

1 **TITLE - Exploring Cotton SFR2's Conundrum in Response to Cold Stress**

2

3 **AUTHORS – SAMANTHA M. SURBER¹, NGOC PHAM THIEN THAO¹, CAILIN N. SMITH¹, ZACHERY D.
4 SHOMO¹, ALLISON C. BARNES², REBECCA L. ROSTON***

5

6 Author Details:

7 1. University of Nebraska-Lincoln, Department of Biochemistry, Center for Plant Science Innovation,
8 2. United States Department of Agriculture, North Carolina State University

9

10 *Corresponding author

11 Rebecca L Roston

12 rroston@unl.edu

13 1901 Vine St, Beadle N123

14 Lincoln NE 68588

15

16

17 **ABSTRACT**

18 Cotton is an important agricultural crop to many regions across the globe but is sensitive to low
19 temperature exposure. The activity of the enzyme SENSITIVE TO FREEZING 2 (SFR2) improves cold
20 tolerance of plants and produces trigalactosylsylidiacylglycerol (TGDG), but its role in cold sensitive
21 plants, such as cotton remains unknown. Recently, it was reported that cotton SFR2 produced very little
22 TGDG under normal and cold conditions. Here, we investigate cotton SFR2 activation and TGDG
23 production. Using multiple approaches in the native system and transformation into *Arabidopsis*
24 *thaliana*, as well as heterologous yeast expression, we provide evidence that cotton SFR2 activates
25 differently than previously found among other plant species. We conclude with the hypothesis that SFR2
26 in cotton is not activated in a similar manner regarding acidification or freezing like *Arabidopsis* and that
27 other regions of SFR2 protein are critical for activation of the enzyme than previously reported.

28

29 **INTRODUCTION**

30 Cold temperature stressors are an increasing threat to crop production as the climate across the globe is
31 becoming increasingly more unpredictable (Quesada, Vautard, and Yiou 2023; Kodra, Steinhaeuser, and
32 Ganguly 2011). The most concerning cold events for many crops are spring frosts during sensitive
33 germination or early growth stages, and autumn hard freezes prior to harvest. These stressors can
34 dramatically impact quality and yield, even crop loss. While many plants have evolved mechanisms to
35 respond to and survive low temperatures, this crucial ability is often lacking in agricultural species re-
36 domesticated to temperate regions (L. Wang et al. 2023; Shen et al. 2023). *Gossypium raimundii* (cotton)
37 and *Zea mays* (corn) cultivars exemplify this vulnerability, as their response to cold is not fully
38 understood.

39

40 Fortunately, much more is known about low-temperature tolerance in *Arabidopsis thaliana*. A naturally
41 freezing tolerant plant, it acclimates to initial, above-zero chilling temperatures to enhance its below-
42 zero freezing tolerance, especially through membrane remodeling (Thomashow 1999; Ding, Shi, and
43 Yang 2019). Membranes are a direct site of low-temperature damage, and tolerance requires membrane
44 remodeling during both cold acclimation and additional low-temperature stress (Barrero-Sicilia et al.
45 2017; Yu et al. 2021; Barnes, Benning, and Roston 2016; Uemura, Joseph, and Steponkus 1995). In
46 addition, soluble sugars and amino acids accumulate (Xin and Browse 1998; McKown, Kuroki, and
47 Warren 1996) in response to a carefully controlled transcriptional and post-transcriptional set of cues
48 (Kidokoro, Shinozaki, and Yamaguchi-Shinozaki 2022).

49
50 Specifically, SENSITIVE TO FREEZING2 (SFR2), a chloroplast enzyme classified as a glycosyl transferase,
51 plays a pivotal role in *Arabidopsis* cold response. SFR2 is conserved in evolved land plants (Fourrier et al.
52 2008) even in notoriously cold sensitive plants. SFR2 modifies the lipid monogalactosyldiacylglycerol
53 (MGDG) by using it as a substrate and transfers the galactose headgroup to another MGDG producing
54 DGDG (di-galactosyldiacylglycerol). This process happens progressively to produce TGDG and TeGDG,
55 respectively (Roston et al. 2014; Moellering, Muthan, and Benning 2010). This action is believed to
56 stabilize membranes during freezing stress, and in *Arabidopsis* is completely dependent on the presence
57 of SFR2 (Moellering, Muthan, and Benning 2010; Jouhet 2013). Notably, specific domains within
58 *Arabidopsis* SFR2 beyond its core structure, were identified as necessary for its activation and
59 transferase activity. These include an unstructured loop region near the N-terminus and a portion of the
60 C-terminus (Roston et al. 2014). Moreover, cytosolic acidification triggered by low temperatures has
61 been established as a highly conserved step for SFR2 activation in *Arabidopsis* and other plant species
62 (Barnes, Benning, and Roston 2016; Barnes et al. 2023).

63
64 TGDG accumulation serves as a reliable proxy for SFR2 activity under cold or acid stress (Barnes,
65 Benning, and Roston 2016; Barnes et al. 2023). A recent study comparing TGDG levels across diverse
66 species described cotton, as a fascinating outlier, exhibiting minimal accumulation of TGDG under both
67 normal and cold conditions, despite its close kinship to the high-accumulating model species,
68 *Arabidopsis thaliana*. Cotton, a vital fiber and oilseed crop, has a myriad of varieties which results in
69 many optimal growing temperatures for the genus (Majeed et al. 2021; Abro et al. 2023). In any variety,
70 it can be concluded that a rapid change in temperature whether heat or cold causes damage and yield
71 loss for cotton (Snider et al. 2018; Singh et al. 2018; Virk et al. 2021; Gipson and Joham 1969; Saini et al.
72 2023; Farooq et al. 2023). Most cotton is considered quite cold sensitive and it is grown in warmer
73 regions of the world (National Cotton Council of America).

74
75 Because cotton is cold sensitive an unpredictable frost of 2007 decimated US crops, particularly in the
76 cotton-rich Southeast, and it stands as a stark reminder of our vulnerability to climate instability (Gu et
77 al. 2008). Because cotton is a major fiber and oilseed agricultural crop that responds differently than
78 *Arabidopsis* to low temperatures (Kargiotidou et al. 2008), and has an unusually poor TGDG
79 accumulation (Barnes et al. 2023), we decided to focus on its activation of SFR2. We hypothesized that
80 cotton *GrSFR2* would sense low temperatures differently than *Arabidopsis AtSFR2*. We investigated

81 *GrSFR2* activation in its native environment and heterologously in *Arabidopsis* and yeast in response to
82 low temperatures, cytoplasmic acidification, and swapped protein domains. Our findings reveal a
83 surprising divergence in activation mechanisms, enhancing our understanding of responses to low
84 temperatures in these closely related species.

85

86 **MATERIALS AND METHODS**

87 **Plant material and growth conditions**

88 *Arabidopsis* (*Arabidopsis thaliana*, Columbia [Col], *sfr2* (SALK_106253), *GrSFR2*, *AtYFP*) were grown
89 under two conditions. On media, they were grown as described (Barnes, Benning, and Roston 2016),
90 except the Murashige-Skoog concentration was at $\frac{1}{2}$ of full strength. Soil-grown plants were grown
91 precisely as described previously (Barnes et al. 2023). Soil-grown plants were incubated at normal day
92 temperatures (22°C) for 3 to 4 weeks before cold acclimation at 4°C with 12-h day/night and 60 μmol
93 $\text{m}^{-2} \text{s}^{-1}$ light for one week. Plate grown plants were incubated at normal day temperatures (22°C) with a
94 nighttime temperature of 18°C and 120 $\mu\text{mol m}^{-2} \text{s}^{-1}$ of light before cold acclimation.

