitrochoid with 𝑏 = 3,
𝑐 = −1.

The remainder of this section is devoted to the discussion of “unfolding.” This is a
transformation of algebraic curves that utilizes the coordinate change
(9.2) (𝑥, 𝑦) = (𝑥, 𝑇𝑚(𝑢)).
(As before, 𝑇𝑚 denotes the 𝑚th Chebyshev polynomial of the first kind, see (4.1).)
A precise description of unfolding is given in Proposition 9.8. To get a general idea
of how this construction works, take a look at the examples in Figures 19–20. As these
examples illustrate, the bulk of the unfolded curve (viewed up to an isotopy of the real
plane) is obtained by stitching together𝑚 copies of the input curve𝐶, ormore precisely
the portion of 𝐶 contained in the strip {−1 ≤ 𝑦 ≤ 1}.
Lemma 9.6. Let 𝐶 = 𝑉(𝐹(𝑥, 𝑦)) be a trigonometric curve. Suppose that
• the strip {−1 < 𝑦 < 1} contains a one-dimensional fragment of 𝐶ℝ;
• 𝐶 intersects each of the lines 𝑦 = ±1 in 𝑑/2 points;
• all of these points are smooth points of quadratic tangency between 𝐶 and 𝑍(𝑦2 − 1).
Then for any𝑚 ∈ ℤ>0, the curve 𝐶(𝑚) defined by
(9.3) 𝐶(𝑚) = 𝑉(𝐹(𝑥, 𝑇𝑚(𝑢)))
is a union of trigonometric curves.
Proof. The natural map 𝐶(𝑚) → 𝐶 given by (9.2) lifts to the𝑚-sheeted ramified cover-
ing map 𝜌 ∶ 𝐶∨

(𝑚) → 𝐶∨ between the normalizations. The restriction

𝜌 ∶ 𝐶∨
(𝑚) ⧵ 𝜌−1(𝑍(𝑦2 − 1)) → 𝐶∨ ⧵ 𝑍(𝑦2 − 1)
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Figure 19. An ellipse 𝐶 = 𝑉(𝐺(𝑥, 𝑦)) and its unfolding 𝐶 =
𝑉(𝐺(𝑥, 𝑇5(𝑦))). Here 𝐺(𝑥, 𝑦) = 𝑦2 − √2𝑥𝑦 + 𝑥2 − 1

2 . The green
dashed lines are given by the equations 𝑦 = ±1 (on the left) and
𝑇5(𝑦)=16𝑦5 − 20𝑦3 + 5𝑦=±1 (on the right).
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Figure 19: An ellipse C = V (G(x, y)) and its unfolding C = V (G(x, T5(y))). Here
G(x, y) = y2 −

√
2xy + x2 − 1

2 . The green dashed lines are given by the equations

y=±1 (on the left) and T5(y)=16y5 − 20y3 + 5y=±1 (on the right).

Figure 20: A curve C = V (G(x, y)) and its triple unfolding C = V (G(x, T3(y))). Here
G(x, y) = 8x3 − 12x2 + (2y + (x − 1)2)2. The green dashed lines are given by the
equations y = ±1 (on the left) and T3(y) = 4y3 − 3y = ±1. Cf. Figure 15.

• C intersects each of the lines y = ±1 in d/2 points;
• all of these points are smooth points of quadratic tangency between C and Z(y2−1).

Then for any m ∈ Z>0 , the curve C(m) defined by

(9.3) C(m) = V (F (x, Tm(u)))

is a union of trigonometric curves.

Proof. The natural map C(m) → C given by (9.2) lifts to the m-sheeted ramified
covering map ρ : C∨(m) → C∨ between the normalizations. The restriction

ρ : C∨(m) \ ρ
−1(Z(y2 − 1))→ C∨ \ Z(y2 − 1)

is an unramified m-sheeted covering, and each of the components of C(m) contains a
one-dimensional fragment of the real point set, hence is real. Let us show that ρ is
not ramified at all. If p ∈ C ∩ Z(y − 1) and T−1

m (1) consists of a simple roots and
b double roots, then p lifts to a smooth points (where C(m) is quadratically tangent
to the lines u = λ with λ running over all these simple roots) and b nodes, totaling
a+ 2b = m preimages in C∨(m).

As C is trigonometric, C∨=C∗. Since a cylinder can only be covered by a cylinder,
C∨(m) is a union of disjoint copies of C∗ (not necessarily m of them), so C(m) is a union

of trigonometric components. �
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Figure 20. A curve 𝐶 = 𝑉(𝐺(𝑥, 𝑦)) and its triple unfolding 𝐶 =
𝑉(𝐺(𝑥, 𝑇3(𝑦))). Here 𝐺(𝑥, 𝑦) = 8𝑥3 − 12𝑥2 + (2𝑦 + (𝑥 − 1)2)2. The
green dashed lines are given by the equations 𝑦 = ±1 (on the left) and
𝑇3(𝑦) = 4𝑦3 − 3𝑦 = ±1. Cf. Figure 15.

is an unramified 𝑚-sheeted covering, and each of the components of 𝐶(𝑚) contains a
one-dimensional fragment of the real point set, hence is real. Let us show that 𝜌 is not
ramified at all. If 𝑝 ∈ 𝐶 ∩ 𝑍(𝑦 − 1) and 𝑇−1𝑚 (1) consists of 𝑎 simple roots and 𝑏 double
roots, then 𝑝 lifts to 𝑎 smooth points (where 𝐶(𝑚) is quadratically tangent to the lines
𝑢 = 𝜆 with 𝜆 running over all these simple roots) and 𝑏 nodes, totaling 𝑎 + 2𝑏 = 𝑚
preimages in 𝐶∨

(𝑚).
As 𝐶 is trigonometric, 𝐶∨=ℂ∗. Since a cylinder can only be covered by a cylinder,

𝐶∨
(𝑚) is a union of disjoint copies of ℂ∗ (not necessarily𝑚 of them), so 𝐶(𝑚) is a union

of trigonometric components. □

Lemma 9.7. Let 𝐶 = 𝑉(𝐹(𝑥, 𝑦)) be a real polynomial curve. Let 𝑑 = deg𝑥 𝐹(𝑥, 𝑦).
Suppose that
• the strip {−1 < 𝑦 < 1} contains a one-dimensional fragment of 𝐶ℝ;
• 𝐶 intersects 𝑍(𝑦2 − 1) in 2𝑑 points (counting multiplicities), all of which are smooth
points of 𝐶;

• these points include 𝑑 − 1 quadratic tangencies and two transverse intersections.
Then for any𝑚 ∈ ℝ>0, the curve𝐶(𝑚) defined by (9.3) is a union of polynomial or trigono-
metric components.

Proof. It is not hard to see that 𝐶 has a polynomial parametrization 𝑡 ↦ (𝑃(𝑡), 𝑄(𝑡))
with 𝑄(𝑡) = ±𝑇𝑑(𝑡). This follows from “Chebyshev’s equioscillation theorem” of ap-
proximation theory (due to E. Borel and A. Markov, see, e.g., [31, Section 1.1] or [28,
Theorem 3.4]). In the rest of the proof, we assume that 𝑄(𝑡) = 𝑇𝑑(𝑡), as the case
𝑄(𝑡) = −𝑇𝑑(𝑡) is completely similar.
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Wenote that one can slightly vary the coefficients of𝑃while keeping the intersection
properties of 𝐶 with 𝑍(𝑦2 − 1) (and maintaining expressivity if 𝐶 has this property).
Thus, we can assume that 𝑃(𝑡) is a generic polynomial (in particular, with respect to
𝑄(𝑡) = 𝑇𝑑(𝑡)).

Case 1. gcd(𝑑,𝑚) = 1. Observe that
(9.4) 𝜏 ↦ (𝑥, 𝑢) = (𝑃(𝑇𝑚(𝜏)), 𝑇𝑑(𝜏))
is a parametrization of a polynomial curve lying inside 𝐶(𝑚). Indeed,

𝐹(𝑃(𝑇𝑚(𝜏)), 𝑇𝑚(𝑇𝑑(𝜏))) = 𝐹(𝑃(𝑇𝑚(𝜏)), 𝑇𝑑(𝑇𝑚(𝜏))) = 0
because 𝐹(𝑃(𝑡), 𝑄(𝑡)) = 0.
Since 𝑑𝑥

𝑑𝜏 and
𝑑ᵆ
𝑑𝜏 never vanish simultaneously (thanks to the genericity of 𝑃 and the

coprimeness of 𝑑 and 𝑚), the map (9.4) is an immersion of ℂ into the affine plane.
Since 𝑢 = 0 at 𝑑 points, while deg𝑥 𝐹(𝑥, 𝑇𝑚(𝑢)) = 𝑑, the image of this immersion is the
entire curve 𝐶(𝑚), which is therefore polynomial.

Case 2. 𝑐 = gcd(𝑚, 𝑑) > 1. Let 𝑚 = 𝑐𝑟, 𝑑 = 𝑐𝑠. The curve 𝐶(𝑚) is given in the affine
(𝑥, 𝑢)-plane by the equations

𝑥 = 𝑃(𝑡), 𝑇𝑚(𝑢) = 𝑇𝑑(𝑡)
involving an implicit parameter 𝑡. Setting 𝑡 = 𝑇𝑟(𝜏) we rewrite this as

𝑥 = 𝑃(𝑇𝑟(𝜏)), 𝑇𝑚(𝑢) = 𝑇𝑚(𝑇𝑠(𝜏))
(since 𝑇𝑑(𝑇𝑟(𝜏)) = 𝑇𝑚(𝑇𝑠(𝜏))). The equation 𝑇𝑚(𝑢) = 𝑇𝑚(𝑢′) has solutions 𝑢 = 𝑢′,
𝑢 = −𝑢′ (for𝑚 even) as well as

arccos 𝑢 = ±arccos 𝑢′ + 2𝜋 𝑘
𝑚 , 𝑘 = 0, . . . , 𝑚 − 1, 𝑢, 𝑢′ ∈ [−1, 1].

From this, we obtain the following components of 𝐶(𝑚), all of which turn out to be
either polynomial or trigonometric. The polynomial components are:

𝑥 = 𝑃(𝑇𝑟(𝜏)), 𝑢 = 𝑇𝑠(𝜏),
𝑥 = 𝑃(𝑇𝑟(𝜏)), 𝑢 = −𝑇𝑠(𝜏) (𝑚 ∈ 2ℤ).

The trigonometric components are (here we set 𝜏 = cos 𝜃):
𝑥 = 𝑃(cos(𝑟𝜃)), 𝑢 = cos(𝑠𝜃 ± 2𝜋 𝑘

𝑚 ), 0 < 𝑘 < 𝑚
2 .

One can sort out which of these components are distinct by taking into account that 𝑥
is invariant with respect to the substitutions 𝜃 ↦ −𝜃 and 𝜃 ↦ 𝜃 + 2𝜋 𝑗

𝑟 .
Finally, we note that the curve 𝐶(𝑚) has no multiple components. To see that, take

a line 𝑥 = 𝑥0 such that the polynomial 𝐹(𝑥0, 𝑦) has only simple roots 𝑦1, . . . , 𝑦𝑟 which
differ from ±1. (Such a line 𝑥 = 𝑥0 does exist, since otherwise 𝐶 would have multiple
components or contain one of the lines 𝑦 = ±1.) Then the polynomial 𝐹(𝑥0, 𝑇𝑚(𝑢))
has only simple roots which all come from the equations 𝑇𝑚(𝑢) = 𝑦𝑖, 𝑖 = 1, . . . , 𝑟. □

Proposition 9.8. Let𝐶 = 𝑉(𝐺(𝑥, 𝑦)) be an expressive𝐿∞-regular curve all of whose com-
ponents are real (hence polynomial or trigonometric, cf. Proposition 7.3). Suppose that
• each component 𝑉(𝐹(𝑥, 𝑦)) of 𝐶, say with deg𝑥(𝐹) = 𝑑, intersects 𝑍(𝑦2−1) in 2𝑑 real
points (counting multiplicities), all of which are smooth points of 𝐶;

• moreover, these intersections occur in one of the following two ways:
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∘ 𝑑 points of quadratic tangency if the component is trigonometric, or
∘ 𝑑 − 1 points of quadratic tangency and two points of transverse intersection if the
component is polynomial;

• all nodes of 𝐶 lie in the strip {−1 < 𝑦 < 1};
• at each point of quadratic tangency between 𝐶 and 𝑍(𝑦2 −1), the local real branch of
𝐶 lies in the strip {−1 ≤ 𝑦 ≤ 1}.