95

96 *Gossypium raimondii* was grown under standard greenhouse conditions of max and min day
97 temperature of 27°C and 24°C respectively and night temperatures at max 21°C and min 18.8°C. *G.*
98 *raimondii* was planted with standard greenhouse soil mix [8:8:3:1 (w/w/w/w) peat
99 moss:vermiculite:sand:screened topsoil, with 7.5:1:1:1 (w/w/w/w) Waukesha fine lime, Micromax,
100 Aquagro, and Green Guard per 0.764 m^2].

101

102 **Production of *GrSFR2* construct in *Arabidopsis***

103 *sfr2* (SALK_106253) were transformed using *Agrobacterium tumefaciens* (strain C58C1) carrying a
104 construct with *Gossypium raimondii* SFR2 gene (NM_001125119.2) in pUBCYFPDest (Grefen et al. 2010).
105 *Arabidopsis* transformation was completed using the floral dip method (Clough and Bent 1998)

106

107 The presence of the *GrSFR2* construct was confirmed by genomic PCR with forward primer 5'-
108 GATGGTTATGGTCCCAAGTTG-3' and reverse primer 5'- CATGCCTGCAGGTCACTG-3'. Microscopy to
109 confirm presence of fluorescence was done using a confocal microscope Nikon A1plus camera with a Ni-
110 E Microscope confocal system at the Nebraska Morrison Microscopy Center with excitation at 640 nm
111 and emission from 663 to 738 nm for chloroplast autofluorescence and 488 nm for YFP fluorescence of
112 target protein, *GrSFR2*-YFP.

113

114 **Arabidopsis Whole Plant Freezing Test**

115 All plants roughly 4 weeks of age used in the freezing test were acclimated under cold conditions (4°C)
116 under the 12-h/2-h-dark light conditions 60 $\mu\text{mol m}^{-2} \text{s}^{-1}$ for one week prior to freezing. The freezing
117 assay was completed as described in (Barnes, Benning, and Roston 2016), altered method of
118 (Moellering, Muthan, and Benning 2010). Briefly, plants were moved into a freezer at -2°C and held at
119 this temperature for two hours. The temperature was then dropped to -6°C and nucleation was induced
120 with ice chips. The plants were held at -6°C for sixteen hours.

121

122 For recovery and damage assay the frozen plates were gradually warmed to room temperature for 24
123 hours before returning to the growth chamber prior to assessment. The light cycle for growing and cold
124 acclimation stages followed (Shomo et al. 2024). Recovered levels were classified and quantified by
125 appearances. 1: fully green rosettes with minimal to no damage, the plants fully recovered, 2: partially
126 green rosettes with partial damage, the plants partially recovered, and 3: fully white rosettes with
127 severe damage, the plants were not able to recover. The percentage of each level within the same
128 genotype was calculated from the sum of three biological replicates, and the total N of Col-2=59,
129 sfr2=49, AtSFR2-YFP=55, and GrSFR2=51. The equation for recovery percentage could be expressed as
130 below:

$$131 \quad \% \text{ Recovery} = \frac{\text{total number of rosettes at each level}}{\text{total number N of each genotype}} \times 100$$

132

133 **Cotton Freezing Test**

134 Freezing was completed using a refrigerated circulator (AP15R-40, VWR, Radnor, PA, USA) and was set
135 to first cool at a rate of $-0.02^{\circ}\text{C}/\text{min}$ to -4°C , then finally cool at a rate of $-0.4^{\circ}\text{C}/\text{min}$ to the final holding
136 temperature of -10°C . Three leaf discs (8mm) of cotton were immediately subjected to lipid extraction
137 at room temperature. In tandem three leaf discs (8mm) of cotton were placed into a tube with 1 mL
138 water then placed into the circulator set to 0°C . After 30 minutes in the chiller, ice was added to each
139 tube to initiate freezing. The tubes were held at -10°C overnight. The next day the tubes were left to
140 thaw for 30 minutes at room temperature. Following this leaf tissue underwent lipid extraction
141 described below.

142

143 **Exogenous Cytosolic Acidification**

144 Arabidopsis cytosolic acidification was completed on excised leaves as described in (Barnes et al. 2023).
145 Cotton cytosolic acidification was completed on young leaves of vegetative-stage *Gossypium raimondii*
146 with three or more fully expanded leaves was used for the TGDG accumulation tests. The acid test was
147 completed directly on a fully expanded leaf by using plastic wrap with 20mM acetic acid at pH 5.7. The
148 acid was put in the plastic wrap and maneuvered to be on the abaxial (bottom) side of the leaf for 3
149 hours. During the incubation, the leaf was supported from beneath to avoid damaging the leaf or plant.
150 After 3 hours, 6 leaf punches were taken using an 8 mm punch in the greenhouse and lipids were
151 extracted using methods described in (Mahboub et al. 2021). All leaves were blotted dry before lipid
152 extraction. A second excised leaf method was completed for cotton by using a 0.5cm diameter hole
153 punch from expanded leaves, making sure to avoid vasculature. Three discs per sample were used per
154 assay in 20 mM pH 5 Acetic acid for either 1 hour or 3 hours. In tandem with this, each had a water
155 control that occurred in the same manner with lipid extraction following immediately after.
156

157 **Lipid Analyses**

158 Plant lipids were extracted from the tissues using a modified Bligh and Dyer method (Bligh and Dyer
159 1959; Mahboub et al. 2021) and thin layer chromatography (TLC) as described in (Z. Wang and Benning
160 2011). At the end of the freezing assay described in “Arabidopsis Whole Plant Freezing Test” above,
161 whole rosettes were sampled using forceps and tubes prechilled in liquid nitrogen prior to plant
162 handling to minimize thawing. For leaves and punches incubated in 20mM acetic acid, the tissue was
163 blotted dry, gently with a paper towel prior to extraction. Lipids were extracted and stored under N₂ gas
164 at -80°C until use.
165

166 Yeast lipid extraction was done essentially using the modified Bligh and Dyer method (Mahboub et al.
167 2021) except 0.1 mm diameter silicon carbide (BioSpec) and 0.5 mm diameter zirconia/silica yeast
168 disruption beads (RPI), were used to lyse the cells in the extraction buffer. Samples were stored in
169 amber vials under N2 gas at -80°C until processing.
170

171 Lipids were loaded onto Silica 60 thin layer chromatography plates 1 cm from the edge and resolved in a
172 solvent system of chloroform:methanol:acetic acid:water (85:20:10:4, v/v/v/v) as described in (Barnes,
173 Benning, and Roston 2016). Sugar-containing lipids were visualized using α-naphthol spray (2.4% α-
174 naphthol, 80% ethanol, 10% sulfuric acid) followed by baking at 120°C (Z. Wang and Benning 2011).
175

176 **Electrolyte Leakage**

177 Electrolyte leakage was completed on Arabidopsis plants using lines, *GrSFR2*, *sfr2* (SALK_106253), and
178 Col-2 as described in (Barnes et al. 2023). The plants were grown as described above and allowed to cold
179 acclimate at 4°C for one week. The fully expanded rosette leaves of Arabidopsis were used for this
180 analysis. The leaves were put into 5mL tubes with 3mL of ddH₂O (18 MΩ). Stepwise freezing was done
181 using refrigerated circulator (AP15R-40, VWR, Randor, PA, USA). Conditions for Arabidopsis were
182 determined by (Warren et al. 1996). The samples were allowed to equilibrate at 0°C for 30 minutes and
183 then nucleated with a ddH₂O chip at -1°C for 1 h. The stepwise chilling was then initiated and occurred
184 at decreasing 2°C/h. Samples were collected at each time point for Arabidopsis.

185

186 After the above sampling, the leaves were left to slowly thaw at 4°C overnight. Samples were then
187 raised to room temperature (22°C) and subsequently shaken at 250 RPM for 15 minutes (Warren et al.
188 1996). After this, initial conductivity measurement was taken using Accumet AB200 (Fisher Scientific,
189 Hampton, NH, USA). Following this initial reading, samples were heated to 65°C for 30 minutes in a
190 water bath to completely release all electrolytes. Leaves were then cooled to room temperature, then
191 shaken at 250 RPM for 15 minutes. Conductivity was again measured and logged as the final leakage.
192 For each temperature, a leaf was also sampled for lipid analysis in tandem with ion leakage.

193

194 Data for cellular leakage was analyzed as in (Warren et al. 1996), percent leakage relative to total ions
195 was fit to a sigmoidal curve.

196

197 **Immunoblot Analyses**

198 Three leaves from the center of rosette of 4-week-old Arabidopsis plants were ground in liquid nitrogen,
199 homogenized in lysis buffer (10 mM HEPES, 150 mM NaCl, 0.5 mM EDTA, 1% DDM, 1% MS-SAFE
200 Protease and Phosphatase Inhibitor [Sigma]). The supernatant was collected after centrifugation at
201 20,000 x g for 10 min at 4°C. Equal amounts of protein (20 µg) were denatured in Laemmli buffer held at
202 100°C for 5 min then separated on 7.5% SDS-PAGE and transferred to PVDF membranes (Bio-Rad). Equal
203 protein loading was confirmed by Ponceau stain. The membranes were blocked in EveryBlot Blocking
204 Buffer (Bio-Rad) and then incubated at room temperature overnight with 1:250 anti-SFR2 antibody then
205 washed in TBST (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.05% [v/v] Tween 20)

206

207 For yeast protein immunoblotting, 10 ug of protein extracts were mixed 1:1 with 2X Laemmli buffer and
208 loaded into a 10% precast polyacrylamide gel. Proteins were resolved and then transferred to PVDF and
209 blocked with TBST containing 5% milk powder (Carnation). Membranes were incubated with 1° anti-
210 SFR2 (1:250) (Roston et al. 2014) overnight and then washed with TBST.

211
212 For signal detection, membranes were incubated with 2° anti-Rabbit-HRP (1:20,000) (Invitrogen). Clarity
213 ECL (Bio-Rad) was used to induce chemiluminescence and membranes were imaged with an Odyssey Fc
214 (Licor).

215
216 **Plasmid Generation**
217 The CDS Cotton SFR2 (*GrSFR2*) previously subcloned into pUC57-Kan, was used as a template for
218 sequence swapping with regions of the Arabidopsis SFR2 (*AtSFR2*) CDS. An unstructured loop, and 30
219 amino acid sequence close to the C-terminus in Arabidopsis SFR2 were swapped with *GrSFR2* sequences
220 in this region. DNA encoding H93-H164 in *GrSFR2* was replaced with the DNA for S90-Lys136 from
221 *AtSFR2* to generate the *GrSFR2*-Loop construct. DNA encoding *GrSFR2* A579-L609 was replaced with the
222 DNA for A550-L580 from *AtSFR2* to generate the *GrSFR2*-550/80 construct. Both constructs were
223 commercially synthesized in pUC57-Kan (GenScript). For expression in yeast, constructs were inserted
224 into pYESDest52 using Gateway LR Cloning (Invitrogen).

225
226 **Heterologous Expression**
227 *GrSFR2*-Loop and *GrSFR2*-550/80 in pYESDest52-Ura were each transformed into InvSc1 competent
228 yeast (Invitrogen) containing CsMGD1 (pESC-His) and plated on SC-his/-ura media followed by culturing
229 in liquid media as described in (Roston et al. 2014). Protein expression was induced with galactose for
230 eight hours, and cell pellets were either used immediately for protein and lipid extraction or stored in -
231 80°C until use.

232
233 **RESULTS**
234 ***GrSFR2* is activated in response to freezing, but not to acidification**
235 In Arabidopsis SFR2 protein is present, but not always active (Barnes, Benning, and Roston 2016; Thorlby,
236 Fourrier, and Warren 2004). In response to severely low temperatures, SFR2 catalyzes the production of,
237 and subsequently causes accumulation of trigalactosyldiacylglycerol (TGDG). This phenomenon is seen in
238 multiple species but not all, and recently cotton (*Gossypium raimondii*) was described recently to have

239 no detectible TGDG in response to cold (Barnes et al. 2023). To confirm if SFR2 activation does occur
240 during freezing in *G. raimondii* leaves were excised, punched, then frozen at -10°C overnight. When
241 treated in this manner during this assay, TGDG accumulated at very low rates during freezing, confirming
242 that the SFR2 was activated during this freezing stress (Figure 1A). We concluded that the cotton SFR2
243 can be activated though to a lesser extent than previously reported for the model species Arabidopsis
244 (Barnes, Benning, and Roston 2016).

245

246 In Arabidopsis, SFR2 activates when a decrease in pH occurs both internally at a cytoplasmic level or
247 from external stimuli (Barnes, Benning, and Roston 2016). It has been described that some phylogenetic
248 groups in the angiosperms have strong differences in TGDG accumulation in response to freezing and
249 acidic stimulation (Barnes et al. 2023). To determine if SFR2 activation and subsequent TGDG
250 accumulation could be mimicked in cotton, the leaves were treated with 20mM acetic acid, pH 5 (Figure
251 1B and C). First, to minimize possible SFR2 activation in response to wounding of the leaf in cotton the
252 acetic acid was held against the attached leaf and left in place with plastic wrap for 3 hours, then leaf
253 punches were sampled for lipid extraction (Figure 1B and C). This method resulted in no TGDG
254 accumulation within the cotton plant. To compare this method to the assay utilized in Barnes et al., 2023
255 excised tissue leaf discs were put in the 20mM acetic acid, pH 5 for 1 and 3 hours, followed by lipid
256 extraction. TGDG was not accumulated in either method in response to external acidification unlike
257 Arabidopsis (Barnes, Benning, and Roston 2016).

258

259 **Cotton SFR2 does not complement the function AtSFR2 in the *sfr2* mutant.**

260 To inquire if *GrSFR2* would complement *AtSFR2*, *GrSFR2* was transformed into an Arabidopsis mutant
261 lacking SFR2 expression (*sfr2-3* (SALK_106253)). *In planta*, presence was visualized using YFP fluorescent
262 tags on the *GrSFR2* to confirm *GrSFR2* presence at the known location of the *AtSFR2* protein on the
263 surface of the chloroplast (Figure 2A) (Warren et al. 1996). TGDG accumulation was then used as a proxy
264 to test *GrSFR2* activation. To determine if the Arabidopsis would activate *GrSFR2* in response to freezing,
265 TGDG was measured in normal growth conditions, cold acclimated (6°C), and frozen plants. At normal
266 growth temperatures and after cold acclimation, there was no TGDG accumulation for any genotype,
267 while after freezing, TGDG accumulated in the wildtype (Col-2) and *AtSFR2-YFP/sfr2-3* controls. TGDG did
268 not accumulate in the *GrSFR2/sfr2-3* or the *sfr2-3* plants (Figure 2B).

269

270 In addition to the accumulation of TGDG, the phenotypic response to freezing was documented in
271 Arabidopsis expressing *GrSFR2*. After cold acclimation and overnight freezing, the *GrSFR2/sfr2-3* plants
272 strikingly resembled the *sfr2-3* mutant background in both the subtle reduction in size and showed
273 similar leaf damage. (Figure 2C). Quantifying the phenotype by scoring leaf damage showed that the
274 *GrSFR2* plants failed to recover any photosynthetically active, green tissue while the wildtype and
275 *AtSFR2-YFP* controls were over 30% fully recovered, and over 80% partially damaged, and resumed
276 growth post freezing (Figure 2D). This result was corroborated by a highly sensitive electrolyte leakage
277 assay, which also showed no differences in cellular death between the genotypes throughout the
278 freezing assay (Figure 2E). It is expected that wildtype will reach 50% (LT_{50}) cellular death between -4 and
279 -6°C, we found that there was no statistical difference between the Arabidopsis genotypes analyzed
280 here.