Then the curve 𝐶(𝑚) = 𝑉(𝐺(𝑥, 𝑇𝑚(𝑦))) is expressive and 𝐿∞-regular.
Proof. By construction, the curve 𝐶(𝑚) is nodal. By Lemmas 9.6 and 9.7, the compo-
nents of𝐶(𝑚) are real polynomial or trigonometric. In view of Theorem 7.17, it remains
to show that the set 𝐶(𝑚),ℝ is connected, and that all the nodes of 𝐶(𝑚) are hyperbolic.
The set of real points 𝐶ℝ is connected by Definition 5.1. Since all the nodes of 𝐶 lie

inside the strip {−1 < 𝑦 < 1}, it follows that the set 𝐶ℝ ∩ {−1 ≤ 𝑦 ≤ 1} is connected.
Let {𝑎1 < ⋯ < 𝑎𝑚+1} be the set of roots of the equation 𝑇2𝑚(𝑎) = 1. Then each set

(9.5) 𝐶(𝑚),ℝ ∩ {𝑎𝑗 ≤ 𝑦 ≤ 𝑎𝑗+1}, 𝑗 = 1, . . . , 𝑚,
is an image of 𝐶ℝ ∩ {−1 ≤ 𝑦 ≤ 1} under a homeomorphism of the strip {−1 ≤ 𝑦 ≤ 1}
onto the strip {𝑎𝑗 ≤ 𝑦 ≤ 𝑎𝑗+1}. Furthermore, for each 𝑗 = 2, . . . ,𝑚, the sets

𝐶(𝑚),ℝ ∩ {𝑎𝑗−1 ≤ 𝑦 ≤ 𝑎𝑗} and 𝐶(𝑚),ℝ ∩ {𝑎𝑗 ≤ 𝑦 ≤ 𝑎𝑗+1}
are attached to each other at their common points along the line 𝑍(𝑦 − 𝑎𝑗). (This set
of common points is nonempty since it includes the images of the intersection of 𝐶ℝ
with one of the two lines 𝑍(𝑦 ± 1).) To obtain the entire set 𝐶(𝑚),ℝ, we attach to the
(connected) union of the𝑚 sets (9.5) the diffeomorphic images of the intervals forming
the set 𝐶ℝ ⧵ {−1 ≤ 𝑦 ≤ 1} (if any). We conclude that 𝐶(𝑚),ℝ is connected.
Regarding the nodes of 𝐶(𝑚), we observe that they come in two flavours. First, as

one of the 𝑚 preimages of a node of 𝐶 contained in the strip {−1 < 𝑦 < 1}; all these
preimages are real, hence hyperbolic. Second, as a preimage of a tangency point be-
tween 𝐶 and 𝑍(𝑦2 − 1); this again yields a hyperbolic node. □

10. Arrangements of lines, parabolas, and circles

We next discuss ways of putting together several expressive curves to create a new
(reducible) expressive curve. Our key tool is Corollary 10.1.

Corollary 10.1. Let 𝐶1, . . . , 𝐶𝑘 be expressive and 𝐿∞-regular plane curves such that
• each pair 𝐶𝑖 and 𝐶𝑗 intersect each other in 𝔸2 at (distinct) hyperbolic nodes, and
• the set 𝐶ℝ of real points of the curve 𝐶 = 𝐶1 ∪⋯𝐶𝑘 is connected.
Then 𝐶 is expressive and 𝐿∞-regular.
Proof. Follows from Theorem 7.17. □

One easy consequence of Corollary 10.1 is the following construction.

Corollary 10.2 (Cf. Example 5.7). Let 𝑓1(𝑥), . . . , 𝑓𝑘(𝑥) ∈ ℝ[𝑥]. Assume that each poly-
nomial 𝑓𝑖(𝑥) − 𝑓𝑗(𝑥) has real roots, and all such roots (over all pairs {𝑖, 𝑗}) are pairwise
distinct. Then the curve 𝑉(∏𝑖(𝑦 − 𝑓𝑖(𝑥))) is expressive and 𝐿∞-regular.
Example 10.3 (Line arrangements). A connected arrangement of distinct real lines in
the plane forms an expressive and 𝐿∞-regular curve, as long as no three lines intersect
at a point. Parallel lines are allowed. See Figure 21.
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10. Arrangements of lines, parabolas, and circles

We next discuss ways of putting together several expressive curves to create a new
(reducible) expressive curve. Our key tool is the following corollary.

Corollary 10.1. Let C1, . . . , Ck be expressive and L∞-regular plane curves such that

• each pair Ci and Cj intersect each other in A2 at (distinct) hyperbolic nodes, and
• the set CR of real points of the curve C = C1 ∪ · · ·Ck is connected.

Then C is expressive and L∞-regular.

Proof. Follows from Theorem 7.17. �

One easy consequence of Corollary 10.1 is the following construction.

Corollary 10.2 (cf. Example 5.7). Let f1(x), . . . , fk(x) ∈ R[x]. Assume that each
polynomial fi(x) − fj(x) has real roots, and all such roots (over all pairs {i, j}) are
pairwise distinct. Then the curve V (

∏
i(y − fi(x))) is expressive and L∞-regular.

Example 10.3 (Line arrangements). A connected arrangement of distinct real lines
in the plane forms an expressive and L∞-regular curve, as long as no three lines
intersect at a point. Parallel lines are allowed. See Figure 21.

Figure 21: A line arrangement.

Example 10.4 (Arrangements of parabolas). Let C be a union of distinct real
parabolas in the affine plane. Then C is an expressive and L∞-regular curve pro-
vided

• the set of real points of C is connected;
• no three parabolas intersect at a point;
• all intersections between parabolas are transverse;
• for each pair of parabolas P1 and P2, one of the following options holds:

– P1 and P2 differ by a shift of the plane, or
– P1 and P2 have parallel (or identical) axes, and intersect at 2 points, or
– P1 and P2 intersect at 4 points.

See Figures 22 and 23.
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Figure 21. A line arrangement

Example 10.4 (Arrangements of parabolas). Let𝐶 be a union of distinct real parabolas
in the affine plane. Then 𝐶 is an expressive and 𝐿∞-regular curve provided
• the set of real points of 𝐶 is connected;
• no three parabolas intersect at a point;
• all intersections between parabolas are transverse;
• for each pair of parabolas 𝑃1 and 𝑃2, one of the following options holds:

– 𝑃1 and 𝑃2 differ by a shift of the plane, or
– 𝑃1 and 𝑃2 have parallel (or identical) axes, and intersect at 2 points, or
– 𝑃1 and 𝑃2 intersect at 4 points.

See Figures 22 and 23.
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Figure 22: An arrangement of four co-oriented parabolas. Each pair of parabolas
intersect transversally at two points.

Figure 23: Two arrangements of four parabolas. Each pair of parabolas intersect
transversally at one, two, or four points, all of them real.

Examples 10.3 and 10.4 have a common generalization:

Example 10.5 (Arrangements of lines and parabolas). Let C be a union of distinct
real lines and parabolas in the affine plane. Then C is an expressive and L∞-regular
curve provided

• the set of real points of C is connected;
• no three of these curves intersect at a point;
• all intersections between these lines and parabolas are transverse;
• each line intersects every parabola at one or two points;
• each pair of parabolas intersect in one of the ways listed in Example 10.4.

Another elegant application of Corollary 10.1 involves arrangements of circles:

Example 10.6 (Circle arrangements). Let {Ci} be a collection of circles on the real
affine plane such that each pair of circles intersect transversally at two real points,
with no triple intersections. Then the curve

⋃
Ci is expressive and L∞-regular. See

Figure 24.
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Figure 22. An arrangement of four co-oriented parabolas. Each pair
of parabolas intersects transversally at two points.

Examples 10.3 and 10.4 have a common generalization:

Example 10.5 (Arrangements of lines and parabolas). Let 𝐶 be a union of distinct real
lines and parabolas in the affine plane. Then 𝐶 is an expressive and 𝐿∞-regular curve
provided
• the set of real points of 𝐶 is connected;
• no three of these curves intersect at a point;
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Figure 23. Two arrangements of four parabolas. Each pair of
parabolas intersects transversally at one, two, or four points, all of
them real.

• all intersections between these lines and parabolas are transverse;
• each line intersects every parabola at one or two points;
• each pair of parabolas intersects in one of the ways listed in Example 10.4.

Another elegant application of Corollary 10.1 involves arrangements of circles:

Example 10.6 (Circle arrangements). Let {𝐶𝑖} be a collection of circles on the real
affine plane such that each pair of circles intersects transversally at two real points,
with no triple intersections. Then the curve ⋃𝐶𝑖 is expressive and 𝐿∞-regular. See
Figure 24.

Figure 24. A circle arrangement

Here is a common generalization of Examples 10.3 and 10.6:
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Example 10.7 (Arrangements of lines and circles). Let {𝐶𝑖} be a collection of lines and
circles on the real affine plane such that each circle intersects every line (resp., every
other circle) transversally at two points, with no triple intersections. Then the curve
⋃𝐶𝑖 is expressive and 𝐿∞-regular. See Figure 25.
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Figure 24: A circle arrangement.

Here is a common generalization of Examples 10.3 and 10.6:

Example 10.7 (Arrangements of lines and circles). Let {Ci} be a collection of lines
and circles on the real affine plane such that each circle intersects every line (resp.,
every other circle) transversally at two points, with no triple intersections. Then the
curve

⋃
Ci is expressive and L∞-regular. See Figure 25.

Figure 25: An arrangement of circles and lines.
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Figure 25. An arrangement of circles and lines

11. Shifts and dilations

In this section, we obtain lower bounds for an intersection multiplicity (at a point
𝑝 ∈ 𝐿∞) between a plane curve 𝐶 and another curve obtained from 𝐶 by a shift or
dilation. In Sections 12–13, we will use these estimates to derive expressivity criteria
for unions of polynomial or trigonometric curves.
Without loss of generality, we assume that 𝑝 = (1, 0, 0) throughout this section.
To state our bounds, we will need some notation involving Newton diagrams:

Definition 11.1. Let 𝐶 = 𝑍(𝐹(𝑥, 𝑦, 𝑧)) be a plane projective curve that contains nei-
ther of the lines 𝑍(𝑧) = 𝐿∞ and 𝑍(𝑦) as a component. Furthermore assume that
𝑝 = (1, 0, 0) ∈ 𝐶 ∩ 𝐿∞. We denote by Γ(𝐶, 𝑝) the Newton diagram of the polynomial

(11.1) 𝐹1(𝑦, 𝑧) = 𝐹(1, 𝑦, 𝑧) ∈ ℂ[𝑦, 𝑧]

at the point (0, 0), see Definition 3.5. Since 𝐹1 is not divisible by 𝑦 or 𝑧, the Newton
diagram Γ(𝐶, 𝑝) touches both coordinate axes. We denote by 𝑆−(Γ(𝐶, 𝑝)) the area of
the domain bounded by Γ(𝐶, 𝑝) and these axes.
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Proposition 11.2. Let 𝐶 = 𝑍(𝐹(𝑥, 𝑦, 𝑧)) be a projective curve that contains neither
𝑍(𝑧) = 𝐿∞ nor 𝑍(𝑦) as a component. Let 𝑐 ∈ ℂ∗, and let 𝐶𝑐 denote the dilated curve
(11.2) 𝐶𝑐 = 𝑍(𝐹(𝑐𝑥, 𝑐𝑦, 𝑧)).
Assume that 𝑝 = (1, 0, 0) ∈ 𝐶 ∩ 𝐿∞. Then
(11.3) (𝐶 ⋅ 𝐶𝑐)𝑝 ≥ 2𝑆−(Γ(𝐶, 𝑝)).
Proof. In the coordinates (𝑦, 𝑧), the dilation 𝐶 ; 𝐶𝑐 can be regarded as a transition
from the polynomial 𝐹1 (see (11.1)) to the polynomial 𝐹𝑐(𝑦, 𝑧) = 𝐹(𝑐, 𝑐𝑦, 𝑧). The poly-
nomials 𝐹1 and 𝐹𝑐 have the same Newton diagram at 𝑝 (resp., Newton polygon). Fur-
thermore, let 𝐺(𝑦, 𝑧) be a polynomial with the same Newton polygon and with generic
coefficients. By the lower semicontinuity of the intersection number, we have

(𝐶 ⋅ 𝐶𝑐)𝑝 ≥ (𝐶 ⋅ 𝑍(𝐺(𝑦, 𝑧)))𝑝.
ByKouchnirenko’s theorem [27, 1.18, Théorème III′], the total intersectionmultiplicity
of the curves 𝐶 and 𝑍(𝐺) in the torus (ℂ∗)2 equals 2𝑆(𝑃), twice the area of the Newton
polygon 𝑃 of 𝐹1. Let us now deform 𝐹1 and 𝐺 by adding all monomials underneath the
Newton diagram Γ(𝐶, 𝑝), with sufficiently small generic coefficients. Again by Kouch-
nirenko’s theorem, the total intersection multiplicity of the deformed curves in (ℂ∗)2
equals 2𝑆(𝑃)+2𝑆−(Γ(𝐶, 𝑝)). To establish the bound (11.3), it remains to notice that the
extra term 2𝑆−(Γ(𝐶, 𝑝)) occurring in the latter intersection multiplicity geometrically
comes from simple intersection points in a neighborhood of 𝑝, obtained by breaking
up the (complicated) intersection of 𝐶 and 𝑍(𝐺) at 𝑝. □

To state the analogue of Proposition 11.2 for shifted curves, we need to recall some
basic facts about the Newton-Puiseux algorithm [18, Algorithm I.3.6]. This algorithm
assigns each local branch 𝑄 of a curve 𝐶 at the point 𝑝 = (1, 0, 0) ∈ 𝐶 ∩ 𝐿∞ to an edge
𝐸=𝐸(𝑄) of the Newton diagram Γ(𝐶, 𝑝), cf. Definition 11.1. We denote by

𝐧(𝐸) = (𝑛𝑦, 𝑛𝑧) ∈ ℤ2>0
the primitive integral normal vector to 𝐸, with positive coordinates.
Lemma 11.3 (Cf. [18, Section I.3.1]). Let 𝑄 be a local branch of 𝐶 at 𝑝=(1, 0, 0)∈𝐶.
Assume that 𝑄 is tangent to 𝐿∞. Let 𝐸 = 𝐸(𝑄). Then
(11.4) 𝐧(𝐸) = (𝑛𝑦, 𝑛𝑧) = 1

𝑟 (𝑚, 𝑑),
where

𝑑 = 𝑑(𝑄) = (𝑄 ⋅ 𝐿∞)𝑝 ,(11.5)
𝑚 = 𝑚(𝑄) = mult(𝑄) < 𝑑,(11.6)
𝑟 = 𝑟(𝑄) = gcd(𝑚, 𝑑).(11.7)

We denote by 𝐹𝐸(𝑦, 𝑧) = 𝐹𝐸(𝑄)(𝑦, 𝑧) the truncation of 𝐹1 (see 11.1) along the edge
𝐸 = 𝐸(𝑄). The polynomial 𝐹𝐸 is quasihomogeneous with respect to the weighting of
𝑦 and 𝑧 by 𝑛𝑦 and 𝑛𝑧, respectively. We denote

𝜌 = 𝜌(𝑄) = lim
𝑞=(1,𝑦,𝑧)∈𝑄

𝑞→𝑝

𝑧𝑛𝑦
𝑦𝑛𝑧 ∈ ℂ∗,(11.8)

𝜂(𝑄) = multiplicity of (𝑧𝑛𝑦 − 𝜌𝑦𝑛𝑧) as a factor of 𝐹𝐸(𝑦, 𝑧).(11.9)
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It is not hard to see that 𝜌(𝑄) is well defined, and that 𝜂(𝑄) ≥ 1.

Proposition 11.4. Let 𝐶 = 𝑍(𝐹(𝑥, 𝑦, 𝑧)) be a projective curve not containing the line
𝑍(𝑧) = 𝐿∞ as a component. Assume that 𝑝 = (1, 0, 0) ∈ 𝐶 ∩ 𝐿∞, and that 𝐶 is not
tangent to the line 𝑍(𝑦) at 𝑝. Let 𝑎, 𝑏 ∈ ℂ, and let 𝐶𝑎,𝑏 denote the shifted curve
(11.10) 𝐶𝑎,𝑏 = 𝑍(𝐹(𝑥 + 𝑎𝑧, 𝑦 + 𝑏𝑧, 𝑧)).
Then

(𝐶 ⋅ 𝐶𝑎,𝑏)𝑝 ≥ 2𝑆−(Γ(𝐶, 𝑝)) − mult(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 +∑
𝑄
min(𝑟(𝑄), 𝜂(𝑄) − 1),

(11.11)

where the sum is over all local branches 𝑄 of 𝐶 at 𝑝 which are tangent to 𝐿∞.

(For the definitions of 𝑆−(Γ(𝐶, 𝑝)), 𝑟(𝑄) and 𝜂(𝑄), see Definition 11.1, (11.5)–(11.7)
and (11.8)–(11.9), respectively.)

Proof. Since the intersection multiplicity is lower semicontinuous, we may assume
that 𝑎 and 𝑏 are generic complex numbers.
Let us denote

𝒬(𝐶, 𝑝) = the set of local branches of 𝐶 at 𝑝;
𝒬0(𝐶, 𝑝) = the set of local branches tangent to 𝐿∞;
𝒬1(𝐶, 𝑝) = the set of local branches transversal to 𝐿∞.

The local branches in 𝒬0(𝐶, 𝑝) correspond to the edges of Γ(𝐶, 𝑝) such that 𝑛𝑦 < 𝑛𝑧,
cf. Lemma 11.3. Let Γ0(𝐶, 𝑝) denote the union of these edges. The local branches in
𝒬1(𝐶, 𝑝), if any, correspond to the unique edge 𝐸(1,1) ⊂ Γ(𝐶, 𝑝) with 𝐧(𝐸(1,1))=(1, 1).
Figure 26 illustrates the case where the edge 𝐸(1,1) is present; equivalently, some local
branches are transversal to 𝐿∞.

powers of 𝑧

powers of 𝑦

𝐸(1,1)

Γ0(𝐶, 𝑝)

Figure 26. The Newton diagram Γ(𝐶, 𝑝). The edge 𝐸(1,1) corre-
sponds to the local branches transversal to 𝐿∞. The remaining edges
of Γ(𝐶, 𝑝) form the subdiagram Γ0(𝐶, 𝑝); they correspond to the local
branches tangent to 𝐿∞.

Let us consider the family of curves {𝐶𝜆𝑎,𝜆𝑏}0≤𝜆≤1 interpolating between 𝐶 = 𝐶0,0
and 𝐶𝑎,𝑏. Being equisingular at the point 𝑝, this deformation preserves the number of
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local branches at 𝑝 as well as their topological characteristics. It therefore descends to
families of individual local branches at 𝑝, yielding an equisingular bijection

𝒬(𝐶, 𝑝)⟶ 𝒬(𝐶𝑎,𝑏, 𝑝),
𝑄⟼ 𝑄𝑎,𝑏 .

Since the fixed point set of the shift (𝑥, 𝑦, 𝑧) ↦ (𝑥 + 𝑎𝑧, 𝑦 + 𝑏𝑧, 𝑧) is the line 𝐿∞, this
bijection restricts to bijections 𝒬0(𝐶, 𝑝) → 𝒬0(𝐶𝑎,𝑏, 𝑝) and 𝒬1(𝐶, 𝑝) → 𝒬1(𝐶𝑎,𝑏, 𝑝).
To obtain the desired lower bound on (𝐶 ⋅ 𝐶𝑎,𝑏)𝑝, we will exploit the decomposition

(11.12) (𝐶 ⋅ 𝐶𝑎,𝑏)𝑝 = ∑
𝑄,𝑄′∈𝒬(𝐶,𝑝)

(𝑄 ⋅ 𝑄′
𝑎,𝑏)𝑝 = Σ00 + Σ01 + Σ10 + Σ11 ,

where we use the notation

Σ𝜀𝛿 = ∑
𝑄∈𝒬𝜀(𝐶,𝑝)
𝑄′∈𝒬𝛿(𝐶,𝑝)

(𝑄 ⋅ 𝑄′
𝑎,𝑏)𝑝 , for 𝜀, 𝛿 ∈ {0, 1}.

Lemma 11.5. Suppose 𝒬1(𝐶, 𝑝) ≠ ∅. Then
(11.13) Σ01 + Σ10 + Σ11 = 2𝑆−(𝐸(1,1)),
where 𝑆−(𝐸(1,1)) denotes the area of the trapezoid bounded by the edge 𝐸(1,1), the coordi-
nate axes, and the vertical line through the rightmost endpoint of 𝐸(1,1).

Proof. For 𝑄 ∈ 𝒬1(𝐶, 𝑝), the tangent lines to 𝑄 and 𝑄𝑎,𝑏 differ from each other. The
foregoing discussion implies that, for any 𝑄 ∈ 𝒬1(𝐶, 𝑝) and 𝑄′ ∈ 𝒬(𝐶, 𝑝), we have

(𝑄 ⋅ 𝑄′
𝑎,𝑏)𝑝 = (𝑄𝑎,𝑏 ⋅ 𝑄′)𝑝 = mult 𝑄 ⋅ mult 𝑄′.

We then observe that

∑
𝑄∈𝒬0(𝐶,𝑝)

mult𝑄 = ℓ0 ≝ length of the projection of Γ0(𝐶, 𝑝) to the vertical axis,

∑
𝑄∈𝒬1(𝐶,𝑝)

mult𝑄 = ℓ1 ≝ length of the projection of 𝐸(1,1) to either of the axes,

implying
Σ01 + Σ10 + Σ11 = ℓ0ℓ1 + ℓ1ℓ0 + ℓ21 = 2𝑆−(𝐸(1,1)). □

In light of (11.12) and (11.13), it remains to obtain the desired lower bound for the
summand Σ00. To simplify notation, we will pretend, for the time being, that all local
branches are tangent to 𝐿∞, so that 𝒬(𝐶, 𝑝) = 𝒬0(𝐶, 𝑝) and Γ(𝐶, 𝑝) = Γ0(𝐶, 𝑝).
Let 𝒬(𝐸) denote the set of local branches of 𝐶 at 𝑝 associated with an edge 𝐸 of

Γ(𝐶, 𝑝). Equivalently, 𝒬(𝐸) = {𝑄 ∈ 𝒬(𝐶, 𝑝) ∣ 𝐸(𝑄) = 𝐸}.

Lemma11.6. Let𝐸1 and𝐸2 be twodistinct edges of theNewtondiagramΓ(𝐶, 𝑝). Assume
that 𝐸2 is located above and to the left of 𝐸1, so that

𝐸1=[(𝑖1, 𝑗1), (𝑖′1, 𝑗′1)], 𝐸2=[(𝑖2, 𝑗2), (𝑖′2, 𝑗′2)], 𝑖′2<𝑖2≤𝑖′1<𝑖1 , 𝑗1<𝑗′1≤𝑗2<𝑗′2 .
Then

(11.14) ∑
𝑄∈𝒬(𝐸1)

∑
𝑄′∈𝒬(𝐸2)

(𝑄 ⋅ 𝑄′
𝑎,𝑏)𝑝 = ∑

𝑄∈𝒬(𝐸1)
∑

𝑄′∈𝒬(𝐸2)
(𝑄𝑎,𝑏 ⋅ 𝑄′)𝑝 = (𝑗′1 − 𝑗1)(𝑖2 − 𝑖′2).
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Note that (𝑗′1 − 𝑗1)(𝑖2 − 𝑖′2) is the area of the rectangle formed by the intersections of
the horizontal lines passing through 𝐸1 with the vertical lines passing through 𝐸2. See
Figure 27.

powers of 𝑧

powers of 𝑦

𝐸2

𝐸1

𝑗′2

𝑗2=𝑗′1
𝑗1 𝑖′2 𝑖2=𝑖′1 𝑖1

Figure 27. Two edges in the Newton diagram Γ(𝐶, 𝑝). Here
Γ(𝐶, 𝑝)=Γ0(𝐶, 𝑝).

We provide two proofs of Lemma 11.6. The first proof, based on the Bernstein-
Kouchnirenko mixed volume formula, relies on a genericity assumption whose jus-
tification we do not provide. (Note however that this assumption is not needed for the
proof of the “≥” inequality in (11.14). This inequality will be sufficient for the upcom-
ing proof of Proposition 11.4.) The second proof is rigorous but more technical.

Proof 1 of Lemma 11.6 (sketch). Assume that the truncations of 𝐹(1, 𝑦, 𝑧) along the
edges 𝐸1 and 𝐸2 are square-free. Construct the right triangles 𝜏1 and 𝜏2 as shown in
Figure 28(a). By Bernstein’s theorem [11], the left and middle terms in (11.14) can be
bounded from below by the difference between the mixed area of 𝐸1, 𝐸2 and the mixed
area of 𝜏1, 𝜏2 (see Figure 28(b) and (c)). The claim follows. □

𝐸2
𝜏2 𝐸1𝜏1

(a)

(b) (c)

Figure 28. Proof 1 of Lemma 11.6. (a) Right triangles 𝜏1, 𝜏2. (b)
Mixed area of 𝐸1, 𝐸2. (c) Mixed area of 𝜏1, 𝜏2.

Proof 2 of Lemma 11.6. In the coordinates (1, 𝑦, 𝑧), the shift transformation
(1, 𝑦, 𝑧) ↦ (1 + 𝑎𝑧, 𝑦 + 𝑏𝑧, 𝑧)
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converts the polynomial 𝐹1(𝑦, 𝑧) = 𝐹(1, 𝑦, 𝑧) defining the affine curve 𝐶 ⧵𝑍(𝑥) into the
polynomial 𝐹𝑎,𝑏(𝑦, 𝑧) = 𝐹(1 + 𝑎𝑧, 𝑦 + 𝑏𝑧, 𝑧) defining 𝐶𝑎,𝑏 ⧵ 𝑍(𝑥). Under this transfor-
mation, each monomial 𝑦𝑖𝑧𝑗 of 𝐹1 becomes

(11.15) 𝑦𝑖𝑧𝑗 + ∑
𝑖′,𝑗′≥0
𝑖′+𝑗′>0

𝑐𝑖′𝑗′𝑦𝑖−𝑖
′𝑧𝑗+𝑖′+𝑗′ .

In view of the assumption 𝒬(𝐶, 𝑝) = 𝒬0(𝐶, 𝑝), the monomials appearing in the sum
above correspond to integer points lying strictly above the Newton diagram Γ(𝐶, 𝑝)
of 𝐹1. In particular, 𝐹𝑎,𝑏 has the same Newton diagram Γ(𝐶, 𝑝), and the same trunca-
tions to its edges. Furthermore, each local branch 𝑄 ∈ 𝒬(𝐶, 𝑝) and its counterpart
𝑄𝑎,𝑏 ∈ 𝒬(𝐶𝑎,𝑏, 𝑝) are associated with the same edge of Γ(𝐶, 𝑝). The union of the local
branches of 𝐶𝑎,𝑏 associated with the edge 𝐸1 can be defined by an analytic equation
𝑓(𝑦, 𝑧) = 0whose Newton diagram at the origin is the line segment [(𝑖1− 𝑖′1, 0), (0, 𝑗′1−
𝑗1)] (cf. the Newton-Puiseux algorithm [18, Algorithm I.3.6]). For the same reason, a
local branch 𝑄 of 𝐶 at 𝑝 associated with the edge 𝐸2 has a parametrization

𝑦 = 𝜑(𝑡) = 𝑡𝑚,
𝑧 = 𝜓(𝑡) = 𝛼𝑡𝑑 + 𝑂(𝑡𝑑+1), 𝛼≠0, |𝑡|≪1, 𝑑=(𝑄 ⋅ 𝐿∞)𝑝 , 𝑚=mult(𝑄)

(cf. (11.5)–(11.6)) where 𝑑
𝑚 = 𝑗′2−𝑗2

𝑖2−𝑖′2
. Since 𝑗′2−𝑗2

𝑖2−𝑖′2
> 𝑗′1−𝑗1

𝑖1−𝑖′1
, we obtain

𝑓(𝜑(𝑡), 𝜓(𝑡)) = 𝑡𝑚(𝑖1−𝑖′1)(𝛽 + 𝑂(𝑡)), 𝛽 ≠ 0.