281
282 To test if the activation of cotton SFR2 is initiated by external acidification like Arabidopsis, we subjected
283 Arabidopsis expressing *GrSFR2* to artificial acidification using pH-controlled solutions of mild organic acid
284 (Barnes, Benning, and Roston 2016). TGDG was found in the Col-2 and *AtSFR2-YFP* controls after 3 hours
285 in response to acidification as expected, but the *GrSFR2* did not accumulate TGDG, instead resembling
286 the *sfr2-3* mutant (Figure 2F) supporting the finding in the native system that *GrSFR2* does not activate in
287 response to acidification of whole tissue. Together, this data suggests that *GrSFR2* does not activate like
288 *AtSFR2* in Arabidopsis.

289
290 **Heterologous expression confirms critical AtSFR2 domain regions fail to complement activation in**
291 ***GrSFR2***

292 We tested *GrSFR2* activity in a yeast heterologous expression system which shows strong activity from
293 *AtSFR2* (Roston et al. 2014). Yeast complemented with and without MGDG synthase and either *GrSFR2*
294 or *AtSFR2* showed that when MGDG synthase is present, *GrSFR2* does not produce TGDG in this system
295 (Figure 3A).

296
297 Given that *GrSFR2* activated differently than *AtSFR2* in both Arabidopsis and yeast systems, we
298 speculated that sequence-based differences between the two proteins may be responsible for the
299 difference in their activities. *AtSFR2* has two regions that are required for galactosyltransferase activity
300 (Roston et al. 2014). . The regions of interest from the Arabidopsis sequence are the “A loop” region
301 located near the N-terminus region of the protein between residues 56-536 and the C-terminal region,

302 residues 550-580 (Figure 3B and C). To investigate if these same regions could activate the GrSFR2
303 protein, we swapped those regions from *AtSFR2* into *GrSFR2*, and expressed the resulting chimeras in
304 yeast (pUC57-Kan) that also expressed MGDG synthase, allowing for SFR2 activity. The expression of the
305 chimeric proteins was tested by immunoblotting (Figure 3D). Neither the chimeric *GrSFR2* with *AtSFR2*
306 loop region, nor the *AtSFR2* 550/580 region activated or accumulated TGDG differently than the original
307 *GrSFR2* (Figure 3A). Thus, suggesting that the activation of cotton SFR2 is dependent on more than these
308 domains or may differ from *Arabidopsis* in other regions.

309

310 **DISCUSSION**

311 Cotton is a cold-sensitive, economically important agricultural crop, especially to the Southeastern
312 United States. We previously found that cotton produced undetectable levels of cold-stress-specific lipid
313 TGDG in a large-scale screen (Barnes, et al. 2023), implying that cotton may respond to cold stress
314 differently than model species *Arabidopsis*. Here we confirmed that cotton produced low levels of TGDG
315 in response to cold (Figure 1), presumably because it retains a functional homolog of SFR2. However,
316 *GrSFR2* did not respond to leaf acidification (Figure 1). When we heterologously expressed *GrSFR2* in
317 *Arabidopsis*, it still did not activate similarly to *AtSFR2* (Figure 2). When we swapped domains of
318 *Arabidopsis* SFR2 known to be critical for function into the *Gr SFR2*, *GrSFR2* activation remained different
319 from *Arabidopsis* (Figure 3). We conclude by hypothesizing that between cotton and *Arabidopsis*, there
320 has been functional divergence large enough to optimize SFR2's stress response in each species. We
321 note that the amount of functional divergence may be more extreme between the SFR2 homologs
322 causing a loss of its original function. We consider the less likely of the two hypotheses because SFR2 is
323 solely responsible for TGDG production in *Arabidopsis* (Moellering et al. 2010), and cotton produces low
324 levels of TGDG in the cold (Figure 1A), implying that *GrSFR2* retains function.

325

326 Stress responsive enzymes, specifically other cold responsive genes like *COR15* (Shimamura et al. 2006),
327 *Wcs19* (NDong et al. 2002), and *CBF/DREB1* (W. Li et al. 2020) are able to confer cold tolerance when
328 transferred between species. Surprisingly, here when we transferred *GrSFR2* into *Arabidopsis* we were
329 unable to recover SFR2 activity in the cold (Figure 2). *Arabidopsis* SFR2 is activated by acidification, and
330 in both the native cotton system and when heterologously expressed in *Arabidopsis*, *GrSFR2* failed to
331 activate in response to external acidification (Figure 1 and 2) further supporting the notion that cotton
332 SFR2 is sensed and activated by different cues than those currently understood in other species.

333

334 The galactosyl hydrolase family 1 enzyme, SFR2, remodels membranes in response to a cold stress
335 (Roston et al. 2014; Moellering, Muthan, and Benning 2010). Domain swapping is a common method
336 used to determine protein functionality, for example, SYMRK proteins role in root nodule symbiosis (H.
337 Li et al. 2018) and in Cf4/Cf9 proteins to discover sequences necessary for function (Wulff et al. 2001).
338 Specifically, here we followed a similar approach as Li and colleagues to test the function of species-
339 specific SFR2 proteins. In the yeast expression system, activating regions of *AtSFR2* were swapped for
340 those of *GrSFR2* (Roston et al. 2014) Interestingly, *GrSFR2* chimeras with *AtSFR2* activation regions failed
341 to cause activation in *GrSFR2* (Figure 3). This suggests that other regions of SFR2 are also needed for
342 activation.

343

344 SFR2 is conserved across plant phylogenetic hierarchy (Fourrier et al. 2008) but the accumulation of
345 TGDG is not ubiquitous (Barnes et al. 2023). These activation differences of SFR2 in asterids and rosids in
346 eudicots, and resurrection plant have been demonstrated. Between *Arabidopsis* and tomato specifically,
347 tomato SFR2 activity was nearly twice that of *Arabidopsis* under the same conditions (K. Wang, Hersh,
348 and Benning 2016). In *Craterostigma plantagineum*, a resurrection plant, *SFR2* transcript is upregulated
349 and TGDG levels increase in response to dehydration (Gasulla et al. 2013). Our findings corroborate that
350 despite the close evolutionary relationship of the species and sequence similarity, an enzyme's activity
351 can vary greatly and depend on different environmental cues. These findings suggest that at least some
352 membrane stress responses can be tuned within a short evolutionary timescale toward different
353 stresses, as *Arabidopsis* SFR2 responds primarily to low temperature, tomato to high salt, and *C.*
354 *plantagineum* to desiccation. Our study extends this observation to conclude that the molecular
355 mechanisms of signaling differ in cotton than prior studies in other species (acidification did not activate
356 *GrSFR2*, Figures 1, 2), as do the mechanisms of sensing the signal (*GrSFR2* chimeras could not sense
357 *AtSFR2* environment). This raises the question of how best to engineer similar traits to improve crop
358 cold tolerance. Discovering how to improve the cold tolerance of cotton is important for continued
359 improvement to its agricultural production.

360

361 **ACKNOWLEDGEMENTS**

362 We would like to express our gratitude to Samantha Link and Kandy Hanthorn for their diligent care of
363 our plant material; Special thanks to Bara Altartouri and Terri Fangman of the UNL Microscopy core for
364 their invaluable assistance in imaging and for providing training to the authors on equipment operation.

365

366 **DECLARATION OF INTEREST STATEMENT**

367 The authors report there are no competing interests to declare.

368

369 **AUTHOR CONTRIBUTION STATEMENT**

370 All authors contributed to research design and manuscript editing. Research was performed by SMS,
371 NPTT, CNS, ZDS, and ACB, data was analyzed by SMS, NPTT, CNS, ZDS, SMS wrote the manuscript. All
372 authors approved of the final version of the manuscript.

373

374 **REFERENCES**

375 Abro, Aamir Ali, Muhammad Anwar, Muhammad Umer Javwad, Mjie Zhang, Fang Liu, Raimundo
376 Jiménez-Ballesta, Ehab A. A. Salama, and Mohamed A. A. Ahmed. 2023. "Morphological and
377 Physio-Biochemical Responses under Heat Stress in Cotton: Overview." *Biotechnology Reports* 40
378 (December): e00813.

379 Barnes, Allison C., Christoph Benning, and Rebecca L. Roston. 2016. "Chloroplast Membrane Remodeling
380 during Freezing Stress Is Accompanied by Cytoplasmic Acidification Activating SENSITIVE TO
381 FREEZING2." *Plant Physiology* 171 (3): 2140–49.

382 Barnes, Allison C., Jennifer L. Myers, Samantha M. Surber, Zhikai Liang, Jeffrey P. Mower, James C.
383 Schnable, and Rebecca L. Roston. 2023. "Oligogalactolipid Production during Cold Challenge Is
384 Conserved in Early Diverging Lineages." *Journal of Experimental Botany*, June, erad241.

385 Barrero-Sicilia, Cristina, Susana Silvestre, Richard P. Haslam, and Louise V. Michaelson. 2017. "Lipid
386 Remodelling: Unravelling the Response to Cold Stress in *Arabidopsis* and Its Extremophile
387 Relative *Eutrema Salsugineum*." *Plant Science: An International Journal of Experimental Plant*
388 *Biology* 263 (October): 194–200.

389 Bligh, E. G., and W. J. Dyer. 1959. "A Rapid Method of Total Lipid Extraction and Purification." *Canadian*
390 *Journal of Biochemistry and Physiology* 37 (8): 911–17.

391 Clough, S. J., and A. F. Bent. 1998. "Floral Dip: A Simplified Method for Agrobacterium-Mediated
392 Transformation of *Arabidopsis Thaliana*." *The Plant Journal: For Cell and Molecular Biology* 16
393 (6): 735–43.

394 Ding, Yanglin, Yiting Shi, and Shuhua Yang. 2019. "Advances and Challenges in Uncovering Cold Tolerance
395 Regulatory Mechanisms in Plants." *The New Phytologist* 222 (4): 1690–1704.

396 Farooq, Muhammad Awais, Waqas Shafqat Chattha, Muhammad Sohaib Shafique, Umer Karamat,
397 Javaria Tabusam, Sumer Zulfiqar, and Amir Shakeel. 2023. "Transgenerational Impact of Climatic
398 Changes on Cotton Production." *Frontiers in Plant Science* 14 (March): 987514.

399 Fourrier, Nicolas, Jocelyn Bédard, Enrique Lopez-Juez, Adrian Barbrook, John Bowyer, Paul Jarvis, Gareth
400 Warren, and Glenn Thirlby. 2008. "A Role for SENSITIVE TO FREEZING2 in Protecting Chloroplasts
401 against Freeze-Induced Damage in *Arabidopsis*." *The Plant Journal: For Cell and Molecular
402 Biology* 55 (5): 734–45.

403 Gasulla, Francisco, Katharina Vom Dorp, Isabel Dombrink, Ulrich Zähringer, Nicolas Gisch, Peter
404 Dörmann, and Dorothea Bartels. 2013. "The Role of Lipid Metabolism in the Acquisition of
405 Desiccation Tolerance in *Craterostigma Plantagineum*: A Comparative Approach." *The Plant
406 Journal: For Cell and Molecular Biology* 75 (5): 726–41.

407 Gipson, J. R., and H. E. Joham. 1969. "Influence of Night Temperature on Growth and Development of
408 Cotton (*Gossypium Hirsutum* L.) IV. Seed Quality¹." *Agronomy Journal* 61 (3): 365–67.

409 Grefen, Christopher, Naomi Donald, Kenji Hashimoto, Jörg Kudla, Karin Schumacher, and Michael R. Blatt.
410 2010. "A Ubiquitin-10 Promoter-Based Vector Set for Fluorescent Protein Tagging Facilitates
411 Temporal Stability and Native Protein Distribution in Transient and Stable Expression Studies."
412 *The Plant Journal: For Cell and Molecular Biology* 64 (2): 355–65.

413 Gu, Lianhong, Paul J. Hanson, Dale P. Kaiser, Bai Yang, Ramakrishna Nemani, Stephen G. Pallardy, and
414 Tilden Meyers. 2008. "The 2007 Eastern US Spring Freeze: Increased Cold Damage in a Warming
415 World?" *Bioscience* 58 (3): 253–62.

416 Jouhet, Juliette. 2013. "Importance of the Hexagonal Lipid Phase in Biological Membrane Organization."
417 *Frontiers in Plant Science* 4 (December): 494.

418 Kargiotidou, Anastasia, Dimitra Deli, Dia Galanopoulou, Athanasios Tsafaris, and Theodora Farmaki.
419 2008. "Low Temperature and Light Regulate Delta 12 Fatty Acid Desaturases (FAD2) at a
420 Transcriptional Level in Cotton (*Gossypium Hirsutum*)."*Journal of Experimental Botany* 59 (8):
421 2043–56.

422 Kidokoro, Satoshi, Kazuo Shinozaki, and Kazuko Yamaguchi-Shinozaki. 2022. "Transcriptional Regulatory
423 Network of Plant Cold-Stress Responses." *Trends in Plant Science* 27 (9): 922–35.

424 Kodra, Evan, Karsten Steinhaeuser, and Auroop R. Ganguly. 2011. "Persisting Cold Extremes under 21st-
425 Century Warming Scenarios." *Geophysical Research Letters* 38 (8).

426 <https://doi.org/10.1029/2011gl047103>.

427 Li, Hao, Mengxiao Chen, Liu Jian Duan, Tingting Zhang, Yangrong Cao, and Zhongming Zhang. 2018.
428 "Domain Swap Approach Reveals the Critical Roles of Different Domains of SYMRK in Root
429 Nodule Symbiosis in *Lotus Japonicus*." *Frontiers in Plant Science* 9 (June): 697.

430 Li, Wan, Yue Chen, Minghui Ye, Haibin Lu, Dongdong Wang, and Qin Chen. 2020. "Evolutionary History of
431 the C-Repeat Binding Factor/Dehydration-Responsive Element-Binding 1 (CBF/DREB1) Protein
432 Family in 43 Plant Species and Characterization of CBF/DREB1 Proteins in *Solanum Tuberosum*."
433 *BMC Evolutionary Biology* 20 (1): 142.

434 Mahboub, Samira, Zachery D. Shomo, R. Maxwell Regester, Mahaa Albusharif, and Rebecca L. Roston.
435 2021. "Three Methods to Extract Membrane Glycerolipids: Comparing Sensitivity to Lipase
436 Degradation and Yield." *Methods in Molecular Biology* 2295: 15–27.

437 Majeed, Sajid, Iqrar Ahmad Rana, Muhammad Salman Mubarik, Rana Muhammad Atif, and Muhammad
438 Tehseen Azhar. 2021. "Heat Stress in Cotton: A Review on Predicted and Unpredicted Growth-
439 Yield Anomalies and Mitigating Breeding Strategies." *Agronomy* 11 (9): 1825.

440 McKown, Robert, Gary Kuroki, and Gareth Warren. 1996. "Cold Responses of *Arabidopsis* Mutants
441 Impaired in Freezing Tolerance." *Journal of Experimental Botany* 47 (12): 1919–25.