The statement of the lemma now follows from the fact that the total multiplicity of the
local branches of 𝐶 at 𝑝 associated with the edge 𝐸2 equals 𝑗′2 − 𝑗2. □

We are now left with the task of computing

(11.16) ∑
𝐸

∑
𝑄,𝑄′∈𝒬(𝐸)

(𝑄 ⋅ 𝑄′
𝑎,𝑏)𝑝 ,

where the first sum runs over the edges 𝐸 of the Newton diagram. In this part of the
proof, we continue to assume, for the sake of simplifying the exposition, that all local
branches are tangent to 𝐿∞. Since the shift (𝑎, 𝑦, 𝑧) ↦ (1 + 𝑎𝑧, 𝑦 + 𝑏𝑧, 𝑧) acts indepen-
dently on the analytic factors of 𝐹1(𝑦, 𝑧), we furthermore assume, in our computation
of ∑𝑄,𝑄′∈𝒬(𝐸)(𝑄 ⋅ 𝑄′

𝑎,𝑏)𝑝 (see (11.16)), that the Newton diagram Γ(𝐶, 𝑝) consists of a
single edge 𝐸 = [(0,𝑀), (𝐷, 0)], with𝑀 < 𝐷 and 𝐧(𝐸) = (𝑛𝑦, 𝑛𝑧).
Pick a local branch 𝑄 ∈ 𝒬(𝐸). It admits an analytic parametrization of the form

(11.17)
𝑥 = 1,
𝑦 = 𝜑(𝑡) = 𝑡𝑚,
𝑧 = 𝜓(𝑡) = 𝛼𝑡𝑑 + 𝑂(𝑡𝑑+1),

where 𝑡 ranges over a small disk inℂ centered at zero,𝑚 = 𝑟(𝑄) ⋅ 𝑛𝑦, 𝑑 = 𝑟(𝑄) ⋅ 𝑛𝑧, and
𝑟(𝑄) = gcd(𝑑,𝑚), cf. (11.4) and (11.7).

Lemma 11.7. We have

(11.18) ∑
𝑄′∈𝒬(𝐸)

(𝑄 ⋅ 𝑄′
𝑎,𝑏)𝑝 = 𝑑𝑀 −𝑚+ 𝑑 +min(𝑟(𝑄), 𝜂(𝑄) − 1).
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Before providing a proof of Lemma 11.7, we note that the weaker inequality

(11.19) ∑
𝑄′∈𝒬(𝐸)

(𝑄 ⋅ 𝑄′
𝑎,𝑏)𝑝 ≥ 𝑑𝑀 −𝑚+ 𝑑

can be deduced directly from the Bernstein-Kouchnirenko formula, similarly to Proof 1
of Lemma 11.6 provided above. As in the case of Lemma 11.6, this lower bound would
be sufficient to complete the upcoming proof of Proposition 11.4, restricted to the case
of a Newton nondegenerate singularity (𝐶, 𝑝).

Proof. The left-hand side of (11.18) is the minimal exponent of 𝑡 appearing in the ex-
pansion of 𝐹𝑎,𝑏(𝜑(𝑡), 𝜓(𝑡)) into a power series in 𝑡. Since 𝐹1(𝜑(𝑡), 𝜓(𝑡)) = 0, we may
instead substitute (11.17) into the difference 𝐹𝑎,𝑏(𝑦, 𝑧) − 𝐹1(𝑦, 𝑧), or equivalently into
the monomials of the second summand in (11.15) (corresponding to individual mono-
mials 𝑦𝑖𝑧𝑗 of 𝐹1(𝑦, 𝑧)). Evaluating 𝑦𝑖−𝑖

′𝑧𝑗+𝑖′+𝑗′ at 𝑦 = 𝜑(𝑡), 𝑧 = 𝜓(𝑡), we obtain

(𝑡𝑚)𝑖−𝑖′(𝑡𝑑(𝛼 + 𝑂(𝑡)))𝑗+𝑖′+𝑗′ = 𝑡𝑚𝑖+𝑑𝑗+(𝑑−𝑚)𝑖′+𝑑𝑗′(𝛼𝑗+𝑖′+𝑗′ + 𝑂(𝑡)).

To get the minimal value of the exponent 𝑚𝑖 + 𝑑𝑗 + (𝑑 − 𝑚)𝑖′ + 𝑑𝑗′, we need to min-
imize 𝑚𝑖 + 𝑑𝑗 (which is achieved for (𝑖, 𝑗) ∈ 𝐸) and take 𝑖′ = 1 and 𝑗′ = 0. Devel-
oping 𝐹𝑎,𝑏(𝑦, 𝑧) = 𝐹(1 + 𝑎𝑧, 𝑦 + 𝑏𝑧, 𝑧) into a power series in 𝑎 and 𝑏, we see that the
corresponding monomials 𝑦𝑖−𝑖′𝑧𝑗+𝑖′+𝑗′ = 𝑦𝑖−1𝑧𝑗+1 in 𝐹𝑎,𝑏(𝑦, 𝑧) − 𝐹(1, 𝑦, 𝑧) add up to
𝑏𝑧𝐹𝑦(1, 𝑦, 𝑧). We conclude that the desired minimal exponent of 𝑡 occurs when we sub-
stitute (𝑦, 𝑧) = (𝜑(𝑡), 𝜓(𝑡)) either into 𝑏𝑧𝐹𝐸𝑦 (𝑦, 𝑧) or into a monomial 𝑦𝑖−1𝑧𝑗+1 such that
(𝑖, 𝑗) is one of the integral points closest to the edge 𝐸 and lying above 𝐸. The latter
condition reads 𝑛𝑦𝑖 + 𝑛𝑧𝑗 = 𝑛𝑧𝑀 + 1.
The truncation 𝐹𝐸(𝑦, 𝑧) of 𝐹1(𝑦, 𝑧) has the form

(11.20) 𝐹𝐸(𝑦, 𝑧) =
𝑛
∏
𝑘=1

(𝑧𝑛𝑦 − 𝛽𝑘𝑦𝑛𝑧)𝑟𝑘 ,

where 𝛽1, . . . , 𝛽𝑛 ∈ ℂ are distinct, and 𝑟1, . . . , 𝑟𝑛 ∈ ℤ>0. Developing 𝐹𝐸(𝑦, 𝑧) into a
power series in 𝑡, we see that the monomials of 𝐹𝐸 yield the minimal exponent of 𝑡.
Since 𝐹1(𝜑(𝑡), 𝜓(𝑡)) = 0, these minimal powers of 𝑡must cancel out, implying that, for
some 𝑘0 ∈ {1, . . . , 𝑛}, we have (cf. (11.8), (11.9)):

𝜌 = 𝜌(𝑄) = lim
𝑡→0

(𝛼𝑡𝑑)𝑛𝑦
(𝑡𝑚)𝑛𝑧 = 𝛼𝑛𝑦 = 𝛽𝑘0 ,

𝜂 = 𝜂(𝑄) = 𝑟𝑘0 .

The factorization formula (11.20) implies that

𝑏𝑧𝐹𝐸𝑦 (𝑦, 𝑧) = 𝑏𝑛𝑧𝑦𝑛𝑧−1𝑧
𝑛
∑
𝑘=1

((−𝛽𝑘)𝑟𝑘(𝑧𝑛𝑦 − 𝛽𝑘𝑦𝑛𝑧)𝑟𝑘−1∏
𝑙≠𝑘

(𝑧𝑛𝑦 − 𝛽𝑙𝑦𝑛𝑧)𝑟𝑙).
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We then compute the minimal exponent for 𝑏𝑧𝐹𝐸𝑦 (𝑦, 𝑧):

𝑏𝑛𝑧𝑦𝑛𝑧−1𝑧||𝑦=𝜑(𝑡),𝑧=𝜓(𝑡) = 𝑂(𝑡𝑚𝑛𝑧−𝑚+𝑑),

(𝑧𝑛𝑦 − 𝛽𝑘𝑦𝑛𝑧)𝑟𝑘−1||𝑦=𝜑(𝑡),𝑧=𝜓(𝑡) = 𝑂(𝑡𝑑𝑛𝑦(𝑟𝑘−1)), 𝑘 ≠ 𝑘0,

(𝑧𝑛𝑦 − 𝜌𝑦𝑛𝑧)𝜂−1||𝑦=𝜑(𝑡),𝑧=𝜓(𝑡) = 𝑂(𝑡(𝑑𝑛𝑦+1)(𝜂−1)),

(𝑧𝑛𝑦 − 𝛽𝑙𝑦𝑛𝑧)𝑟𝑙 ||𝑦=𝜑(𝑡),𝑧=𝜓(𝑡) = 𝑂(𝑡𝑑𝑛𝑦𝑟𝑙 ), 𝑙 ≠ 𝑘0,

(𝑧𝑛𝑦 − 𝜌𝑦𝑛𝑧)𝜂||𝑦=𝜑(𝑡),𝑧=𝜓(𝑡) = 𝑂(𝑡(𝑑𝑛𝑦+1)𝜂),
𝑏𝑧𝐹𝐸𝑦 (𝑦, 𝑧)||𝑦=𝜑(𝑡),𝑧=𝜓(𝑡) = 𝑂(𝑡𝑑𝑀−𝑚+𝑑+𝜂−1).

Also, for 𝑛𝑦𝑖 + 𝑛𝑧𝑗 = 𝑛𝑧𝑀 + 1, we have

𝑦𝑖−1𝑧𝑗+1||𝑦=𝜑(𝑡),𝑧=𝜓(𝑡) = 𝑂(𝑡𝑑𝑀−𝑚+𝑑+𝑟(𝑄)).

Consequently

∑
𝑄′∈𝒬(𝐸)

(𝑄 ⋅ 𝑄′
𝑎,𝑏)𝑝 = min(𝑑𝑀 −𝑚+ 𝑑 + 𝜂 − 1, 𝑑𝑀 −𝑚+ 𝑑 + 𝑟(𝑄)),

as desired. □

We are now ready to complete the proof of Proposition 11.4. We first note that in
Lemma 11.7,

𝑚 = mult 𝑄, 𝑑 = (𝑄 ⋅ 𝐿∞)𝑝 ,
and moreover

(11.21) ∑
𝑄∈𝒬(𝐸)

mult𝑄 = 𝑀, ∑
𝑄∈𝒬(𝐸)

(𝑄 ⋅ 𝐿∞)𝑝 = 𝐷.

Therefore

∑
𝑄,𝑄′∈𝒬(𝐸)

(𝑄 ⋅ 𝑄′
𝑎,𝑏)𝑝 = ∑

𝑄
(𝑑𝑀 −𝑚+ 𝑑 +min(𝑟(𝑄), 𝜂(𝑄) − 1))

= 𝐷𝑀 −𝑀 + 𝐷 +∑
𝑄
min(𝑟(𝑄), 𝜂(𝑄) − 1).(11.22)

Note that 𝐷𝑀 is twice the area of the right triangle with hypotenuse 𝐸.
As illustrated in Figure 29, adding up the contributions 𝐷𝑀 from all edges 𝐸 of

Γ0(𝐶, 𝑝), togetherwith the contributions coming fromLemmas 11.5 and 11.6, we obtain
2𝑆−(Γ(𝐶, 𝑝)), cf. Definition 11.1.
Finally, in view of (11.21), we have

∑
𝐸⊂Γ0(𝐶,𝑝)

(−𝑀 + 𝐷) = ∑
𝑄∈𝒬0(𝐶,𝑝)

(−mult(𝑄) + (𝑄 ⋅ 𝐿∞)𝑝)

= ∑
𝑄∈𝒬(𝐶,𝑝)

(−mult(𝑄) + (𝑄 ⋅ 𝐿∞)𝑝)

= −mult(𝐶, 𝑝) + (𝐶 ⋅ 𝐿∞)𝑝 .

Putting everything together, we obtain (11.11). □
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𝐸(1,1)

𝐸2

𝐸1

𝑆−(𝐸(1,1))
1
2𝐷2𝑀2

1
2𝐷1𝑀1(𝑗′1 − 𝑗1)(𝑖2 − 𝑖′2)

Figure 29. The area 𝑆−(Γ(𝐶, 𝑝)) under the Newton diagram Γ(𝐶, 𝑝)
is obtained by adding three kinds of contributions: (a) The area
𝑆−(𝐸(1,1)) of the trapezoid underneath the edge𝐸(1,1), cf. Lemma11.5;
(b) the areas (𝑗′1−𝑗1)(𝑖2−𝑖′2) of rectangles obtained from pairs of edges
𝐸1, 𝐸2 of Γ0(𝐶, 𝑝), cf. Lemma 11.6; and (c) the areas 1

2𝐷𝑀 of right tri-
angles adjacent to the edges in Γ0(𝐶, 𝑝), cf. (11.22)

12. Arrangements of polynomial curves

In this section, we generalize Example 10.5 to arrangements of polynomial curves
obtained from a given curve by shifts, dilations, and/or rotations. We start by obtaining
upper bounds on the number of intersection points of two polynomial curves related
by one of these transformations. These bounds lead to expressivity criteria for arrange-
ments consisting of such curves.
Recall that for 𝑎, 𝑏 ∈ ℂ and 𝑐 ∈ ℂ∗, we denote by

𝐶𝑎,𝑏 = 𝑍(𝐹(𝑥 + 𝑎𝑧, 𝑦 + 𝑏𝑧, 𝑧)),(12.1)
𝐶𝑐 = 𝑍(𝐹(𝑐𝑥, 𝑐𝑦, 𝑧))(12.2)

the curves obtained from a plane curve 𝐶 = 𝑍(𝐹(𝑥, 𝑦, 𝑧)) by a shift and a dilation,
respectively. We will also use the notation
(12.3) 𝐶𝑎,𝑏,𝑐 = 𝑍(𝐹(𝑐𝑥 + 𝑎𝑧, 𝑐𝑦 + 𝑏𝑧, 𝑧))
for a curve obtained from 𝐶 by a combination of a shift and a dilation.
As before, we identify a projective curve 𝐶 = 𝑍(𝐹(𝑥, 𝑦, 𝑧)) with its restriction to the

affine plane 𝔸2 = ℙ2 ⧵ 𝐿∞ given by 𝐶 = 𝑉(𝐺(𝑥, 𝑦)), where 𝐺(𝑥, 𝑦) = 𝐹(𝑥, 𝑦, 1). Under
this identification, we have

𝐶𝑎,𝑏 = 𝑉(𝐺(𝑥 + 𝑎, 𝑦 + 𝑏)),(12.4)
𝐶𝑐 = 𝑉(𝐺(𝑐𝑥, 𝑐𝑦)),(12.5)

𝐶𝑎,𝑏,𝑐 = 𝑉(𝐺(𝑐𝑥 + 𝑎, 𝑐𝑦 + 𝑏)).(12.6)

Remark 12.1. Unless 𝑐 = 1 (the case of a pure shift), the transformation𝐶 ; 𝐶𝑎,𝑏,𝑐 can
be viewed as a pure dilation centered at some point 𝑜 ∈ ℂ (where 𝑜 may be different
from 0).
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Corollary 12.2. Let 𝐶 be a real polynomial curve of degree 𝑑. Let 𝐶 ∩ 𝐿∞ = {𝑝} and
𝑚 = mult(𝐶, 𝑝). Then we have, for 𝑎, 𝑏 ∈ ℂ and 𝑐 ∈ ℂ∗:

(𝐶 ⋅ 𝐶𝑎,𝑏,𝑐)𝑝 ≥ 𝑑𝑚;(12.7)
(𝐶 ⋅ 𝐶𝑎,𝑏)𝑝 ≥ (𝑑 − 1)(𝑚 + 1) + gcd(𝑑,𝑚).(12.8)

Proof. In view of Remark 12.1 and the inequality

(𝑑 − 1)(𝑚 + 1) + gcd(𝑑,𝑚) ≥ 𝑑𝑚,
it suffices to establish (12.7) in the case 𝑎 = 𝑏 = 0, i.e., with 𝐶𝑎,𝑏,𝑐 replaced by 𝐶𝑐.
The bounds (12.7)–(12.8) are obtained by applying Propositions 11.2 and 11.4 to the

case of a polynomial curve 𝐶, while noting that in this case,
𝑆−(Γ(𝐶, 𝑝)) = 1

2𝑚𝑑,
mult(𝐶, 𝑝) = 𝑚,
(𝐶 ⋅ 𝐿∞)𝑝 = 𝑑,

𝑟(𝑄) = 𝜂(𝑄) = gcd(𝑑,𝑚). □

Proposition 12.3. Let 𝐶 be a real polynomial curve with a parametrization

𝑡 ↦ (𝑃(𝑡), 𝑄(𝑡)), deg(𝑃) = 𝑑, deg(𝑄) = 𝑑′ ≠ 𝑑.
Let 𝑎, 𝑏, 𝑐 ∈ ℂ, 𝑐 ≠ 0, and let 𝐶𝑎,𝑏,𝑐 be the shifted and dilated curve given by (12.3).
Assume that 𝐶 and 𝐶𝑎,𝑏,𝑐 have 𝑁 intersection points in 𝔸2 = ℙ2 ⧵ 𝐿∞, counting with
multiplicity. Then 𝑁 ≤ 𝑑𝑑′.

Proof. Without loss of generality, assume that 𝑑 > 𝑑′. By Bézout’s theorem, the inter-
section multiplicity (𝐶 ⋅ 𝐶𝑎,𝑏,𝑐)𝑝 at the point 𝑝 = (1, 0, 0) ∈ 𝐿∞ is at most 𝑑2 − 𝑁.
Applying (12.7), with𝑚 = 𝑑−𝑑′, we obtain 𝑑2−𝑁 ≥ 𝑑(𝑑−𝑑′). The claim follows. □

Proposition 12.3 and Theorem 7.17 imply that if 𝐶 and 𝐶𝑎,𝑏,𝑐 intersect at 𝑑𝑑′ hyper-
bolic nodes in the real affine plane, then the union 𝐶 ∪ 𝐶𝑎,𝑏,𝑐 is expressive.

Example 12.4. Let 𝐶 be the (2, 3)-Chebyshev curve, the singular cubic given by
(12.9) 2𝑥2 − 1 + 4𝑦3 − 3𝑦 = 0
or parametrically by

𝑡 ↦ (4𝑡3 − 3𝑡, −2𝑡2 + 1),
cf. (4.3). Applying Proposition 12.3 (with 𝑑 = 3 and 𝑑′ = 2), we see that the curve 𝐶
and its dilation 𝐶𝑎,𝑏,𝑐 (𝑐 ≠ 1) can intersect in the real affine plane in at most 6 points.
When this bound is attained, the union 𝐶 ∪ 𝐶𝑎,𝑏,𝑐 is expressive. Figure 30 shows one
such example, with 𝑎 = 𝑏 = 0 and 𝑐 = −1 (so 𝐶𝑎,𝑏,𝑐 is a reflection of 𝐶). Cf. also
Figure 38.

Proposition 12.5. Let 𝐶 be a real polynomial curve with a parametrization

𝑡 ↦ (𝑃(𝑡), 𝑄(𝑡)), deg(𝑃) = 𝑑, deg(𝑄) = 𝑑′ < 𝑑.
Let 𝑎, 𝑏 ∈ ℂ, and let 𝐶𝑎,𝑏 be the shifted curve given by (12.1). Assume that 𝐶 and 𝐶𝑎,𝑏
have 𝑁 intersection points in 𝔸2 = ℙ2 ⧵ 𝐿∞, counting with multiplicity. Then
(12.10) 𝑁 ≤ 𝑑𝑑′ − 𝑑′ − gcd(𝑑, 𝑑′) + 1.
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Figure 30. An expressive cubic and its reflection, intersecting at 6
real points. The resulting two-component curve is expressive.

Proof. We use the same arguments as in the proof of Proposition 12.3 above, with the
lower bound (12.7) replaced by (12.8):

𝑁 ≤ 𝑑2 − (𝐶 ⋅ 𝐶𝑎,𝑏)𝑝 ≤ 𝑑2 − (𝑑 − 1)(𝑚 + 1) − gcd(𝑑,𝑚)
= 𝑑2 − (𝑑 − 1)(𝑑 − 𝑑′ + 1) − gcd(𝑑, 𝑑′)
= 𝑑𝑑′ − 𝑑′ + 1 − gcd(𝑑, 𝑑′). □

For special choices of shifts, the bound (12.10) can be strengthened. Here is one
example, involving the Lissajous-Chebyshev curves, see Example 5.12. (Note that such
a curve does not have to be polynomial: it could be trigonometric or reducible.)

Proposition 12.6. Let 𝐶 be a Lissajous-Chebyshev curve given by
(12.11) 𝑇𝑘(𝑥) + 𝑇ℓ(𝑦) = 0.
Let 𝑎∈ℂ, and let 𝐶𝑎,0 (resp., 𝐶0,𝑎) be the shift of 𝐶 in the 𝑥 (resp., 𝑦) direction. Assume
that 𝐶 and 𝐶𝑎,0 (resp., 𝐶0,𝑎) intersect at 𝑁𝑥 (resp., 𝑁𝑦) points in 𝔸2. Then

𝑁𝑥 ≤ (𝑘 − 1)ℓ,(12.12)
𝑁𝑦 ≤ 𝑘(ℓ − 1).(12.13)

We note that in the case when gcd(𝑘, ℓ) = 1 and 𝑘 < ℓ, the bound (12.13) matches
(12.10), with 𝑑 = 𝑘 and 𝑑′ = ℓ, whereas (12.12) gives a stronger bound.
Proof. Due to symmetry, it suffices to prove (12.13). The intersection of the curves 𝐶
and 𝐶0,𝑎 is given by

{𝑇𝑘(𝑥) + 𝑇ℓ(𝑦) = 0,
𝑇𝑘(𝑥) + 𝑇ℓ(𝑦 + 𝑎) = 0

⟺ {𝑇𝑘(𝑥) + 𝑇ℓ(𝑦) = 0,
𝑇ℓ(𝑦 + 𝑎) − 𝑇ℓ(𝑦) = 0.

The equation 𝑇ℓ(𝑦 + 𝑎) − 𝑇ℓ(𝑦) = 0 has at most ℓ − 1 roots; each of these values of 𝑦
then gives at most 𝑘 possible values of 𝑥. □

Example 12.7. As in Example 12.4, let 𝐶 be the (2, 3)-Chebyshev curve (12.9). Apply-
ing Proposition 12.6 (with 𝑘 = 2 and ℓ = 3), we see that the curve 𝐶 and its vertical
shift 𝐶0,𝑏 (𝑏 ≠ 0) can intersect in the affine plane in at most 4 points. More generally,
Proposition 12.5 (with 𝑑 = 3 and 𝑑′ = 2) gives the upper bound of 4 for the number of
intersection points between 𝐶 and its nontrivial shift 𝐶𝑎,𝑏. On the other hand, in the
case of a horizontal shift, we get at most 3 points of intersection. When these bounds
are attained, with all intersection points real, the union 𝐶 ∪ 𝐶𝑎,𝑏 is expressive. See
Figure 31.
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Figure 31. An expressive cubic and its shift, intersecting at 3 or 4
real points, depending on the direction of the shift. The resulting two-
component curve is expressive.

In addition to shifts and dilations, we can consider other linear changes of variables
that can be used to construct new expressive curves. Let us illustrate one such con-
struction using the example of Lissajous-Chebyshev curves:

Proposition 12.8. Let 𝐶 be the (𝑘, ℓ)-Lissajous-Chebyshev curve given by (12.11), with
ℓ > 𝑘 ≥ 2. For 𝑞 ∈ ℂ∗, 𝑞 ≠ 1, let 𝐶[𝑞] denote the curve defined by
(12.14) 𝑇𝑘( 𝑥𝑞ℓ ) + 𝑇ℓ( 𝑦

𝑞𝑘 ) = 0.

Assume that 𝐶 and 𝐶[𝑞] intersect at 𝑁 points in 𝔸2. Then
(12.15) 𝑁 ≤ 𝑘(ℓ − 2).

Proof. Since 𝑇𝑘(𝑥) = 2𝑘−1𝑥𝑘 + 𝑂(𝑥𝑘−1) and 𝑇ℓ(𝑦) = 2ℓ−1𝑦ℓ + 𝑂(𝑦ℓ−1), the equations
defining 𝐶 and 𝐶[𝑞] can be written as

2𝑘−1𝑥𝑘 + 𝑂(𝑥𝑘−2) + 2ℓ−1𝑦ℓ + 𝑂(𝑦ℓ−2) = 0,(12.16)
2𝑘−1𝑞−𝑘ℓ𝑥𝑘 + 𝑂(𝑥𝑘−2) + 2ℓ−1𝑞−𝑘ℓ𝑦ℓ + 𝑂(𝑦ℓ−2) = 0.(12.17)

Multiplying (12.16) by 𝑞𝑘ℓ and subtracting (12.16), we get an equation of the form
(12.18) 𝑂(𝑥𝑘−2) + 𝑂(𝑦ℓ−2) = 0.
We thus obtain a system of two algebraic equations of the form (12.16) and (12.18).
Their Newton polygons are contained in the triangles with vertices (0, 0), (𝑘, 0), (0, ℓ)
and (0, 0), (𝑘 − 2, 0), (0, ℓ − 2), respectively. The mixed area of these two triangles is
equal to 𝑘(ℓ − 2) (here we use that ℓ > 𝑘 ≥ 2 and therefore ℓ−2

𝑘−2 >
ℓ
𝑘 ). By Bernstein’s

theorem [11], this system of equations has at most 𝑘(ℓ − 2) solutions. □

Example 12.9. Let 𝐶 be the (2, 3)-Chebyshev curve (12.9), as in Examples 12.4 and
12.7. Applying Proposition 12.8 (with 𝑘 = 2 and ℓ = 3), we see that the curve 𝐶 and
the rescaled curve 𝐶[𝑞] defined by (12.14) can intersect in the affine plane in at most
2 points. When they do intersect at 2 real points, the union 𝐶 ∪ 𝐶𝑎,𝑏 is expressive. See
Figure 32.

Remark 12.10. Let𝐶′ be a curve obtained fromaplane curve𝐶 = 𝑉(𝐺(𝑥, 𝑦)) of degree𝑑
by an arbitrary affine change of variables:

𝐶′ = 𝑉(𝐺(𝑐11𝑥 + 𝑐12𝑦 + 𝑎, 𝑐21𝑥 + 𝑐22𝑦 + 𝑏)).



730 SERGEY FOMIN AND EUGENII SHUSTIN

Figure 32. An expressive cubic and its rescaling (12.14), intersecting
at 2 real points. The resulting two-component curve is expressive.