442 Moellering, Eric R., Bagyalakshmi Muthan, and Christoph Benning. 2010. "Freezing Tolerance in Plants
443 Requires Lipid Remodeling at the Outer Chloroplast Membrane." *Science* 330 (6001): 226–28.

444 NDong, Christian, Jean Danyluk, Kenneth E. Wilson, Tessa Pocock, Norman P. A. Huner, and Fathey
445 Sarhan. 2002. "Cold-Regulated Cereal Chloroplast Late Embryogenesis Abundant-like Proteins.
446 Molecular Characterization and Functional Analyses." *Plant Physiology* 129 (3): 1368–81.

447 Quesada, Benjamin, Robert Vautard, and Pascal Yiou. 2023. "Cold Waves Still Matter: Characteristics and
448 Associated Climatic Signals in Europe." *Climatic Change* 176 (6): 70.

449 Roston, Rebecca L., Kun Wang, Leslie A. Kuhn, and Christoph Benning. 2014. "Structural Determinants
450 Allowing Transferase Activity in SENSITIVE TO FREEZING 2, Classified as a Family I Glycosyl
451 Hydrolase." *The Journal of Biological Chemistry* 289 (38): 26089–106.

452 Saini, Dinesh K., S. M. Impa, Donna McCallister, Gunvant B. Patil, Noureddine Abidi, Glen Ritchie, S. Y.
453 Jaconis, and Krishna S. V. Jagadish. 2023. "High Day and Night Temperatures Impact on Cotton
454 Yield and Quality—Current Status and Future Research Direction." *Journal of Cotton Research* 6
455 (October): 16.

456 Shen, Qian, Siping Zhang, Changwei Ge, Shaodong Liu, Jing Chen, Ruihua Liu, Huijuan Ma, Meizhen Song,
457 and Chaoyou Pang. 2023. "Genome-Wide Association Study Identifies GhSAL1 Affects Cold

458 Tolerance at the Seedling Emergence Stage in Upland Cotton (*Gossypium Hirsutum L.*).” *TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik* 136 (2): 27.

460 Shimamura, Chisa, Ryoko Ohno, Chiharu Nakamura, and Shigeo Takumi. 2006. “Improvement of Freezing
461 Tolerance in Tobacco Plants Expressing a Cold-Responsive and Chloroplast-Targeting Protein
462 WCOR15 of Wheat.” *Journal of Plant Physiology* 163 (2): 213–19.

463 Shomo, Zachery D., Samira Mahboub, Hathaichanok Vanviratikul, Mason McCormick, Tatpong
464 Tulyananda, Rebecca L. Roston, and Jaruswan Warakanont. 2024. “All Members of the
465 Arabidopsis DGAT and PDAT Acyltransferase Families Operate During High and Low
466 Temperatures.” *Plant Physiology*, February. <https://doi.org/10.1093/plphys/kiae074>.

467 Singh, B., E. Norvell, C. Wijewardana, T. Wallace, D. Chastain, and K. R. Reddy. 2018. “Assessing
468 Morphological Characteristics of Elite Cotton Lines from Different Breeding Programmes for Low
469 Temperature and Drought Tolerance.” *Journal of Agronomy and Crop Science* 204 (5): 467–76.

470 Snider, John L., Nuengsap Thangthong, Cristiane Pilon, Gurpreet Virk, and Viktor Tishchenko. 2018. “OJIP-
471 Fluorescence Parameters as Rapid Indicators of Cotton (*Gossypium Hirsutum L.*) Seedling Vigor
472 under Contrasting Growth Temperature Regimes.” *Plant Physiology and Biochemistry: PPB / Societe Francaise de Physiologie Vegetale* 132 (November): 249–57.

473 National Cotton Council of America. “The Story of Cotton: Where Cotton Grows.” n.d. Accessed March 5,
474 2024.
475 <https://www.cotton.org/pubs/cottoncounts/story/where.cfm#:~:text=Cotton%20Cotton%20grow%20in%20warm,are%20Brazil%2C%20Pakistan%20and%20Turkey>.

476 Thomashow, Michael F. 1999. “PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory
477 Mechanisms.” *Annual Review of Plant Physiology and Plant Molecular Biology* 50 (June): 571–99.

478 Thorlby, Glenn, Nicolas Fourrier, and Gareth Warren. 2004. “The SENSITIVE TO FREEZING2 Gene,
479 Required for Freezing Tolerance in *Arabidopsis Thaliana*, Encodes a Beta-Glucosidase.” *The Plant
480 Cell* 16 (8): 2192–2203.

481 Uemura, M., R. A. Joseph, and P. L. Steponkus. 1995. “Cold Acclimation of *Arabidopsis Thaliana* (Effect on
482 Plasma Membrane Lipid Composition and Freeze-Induced Lesions).” *Plant Physiology* 109 (1):
483 15–30.

484 Virk, Gurpreet, John L. Snider, Peng Chee, David Jespersen, Cristiane Pilon, Glen Rains, Phillip Roberts,
485 Navneet Kaur, Alessandro Ermanis, and Viktor Tishchenko. 2021. “Extreme Temperatures Affect
486 Seedling Growth and Photosynthetic Performance of Advanced Cotton Genotypes.” *Industrial
487 Crops and Products* 172 (November): 114025.

490 Wang, Kun, Hope Lynn Hersh, and Christoph Benning. 2016. "SENSITIVE TO FREEZING2 Aids in Resilience
491 to Salt and Drought in Freezing-Sensitive Tomato." *Plant Physiology* 172 (3): 1432–42.

492 Wang, Luyao, Yongyan Zhao, Xuan Long, Shouli Feng, and Xueying Guan. 2023. "A Review of Molecular
493 Regulation Studies of Low Temperature Stress in Cotton." *Crop Design* 2 (2): 100039.

494 Wang, Zhen, and Christoph Benning. 2011. "Arabidopsis Thaliana Polar Glycerolipid Profiling by Thin
495 Layer Chromatography (TLC) Coupled with Gas-Liquid Chromatography (GLC)." *Journal of
496 Visualized Experiments: JoVE*, no. 49 (March). <https://doi.org/10.3791/2518>.

497 Warren, G., R. McKown, A. L. Marin, and R. Teutonico. 1996. "Isolation of Mutations Affecting the
498 Development of Freezing Tolerance in Arabidopsis Thaliana (L.) Heynh." *Plant Physiology* 111 (4):
499 1011–19.

500 Wulff, B. B., C. M. Thomas, M. Smoker, M. Grant, and J. D. Jones. 2001. "Domain Swapping and Gene
501 Shuffling Identify Sequences Required for Induction of an Avr-Dependent Hypersensitive
502 Response by the Tomato Cf-4 and Cf-9 Proteins." *The Plant Cell* 13 (2): 255–72.

503 Xin, Z., and J. Browse. 1998. "Eskimo1 Mutants of Arabidopsis Are Constitutively Freezing-Tolerant."
504 *Proceedings of the National Academy of Sciences of the United States of America* 95 (13): 7799–
505 7804.

506 Yu, Linhui, Chao Zhou, Jilian Fan, John Shanklin, and Changcheng Xu. 2021. "Mechanisms and Functions
507 of Membrane Lipid Remodeling in Plants." *The Plant Journal: For Cell and Molecular Biology* 107
508 (1): 37–53.