Then 𝐶 and 𝐶′ intersect in 𝔸2 in at most 𝑑2 points. Thus, if they intersect at 𝑑2 hyper-
bolic nodes, then 𝐶 ∪ 𝐶′ is expressive. See Figure 33.

Figure 33. Two expressive cubics related by a 90∘ rotation, and inter-
secting at 9 real points. The resulting two-component curve is expres-
sive.

Example 12.11. Figures 34–35 show five different ways to arrange two Chebyshev
curves (the (2, 3)-Chebyshev cubic and the (3, 4)-Chebyshev quartic, respectively) re-
lated to each other by an affine transformation of the plane 𝔸2 so that the resulting
two-component curve is expressive. These pictures illustrate:

(a) Proposition 12.8, cf. Example 12.9;
(b, c) Proposition 12.6, cf. Example 12.7;
(d) Proposition 12.3, cf. Example 12.4; and
(e) Remark 12.10.
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Figure 33: Two expressive cubics related by a 90◦ rotation, and intersecting at 9 real
points. The resulting two-component curve is expressive.

Example 12.11. Figures 34–35 show five different ways to arrange two Chebyshev
curves (the (2, 3)-Chebyshev cubic and the (3, 4)-Chebyshev quartic, respectively)
related to each other by an affine transformation of the plane A2 so that the resulting
two-component curve is expressive. These pictures illustrate:

(a) Proposition 12.8, cf. Example 12.9;
(b,c) Proposition 12.6, cf. Example 12.7;

(d) Proposition 12.3, cf. Example 12.4; and
(e) Remark 12.10.

(a) (b) (c) (d) (e)

Figure 34: Two expressive cubics forming a two-component expressive curve. The
two components intersect at 2, 3, 4, 6, and 9 real points, respectively.

(a) (b) (c) (d) (e)

Figure 35: Two expressive quartics forming a two-component expressive curve. The
two components intersect at 6, 8, 10, 12, and 16 real points, respectively.

Remark 12.12. More generally, consider a collection of expressive polynomial curves
related to each other by affine changes of variables (equivalently, affine transforma-
tions of the plane A2). Suppose that for every pair of curves in this collection, the
number of hyperbolic nodes in their intersection attains the upper bound for an ap-
propriate version of Proposition 12.3, 12.5, 12.6, 12.8, or Remark 12.10. Then the
union of the curves in the given collection is an expressive curve. See Figures 36–37.
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Figure 34. Two expressive cubics forming a two-component expres-
sive curve. The two components intersect at 2, 3, 4, 6, and 9 real
points, respectively.
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Figure 33: Two expressive cubics related by a 90◦ rotation, and intersecting at 9 real
points. The resulting two-component curve is expressive.

Example 12.11. Figures 34–35 show five different ways to arrange two Chebyshev
curves (the (2, 3)-Chebyshev cubic and the (3, 4)-Chebyshev quartic, respectively)
related to each other by an affine transformation of the plane A2 so that the resulting
two-component curve is expressive. These pictures illustrate:

(a) Proposition 12.8, cf. Example 12.9;
(b,c) Proposition 12.6, cf. Example 12.7;

(d) Proposition 12.3, cf. Example 12.4; and
(e) Remark 12.10.

(a) (b) (c) (d) (e)

Figure 34: Two expressive cubics forming a two-component expressive curve. The
two components intersect at 2, 3, 4, 6, and 9 real points, respectively.

(a) (b) (c) (d) (e)

Figure 35: Two expressive quartics forming a two-component expressive curve. The
two components intersect at 6, 8, 10, 12, and 16 real points, respectively.

Remark 12.12. More generally, consider a collection of expressive polynomial curves
related to each other by affine changes of variables (equivalently, affine transforma-
tions of the plane A2). Suppose that for every pair of curves in this collection, the
number of hyperbolic nodes in their intersection attains the upper bound for an ap-
propriate version of Proposition 12.3, 12.5, 12.6, 12.8, or Remark 12.10. Then the
union of the curves in the given collection is an expressive curve. See Figures 36–37.
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Figure 35. Two expressive quartics forming a two-component ex-
pressive curve. The two components intersect at 6, 8, 10, 12, and 16
real points, respectively.

Remark 12.12. More generally, consider a collection of expressive polynomial curves
related to each other by affine changes of variables (equivalently, affine transformations
of the plane 𝔸2). Suppose that for every pair of curves in this collection, the number
of hyperbolic nodes in their intersection attains the upper bound for an appropriate
version of Proposition 12.3, 12.5, 12.6, 12.8, or Remark 12.10. Then the union of the
curves in the given collection is an expressive curve. See Figures 36–37.
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Figure 36: An expressive curve whose three components are translations of the same
nodal cubic. Each pair of components intersect at 4 hyperbolic nodes.

Figure 37: An expressive curve whose four components are singular cubics related to
each other either by a horizontal translation or a dilation (with c = −1). Each pair
of components intersect at 3 or 6 hyperbolic nodes, respectively.

Figure 38: An expressive curve whose components are singular cubics related to each
other by dilations. Each pair of them intersect at 6 hyperbolic nodes.
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Figure 36. An expressive curve whose three components are trans-
lations of the same nodal cubic. Each pair of components intersects
at 4 hyperbolic nodes.

13. Arrangements of trigonometric curves

In this section, we generalize Example 10.6 to arrangements of curves obtained from
a given trigonometric curve by shifts, dilations, and/or rotations.
We continue to use the notation (12.1)–(12.6) for the shifted and dilated curves.

Corollary 13.1. Let 𝐶 be a trigonometric curve of degree 2𝑑, with two local branches at
infinity centered at distinct points 𝑝, 𝑝 ∈ 𝐶 ∩𝐿∞. Suppose thatmult(𝐶, 𝑝) = 𝑑, i.e., these
branches are transversal to 𝐿∞. Then we have, for 𝑎, 𝑏 ∈ ℂ and 𝑐 ∈ ℂ∗:
(13.1) (𝐶 ⋅ 𝐶𝑎,𝑏,𝑐)𝑝 ≥ 𝑑2.
If𝐶 and𝐶𝑎,𝑏,𝑐 intersect in𝑁 points in the affine plane𝔸2, counting withmultiplicity, then
𝑁 ≤ 2𝑑2.
Proof. We apply Proposition 11.2, with 𝑆−(Γ(𝐶, 𝑝)) = 1

2𝑑
2, to obtain (13.1). It follows

that 𝑁 ≤ (2𝑑)2 − 2 ⋅ 12𝑑
2 = 2𝑑2. □
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Figure 37. An expressive curvewhose four components are singular
cubics related to each other either by a horizontal translation or a
dilation (with 𝑐 = −1). Each pair of components intersects at 3 or 6
hyperbolic nodes, respectively.

Figure 38. An expressive curve whose components are singular cu-
bics related to each other by dilations. Each pair of them intersects at
6 hyperbolic nodes.

Example 13.2. Let 𝐶 be an epitrochoid with parameters (2, −1), i.e., a limaçon. It has
two conjugate points at infinity, each an ordinary cusp transversal to 𝐿∞. This is a quar-
tic trigonometric curve, so by Corollary 13.1 (with 𝑑 = 2), any two shifts/dilations of 𝐶
intersect in at most 8 points in the affine plane. Thus, if they intersect at 8 hyperbolic
nodes, then 𝐶 ∪ 𝐶𝑎,𝑏,𝑐 is expressive by Theorem 7.17. More generally, an arrangement
of limaçons related to each other by shifts and dilations gives an expressive curve if any
two of these limaçons intersect at 8 hyperbolic nodes. See Figure 39.

Corollary 13.3. Let 𝐶 be a trigonometric curve of degree 2𝑑, with two local branches at
infinity centered at distinct points 𝑝, 𝑝 ∈ 𝐶 ∩ 𝐿∞. Suppose that𝑚 = mult(𝐶, 𝑝) < 𝑑, i.e.,
𝐶 is tangent to 𝐿∞. Then we have, for 𝑎, 𝑏 ∈ ℂ and 𝑐 ∈ ℂ∗:

(𝐶 ⋅ 𝐶𝑎,𝑏,𝑐)𝑝 ≥ 𝑑𝑚,(13.2)
(𝐶 ⋅ 𝐶𝑎,𝑏)𝑝 ≥ (𝑑 − 1)(𝑚 + 1) + gcd(𝑑,𝑚).(13.3)
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Figure 39. A union of two limaçons related to each other by a shift
or dilation is expressive if they intersect at 8 hyperbolic nodes

If 𝐶 and 𝐶𝑎,𝑏,𝑐 (resp., 𝐶𝑎,𝑏) intersect in 𝑁 (resp.,𝑀) points in the affine plane 𝔸2, then
𝑁 ≤ 4𝑑2 − 2𝑑𝑚;(13.4)
𝑀 ≤ 4𝑑2 − 2(𝑑 − 1)(𝑚 + 1) − 2 gcd(𝑑,𝑚).(13.5)

Proof. The proof is analogous to the proof of Corollary 12.2. We apply Propositions
11.2 and 11.4 to the case under consideration, taking into account that

𝑆−(Γ(𝐶, 𝑝)) = 1
2𝑑𝑚,

(𝐶 ⋅ 𝐿∞)𝑝 = 𝑑,
𝑟(𝑄) = 𝜂(𝑄) = gcd(𝑑,𝑚). □

Example 13.4. Let 𝐶 be a hypotrochoid with parameters (2, 1), cf. Examples 4.17
and 7.13. It has two conjugate points at infinity; at each of them, 𝐶 is smooth and
has a simple (order 2) tangency to 𝐿∞. By (13.2) (with 𝑑 = 2 and 𝑚 = 1), any dilation
of 𝐶 intersects 𝐶 in the affine plane 𝔸2 in at most 12 points. Similarly, by (13.3), any
shift of 𝐶 intersects 𝐶 in 𝔸2 in at most 10 points. When these bounds are attained, and
all intersections are hyperbolic nodes, the union of the two curves is expressive. See
Figure 40.

Figure 40. A union of two 3-petal hypotrochoids related to each
other by a shift (resp., dilation) is expressive if they intersect at 10
(resp., 12) hyperbolic nodes

Corollary 13.5. Let 𝐶 = 𝑍(𝐹) be a trigonometric projective curve of degree 2𝑑, with two
local complex conjugate branches 𝑄,𝑄 centered at the same point 𝑝 ∈ 𝐶 ∩ 𝐿∞. Denote
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mult(𝐶, 𝑝) = 2mult 𝑄 = 2𝑚. Then we have, for 𝑎, 𝑏 ∈ ℂ and 𝑐 ∈ ℂ∗:

(𝐶 ⋅ 𝐶𝑎,𝑏,𝑐)𝑝 ≥ 4𝑑𝑚,(13.6)

(𝐶 ⋅ 𝐶𝑎,𝑏)𝑝 ≥ {4𝑑𝑚 − 2𝑚 + 2𝑑 + 2 gcd(𝑑,𝑚) − 2 if (𝑄 ⋅ 𝑄)𝑝 = 𝑑𝑚,
4𝑑𝑚 − 2𝑚 + 2𝑑 + 2 gcd(𝑑,𝑚) if (𝑄 ⋅ 𝑄)𝑝 > 𝑑𝑚.

(13.7)

Proof. Once again, we apply Propositions 11.2 and 11.4, with

𝑆−(Γ(𝐶, 𝑝)) = 2𝑑𝑚,
(𝐶 ⋅ 𝐿∞)𝑝 = 2𝑑,

𝑟(𝑄) = gcd(𝑑,𝑚),

𝜂(𝑄) = {gcd(𝑑,𝑚), if (𝑄 ⋅ 𝑄)𝑝 = 𝑑𝑚,
2 gcd(𝑑,𝑚), if (𝑄 ⋅ 𝑄)𝑝 > 𝑑𝑚,

and similarly for 𝑄. □

Example 13.6. Let 𝐶 be a lemniscate of Huygens

(13.8) 𝑦2 + 4𝑥4 − 4𝑥2 = 0,
see Example 5.8. It has a single point 𝑝 = (0, 1, 0) at infinity, with two conjugate lo-
cal branches 𝑄 and 𝑄. These branches are tangent to each other and to 𝐿∞; all these
tangencies are of order 2. Thus Corollary 13.5 applies, with 𝑑 = 2, 𝑚 = 1, and
(𝑄 ⋅ 𝑄) = 2 = 𝑑𝑚. The bound (13.7) yields (𝐶 ⋅ 𝐶𝑎,𝑏)𝑝 ≥ 10, implying that 𝐶 and
a shifted curve 𝐶𝑎,𝑏 intersect in 𝔸2 in at most 6 points. Thus, any arrangement of shifts
of𝐶which intersect pairwise transversally in 6 real points produces an expressive curve
(assuming all these double points are distinct). See Figure 41.
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Example 13.6. Let C be a lemniscate of Huygens

(13.8) y2 + 4x4 − 4x2 = 0,

see Example 5.8. It has a single point p = (0, 1, 0) at infinity, with two conjugate
local branches Q and Q. These branches are tangent to each other and to L∞; all
these tangencies are of order 2. Thus Corollary 13.5 applies, with d = 2, m = 1,
and (Q · Q) = 2 = dm. The bound (13.7) yields (C · Ca,b)p ≥ 10, implying that C
and a shifted curve Ca,b intersect in A2 in at most 6 points. Thus, any arrangement
of shifts of C which intersect pairwise transversally in 6 real points produces an
expressive curve (assuming all these double points are distinct). See Figure 41.