509

510 **FIGURE LEGENDS**

511 **Figure 1:** *TGDG accumulation of G. raimondii during acidification and freezing*
512 (A) Thin-layer chromatogram stained for sugars and showing a separation of lipid headgroups extracted
513 from leaf punches of *G. raimondii* after normal growth or freezing. Locations of digalactosyldiacylglycerol
514 (DGDG) and trigalactosyldiacylglycerol (TGDG) are indicated at right. B) Image of *in planta* cotton
515 incubation in 20 mM acetic acid adjusted to pH 5 (C) Thin-layer chromatogram stained for sugars and
516 showing a separation of lipid headgroups extracted after *in planta* leaf incubation in water or artificially
517 acidified (acidic) conditions shown in B. Locations of DGDG and TGDG are indicated at right. Negative
518 and positive controls represent lipid extracts of Arabidopsis leaves during normal growth (negative) or
519 freezing (positive) conditions.

520

521 **Figure 2:** *Presence, activation, and impact of GrSFR2 in Arabidopsis.*

522 (A) Confocal micrographs of YFP signal, chloroplast autofluorescence, or an overlay of both signals from
523 Arabidopsis leaf tissue expressing *GrSFR2*-YFP or *AtSFR2*-YFP as indicated at left. (B) Thin-layer
524 chromatogram stained for sugars and showing a separation of leaf lipid headgroups from Arabidopsis
525 genotypes indicated at the top, grown at 22°C, cold-acclimated for one week at 4°C, then frozen at -6°C
526 overnight, as indicated at right. Arabidopsis genotypes include wildtype (Col), SFR2 loss of function line
527 (*sfr2-3*), *sfr2-3* expressing *AtSFR2*-YFP (*AtSFR2*), and *sfr2-3* expressing *GrSFR2*-YFP (*GrSFR2*). The
528 locations of digalactosyldiacylglycerol (DGDG) and trigalactosyldiacylglycerol (TGDG) are indicated at
529 left. (C) Growth phenotypes of Col, *sfr2-3*, *AtSFR2*, and *GrSFR2* after one week of cold acclimation,
530 overnight freezing at -6°C, and two days of return to normal growth conditions. Phenotypes of *sfr2* and
531 *GrSFR2* are similar in their inability to recover from freezing. (D) Quantification of recovery of plants
532 treated as in panel C. Plants were manually scored for damage where “fully green” indicated no
533 observable damage, “part green” indicated visible damage and visible growth recovery, and “fully
534 white” indicated no visible growth recovery. Numbers of plants quantified in three growth trials are
535 indicated at right. (E) Ion leakage from detached rosette leaves of Arabidopsis of indicated genotypes
536 during a stepwise freezing assay from 0 to -10°C. Data are shown as means (+/- SE) of 10 independent
537 experiments.
538 (F) Thin-layer chromatogram stained for sugars and showing a separation of leaf lipid headgroups from
539 Arabidopsis genotypes indicated at top, after treatments indicated below. Locations of DGDG and TGDG
540 are indicated at left. S, starting, W, treated with water, A, artificially acidified. Negative and positive
541 controls represent lipid extracts of Arabidopsis leaves during normal growth (negative) or freezing
542 (positive) conditions.

543

544 **Figure 3: *GrSFR2* and *AtSFR2* region tests in yeast (*pYESDest52-Ura*)**

545 (A) Thin-layer chromatogram stained for sugars and showing a separation of lipid headgroups extracted
546 from yeast expressing constructs indicated at bottom. GM is *GrSFR2* and monogalactosyldiacylglycerol
547 synthase (MGD1), AM is *AtSFR2* and MGD1, G is *GrSFR2* alone, A is *AtSFR2* alone, M is MGD1 alone.
548 Locations of monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and
549 trigalactosyldiacylglycerol (TGDG) lipids are indicated at left. (B) Depiction of yeast mutant construction,
550 *AtSFR2*, *GrSFR2*, construct 1 (C1) made of *GrSFR2* with *AtSFR2* loop region, construct 2 (C2) *GrSFR2* with
551 550-580bp region from *AtSFR2*. (C) Alignments showing swapped regions of *GrSFR2* and *AtSFR2* in C1
552 and C2. (D) Immunoblot detecting SFR2 loaded with equal protein (10µg) from yeast expressing *AtSFR2*,
553 *GrSFR2*, C1, or C2. Black arrowheads indicate SFR2 construct location and an asterisk indicates a non-

554 specific band. (E) Thin-layer chromatogram stained for sugars and showing a separation of lipid
555 headgroups extracted from yeast expressing AtSFR2, C1, or C2 versions of SFR2. Locations of DGDG and
556 TGDG are indicated at left. Negative and positive controls represent lipid extracts of Arabidopsis leaves
557 during normal growth (negative) or freezing (positive) conditions.

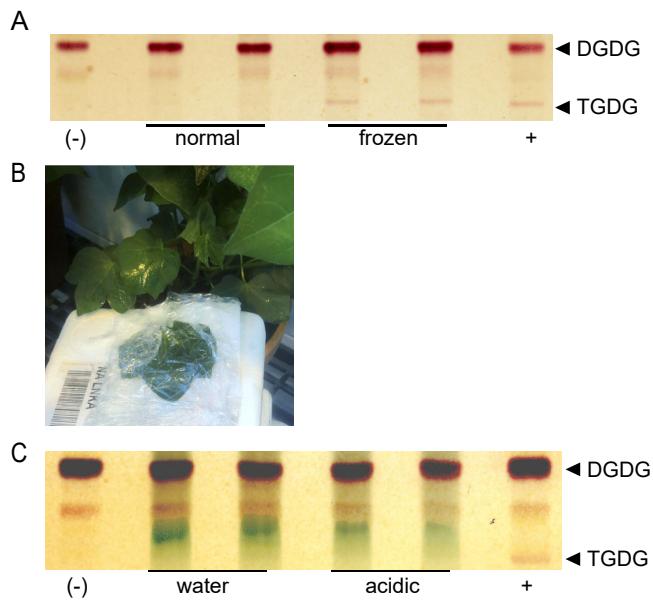
558

559 Funding Details: This work was supported by the National Science Foundation (IOS-1845175), and
560 partially supported by the Nebraska Agricultural Experiment Station with funding from the Hatch
561 Multistate Research capacity funding program (Accession Number NC1203) from the USDA National
562 Institute of Food and Agriculture. SMS was also supported by a 2019 American Society of Plant Biologists
563 Summer Undergraduate Research Fellowship.

564 Disclosure Statement: The authors report there are no competing interests to declare.

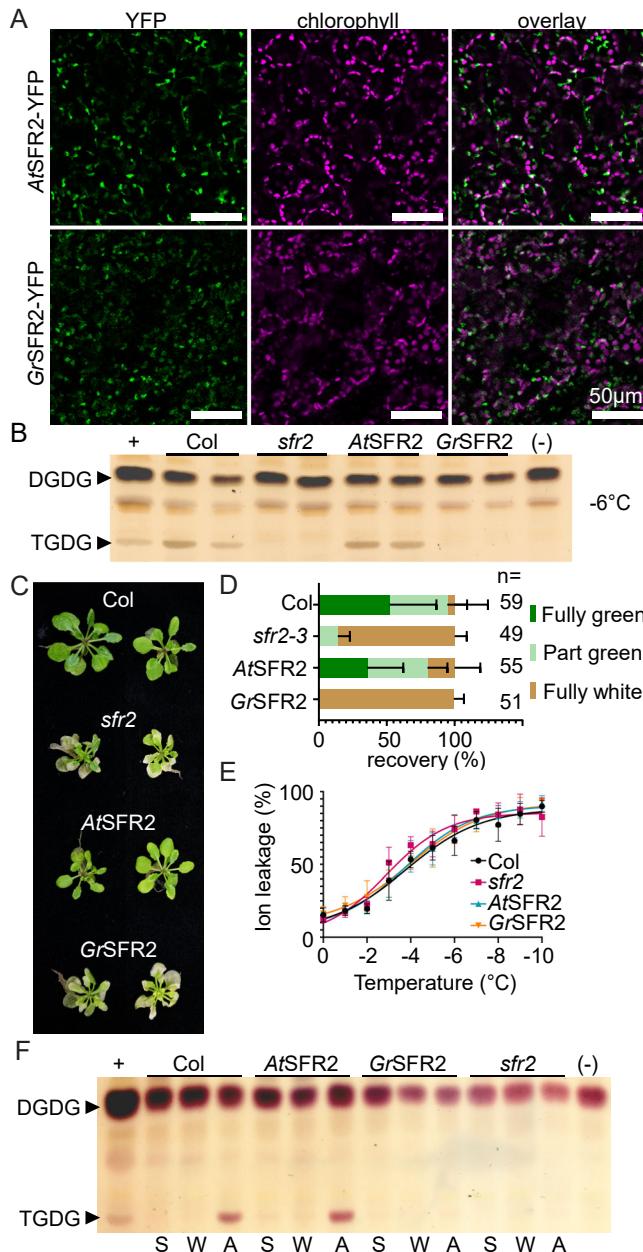
565 Data Availability Statement: No large datasets are associated with this work. Raw image files supporting
566 plant growth and chromatography conclusions are available upon request.