Figure 41: Left: an expressive curve whose three components are translations of the
same lemniscate. Each pair of components intersect at six hyperbolic nodes. Right:
two lemniscates differing by a vertical shift, see Example 13.7.

For special choices of shifts and dilations, the bounds in the corollaries above can be
strengthened, leading to examples of expressive curves whose components intersect in
fewer real points than one would ordinarily expect. Here are two examples:

Example 13.7. Let C be the lemniscate (13.8). Since C is a Lissajous-Chebyshev
curve with parameters (4, 2), by Proposition 12.6, its vertical shift C0,b intersects C
in A2 in at most 4 points. Hence C ∪C0,b is expressive for b ∈ (−2, 2). See Figure 41.

Example 13.8. Let C = V (G(x, y)) be the trigonometric curve defined by the poly-
nomial

(13.9) G(x, y) = x2 + y4 − 11y2 + 18y − 8 = x2 + (y + 4)(y − 1)2(y − 2).

It is easy to see that C is expressive, and that C intersects its dilation/reflection
C−1 = V (G(−x,−y)) in two points in A2, both of which are real hyperbolic nodes.
Hence the union C ∪ C−1 is expressive. See Figure 42.

Figure 42: A two-component expressive curve C ∪ C−1 from Example 13.8.
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(13.9) G(x, y) = x2 + y4 − 11y2 + 18y − 8 = x2 + (y + 4)(y − 1)2(y − 2).
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Figure 41. Left: An expressive curve whose three components are
translations of the same lemniscate. Each pair of components inter-
sects at six hyperbolic nodes. Right: Two lemniscates differing by a
vertical shift, see Example 13.7.

For special choices of shifts and dilations, the bounds in the corollaries above can be
strengthened, leading to examples of expressive curves whose components intersect in
fewer real points than one would ordinarily expect. Here are two examples:

Example 13.7. Let 𝐶 be the lemniscate (13.8). Since 𝐶 is a Lissajous-Chebyshev curve
with parameters (4, 2), by Proposition 12.6, its vertical shift 𝐶0,𝑏 intersects 𝐶 in 𝔸2 in at
most 4 points. Hence 𝐶 ∪ 𝐶0,𝑏 is expressive for 𝑏 ∈ (−2, 2). See Figure 41.
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Example 13.8. Let 𝐶 = 𝑉(𝐺(𝑥, 𝑦)) be the trigonometric curve defined by the polyno-
mial

(13.9) 𝐺(𝑥, 𝑦) = 𝑥2 + 𝑦4 − 11𝑦2 + 18𝑦 − 8 = 𝑥2 + (𝑦 + 4)(𝑦 − 1)2(𝑦 − 2).
It is easy to see that 𝐶 is expressive, and that 𝐶 intersects its dilation/reflection 𝐶−1 =
𝑉(𝐺(−𝑥,−𝑦)) in two points in 𝔸2, both of which are real hyperbolic nodes. Hence the
union 𝐶 ∪ 𝐶−1 is expressive. See Figure 42.

Figure 42. A two-component expressive curve 𝐶 ∪ 𝐶−1 from Example 13.8

14. Alternative notions of expressivity

In this section, we discuss two alternative notions of expressivity. For the first no-
tion, algebraic curves are treated as subsets ofℝ2, instead of the scheme-theoretic point
of view that we adopted above in this paper. For the second notion, bivariate polyno-
mials are replaced by arbitrary smooth functions of two real variables.
Viewing real algebraic curves set-theoretically, as “topological curves” in the real

affine plane, we arrive at Definition 14.1:

Definition 14.1. Let 𝒞 ⊂ ℝ2 be the set of real points of a real affine algebraic curve,
see Definition 4.1. Assume that 𝒞 is nonempty, with no isolated points. We say that
𝒞 is expressive if its (complex) Zariski closure 𝐶 = 𝒞 is an expressive plane algebraic
curve. Thus, a subset 𝒞 ⊂ ℝ2 is expressive if
• 𝒞 is the set of real points of a real affine plane algebraic curve,
• 𝒞 is nonempty, with no isolated points, and
• the minimal polynomial of 𝒞 is expressive, see Definition 5.1.

As always, one should be careful when passing from a real algebraic set to an alge-
braic curve, or the associated polynomial. A polynomial 𝐺(𝑥, 𝑦) ∈ ℝ[𝑥, 𝑦] can be ex-
pressive while the real algebraic set 𝑉ℝ(𝐺) is not; see Example 14.2. Conversely, 𝑉ℝ(𝐺)
can be expressive while 𝐺(𝑥, 𝑦) is not, see Example 14.3. That’s because 𝐺 may not be
the minimal polynomial for 𝑉ℝ(𝐺).

Example 14.2 (Cf. Examples 1.7, 3.3, and 7.4). The real polynomials

𝐺(𝑥, 𝑦) = (𝑥2 + 1)(𝑥2𝑦 − 𝑥3 + 𝑦),
𝐺(𝑥, 𝑦) = 𝑥2𝑦 − 𝑥3 + 𝑦

define the same (connected) real algebraic set

𝒞 = 𝑉ℝ(𝐺) = 𝑉ℝ(𝐺) = {(𝑥, 𝑦) ∈ ℝ2 ∣ 𝑦 = 𝑥3
𝑥2+1 },
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cf. (7.8). As we saw in Example 7.4, 𝐺 is expressive while 𝐺 is not. Consequently, the
affine algebraic curve 𝑉(𝐺) is expressive while its real point set, the real topological
curve 𝒞 is not—because 𝐺, rather than 𝐺, is the minimal polynomial of 𝒞.

Example 14.3. The real polynomials 𝐺(𝑥, 𝑦) and ̃𝐺(𝑥, 𝑦) given by
𝐺(𝑥, 𝑦) = 𝑥𝑦(𝑥2 + 𝑦2 + 1),
𝐺(𝑥, 𝑦) = 𝑥𝑦

define the same real algebraic set 𝒞=𝑉ℝ(𝐺)=𝑉ℝ(𝐺). Clearly, 𝐺 is expressive, and so is
the affine curve𝑉(𝐺), or the projective curve𝑍(𝑥𝑦). Since𝐺 is theminimal polynomial
of 𝒞, this real algebraic set is expressive as well. On the other hand,

𝐺𝑥 = 3𝑥2𝑦 + 𝑦3 + 𝑦 = 𝑦(3𝑥2 + 𝑦2 + 1),
𝐺𝑦 = 𝑥3 + 3𝑥𝑦2 + 𝑥 = 𝑥(𝑥2 + 3𝑦2 + 1),

and we see that 𝐺 has 9 critical points:

(0, 0), (0, ±𝑖), (±𝑖, 0), ( 12 𝑖, ±
1
2 𝑖), (−

1
2 𝑖, ±

1
2 𝑖).

Since 8 of these points are not real, the polynomial 𝐺 is not expressive; nor are the
curves 𝑉(𝐺) and 𝑍(𝑥𝑦(𝑥2 + 𝑦2 + 𝑧2)).

The following criterion is a direct consequence of Theorem 7.17.

Corollary 14.4. Let 𝒞 ⊂ ℝ2 be the set of real points of a real affine algebraic curve.
Assume that 𝒞 is connected, and contains at least two (hence infinitely many) points.
Then the following are equivalent:
• the minimal polynomial of 𝒞 (or the Zariski closure 𝐶 = 𝒞, cf. Definition 14.1) is
expressive and 𝐿∞-regular;

• each component of 𝐶 = 𝒞 is trigonometric or polynomial, and all singular points of
𝐶 in the complex affine plane 𝔸2 are real hyperbolic nodes.

We conclude this section by discussing the challenges involved in extending the no-
tion of expressivity to arbitrary (i.e., not necessarily polynomial) smooth real functions
of two real arguments.

Remark 14.5. Let 𝐺 ∶ ℝ2 → ℝ be a smooth function. Suppose that 𝐺 satisfies the
following conditions:
• the set 𝑉ℝ(𝐺) = {𝐺(𝑥, 𝑦) = 0} ⊂ ℝ2 is connected;
• 𝑉ℝ(𝐺) is a union of finitely many immersed circles and open intervals which inter-
sect each other and themselves transversally, in a finite number of points;

• the complement ℝ2 ⧵ 𝑉ℝ(𝐺) is a union of a finite number of disjoint open sets;
• all critical points of 𝐺 in ℝ have a nondegenerate Hessian;
• these critical points are located as follows:

∘ one critical point inside each bounded connected component of ℝ2 ⧵ 𝑉ℝ(𝐺);
∘ no critical points inside each unbounded connected component of ℝ2 ⧵ 𝑉ℝ(𝐺);
∘ a saddle at each double point of 𝑉ℝ(𝐺).

One may be tempted to call such a (topological, not necessarily algebraic) curve 𝑉ℝ(𝐺)
expressive. Unfortunately, this definition turns out to be problematic, as one and the
same curve 𝒞 = ℝ2 can be defined by two different smooth functions one of which
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satisfies the above-listed conditions whereas the other does not. An example is shown
in Figure 2, with the polynomial 𝐺 given by

𝐺(𝑥, 𝑦) = (𝑥
2

16 + 𝑦2 − 1)((𝑥 − 1)2 + (𝑦 − 1)2 − 1).

As Figure 2 demonstrates, the function 𝐺 is not expressive in any reasonable sense. At
the same time, 𝒞 can be transformed into an expressive curve (a union of two circles)
by a diffeomorphism of ℝ2, and consequently can be represented as the vanishing set
of a smooth function satisfying the conditions listed above.

15. Regular-expressive divides

It is natural towonderwhich divides arise fromexpressive curves (perhaps satisfying
additional technical conditions).
If 𝐺(𝑥, 𝑦) is an expressive polynomial, then all singular points of 𝑉(𝐺) are (real)

hyperbolic nodes, so the divide 𝐷𝐺 is well defined, see Definition 6.3. The class of di-
vides arising in this way (with or without the additional requirement of 𝐿∞-regularity)
is however too broad to be a natural object of study: as Example 14.2 demonstrates,
a nonexpressive polynomial may become expressive upon multiplication by a polyno-
mial with an empty set of real zeroes.
With this in mind, we propose Definition 15.1.

Definition 15.1. A divide 𝐷 is called regular-expressive if there exists an 𝐿∞-regular
expressive curve 𝐶 = 𝑉(𝐺) with real irreducible components such that 𝐷 = 𝐷𝐺 .

Remark 15.2. Some readers might prefer to just call such divides “expressive” rather
than regular-expressive. We decided against the shorter term, as it would misleadingly
omit a reference to the 𝐿∞-regularity requirement.

By Theorem 7.17, a connected divide is regular-expressive if and only if it arises from
an algebraic curve whose components are real and either polynomial or trigonometric,
and all of whose singular points in the affine plane are hyperbolic nodes.
We note that a regular-expressive divide is isotopic to an expressive algebraic subset

of ℝ2, in the sense of Definition 14.1, or more precisely to an intersection of such a
subset with a sufficiently large disk 𝐃𝑅, see (6.1).
Numerous examples of regular-expressive divides are scattered throughout this pa-

per.

Problem 15.3. Find a criterion for deciding whether a given divide is regular-
expressive.

Remark 15.4. Problem 15.3 appears to be very difficult. It seems to be even harder to
determine whether a given divide can be realized by an expressive curve of a specified
degree. For example, the divide can be realized by an expressive sextic (the (2, 6)-
Lissajous curve, see Figure 10) but not by an expressive quadric—even though there
exists a (nonexpressive) quadric realizing this divide.

Here is a nonobvious nonexample:

Proposition 15.5. The divide shown in Figure 43 is not regular-expressive.
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Figure 43. A connected divide which is not regular-expressive

Proof. Suppose on the contrary that the divide 𝐷 in Figure 43 is regular-expressive. By
Theorem 7.17, 𝐷 must come from a plane curve 𝐶 consisting of two polynomial com-
ponents: 𝐶 = 𝐾 ∪ 𝐿. One of them, say 𝐿, is smooth. By the Abhyankar-Moh theorem
[2, Theorem 1.6], there exists a real automorphism of the affine plane that transforms
𝐿 into a real straight line. So without loss of generality, we can simply assume that 𝐿 is
a line. The other component 𝐾 has degree 𝑑 ≥ 4. Since 𝐶 is expressive, the projective
line ̂𝐿 must intersect the projective closure ̂𝐾 of 𝐾 at the unique point 𝑝 ∈ 𝐾 ∩ 𝐿∞
with multiplicity 𝑑 − 2. The curve ̂𝐾 has a unique tangent line 𝐿∞ at 𝑝. Therefore any
projective line ̂𝐿′ ≠ 𝐿∞ passing through 𝑝 intersects ̂𝐾 at 𝑝 with multiplicity 𝑑 − 2.
Equivalently, every affine line 𝐿′ parallel to 𝐿 intersects 𝐾 in at most two points (count-
ing multiplicities). However, shifting 𝐿 in a parallel way until it intersects 𝐾 at a node
for the first time, we obtain a real line 𝐿′ parallel to 𝐿 and crossing 𝐾 in at least four
points in the affine plane, a contradiction. □

We recall the following terminology, adapting it to our current needs.

Definition 15.6. A (simple) pseudoline arrangement is a connected divide whose
branches are embedded intervals any two of which intersect at most once.
A pseudoline arrangement is called stretchable if it is isotopic to a configuration of

straight lines, viewed within a sufficiently large disk.

Proposition 15.7. Let D be a pseudoline arrangement in which any two pseudolines
intersect. Then the divide D is regular-expressive if and only if it is stretchable.

Proof. The “if” direction has already been established, see Example 10.3. Let us prove
the converse. Suppose that a pseudoline arrangement 𝐷 with 𝑛 pseudolines 𝐷1, . . . , 𝐷𝑛
is the divide of an 𝐿∞-regular expressive curve 𝐶 with real irreducible components. We
need to show that 𝐷 is stretchable.
By Theorem 7.17, 𝐶 must consist of 𝑛 polynomial components 𝐶1, . . . , 𝐶𝑛. Since

𝐶1 is smooth, the Abhyankar-Moh theorem [2, Theorem 1.6] implies that a suitable
real automorphism of the affine plane takes 𝐶1 to a straight line (and leaves the other
components polynomial). So without loss of generality, we can assume that 𝐶1 = {𝑥 =
0}. Let 𝑖 ∈ {2, . . . , 𝑛} be such that deg𝐶𝑖 = 𝑑 ≥ 2. (If there is no such 𝑖, we are done.)
The projective line ̂𝐶1 intersects the projective curve ̂𝐶𝑖 at the point 𝑝 = (0, 1, 0) =
̂𝐶𝑖 ∩ 𝐿∞ either with multiplicity 𝑑 − 1 (if 𝐶1 and 𝐶𝑖 intersect in the affine plane) or

with multiplicity 𝑑 (if 𝐶1 and 𝐶𝑖 are disjoint there). Note that ̂𝐶1 cannot be tangent
to ̂𝐶𝑖 at 𝑝, since ̂𝐶𝑖 is unibranch at 𝑝, and the infinite line 𝐿∞ is the tangent to ̂𝐶𝑖 at
𝐿∞. It follows that ( ̂𝐶1 ⋅ ̂𝐶𝑖)𝑝 < ( ̂𝐶𝑖 ⋅ 𝐿∞)𝑝 = 𝑑 and therefore ( ̂𝐶1 ⋅ ̂𝐶𝑖)𝑝 = 𝑑 − 1.
Since ̂𝐶1 is transversal to ̂𝐶𝑖 at 𝑝, we have mult( ̂𝐶𝑖, 𝑝) = 𝑑 − 1. It follows that the
(affine) equation of 𝐶𝑖 does not contain monomials with exponents of 𝑦 higher than 1.
That is, 𝐶𝑖 = {𝑦𝑃𝑖(𝑥) = 𝑄𝑖(𝑥)} with 𝑃𝑖, 𝑄𝑖 coprime real polynomials. Moreover, the
polynomiality of 𝐶𝑖 implies that 𝑃𝑖(𝑥) is a nonzero constant, say 1. Finally, recall that
any two components 𝐶𝑖 and 𝐶𝑗 , 2 ≤ 𝑖 < 𝑗 ≤ 𝑛, intersect in at most one point in the
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affine plane, and if they do, the intersection is transversal. So if 𝐶𝑖 = {𝑦 = 𝑄𝑖(𝑥)} and
𝐶𝑗 = {𝑦 = 𝑄𝑗(𝑥)}, then deg(𝑄𝑖 − 𝑄𝑗) ≤ 1. It follows that a suitable automorphism
of the affine plane (𝑥, 𝑦) ↦ (𝑥, 𝑦 − 𝑅(𝑥)), with 𝑅(𝑥) ∈ ℝ[𝑥], leaves 𝐶1 invariant while
simultaneously taking all other components 𝐶2, . . . , 𝐶𝑛 to straight lines. □

16. Expressive curves vs. morsifications

In this section, we compare two classes of divides:
• the algebraic divides, which arise from real morsifications of isolated singularities
of real plane curves, see, e.g., [16, Definition 2.2];

• the regular-expressive divides, which arise from 𝐿∞-regular expressive curves with
real components, see Section 15.
There are plenty of divides (such as, e.g., generic real line arrangements) which are

both algebraic and regular-expressive.

Proposition 16.1. None of the following regular-expressive divides is algebraic:
(a) the divides shown in Figures 7-9;
(b) the divide shown in Figure 15;
(c) any divide containing two branches whose intersection is empty.

Proof. (a) Let 𝐷 be the divide shown in Figure 9 on the right. Suppose that 𝐷 is al-
gebraic. Pick a point 𝑝 inside the “most interior” region of 𝐷. Any real line through
𝑝 intersects 𝐷 (or any curve isotopic to it) in at least 6 points, counting multiplicities.
Hence the underlying singularity has multiplicity ≥ 6. Such a singularity must have
Milnor number ≥ (6 − 1)2 = 25. On the other hand, 𝐷 exhibits only 21 critical points
(10 saddles at the hyperbolic nodes and 11 extrema, one per region), a contradiction.
The same argument works for the other divides except for the left divides in Figures

8 and 9, which require a slightly more complicated treatment. We leave it to the reader
as an exercise.
(b) Suppose on the contrary that our divide 𝐷 is algebraic. The corresponding sin-

gularity must be unibranch, with Milnor number 12. Let 𝑇 be the sole region of 𝐷
whose closure has zero-dimensional intersection with the union of closures of the un-
bounded connected components. Every real straight line crossing 𝑇 intersects 𝐷 in at
least 4 points (counting multiplicities). It follows that the underlying singularity has
multiplicity ≥ 4. The simplest unibranch singularity of multiplicity 4 is 𝑦4 − 𝑥5 = 0
(up to topological equivalence); its Milnor number is 12. Hence we cannot encounter
any other (more complicated) singularity. The link of the singularity 𝑦4 − 𝑥5 = 0 is a
(4, 5) torus knot. Its Alexander polynomial is (see, e.g., [32, p. 131, formula (1)])

(16.1) (1 − 𝑡4⋅5)(1 − 𝑡)
(1 − 𝑡4)(1 − 𝑡5) = 1 − 𝑡 + 𝑡4 − 𝑡6 + 𝑡8 − 𝑡11 + 𝑡12.

On the other hand, as shown by N. A’Campo [5, Theorem 2] (reproduced in [16, Theo-
rem 7.6]), the link of a singularity is isotopic to the link of the divide of itsmorsification,
as defined by A’Campo; see, e.g., [16, Definition 7.1]. In the terminology of [16, Section
11], the divide 𝐷 is scannable of multiplicity 4. Its link can be computed as the closure
of a 4-strand braid 𝛽 constructed by the Couture-Perron algorithm [12, Proposition 2.3]
(reproduced in [16, Definition 11.3]):

𝛽 = 𝜎1𝜎3𝜎2𝜎3𝜎2𝜎1𝜎3𝜎2𝜎3𝜎2𝜎1𝜎3𝜎2𝜎3𝜎2.
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Direct computation shows that the Alexander polynomial of this knot is equal to

(1 − 𝑡 + 𝑡2)(1 − 𝑡2 + 𝑡4)(1 − 𝑡3 + 𝑡6) = 1 − 𝑡 + 𝑡4 − 𝑡5 + 𝑡6 − 𝑡7 + 𝑡8 − 𝑡11 + 𝑡12,
which is different from (16.1).
(c) Follows from [10, Proposition 1.8(ii)]. □

By Proposition 16.1, a connected line arrangement containing parallel lines is
regular-expressive but not algebraic. We next give an example of the opposite kind.

Proposition 16.2. Let 𝐷 be the “non-Pappus” pseudoline arrangement shown in Fig-
ure 44 on the right. The divide 𝐷 is algebraic but not regular-expressive.
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which is different from (16.1).
(c) Follows from [10, Proposition 1.8(ii)]. �

By Proposition 16.1, a connected line arrangement containing parallel lines is
regular-expressive but not algebraic. We next give an example of the opposite kind.

Proposition 16.2. Let D be the “non-Pappus” pseudoline arrangement shown in
Figure 44 on the right. The divide D is algebraic but not regular-expressive.
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Figure 44: Left: a Pappus configuration of straight lines. Right [7, Figure 14]: a
non-Pappus pseudoline arrangement obtained by locally deforming the Pappus con-
figuration around each of its 9 triple points. (These points correspond to the 9 marked
triangular regions on the right.)

Proof. It is well known that the non-Pappus pseudoline arrangement D is non-
stretchable, see [7, Section 3], [14, Section 5.3].

We next show that the divide D is algebraic. For the benefit of the readers who
may not be experts in singularity theory, we begin by recalling some background.

Any isolated curve singularity possesses a versal deformation with finite-dimension-
al base; see [19, Section II.1.3] for a brief account of the theory of versal deformations.
In particular, a versal deformation induces any other deformation. Furthermore, if
the singular point is real and a versal deformation is conjugation-invariant with a
smooth base, then it induces any other conjugation-invariant deformation with a
smooth base. (Indeed, an analytic map (Cn, 0) → (CN , 0) that takes real points to
real points is given by germs of analytic functions with real coefficients.)

If a singularity (at the origin) is given by f(x, y) = 0, then the deformation

f(x, y) +
∑
i+j≤d

tijx
iyj = 0, (tij) ∈ BN

ε , N =
(
d+2

2

)
,
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Figure 44. Left: A Pappus configuration of straight lines. Right [7,
Figure 14]: A non-Pappus pseudoline arrangement obtained by lo-
cally deforming the Pappus configuration around each of its 9 triple
points. (These points correspond to the 9 marked triangular regions
on the right.)

Proof. It is well known that the non-Pappus pseudoline arrangement 𝐷 is non-
stretchable, see [7, Section 3], [14, Section 5.3].
We next show that the divide 𝐷 is algebraic. For the benefit of the readers who may

not be experts in singularity theory, we begin by recalling some background.
Any isolated curve singularity possesses a versal deformationwith finite-dimension-

al base; see [18, Section II.1.3] for a brief account of the theory of versal deformations.
In particular, a versal deformation induces any other deformation. Furthermore, if the
singular point is real and a versal deformation is conjugation-invariant with a smooth
base, then it induces any other conjugation-invariant deformation with a smooth base.
(Indeed, an analytic map (ℂ𝑛, 0) → (ℂ𝑁 , 0) that takes real points to real points is given
by germs of analytic functions with real coefficients.)
If a singularity (at the origin) is given by 𝑓(𝑥, 𝑦) = 0, then the deformation

𝑓(𝑥, 𝑦) + ∑
𝑖+𝑗≤𝑑

𝑡𝑖𝑗𝑥𝑖𝑦𝑗 = 0, (𝑡𝑖𝑗) ∈ 𝐁𝑁𝜀 , 𝑁 = (𝑑+22 ),
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is versal if 𝑑 ≥ 𝜇(𝑓, 0)−1; here𝐁𝑁𝜀 ⊂ ℂ𝑁 denotes a sufficiently small open disc centered
at the origin.
If 𝐶 = 𝑉(𝐹(𝑥, 𝑦)) is an affine curve and 𝑝1, . . . , 𝑝𝑟 are some of its isolated singulari-

ties, then the deformation

𝐹(𝑥, 𝑦) + ∑
𝑖+𝑗≤𝑑

𝑡𝑖𝑗𝑥𝑖𝑦𝑗 = 0, (𝑡𝑖𝑗) ∈ 𝐁𝑁𝜀 , 𝑁 = (𝑑+22 ),

where 𝑑 ≥ ∑𝑖 𝜇(𝐶, 𝑝𝑖)−1, is a joint versal deformation of the singular points𝑝1, . . . , 𝑝𝑟.
That is, it simultaneously induces arbitrary individual deformations at all these singu-
lar points; see the versality criterion [18, Theorem II.1.16] and [19, Proposition 3.4.6].
Let

9
∏
𝑖=1

(𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖) = 0

be a Pappus configuration without parallel lines. The family

𝐹𝑡(𝑥, 𝑦) =
9
∏
𝑖=1

(𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖𝑡) = 0, 𝑡 ∈ [0, 1],

is a deformation of the ordinary 9-fold singular point 𝐹0(𝑥, 𝑦) = 0, whose members
𝐹𝑡 = 0, 𝑡 ≠ 0, are Pappus configurations differing from each other by a homothety. It
is induced by a versal deformation

𝐹0(𝑥, 𝑦) + ∑
𝑖+𝑗≤𝑑

𝑡𝑖𝑗𝑥𝑖𝑦𝑗 = 0, (𝑡𝑖𝑗) ∈ 𝐁𝑁𝜀 ,(16.2)

where

𝑁 = (𝑑+22 ), 𝑑 = 𝜇(𝐹0, 0) − 1 = 63.

Since the total Milnor number of the Pappus configuration (i.e., the sum of Milnor
numbers at all singular points) is less than 𝜇(𝐹0, 0) = 64, the deformation (16.2) is
joint versal for all the singularities of any given curve 𝐹𝑡(𝑥, 𝑦) = 0, 0 < 𝑡 ≪ 1.
We now construct a morsification of the singularity 𝐹0 = 0 which is isotopic to our

divide 𝐷. We begin by deforming it into a Pappus configuration 𝐹𝑡 = 0with 0 < 𝑡 ≪ 1.
Then, by variation of the monomials up to degree 63, we deform each triple point of
the latter curve into appropriate three double intersections (while keeping the nodes of
the Pappus configuration). Since 𝑡 can be chosen arbitrarily small, the curve isotopic to
the constructed one appears arbitrarily close to the original germ {𝐹0 = 0}. In view of
the fact that all the strata in the real part of the discriminant in the versal deformation
base are semialgebraic sets, by the arc selection lemma [29, Lemma 3.1], there exists a
real analytic deformation

𝐹𝑡(𝑥, 𝑦) = 0, 0 ≤ 𝑡 ≪ 1,

of 𝐹0 = 𝐹0 = 0, whose members 𝐹𝑡 = 0, 𝑡 ≠ 0, realize the desired morsification. □
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