567 Data deposition: N/A

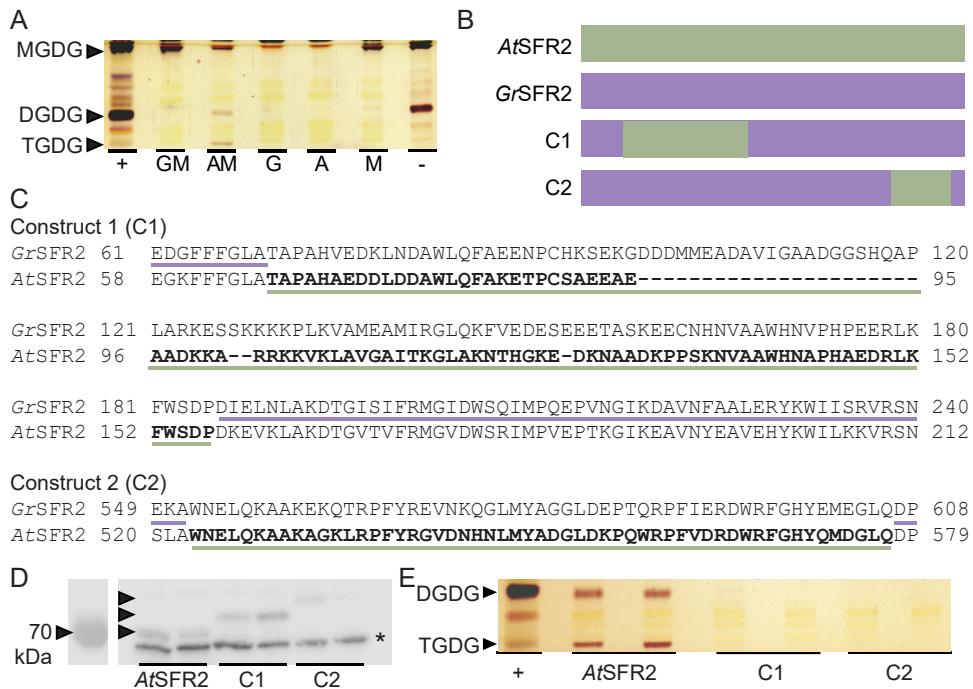

568 Supplemental Online Material: N/A

569 Tables: N/A

570 Equations: N/A


571

572 Cover Image: Generated by Adobe Firefly AI <https://firefly.adobe.com/generate/images>


Figure 1: TGDG accumulation of *G. raimondii* during acidification and freezing

(A) Thin-layer chromatogram stained for sugars and showing a separation of lipid headgroups extracted from leaf punches of *G. raimondii* after normal growth or freezing. Locations of digalactosyldiacylglycerol (DGDG) and trigalactosyldiacylglycerol (TGDG) are indicated at right. B) Image of in planta cotton incubation in 20 mM acetic acid adjusted to pH 5 (C) Thin-layer chromatogram stained for sugars and showing a separation of lipid headgroups extracted after in planta leaf incubation in water or artificially acidified (acidic) conditions shown in B. Locations of DGDG and TGDG are indicated at right. Negative and positive controls represent lipid extracts of *Arabidopsis* leaves during normal growth (negative) or freezing (positive) conditions.

Figure 2: Presence, activation, and impact of GrSFR2 in Arabidopsis.

(A) Confocal micrographs of YFP signal, chloroplast autofluorescence, or an overlay of both signals from Arabidopsis leaf tissue expressing GrSFR2-YFP or AtSFR2-YFP as indicated at left. (B) Thin-layer chromatogram stained for sugars and showing a separation of leaf lipid headgroups from Arabidopsis genotypes indicated at the top, grown at 22°C, cold-acclimated for one week at 4°C, then frozen at -6°C overnight, as indicated at right. Arabidopsis genotypes include wildtype (Col), SFR2 loss of function line (sfr2-3), sfr2-3 expressing AtSFR2-YFP (AtSFR2), and sfr2-3 expressing GrSFR2-YFP (GrSFR2). The locations of digalactosyldiacylglycerol (DGDG) and trigalactosyldiacylglycerol (TGDG) are indicated at left. (C) Growth phenotypes of Col, sfr2-3, AtSFR2, and GrSFR2 after one week of cold acclimation, overnight freezing at -6°C, and two days of return to normal growth conditions. Phenotypes of sfr2 and GrSFR2 are similar in their inability to recover from freezing. (D) Quantification of recovery of plants treated as in panel C. Plants were manually scored for damage where “fully green” indicated no observable damage, “part green” indicated visible damage and visible growth recovery, and “fully white” indicated no visible growth recovery. Numbers of plants quantified in three growth trials are indicated at right. (E) Ion leakage from detached rosette leaves of Arabidopsis of indicated genotypes during a stepwise freezing assay from 0 to -10°C. Data are shown as means (+/- SE) of 10 independent experiments. (F) Thin-layer chromatogram stained for sugars and showing a separation of leaf lipid headgroups from Arabidopsis genotypes indicated at top, after treatments indicated below. Locations of DGDG and TGDG are indicated at left. S, starting, W, treated with water, A, artificially acidified. Negative and positive controls represent lipid extracts of Arabidopsis leaves during normal growth (negative) or freezing (positive) conditions.

Figure 3: GrSFR2 and AtSFR2 region tests in yeast (pYESDest52-Ura)

(A) Thin-layer chromatogram stained for sugars and showing a separation of lipid headgroups extracted from yeast expressing constructs indicated at bottom. GM is GrSFR2 and monogalactosyldiacylglycerol synthase (MGD1), AM is AtSFR2 and MGD1, G is GrSFR2 alone, A is AtSFR2 alone, M is MGD1 alone. Locations of monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and trigalactosyldiacylglycerol (TGDG) lipids are indicated at left. (B) Depiction of yeast mutant construction, AtSFR2, GrSFR2, construct 1 (C1) made of GrSFR2 with AtSFR2 loop region, construct 2 (C2) GrSFR2 with 550-580bp region from AtSFR2. (C) Alignments showing swapped regions of GrSFR2 and AtSFR2 in C1 and C2. (D) Immunoblot detecting SFR2 loaded with equal protein (10 μ g) from yeast expressing AtSFR2, GrSFR2, C1, or C2. Black arrowheads indicate SFR2 construct location and an asterisk indicates a non-specific band. (E) Thin-layer chromatogram stained for sugars and showing a separation of lipid headgroups extracted from yeast expressing AtSFR2, C1, or C2 versions of SFR2. Locations of DGDG and TGDG are indicated at left. Negative and positive controls represent lipid extracts of *Arabidopsis* leaves during normal growth (negative) or freezing (positive) conditions.